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ABSTRACT. We study the algebraic and geometric properties of stated skein algebras of
surfaces with punctured boundary. We prove that the skein algebra of the bigon is iso-
morphic to the quantum group O,2(SL(2)) that provides a topological interpretation for its
structure morphisms. We also show that its stated skein algebra lifts in a suitable sense the
Reshetikhin-Turaev functor and in particular we recover the dual R-matrix for 04 (SL(2))
in a topological way. We deduce that the skein algebra of a surface with n boundary com-
ponents is a comodule-algebra over O,2(SL(2))®™ and prove that cutting along an ideal arc
corresponds to Hochshild cohomology of bicomodules. We give a topological interpretation
of braided tensor product of stated skein algebras of surfaces as “glueing on a triangle”; then
we recover topologically some bialgebras in the category of O,2(SL(2))-comodules, among
which the “transmutation” of Og2(SL(2)). We also provide an operadic interpretation of
stated skein algebras as an example of a “geometric non symmetric modular operad”. In the
last part of the paper we define a reduced version of stated skein algebras and prove that it
allows to recover Bonahon-Wong’s quantum trace map and interpret skein algebras in the
classical limit when ¢ — 1 as regular functions over a suitable version of moduli spaces of
twisted bundles.
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1. INTRODUCTION

This paper is devoted to study the notion of stated skein algebra of surfaces introduced by
the second author in [Le2| in order to reinterpret in skein theoretical terms the construction
of the quantum trace by Bonahon and Wong [BW| as well as incorporating Muller’s version
of skein algebra [Mu]|. Although the definition of the stated skein module applies to 3-
manifolds, this paper is entirely devoted to the case of surfaces: a forthcoming paper will
describe how this fits in the framework of an extended topological field theory in dimensions
1,2,3. Indeed the case of surfaces is sufficiently rich in algebraic and geometrical terms to
deserve a separate treatment and we will now outline the results of this paper.

1.1. Skein algebras. Let R = Z[¢g™'/?] be the ring of Laurent polynomials in a variable
¢'/?. Suppose & is the result of removing a finite number of points, called punctures, from a
compact oriented 2-dimensional manifold with possibly non-empty boundary. The ordinary
skein algebra .#(&), introduced by Przytycki [Pr] and Turaev [Tu2|, is defined to be the
R-module generated by isotopy classes of framed unoriented links in & x (0,1) modulo the
Kauffman relations [Kau]

W K =X

2) O = (-¢?

The product of two links oy and «s is the result of stacking «; above ay. The skein alge-
bra has played an important role in low-dimensional topology and quantum topology and it
serves as a bridge between classical topology and quantum topology. The skein module has
connections to the SLy(C)-character variety [Bul, PS1], the quantum group of SLy(C), the
Witten-Reshetikhin-Turaev topological quantum field theory [BHMV], the quantum Teich-
miiller spaces |[CF1, Kas, BW, Lel|, and the quantum cluster algebra theory [Mu].

In the definition of the skein algebra . (&) the boundary 06 does not play any role, and
we have .7 (&) = .#(&), where & is the interior of &. In an attempt to introduce excision
into the study of the skein algebra, the second author [Le2| introduce the notion of stated
skein algebra, denoted in this paper by (&), whose definition involves tangles properly
embedded into & x (0,1). These tangles can have end-points only on boundary edges of &,
which are open intervals connected components of the boundary. For details see Section 2.

A key result about stated skein algebras is that they behave well under cutting along an
ideal arc. Here an ideal arc is a proper embedding ¢ : (0,1) <— & (so that its end points are
the punctures). Cutting & along ¢ one gets a 2-manifold & whose boundary contains two
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open intervals a and b so that one can recover & from &’ by gluing a and b together, see
Figure 1.

FIGURE 1. Cutting & along ideal arc ¢ to get &', which might be disconnected

Then [Le2, Theorem 1] (see the splitting Theorem 2.15 below) says that there is a natural
injection of algebras

(3) 0.:.7(6) = 7(&),

given by a simple state sum. The extension from . (&) to .#(6) is unique (or canonical) if
one wants the splitting theorem and a consistency requirement to hold.

The paper is a systematic study of the stated skein algebra .7 (&). Let us now list the
main results of the paper.

1.2. Bigon and quantum SL,(C) coordinate ring. The quantized enveloping algebra
Upg(sly) and its Hopf dual O,2(SL(2)), known as the quantum coordinate ring of the Lie
group SLy(C), play an important role in many branches of mathematics, see [Kass, Maj|.
These algebras are usually defined by rather complicated presentations which are hard to
comprehend.

A first consequence of the splitting theorem is that the quantum coordinate ring Oz (SL(2))
can be described by simple geometric terms, namely, it is naturally isomorphic to the stated
skein algebra of the bigon B, which is the standard disk without two points on its boundary,

see Figure 2.

