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ABSTRACT

The monthly high-resolution terrestrial water storage anomalies (TWSA) during the 11-months of gap between GRACE
(Gravity Recovery And Climate Experiment) and its successor GRACE-FO (-Follow On) missions are missing. The con-
tinuity of the GRACE-like TWSA series with commensurate accuracy is of greatimportance for the improvement of hy-
drologic models both at global and regional scales. While previous efforts to bridge this gap, though without achieving
GRACE-like spatial resolutions and/or accuracy have been performed, high-quality TWSA simulations at global scale
are still lacking. Here, we use a suite of deep leaming (DL) architectures, convolutional neural netwarks (CNN), deep
convolutional autoencoders (DCAE), and Bayesian convolutional neural networks (BCNN), with training datasets in-
cluding GRACE/-FO mascon and Swarm gravimetry, ECMWF Reanalysis-5 data, normalized time tag information to
reconstruct global land TWSA maps, at a much higher resolution (100 km full wavelength) than that of GRACE/-
FO, and effectively bridge the 11-month data gap globally. Contrary to previous studies, we applied no prior de-
trending or de-seasoning to avoid biasing/aliasing the simulations induced by interannual or longer climate signals
and extreme weather episodes. We show the contribution of Swarm and time inputs which significantly improved
the TWSA simulations in particular for correct prediction of the trend component. Our results also show that external
validation with independent data when filling large data gaps within spatio-temporal time series of geophysical signals
is mandatory to maintain the robustness of the simulation results. The results and comparisons with previous studies
and the adopted DL methods demonstrate the superior performance of DCAE. Validations of our DCAE-based TWSA
simulations with independent datasets, including in situ groundwater level, Interferometric Synthetic Aperture
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Radar measured land subsidence rate (e.g. Central Valley), occurrence/timing of severe flash flood (e.g. South Asian
Floods) and drought (e.g. Northern Great Plain, North America) events occurred within the gap, reveal excellent

agreements.

1. Introduction

GRACE (Gravity Recovery And Climate Experiment) and its successor,
GRACE-FO (-Followon) gravimetry satellite missions are designed to detect
changes in Earth's global gravity field at monthly sampling and a spatial
scale longer than 333 km (half-wavelength) (Tapley et al, 2004, 2019).
The GRACE gravity-inferred mass change data were collected for a much
longer than expected mission time span (expected lifetime was 5 years) at
15 years, from 17 March 2002 through June 2017. GRACE-FO twin-
satellite gravity mission was launched in May 2018 as a successor mission
to ensure the continuity of GRACE mission (Flechtner et al., 2016;
Kornfeld et al., 2019). However, there is a significant data gap between
the GRACE and GRACE-FO (GRACE/-FO) missions, which covers a period
of successive 11 months. In addition, there exist other multiple data gaps
within GRACE/-FO solution time series for individual months either due
to satellite maneuvers performed to extend the mission's lifetime, or lack
of healthy data/insufficient ground track coverage such as short repeat-
cycling orbits (Klokoénik et al., 2015). One possible solution addressed by
the geoscience community is to fill these gaps (at least beyond 2014)
using data from the European Space Agency's Earth Explorer Mission
Swarm three-satellite constellation. Swarm satellites were launched in No-
vember 2013 and currently in operation, with its primary scientific objec-
tive to map Earth's magnetic field and its temporal variations (Olsen
etal, 2013). Additional objective is the mapping of Earth's temporal gravity
field via high (GPS)-low (Swarm spacecrafts) satellite-to-satellite tracking
(h1-SST) at low spatial resolution (Encamacao et al., 2016, 2020), at spher-
ical harmonics (SH) complete to degree and order (d/o) 12, longer than
3000 km (full wavelength).

Several institutes have produced monthly gravity field solutions from
Swarm hl-SST data using different approaches and orbit solutions (Guo
et al., 2015; Bezdék et al., 2016; Jdggi et al, 2016; Liick et al., 2018;
Encamnacdo et al., 2019). Five official centers including Astronomical Insti-
tute of the Czech Academy of Science (ASU), Astronomical Institute of the
University of Bern (AIUB), Institute of Geodesy (IfG) of the Graz University
of Technology, Institute of Geodesy and Geoinformation (IGG) of the Uni-
versity of Bonn and Division of Geodetic Science, School of Earth Sciences,
Ohio State University (OSU) have been routinely providing monthly SH
Swarm solutions. These Swarm solutions effectively are capturing long
wavelength temporal gravity field only at resolutions commensurate to
SHd/o 12 (Liick et al., 2018; Encarnacao et al., 2020) although they are
typically expanded up to d/o 40 terms.

Contemporary studies so far used Swarm gravimetry data aided by sta-
tistical approaches, such as the Independent Component Analysis (ICA,
Forootan et al., 2020), and Multichannel Singular Spectrum Analysis
(MSSA, Wang et al., 2021). More recently, Swarm gravimetry was used in
a purely data-driven approach to reveal the return of the rapid mass loss
state in West Antarctica during the absence of GRACE in 2017-2018
(Zhang et al., 2021). These studies thus succeeded in bridging satellite
gravimetry data gaps at long spatial scales, limited by Swarm data resolu-
tion (and accuracy). The lack of GRACE-like resolution (666 km full-
wavelength) terrestrial water storage anomaly (TWSA) data during data
gaps would likely degrade assimilative hydrological studies resulting in
large uncertainties including biases. Thus, it is crucial to fill the TWSA
data gap with realistic simulations and at least at GRACE-type resolutions.
Other studies used different methods to directly or indirectly fill the gap be-
tween GRACE/-FO, and focused either only on temporal (mostly regional or
basin-wide average) or on spatio-temporal (grid-wise and covering all or
most part of the Earth) TWSA modeling. Among these studies, Humprey
and Gudmundsson (2019) first computed monthly TWSA using land sur-
face temperature (TEMP) and precipitation (PPT) from three different

meteorological data sources adopting basic principles of hydrologic model-
ing at each grid cell of corresponding GRACE mascon (mass concentration)
solutions. Then for each grid cell, a scale factor but between the de-trended
and de-seasoned time series of simulated TWSA and mascon TWSA is em-
pirically estimated.

Sun et al. (2019) used convolutional neural networks (CNN) to model
the discrepancy between the TWSA from GLDAS NOAH (Rodell et al.,
2004) land surface model (LSM) and the GRACE TWSA over India; however
not focused on gap filling but mentioned its potential. Yu et al. (2021) per-
formed a similar study over Canada, using three different deep learning
(DL) architectures namely CNN, conditional generative adversarial net-
works (cGAN) and deep convolutional auto encoders (DCAE); they
modelled the relationship between (input) regional LSM-derived TWSA
and output GRACE TWSA and used their final models to reconstruct
GRACE-like TWSA prior to the GRACE era, (from 1979 to 2002). They
also showed that reconstruction using LSM-based deep learning modeling
produces significantly better results than modeling using only GRACE
data. Li et al. (2020), at the first step has applied signal decomposition
using ICA and principal component analysis to 1° x 1° gridded time series
of all input data variables (including PPT, TEMP, sea surface temperature-
SST and 17 other dimate indices) and output variable GRACE TWSA to sep-
arate the signals into spatial patterns and temporal modes; then in the next
step these temporal modes are further separated into trend, annual, inter-
annual and residual components. In the third step, the temporal modes (ex-
cept the trend signal) of the input variables are used to predict those of
GRACE TWSA through three methods; artificial neural networks (ANN),
autoregressive exogenous (ARX) and multiple linear regression (MLR). Fi-
nally, the GRACE-like TWSA were reconstructed by adding spatial patterns
and trend from GRACE TWSA back to the three temporal modes predicted
in the previous step.

Sun et al. (2020a) used three methods, namely deep neural networks
(DNN), MLR and seasonal autoregressive integrated moving average with
exogenous variables (SARIMAX) to model the nonlinear relationship be-
tween the input hydrometeorological variables plus the GLDAS-NOAH de-
rived TWSA and the output GRACE-derived TWSA (both from mascon
solutions and official L2 data products), and demonstrated that DNN and
SARIMAX achieve (both globally and regionally) comparable results and
outperform MLR method in 60 basins Worldwide. Besides, they used all
the GRACE data (covering 2002-2018) and did not attempt to fill the gap
but noted that the studied methods can be used for such a task. Forootan
et al. (2020) first applied ICA to entire GRACE (2003-2018) 1° x 1°
gridded TWSA time series to retrieve the dominant modes of the TWSA sig-
nal, and then these modes are used for reconstruction process in combina-
tion with Swarm data to obtain refined Swarm temporal gravity fields
complete to d/o 40 with considerably reduced noise. Sun et al. (2020b)
has used several machine leaming (ML) techniques to reconstruct
GRACE-like TWSA over the U.S. by using several input data variables in-
cluding GLDAS TWSA, TEMP and PPT from ERA5-Land (ERAS5-L), sea sur-
face temperature, and two climate indices [North Atlantic Oscillation
(NAO), and Multivariate ENSO Index (MEI)] with multiple monthly time
lags of various lengths, and arguably concluded that no single method is su-
perior to another throughout the U.S. and suggested the combination of re-
sults from multiple ML methods.

