2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS) | 978-1-6654-8106-9/22/$31.00 ©2022 IEEE | DOI: 10.1109/IPDPS53621.2022.00097

2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS)

Sparsity-Aware Tensor Decomposition

Siireyya Emre Kurt
School of Computing
University of Utah
Salt Lake City, Utah
semre @cs.utah.edu

Saurabh Raje
School of Computing
University of Utah
Salt Lake City, Utah

saurabh.raje @utah.edu

Abstract—Sparse tensor decomposition, such as Canonical
Polyadic Decomposition (CPD), is a key operation for data
analytics and machine learning. Its computation is dominated by
a set of MTTKRP (Matricized Tensor Times Khatri Rao Product)
operations. The collection of required MTTKRP operations for
sparse CPD include common sub-computations across them
and many approaches exist to factorize and reuse common
sub-expressions. Prior work on sparse CPD has focused on
minimizing the number of high-level operators. In this paper, we
consider a design space that covers whether the partial MTTKRP
results should be saved, different mode permutations and model
the total volume of data movement to/from memory. Also, we
propose a fine-grained load balancing method that supports
higher levels of parallelization.

Index Terms—CPD, MTTKRP, sparse tensor factorization

I. INTRODUCTION

Sparse tensor decomposition, such as Canonical Polyadic
Decomposition (CPD), is a key operation for data analytics
and machine learning. The computation is dominated by a set
of MTTKRP (Matricized Tensor Times Khatri Rao Product)
operations [1]. Consider the CP decomposition of a 4D tensor
T (i, 4, k, 1) into a product of four 2D matrices A(i,7), B(j,r),
C(k,r), and D(l,r):

T(i,7,k,1)

ZA”B(L) (k,7)D(l,7)

The MTTKRP operation computes:
r) =Y T(ij,k.1)B(j,r)C(k,r)D

Jik,l

(4,r)

The iterative algorithm for CPD of an N-dimensional tensor
involves a sequence of N MTTKRP operations. For example,
CPD of a 4D tensor requires a sequence of 4 MTTKRP
operations in a loop until convergence is achieved:

Aravind Sukumaran-Rajam
Washington State University

a.sukumaranrajam @wsu.edu

P. Sadayappan
School of Computing
University of Utah
Salt Lake City, Utah
saday @cs.utah.edu

Department of EECS

Pullman, Washington

The function f(S, X, Y, Z) performs S*(X " XY Y Z T Z)~
to generate the new version of the factor matrix. It involves
dense matrix operations on small matrices and its cost is low
compared to the MTTKRP operations.

Several research efforts have addressed the development
of efficient parallel implementations of sparse MTTKRP [2]-
[6]. In addition to optimizing individual MTTKRP operations,
there is an opportunity for optimization when we consider the
collection of MTTKRP operations used in CP Decomposition.
It may be seen in this example that the set of 4 MTTKRP
operations involves some common sub-expressions and there-
fore computations can be saved by computing, storing and
reusing intermediate tensors corresponding to some common
sub-expressions in the collection of MTTKRP computations.
For example, the first two MTTKRP operations in the above
sequence of 4 MTTKRP operations can be performed using
fewer arithmetic operations if the intermediate tensor Z is
computed and stored as follows:

Z(i,j,7r) = ZT(Z»J, k,)C(k,) D
k.l

Z(Z'v,’)) = ZI(Z,L 7)B

ZI(M 7)A,(i,7); By =

This idea of restructuring the computation, storing and re-
using an intermediate result is termed as memoization. It has
been studied in a few prior studies [4] [3] [7] [8]. A key
question in this context is that of determining which of many
alternative memoization schemes is the best. The design and
implementation of an efficient memoization scheme for sparse
tensors is more challenging than the dense case [7] because
of the constraints on efficient data access imposed by any

(t,r);
(]7T);An = f(szvch)

f(B, A,,C, D)

Ai,r) = Z TG, j, k,)B(j,7)C(k,7)D(l,7); An = f(A, B,C, D) compact representation of sparse tensors (such as the CSF)
Jikl and the resultant irregularity of the data access patterns.

B(,r) =Y T(,4,k,1)An(i,7)C(k,7)D(L,7); By = f(B, An,C, D) In comparison with prior studies on efficient sparse MT-
ik, TKRP for tensor factorization, we make the following contri-

C(k,r) =>_ T (i, 4,k 1)An(i,7)Bn(j,m) D, 7)

i,7,1
Cyn = f(C, An, By, D)
D(l,r) = Z T (4,4, k, 1) An (3, 7)Bn (4, 7)Cn(k,)
1,7,k
D, = f(D A7L7B7L7C7L) A= A7L7B Bnyc C‘llvD Dy
(0]

butions in this paper:

« We consider a more extensive design space of memo-
ization schemes, and implement a collection of parallel
kernels for each scheme.

o We develop a sparsity-aware model of data movement.
Such a model allows rapid search of the design space of

1530-2075/22/$31.00 ©2022 IEEE 952
DOI 10.1109/IPDPS53621.2022.00097

Authorized licensed use limited to: The University of Utah. Downloaded on July 22,2022 at 04:05:28 UTC from IEEE Xplore. Restrictions apply.

memoized configurations. Fast dynamic selection of this
configuration for a given sparse tensor is then used to
accelerate the decomposition.

e We develop a novel scheme for load-balanced parallel
execution of the selected memoization scheme on shared-
memory multiprocessors.

e« We combine all our optimizations in a STeF (Sparse
Tensor Factorization) implementation and we demon-
strate superior performance over several prior schemes
with publicly available codebases, including AdaTM [4],
ALTO [5], SPLATT [2], [9] and TACO [10].

II. OVERVIEW

In this section, we provide a high-level overview of the key
ideas incorporated in the new memoized MTTKRP approach
for CPD presented in this paper. We begin by presenting no-
tations used in describing the sequence of operations invoked
for the memoized execution.

A. Notations & Mathematical Preliminaries

Tensor decomposition algorithms use several binary oper-
ators that work with combinations of tensors, matrices and
vectors. Kolda et al. [1] provides a comprehensive overview of
all such operators. We now define the ones used specifically in
the context of CP decomposition, i.e., the scope of this work.

T, A® and R: We use T to denote a tensor. Let d be the
dimensionality of the tensor. We denote the factor matrices as
A0 AW - AW@=1) each of rank R, the number of columns.

Khatri-Rao product (KRP): For matrices A € RI*E B ¢
R7*E the Khatri-Rao product (KRP) is a matrix M €
RU/)*E; the KRP operator is denoted by the () symbol.
Mli x J+ j,r] = Ali,r].B[j,r]Vi € [0,I),5 € [0,J),r €
[0, R)

Tensor Times Matrix (TTM) product: This product “unfolds”
a tensor 7 € RIox--xIa-1 along dimension % into a matrix
T e RIixUo-Ticaligi-Ta=1) and performs the matrix product
with another matrix A € R/i*®_The result is a matrix of shape
(Lo Jk—11g+1...1g—1) x R. The result is re-shaped back into
atensor P € RIoxIixDe—aixDupax..lam1xE which is called a
partially contracted tensor. The TTM operation can be written
as P[i(), ‘e 7ik—17 ik+17 e ,id_l, ’r‘] = E[i(), . ,id_l] Xk
Aliy,r], where X, denotes a contraction (i.e., summation over)
of index 7. In this work, we use the TTM only to contract
the last dimension of the tensor, i.e., dimension d — 1 in the
above example.

multi Tensor Times Vector (mTTV) product: For a par-
tially contracted tensor P € RIoX>*IkxE (the last dimen-
sions have been contracted out), mTTV with a matrix A €
RIt*E yields another tensor of shape Iy x --- x Iy_1 x R.
So, mTTV operation can be written as 5[2’07 ceyig—1,T] =
Pk[’io, R ,ik, 7’] Xk A[ik,r}.