FI1GURE 2. Left: bigon. Right: splitting the bigon along the dashed ideal arc

By splitting the bigon along an ideal arc ¢ (which is the dashed arc in Figure 2) we get a
homomorphism A := 6.,
A: S (B)— S(B)®S(B),
which turns out to be compatible with the product and makes .7 (B) a bialgebra. Moreover,
we will define using topological terms the counit, antipode and co-R-matrix which turns
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S (B) into a “dual quasitriangular” (see [Maj| Section 2.2) a.k.a. “cobraided” (see [Kass|,
Section VIIL.5) Hopf algebra, and will prove the following.

Theorem 1 (Theorems 3.4 and 3.5). The dual quasitriangular Hopf algebra 7 (B) is iso-
morphic in a natural way to the quantum coordinate ring O,2(SL(2)).

This result allows to use skein theoretical techniques to study Op2(SL(2)). We will
show that many complicated algebraic objects and facts concerning the quantum groups
0,2 (SL(2)) and Ug(sly) have simple transparent picture interpretations. For example, the
above mentioned co-R-matrix has a very simple geometric picture description, see Theo-
rem 3.5. Another example is given by the reconstruction of Kashiwara’s crystal basis, see
Proposition 3.10. One can even “import” in O, (SL(2)) natural skein theoretical objects:
in Subsection 3.8 we define and provide some properties of the Jones-Wenzl idempotents in

0,2(SL(2)).

1.3. Lift of the Reshetikhin-Turaev invariant. Suppose 7' is a tangle diagram in the
bigon whose boundary 07T is in 0B and the boundary points are labeled by signs 4+. The
Reshetikhin-Turaev operator invariant theory [RT] assigns to T a scalar Z(T) € Q(¢'/?),
see Section 5. On the other hand, such a labeled tangle 7" defines an element in our skein
algebra . (B). We have the following result which shows that our “invariant”, which is T
considered as an element of . (B), is a lift of the Reshetikhin-Turaev invariant.

Theorem 2 (Theorem 5.2). One has €(T) = Z(T), where € : ./ (B) — Q[q*'/?] is the counit.

It would be interesting to understand this lift of the Reshetikhin-Turaev invariant in terms
of categorification.

1.4. Skein algebras as comodule over O, (SL(2)). Hochshild cohomology. One im-
portant consequence of the identification of the bigon algebra with O,2(SL(2)) is that for
every boundary edge e of a surface &, the skein algebra .#(&) has a right O,2(SL(2))-
comodule structure
A, S (6) = S(6)®.7(B).

This map A, is the splitting homomorphism (3) applied to the an ideal arc parallel to e which
cuts off an ideal bigon from & whose right edge is e, see Figure 3. Similarly identifying the
left edge of B to e we get a left O, (SL(2))-comodule structure on .7 (&).

FIGURE 3. Geometric definition of the coaction: splitting the bigon along the
dashed ideal arc

Using the comodule structure one can refine the splitting theorem by identifying the image
of the splitting homomorphism, as follows. Let us cut & along an ideal arc ¢ to get &’ as in
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Figure 1. Then .(&') has a right O,2(SL(2))-module structure coming from edge a and a left
0,2(SL(2))-module structure coming from edge b. Thus .7 (&’) is a O, (SL(2))-bicomodule,
and hence there is defined the Hochshild cohomology HH?(.#(&')), for details see Section
4.

Theorem 3 (Theorem 4.8). Under the splitting homomorphism the skein algebra (&)
embeds isomorphically into the Hochshild cohomology HH®(7(&")). In particular, when c

cuts & into two surfaces Sy and Sa, the splitting homomorphism maps .7 (S) isomorphically
onto the cotensor product of .7 (S;) and . (S,).

1.5. Skein algebra .”(&) as module over Up(sly). Since the Hopf algebra Ugp(sly)
is the Hopf dual of O,2(SL(2)), then after tensoring with Q(g'/?) each right O,2(SL(2))-
comodule is automatically a left Uj(sly)-module. Thus each boundary edge e of & gives
Z(6) a left Up(sly)-module structure. Note that finite-dimensional U (sly)-modules are
well-understood as they are quantum deformations of modules over the Lie algebra sly(C).

Theorem 4 (Part of Theorem 4.6). Over the field Q(q'/?), for every boundary edge the
Upg(sly)-module 7 () is integrable, i.e. it is the direct sum of finite-dimensional irreducible
Uz (sly)-modules.

Actually Theorem 4.6 is much stronger: it provides an explicit decomposition and contains
much more information about the decompositions as it deals also with the decomposition
over Lusztig’s integral version of Up(sly).

Using this result we also prove a dual version of Theorem 3 which, with the notation of
the theorem, shows that H Hy(Q(¢'/?) @r .7(&")) = Q(¢'/?) ®r .7 (6) (see Theorem 4.10).

1.6. Braided tensor product. The co-R-matrix makes the category of O,2(SL(2))-como-
dules a braided category and in general given two algebras in that category (which are then
O,2(SL(2))-comodule algebras) their tensor product can be endowed with the structure of
an algebra by using appropriately the braiding: this is the braided tensor product of the
algebras, see |[Maj|. In Section 4.7, we generalise this notion to that of “self-braided tensor
product” which applies to a comodule algebra having two commuting comodule structures.

