
Sparsity-Aware Tensor Decomposition

Süreyya Emre Kurt
School of Computing

University of Utah
Salt Lake City, Utah

semre@cs.utah.edu

Saurabh Raje
School of Computing

University of Utah
Salt Lake City, Utah

saurabh.raje@utah.edu

Aravind Sukumaran-Rajam
Department of EECS

Washington State University
Pullman, Washington

a.sukumaranrajam@wsu.edu

P. Sadayappan
School of Computing

University of Utah
Salt Lake City, Utah

saday@cs.utah.edu

Abstract—Sparse tensor decomposition, such as Canonical
Polyadic Decomposition (CPD), is a key operation for data
analytics and machine learning. Its computation is dominated by
a set of MTTKRP (Matricized Tensor Times Khatri Rao Product)
operations. The collection of required MTTKRP operations for
sparse CPD include common sub-computations across them
and many approaches exist to factorize and reuse common
sub-expressions. Prior work on sparse CPD has focused on
minimizing the number of high-level operators. In this paper, we
consider a design space that covers whether the partial MTTKRP
results should be saved, different mode permutations and model
the total volume of data movement to/from memory. Also, we
propose a fine-grained load balancing method that supports
higher levels of parallelization.

Index Terms—CPD, MTTKRP, sparse tensor factorization

I. INTRODUCTION

Sparse tensor decomposition, such as Canonical Polyadic

Decomposition (CPD), is a key operation for data analytics

and machine learning. The computation is dominated by a set

of MTTKRP (Matricized Tensor Times Khatri Rao Product)

operations [1]. Consider the CP decomposition of a 4D tensor

T (i, j, k, l) into a product of four 2D matrices A(i, r), B(j, r),
C(k, r), and D(l, r):

T (i, j, k, l) ≈
∑

r

A(i, r)B(j, r)C(k, r)D(l, r)

The MTTKRP operation computes:

Ã(i, r) =
∑

j,k,l

T (i, j, k, l)B(j, r)C(k, r)D(l, r)

The iterative algorithm for CPD of an N-dimensional tensor

involves a sequence of N MTTKRP operations. For example,

CPD of a 4D tensor requires a sequence of 4 MTTKRP

operations in a loop until convergence is achieved:

A(i, r) =
∑

j,k,l

T (i, j, k, l)B(j, r)C(k, r)D(l, r); An = f(A,B,C,D)

B(j, r) =
∑

i,k,l

T (i, j, k, l)An(i, r)C(k, r)D(l, r); Bn = f(B,An, C,D)

C(k, r) =
∑

i,j,l

T (i, j, k, l)An(i, r)Bn(j, r)D(l, r)

Cn = f(C,An, Bn, D)

D(l, r) =
∑

i,j,k

T (i, j, k, l)An(i, r)Bn(j, r)Cn(k, r)

Dn = f(D,An, Bn, Cn);A = An;B = Bn;C = Cn;D = Dn

(1)

The function f(S,X, Y, Z) performs S∗(X�XY �Y Z�Z)−1

to generate the new version of the factor matrix. It involves

dense matrix operations on small matrices and its cost is low

compared to the MTTKRP operations.
Several research efforts have addressed the development

of efficient parallel implementations of sparse MTTKRP [2]–

[6]. In addition to optimizing individual MTTKRP operations,

there is an opportunity for optimization when we consider the

collection of MTTKRP operations used in CP Decomposition.

It may be seen in this example that the set of 4 MTTKRP

operations involves some common sub-expressions and there-

fore computations can be saved by computing, storing and

reusing intermediate tensors corresponding to some common

sub-expressions in the collection of MTTKRP computations.

For example, the first two MTTKRP operations in the above

sequence of 4 MTTKRP operations can be performed using

fewer arithmetic operations if the intermediate tensor I is

computed and stored as follows:

I(i, j, r) =
∑

k,l

T (i, j, k, l)C(k, r)D(l, r);

A(i, r) =
∑

j

I(i, j, r)B(j, r);An = f(A,B,C,D)

B(j, r) =
∑

i

I(i, j, r)An(i, r);Bn = f(B,An, C,D)

This idea of restructuring the computation, storing and re-

using an intermediate result is termed as memoization. It has

been studied in a few prior studies [4] [3] [7] [8]. A key

question in this context is that of determining which of many

alternative memoization schemes is the best. The design and

implementation of an efficient memoization scheme for sparse

tensors is more challenging than the dense case [7] because

of the constraints on efficient data access imposed by any

compact representation of sparse tensors (such as the CSF)

and the resultant irregularity of the data access patterns.
In comparison with prior studies on efficient sparse MT-

TKRP for tensor factorization, we make the following contri-

butions in this paper:

• We consider a more extensive design space of memo-

ization schemes, and implement a collection of parallel

kernels for each scheme.

• We develop a sparsity-aware model of data movement.

Such a model allows rapid search of the design space of

952

2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS)

1530-2075/22/$31.00 ©2022 IEEE
DOI 10.1109/IPDPS53621.2022.00097

20
22

 IE
EE

 In
te

rn
at

io
na

l P
ar

al
le

l a
nd

 D
ist

rib
ut

ed
 P

ro
ce

ss
in

g
Sy

m
po

siu
m

 (I
PD

PS
) |

 9
78

-1
-6

65
4-

81
06

-9
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IP

DP
S5

36
21

.2
02

2.
00

09
7

Authorized licensed use limited to: The University of Utah. Downloaded on July 22,2022 at 04:05:28 UTC from IEEE Xplore. Restrictions apply.

memoized configurations. Fast dynamic selection of this

configuration for a given sparse tensor is then used to

accelerate the decomposition.

• We develop a novel scheme for load-balanced parallel

execution of the selected memoization scheme on shared-

memory multiprocessors.

• We combine all our optimizations in a STeF (Sparse

Tensor Factorization) implementation and we demon-

strate superior performance over several prior schemes

with publicly available codebases, including AdaTM [4],

ALTO [5], SPLATT [2], [9] and TACO [10].

II. OVERVIEW

In this section, we provide a high-level overview of the key

ideas incorporated in the new memoized MTTKRP approach

for CPD presented in this paper. We begin by presenting no-

tations used in describing the sequence of operations invoked

for the memoized execution.

A. Notations & Mathematical Preliminaries

Tensor decomposition algorithms use several binary oper-

ators that work with combinations of tensors, matrices and

vectors. Kolda et al. [1] provides a comprehensive overview of

all such operators. We now define the ones used specifically in

the context of CP decomposition, i.e., the scope of this work.

T , A(i) and R: We use T to denote a tensor. Let d be the

dimensionality of the tensor. We denote the factor matrices as

A(0),A(1),. . . ,A(d−1), each of rank R, the number of columns.

Khatri-Rao product (KRP): For matrices A ∈ R
I×R, B ∈

R
J×R, the Khatri-Rao product (KRP) is a matrix M ∈

R
(IJ)×R; the KRP operator is denoted by the

⊙
symbol.