MTTV: In this paper, we define MTTV as the Matri-
cized Tensor Times Vector operation. For given tensor P &€
RIoxxIkxR - the product with matrix A € RUoxxTx-1)xR
yields a matrix of shape [x R, without the first k dimen-
sion. Common dimensions Iy,...,I;_1 used as contraction

953

index whereas R used as the batch index in the contrac-
tion. So, MTTV operation can be written as Ali, 7]
Pl[io A ’L'k.,l, ik, 7’] X0,1,...,k—1 A[ioil .. .Z'kfl, 7’], where P’ is
a tensor where first k-1 modes of P are combined into a single
flattened mode.

A® and a!”: A denotes the factor matrix for mode i.
The number of columns for every factor matrix is the number
of _)ranks, R. Column r of matrix is A® is a vector denoted
ar’.

K@: We denote as K() the Khatri-Rao product of the
set of factor matrices A AM A® for i > 0. K®) can
be represented using the recurrence relation K (¥=x(—1) ©)
AD | with K@=A©) a5 the base case.

P(): The partial MTTKRP result after factor matrices
AGHD) AG@+2) Ad=1) are contracted with T is denoted as
P Thus, using a TTM operation we get P42 = T
AW-1) 4 ¢ dimensional tensor. Similarly, using an mTTV
operation we get P)[ig, ..., i5,0] = PO ig, ..., igr iz 1.1]
X/ 41 A(”l)[z’iurl,r], for ¢/ < d — 2. For convenience, we
define P~ = T

B. The Compressed Sparse Fiber (CSF) format for storing
tensors

Sparse tensors are stored in some compact form that only
requires space proportional to the number of non-zero ele-
ments. A commonly used format is a tree-based representation
called the Compressed Sparse Fiber (CSF) [2] format. For an
N dimensional tensor, the CSF tree will have depth N, with
each tree level corresponding to one dimension of the tensor.
The leaf level stores the non-zero values from the tensor. Each
internal node stores the indices of the non-zero fibers of the
tensor in the dimension corresponding to the depth of the node.
Therefore, the total number of nodes of the tree (and therefore
the memory needed to store the sparse tensor) depends on the
order of dimensions in the tree. This is also called the “mode-
order” of the CSF structure. A common heuristic is to sort
the tensor’s modes in increasing order of length, and order the
CSF tree from root to leaf in that order.

Alg. 1 shows pseudo-code for a 4D MTTKRP operation on
a 4D tensor 7 using a CSF structure.

C. The space of memoized schemes

Algorithm 2 shows the CPD-ALS algorithm for a 4D tensor.
T; is unfolding of the tensor 7 on i*" dimension. In our
notation, we will refer to A, B, C' and D in this algorithm
as A©, AW A and AG). Fig. 1 illustrates different
options for updating A(). x; defines the contraction of i*"
dimension of the first operand. The factor matrices A A
A® and A® correspond to the modes 0, 1, 2, 3, respec-
tively. Fig. 1(a) shows a sequence of three tensor operations
to produce A©®): i) A TTM (Tensor Times Matrix) opera-
tion T[io, 11,19, 13} ><3A(3) [ig, ’I“} to produce P(Q) [i07 11,19, T];
ii) An mTTV (multi Tensor Times Vector) operation
P@ig, iy, ia,7|x9 AP iy, 7] to produce PM[ig, i1, r]; iii)
An mTTV operation PN [ig,i1,7]x1AM[iy,r] to produce
A5y, 7]. Fig. 1(b-d) show three options for producing A1),

Authorized licensed use limited to: The University of Utah. Downloaded on July 22,2022 at 04:05:28 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Simple pseudo-code for MTTKRP using
a 4D tensor T using CSF pointers.

/I A = MTTKRP(T,B,C,D)
input : Sparse tensor 7 is a 4D tensor. B, C' and D
represent the factor matrices. R is the rank of
decomposition.
output: Output A needed to update factorization matrix A
num_slice < Number of slices in the tensor
for i, = 0 to num_slice-1 do in parallel
1 <—indexI[i;]
for j, = ptri[ip] to ptrifip+1]-1 do
j < indexJ[jp]
for k, = ptrJ[jp] to ptrJ[jp+1]-1 do
k < indexK[kp]
for 1, = ptrK[k,] to ptrK[k,+1]-1 do
| < indexL[l,]
for r in [0:R-1] do
Alix] « Afir] + TIijklBlj.r] Clkr]
DILr]

(- I Y

11

Algorithm 2: CPD-ALS code for a 4D tensor
input : 7 a 4D tensor
output: Factorization matrices A® AM AR apd AG)
1 for it = I to max iterations do
Ve AMT 4@ A@)T g(2) 43T 4(3)
AO %(A(l)QA@)@A(S))Vfl
Normalize columns of A and save norms in A
V —AOT 40) 42T g(2) 43T 4(3)
AM 7-1(14(0)@;1(2)6;1(3))‘/71
Normalize columns of A and save norms in A
Ve AOT 4©0) 4T A1) gB)IT 4(3)
AP B(A(O)@A(l)@A(L‘))V*l
Normalize columns of A® and save norms in A
V —AOT 40) 4T 1) 4(2)T 4(2)
AB %(A(O)@A(l)@A@))V’l
Normalize columns of A® and save norms in A
if Convergence condition met then

e ® N U R W N

- e
R = S

—
W

15 | exit loop
A®|LxR AP [k xR ADyxR
p@ 1)
T IxJxKxR ’ “A0)
xJxKx
(@) T™ FAmTTY (R Ty e AT
IxJxKxL | |
A© —
H A
(b) 3 xR MTTV AR
3 AO)
H IxR
L
A pM i
i I Y
(c) kxR | MTTV. o MTTV AO
A®|LxR A@lKxR A(O)l,xR
T P& : P A
(d) TT™ mTTV ————MTTV |
IxJxKxL IxJxKxR IxJxR JxR

Fig. 1: Computation of the factor matrix corresponding to
non-root mode 1. This is done after computing the factor for
mode 0. Depending on what intermediates are saved, mode 1
computation can be done in 3 ways as shown in b), c¢), or d).

954

Fig. 1(b) shows how it can be produced with a minimal number
of additional arithmetic operations, using saved intermedi-
ate tensor PM[ig,i1,7] by performing the MTTV operation
AOVig, r]xoPWig, i1, 7] to produce AM[iy, 7).

Another option is to use the saved intermediate ten-
sor P@V[ig,iy,i2,7], by repeating the TTV operation
P@ig,i1,iz,7]x2AP)[ig,r] and fuse that computation with
a MTTV operation with A(®[ig, 7], as shown in Fig. 1(c).
Finally, it is also possible to produce A™)[j, 7] without reusing
any of the computation used in producing A, as shown in
Fig. 1(d).