Suppose & is obtained by identifying two edges of a (possibly disconnected) surface &
with two distinct edges of an ideal triangle as in Figure 4. Then (&) has two natural

F1GURE 4. Gluing 6 to two distinct edges of an ideal triangle to get G.

commuting structures of O,2(SL(2))-comodule algebra, and we have the following:
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Theorem 5 (Theorem 4.17). As a Op2(SL(2))-comodule algebra 7 (&) is canonically iso-
morphic to the self-braided tensor product of ./ (&). In particular, if & = &' U &" and

the two edges belong to &' and &" respectively then (&) is canonically isomorphic to the
braided tensor product of .7 (S;) and ./ (Ss).

Through this theorem we easily compute the skein algebra of all “polygons”, “punctured
bigons”, and “punctured monogons” in Subsection 4.8. It is remarkable that the skein algebras
of the latter turn out to be bialgebra objects in the category of O, (SL(2))-comodules and
that their structure morphism have natural topological interpretation. In particular the
punctured monogon yields the “transmutation” of O, (SL(2)).

1.7. Modular operad. The splitting homomorphism allows to put the theory of stated
skein algebras of surfaces in the framework of operad theory. We define the notion of geo-
metric non-symmetric modular operad in Section 6 and prove the following.

Theorem 6 (Precise statement given by Theorem 6.1). The stated skein algebra of surfaces
gives rise to a non-symmetric modular operad in a category of bimodules over Ugp(sly).

To be more specific while leaving the details for Section 6, let us recall that, according to
Markl ([Mark]) a “Non-symmetric modular operad in a monoidal category C'at” is a monoidal
functor NSO : MultiCyc — Cat, where MultiCyc is a suitable category of “multicyclic sets”. In
Section 6 we re-cast Markl’s definition, by defining a category TopMultiCyc whose objects are
punctured surfaces & and whose morphisms are finite sets of ideal arcs (describing a way of
cutting the surfaces). From this point of view, we then show in Theorem 6.1 that stated skein
algebras provide a symmetric monoidal functor from this category into a suitable category
of modules and bimodules over copies of Up(sly), thus providing a topological example of a
NS modular operad.

1.8. Reduced stated skein algebra, quantum torus, and quantum trace map. The
stated skein algebra .7 (&) has a quotient .7 (&) = .#(&)/I", called the reduced stated
skein algebra, whose algebraic structure is much simpler as it can be embedded into the so
called quantum tori. Here 7% is the ideal generated by elements, called bad arcs, described
in Figure 5 and is explained in Section 7.

FIGURE 5. A bad arc.

We will show that the ordinary skein algebra .#(&) still embeds into .7 (&) and hence
we can use 7(6) to study .#(&). Most importantly, the splitting theorem still holds for
S (6).

Theorem 7 (Theorem 7.6). If & is the result of cutting S along an ideal arc ¢, then the
splitting homomorphism 0. descends to an algebra embedding

f.: F(6) — .7 (&).
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The non-trivial fact here is that 6, is injective.
Except for a few simple surfaces, we can always cut & along ideal arcs so that the result

is a collection of ideal triangles 77, ..., T}. It follows that there is an embedding
k

(4) 0:.7(6) = (X 7 (T)).
i=1

The important thing with the reduced version is that for an ideal triangle T', unlike the full
fledged . (T'), the reduced stated skein algebra .7 (T') is a quantum torus in three variables:

Theorem 8 (Theorem 7.11). The reduced stated skein algebra /(T of an ideal triangle has
presentation

S(T) =R, 51, v/ (Ba = qaB, v B = qBy, oy = qya).

Moreover, the reduced stated skein algebra of the bigon is naturally isomorphic to the
algebra R[z*!] of Laurent polynomial in one variable, see Proposition 7.10.

Consequently, the map © of (4) embeds the reduced stated skein algebra (&) into a
quantum torus in 3k variables. Geometrically the variables «, 3,7 in Theorem 8 come from
the corner arcs of the ideal triangle. There is a similar quantum torus T'(7") in 3 variables
corresponding to the edges of T, and a simple change of variables gives us an embedding
Z(T) = T'(T). Combining with © of (4) we get an algebra embedding

k k
tr,: 7(8) S RAT) — R T(T).
i=1 =1
There is a subalgebra Y of @, T(T;), known as the Chekhov-Fock algebra associated
to the triangulation. The famous quantum trace map of Bonahon and Wong [BW] is an

o~

algebra homomorphism tr, : . (&) — Y, where .7 (&) is a coarser version of the stated
skein algebra which surjects onto .7 (&), see Section 2.5.

Theorem 9 (See Theorem 7.12). The image of tr, is in Y. Thus tr, restricts to an algebra
embedding tr, : L(8) — ¥, and the quantum trace map of Bonahon and Wong is the

composition ﬁ@) - .7(6) i V.

The existence of the quantum trace map (for .#(&)) was conjectured by Chekhov and
Fock |[CF2|, and was established by Bonahon and Wong [BW]. It is called the quantum
trace map since when ¢ = 1 it becomes a formula expressing the trace of a curve under
the holonomy representation of the hyperbolic metric in terms of the shear coordinates of
the Teichmiiller space. The second author [Lel| gave another proof of the existence of the
quantum trace map based on the Muller skein algebra, which is actually a subspace of the
state skein algebra .(&). The above approach using the reduced stated skein algebra offers
another proof, and also determines the kernel of the original quantum trace map f}q.