M [i × J + j, r] = A[i, r].B[j, r]∀i ∈ [0, I), j ∈ [0, J), r ∈
[0, R)

Tensor Times Matrix (TTM) product: This product “unfolds”

a tensor T ∈ R
I0×...×Id−1 along dimension k into a matrix

T ∈ R
Ii×(I0...Ii−1Ii+1...Id−1) and performs the matrix product

with another matrix A ∈ R
Ii×R. The result is a matrix of shape

(I0...Ik−1Ik+1...Id−1)×R. The result is re-shaped back into

a tensor P ∈ R
I0×I1×...Ik−1×Ik+1×...Id−1×R, which is called a

partially contracted tensor. The TTM operation can be written

as P[i0, . . . , ik−1, ik+1, . . . , id−1, r] = Tk[i0, . . . , id−1] ×k

A[ik, r], where ×k denotes a contraction (i.e., summation over)

of index ik. In this work, we use the TTM only to contract

the last dimension of the tensor, i.e., dimension d − 1 in the

above example.

multi Tensor Times Vector (mTTV) product: For a par-

tially contracted tensor P ∈ R
I0×···×Ik×R (the last dimen-

sions have been contracted out), mTTV with a matrix A ∈
R

Ik×R yields another tensor of shape I0 × · · · × Ik−1 ×R.

So, mTTV operation can be written as P[i0, . . . , ik−1, r] =
Pk[i0, . . . , ik, r]×k A[ik, r].

MTTV: In this paper, we define MTTV as the Matri-

cized Tensor Times Vector operation. For given tensor P ∈
R

I0×···×Ik×R, the product with matrix A ∈ R
(I0×···×Ik−1)×R

yields a matrix of shape Ik ×R, without the first k dimen-

sion. Common dimensions I0, . . . , Ik−1 used as contraction

index whereas R used as the batch index in the contrac-

tion. So, MTTV operation can be written as A[ik, r] =
P ′[i0 . . . ik−1, ik, r]×0,1,..,k−1 A[i0i1 . . . ik−1, r], where P ′ is

a tensor where first k-1 modes of P are combined into a single

flattened mode.

A(i) and a
(i)
r : A(i) denotes the factor matrix for mode i.

The number of columns for every factor matrix is the number

of ranks, R. Column r of matrix is A(i) is a vector denoted

a
(i)
r .

K(i): We denote as K(i) the Khatri-Rao product of the

set of factor matrices A(0),A(1),...,A(i), for i > 0. K(i) can

be represented using the recurrence relation K(i)=K(i−1)
⊙

A(i), with K(0)=A(0) as the base case.

P(i): The partial MTTKRP result after factor matrices

A(i+1),A(i+2),...,A(d−1) are contracted with T is denoted as

P(i). Thus, using a TTM operation we get P(d−2) = T
A(d−1), a d dimensional tensor. Similarly, using an mTTV

operation we get P(i′)[i0, ..., ii′ ,r] = P(i′+1)[i0, ..., ii′ ,ii′+1,r]

×i′+1 A(i+1)[ii′+1,r], for i′ < d − 2. For convenience, we

define P(d−1) = T .

B. The Compressed Sparse Fiber (CSF) format for storing
tensors

Sparse tensors are stored in some compact form that only

requires space proportional to the number of non-zero ele-

ments. A commonly used format is a tree-based representation

called the Compressed Sparse Fiber (CSF) [2] format. For an

N dimensional tensor, the CSF tree will have depth N , with

each tree level corresponding to one dimension of the tensor.

The leaf level stores the non-zero values from the tensor. Each

internal node stores the indices of the non-zero fibers of the

tensor in the dimension corresponding to the depth of the node.

Therefore, the total number of nodes of the tree (and therefore

the memory needed to store the sparse tensor) depends on the

order of dimensions in the tree. This is also called the “mode-

order” of the CSF structure. A common heuristic is to sort

the tensor’s modes in increasing order of length, and order the

CSF tree from root to leaf in that order.

Alg. 1 shows pseudo-code for a 4D MTTKRP operation on

a 4D tensor T using a CSF structure.

C. The space of memoized schemes

Algorithm 2 shows the CPD-ALS algorithm for a 4D tensor.

Ti is unfolding of the tensor T on ith dimension. In our

notation, we will refer to A, B, C and D in this algorithm

as A(0), A(1), A(2) and A(3). Fig. 1 illustrates different

options for updating A(1). ×i defines the contraction of ith

dimension of the first operand. The factor matrices A(0), A(1),

A(2), and A(3) correspond to the modes 0, 1, 2, 3, respec-

tively. Fig. 1(a) shows a sequence of three tensor operations

to produce Ā(0): i) A TTM (Tensor Times Matrix) opera-

tion T [i0, i1, i2, i3]×3A
(3)[i3, r] to produce P(2)[i0, i1, i2, r];

ii) An mTTV (multi Tensor Times Vector) operation

P(2)[i0, i1, i2, r]×2A
(2)[i2, r] to produce P(1)[i0, i1, r]; iii)

An mTTV operation P(1)[i0, i1, r]×1A
(1)[i1, r] to produce

Ā(0)[i0, r]. Fig. 1(b-d) show three options for producing Ā(1).

953

Authorized licensed use limited to: The University of Utah. Downloaded on July 22,2022 at 04:05:28 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Simple pseudo-code for MTTKRP using

a 4D tensor T using CSF pointers.

// Ã = MTTKRP(T ,B,C,D)
input : Sparse tensor T is a 4D tensor. B, C and D

represent the factor matrices. R is the rank of
decomposition.

output: Output Ã needed to update factorization matrix A
1 num slice ← Number of slices in the tensor
2 for ip = 0 to num slice-1 do in parallel
3 i ←indexI[ip]
4 for jp = ptrI[ip] to ptrI[ip+1]-1 do
5 j ← indexJ[jp]
6 for kp = ptrJ[jp] to ptrJ[jp+1]-1 do
7 k ← indexK[kp]
8 for lp = ptrK[kp] to ptrK[kp+1]-1 do
9 l ← indexL[lp]

10 for r in [0:R-1] do
11 Ã[i,r] ← Ã[i,r] + T [i,j,k,l]B[j,r] C[k,r]

D[l,r]

Algorithm 2: CPD-ALS code for a 4D tensor

input : T a 4D tensor
output: Factorization matrices A(0), A(1), A(2) and A(3)

1 for it = 1 to max iterations do
2 V ←A(1)�A(1)A(2)�A(2)A(3)�A(3)

3 A(0)← T0(A
(1)⊙A(2)⊙A(3))V −1

4 Normalize columns of A(0) and save norms in λ

5 V ←A(0)�A(0)A(2)�A(2)A(3)�A(3)

6 A(1)← T1(A
(0)⊙A(2)⊙A(3))V −1

7 Normalize columns of A(1) and save norms in λ

8 V ←A(0)�A(0)A(1)�A(1)A(3)�A(3)

9 A(2)← T2(A
(0)⊙A(1)⊙A(3))V −1

10 Normalize columns of A(2) and save norms in λ

11 V ←A(0)�A(0)A(1)�A(1)A(2)�A(2)

12 A(3)← T3(A
(0)⊙A(1)⊙A(2))V −1

13 Normalize columns of A(3) and save norms in λ
14 if Convergence condition met then
15 exit loop

Fig. 1: Computation of the factor matrix corresponding to

non-root mode 1. This is done after computing the factor for

mode 0. Depending on what intermediates are saved, mode 1

computation can be done in 3 ways as shown in b), c), or d).