Richter et al. (2021) combined the principal components of global (in-
cluding oceans) gridded GRACE/-FO mass change time series (in terms of
EWH, or equivalent water height) at low resolution (d/o 12) monthly
Swarm solutions to reconstruct de-noised temporal gravity field models
up to d/o 40 between December 2013 and December 2018. Wang et al.
(2021) applied MSSA using all the monthly GRACE/-FO RLO06 spherical
harmonics solutions (April 2002-March 2020) provided by University of
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Texas Center for Space Research (UTCSR) to fill the data gaps; monthly
Swarm solutions were only used for comparisons, which confirm that the
TWSA computed from reconstructed fields are more consistent with hydro-
logic models than those computed from Swarm-only solutions. Li et al.
(2021) basically extended the work in Li et al. (2020) beyond 26 basins
to global (excluding polar regions) land surface and additionally esti-
mated /determined scaling factors (which they call ‘application scale’) for
each grid cell defined on the land to refine the monthly TWSA reconstruc-
tion for the period 1979-2020. Yi and Sneeuw (2021) used singular spec-
trum analysis (SSA) to fill the data gap within and between GRACE/-FO,
but in spherical harmonics domain and showed that their approach is
able to retain GRACE-like resolution temporal gravity fields up to d/o 30
for the missing months. They used Swarm solutions, again for comparison
only. Locher and Kusche (2021) combined the coarse resolution (d/o 10)
monthly Satellite Laser Ranging (SLR) gravity solutions with the spatial pat-
terns derived from the available GRACE mission by decomposing the series
of monthly gravity field solutions into empirical orthogonal functions and
produced monthly SH gravity field solutions (including the data gap pe-
riod) which have same spatial resolution with GRACE.

Mo et al. (2021) used a Bayesian CNN (BCNN) method to identify the
relationship between the input (hydroclimatic/meteorological observation
data as well as TWSA computed from ERAS-L) and the output (1° x 1°
gridded) GRACE/-FO mascons both de-trended between April 2002 and
August 2020. Their model established the relationship between de-
trended (input and output) signals. Moreover, they interpolated the inter-
mittent monthly gaps which exist within individual GRACE and GRACE-
FO data spans using mascon solutions of neighboring months and used all
the GRACE/-FO mascon time series, including interpolated epochs, except
the long inter-mission data gap of 11 months, to estimate the linear trend.
The estimated mascon trend was then added backed to the de-trended
TWSA simulations of BCNN model to reconstruct the original TWSA signal.
We hypothesize that such a de-trending or de-seasoning processes may in-
duce large errors prohibiting the exact capturing of the interannual or lon-
ger climate events, and the extreme regional climate signals, occurred
within the 11-month long GRACE/-FO data gap.

The all the data driven methods (including ML/DL type methods) ded-
icated to fill the gap between GRACE/-FO listed above restore either the
trend signal or even also the spatial patterns retrieved from existing
GRACE/-FO data and assess the performance of their results based on resid-
ual signal which is the difference between their simulated TWSA and the
observed GRACE/-FO TWSA. In this study, three DL architectures namely
CNN, DCAE, and BCNN through TensorFlow (Abadi et al., 2016), Keras
(Chollet et al., 2015) and PyTorch (Paszke et al., 2017) implementations,
respectively, have been developed to reconstruct or simulate all the missing
monthly TWSA maps within and between GRACE/-FO beyond January
2014 and until December 2020. Our study differs from the aforementioned
studies in several aspects which also draw the novelty of the study: (i) No
prior de-trending, de-seasoning, signal decomposition or interpolation of
intermittent gaps is applied neither to the input nor to the output data
set; all the data are used as they are, in order to avoid biasing or aliasing
the simulations induced by interannual or longer term climate signals as
well as extreme weather episodes. Instead, we introduced the normalized
time epochs of the associated input data as additional input variables. The
rationale for this idea is that almost all geophysical signals are functions
of time, and it would be logical to allow the deep learning process to re-
trieve such trend and seasonal signals (which may show different spatio-
temporal patterns) from the data itself. Another advantage of this approach
is the ability of direct implementation of data in DL models. (ii) We use
monthly coarse resolution (complete to d/o 12) Swarm TWSA solutions di-
rectly as another input to retrieve the long-wavelength component of the
TWSA signal through deep learning. (iii) We used shorter time series of
data for our modeling work; all the input and output data are those in the
period December 2013-December 2020 since the Swarm data is available
beyond December 2013. (iv) Finally, we compared results from all 3 DL
methods to ensure robustness in our approach, and to identify the best DL
approach for effective GRACE/-FO data gap bridging which eventually
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shows the necessity and importance of validation with independent (non-
GRACE) data.

The rest of the paper is organized as follows. The data, methods and the
performance metrics used in the study are briefly described in Section 2.
The numerical results and discussions are given along with internal and ex-
ternal (with comparisons to independent data, hydrologic models and the
results from previous studies) quality assessment of the simulated TWSA
are given in Section 3. Finally, conclusions are drawn and some practical
hints to be considered when using ML/DL methods in modeling geophysi-
cal processes are summarized in Section 4.

2. Material and methods
2.1. Data

Our DL models basically include six input and one output data variables.
The single output variable is the monthly GRACE TWSA, while the input
variables are monthly coarse resolution Swarm-derived TWSA, four hydro-
climatic/meteorological parameters (PPT, TEMP, cumulative water storage
change and model-derived TWSA) from ERAS-L hydrologic model and the
time (in terms of normalized Day of Year — nDOY) epochs of the corre-
sponding input data, respectively. The nDOY of a month is simply com-
puted by dividing the DOY of the mid-day of that month by 365 (or 366),
i.e. the number of days in a year. The data and the pre-processing steps ap-
plied before adjusting the parameters (also known as training or learning
process) of the DL models are briefly described in the following. All three
DL methods use the same input-output architecture; that is the input data
at two successive monthly time epochs t-1, and t are used to approximate
the corresponding output data, i.e. GRACE TWSA at time epoch t. The flow-
chart of the overall methodology and complete data preparation scheme
and adopted input-output data patterns are presented in Figs. Al and A2

(see Appendix), respectively.

2.1.1. GRACE TWSA data

The monthly mascon TWSA solutions of GRACE/-FO, from December
2013 till December 2020, released by UTCSR are used in this study (Save
et al., 2016; Save, 2020). CSR RLO6 (Release 06) mascons (CSRM) are the
global 0.25% x 0.25° (noting that this is not the true spatial resolution,
which is at 666 km, but the resampling size) gridded monthly TWSA
computed as differences with respect to a mean-field in the period
2004.0-2009.999 and can be fragmented into two main parts regarding
the coverage period of the two missions; GRACE (from April 2002 to July
2017) and GRACE-FO (from May 2018 to present). The gap between
these missions includes a total of 11 months, however, there are also
some intermittent missing months within each mission's individual data
span. The standard corrections including degree-1 (Swenson et al., 2008),
replacement of Cy and Cag coefficients using satellite laser ranging (SLR)
solution (Cheng et al., 2013), ICE-6GD (VM5a) glacial isostatic adjustment
forward model (Peltier et al., 2018) and ellipsoidal corrections (Ditmar,
2018) are all applied before the CSRM TWSA data are published (Save
et al., 2016; Save, 2020). We resampled the original mascons to 1° x 1°
grids to be consistent with current native resolution of CSR RLO6 mascon
solutions. We emphasize again that the CSR RLO6 mascon solution at
25 km, is a re-sampled or interpolated gridded data, and not the real
GRACE/-FO resolution which is at 666 km (full wavelength). Here our
targeted 100-km resolution for our TWSA simulation is argued to be realis-
tic, with the additional and independent datasets aided by DL approach.
Further, the resampled monthly CSRM TWSA data constitutes the single
output variable of the DL models in this study.

2.1.2. Swarm TWSA data

The monthly SH gravity field models (Level 2 - L2 data products)
recovered from Swarm orbit tracking data up to d/o 40 published by Inter-
national Center for Global Earth Models (ICGEM - http://icgem.gfz-
potsdam.de/series/02_cost-g/swarm) are used (Encarnacdo et al., 2019,
2020). These models are made available in quarterly basis starting from
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December 2013. Swarm L2 data is not directly used but converted to TWSA
(Swarm TWSA) applying the same corrections as those in the CSRM pro-
cessing chain using the updated version of GRACE MATLAB Toolbox
(GRAMAT) Software (Feng, 2019). In order to suppress the noise in higher
degree SH coefficients, we truncated the monthly SH models at d/0 12 and
thus the long wavelength components of the gravitational signal could be
obtained from Swarm solutions. Encarnacao et al. (2020) suggested
that a 750 km smoothing radius can be applied to retrieve time-
variable gravity signals on land from Swarm models. Therefore, we ap-
plied Gaussian smoothing with a radius of 1000 km to the truncated
Swarm L2 data to obtain the monthly TWS change. To make the
Swarm-derived mass changes consistent with mascon TWSA, the
mean-field of CSR RL06 L2 models between 2004.0 and 2009.999 is
calculated and removed from monthly Swarm models. Finally, Swarm
TWSA between December 2013 and December 2020 are resampled to
the 17 x 1° grids. This data serves as one of the input variables of our
DL architectures.