1.9. Classical limit. The last section explores the natural question of “what is the classical
limit of .(&)?” In the case of the standard skein algebra . (&) it is known [Bul, PS1] (see
also [CM]) that when the quantum parameter ¢ is —1 and the ground ring is C then .7 (&)
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is isomorphic as an algebra to the coordinate ring the SLy(C)-character variety of & and
that in general the algebras at ¢ and —q are isomorphic via the choice of a spin structure on
S (|Bal). Note that our stated skein algebra is not commutative when ¢ = —1 though it is
commutative when ¢ = 1.

We introduce the variety tw(&) of “twisted SLy(C)-bundles” over &, which, roughly speak-
ing, are flat SLy(C)-bundles over the unit tangent bundle US of & with holonomy —Id
around the fibers of 7 : UG — & and are equipped with trivializations along the edges of
S, but which we reformulate in terms of groupoid representations. To deal with the non-
oriented nature of the arcs of the stated skein algebra we have to use a trick smoothing the
arcs at their end-points so that one can compose arcs.

Theorem 10 (Theorem 8.12). When q = 1 and the ground ring is C the stated skein algebra
L (8) is naturally isomorphic to the coordinate ring of tw(S).

In classical terms, the splitting theorem becomes an instance of a van-Kampen like theorem
for groupoid representations.

Theorem 8.12 highlights a relation between .%’(&) and the coordinate ring of the character
variety of &. The study of quantizations of such rings has been performed with different
techniques (based on Hopf algebras and lattice gauge theory) by Alekseev-Grosse-Schomerus
(JAGS]), Buffenoir-Roche [BR]|, Fock-Rosly ([FR]) and, later, via skein theoretical approaches
by Bullock-Frohman-Kania-Bartoszynska (|[BFK]). The relation of our work with these pre-
vious ones is still to be clarified, although it seems that one of the main differences between
our approach and some of the above cited ones, is that we allow for “observables with bound-
ary” and, as explained in the preceding paragraph, this endows the algebras we work with
rich algebraic structures which in particular make computations much easier.

1.10. Related results. While the authors were completing the present work, D. Ben-Zvi,
A. Brochier and D. Jordan |BBJ]| constructed a theory of quantum character variety for
general Hopf algebras, based on completely different techniques. Part of the results of this
paper could probably be recasted in that theory, though we don’t know the precise relation
between the two theories. The substantial difference of the techniques used makes these
works complementary. K. Habiro informed us that his “quantum fundamental group theory”
also gives an alternative approach to the theory of quantum character variety.

When the authors presented their works at conferences, Korinman informed us that he
in joint work A. Quesney obtained results similar to Theorem 3 and Theorem 10, see their
recent preprint [KQ)J.
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Sikora, V. Turaev, and D. Thurston for helpful discussions. Both authors were partially
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developments in quantum topology” (Berkeley June 2019), “Expansions, Lie algebras and in-
variants” (Montreal July 2019) and would like to thank the organizers for the opportunities
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2. STATED SKEIN ALGEBRAS

We will present the basics of the theory of stated skein algebras: definitions, bases of
skein algebras, the splitting homomorphism, filtrations and gradings. New results involve
Proposition 2.7 describing the inversion homomorphism and Proposition 2.17 giving the
exact value of the splitting homomorphism in the associated graded algebra.

2.1. Notations. Throughout the paper let Z be the set of integers, N be the set of non-
negative integers, C be the set of complex numbers. The ground ring R is a commutative
ring with unit 1, containing a distinguished invertible element ¢'/2. For a finite set X we
denote by |X| the number of elements of X.

We will write @ = y if there is k € Z such that z = ¢*y.

2.2. Punctured bordered surface. By a punctured bordered surface G we mean a surface
of the foorm & = & \ P, where & is a compact oriented surface with (possibly empty)
boundary 06, and P is a finite non empty set such that every connected component of the
boundary 06 has at least one point in P. We don’t require & be to connected. Tt is easy
to see that & is uniquely determined by &. Throughout this section we fix a punctured
bordered surface &.

An ideal arc on & is an immersion a : [0,1] — & such that a(0),a(1) € P and the
restriction of a onto (0, 1) is an embedding into &. Isotopies of ideal arcs are considered in
the class of ideal arcs.

A connected component of 06 is called a boundary edge of & (or simply an edge), which
is an ideal arc.

Remark 2.1. The fact that each connected component of 0& is an open interval is not a
serious restriction as for the purpose of the constructions of this paper a point-less boundary
component is treated as a puncture; so that in the end the only excluded surfaces are closed
ones without punctures.

2.3. Ordinary skein algebra. Let M = & x (0,1). For a point (z,t) € & x (0, 1) its height
is t. A vector at (z,t) is called vertical if it is a positive vector of z x (0,1). A framing of a
1-dimensional submanifold « of M = & x (0,1) is a continuous choice of a vector transverse
to a at each point of .

A framed link in & x (0,1) is a closed 1-dimensional unoriented submanifold o equipped
with a framing. The empty set, by convention, is considered a framed link.