Fig. 1(b) shows how it can be produced with a minimal number

of additional arithmetic operations, using saved intermedi-

ate tensor P(1)[i0, i1, r] by performing the MTTV operation

A(0)[i0, r]×0P(1)[i0, i1, r] to produce Ā(1)[i1, r].
Another option is to use the saved intermediate ten-

sor P(2)[i0, i1, i2, r], by repeating the TTV operation

P(2)[i0, i1, i2, r]×2A
(2)[i2, r] and fuse that computation with

a MTTV operation with A(0)[i0, r], as shown in Fig. 1(c).

Finally, it is also possible to produce Ā(1)[j, r] without reusing

any of the computation used in producing Ā(0), as shown in

Fig. 1(d).

Note that these choices represent different amounts of

computation and data movement. While memoization can save

arithmetic operations, it introduces additional data movement.

This could offset the benefits of memoization, especially

since data movement is much more expensive than arithmetic

operations. In Sec. IV we develop an analytical model to

evaluate the efficacy of alternate memoization schemes.

D. Load-balanced work distribution

Prior efforts [2], [4] have partitioned the indices at the root

mode and assigned slices to threads (Figure 2a). Such an

approach can result in load imbalance if the number of slices

at the root mode is less than the number of threads and/or the

non-zeros are non-uniformly distributed across the slices. For

example, in the tensors vast-2015-mc1-3d and vast-2015-mc1-
5d, the number of slices at the root mode (for mode-length

ordered CSF representation) is just 2. Therefore, this work

division scheme can only utilize 2 threads. Furthermore, a 2-

way partitioning for these tensors will also result in 1674%

load imbalance, as a virtue of the distribution of non-zeros.

We propose a fine-grained work division strategy where

all threads process roughly the same number of non-zeros.

Simply dividing the non-zeros across threads may result in

write conflict. For example, consider Figure 2b, where both

threads 1 and 2 write to the same location at level 0 (similar

conflict also occurs at level 1). To ensure correctness we

could use use atomic updates; however, the cost of atomic

operations will degrade the performance. Another option is to

use privatization, keeping a private copy for each thread, but

it increases the amount of data movement.

We devise a scheme that efficiently avoids the write conflict

without using atomic operations or privatization. Our approach

is based on the observation that the write conflicts, if any,

will only occur at the boundary elements between the threads.

The maximum number of elements that will potentially have

write conflict is T, where T is the number of threads. The

write conflicts can be avoided by replicating just the boundary

elements, i.e., instead of writing to a tensor of size N ∗ R,

where N is the number of rows and R is the number of

features, we write the to a tensor of size (N + T) ∗ R. The

details of this scheme is presented in Section III-A.

E. Switching Mode Order of Last Two Modes

Consider the sequence of steps for computing MTTKRP for

a single-mode, e.g., for mode-0 in Fig. 1. It requires one TTM

954

Authorized licensed use limited to: The University of Utah. Downloaded on July 22,2022 at 04:05:28 UTC from IEEE Xplore. Restrictions apply.

(a) Slice-based Work Distribution (b) STeF Work Distribution

Fig. 2: Work distribution for 5 threads. Fig. 2a shows work distribution with outer-mode slice based granularity. Since there

are only 4 slices at the root mode, no more than 4 threads get any work. The maximum number of nodes traversed by a thread

is 12 (yellow thread) while thread 4 (blue) has no work. Fig. 2b shows the STeF work distribution. Squares with two colors

are traversed by 2 threads. The maximum number of nodes traversed by a thread is 9 (orange thread) and the lightest load is

6 nodes (blue thread).

operation using all non-zeros of the tensor T , followed by a

series of TTV operations using successively lower dimensional

tensors that result from the TTM/TTV operations. At each

stage, the number of non-zeros in the output tensor is lower

than the input tensor by a factor corresponding to the average

number of non-zeros per fiber along the contracted dimension

of the input tensor. If the non-zeros in the input tensor T
were uniformly distributed over the index space, the average

number of non-zeros per fiber would be proportional to the

mode lengths. If so, it would be best to order the modes

such that mode lengths monotonically increases so that a

maximal compression is achieved. Increasing the compression

will result in lower number of non-zeros of the series of

lower-dimensional tensors, thereby minimizing the total work

in terms of the number of operations.

However, the average fiber length along different dimen-

sions of a tensor is not always directly related to the mode

lengths. For example, in delicious-4d, the average fiber length

for the the longest mode of length 17 million is 1.5 whereas

the same stat for the mode of length 2 million is 3. If the

average fiber length is not longest along the longest mode,

it would be preferable to use one of the other modes as the

“fiber” mode in the CSF representation. While it would be very

expensive to determine the average fiber length corresponding

to all modes of a tensor, we have devised a very efficient

algorithm to determine the average fiber length for the last two

modes. We therefore consider swapping of the last two modes

in the CSF representation. It also turns out that in practice,

the longest average fiber length turns out to almost always to

be one among the two longest tensor modes.

III. ALGORITHMS & OPTIMIZATIONS

A. Load-balanced work distribution

As mentioned earlier, load balance plays an important role

in determining performance. As shown in Figure 2, compared

to the default scheme (Figure 2a), where the last thread

was idle, our scheme eliminates thread idling and achieves

Algorithm 3: Finding thread start position of CSF

representation of T
input : d dimensional sparse tensor T
output: 2D thread start array showing thread starting

position for each level of the CSF for each thread
1 for th=0 to number of threads do in parallel
2 thread start[th][d-1] ← th ∗ nnz/numberofthreads
3 for th=0 to number of threads do in parallel
4 for i = d− 2 to 0 do
5 thread start[th][i] ←

find parent CSF(thread start[th][i+1])

a good load balance. The key to achieving high performance

is to deliver good load balance without suffering from the

overhead of atomic operations and additional data movement

from privatization. First, we divide the non-zeros equally

among each thread. Algorithm 3 shows how the start locations

for each thread are computed. Each thread is first assigned

an equal number of non-zeros. The start position of each

thread is found by looking at the parent of non-zeros at

the boundaries(find parent CSF). Since we distribute nnzs

across the threads, multiple threads may write to the same

memory location in the upper levels of the tree and cause write

conflicts. Only the elements at the thread boundary can have

write conflicts; hence our scheme replicates these elements.

B. Sparsity Aware MTTKRP

This section explains how all the optimizations proposed in

this paper are put together to generate the complete MTTKRP

code. For a d dimensional tensor T , STeF chooses two

different paths when computing MTTKRP for Ā(0) and Ā(i)

where i > 0. For computing Ā(i), STeF first performs a

TTM operation on T to produce P(d−2). Then, series of

mTTV operation is used to compute P(d−3),. . . ,P(0), where

P(0) becomes Ā(0). If our model decided P(i) needs to be

memoized, that result is saved in memory. When computing

MTTKRP for Ā(i) STeF uses P(i). If P(i) is not memoized

955

Authorized licensed use limited to: The University of Utah. Downloaded on July 22,2022 at 04:05:28 UTC from IEEE Xplore. Restrictions apply.

when computing Ā(0), then it is recomputed either from a

memoized P(k) if ∃k > i or from scratch by performing

a series of TTM and mTTV on T . MTTKRP for the first

mode of the CSF is implemented as a series of dot products,

whereas MTTKRP for the last mode of the CSF is a series

of Khatri-Rao products. MTTKRP for the internal modes can

therefore be written as a combination of dot products and

KRPs. Algorithm 4 shows the generic MTTKRP algorithm

for any mode, where Algorithm 5 shows the generic loop

structure.