2.1.3. ERA5-L dam

ERAS-L data set is released by European Centre for Medium-Range
Weather Forecast (ECMWF - https://cds.climate.copernicus.eu) and has
been produced by replaying the land components from the ECMWF ERAS
climate reanalysis dataset. ERAS-L data are publicly available from 1950
to present both as hourly products and monthly aggregates of hourly prod-
ucts and has a global coverage with 0.1° x 0.1° spatial resolution (Mufioz
Sabater, 2019). The ERA5-L data set include various surface variables at
such high resolution which are retrieved from vast amount and types of his-
toric observations including those from satellites and in situ data sources
using advanced modeling and data assimilation systems. The data from
ERAS-L used in our DL modeling, in analogy to Mo et al. (2021), are
monthly PPT, TEMP, cumulative water storage changes (CWSCs), and
TWSA computed solely from ERAS5-L. We applied exactly the same ap-
proach of Mo et al. (2021) for the computation of CWSC and ERA5-L
TWSA: the TWSA is calculated from the water storage variables of soil mois-
ture (in four layers from surface down to 289 cm), snow and canopy by sum-
ming up these variables and then removing their long term mean in the
period 2004.0-2009.999 to be consistent with CSRM TWSA as described
in Section 2.1.1. The CWSC is calculated by aggregating the cumulative
differences between inflow (i.e. PPT) and outflow (i.e. evapotranspira-
tion (ET), and runoff (RO)) at each grid cell through the water balance
equation, i.e., Water Storage Change (WSC = PPT - ET - RO). Note
that irrigation is not explicitly included in the water balance equation
as ERA5-L ET data products include the irrigation effect on soil water
storage to some extent. For details of the overall data preparation
steps, the reader is referred to Egs. (1-2) of Mo et al. (2021). Finally,
all four ERA-derived hydro-/climatic input data variables (PPT, TEMP,
CWSC and ERA5-L TWSA) are resampled to 1° X 1° grids to be consis-
tent with other (input and output) variables of our DL architectures be-
fore running the learning process. The whole ERAS-L data suit provides
more than seventy years of various meteorological and climate-related
data which can be useful to study the impact of climate change, e.g.
on watershed hydrology (Ekwueme and Agunwamba, 2020), stream-
flow dynamics (Oo et al., 2020), etc.

2.2. Deep learning models

2.2.1. CNN

CNN (Cunetal., 1989), is a class of neural networks that is advantageous
in processing data which have a grid-like topology such as images or in the
form of time-series. The main reason for this advantage, compared to con-
ventional (feed-forward) ANN is due to the fact that the network utilizes
mathematical linear operations which are called convolution. Additionally,
CNNs are widely used in problems such as image change detection (Liet al.,
2022), machine health diagnosis (Mukherjee and Tallur, 2021), land sur-
face temperature reconstruction (Wu et al., 2019) and filling the remote
sensing data gaps (Zhang et al., 2018). Particularly, in CNNs input is
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convoluted by the set of filters through the convolution layers. In this con-
text, the relation between successive layers in the CNNs is represented as
follows

a™) = a(a(” * WO b(”) (1

where * is the convolution operator and o denotes the activation function. In
this way, it may be said that the use of CNN leads to effective way of feature
extraction. Therefore, taking the so-called advantages into account, the
CNN model has been developed to extract spatial features of input data. In
this study, the network architecture of the CNN model consists of six
convolutional layers with gradually decreasing filters size from 128 to 8
neurons which run through the activation function, namely exponential lin-
ear unit. Thus, the influence of nonlinearity is taken into account at this
stage of the layers which is also called as detector stage. Additionally,
since the use of pooling helps to ensure invariance of the CNN to the
small translations of the input data, convolutional layers are followed by a
max-pooling layer with 2 X 2 pool size (Zhou and Chellappa, 1988).
Moreover, each layer is followed by dense layer which has 64, 32, 32, 32,
16, 1 neurons, respectively, and the first convolutional layer has also a
regularizer which applies penalties on layer parameters, to prevent
overfitting. In this study, all three DL models including the CNN model
were trained for 250 epochs and the mean square error (MSE) was selected
as theloss function. For the calculation of error by the loss function, Adamax
optimizer, which is a variant of Adam algorithm (Kingma and Ba, 2015) was
utilized.

2.2.2. DCAE

In addition to the CNN model, we also developed a DCAE network
(Hinton and Zemel, 1994; Alain and Bengio, 2014; Kamyshanska and
Memisevic, 2014) for reconstruction/simulation of GRACE-like TWSA
maps. In general, DCAEs are the type of CNN which are used for represen-
tation learning by dimensionality reduction. DCAE mainly consists of two
parts: encoder part for feature representation which represents by h = f
(x) function and decoder part for reconstruction of input from representa-
tion by r = g(h). According to this, DCAE model takes input and maps to h

h = o(Wx +b) @

where o represents the activation function, W and b are weight matrix and
bias vector of encoder, respectively. Further, output of decoder is given as
follows:

r=o(Wh +t})) (3)

where ¢'is activation function, W corresponds to the weight matrix and b is
the bias vector of decoder. In this study, the network architecture of our
model consists of five convolutional layers with gradually increasing filter
size from 32 to 400. These are followed by flatten layer and a fully con-
nected layer which has 256 neurons. In this manner, in the decoding part,
the fully connected layer of 400 neurons is followed by the four transposed
convolutional layers. Similar to the CNN model, the MSE metric is chosen as
a loss function and the Adamax optimizer is employed for the training
process.

2.2.3. BCNN

Besides the standard neural networks, surrogate models and Bayesian
approaches to CNN can be seen as major developments for treating prob-
lems which have limited data for training. The undedying idea of the Bayes-
ian approaches is the fact that the posterior probability is proportional to its
prior probability and likelihood as P(6| X) = P(X|8)P(6) (Goodfellow et al.,
2016). Therefore, it may be said that the main difference between non-
Bayesian and Bayesian approaches is that Bayesian neural networks
(BNN) take epistemic uncertainty of model parameters into accounts by
making use of the probability distributions. In the Bayesian treatment of
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the learning, model weights are considered as unknown parameters with
uncertainties and might be represented by probability distribution. There-
fore, adding adaptive noise into weights may be considered as an effective
way of reflecting this uncertainty. For this reason, we employ the model ar-
chitecture which is proposed by Zhu and Zabaras (2018). In this approach,
the process is described by probabilistic mapping as follows:

y=h(x,w)+1 “

Here, h(x,w) corresponds to an output of the neural network and n to
additive noise. According to the proposed approach, the architecture of
the baseline network is developed by making use of a dense convolutional
encoder-decoder network (DenseNet) (Huang et al., 2017) which broadens
the idea of ResNet (He et al., 2016). In this study, for simulation of GRACE-
like TWSA, we adopt the proposed baseline network to our problem in a
similar manner. Therefore, model architecture consists of the encoder
part with convolution layer through the dense block and decoding part
with consecutions of the encoding part, as shown in Fig. A3 (see Appendix).
Additionally, Stein variational gradient descent (SVGD) is utilized to com-
pute posterior distribution by minimizing the Kullback-Leibler (KL) diver-
gence for the target distribution p(0,x) and simpler distribution Q(&;4)
such as KL[Q(6; A||p(6, x)], where 6 are stochastic parameters which are
thus represented as random variables and A represents observations such
asd = [f,y’]fi'"f.Hence, we use the samples {0} to approximate the
posterior distribution p(6,x) which are optimized by making use of Adam
algorithm. Details of the network architectures for all three DL models are
given in Fig. A3.

2.3. Performance metrics

The performance of the simulations has been evaluated by two metrics:
Nash - Sutcliffe efficiency (NSE, Nash and Sutcliffe, 1970) and root mean
square error (RMSE), commonly used measures in hydrological studies
and computed as follows

N
Y (Y;-0)
NSE=1 - ";" ,NSEe(— o, 1] (5)
X (0,-0)°
=0

where Y represents the values simulated by the model, 0;and O denote the
observed and its mean values, respectively. Hence, NSE closer to 1 indicates
a model with accurate simulative skill.

RMSE is a metric which is frequently used to measure regression perfor-
mance of the models. In contrast to NSE, RMSE closer to 0 suggests a model
with better performance.

N
RMSE = e‘% Y, (¥i — 0;)°, RMSE€[0, +0) (6)
=1

3. Results and discussions

Adopting the same input-output data patterns, the training of the three
DL models is performed on a single NVIDIA GeForce GTX 2060 GPU. It is
worth noting that the computer runtimes are approximately 4 h, 5 min
and 75 min for CNN, DCAE and BCNN models, respectively.

Here, we organized the validation and evaluation of the simulation (re-
construction) results into three parts: The internal validation, comparison
with previous studies and the external validation. The internal validation
includes the global and regional (basin-wise) performance assessment of
the simulated TWSA versus CSRM TWSA through the metrics given in
Section 2.3. It basically shows the goodness of fit of the model simulations
to the observed CSRM TWSA for chosen testing dataset, which is not used
for training the DL models. It also includes comparisons with TWSA derived
from independent hydrological models. The reconstructed TWSA from two
previous studies (Li et al, 2021; Mo et al., 2021) are compared to our
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simulated TWSA using the test data set common for all three studies. The
external validation, on the other hand, includes the comparison of the sim-
ulated TWSA with other non-gravimetry data set such as in situ groundwa-
ter level (GWL) measurements, the occurrence of extreme weather events
such as flash floods and droughts, and annual land subsidence rates from
InSAR (Interferometric Synthetic Aperture Radar), in particular during
the GRACE/-FO data gap.