A link diagram on & determines an isotopy class of framed links in & x (0, 1), where the
framing is vertical everywhere. Every isotopy class of framed links in & x (0, 1) is presented
by a link diagram.

The skein module . (&), first introduced by Przytycki [Pr] and Turaev [Tul], is defined
to be the R-module generated by the isotopy classes of framed unoriented links in & x (0, 1)
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modulo the Kauffman relations

) K =)+ X
(6) O =(-¢?

We use the following convention about pictures in these identities, as well as in other identities
in this paper. Each shaded part is a part of &, with a link diagram on it. Relation (5) says
that if link diagrams D;, Dy, and D3 are identical everywhere except for a small disk in
which D1, Dy, D3 are like in respectively the first, the second, and the third shaded areas,
then [D1] = q[Ds] + ¢ *[Ds] in the skein module .(&). Here [D;] is the isotopy class of
links determined by D;. The other relation is interpreted similarly.

For two framed links a; and ay the product ajas is defined as the result of stacking ay
above ay. That is, first isotope oy and ay so that a; C & x (1/2,1) and ay C & x (0,1/2).
Then ajas = a3 U ap. It is easy to see that this gives rise to a well defined product and
hence an R-algebra structure on .%(S).

2.4. Tangles and order. In order to include the boundary of & into the picture, we will
replace framed links by more general objects called 0M-tangles. Recall that M = & x (0,1)
and its boundary is OM = 06 x (0, 1).

In this paper, a OM-tangle is an unoriented, framed, compact, properly embedded 1-
dimensional submanifold « C M = & x (0, 1) such that:

e at every point of da = o N IM the framing is vertical, and
e for any boundary edge b, the points of J,(a) := daN (b x (0, 1)) have distinct heights.

For a OM-tangle o define a partial order on da by: = > y if there is a boundary edge b
such that z,y € b x (0,1) and x has greater height. If > y and there is no z such that
xr > z >y, then we say x and y are consecutive.

Isotopies of OM -tangles are considered in the class of dM-tangles. It should be noted
that isotopies of dM-tangles preserve the height order. The empty set, by convention, is a
06-tangle which is isotopic only to itself.

As usual, 9M-tangles are depicted by their diagrams on &, as follows. Every 0&-tangle is
isotopic to one with vertical framing. Suppose a vertically framed dM-tangle « is in general
position with respect to the standard projection 7 : & x (0,1) — &, i.e. the restriction
Tla : @ — & is an immersion with transverse double points as the only possible singularities
and there are no double points on the boundary of &. Then D = 7(«), together with

e the over/underpassing information at every double point, and
e the linear order on 7(a)) Nb for each boundary edge b induced from the height order

is called a OM -tangle diagram, or simply a tangle diagram on &. Isotopies of M-tangle
diagrams are ambient isotopies in &.
Clearly the OM-tangle diagram of a 9M-tangle a determines the isotopy class of «. When
there is no confusion, we identify a M-tangle diagram with its isotopy class of dM-tangles.
Let o be an orientation of 06, which on a boundary edge may or may not be equal to
the orientation inherited from &. A dM-tangle diagram D is o-ordered if for each boundary
edge b the order of 0D on b is increasing when one goes along b in the direction of 0. It is
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clear that every dM-tangle, after an isotopy, can be presented by an o-ordered dM-tangle
diagram. If o is the orientation coming from &, the o-order is called the positive order.

2.5. Stated skein algebra. A state on a finite set X is a map s : X — {*}. We write
#s = |X|. A stated OM-tangle (respectively a stated OM-tangle diagram) is a M-tangle
(respectively a OM -tangle diagram) equipped with a state on its set of boundary points.

The stated skein algebra (&) is the R-module freely spanned by isotopy classes of stated
OM-tangles modulo the defining relations, which are the old skein relation (7) and the trivial
loop relation (8), and the new boundary relations (9) and (10):

g X - XX

(8) O =(¢-¢?

) g =v” | =0 g =0

(10) = ==t + D |

Here each shaded part is a part of &, with a stated 0M-tangle diagram on it. Each arrowed
line is part of a boundary edge, and the order on that part is indicated by the arrow and the
points on that part are consecutive in the height order. The order of other end points away
from the picture can be arbitrary and are not determined by the arrows of the picture. On
the right hand side of the first identity of (9), the arrow does not play any role; it is there
only because the left hand side has an arrow.

Again for two OM-tangles a; and «y the product ajas is defined as the result of stacking
ay above ay. The product makes . (&) an R-algebra. In [Le2| it is proved that if R is a
domain then . (&) does not have non-trivial zero-divisors, a fact known earlier for the case
when & has no boundary [PS2].

If G, and G, are two punctured bordered surfaces, then there is a natural isomorphism

S(6,UGy) = F(6)) or L(6s).

Since the interior & of & does not have boundary, we have .7 (6) = .Z(6).
The subalgebra .1 (&) spanned by 0 M-tangles whose states are all + is naturally isomor-
phic to the skein algebra defined by Muller [Mu], see [Le2, LP]. If in the definition of . (&)

we use only two relations (7) and (8), we get a coarser version .%(&) which was defined by
Bonahon and Wong [BW].