Algorithms 4 and 5 compute the MTTKRP of mode u, Ā(u),

by using P(u) and K(u−1), for 0 < u < d − 1. For u = 0,

Ā(0) = P(0) and for u = d − 1, Ā(d−1) = Td−1∗K(d−2) =

P(d−1)
d−1 ∗K(d−2), which is the original MTTKRP formulation.

Algorithm 4 is the high level call handling the MTTKRP

computation. Vectors t0 and k0 holds a row of the first

factorization matrix A(0). At the end of the algorithm if the

result Ā(u) is privatized across the threads, it is reduced back

to a single matrix. Lines 9-12 handles the the case of u = 0.

Atomic updates are used in order to avoid race condition

between threads. This can only happen if the update is at the

thread boundary. If u > 0, then for updating Ā(u) either atomic

updates are needed, or each thread needs to hold it’s own copy,

ie. Ā(u) needs to be privatized. If Ā(u) is privatized line 11

of Algorithm 4 is executed to reduce it to a single matrix.

Algorithm 4: MTTKRP for mode u in tensor T
input : Tensor T in CSF format, factorization matrices A

= {A(0),A(1),...,A(d−1)}, MTTKRP mode u
output: Updated factorization matrix Ā(u)

1 for th=0 to number of threads - 1 do in parallel
2 for i=thread start[th][0] to thread start[th+1][0] do
3 if u �= 0 then
4 k0[:] ← A(0)[i,:]
5 else
6 t0[:] ← A(0)[i,:]

7 MTTKRP-LOOP(1,i,k0, t0, T ,A,u,th,Ā(u))
8 if u = 0 then
9 if i=thread start[th][0] or

i=thread start[th+1][0] then
10 Ā(0)[i,:] ← t0 with atomic update
11 else
12 Ā(0)[i,:] ← t0

13 if Is Ā(u) privatized for each thread? then
14 Reduce Ā(u)

In Algorithm 5, ki vector holds a row of KRP of the matri-

ces A(0),..,A(i). Similarly, ti holds a row of partial MTTKRP

result after contracting out A(i+1),...,A(d−1). Thus, in order

to compute the values Ā(u)[iu, r], we need to do a Hadamard

product of ku−1 and tu. T .save is an array of boolean values

where T .save[i] denotes whether the partial MTTKRP result

P(i) after contracting out matrices A(i+1),...,A(d−1) is to be

stored or not. T .ptr[i][idx] is a pointer array pointing the start

position of children of node idx in mode i to mode i+1. T .val
is the array holding values of the tensor.

As per the work distribution in Algorithm 3, two threads

Algorithm 5: MTTKRP-LOOP

input : loop id i, pindex, ki−1, ti−1, Tensor T ,
factorization matrices A = {A(0),A(1),...,A(d−1)},
MTTKRP mode u, thread id th, Ā(u)

1 start ← MAX(thread start[th][i],T .ptr[i-1][pindex])
2 end ← MIN(thread start[th+1][i], T .ptr[i-1][pindex+1])
3 for idx = start to end do
4 if T .save[i] and (u = 0 or i ≥ u) then
5 ti[:] ← P(i)[T .ptr[i] + th,:]
6 if i<u then
7 ki[:] ← ki−1[:]

⊙
A(i)[idx,:]

8 if ¬T .save[i] or u>i or u = 0 then
9 if i < d− 1 then

10 MTTKRP-LOOP(i+1,idx,ki, ti,T ,A,u,th,Ā(u))
11 else
12 Tval ← T .val[idx]
13 if u = d− 1 then
14 A(d−1)[idx,:] ← A(d−1)[idx,:] + Tval *

ki−1[:]
15 else
16 ti−1[:]← ti−1[:] + Tval * A(d−1)[idx,:]
17 if i = u then
18 Ā(i)[idx,:] ← Ā(i)[idx,:] +ki−1[:]

⊙
ti[:]

19 else if i > u then
20 ti[:]← ti+1[:]

⊙
A(i)[idx,:]

Algorithm 6: STeF MTTKRP to compute A(1) for a

4D tensor T where P(1) is stored.
input : Sparse tensor T , factorization matrices

A(0),A(1),A(2) and A(3), number of factors R
output: Updated factorization matrix Ā(1)

1 for i ∈ T [*,:,:,:] do in parallel
2 k0 ← A(0)[i,:]
3 for j ∈ T [i,*,:,:] do
4 t1 ← P(1)[i,j]

5 Ā(1)[j, :] ← Ā(1)[j, :] + t1[:]
⊙

k0[:]

6 if Is Ā(1) privatized for each thread? then
7 Reduce Ā(1)

might want to access the same location for a write operation.

In the implementation, each thread uses a localised copy of

P(i) array by shifting its write location by an amount equal

to its thread id. More specifically, if thread th and th + 1
want to write to the same data location s, one of them writes

s+ th and the other writes s+(th+1), hence avoiding a race

condition.

Algorithm 6 implements Figure 1b where partial MTTKRP

for P(1)[i0, i1,r] is stored. Using the partial results, we can

compute MTTKRP for A(1) using a single MTTV operation.

Algorithm 7 describes the case in Figure 1c where A(2) needs

to be contracted. First, A(2) is contracted with P(2)[i0, i1, i2,r],

the partial MTTKRP result, and the MTTV operation is

performed to get updated values of A(1). Finally, Algorithm 8

implements Figure 1d in which none of the results are saved;

thus, the entire CSF structure is traversed to compute the

MTTKRP for A(1).

956

Authorized licensed use limited to: The University of Utah. Downloaded on July 22,2022 at 04:05:28 UTC from IEEE Xplore. Restrictions apply.