3.1. Internal validation

During the study period (December 2013-December 2020), though
covering 84 months, only 61 months of mascon TWSA solutions are avail-
able. Considering the time lags for input data, i.e. t-1 and t where t denotes
the month, the input-output patterns corresponding to the so-called
61 months of CSRM TWSA have been generated. The 48 out of 61 months
of the input-output data have been used to train the proposed DL models,
while the remaining 13 months which were randomly chosen, have been
used for testing/validating the model parameters. Therefore, roughly
>20% of the entire data set have been separated for validation, which is
necessary to avoid overfitting phenomena. The entire data gap between
December 2013 and December 2020, including the 11 months of intermis-
sion period, consists of 23 months which are to be simulated using pro-
posed DL methods.

The first part of internal validation is carried out considering the chosen
13 test months. Monthly mean global NSE and RMSE scores and their over-
all averages (dashed lines) for the entire test months are presented in Fig. 1.
The overall average values from each DL models are 0.98 (DCAE), 0.98
(BCNN), 0.97 (CNN) for NSE and 2.7, 2.8, 3.5 cm for RMSE, respectively.
While RMSE and NSE metrics for BCNN and DCAE simulations are consis-
tent with each other, CNN shows slightly worse performance, especially
in terms of RMSE. It is interesting to see the months with the highest
RMSE and the lowest NSE values common for all three DL models in
Fig. 1 are November 2016 and May 2017 (see green shaded area). While
the gray shaded area shows the data gap between GRACE/-FO, the green
shaded area is the battery turn-off period of the GRACE-B satellite from
November 2016 to June 2017 (Save et al., 2018; Bandikova et al., 2019).

Therefore, the slightly worse performance metrics at these months can
plausibly be explained by the battery issue of GRACE-B. According to Save
et al. (2018), CSRM products between November 2016 and June 2017 are
calculated using the operation with only one single working accelerometer
(ACC), which is based on transplanting ACC data considering the attitude
and time correction, to mitigate the battery issue of GRACE-B. In addition,
CSRM solutions may not exactly be derived from the GRACE observations
within a particular month; some solutions are computed using the inte-
grated GRACE data partially observed in successive months depending on
the observation quality and error sources of GRACE satellites, especially to-
wards the end of GRACE mission lifetime. According to GRACE Science
Data System Report (SDS) of November 2016 (https://isdc.gfz-potsdam.
de/grace-isdc/grace-gravity-data-and-documentation/), the transplanted
ACC for GRACE-B were used in the solution of CSR RLO5 L2 models.

10.85
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—@— DCAE RMSE —®— BCNN NSE o
0 . I 5 ) 0.85
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©  CNNRMSE —&— DCAE NSE
CNN NSE

Fig. 1. Monthly mean and overall average global RMSE and NSE scores for 13 test
months.
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Moreover, the time span of the CSR products for this particular month is ac-
tually based on 28 days of data acquired between November 13 and De-
cember 10. The same data is used in the production of CSR RL06 L2 and
CSRM TWSA. Similarly, for May 2017, only 20 days of GRACE data (be-
tween 3 and 23 May) have been used to compute CSRM solutions. There-
fore, this may also explain the relatively low agreement of the TWSA
simulations with CSRM at these test months as the corresponding CSRM so-
lutions do not actually represent the mean TWSA within the pronounced
months while the input data, on the other hand, are exactly the monthly
mean values of daily observations within corresponding months.

The maximum (3.5 cm) and the minimum (2.6 cm) monthly mean
global RMSE values (both from DCAE and BCNN) are obtained for May
2017 and January 2019, respectively (see Fig. 1). Simulated TWSA along
with the corresponding CSRM TWSA for these two months are shown in
Fig. 2a and b, respectively. Furthermore, differences between the simulated
and the CSRM TWSA are also presented. In Fig. 2, the performance of the
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three DL models can be compared spatially; they all seem to be capable of
capturing the spatio-temporal patterns of the TWSA. However, it appears
that the differences (DIFF TWSA) of BCNN (Fig. 2a, b-v) from CSRM
TWSA has a similar pattern with its simulated TWSA signal, which reveals
that there is still significant mass anomaly signal in the residual (DIFF)
TWSA; the amplitudes are underestimated especially at basins which
show large seasonal variability such as Amazon, Zambezi and Greenland.
This result also explains why Mo et al. (2021) applied BCNN to the de-
trended data set and focused only on predicting seasonal component of
TWSA signal within the gap period. In other words, BCNN is not effective
to retrieve both trend and amplitude signal from the original GRACE
TWSA when the normalized time and long wavelength gravity (such as
TWSA from Swarm) data have jointly given as additional inputs. In order
to achieve good simulations with BCNN without de-trending or de-
seasoning the input-output data, the long-wavelength gravity information
should be included as an additional input to the other four input variables,

1510 -5 0 5 10 15
DIFF TWSA [cm]

1510 -5 0 5 10 15
DIFF TWSA [cm]

Fig. 2. Simulation results (a) for May 2017 and (b) for January 2019. The first columns include CSRM TWSA for these two test months and the second columns represent (ii)
BCNN, (iii) DCAE and (iv) CNN simulations of TWSA for the corresponding months, respectively. The third columns show the differences (v—vi—vii) between CSRM and the
corresponding simulated TWSA on the left (CSRM: CSR. RLO6 Mascon Solution, DIFF TWSA: differences between CSRM and simulated TWSA).
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but not the normalized time since the time information is not a stochastic
variable and does not conform to the probability distributions which vio-
lates the basic principles of BONN (Keles et al., 2021).

Relatively larger differences between the all simulated and CSRM
TWSA are observed at hydrologically active basins such as Amazon and
Greenland where the high temporal mass variations exist. We believe that
the high differences at these basins are mainly due to the higher uncertainty
of the TWSAs computed from hydrologic models (Scanlon et al., 2018)
which are used as one of the major input variables in our DI-based simula-
tive models. However, in general, high correlation between the simulated
and CSRM TWSA can be clearly seen for both test months.

The DL-based TWSA simulations as well as ERA5-L and NOAH derived
TWSA for entire test months are compared to corresponding CSRM TWSA
and the spatial distributions of their RMSE and NSE are presented in
Fig. 3. From top to bottom, the left column shows the RMSE for BCNN,
DCAE, CNN, ERA5-L and NOAH, respectively, while the right column illus-
trates the NSE for the corresponding method or hydrologic model. Though
ERAS5-L and NOAH TWSA show reasonable correlations with CSRM at the
regions which exhibit dominant hydrological signal (e.g. Amazon basin,
Brahmaputra-Ganges basin) except for Greenland, they almost have no
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correlation at hyper-arid regions. On the other hand, the DL simulations
of TWSA are clearly more consistent and have higher correlations with
the CSRM almost at all regions.

An interesting observation from the simulated TWSA is that, regardless
of the method used, not only in this study, but also in previous studies
(e.g., see Fig. 2a of Humprey and Gudmundsson, 2019; Fig. 3b of Li et al.,
2020; Fig. 2d of Li et al,, 2021 and Fig. 4j-1of Mo et al., 2021), the highest
RMSE values always appear in the same regions, namely, Amazon, Brahma-
putra, Ganges and Zambezi basins, respectively. This result is consistent
with the findings of Scanlon et al. (2018), which states that the hydrologic
models generally underestimate the GRACE-TWSA trends; and the largest
discrepancy between GRACE-TWSA and TWSA predicted by hydrologic
models exists at these four large hydrologic basins. This is also evident
from Fig. 4, where the (2014-2020) time series of CSRM, simulated
TWSA from DL models and TWSAs computed from hydrologic models
(ERA5-L and NOAH) at 10 selected basins [the boundaries of the river ba-
sins are derived from Total Runoff Integrating Pathway (TRIP) database
(Oki and Sud, 1998)] with different hydrological characteristics (humid,
semi-humid, arid, semi-arid) are shown. It can be seen that the hydrologic
models underestimate the seasonal amplitudes at Amazon and partially at

025 05

NSE

075 1

Fig. 3. Spatial distribution of RMSE (left) and NSE (right) scores for TWSA simulations of: (a, b) BCNN, (c, d) DCAE, (e, f) CNN, (g, h) ERA5-L and (i, j) NOAH, respectively.
The performance metrics are computed using differences to the CSRM TWSA for 13 test months.
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Zambezi basins compared to GRACE (both CSRM and simulated) TWSA,
while in addition, a significant bias (~25 cm) exist at Ganges and Brahma-
putra basins. The bias between the GRACE TWSA and TWSA from hydro-
logic models at Ganges basin is due to the human intervention attributed
to significant ground water (GW) abstraction as this basin includes heavily
irrigated land for agricultural purposes. Moreover, the signal leakage from
the High Mountain Asia glaciers introduces additional systematic errors in
the GRACE TWSA which also propagates into the error budget of the DL
simulations. Similarly, Brahmaputra is also affected by human interven-
tions through irrigation (Long et al., 2016), which is likely to be not ade-
quately accounted for in the assimilative hydrologic models but captured
by GRACE/-FO. It is also worth noting that all four basins with large errors
have strong TWSA signals compared to other regions which cover the ma-
jority of Earth's terrestrial hydrologic regions. The higher uncertainty of
the input hydrologic models at these regions results in higher simulation er-
rors, because all the (DL or other) algorithms aim to achieve mathemati-
cally best fit to the CSRM TWSA globally. In order to achieve better
TWSA simulations over these basins, either region-specific (i.e., only
using the input-output data for that region) models should be studied or re-
gionally improved hydrologic models should be used as inputs. For exam-
ple, a DL model constructed to simulate the GRACE-like TWSA in Amazon
basin alone, may improve the simulation performance. An alternative ap-
proach for improved simulations could be making use of location depen-
dent prior uncertainty information of the input hydrologic models,
however a thorough analysis of the models may be needed in order to esti-
mate realistic uncertainty of the input data throughout the Earth. Neverthe-
less, the DL simulations match quite well with the observed CSRM,
although the BCNN performed slightly worse to capture the signal ampli-
tude, particularly at basins with strong annual TWS change signal such as
Amazon, Zambezi, and partially at Mississippi. Among the three DL models,
DCAE seems to provide the best simulations at almost all ten selected ba-
sins. Finally, in terms of temporal patterns, the simulated TWSAs are consis-
tent with both hydrologic models, ERA5S-L and NOAH.