Note that these choices represent different amounts of
computation and data movement. While memoization can save
arithmetic operations, it introduces additional data movement.
This could offset the benefits of memoization, especially
since data movement is much more expensive than arithmetic
operations. In Sec. IV we develop an analytical model to
evaluate the efficacy of alternate memoization schemes.

D. Load-balanced work distribution

Prior efforts [2], [4] have partitioned the indices at the root
mode and assigned slices to threads (Figure 2a). Such an
approach can result in load imbalance if the number of slices
at the root mode is less than the number of threads and/or the
non-zeros are non-uniformly distributed across the slices. For
example, in the tensors vast-2015-mc1-3d and vast-2015-mcl-
5d, the number of slices at the root mode (for mode-length
ordered CSF representation) is just 2. Therefore, this work
division scheme can only utilize 2 threads. Furthermore, a 2-
way partitioning for these tensors will also result in 1674%
load imbalance, as a virtue of the distribution of non-zeros.

We propose a fine-grained work division strategy where
all threads process roughly the same number of non-zeros.
Simply dividing the non-zeros across threads may result in
write conflict. For example, consider Figure 2b, where both
threads 1 and 2 write to the same location at level O (similar
conflict also occurs at level 1). To ensure correctness we
could use use atomic updates; however, the cost of atomic
operations will degrade the performance. Another option is to
use privatization, keeping a private copy for each thread, but
it increases the amount of data movement.

We devise a scheme that efficiently avoids the write conflict
without using atomic operations or privatization. Our approach
is based on the observation that the write conflicts, if any,
will only occur at the boundary elements between the threads.
The maximum number of elements that will potentially have
write conflict is T, where T is the number of threads. The
write conflicts can be avoided by replicating just the boundary
elements, i.e., instead of writing to a tensor of size N x R,
where N is the number of rows and R is the number of
features, we write the to a tensor of size (N + T) % R. The
details of this scheme is presented in Section III-A.

E. Switching Mode Order of Last Two Modes

Consider the sequence of steps for computing MTTKRP for
a single-mode, e.g., for mode-0 in Fig. 1. It requires one TTM

Authorized licensed use limited to: The University of Utah. Downloaded on July 22,2022 at 04:05:28 UTC from IEEE Xplore. Restrictions apply.

ThOo Th1 Th2 Th3 Th4

| |/
AR

Bl CNENENDNENEN|

[CNCNENEN CINESEN O ENEN EN ENENEN ENENEN|

(a) Slice-based Work Distribution

ThO Th1 Th2 Th3 Th4
:

El _ NERENCHENEN

CNEWENEN ENENCNENEN KN ENEN N ENENEN

(b) STeF Work Distribution

Fig. 2: Work distribution for 5 threads. Fig. 2a shows work distribution with outer-mode slice based granularity. Since there
are only 4 slices at the root mode, no more than 4 threads get any work. The maximum number of nodes traversed by a thread
is 12 (yellow thread) while thread 4 (blue) has no work. Fig. 2b shows the STeF work distribution. Squares with two colors
are traversed by 2 threads. The maximum number of nodes traversed by a thread is 9 (orange thread) and the lightest load is

6 nodes (blue thread).

operation using all non-zeros of the tensor 7, followed by a
series of TTV operations using successively lower dimensional
tensors that result from the TTM/TTV operations. At each
stage, the number of non-zeros in the output tensor is lower
than the input tensor by a factor corresponding to the average
number of non-zeros per fiber along the contracted dimension
of the input tensor. If the non-zeros in the input tensor 7
were uniformly distributed over the index space, the average
number of non-zeros per fiber would be proportional to the
mode lengths. If so, it would be best to order the modes
such that mode lengths monotonically increases so that a
maximal compression is achieved. Increasing the compression
will result in lower number of non-zeros of the series of
lower-dimensional tensors, thereby minimizing the total work
in terms of the number of operations.

However, the average fiber length along different dimen-
sions of a tensor is not always directly related to the mode
lengths. For example, in delicious-4d, the average fiber length
for the the longest mode of length 17 million is 1.5 whereas
the same stat for the mode of length 2 million is 3. If the
average fiber length is not longest along the longest mode,
it would be preferable to use one of the other modes as the
“fiber” mode in the CSF representation. While it would be very
expensive to determine the average fiber length corresponding
to all modes of a tensor, we have devised a very efficient
algorithm to determine the average fiber length for the last two
modes. We therefore consider swapping of the last two modes
in the CSF representation. It also turns out that in practice,
the longest average fiber length turns out to almost always to
be one among the two longest tensor modes.

III. ALGORITHMS & OPTIMIZATIONS

A. Load-balanced work distribution

As mentioned earlier, load balance plays an important role
in determining performance. As shown in Figure 2, compared
to the default scheme (Figure 2a), where the last thread
was idle, our scheme eliminates thread idling and achieves

955

Algorithm 3: Finding thread start position of CSF
representation of 7

d dimensional sparse tensor 7~

2D thread_start array showing thread starting
position for each level of the CSF for each thread
1 for th=0 to number of threads do in parallel
2 \ thread_start[th][d-1] < th * nnz/numberofthreads
3 for th=0 to number of threads do in parallel
4 fori=d—2to0do
5 thread_start[th][i] <
find_parent_CSF(thread_start[th][i+1])

input :
output:

a good load balance. The key to achieving high performance
is to deliver good load balance without suffering from the
overhead of atomic operations and additional data movement
from privatization. First, we divide the non-zeros equally
among each thread. Algorithm 3 shows how the start locations
for each thread are computed. Each thread is first assigned
an equal number of non-zeros. The start position of each
thread is found by looking at the parent of non-zeros at
the boundaries(find_parent_CSF). Since we distribute nnzs
across the threads, multiple threads may write to the same
memory location in the upper levels of the tree and cause write
conflicts. Only the elements at the thread boundary can have
write conflicts; hence our scheme replicates these elements.

B. Sparsity Aware MTTKRP

This section explains how all the optimizations proposed in
this paper are put together to generate the complete MTTKRP
code. For a d dimensional tensor 7, STeF chooses two
different paths when computing MTTKRP for A(®) and A®)
where i > 0. For computing A, STeF first performs a
TTM operation on 7 to produce P(4=2). Then, series of
mTTV operation is used to compute Ppd=3) . PO where
PO becomes A, If our model decided P() needs to be
memoized, that result is saved in memory. When computing
MTTKRP for A®) STeF uses P@). If P() is not memoized

Authorized licensed use limited to: The University of Utah. Downloaded on July 22,2022 at 04:05:28 UTC from IEEE Xplore. Restrictions apply.

when computing A(), then it is recomputed either from a
memoized P*) if 3k > i or from scratch by performing
a series of TTM and mTTV on 7. MTTKRP for the first
mode of the CSF is implemented as a series of dot products,
whereas MTTKRP for the last mode of the CSF is a series
of Khatri-Rao products. MTTKRP for the internal modes can
therefore be written as a combination of dot products and
KRPs. Algorithm 4 shows the generic MTTKRP algorithm
for any mode, where Algorithm 5 shows the generic loop
structure.