Algorithm 7: STeF MTTKRP to compute A(1) for a

4D tensor T where P(2) is stored.
input : Sparse tensor T , factorization matrices

A(0),A(1),A(2) and A(3), number of factors R
output: Updated factorization matrix Ā(1)

1 for i ∈ T [*,:,:,:] do in parallel
2 k0 ← A(0)[i,:]
3 for j ∈ T [i,*,:,:] do
4 t1[:] ← zero vector of length R
5 for k ∈ T [i,j,*,:] do
6 t2[:] ← T2[i,j,k]

7 t1[:] ← t1[:] + t2[:]
⊙

A(2)[k, :]

8 Ā(1)[j, :] ← Ā(1)[j, :] + t1[:]
⊙

k0[:]

9 if Is Ā(1) privatized for each thread? then
10 Reduce Ā(1)

Algorithm 8: STeF MTTKRP to compute A(1) for 4D

tensor T where no partial results are stored.

input : Sparse tensor T , factorization matrices
A(0),A(1),A(2) and A(3), number of factors R

output: Updated factorization matrix Ā(1)

1 for i ∈ T [*,:,:,:] do in parallel
2 k0 ← A(0)[i,:]
3 for j ∈ T [i,*,:,:] do
4 t1[:] ← zero vector of length R
5 for k ∈ T [i,j,*,:] do
6 t2[:] ← zero vector of length R
7 for l ∈ T [i,j,k,*] do
8 Tval ← T [i, j, k, l]

9 t2[:] ← t2[:] + Tval∗A(3)[l, :]

10 t1[:] ← t1[:] + t2[:]
⊙

A(2)[k, :]

11 Ā(1)[j, :] ← Ā(1)[j, :] + t1[:]
⊙

k0[:]

12 if Is Ā(1) privatized for each thread? then
13 Reduce Ā(1)

IV. MODELS

This section motivates the need to model the impact of

memoization and mode order switching on data movement.

We also develop an analytical model to quantify the expected

data movement and, thereby, the performance.

A. Saving Partial Results

As shown in Section I, a single CPD iteration involves

multiple MTTKRPs, some of which share the same inter-

mediate results. Rather than recomputing the intermediate

results for each MTTKRP, they could be computed once and

reused thereafter; this strategy is called memoization. While

memoization helps to reduce the total number of computations,

it introduces additional memory write and read operations

to save and load the intermediate results. Depending on the

operand sizes, this additional data movement can overwhelm

the savings from the reduced number of operations. Consider

for example, the uber tensor described in Table I. Saving all

the intermediate results for the decomposition of this tensor

requires 62M reads and 22M writes. However, not saving the

biggest partial result will result in 24M reads and 238K writes,

which makes the decomposition faster.

In contrast for vast-2015-mc1-3d tensor, saving the interme-

diate tensor results in 1.7B reads and 833M writes. Not saving

them on the other hand, will result in a total read and write

count of 2.6B and 833M, respectively. In this case therefore,

saving is beneficial.

B. Switching Order of Last Two Modes

Algorithm 9: Finding number of fibers if last two

modes of the CSF representation of T are swapped

input : Sparse tensor T
output: Number of fibers in 1-2-4-3 order

1 for th=0 to number of thread - 1 do in parallel
2 for row = 0 to n3-1 do
3 observed[th][row] ←0
4 num fibers[th] ←0
5 for i ∈ T [*,:,:,:] do in parallel
6 th ← thread id
7 for j ∈ T [i,*,:,:] do
8 for k ∈ T [i,j,*,:] do
9 for l ∈ T [i,j,k,*] do

10 if observed[th][l] �= (i, j) then
11 observed[th][l] ← (i, j)
12 Increment num fibers[th] by 1

13 number fibers ← 0
14 for th=0 to number of thread - 1 do
15 number fibers ← number fibers + num fibers[th]

As mentioned in Section II-E, switching the order of the

last two modes impacts the data movement and hence the

performance. To determine whether to switch or not, we use

a data movement model that requires the total number of

fibers at each level. The CSF format inherently contains the

total number of fibers for the original (non switched order).

However, this count is not available for the switched order.

Creating a new CSF format to count the fiber information

for the switched-mode will increase the overhead of decision-

making.

Algorithm 9 efficiently computes the fiber information for

the switched order. Note that, since d− 2 modes are the same

for both original and switched order, the number of fibers

for them is the same. Hence, we only need to compute the

number of non-zeros after the first contraction of MTTKRP

in the switched order. In Algorithm 9, we use a buffer of

size num threads ∗ n3, where n3 is the length of the third

dimension of the tensor. Each thread initializes its portion of

the buffer to 0 (Line 4). Line 5 distributes the root mode of the

tensor across multiple threads. In Line 10, each thread checks

whether it has previously seen the < i, j, l > pair. If an pair

was seen for the first time, we increment the fiber count (Line

12). Line 15 aggregates the fiber count across multiple threads.

C. Data Movement Model

Let x be the total number of read access to the ith

factorization matrix of size Ni ∗ R. Each such access reads

R elements (ie. one row) of the ith factorization matrix. If

the data footprint of the matrix is less than or equal to the

cache size, each element will be loaded only once to the cache

957

Authorized licensed use limited to: The University of Utah. Downloaded on July 22,2022 at 04:05:28 UTC from IEEE Xplore. Restrictions apply.

(cold miss) and reused thereafter. Otherwise, each xi access

will read R elements from the memory without reuse. Hence

the data movement associated with ith factorization matrix

(DM factori(x)) can be computed as follows:

DM factori(x) =

{
x ∗R Ni ∗R > cachesize

min(Ni ∗R, x ∗R) otherwise

Let mi be the number of fibers at level i. Assuming that

there is no memoization, for all modes, the read cost can be

expressed as:

DM no memread(i) =
d−1∑

i=0

(2 ∗mi +DM factori(mi))

If memoization is enabled, we can avoid the reads required

to compute the intermediate tensor after the initial MTTKRP

to compute them, but we must read the partial results. Let k
be the first mode that has been memoized where 0 < i ≤ k.

The corresponding read cost can be expressed as:

DM mem kread(i) =
k−1∑

i=0

(2∗mi+DM factori(mi)+mi∗R)

For mode 0 we may need additional writes if some partial

MTTKRP results have been memoized. The volume of data

movement for mode 0 is modeled as:

DMread(0) = DM no memread +
∑

i∈M

mi ∗R

where M is the set of modes that have been memoized after

MTTKRP of mode 0.

The write cost corresponding to mode 0 < i ≤ d − 1 can

be expressed as:

DMwrite(i) = DM factori(mi)

The write cost for mode 0 can be written as:

DMwrite(0) = n0 ∗R+
∑

i∈M

mi ∗R

Combining these we get the following for i > 0:

DMread(i) =

{
DM mem kread(i) ∃k s.t. k ∈ M and k ≥ i

DM no memread(i) otherwise

Adding DMread(i) and DMwrite(i), we can estimate the

total data movement for the MTTKRP operation for updating

A(i). Hence, the total data movement estimation for a single

iteration of CPD will be:

Total Data Movement =

d−1∑

i=0

DMread(i) +DMwrite(i)

Note that if the order of the modes and/or the list of memoized

partial MTTKRP results M is changed, DMread and DMwrite

will change and the total data movement estimation will

change. Our model exhaustively checks every configuration

to select the one with the lowest data movement estimate.

V. RELATED WORK

Smith et al. [2] proposed SPLATT which can compute CPD

for tensor with using only a single CSF representation. This

has also been extended to accelerate distributed tucker decom-

position in [11]. Baskaran et al. [8] propose a split-reorder

of the mode-contraction loop in the Tucker decomposition

algorithm, such that partially contracted tensors can be re-used

in an optimal manner. The trade-off between storing partially

contracted sparse tensors vs recomputing them, seems to have

originated in Kolda et al [12], again in the context of Tucker

decomposition. Kaya et al [3] proposed a novel sparse tensor

representation for the CP decomposition algorithm. The Bal-

anced Dimension Tree recursively partitions the set of modes

into two halves. Each leaf hence contains a single mode. Each

of the n mode contractions therefore involves a walk from the

corresponding leaf to all internal nodes, via the root. Since

several internal nodes are common among consecutive walks,

the partially decomposed tensors corresponding to these nodes

can be stored in memory. The only restriction for reuse is

that the factor matrices are updated in sequential order. The

partially decomposed tensors that used these factor matrices

hence have to be recomputed. While this work focuses on

the distributed memory setting, it also exploits intra-node

shared memory parallelism. The corresponding HyperTensor
[13] library implementation has not yet been released to open-

source, making an empirical comparison impossible for this

work.