3.2. Comparison with previous studies

In order to compare our results, we chose two recently published similar
studies, namely Li et al. (2021) and Mo et al. (2021), who provided publicly
available monthly gridded TWSA data products (also excluding Antarctica).
These two studies are known as the best available reconstruction models so
far, dedicated to fill the gap between mascon type GRACE/-FO TWSA time
series at grid cell scale. Similar to our study, Li et al. (2021) used CSRM, but
performed the TWSA reconstruction at a spatial resolution of 0.5° x 0.5°.
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Therefore, before the comparison, their TWSA products are resampled to
17 x 1° grids to be consistent with our resolution. It is worth noting that
Li et al. (2021) used the entire GRACE CSRM data (April 2002 to June
2017) for training while they used the GRACE-FO CSRM data (from June
2018 to June 2020) for testing their model. Furthermore, they computed
the TWSA trend from the whole available GRACE CSRM data, applied
their method using de-trended series and restored the CSRM TWSA trend
back to their original reconstructions of the seasonal TWSA signals.

Comparing the entire (training and testing) data span of Li et al. (2021)
and our 13 test months shown in Fig. 1, there are 12 overlapping months.
Despite the fact that the first seven of these 12 months are included within
the training data set of Li et al. (2021), we calculated both RMSE and NSE
values using these 12 months of CSRM TWSA grids and the corresponding
simulated TWSAs from this study and from Li et al. (2021). Here, we re-
stricted comparison with our DCAE model simulations as it shows the
best performance (see Section 3.1) among the three DL models we
experimented. The resulting RMSE and NSE are shown in Fig. 5 (a—d).
While both solutions show comparable results in general, the significant
improvements (i.e. lower RMSE and higher NSE) by DCAE are obvious at
glaciers (e.g. eastern Greenland, and western Alaska), Zambezi basin in
Africa, northern Asia, and eastern Australia. On the other hand, Li et al.
(2021) seems to be slightly better in north Africa covered by the hyper-
arid Sahara Desert if evaluated with NSE values. This can be explained
with the weak TWSA signal and most likely the Li et al.'s (2021) assumption
of the constant long-term trend holds in this region, which means that the
trend of TWSA does not change significantly in time. In hyper-arid regions
such as north Africa, the seasonal TWSA signal is very weak, yielding a very
low signal-to-noise ratio in GRACE TWSA products in such regions. How-
ever, the borders of the area with low NSE pattern (dark blue area in
Fig. 5¢) in north Africa from DCAE coincides perfectly with the borders of
Sahara Desert and this might actually imply that our DCAE model ade-
quately filtered out the noise in the CSRM TWSA solutions in the region.
This is an interesting result and deserves to be investigated in a future
study.

The lower NSE of Li et al. (2021) in eastern Australia is due to the wide-
spread flooding in the region occurred in February 2020. The extreme rain-
fall caused an exceptional increase in the TWS in February and lasted for
the following few months (https://earthobservatory.nasa.gov/images/
146284 /extreme-rain-douses-fires-causes-floods-in-australia) which vio-
lates the assumption of constant TWSA trend by Li etal. (2021), thus result-
ing in high reconstruction errors e.g. in April 2020 which is one of the 12
test months used to calculate the RMSE and NSE values in Fig. 5. We also
show the trend maps calculated from 55 (43 training and 12 test) months

=)
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Fig. 5. Spatial distribution of RMSE and NSE values calculated from 12 test months: (a, ¢) for DCAE and (b, d) for Li et al. (2021), respectively. The long-term linear trend maps
estimated from 55 (induding 43 training and 12 test) months of (e) TWSA simulations by DCAE, (f) by Li et al. (2021) and (g) by the corresponding CSRM TWSA solutions.
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of data between January 2014 and June 2020 (i.e. the lastmonth inLi et al.,
2021) using the reconstructed monthly TWSA from DCAE and Li et al.
(2021) in Fig. 5e and f, respectively. The true trend map calculated from
the corresponding CSRM TWSA is also presented in Fig. 5g for reference.
Although we did not apply any de-trending to either inputs or the output
CSRM and retrieved the TWSA trend through the training process, DCAE
seems to have successfully captured the TWSA trend; a perfect agreement
is clearly seen with that of CSRM (see Fig. Se and g). This success in the
trend retrieval is not only due to the DCAE method but also is the joint con-
tribution of coarse resolution Swarm data and in particular the normalized
time which are included as input data variables in our DL architectures.

Our second comparison is made against the reconstruction products of
Mo et al. (2021). Contrary to Li et al. (2021), Mo et al (2021) used JPL
(Jet Propulsion Laboratory) mascon (JPLM) TWSA solutions averaged to
1° x 1° grids as the target TWSA data. Since the notable differences be-
tween CSRM and JPLM solutions exist (Chen et al., 2019; Sun et al.,
2020a), in order to make a fair comparison, we retrained our DCAE
model using the JPLM TWSA as the output data instead of CSRM TWSA
without changing the input data or the model architecture.

The RMSE and the NSE metrics for DCAE simulations and for those of
Mo et al. (2021) were calculated using the same 12 test months that we
used for comparison with Li et al. (2021) and shown in Fig. 6 (a—d), respec-
tively. It is clearly seen that DCAE shows significant improvement particu-
larly in regions which exhibit strong water mass variations such as west and
southern Greenland, western Alaska and Amazon basin with lower RMSE
and higher NSE values in these regions. However, Mo et al. (2021) seems
to be performing arguably better in hyper-arid regions, especially in
terms of NSE in northwest Africa and Arabian Peninsula. This is again be-
cause the assumption of the constant long-term TWSA trend is valid at
these regions; Mo et al. (2021) estimated and removed the TWSA trend
computed from the entire GRACE/-FO TWSA time series of JPLM (between
April 2002 and August 2020) and applied a BCNN approach using the input
hydroclimatic and output JPLM data after removing the corresponding
trend signals. This means that Mo et al. (2021) actually reconstructed the
seasonal component of the TWSA, and the original GRACE-like TWSA prod-
ucts were then obtained by adding the JPLM-estimated trend component
back to their output from BCNN model. Therefore, it is reasonable to as-
sume that Mo et al.'s (2021) reconstructed TWSA data products should be
free of trend error. However, the similarity of the NSE patterns shown in
Figs. 5c and 6c¢ in north Africa and Arabian Peninsula is noteworthy.
Although different mascon data were used in modeling, both DCAE simula-
tions resulted in almost the same NSE values in these regions. This similar-
ity cannot be attributed to DCAE model; the same is observed (see Fig. 3,

Mo et al.
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right column) not only from the TWSA simulations of other two (BCNN
and CNN) DL models but also those derived from the hydrologic models
(ERAS5-L and NOAH). Apparently, in hyper-arid regions, our DCAE model
results are more consistent with hydrologic models in terms of TWSA signal
amplitude while retaining the long-term trend accurately from GRACE
TWSA. This is a reasonable result; as the weak seasonal TWSA signal in
hyper-arid regions causes low signal-to-noise ratio in the recovered TWSA
from GRACE; that is GRACE can capture adequately the long-term signal,
but the seasonal component of the signal is largely or almost completely
dominated by noise. This result in Sahara Desert is also supported by, e.g.
Klees et al. (2008) and Eicker et al. (2020); both studies reveal that the
root mean square of the monthly mean water mass change signal over Sa-
hara Desert is below the accuracy expected from GRACE/-FO missions.
Therefore, low (almost zero or negative) NSE of TWSA simulations over
hyper-arid regions should not be interpreted as the failure of the methodol-
ogy; indeed, it may reflect the efficiency of the DCAE model in filtering the
inherent noise of JPLM TWSA products. We note that deep autoencoders
have already been confirmed with their success in denoising image data
(Vincent et al., 2008; Zhang et al., 2017).

Similar to the Fig. 5 (e—g), we calculated and plot the linear trend from
the corresponding monthly TWSA time series of 57 (45 training and 12 test)
months between January 2014 and August 2020 (i.e. the last month in Mo
et al., 2021). The trend map from DCAE simulations and that from Mo et al.
(2021) are shown in Fig. 6e and f, respectively. The true trend map com-
puted from JPLM is also presented in Fig. 6g for reference. Although the
(true) trend signal computed from JPLM was directly added to the de-
trended TWSA products of Mo et al. (2021), the spatial pattern and the mag-
nitude of the trend from DCAE simulations seem to be more coherent with
the corresponding JPLM trend. Note that, unlike Mo et al. (2021), we did
not de-trend either the input data variables (PPT, TEMP, CWSC, ERA5-L
TWSA, Swarm TWSA and normalized time) or the output (mascon TWSA)
data in our DL model, however the trend signal is successfully retrieved
from the data through the training process. We believe that, including
the non-stochastic normalized time as one of the input data has led
the model resolve the complex temporal correlations between input
and output data better and yielded an excellent trend retrieval. Since
the computed linear trends depend on the length of the time series
used, in particular under the impacts of global climate change which
is frequently pronounced nowadays, we suggest not to de-trend the
mascon or other types of GRACE TWSA when performing reconstruc-
tion studies.