Algorithms 4 and 5 compute the MTTKRP of mode u, AW
by using P and K=Y for 0 < u < d — 1. For u = 0,
A = PO and for u = d — 1, A=Y = T, 1xK(@-2) =
PV K (@2 which is the original MTTKRP formulation.
Algorithm 4 is the high level call handling the MTTKRP
computation. Vectors ¢y and kg holds a row of the first
factorization matrix A(®). At the end of the algorithm if the
result A® is privatized across the threads, it is reduced back
to a single matrix. Lines 9-12 handles the the case of u = 0.
Atomic updates are used in order to avoid race condition
between threads. This can only happen if the update is at the
thread boundary. If u > 0, then for updating A(*) either atomic
updates are needed, or each thread needs to hold it’s own copy,
ie. A® needs to be privatized. If A™) is privatized line 11
of Algorithm 4 is executed to reduce it to a single matrix.

Algorithm 4: MTTKRP for mode w in tensor 7

input : Tensor 7 in CSF format, factorization matrices A
= {A©, AW AU=DL MTTKRP mode u
output: Updated factorization matrix A

1 for th=0 to number of threads - 1 do in parallel
for i=thread_start[th][0] to thread_start[th+1][0] do
if u # O then
| ko[l « A,
else
| tol:] + A,
MTTKRP-LOOP(L,i,ko, to, T, A,u,th,A®))
if u = O then
if i=thread_start[th][0] or
i=thread_start[th+1][0] then
‘ A© [i,:] <= to with atomic update
else
| AO] «+ o
13 if Is A™) privatized for each thread? then
14 ‘ Reduce A

[R N7 I OV S

In Algorithm 5, k; vector holds a row of KRP of the matri-
ces AO A, Similarly, ¢; holds a row of partial MTTKRP
result after contracting out AGTYD A=) Thus, in order
to compute the values A(")[i,, 7], we need to do a Hadamard
product of k,_1 and ¢,.. T .save is an array of boolean values
where T .save[i] denotes whether the partial MTTKRP result
P after contracting out matrices AGtYD Ald=D js to be
stored or not. 7 .ptr[é][idz] is a pointer array pointing the start
position of children of node idx in mode i to mode i+1. 7 .val
is the array holding values of the tensor.

As per the work distribution in Algorithm 3, two threads

956

Algorithm 5: MTTKRP-LOOP
input : loop id i, pindex, k;_1, t;—1, Tensor T,
factorization matrices A = {A(O),A(l),...,Aw*l)},
MTTKRP mode w, thread id th, A®™
1 start < MAX(thread_start[th][i],7 .ptr[i-1][pindex])
2 end < MIN(thread_start[th+1][i], 7 .ptr[i-1][pindex+1])
3 for idx = start to end do

4 if T.save[i] and (u =0 or ¢ > u) then
5 | til:] « PO[T ptrfi] + th)

6 if i<u then

7 | Kil] < kioil] © A [idx,:]

8 if =7 .saveli] or u>i or u = 0 then

9 if i <d—1 then

| MTTKRP-LOOP(i+1,idx.ki, t:, T, Au,th,A™)
else
Tval < T .vallidx)
if u =d — 1 then
A<d_1)[idx,:] — A(d_l)[idx,:] + Tval *
ki—1[:]

11
12
13
14 ‘
else

| tioil:14 tio1[:] + Tval * A“"Y[idx,:]
if i = u then

| ADfidx,] « AD[idx,)] +kim1 1O til:]
else if ¢ > u then

| il tia] © AW [idx,:]

16
17
18
19
20

Algorithm 6: STeF MTTKRP to compute A(!) for a
4D tensor 7 where P is stored.
input : Sparse tensor 7, factorization matrices
A® AW AR and AG) number of factors R
output: Updated factorization matrix AWM
1 for i € T[*:,:,:] do in parallel
ko + AV,
for j € T[i,*:,:] do
t1 «+ POIij]
AW] = AV + 0[] O kol
if Is AY privatized for each thread? then
‘ Reduce AW

2
3
4
5
6
7

might want to access the same location for a write operation.
In the implementation, each thread uses a localised copy of
P array by shifting its write location by an amount equal
to its thread id. More specifically, if thread th and th + 1
want to write to the same data location s, one of them writes
s+th and the other writes s+ (th + 1), hence avoiding a race
condition.

Algorithm 6 implements Figure 1b where partial MTTKRP
for ’P(l)[io,il,r] is stored. Using the partial results, we can
compute MTTKRP for A(") using a single MTTV operation.
Algorithm 7 describes the case in Figure 1c where A(®) needs
to be contracted. First, A(?) is contracted with P [4g, i1, ia.1],
the partial MTTKRP result, and the MTTV operation is
performed to get updated values of A(Y). Finally, Algorithm 8
implements Figure 1d in which none of the results are saved;
thus, the entire CSF structure is traversed to compute the
MTTKRP for AM).

Authorized licensed use limited to: The University of Utah. Downloaded on July 22,2022 at 04:05:28 UTC from IEEE Xplore. Restrictions apply.

Algorithm 7: STeF MTTKRP to compute A™) for a
4D tensor 7 where P® is stored.

input : Sparse tensor 7, factorization matrices
A(O),A<l>,A(2) and A(S), number of factors R
output: Updated factorization matrix A

1 for i € T[*:,::] do in parallel
ko + A,
for j € T[i,*%::] do
t1[:] + zero vector of length R
for k € T/[ij,*:] do
ta]:] + T2[i,j.k]
|]t +8]O APk,]
AW = AV 4+ 0[] O kol
if Is A" privatized for each thread? then
0 ‘ Reduce AM

2
3
4
5
6
7
8
9

[

Algorithm 8: STeF MTTKRP to compute A(!) for 4D
tensor 7 where no partial results are stored.

input : Sparse tensor 7, factorization matrices
A@ AM AP and A®) | number of factors R
output: Updated factorization matrix AW
1 for i € T[*:,,:] do in parallel
ko < AO[i,:]
for j € T[i,*:,:] do
t1[:] < zero vector of length R
for k € T[ij,*:] do
ta[:] < zero vector of length R
for [€ T[ijk*] do
Twval < Tli, 4, k,1]
ta:] = t2:] + Twalx AP,
t1[] = 0[] + £2[] O APk, 1]
AW AV T+ 0[] O ko]
if Is A" privatized for each thread? then
‘ Reduce A®

[R- RN - N R N

=
=)

IV. MODELS

This section motivates the need to model the impact of
memoization and mode order switching on data movement.
We also develop an analytical model to quantify the expected
data movement and, thereby, the performance.

A. Saving Partial Results

As shown in Section I, a single CPD iteration involves
multiple MTTKRPs, some of which share the same inter-
mediate results. Rather than recomputing the intermediate
results for each MTTKRP, they could be computed once and
reused thereafter; this strategy is called memoization. While
memoization helps to reduce the total number of computations,
it introduces additional memory write and read operations
to save and load the intermediate results. Depending on the
operand sizes, this additional data movement can overwhelm
the savings from the reduced number of operations. Consider
for example, the uber tensor described in Table I. Saving all
the intermediate results for the decomposition of this tensor
requires 62M reads and 22M writes. However, not saving the
biggest partial result will result in 24M reads and 238K writes,
which makes the decomposition faster.