Li et al. [4] proposed a similar approach to choose different

memoizations based on a model. They introduce a new storage

format vCSF to store the sparse tensor. For the n MTTKRP

operations in total, they propose to store and reuse θ(
√
N)

partially contracted tensors. Coupled with mode reordering,

this scheme essentially uses a CSF forest with the lower half of

each CSF tree stored in memory for reuse. The implementation

is named AdaTM , and has been used as one of the baselines

for performance comparison.

More recently, Helal et al. [5] proposed a new compressed

format called ALTO for storing tensors. This approach offers

better load balancing and locality while performing a single

MTTKRP. Furthermore, it also avoids the need to change the

tensor representation for performing the different MTTKRPs

in a CPD iteration. The storage structure uses a novel indexing

representation for the nonzero elements of a sparse tensor that

is formed by permuting a compacted binary representation

of concatenated multi-dimensional index coordinates of tensor

elements. The work currently computes all mode contractions

from scratch, and hence has a significantly higher FLOP count.

We also compare performance with ALTO in Section VI.

Li et al. have also proposed mode reordering algorithms

BFS − MCS and Lexi − Order [6]. The Lexi − Order
seems to consistently outperform the hypergraph partitioning-

based BFS −MCS. As per Lexi−Order, the lower-stride

modes of the given ordering are sorted in increasing order of

co-ordinates. It can easily be applied to COO, HiCOO or CSF

representations in memory, and seems to improve speedup

958

Authorized licensed use limited to: The University of Utah. Downloaded on July 22,2022 at 04:05:28 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Results for number of factors = 32 and 64 for 18 core Intel Cascade Lake Processor (higher is better).

Fig. 4: Results for number of factors = 32 and 64 for 64 core AMD Threadripper Processor (higher is better)

significantly in each case. For the CSF-based implementation,

this seems to be complimentary to our contributions viz model-

based storage of intermediate results.

Shivakumar et al. [14] propose a new compressed sparse

symmetric CSS structure specifically for sparse symmetric

tucker decomposition. This format exploits the constraint of

a single factor matrix, and a core tensor with all dimensions

of equal length. While this pushes the pareto front of runtime

vs memory, this method currently is restricted to symmetric

decomposition only.

The TACO compiler has integrated several optimizations for

tensor decomposition and hence simplified the search across

the entire optimization space, including the choice of mode

orderings [10] [15] [16]. We consider the latest scheduling

TACO implementation as one of our baselines for performance

comparison.

Ballard and Rouse et al. [17] establishes lower bound

for communication in MTTKRP operation and provide an

algorithm achieving the bound for dense case. Nisa et al.

[18] focuses on load balancing the MTTKRP operation on

massively parallel systems such as GPUs by creating Hybrid

Balanced CSF format (HB-CSF). Nguyen et al [19] proposes

959

Authorized licensed use limited to: The University of Utah. Downloaded on July 22,2022 at 04:05:28 UTC from IEEE Xplore. Restrictions apply.

BLCO format to tackle sparse MTTKRP on GPUs as a

continuation from ALTO [5]. Li et al. [20] proposes BDS-

MCS reordering algortihm to improve locality of the MTTKRP

operation.

Fig. 5: Preprocessing overhead for calculating whether to

switch orders of the last two modes or not for 18 Core Intel and

64 Core AMD machines. Each bar represents preprocessing

overhead to one set of MTTKRP operations.

VI. EXPERIMENTAL EVALUATION

A. Experimental Setup
The experimental evaluation was performed on two systems:

an 18 core Intel i9-10980XE (Cascade Lake) and a 64 core

AMD 3990X (Threadripper) processor, using GCC v9.3.0.

Both systems have 128 GB memory and used Ubuntu 20.04.2

LTS. For benchmarking, we used the same set of tensors that

have been used in previous studies on sparse tensor factoriza-

tion, from the FROSTT [21] and HaTen2 [22] datasets. The

properties of tensors used in the experiments are summarized

in Table I. Experiments were performed for two values for the

rank: R=32 and R=64.

B. Performance Comparison
We compared STeF against multiple state-of-the-art algo-

rithms – AdaTM [4], ALTO [5], SPLATT 2.0.0 [9] and

TABLE I: List of tensors used in the experiments

Tensor Dimensions NNZ
chicago-crime-comm 6Kx24x77x32 5M
chicago-crime-geo 6Kx24x380x395x32 6M
delicious-3d 533Kx17Mx2M 140M
delicious-4d 533Kx17Mx2Mx1K 140M
enron 6Kx6Kx244Kx1K 54M
flickr-3d 320Kx28Mx2M 113M
flickr-4d 320Kx28Mx2Mx731 113M
freebase music 23Mx23Mx166 100M
freebase sampled 38Mx38Mx533 100M
lbnl-network 2Kx4Kx2Kx4Kx868K 2M
nell-1 3Mx2Mx25M 144M
nell-2 12Kx9Kx29K 77M
nips 2Kx3Kx14Kx17 3M
uber 183x24x1Kx2K 3M
vast-2015-mc1-3d 165Kx11Kx2 26M
vast-2015-mc1-5d 165Kx11Kx2x100x89 26M

TACO [10]. SPLATT has multiple versions for a single CPD

iteration, where the number of distinct copies of the tensor

is one, two, or as many as the number of dimensions of the

tensors; we called these variants splatt-1, splatt-2, and splatt-

all. In addition to STeF, which only requires a single CSF

representation of the sparse tensor, we also report performance

for a variant of STeF called STeF2 that uses an additional copy

of the tensor with a different CSF layout. The additional CSF

representation uses a layout where the root mode is the leaf

mode in the base CSF representation used with STeF. The

rationale for this choice is that the MTTV operation needed

to perform the MTTKRP operation corresponding to the leaf

mode of the base CSF representation can be quite expensive

and using a second CSF representation with that mode as

the root allows a more efficient implementation using TTM

and mTTV operations. ALTO has 2 different implementations

using either 64 or 128 bits indices. We report performance

data for the faster version of two for each tensor.

Figures 3 and 4 compare the performance of all the algo-

rithms relative to splatt-all. STeF achieves 437%, 50%, 180%,

77%, 59% and 55% geometric mean speed-up over AdaTM,

ALTO, splatt-1, splatt-2, splatt-all and TACO respectively on

average, across both machines and the two R values. STeF2

achieves a higher average speedup of 603%, 93%, 270%,

137%, 114% and 103%, respectively, over AdaTM, ALTO,

splatt-1, splatt-2, splatt-all and TACO, respectively, on the two

machines and the two R values.