Remark 2.2. Relations (9) already appeared in [BW]. Relation (10) appeared in [Le2]
where the stated skein algebra was introduced.

2.6. Consequences of defining relations. Define C?, for v,/ € {£+} by
(11) Ct=C"=0, Ct=q'2 C7=—q2

In the next lemma we have the values of all the trivial arcs.
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Lemma 2.3 (Lemma 2.3 of [Le2|). In .%(&) one has
12) o - | --d
(13) o=

(14) B o= gr= dal ]

The next lemma describes how a skein behaves when the order of two consecutive boundary
points is switched.

Lemma 2.4 (Height exchange move, Lemma 2.4 of [Le2|). (a) One has
(15) = = ¢ ' =g '/ T=q"
(16) = - =i= - a)D T

(b) Consequently, if g =1 or ¢ = —1, then for all v,v' € {£},

(17) == v

Remark 2.5. Because of relation (17), in general (&) is not commutative when ¢ =

—1. This should be contrasted with the case of the usual skein algebra 5;(6), which is
commutative and is canonically equal to the SLy(C) character variety of m (&) if R = C and
q = —1 (assuming & is connected), see [Bul, PS1].

2.7. Reflection anti-involution.

Proposition 2.6 (Reflection anti-involution, Proposition 2.7 in [Le2|). Suppose R = Z[q*/?].
There exists a unique Z-linear map x : . (6) — L(6), such that

o X(a"?) =q7'2,
e \ is an anti-automorphism, i.e. for any v,y € . (6),

x(r+y)=x) +x@), x(zy)=xy)x(),

e if v is a stated OM -tangle diagram then x(«) is the result of switching all the crossings
of a and reversing the linear order on each boundary edge.

Clearly x? = id. We call y the reflection anti-involution.
2.8. Inversion along an edge.

Proposition 2.7. Let e be a boundary edge of a punctured bordered surface & and f : {£} —
R be a function such that f(+)f(—) = —q 3.

There exists a unique R-linear homomorphism inv, ; : /(&) = L (&) such that if a is a
stated 0G-tangle diagram with a state s and with positive order on e, then

(18) inve ()= | J] fls(2) | <,

z€(ane)
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where o/ is the same « except that the height order of o/ on e is given by the negative direction
of e and the state of & on e is obtained from that of « by switching v € {+} to —v at every
boundary points in aNe.

If ¢ is another boundary edge and f'(+)f'(—) = —q 73, then

(19) inv, s oinve p = inve p oinv, g.

Proof. Let T be the set of isotopy classes of stated, positively ordered 0&-tangle diagrams.
Since T" spans . (&), the uniqueness of inv, ; is clear.

Let . be the R-module freely span by T, and i?l;/mc : " — (6) be the R-linear map
defined by (18). To show that inv, s descends to a map inv, ;s : .7(S) — .#(S) one needs

to prove inv, ; is invariant under isotopy in M := & x (0, 1) and under the moves generated
by the defining relations (7)-(10). More precisely, we have to show that i/ﬁ;fe,f(a) = ifr;z@f(oz)
for any o, o’ € T whenever
(i) @ and o are isotopic as OM-tangles, or
(ii) o and o are respectively the left hand side and the right hand side of the defining
relations (7)-(10).
It is known that a and o' are isotopic as dM-tangles if and only if they are related by
a sequence of the 3 framed Reidemeister moves of [Oh, Section 1.2]. The invariance under
the 3 framed Reidemeister moves follows from the invariance under the defining relations
(7) and (8), see |[Kau]. Clearly inv. s is invariant under the moves generated by the defining
relations (7) and (8). There remains relations (9) and (10).
Let us consider (9). Using the definition, f(+)f(—) = ¢, and then (14), we have:

invey () = F(0) Go=—a° Gi=—a a0 =g

which proves the first identity of (9). The other two identities of (9) are trivial.
Let us consider (10). By definition and Lemma 2.4,

0wy () = OO = (e e=) = =

ey (Pt 07D ) ==+ D]
- <q—3::r_|_ q—%(q2 — D T) gD T

(21) = — ', +q¢ D T

and the right hand sides of (20) and (21) are equal due to (10).
Identity (19) follows immediately from the definitions. O
There are two important cases for us. Define

(22) inv, :=inv.c, and inv, := inv, &,

where

(23) CH)=C(=)=—¢"? C(=)=CH)=q">
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Note that C(v) = C;¥ and C(v) = C(—v) for v € {£}. For a stated tangle diagram «
with a state s on the boundary edge e define

(24) Celw) = [T st = TT .

reane reane

If o has positive order on e then, with o/ defined as in Proposition 2.7, one has
(25) inve(a) = Ce(a)d’,

Remark 2.8. The definition (18) works only for stated 0S-tangle diagrams with positive
order on e. If the order is not positive, the formula will be different.
In general inv, s is not an algebra homomorphism.