957

In contrast for vast-2015-mc1-3d tensor, saving the interme-
diate tensor results in 1.7B reads and 833M writes. Not saving
them on the other hand, will result in a total read and write
count of 2.6B and 833M, respectively. In this case therefore,
saving is beneficial.

B. Switching Order of Last Two Modes

Algorithm 9: Finding number of fibers if last two
modes of the CSF representation of 7 are swapped
input : Sparse tensor 7
output: Number of fibers in 1-2-4-3 order
1 for th=0 to number of thread - 1 do in parallel
for row = 0 to n3-1 do
| observed[th][row] <0
num_fibers[th] <0
for i € T[*:,:,:] do in parallel
th < thread id
for j € T[i*::] do
for k € T/[ij,*:] do
for | € T[ij.k*] do
if observed[th][l] # (i,7) then
observed[th][l] + (i,)
‘ Increment num_fibers[th] by 1

e ® N A N AR W N

—_
]

12
13 number_fibers < 0

14 for th=0 to number of thread - 1 do

15 \ number_fibers < number_fibers + num_fibers[th]

As mentioned in Section II-E, switching the order of the
last two modes impacts the data movement and hence the
performance. To determine whether to switch or not, we use
a data movement model that requires the total number of
fibers at each level. The CSF format inherently contains the
total number of fibers for the original (non switched order).
However, this count is not available for the switched order.
Creating a new CSF format to count the fiber information
for the switched-mode will increase the overhead of decision-
making.

Algorithm 9 efficiently computes the fiber information for
the switched order. Note that, since d — 2 modes are the same
for both original and switched order, the number of fibers
for them is the same. Hence, we only need to compute the
number of non-zeros after the first contraction of MTTKRP
in the switched order. In Algorithm 9, we use a buffer of
size num_threads x ng, where ng3 is the length of the third
dimension of the tensor. Each thread initializes its portion of
the buffer to O (Line 4). Line 5 distributes the root mode of the
tensor across multiple threads. In Line 10, each thread checks
whether it has previously seen the < i, 7,] > pair. If an pair
was seen for the first time, we increment the fiber count (Line
12). Line 15 aggregates the fiber count across multiple threads.

C. Data Movement Model

Let x« be the total number of read access to the ¢
factorization matrix of size IV; x R. Each such access reads
R elements (ie. one row) of the ¢*" factorization matrix. If
the data footprint of the matrix is less than or equal to the
cache size, each element will be loaded only once to the cache

th

Authorized licensed use limited to: The University of Utah. Downloaded on July 22,2022 at 04:05:28 UTC from IEEE Xplore. Restrictions apply.

(cold miss) and reused thereafter. Otherwise, each x; access
will read R elements from the memory without reuse. Hence
the data movement associated with i*" factorization matrix

(DM _factor;(x)) can be computed as follows:

xR N; * R > cachesize

DM tor; =
~factori(z) {mm(Ni * R,z % R) otherwise

Let m; be the number of fibers at level 7. Assuming that
there is no memoization, for all modes, the read cost can be
expressed as:

d—1
DM _no_memyeqq(i) = Z(Q xm; + DM _factor;(m;))
i=0
If memoization is enabled, we can avoid the reads required
to compute the intermediate tensor after the initial MTTKRP
to compute them, but we must read the partial results. Let &
be the first mode that has been memoized where 0 < 7 < k.
The corresponding read cost can be expressed as:

ol

-1

DM _mem_kreqa(i) = (2%m;+DDM_factor;(m;)+m;*R)

Il
o

i
For mode 0 we may need additional writes if some partial

MTTKRP results have been memoized. The volume of data
movement for mode 0 is modeled as:

DM;ead(0) = DM _no_memyeqd + Z m; * R
ieM
where M is the set of modes that have been memoized after
MTTKRP of mode 0.

The write cost corresponding to mode 0 < ¢ < d — 1 can
be expressed as:

DMyrite(i) = DM _factor;(m;)

The write cost for mode O can be written as:

DMyrite(0) =ng * R+ Z m; * R
i€M
Combining these we get the following for ¢ > 0:

DM _mem_kreqa(?)
DM _no_memyeqq(t)

dk st. ke Mand k> 1
otherwise

DMread(i) = {

Adding DM, .cqq(?) and DM,,i4.(i), we can estimate the
total data movement for the MTTKRP operation for updating
A®_ Hence, the total data movement estimation for a single
iteration of CPD will be:

d—1
Total Data Movement = Z DM,eqq(i) + DMyrize(7)
i=0

Note that if the order of the modes and/or the list of memoized
partial MTTKRP results M is changed, D M,.cqq and DM ¢e
will change and the total data movement estimation will
change. Our model exhaustively checks every configuration
to select the one with the lowest data movement estimate.

958

V. RELATED WORK

Smith et al. [2] proposed SPLATT which can compute CPD
for tensor with using only a single CSF representation. This
has also been extended to accelerate distributed tucker decom-
position in [11]. Baskaran et al. [8] propose a split-reorder
of the mode-contraction loop in the Tucker decomposition
algorithm, such that partially contracted tensors can be re-used
in an optimal manner. The trade-off between storing partially
contracted sparse tensors vs recomputing them, seems to have
originated in Kolda et al [12], again in the context of Tucker
decomposition. Kaya et al [3] proposed a novel sparse tensor
representation for the CP decomposition algorithm. The Bal-
anced Dimension Tree recursively partitions the set of modes
into two halves. Each leaf hence contains a single mode. Each
of the n mode contractions therefore involves a walk from the
corresponding leaf to all internal nodes, via the root. Since
several internal nodes are common among consecutive walks,
the partially decomposed tensors corresponding to these nodes
can be stored in memory. The only restriction for reuse is
that the factor matrices are updated in sequential order. The
partially decomposed tensors that used these factor matrices
hence have to be recomputed. While this work focuses on
the distributed memory setting, it also exploits intra-node
shared memory parallelism. The corresponding HyperTensor
[13] library implementation has not yet been released to open-
source, making an empirical comparison impossible for this
work.

Li et al. [4] proposed a similar approach to choose different
memoizations based on a model. They introduce a new storage
format vCSF to store the sparse tensor. For the n MTTKRP
operations in total, they propose to store and reuse 6(v/N)
partially contracted tensors. Coupled with mode reordering,
this scheme essentially uses a CSF forest with the lower half of
each CSF tree stored in memory for reuse. The implementation
is named AdaT M, and has been used as one of the baselines
for performance comparison.

More recently, Helal et al. [5] proposed a new compressed
format called ALTO for storing tensors. This approach offers
better load balancing and locality while performing a single
MTTKRP. Furthermore, it also avoids the need to change the
tensor representation for performing the different MTTKRPs
in a CPD iteration. The storage structure uses a novel indexing
representation for the nonzero elements of a sparse tensor that
is formed by permuting a compacted binary representation
of concatenated multi-dimensional index coordinates of tensor
elements. The work currently computes all mode contractions
from scratch, and hence has a significantly higher FLOP count.
We also compare performance with ALTO in Section VI.

Li et al. have also proposed mode reordering algorithms
BFS — MCS and Lexi — Order [6]. The Lexi — Order
seems to consistently outperform the hypergraph partitioning-
based BF'S — MCS. As per Lexi — Order, the lower-stride
modes of the given ordering are sorted in increasing order of
co-ordinates. It can easily be applied to COO, HiCOO or CSF
representations in memory, and seems to improve speedup

Authorized licensed use limited to: The University of Utah. Downloaded on July 22,2022 at 04:05:28 UTC from IEEE Xplore. Restrictions apply.