STeF and STeF2 show consistent and often significant

speedup over all the methods (except ALTO, for vast-2015-

mc1-3d and vast-2015-mc1-5d tensors) on both machines

due to its very work distribution. splatt, AdaTM and TACO

perform work distribution by assigning each thread a slice

of contiguous root-mode indices, whereas STeF and STeF2

performs load balancing across the leaf non-zeros. On tensors

with adequate slices for load-balanced work distribution, such

as flickr-3d and flickr-4d, ALTO and splatt achieve lower per-

formance STeF due to not memoizing and saving operations.

Even though AdaTM uses memoizing, it fails to select an

optimal mode order or memoizing decisions.

STeF performance is lower than AdaTM, splatt-2, splatt-

all and TACO for the nell-2 tensor on both machines. This

is mainly attributable to a slow MTTV kernel for the leaf

mode. STeF2 closes this gap because it uses a second CSF

representation, avoiding the need to use the MTTV kernel.

TACO performs better in delicious-3d and nell-1, where the

length of the modes are too different and benefits from the

saving the intermediate results are not significant. Overall,

TACO is better than splatt-all even though they are very similar

methods. The main reason is that TACO uses auto-tuning

across various chunk sizes and selects the best, paying a small

preprocessing overhead for faster run time. For chicago-crime-

comm and chicago-crime-geo, the longest mode has length

of 6K. For R = 32, the factor matrix can be cached in

the Intel machine but not for R = 64. Therefore, there is

a sharp slow down for STeF in these tensors in Figure 3. A

similar pattern occurs with the nips and nell-2 tensors on the

960

Authorized licensed use limited to: The University of Utah. Downloaded on July 22,2022 at 04:05:28 UTC from IEEE Xplore. Restrictions apply.

Fig. 6: Ablation study for different optimizations presented in this paper on an 18 core Intel Cascade Lake and 64 Core AMD

Threadripper processor, for R=32. Performance is normalized with respect to the model-chosen configuration. 100% means

same performance as the model-chosen configuration - below 100% means slower without that optimization.

AMD machine. Since the cache sizes and cache structures are

different this phenomenon happens with different tensors on

different machines. For the majority of the tensors, STeF and

STeF2 perform better than the state-of-the-art solutions and

STeF2 achieves over 25% speedup on average with respect to

the best among all the state-of-the-art approaches.

C. Preprocessing Overhead

Figure 5 shows the preprocessing overhead associated with

finding the number of fibers in different modes and determin-

ing whether we should use switch order or not (Algorithm 9).

On average, the preprocessing overhead is 19% and 25% of

the parallel execution time for a set of MTTKRP operations

for a single CPD iteration, for R = 32, for Intel and AMD ma-

chines, respectively. For R = 64, the average overhead is 10%

and 14% of the time for a single CPD iteration, respectively,

for the Intel and AMD machines. The maximum ratio is below

100% for all benchmarks. Typically CPD algorithms require

many iterations to converge; Since preprocessing overhead is

less than a single CPD iteration, preprocessing for finding the

fiber counts to determine the order of the last two modes is

essentially negligible.

D. Additional Space Requirement

Table II shows the additional space requirement to use the

memoization technique of STeF, for R = 32 and R = 64.

For a given R value space requirement is the same for any

machine. Overall, additional space requirement for ranks 32

and 64 for the partial MTTKRP results is on average 35%

and 45% of the space requirement for the CSF structure and

the factorization matrices and this ratio is at most 2.34. This

low space requirement for STeF is partly due to selective

memoization of the partial MTTKRP results using the model.

The model tends to not memoize if memoizing a partial result

would increase the total data movement volume. This also

TABLE II: Space requirement for storing the partial MTTKRP

results.

Size of stored
partial MTTKRPs

(GB)

Size of Tensor
and Factorization

Matrices (GB)
Ratio

Tensor R=32 R=64 R=32 R=64 R=32 R=64
chicago-crime-comm 0.01 0.02 0.08 0.08 0.13 0.25
chicago-crime-geo 0.04 0.08 0.15 0.15 0.29 0.57
delicious-3d 8.92 17.85 7.49 12.32 1.19 1.45
delicious-4d 14.84 29.68 7.85 12.68 1.89 2.34
enron 0.22 0.44 0.88 0.94 0.25 0.47
flickr-3d 3.18 6.36 9.06 16.23 0.35 0.39
flickr-4d 6.30 12.59 9.25 16.42 0.68 0.77
freebase music 0.00 0.00 13.51 24.64 0.00 0.00
freebase sampled 0.00 0.00 21.94 40.52 0.00 0.00
lbnl-network 0.01 0.02 0.24 0.45 0.05 0.05
nell-1 4.14 8.28 9.71 16.99 0.43 0.49
nell-2 0.08 0.16 1.16 1.17 0.07 0.14
nips 0.00 0.00 0.05 0.06 0.04 0.07
uber 0.00 0.00 0.06 0.06 0.02 0.03
vast-2015-mc1-3d 0.06 0.13 0.43 0.48 0.14 0.26
vast-2015-mc1-5d 0.00 0.00 0.64 0.68 0.00 0.00
Average 2.36 4.73 5.16 8.99 0.35 0.45

helps avoid large penalties for storing partial MTTKRPs. For

example, in chicago-crime-comm the ratio of partial MTTKRP

compared CSF and factorization matrices would have been

5.43 if all the partial MTTKRP have been saved. As R doubles,

the size of partial MTTKRP and factorization matrices doubles

as well; however, the size of the CSF structure stays constant.

Therefore, the overhead ratio increases slightly with increase

in R.

E. Ablation Study

Figure 6 show the effectiveness of the optimization pre-

sented in this paper. We chose the model selected configuration

as the baseline configuration. We only present data for R = 32
since results for R = 64 were very similar.

1) Work Distribution: To compare the effectiveness of our

work distribution scheme, we compare the performance of

961

Authorized licensed use limited to: The University of Utah. Downloaded on July 22,2022 at 04:05:28 UTC from IEEE Xplore. Restrictions apply.

our model selection configuration with and without our load

balancing. Turning off our work distribution results in an

average slow down of 39% on MTTKRP performance for

both Intel and AMD machines. There are five cases across the

two machines where our work distribution results in slightly

lower performance than use of slice-based parallelism. While

our work distribution ensures each thread processes an equal

number nodes at the leaf level, it does not guarantee perfect

load balancing at the non-leaf levels. Usually the amount

of work per-level rapidly decreases as we move up the tree

and any load-imbalance at the higher levels does not have

much of an impact. But for a few tensors, where slice-based

parallelization has sufficient parallelism at the root mode for

effective load-balancing, it performs better because it performs

load-balancing based on the whole forest and not just the work

at the leaf nodes.

2) Saving Partial MTTKRPs: To measure the impact of

our model, which predicts whether to save the intermediate

results or not, we compare our results against two extreme

choices (i) save all intermediate results, and (ii) don’t save

any intermediate results. As shown in Figure 6, our model has

a significant impact on 3 of the tensors, and on average, it

speeds up MTTKRP by 12% and 13% for the Intel and AMD

machine, respectively. Turning off this optimization did not

give more than 5% speed up on any case.