2.9. Basis of stated skein module. A 0M-tangle diagram D is simple if it has neither
double point nor trivial component. Here a closed component of D is trivial if it bounds
a disk in &, and an arc component of « is trivial if it can be homotoped relative to its
boundary to a subset of a boundary edge. By convention, the empty set is considered as a
simple stated OM-tangle diagram with 0 components.

Define an order on {%} so that the sign — is less than the sign +. If X is a partially ordered
set, then a state s : X — {%} is increasing if s is an increasing function, i.e. f(z) < f(y)
whenever z < y.

Choose an orientation o of 0&. Let B(G&;0) be the set of of all isotopy classes of increas-
ingly stated, o-ordered simple 0M-tangle diagrams. From the defining relations it is easy to
show that the set B(&;0) spans .7 (&) over R.

Theorem 2.9 (Theorem 2.8 in [Le2] ). Suppose & is a punctured bordered surface and o is
an orientation of 0&. Then B(S;0) is an R-basis of . (6).

Remark 2.10. Theorem 2.9 means that the coefficients given in the defining relations (9)
and (10) are consistent in the sense that they do not lead to any more relations among the
set B(S;0).

The subset B(6;0) C B(S;0) consisting of & € B(S;0) having no arcs is a basis of
the ordinary skein algebra . (&). Similarly, the subset BT (&;0) C B(S;0) consisting of

a € B(6G;0) having only positive states is a basis of the Muller skein algebra .71 (&), see
[Mu, Le2, LP|. Hence we have the following.

Corollary 2.11. Both the ordinary skein algebra Y(@) and the Muller skein algebra &/ (6)
are subalgebras of the stated skein algebra . (6).

2.10. Filtration and grading. Suppose a is either an ideal arc or a simple closed curve on
S and « is a simple dM-tangle diagram on &. The geometric intersection index I(a, o) is
I(a,a) = min |a N a/|,

where the minimum is over all the simple dM-tangle diagrams o’ isotopic to «.
For a collection 2 = {ay,...,ax}, where each a; is either an ideal arc or a simple closed
curve, and n € N let F*((8&)) be the R-submodule of .#(&) spanned by all stated

simple dM-diagrams « such that Zle I(a;,a) < n. Tt is easy to see that the collection
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{F*(S(8)) }nen forms a filtration of . (&) compatible with the algebra structure, i.e. with
F, = F*((8)) one has

F, C Fou1, |J Fo=7(8), FuF C Fopr.

neN

One can define the associated graded algebra Gr™(.7(&)):
G (7(8)) = @ Gr}(#(®)) with Gr)} (S (S)) = F,/F,_1 Vn > 1 and Gro = Fy.
n=0

This type of filtration has been used extensively in the theory of the ordinary skein algebra,
see e.g. |Lel, FKL, LP, Marc].
The following is a consequence of Theorem 2.9:

Proposition 2.12 (Proposition 2.12 in [Le2|). Let o be an orientation of the boundary of a
punctured bordered surface &, and A = {ay,...,ar} be a collection of boundary edges of S.
(a) The set {a € B(&;0) | Y25, I(a,a;) < n} is an R-basis of F2(.7(&)).
(b) The set {a € B(G;0) | S I(a, a;) = n} is an R-basis of Cr¥(F(&)).

For what concerns the grading, for each non-negative integer m and a boundary edge e
let G, be the R-subspace of . (&) spanned by stated 0M-tangle diagrams « with d.(«) :=
D ue(ane) S(u) = m, where s is the state and we identify + with +1 and — with —1.

From the defining relations it is clear that .7 (&) = ,,., G}, and G, G5, C G, In
other words, .(&) is a graded algebra with the grading {G¢ }ncz.

Also the following is a consequence of Theorem 2.9:

Proposition 2.13. Let © be a punctured bordered surface and o be an orientation of 06.
The set {a € B(S;0) | d.(a) = m} is an R-basis of G, (L (6)).

If o’ is another orientation of the boundary 06, the change from basis B(S;0) to B(G;0’)
might be complicated. For the associated space Gr*(.#(&)), the change of bases is simpler.
Recall that o = o/ means o = ¢"«’ for some m € Z.

Proposition 2.14. Suppose « is stated tangle diagram on & and I(a,e) = k where e is a
boundary edge. Let’s alter o to get o by changing the height order on e and the states on e
such that d.(a) = d.(c’). Then one has

(26) a=da inGri(7(6)).

Proof. One can get o' from a by a sequence of moves, each is either (i) an exchange of the
heights of two consecutive vertices on e, or (ii) an exchange of states of two consecutive
vertices on b. We can assume that o/ is the result of doing a move of type (i) or type (ii).
In case of move (i), the identities (15) and (16) prove (26).
In case of move (ii), the identity (10) prove (26). O
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2.11. Splitting/Gluing punctured bordered surfaces. Suppose a and b are distinct
boundary edges of a punctured bordered surface &' which may not be connected. Let
S = &'/(a = b) be the result of gluing a and b together in such a way that the orientation
is compatible. The canonical projection pr : & — & induces a projection pr : M =
S’ % (0,1) = M =6 x (0,1). Let ¢ = pr(a) = pr(b). It is an interior ideal arc of &.

Conversely if ¢ is an ideal arc in the interior of &, then there exists &', a, b as above such
that & = &'/(a = b), with ¢ being the common image of a and b. We say that &' is the
result of splitting & along c.