B STeF2 B STeF ALTO [l TACO W splatt-all [splatt-2 [splatt-1 [adatm 810
6.00
3
=
©
S 4.00
&
3
S 2.00
=]
Q
&
2]
0.00
(a) R=32
915
_ 6.00
3
£
K
& 4.00
3
S
2 200
(7]
8
2]
0.00
> > L O Q> . N Q@ P >3 O o> S
& ;§'° & & & & ‘? @0& s & & & & § NG N @?"b
§ & S = e «° «© & <& & < < & & °
& & 5 N & 27 Ea = & &
& o ¥ ¥ ¢ & 27 Q¢ X
s F & F &
{\\c{b & &@P R &
(&)
(b) R=64
Fig. 3: Results for number of factors = 32 and 64 for 18 core Intel Cascade Lake Processor (higher is better).
B STeF2 [STeF ALTO [TACO [splatt-all [splatt-2 [splatt-1 [adatm
6.00 75 72
= ©
£
©
[=3
2 400
H
a
3 200
L7
17]
ool bttt G b b bl bl b R Wb M, || I
(a) R=32
6.00 13 6.1
3
=
©
& 4.00
H
5 200
[
L7
Q
3 i il
0.00
R T S S S e N SR SR NC
< & & & & e & N & S <€ <€ 9 9 &
@ & o o S S @ & & N &
N g &° &° & 7 i & & S
0’0 (§>’ ¥ & S Q‘,O'b 2 ,19 ,19
& & @ 5 & &
& & @ K K
(b) R=64

Fig. 4: Results for number of factors = 32 and 64 for 64 core AMD Threadripper Processor (higher is better)

significantly in each case. For the CSF-based implementation,
this seems to be complimentary to our contributions viz model-
based storage of intermediate results.

Shivakumar et al. [14] propose a new compressed sparse
symmetric C'SS structure specifically for sparse symmetric
tucker decomposition. This format exploits the constraint of
a single factor matrix, and a core tensor with all dimensions
of equal length. While this pushes the pareto front of runtime
vs memory, this method currently is restricted to symmetric
decomposition only.

The TACO compiler has integrated several optimizations for

959

tensor decomposition and hence simplified the search across
the entire optimization space, including the choice of mode
orderings [10] [15] [16]. We consider the latest scheduling
TACO implementation as one of our baselines for performance
comparison.

Ballard and Rouse et al. [17] establishes lower bound
for communication in MTTKRP operation and provide an
algorithm achieving the bound for dense case. Nisa et al.
[18] focuses on load balancing the MTTKRP operation on
massively parallel systems such as GPUs by creating Hybrid
Balanced CSF format (HB-CSF). Nguyen et al [19] proposes

Authorized licensed use limited to: The University of Utah. Downloaded on July 22,2022 at 04:05:28 UTC from IEEE Xplore. Restrictions apply.

BLCO format to tackle sparse MTTKRP on GPUs as a
continuation from ALTO [5]. Li et al. [20] proposes BDS-
MCS reordering algortihm to improve locality of the MTTKRP
operation.

W STeF M STeF2
125%
100%
75%

ratio of

o0
£50%
25%
0%
° (a) 18 Cores
125%
100%
S 75%
e
T E 50%
25%
0% o od S o X o 3 DI P D D
0&6\ S oéb \)%) z-éo oo ‘éy @0 2 Q\G 0‘7}\ QQ}\, & ¥ cﬁ\?’ o\fo é\e?
& & SN &é\ s & &
P v &P &
§ & & & &
& & & &

(b) 64 Cores

Fig. 5: Preprocessing overhead for calculating whether to
switch orders of the last two modes or not for 18 Core Intel and
64 Core AMD machines. Each bar represents preprocessing
overhead to one set of MTTKRP operations.

VI. EXPERIMENTAL EVALUATION
A. Experimental Setup

The experimental evaluation was performed on two systems:
an 18 core Intel 19-10980XE (Cascade Lake) and a 64 core
AMD 3990X (Threadripper) processor, using GCC v9.3.0.
Both systems have 128 GB memory and used Ubuntu 20.04.2
LTS. For benchmarking, we used the same set of tensors that
have been used in previous studies on sparse tensor factoriza-
tion, from the FROSTT [21] and HaTen2 [22] datasets. The
properties of tensors used in the experiments are summarized
in Table I. Experiments were performed for two values for the
rank: R=32 and R=604.

B. Performance Comparison

We compared STeF against multiple state-of-the-art algo-
rithms — AdaTM [4], ALTO [5], SPLATT 2.0.0 [9] and

TABLE I: List of tensors used in the experiments

Tensor Dimensions NNZ
chicago-crime-comm | 6Kx24x77x32 M
chicago-crime-geo 6Kx24x380x395x32 6M
delicious-3d 533Kx17Mx2M 140M
delicious-4d 533Kx17Mx2Mx 1K 140M
enron 6Kx6Kx244Kx 1K 54M
flickr-3d 320Kx28Mx2M 113M
flickr-4d 320Kx28Mx2Mx731 113M
freebase_music 23Mx23Mx166 100M
freebase_sampled 38Mx38Mx533 100M
Ibnl-network 2Kx4Kx2Kx4Kx868K | 2M
nell-1 3Mx2Mx25M 144M
nell-2 12Kx9Kx29K 7TM
nips 2Kx3Kx14Kx17 3M
uber 183x24x1Kx2K 3M
vast-2015-mc1-3d 165Kx11Kx2 26M
vast-2015-mc1-5d 165Kx11Kx2x100x89 | 26M

960

TACO [10]. SPLATT has multiple versions for a single CPD
iteration, where the number of distinct copies of the tensor
is one, two, or as many as the number of dimensions of the
tensors; we called these variants splatt-1, splatt-2, and splatt-
all. In addition to STeF, which only requires a single CSF
representation of the sparse tensor, we also report performance
for a variant of STeF called STeF2 that uses an additional copy
of the tensor with a different CSF layout. The additional CSF
representation uses a layout where the root mode is the leaf
mode in the base CSF representation used with STeF. The
rationale for this choice is that the MTTV operation needed
to perform the MTTKRP operation corresponding to the leaf
mode of the base CSF representation can be quite expensive
and using a second CSF representation with that mode as
the root allows a more efficient implementation using TTM
and mTTV operations. ALTO has 2 different implementations
using either 64 or 128 bits indices. We report performance
data for the faster version of two for each tensor.

Figures 3 and 4 compare the performance of all the algo-
rithms relative to splatt-all. STeF achieves 437%, 50%, 180%,
77%, 59% and 55% geometric mean speed-up over AdaTM,
ALTO, splatt-1, splatt-2, splatt-all and TACO respectively on
average, across both machines and the two R values. STeF2
achieves a higher average speedup of 603%, 93%, 270%,
137%, 114% and 103%, respectively, over AdaTM, ALTO,
splatt-1, splatt-2, splatt-all and TACO, respectively, on the two
machines and the two R values.