Comparisons with both studies above show that our DCAE model pro-
duces comparable or even better GRACE-like TWSA simulations although

2021
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Fig. 6. Spatial distribution of RMSE and NSE values calculated from 12 test months: (a, ¢) for DCAE and (b, d) for Li et al. (2021), respectively. The long-term linear trend maps
estimated from 57 (induding 45 training and 12 test) months of (e) TWSA simulations by DCAE, (f) by Li et al. (2021) and (g) by the corresponding JPLM TWSA solutions.
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we used less number of data within a shorter time span and without the
need of preprocessing such as prior de-trending and assumptions such as
constant linear trend during the entire time series. Nevertheless, it would
give more sound opinion if we compare the simulations/reconstructions
within the gap period where independent (non-GRACE) geophysical obser-
vations are available to evaluate the performances of the studies. Such a
comparison is carried out and presented in Section 3.3.3.

3.3. External validation

The internal validation is commonly performed in almost all data-
driven modeling studies (including DL methods) to ensure the
generalization capability of the developed models. However, validations
with independent observation data is of crucial importance, in particular
for geophysical studies including simulations/reconstructions of geophysi-
cal parameters such as GRACE-like TWSA which aim to fill the data gap
when no observation of the same type (e.g. CSRM TWSA) is available. In
this section, the simulative performance of BCNN, DCAE and CNN al-
gorithms are validated versus external measurements and/or models
that are independent from GRACE observations/models. Thus, the
simulated TWSA could be evaluated to see whether it could capture
the spatio-temporal patterns of geophysical signals or not. For this
purpose, three different types of independent data time series which
are (i) in situ GWL measurements, (ii) the occurrences of extreme
weather events, i.e., the floods and droughts attributed to abrupt
changes of PPT and TEMP, and (iii) InSAR land subsidence rate are
used.

3.3.1. Validation with in situ ground well observations

The in situ GWL measurements are downloaded from United States
Geological Survey (USGS - https:// groundwaterwatch.usgs.gov/) for cho-
sen wells. Two different wells are selected considering that they include
continuous daily GWL measurements with no gap within the study period
and they are located at regions with different hydrologic characters. The
daily GWL measurements at each well are first averaged to the monthly
values, and the mean of the monthly GWL between January 2004 and De-
cember 2009 are removed from monthly averaged GWL in order to be con-
sistent with simulated TWSA. The time series of simulated TWSA and
TWSA from hydrologic models are also calculated by averaging the simu-
lated TWSA at the nine neighboring (1° x 1°) grid cells around the well lo-
cations, considering the native spatial resolution of GRACE/-FO. Since the
TWSA and GWL are not exactly the observations of the same signal (Note
that TWSA includes GW and the various surface water components which
also have different temporal dynamics), the monthly time series between
2014 and 2020 of both GWL and region-averaged TWSAs are further de-
trended before the comparison. In order to allow better visual comparison,
each time series is normalized and transformed to corresponding Z-scores
using standard deviation and mean of each model/data.

The normalized time series of GWL and simulated TWSAs as well as
those of available CSRM TWSA as described above are given for two chosen
wells along with their location information in Fig. 7. However, direct visual
comparison of simulated TWSAs with CSRM should be avoided since each
time series are de-trended using their own estimated trend components and
therefore the errors of the methods' capturing the trend signal in TWSA do
not appear in Fig. 7. With a simple visual inspection, we can see that the
temporal patterns of the simulated TWSA signals have good agreement
with in situ GWL measurements, in particular at the well in Michigan
while a significant difference between the trends of TWSA and GWL in Sac-
ramento is still observed which is most likely due to the large year-to-year
changes in the surface and soil water storage within the study period. This is
also valid for the TWSA computed from both hydrologic models. In order to
quantify this agreement, the cross correlations between TWSA and GWL
signals are calculated separately both for the whole time span and for
only 11-months data gap between GRACE/-FO. The computed correlations
are listed in Table 1. The performance of DCAE seems to be the best among
the three DL models in particular during the data gap, as the DCAE
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Fig. 7. Comparison of GWL measurements with the de-trended and normalized
TWSA simulations, TWSAs from hydrologic models and from original CSRM
solutions at in situ well stations (a) in Michigan and (b) in California. Gray shaded
area represents the data gap between the GRACE/-FO.

simulated TWSA has the highest correlations. In addition, both ERA5-L
and NOAH also have higher correlations with the GWL measurements as
well as with the simulated TWSAs, in particular, with the DCAE derived
TWSA, within the long GRACE/-FO data gap. The higher correlation of hy-
drologic model simulations with GWL is because they better spatially local-
ize the surface water storage changes, such as those occurring in lakes and
reservoirs than the GRACE/-FO estimates which suffer from leakage effects
due to low spatial resolution. Surface storage changes can represent a large
portion of the total water storage, such as those in Laurentian Great Lakes
leading to leakage effects, and therefore resulting in surface water signals
becoming erroneously assimilated into other water storage compartments
of neighboring grids (Deggim et al., 2021). This also explains the short-
term fluctuations of the CSRM TWSA time series in Michigan (see
Fig. 7a), the surface water (Great Lakes reservoir) and the TWS signals
are mixed up while they indeed have significant phase-lag in-between as
well as different amplitudes. In order to separate and localize these two
compartment signal in this region, Deggim et al. (2021) provided a cor-
rection data product for GRACE TWSA, generated from forward model-
ing of surface water volume estimates based on satellite altimetry and
optical remote sensing, which can reach up to 30 cm (EWH) for individ-
ual months in the vicinity of Great Lakes. Nevertheless, DCAE seems to
mitigate the effect of the Lake water on TWS to some extent; the short-
term fluctuations are almost completely disappeared and the seasonal
pattern can clearly be distinguished. Note that such a high-frequency
fluctuation is not observed around the well in California (Fig. 7b); the
CSRM time series clearly follow annual pattern as there is no large sur-
face water bodies at the region.

Table 1
The cross correlations between TWSA signals of DL simulations and of hydrologic
models and GWL measurements.

BCNN DCAE CNN ERA5-L NOAH
2014-2020 Well - 1 057 0.65 0.65 0.65 0.62
Well - 2 0.58 0.56 0.58 0.58 0.54
Gaps Well - 1 0.02 0.70 —0.20 0.88 0.93
Well - 2 0.69 091 0.91 0.92 0.95
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3.3.2. Validation with extreme weather events: flood and drought examples

The extreme weather events can also be used to assess the simulative
success of DL models, especially in 11-months gap. For this purpose, two
different flash weather events were selected. With the expression flash
weather events, we mean the events which differ in terms of occurrence
time from the similar events regularly occurred at certain times with certain
periods at the region in the past. Since almost all the data-driven methods
learn the patterns from the available data, it is a challenge to capture
such an in-phase (i.e. delayed) signal within the gap period.

South Asian Floods is a good example for such an extreme weather
event. The severe South Asian Floods were the extreme floods at India,
Nepal and Bangladesh in 2017, since floods hit the Ganges, Brahmaputra
and Meghna river basins unusually in terms of both the precipitation levels
and the time-span of monsoon seasons, i.e. while the normal monsoon sea-
son is around June-September, it occurred between April and October in
2017, contrary to the former events (Akanda et al., 2017; Palash et al.,
2020). Thus, the South Asian Floods consist of different devastating flood
events throughout monsoon period in 2017, but the severe flood occurred
in early August in the Northern Bangladesh, Northern India and Eastern
Nepal (Akanda et al., 2017; Philip et al., 2019; Palash et al., 2020).

The simulative performance of DL algorithms is compared to precipita-
tion measurements, which is the total precipitation dataset of ERA5-L and
used as input in the training process, to see whether the TWSA signals in-
clude the similar spatio-temporal behavior with the heavy rainfall on cho-
sen flood region. For this purpose, nine tile grids within the red squares
in Fig. 8a are chosen considering severely affected regions and shown
along with the month-to-month differences of TWSA, PPT and TEMP dur-
ing the monsoon period in 2017 to see their monthly evolution. The devas-
tating effect of the floods is clearly seen in the region, especially from June
to July and from July to August, from all TWSA simulations as well as those
from hydrologic models. Fig. 8b shows the monthly normalized time series
of simulated TWSA, TWSA from hydrologic models and the monthly mean
PPT, all de-trended, for the whole study period (January 2014 and Decem-
ber 2020), averaged over the region within the nine tile grids. It is worth
noting that the trend component is estimated from the 61 months of rele-
vant data in each time series which coincide with the epochs of available
CSRM within the study period; that is the simulations/observations at nei-
ther the intermission nor intermittent gap epochs have been used for trend
reduction. As seen from Fig. 8b, TWSAs from ERA5-Land NOAH hydrologic
models as well as simulated TWSAs from DL models except for CNN reach
their peaks exactly in August 2017, i.e. at the reported peak time of severe
flood within the gap. In contrast, CNN shows a peak signal with a one
month of delay in September 2017.