3) Switching Mode Order: Our model also predicts whether

we should switch the order of the last two modes or not. In

order to assess this impact, we compare our approach against

an approach that chooses the opposite choice as that of our

model. As shown in Figure 6 this choice is significant for

many tensors, and the average slowdown for the opposite

choice configuration is 55% and 37%, respectively, for the

Intel and AMD machines. The model for choosing mode order

selected the worse order in only one case, with a performance

difference of 1%.

VII. CONCLUSION

In this paper, we develop a data movement-aware MTTKRP

algorithm targeted at applications like CPD. Our proposed

solution achieves good load balancing and reduced data move-

ment using a single CSF representation of the tensor. We ex-

plore the design space of possible configurations for MTTKRP

and develop an efficient model to select a good configuration.

Our experimental section demonstrates the superiority of our

approach compared to the state-of-the-art methods.

ACKNOWLEDGMENTS

We thank the reviewers for their numerous suggestions to

improve the paper. This work was supported in part by the by

the U.S.National Science Foundation through award 2009007.

REFERENCES

[1] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”
SIAM review, vol. 51, no. 3, pp. 455–500, 2009.

[2] S. Smith, N. Ravindran, N. D. Sidiropoulos, and G. Karypis, “SPLATT:
Efficient and parallel sparse tensor-matrix multiplication,” in 2015 IEEE
International Parallel and Distributed Processing Symposium. IEEE,
2015, pp. 61–70.

[3] O. Kaya and B. Uçar, “Parallel CP decomposition of sparse tensors
using dimension trees,” Inria-Research Centre Grenoble–Rhône-Alpes,
Research Report RR-8976, 2016.

[4] J. Li, J. Choi, I. Perros, J. Sun, and R. Vuduc, “Model-driven sparse
CP decomposition for higher-order tensors,” in 2017 IEEE international
parallel and distributed processing symposium (IPDPS). IEEE, 2017,
pp. 1048–1057.

[5] A. E. Helal, J. Laukemann, F. Checconi, J. J. Tithi, T. Ranadive,
F. Petrini, and J. Choi, “ALTO: adaptive linearized storage of sparse
tensors,” in Proceedings of the ACM International Conference on
Supercomputing, 2021, pp. 404–416.

[6] J. Li, B. Uçar, U. V. Çatalyürek, J. Sun, K. Barker, and R. Vuduc,
“Efficient and effective sparse tensor reordering,” in Proceedings of
the ACM International Conference on Supercomputing, ser. ICS ’19.
New York, NY, USA: Association for Computing Machinery, 2019, p.
227–237.

[7] S. Eswar, K. Hayashi, G. Ballard, R. Kannan, M. A. Matheson, and
H. Park, “PLANC: Parallel low-rank approximation with nonnegativity
constraints,” ACM Trans. Math. Softw., vol. 47, no. 3, Jun. 2021.

[8] M. Baskaran, B. Meister, N. Vasilache, and R. Lethin, “Efficient and
scalable computations with sparse tensors,” in 2012 IEEE Conference
on High Performance Extreme Computing. IEEE, 2012, pp. 1–6.

[9] S. Smith and G. Karypis, “SPLATT: The Surprisingly ParalleL spArse
Tensor Toolkit,” http://cs.umn.edu/ splatt/, 2016.

[10] R. Senanayake, C. Hong, Z. Wang, A. Wilson, S. Chou, S. Kamil,
S. Amarasinghe, and F. Kjolstad, “A sparse iteration space transforma-
tion framework for sparse tensor algebra,” Proc. ACM Program. Lang.,
vol. 4, no. OOPSLA, Nov. 2020.

[11] V. T. Chakaravarthy, S. S. Pandian, S. Raje, and Y. Sabharwal, “On op-
timizing distributed non-negative tucker decomposition,” in Proceedings
of the ACM International Conference on Supercomputing, ser. ICS ’19.
New York, NY, USA: Association for Computing Machinery, 2019, p.
238–249.

[12] T. G. Kolda and J. Sun, “Scalable tensor decompositions for multi-aspect
data mining,” in ICDM 2008: Proceedings of the 8th IEEE International
Conference on Data Mining, 2008, pp. 363–372.

[13] O. Kaya and B. Uçar, “Scalable sparse tensor decompositions in dis-
tributed memory systems,” in SC’15: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis. IEEE, 2015, pp. 1–11.

[14] S. Shivakumar, J. Li, R. Kannan, and S. Aluru, “Efficient parallel sparse
symmetric tucker decomposition for high-order tensors,” in SIAM Con-
ference on Applied and Computational Discrete Algorithms (ACDA21).
SIAM, 2021, pp. 193–204.

[15] S. Chou, F. Kjolstad, and S. Amarasinghe, “Automatic generation of
efficient sparse tensor format conversion routines,” in Proceedings of the
41st ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI 2020. New York, NY, USA: Association
for Computing Machinery, 2020, p. 823–838.

[16] S. Mueller, P. Ahrens, S. Chou, F. Kjolstad, and S. Amarasinghe, “Sparse
tensor transpositions,” in Proceedings of the 32nd ACM Symposium on
Parallelism in Algorithms and Architectures, ser. SPAA ’20. New York,
NY, USA: Association for Computing Machinery, 2020, p. 559–561.

[17] G. Ballard, N. Knight, and K. Rouse, “Communication lower bounds for
matricized tensor times khatri-rao product,” in 2018 IEEE International
Parallel and Distributed Processing Symposium (IPDPS). IEEE, 2018,
pp. 557–567.

[18] I. Nisa, J. Li, A. Sukumaran-Rajam, R. Vuduc, and P. Sadayappan,
“Load-balanced sparse mttkrp on gpus,” in 2019 IEEE International
Parallel and Distributed Processing Symposium (IPDPS). IEEE, 2019,
pp. 123–133.

[19] A. Nguyen, A. E. Helal, F. Checconi, J. Laukemann, J. J. Tithi,
Y. Soh, T. Ranadive, F. Petrini, and J. W. Choi, “Efficient, out-
of-memory sparse mttkrp on massively parallel architectures,” arXiv
preprint arXiv:2201.12523, 2022.

[20] J. Li, B. Uçar, Ü. V. Çatalyürek, J. Sun, K. Barker, and R. Vuduc,
“Efficient and effective sparse tensor reordering,” in Proceedings of the
ACM International Conference on Supercomputing, 2019, pp. 227–237.

[21] S. Smith, J. W. Choi, J. Li, R. Vuduc, J. Park, X. Liu, and G. Karypis,
“FROSTT: The formidable repository of open sparse tensors and tools,”
Chicago Univ., Chicago, IL, USA, Tech. Rep, 2017.

[22] I. Jeon, E. E. Papalexakis, U. Kang, and C. Faloutsos, “Haten2:
Billion-scale tensor decompositions,” in 2015 IEEE 31st International
Conference on Data Engineering. IEEE, 2015, pp. 1047–1058.

962

Authorized licensed use limited to: The University of Utah. Downloaded on July 22,2022 at 04:05:28 UTC from IEEE Xplore. Restrictions apply.