STeF and STeF2 show consistent and often significant
speedup over all the methods (except ALTO, for vast-2015-
mcl-3d and vast-2015-mc1-5d tensors) on both machines
due to its very work distribution. splatt, AdaTM and TACO
perform work distribution by assigning each thread a slice
of contiguous root-mode indices, whereas STeF and STeF2
performs load balancing across the leaf non-zeros. On tensors
with adequate slices for load-balanced work distribution, such
as flickr-3d and flickr-4d, ALTO and splatt achieve lower per-
formance STeF due to not memoizing and saving operations.
Even though AdaTM uses memoizing, it fails to select an
optimal mode order or memoizing decisions.

STeF performance is lower than AdaTM, splatt-2, splatt-
all and TACO for the nell-2 tensor on both machines. This
is mainly attributable to a slow MTTV kernel for the leaf
mode. STeF2 closes this gap because it uses a second CSF
representation, avoiding the need to use the MTTV kernel.
TACO performs better in delicious-3d and nell-1, where the
length of the modes are too different and benefits from the
saving the intermediate results are not significant. Overall,
TACO is better than splatt-all even though they are very similar
methods. The main reason is that TACO uses auto-tuning
across various chunk sizes and selects the best, paying a small
preprocessing overhead for faster run time. For chicago-crime-
comm and chicago-crime-geo, the longest mode has length
of 6K. For R = 32, the factor matrix can be cached in
the Intel machine but not for R = 64. Therefore, there is
a sharp slow down for STeF in these tensors in Figure 3. A
similar pattern occurs with the nips and nell-2 tensors on the

Authorized licensed use limited to: The University of Utah. Downloaded on July 22,2022 at 04:05:28 UTC from IEEE Xplore. Restrictions apply.

M wioload balance [l w/o save model (save)

125%
100%
75%
50%

25%

T BB

w/o save model (not save) [l w/o mode switch

00 e

0% .
(a) 18 Cores
125%
100%
75%
50%
25%
0%
< 0 o () S & Y O 2) X o o o
R N P I P LN ° & @ & N P Pt
e < OO e QN A N o XA g B\ 0
A& ol A A o it S AD AD <5
o o & S 309 i N Q
o) e N B I
B\ A e o° NC
v
(b) 64 Cores

Fig. 6: Ablation study for different optimizations presented in this paper on an 18 core Intel Cascade Lake and 64 Core AMD
Threadripper processor, for R=32. Performance is normalized with respect to the model-chosen configuration. 100% means
same performance as the model-chosen configuration - below 100% means slower without that optimization.

AMD machine. Since the cache sizes and cache structures are
different this phenomenon happens with different tensors on
different machines. For the majority of the tensors, STeF and
STeF2 perform better than the state-of-the-art solutions and
STeF2 achieves over 25% speedup on average with respect to
the best among all the state-of-the-art approaches.

C. Preprocessing Overhead

Figure 5 shows the preprocessing overhead associated with
finding the number of fibers in different modes and determin-
ing whether we should use switch order or not (Algorithm 9).
On average, the preprocessing overhead is 19% and 25% of
the parallel execution time for a set of MTTKRP operations
for a single CPD iteration, for R = 32, for Intel and AMD ma-
chines, respectively. For R = 64, the average overhead is 10%
and 14% of the time for a single CPD iteration, respectively,
for the Intel and AMD machines. The maximum ratio is below
100% for all benchmarks. Typically CPD algorithms require
many iterations to converge; Since preprocessing overhead is
less than a single CPD iteration, preprocessing for finding the
fiber counts to determine the order of the last two modes is
essentially negligible.

D. Additional Space Requirement

Table II shows the additional space requirement to use the
memoization technique of STeF, for R = 32 and R = 64.
For a given R value space requirement is the same for any
machine. Overall, additional space requirement for ranks 32
and 64 for the partial MTTKRP results is on average 35%
and 45% of the space requirement for the CSF structure and
the factorization matrices and this ratio is at most 2.34. This
low space requirement for STeF is partly due to selective
memoization of the partial MTTKRP results using the model.
The model tends to not memoize if memoizing a partial result
would increase the total data movement volume. This also

961

TABLE II: Space requirement for storing the partial MTTKRP
results.

Size of stored Size of Tensor
partial MTTKRPs | and Factorization Ratio
(GB) Matrices (GB)
Tensor R=32 | R=64 R=32 | R=64 R=32 | R=64
chicago-crime-comm 0.01 0.02 0.08 0.08 0.13 0.25
chicago-crime-geo 0.04 0.08 0.15 0.15 0.29 0.57
delicious-3d 8.92 17.85 7.49 12.32 1.19 1.45
delicious-4d 14.84 29.68 7.85 12.68 1.89 2.34
enron 0.22 0.44 0.88 0.94 0.25 0.47
flickr-3d 3.18 6.36 9.06 16.23 0.35 0.39
flickr-4d 6.30 12.59 9.25 16.42 0.68 0.77
freebase_music 0.00 0.00 | 13.51 24.64 0.00 0.00
freebase_sampled 0.00 0.00 | 21.94 40.52 0.00 0.00
Ibnl-network 0.01 0.02 0.24 0.45 0.05 0.05
nell-1 4.14 8.28 9.71 16.99 0.43 0.49
nell-2 0.08 0.16 1.16 1.17 0.07 0.14
nips 0.00 0.00 0.05 0.06 0.04 0.07
uber 0.00 0.00 0.06 0.06 0.02 0.03
vast-2015-mc1-3d 0.06 0.13 0.43 0.48 0.14 0.26
vast-2015-mc1-5d 0.00 0.00 0.64 0.68 0.00 0.00
Average 2.36 4.73 5.16 8.99 0.35 0.45

helps avoid large penalties for storing partial MTTKRPs. For
example, in chicago-crime-comm the ratio of partial MTTKRP
compared CSF and factorization matrices would have been
5.43 if all the partial MTTKRP have been saved. As R doubles,
the size of partial MTTKRP and factorization matrices doubles
as well; however, the size of the CSF structure stays constant.
Therefore, the overhead ratio increases slightly with increase
in R.

E. Ablation Study

Figure 6 show the effectiveness of the optimization pre-
sented in this paper. We chose the model selected configuration
as the baseline configuration. We only present data for R = 32
since results for R = 64 were very similar.

1) Work Distribution: To compare the effectiveness of our
work distribution scheme, we compare the performance of

Authorized licensed use limited to: The University of Utah. Downloaded on July 22,2022 at 04:05:28 UTC from IEEE Xplore. Restrictions apply.

our model selection configuration with and without our load
balancing. Turning off our work distribution results in an
average slow down of 39% on MTTKRP performance for
both Intel and AMD machines. There are five cases across the
two machines where our work distribution results in slightly
lower performance than use of slice-based parallelism. While
our work distribution ensures each thread processes an equal
number nodes at the leaf level, it does not guarantee perfect
load balancing at the non-leaf levels. Usually the amount
of work per-level rapidly decreases as we move up the tree
and any load-imbalance at the higher levels does not have
much of an impact. But for a few tensors, where slice-based
parallelization has sufficient parallelism at the root mode for
effective load-balancing, it performs better because it performs
load-balancing based on the whole forest and not just the work
at the leaf nodes.