The increasing and decreasing patterns of all TWSA series show high
correlations with each other as well as with the PPT, though with an ex-
pected phase lag of 1 month which is also observed between PPT and
CSRM TWSA. While the relatively larger hatched gray shaded area covers
the 11 months of gap between GRACE/-FO, the narrower blue shaded
areas represent the regular monsoon periods and red shaded area (in
2017) shows the time span of actual monsoon event (in 2017) which is
shifted and extended in time with respect to the usual (or expected) occur-
rence time and period. It is seen that PPT and simulated TWSA signals are in
very good agreement and the monsoon periods including the abnormal pe-
riod during the data gap are clearly captured by the DL simulations. This re-
sult is also confirmed by high correlation coefficients, despite the
reasonable 1 months of phase lag, computed between TWSA and PPT sig-
nals which are listed in Table 2 both for whole time series and only for
11-month gap, respectively. The correlation values computed after shifting
the PPT series as much as the phase lag (i.e. 1 month) ahead in time were
also given. Note that the correlation values reach all above 0.80 for entire
study period and above 0.95 within the data gap when the phase shifting
(PS) is applied.
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The performance of the simulations capturing the extreme drought
events was also investigated. To this end, the flash drought in Northern
Great Plain (NGP) during the gap period is selected as a case event. The
flash drought in NGP started approximately from early June covering the
most part of Northeastern Montana, and North and South Dakota regions
in United States (Svoboda et al., 2002; Gerken et al., 2018). The drought
reached to its peak around early September (Gerken et al., 2018) and the
drought conditions of the most part of Montana was reported (Svoboda
et al., 2002) as extreme (D3) and/or exceptional (D4). The details of
month-to-month spatio-temporal evolutions of NGP drought can be found
in the United States Drought Monitoring — USDM database (https://
droughtmonitor.unl.edu/Maps/MapArchive.aspx, Svoboda et al., 2002).

Thenine (1° x 1°) tile grids (between 47°-50° North latitudes and 108°-
105" West longitudes) covering Glasgow, Montana which is one of the re-
gions reported to be exceptionally affected by drought (Svoboda et al.,
2002; Gerken et al., 2018) are chosen. Similar to the flood case, de-
trending and normalization process applied to the time series of simulated
TWSA, TWSA from hydrologic models and TEMP from ERAS5-L model data
in this region for comparison. Resulting time series are shown in Fig. 9.
Here, the yellow shaded area represents the extreme or exceptional drought
time-span in the region, while the hatched gray shaded area shows again
the gap period between GRACE/-FO missions. The all TWSA signals have
negative tendency within the yellow shaded time span, which means that
the simulated TWSAs include the drought signal. However, the minimum
simulated TWSAs in the yellow shaded area only from DCAE DL model
and ERAS-L are observed in September, i.e. at the reported peak time of
the drought in the region. In contrast, NOAH TWSA reaches its negative
peak in August, while both BCNN and CNN exhibits the minimum TWSA
simulations later in October. In addition, CNN seems to fail in simulations
within the rest of the gap period (beyond September 2017). Moreover,
the simulated TWSA signals are generally in good agreement with inverted
time series of TEMP. The cross correlations computed between the TWSA
and TEMP time series are given in Table 2 both for the entire study period
and for only the gap period, respectively. All TWSA simulations as well as
those from hydrologic models have negative correlations with varying
values as expected, except for the CNN which incorrectly resulted in posi-
tive correlation during the gap period. This suggests that CNN could not
produce reliable simulations, i.e. generalization of CNN model was actually
not achieved despite the internal validation results tell otherwise. There-
fore, validations with only using available input-output data (i.e. internal
validation) alone can be misleading and must be supported by external val-
idations with independent observations/data. The higher correlations of
TWSA from hydrologic models with respect to BCNN and DCAE simulations
with TEMP are due to their shorter phase lags from TEMP than those of DL
results. The shorter phase lag of the hydrologic models is understandable as
the surface water mass change and meteorological information (including
soil moisture, temperature, precipitation, lakes, river water level data
etc.) are directly assimilated in the models probably without considering
the latency of contributions of those components into the TWS budget.
The correlation values were recalculated after shifting the TEMP series
ahead in time with an amount of the phase lag (i.e. 2 months) and the re-
sults are listed in Table 2. Here, we can see that the DCAE outperforms
the other two DL methods and the hydrologic models both for the entire
study period as well as for the gap period. Note that the respective values
are —0.83 and —0.98 which are the highest negative correlations with
TEMP among others.

3.3.3. Validation with nSAR subsidence rates

Annual subsidence rates in raster map format in Central Valley, Califor-
nia, computed from Sentinel-1 InSAR data are available and downloaded
from https://data.cnra.ca.gov/. Each raster map covers a moving one-
year period, produced at monthly intervals starting from 01 Jan 2015 to

Fig. 8. (a) The successive month-to-month differences of TWSA for DCAE, BCNN, CNN simulations as well as for ERAS and NOAH, and of PPT and TEMP between April-
October 2017. The red squares represent the chosen sub-region to compute, (b) the de-trended and normalized time series of TWSA and PPT and (c) simulated/

reconstructed TWSAs vs. GRACE CSRM.
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Table 2

The cross correlations both with (w/) and without (w/0) phase shifting (PS) be-
tween TWSA and PPT in South Asian Floods (top) and between TWSA and TEMP
in Northern Great Plain Drought (bottom).

Event Time BCNN DCAE CNN ERA5S NOAH
South Asian Floods 2014-2020 w/o PS 0.56 0.57 0.51 0.64 0.72
Gap w/o PS 0.65 0.73 0.62 0.69 0.75

2014-2020 w/ PS 0.87 0.84 0.88 0.85 0.81

Gap w/PS 0.95 0.96 097 0.97 0.97

Northern Great 2014-2020 w/o PS —-025 -0.39 -017 -047 -0.44
Plain Drought Gap w/o PS -022 -0.39 047 -045 -0.79
2014-2020w/Ps —-058 -0.83 -048 -065 -0.42

Gap w/ PS -097 -098 -050 -095 -091

01 October 2019. Thus, in each data file the subsidence rates computed
using the successive 12 months of subsidence series from the SAR interfer-
ograms are given. As such, a time series of annual subsidence rates with
monthly time steps at synthetic measurement points (SMP) with grid
resolution of approximately 0.001° (~100 m) can be generated. The
InSAR-observed subsidence was calibrated by vertical displacement from
continuous GPS monitoring starting from mid-June 2015 (TRE Altamira
Inc., 2021). Therefore, in our analysis, we used the InSAR-derived annual
subsidence rate solutions starting from June 2015 till October 2019. The
time series of these annual subsidence rates can be assumed as an approxi-
mation to the time derivative of the secular component of the subsidence
time series observed at Central Valley between 2015 and 2020.

San Joaquin Valley and Tulare basins are highly productive agricultural
regions in Central Valley, both receive minimal precipitation within entire
Central Valley and account for at least 10% of the extracted GW in the US.
GW depletion in these regions has resulted in the permanent loss of GW
storage (GWS), manifested by declined water tables and land subsidence
due to ongoing GW overdraft and aquitard compaction (Agarwal, 2020).
The highest subsidence rates in Central Valley are observed in southern
part of San Joaquin Valley and in particular at Tulare basin (covering the
area between 35.5°-36.5" North latitudes and 119°-120° West longitudes),
and thus chosen in our comparisons.

Liu et al. (2019) has shown that there is high correlation (as much as
0.72 in average), between the secular signals (but not between the seasonal
components) of land subsidence and of GWS anomaly (GWSA) in San
Joaquin Valley and Tulare basins, though there is not a strictly-linear
relationship between the two, which suggests that a good portion of
GRACE-observed GWSA change must reflect the GW loss due to inelastic
compaction in the aquitard layers. Therefore, one should also expect a
similarity between the patterns of the annual rates of subsidence and
those of the GWSA to some extent.

In order to compare with the mean annual subsidence rates in San
Joaquin Valley and Tulare basins, we estimated the mean annual rates
(trends) with monthly time steps of GWSA of the two neighboring (1° x
1°) grid tiles aligned in the North-South direction covering the subsidence
area. It is worth noting that the mean InSAR subsidence rates were calcu-
lated by averaging the original subsidence rates within these two grids.
The GLDAS NOAH soil moisture anomaly (SMA), canopy water and snow
water components (from ERAS-L) were first removed from the simulated
TWSA series to obtain the corresponding GWSA series. Then annual
GWSA rates were estimated. The reservoir water storage was not taken
into account as it shows very little annual trends within the studied time
span and thus ignored (Ojha et al., 2019). The GWSA rates computed as
above were further filtered by 6-month moving average to smooth out
the short-term fluctuations which are most likely due to seasonal variations
of surface water.

Fig. 10 shows the time series of computed annual rates of both GWSA
(from the three DL simulations) and the InSAR-estimated subsidence in
the region. We also included the corresponding GWSA rates computed
from reconstructed products of Li et al. (2021), Mo et al. (2021), Locher
and Kusche (2021) and those (DCAE;pin) estimated from our DCAE simu-
lations using JPLM instead of CSRM (as described in Section 3.2) for
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Fig. 9. Time series of TWSA and TEMP in North Great Plain, Montana, USA. Each
series are normalized with its own mean and standard deviation. Note that the
right axis for TEMP is inverted to improve the readability.

comparison after removing exactly the same SMA, canopy water and
snow water components as applied to the CSRM-based DL simulations.
The long-term TWSA trends computed from available CSRM, JPLM and
postprocessed SH data products of Locher and Kusche (2021) do not differ
significantly from one another within the study area (i.e. Central Valley);
the differences between the TWSA trends <0.4 cm/yr and thus are negligi-
ble for our comparison. Due to the 6-month moving average applied, we ex-
cluded the first and the last six months of the time series in Fig. 10, to avoid
misinterpretation. Furthermore, note that each annual rate value is plotted
versus the time epoch at the middle of the corresponding time span. For ex-
ample, the rate value computed between January 2016 and December
2016 is plotted at the time epoch of June 2016.