2) Saving Partial MTTKRPs: To measure the impact of
our model, which predicts whether to save the intermediate
results or not, we compare our results against two extreme
choices (i) save all intermediate results, and (ii) don’t save
any intermediate results. As shown in Figure 6, our model has
a significant impact on 3 of the tensors, and on average, it
speeds up MTTKRP by 12% and 13% for the Intel and AMD
machine, respectively. Turning off this optimization did not
give more than 5% speed up on any case.

3) Switching Mode Order: Our model also predicts whether
we should switch the order of the last two modes or not. In
order to assess this impact, we compare our approach against
an approach that chooses the opposite choice as that of our
model. As shown in Figure 6 this choice is significant for
many tensors, and the average slowdown for the opposite
choice configuration is 55% and 37%, respectively, for the
Intel and AMD machines. The model for choosing mode order
selected the worse order in only one case, with a performance
difference of 1%.

VII. CONCLUSION

In this paper, we develop a data movement-aware MTTKRP
algorithm targeted at applications like CPD. Our proposed
solution achieves good load balancing and reduced data move-
ment using a single CSF representation of the tensor. We ex-
plore the design space of possible configurations for MTTKRP
and develop an efficient model to select a good configuration.
Our experimental section demonstrates the superiority of our
approach compared to the state-of-the-art methods.

ACKNOWLEDGMENTS

We thank the reviewers for their numerous suggestions to
improve the paper. This work was supported in part by the by
the U.S.National Science Foundation through award 2009007.

REFERENCES

[1] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”
SIAM review, vol. 51, no. 3, pp. 455-500, 2009.

[2] S. Smith, N. Ravindran, N. D. Sidiropoulos, and G. Karypis, “SPLATT:
Efficient and parallel sparse tensor-matrix multiplication,” in 2015 IEEE
International Parallel and Distributed Processing Symposium. 1EEE,
2015, pp. 61-70.

(3]

[7]

[8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

O. Kaya and B. Ugar, “Parallel CP decomposition of sparse tensors
using dimension trees,” Inria-Research Centre Grenoble—Rhone-Alpes,
Research Report RR-8976, 2016.

J. Li, J. Choi, L. Perros, J. Sun, and R. Vuduc, “Model-driven sparse
CP decomposition for higher-order tensors,” in 2017 IEEE international
parallel and distributed processing symposium (IPDPS). 1EEE, 2017,
pp. 1048-1057.

A. E. Helal, J. Laukemann, F. Checconi, J. J. Tithi, T. Ranadive,
E. Petrini, and J. Choi, “ALTO: adaptive linearized storage of sparse
tensors,” in Proceedings of the ACM International Conference on
Supercomputing, 2021, pp. 404-416.

J. Li, B. Ucar, U. V. Catalyiirek, J. Sun, K. Barker, and R. Vuduc,
“Efficient and effective sparse tensor reordering,” in Proceedings of
the ACM International Conference on Supercomputing, ser. ICS *19.
New York, NY, USA: Association for Computing Machinery, 2019, p.
227-237.

S. Eswar, K. Hayashi, G. Ballard, R. Kannan, M. A. Matheson, and
H. Park, “PLANC: Parallel low-rank approximation with nonnegativity
constraints,” ACM Trans. Math. Softw., vol. 47, no. 3, Jun. 2021.

M. Baskaran, B. Meister, N. Vasilache, and R. Lethin, “Efficient and
scalable computations with sparse tensors,” in 2012 IEEE Conference
on High Performance Extreme Computing. 1EEE, 2012, pp. 1-6.

S. Smith and G. Karypis, “SPLATT: The Surprisingly ParalleL. spArse
Tensor Toolkit,” http://cs.umn.edu/ splatt/, 2016.

R. Senanayake, C. Hong, Z. Wang, A. Wilson, S. Chou, S. Kamil,
S. Amarasinghe, and F. Kjolstad, “A sparse iteration space transforma-
tion framework for sparse tensor algebra,” Proc. ACM Program. Lang.,
vol. 4, no. OOPSLA, Nov. 2020.

V. T. Chakaravarthy, S. S. Pandian, S. Raje, and Y. Sabharwal, “On op-
timizing distributed non-negative tucker decomposition,” in Proceedings
of the ACM International Conference on Supercomputing, ser. ICS *19.
New York, NY, USA: Association for Computing Machinery, 2019, p.
238-249.

T. G. Kolda and J. Sun, “Scalable tensor decompositions for multi-aspect
data mining,” in ICDM 2008: Proceedings of the 8th IEEE International
Conference on Data Mining, 2008, pp. 363-372.

0. Kaya and B. Ugar, “Scalable sparse tensor decompositions in dis-
tributed memory systems,” in SC’15: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis. 1EEE, 2015, pp. 1-11.

S. Shivakumar, J. Li, R. Kannan, and S. Aluru, “Efficient parallel sparse
symmetric tucker decomposition for high-order tensors,” in SIAM Con-
ference on Applied and Computational Discrete Algorithms (ACDA21).
SIAM, 2021, pp. 193-204.

S. Chou, F. Kjolstad, and S. Amarasinghe, “Automatic generation of
efficient sparse tensor format conversion routines,” in Proceedings of the
41st ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI 2020. New York, NY, USA: Association
for Computing Machinery, 2020, p. 823-838.

S. Mueller, P. Ahrens, S. Chou, F. Kjolstad, and S. Amarasinghe, “Sparse
tensor transpositions,” in Proceedings of the 32nd ACM Symposium on
Parallelism in Algorithms and Architectures, ser. SPAA *20. New York,
NY, USA: Association for Computing Machinery, 2020, p. 559-561.
G. Ballard, N. Knight, and K. Rouse, “Communication lower bounds for
matricized tensor times khatri-rao product,” in 2018 IEEE International
Parallel and Distributed Processing Symposium (IPDPS). 1EEE, 2018,
pp. 557-567.

I. Nisa, J. Li, A. Sukumaran-Rajam, R. Vuduc, and P. Sadayappan,
“Load-balanced sparse mttkrp on gpus,” in 2019 IEEE International
Parallel and Distributed Processing Symposium (IPDPS). 1EEE, 2019,
pp. 123-133.

A. Nguyen, A. E. Helal, F. Checconi, J. Laukemann, J. J. Tithi,
Y. Soh, T. Ranadive, F. Petrini, and J. W. Choi, “Efficient, out-
of-memory sparse mttkrp on massively parallel architectures,” arXiv
preprint arXiv:2201.12523, 2022.

J. Li, B. Ucar, U. V. Catalyiirek, J. Sun, K. Barker, and R. Vuduc,
“Efficient and effective sparse tensor reordering,” in Proceedings of the
ACM International Conference on Supercomputing, 2019, pp. 227-237.
S. Smith, J. W. Choi, J. Li, R. Vuduc, J. Park, X. Liu, and G. Karypis,
“FROSTT: The formidable repository of open sparse tensors and tools,”
Chicago Univ., Chicago, IL, USA, Tech. Rep, 2017.

I. Jeon, E. E. Papalexakis, U. Kang, and C. Faloutsos, “Haten2:
Billion-scale tensor decompositions,” in 2015 IEEE 31st International
Conference on Data Engineering. 1EEE, 2015, pp. 1047-1058.

Authorized licensed use limited to: The University of Utah. Downloaded on July 22,2022 at 04:05:28 UTC from IEEE Xplore. Restrictions apply.