Despite the scale differences, we can see a very good temporal correla-
tion between the simulated GWSA rates and the subsidence rates. However,
the GWSA rates computed from the BCNN and CNN simulations seem to be
overestimated, which is due to their worse simulative performance at the
region when compared to CSRM. BCNN additionally shows a phase lag of
about 1 year between the GWSA and subsidence rates which is not realistic
and most probably due to its shortcoming of leamning trend information
from the CSRM TWSA series, at least within this region. In contrast,
DCAE produced more consistent TWSA simulations both with CSRM and
JPLM (i.e. has the least RMSE and the highest NSE) at the region (not
shown here) during the time span of the comparison. In general, the rise
in the GWSA rate seems to be responded by a deceleration of the subsi-
dence and the decrease of the GWSA rate yields an acceleration of the
subsidence at the region, as expected. Regardless of the values of the
GWSA rates, CNN also seems to have a good match, however it has neg-
ative correlation (~ —0.48) with subsidence rates within the gap period
(gray shaded area) which suggests that CNN has rather focused on math-
ematically fitting to the available CSRM TWSA than retrieving the com-
plex dynamics of the overall physical process. On the other hand, GWSA
rates (DCAEcspy and DCAE;p; ) from DCAE have high positive correla-
tions with InSAR subsidence rate both during the entire time span and
during the gap period; correlation values reach >0.70 and >0.60, re-
spectively in the gap period. Considering the 2 months delayed response
of vertical displacements to changes in GWS during our study period in
theregion, as shown in Liu etal. (2019), we shifted the GWSA rate series
2 months ahead in time and recalculated the respective correlations
with subsidence rate series and obtained the values > 0.80 for both
DCAE(sg_M and DCAEme.

The pattern of the annual GWSA rates from Mo et al. (2021) seems to be
consistent with those of corresponding subsidence rates until the beginning
of the gap period (mid-2017), however this consistency completely van-
ishes in the gap period; a negative correlation of —0.41 with subsidence
rates is observed. This is due to the constant long-term trend assumption
of Mo etal. (2021), which apparently does not hold during the entire gap
period in this region; the subsidence has been accelerated during the gap
period as a consequence of unusual GW decline. A similar observation
can be made for the GWSA rates from Li etal. (2021), a negative correlation
of —0.46 with subsidence rates is calculated. Note that both Li etal. (2021)
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Fig. 10. The time series of annual GWSA rate vs Subsidence rate (from InSAR) for
chosen region on Central Valley, California, USA. DCAEcspm: GWSA rate
computed from CSRM based DCAE simulations; DCAE p1n: GWSA rate computed
from JPLM based DCAE simulations; L&K (2021): Locher and Kusche (2021).

and Mo et al. (2021) did not predict the trend signal; they rather computed
the trend from available GRACE/-FO mascon TWSA data and assumed that
this long-term linear trend would not change in time. When we apply
2 months shifting of the GWSA rates, these correlation values turn to be pos-
itive, but still as small as 0.31 and 0.19 for Mo et al. (2021) and Li et al.
(2021), respectively. On the other hand, the correlation between the
GWSA rates from SLR-GRACE combined solutions of Locher and Kusche
(2021) and the subsidence time series is slightly higher, at the level of
0.37, despite its lower spatial resolution (333 km half-wavelength) than
mascons used in Mo et al. (2021) and Li et al. (2021), and its overall pattern
is more consistent with those of our DCAE simulations. We believe that this
is the contribution of the long-wavelength gravity signal from coarse reso-
lution SLR solutions; SLR data adjusted the spatial patterns derived from
available GRACE-only solutions to some extent through the combination
process and the adjusted pattern is then projected to the monthly TWSA re-
constructions in the gap period. Note that, although we used a different ap-
proach, we also utilized the long-wavelength gravity information as input,
but from Swarm instead of SLR which eventually provided accurate simula-
tions in the gap. Therefore, including coarse resolution gravity data which
are available during the GRACE/-FO data gap such as Swarm (or SLR)
yields physically more meaningful TWSA predictions. The overall compar-
ison shows that DCAE provides more realistic simulations than the previous
studies and has the highest generalization capability among the three DL
methods investigated in this study.

4. Conclusions

In this study, we investigated the capability of three different DL neural
network methods for filling the data gap between GRACE/-FO missions. We
employed CNN, DCAE and BCNN DL models to simulate GRACE-like, butat
a much higher resolution at 100 km than the natural GRACE/-FO spatial
resolution (666 km), monthly gridded TWSA using four input hydro-/
climatic model data sets (retrieved from ERAS-L), as well as long wave-
length gravity data from the 3-satellite Swarm constellation solutions. In
addition, we also included the normalized time information as the sixth
input variable considering the fact that almost all geophysical processes/
signals are functions of time.

Unlike previous studies, no prior de-trending or de-seasoning process to
either input or output data was applied in order to avoid biasing/aliasing
the simulations induced by interannual or longer term climate signals as
well as extreme weather episodes. Therefore, we did not constrain our solu-
tions with a pre-determined long-term trend or annual amplitude computed
from the existing CSRM data as abrupt/unusual temporal changes within
the data gap may deviate from long-term components of the signal. Instead,
we allow DL models to learn the trend/amplitude and their temporal vari-
ation from the data during the training process.

We first tested the simulative performance of the proposed DL methods
using global performance metrics (internal validation) such as RMSE and
NSE which show the global goodness of fit of the simulations to the
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observed TWSA (i.e. CSRM which were not used in learning process) in
least squares sense. Although the global metrics yield similar values with
DCAE, BCNN seems to underestimate the trend and annual TWSA ampli-
tudes, in particular in basins which have strong temporal TWS variations
such as Amazon, Zambezi and partly in Mississippi, most likely due to
using non-stochastic normalized time input which does not conform to
the probability distributions and violates the basic principles of BCNN.
We compared our simulation results to those from two hydrologic models,
ERAS-L and GLDAS NOAH as well as from recently published similar stud-
ies. The global performances of the DL simulations are all found to be supe-
rior to the hydrologic models. Moreover, regardless of the method used, not
only in this study, but also in previous studies, the highest RMSE values at
grid cells appear at the same regions which are Amazon, Brahmaputra, Gan-
ges and Zambezi basins, Western Alaska and coasts of Greenland, respec-
tively. The same holds also for the hydrologic models which means that
the uncertainty of the hydrologic models at these basins are larger than
that at the other basins on the Earth. Therefore, since we use TWSA from
a hydrologic model (ERAS-L) as an input variable, its relatively higher un-
certainty also propagates into the simulated TWSA at the grid cell scale at
these basins. However, the errors at grid cells dramatically reduce when
the basin averages are calculated (see Fig. 4). In order to achieve better
TWSA simulations at grid cell scale over these basins, either region-
specific models should be studied or regionally improved hydrologic
models should be used (as inputs). These are beyond the scope of this
study and left for a future work. Furthermore, although we used less num-
ber of data within a shorter time span, our DCAE simulations outperform
the CNN and BCNN and those of similar studies both in terms of internal
(see Section 3.2) and external validations (see Section 3.3.3) which
means that physically more meaningful TWSA predictions are obtained
by DCAE model.

In addition to the global performance assessment, we also validated the
simulation results with independent non-GRACE geophysical data sets (ex-
ternal validation) such as GWL observation records at in situ well stations,
reported extreme weather events such as floods (South Asian Floods) and
drought (Northern Great Plain Drought) attributed to heavy rainfall or ex-
treme temperature, respectively and InSAR-observed land subsidence due
to GW depletion in San Joaquin Valley and Tulare basins in Central Valley,
occurred in particular within the gap period to check if the simulations can
capture these signals. Among the three DL methods, DCAE is the only one
which provided TWSA simulations consistent with all of the aforemen-
tioned independent data/observations. Therefore, using DL methods for
filling large gaps in climate-related geophysical data such as TWSA is not
trivial; the infilled data should be validated by independent observation
data, as the internal validation based on global performance metrics alone
may lead to the misjudgment of the models.

The overall validations and comparisons in this study show that:
(i) DCAE is an effective DL approach for filling the gap between GRACE/-
FO and (ii) one should avoid assumptions such as constant long-term linear
trend computed from GRACE/-FO data in the pre-gap and post-gap periods,
to obtain physically meaningful predictions of TWSA within the gap pe-
riods, (iii) the developed methodology and the model architecture has
high potential to simulate/predict GRACE-like TWSAs in the pre-GRACE
period, limited with the availability of long-wavelength gravity informa-
tion; a possible candidate for such data could be monthly SLR gravity
field solutions which are available since early 90s. Since our DCAE model
is proven to efficiently simulate the trend information from the input
data, the limitation due to unavailability of trend information for the pre-
GRACE period as mentioned in Mo et al. (2021) can be successfully over-
come. The performance of DCAE for such a task remains to be explored
and left for a future study.
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Fig. Al. The flowchart of the overall research methodology adopted in
the study.
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Fig. A2. Schematic illustration of the data
preparation steps and the input-output
patterns adopted for DL.
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