A OM-tangle « C M = & x (0,1), is said to be vertically transverse to c if

e « is transverse to ¢ x (0, 1),
e the points in J. o := aN (¢ x (0,1)) have distinct heights, and have vertical framing.

Suppose « is a stated dM-tangle vertically transverse to c. Then & := er_l(&) is a OM'-
tangle which is stated at every boundary point except for newly created boundary points,
which are points in pr~' (9, a). A lift of o is a stated dM’-tangle B which is & equipped with
states on pr (9, a) such that if 2,y € pr~'(d. «) with pr(x) = pr(y) then = and y have the
same state. If |0, a| = k, then « has 2 lifts.

Theorem 2.15 (Splitting Theorem, Theorem 3.1 in [Le2|). Suppose c is an ideal arc in the
interior of a punctured bordered surface & and &' is the result of splitting & along c.

(a) There is a unique R-algebra homomorphism 0, : (&) — L (&), called the splitting
homomorphism along c, such that if a is a stated OM -tangle vertically transverse to ¢, then

(27) Oc() = B,

where the sum is over all lifts 8 of a.
(b) In addition, 0. is injective.
(¢) If ¢1 and co are two non-intersecting ideal arcs in the interior of &, then

0y 00, =0,00,,.

Remark 2.16. The coefficients of the right hand sides of the defining relations (9) and (10)
were chosen so that one has the consistency (see Remark 2.10) and the splitting theorem.
It can be shown that if one requires the consistency and the splitting theorem, then the
coefficients are unique, up symmetries of a group isomorphic to Z/2 x Z/2.

2.12. Splitting homomorphism and filtration. Fix an orientation o of the boundary
edges of 06. Let & be the result of splitting & along an ideal arc ¢, with ¢ being lifted
to boundary edges a and b of &’. Choose an orientation of ¢ and lift this orientation to a
and b which, together with o, gives an orientation o’ for &’. Assume D is a stated simple
o-ordered 8M tangle dlagram which is taut with respect to ¢, i.e. [DNc| = I(D,c). For each
eachi=0,1,...,m:=|DN¢ let (D si) be the OM’-tangle diagram where D = pr~!(D),
and the states on both a and b are o’-increasing and having exactly ¢ minus signs. Then each
(D, s;) is in the basis of the free R-module Gr{a ”(5”(6’)) described in Proposition 2.12.
For non-negative integers n,: the quantum blnomial coefficient is defined by

R
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Proposition 2.17. In Gri®"(#(&")) one has

m m ~
29 .01 =3 (") (D)
i=0 a
Proof. For s: DN ¢ — {£} let (D, s) be the stated o’-ordered &'-tangle diagram with state

s on a and b. By definition,

(29) 0(D)= Y (D.s) €S(&).

s:DNe—{+}

Taking into account the filtration, from relations (10) and (15), we see that in Grga’b} (Z(6"),

m

A A A lt
(30) _+:q2 [ R +_:QQ — —
a a b b
It follows that Gri®” (.(&')) we have
A A A /
e — | —
a b a b
Suppose s : D N ¢ — {4} has i minus values. For k = 1,...,i let z; be the number of plus

states (of s) lying below the k-th minus state. By doing many switches, each changing a
pair of consecutive (—,+) to (4, —), we can transform s into s;. The number of switches is
x1 + -+ + ;. Hence from (31) we see that

(D, s) = q4(x1+"‘xi)(l~), Si)-

Taking the sum over all s: D N¢ — {£} with ¢ minus values, we get

(32) 9<D>=Z< > q“"“*“‘””) (D,s;) in Grie? (7(&")).

=0 \0<z1 < <z;<m—1

By induction on 7 one can easily prove that

. +1
33 Mzr++mi) (n - ) ’
(33) Y oog i),

0<z1 < <z;<n

from which and (32) we get (28). O

2.13. The category of punctured bordered surfaces and the functor .. A morphism
from one bordered punctured surface & to another one &’ is an isotopy class of orientation-
preserving embeddings from & to &’. Here we assume that the embeddings map a boundary
edge of & into (but not necessarily onto) a boundary edge of &'.

Very often we identify an embedding f : & < &' with its isotopy class.

Suppose f : & — &' is an embedding representing a morphism from & to &’. Define an
R-linear homomorphism f, : .7 (&) — . (&) such that if « is a stated tangle diagram on &
with positive order then f,(«) is given by the stated tangle diagram f(«), also with positive
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order. It is clear that f, is an R-linear homomorphism, and it does not change under isotopy
of f.

In general f, is not an R-algebra homomorphism. However, if every edge of &’ contains
the image of at most one edge of G, then f, is an R-algebra homomorphism.

Example 2.18. A bigon is the standard closed disk in the plane with two points on its
boundary removed. Suppose a C & is an arc whose two end points are in distinct boundary
edges e; and ey, where

Example 2.19. Let e be a boundary edge of & and & = &\ {v}, where v € e. The
embedding ¢ : & < & induces an R-linear homomorphism ¢, : /(&) — . (&) which is
surjective but not injective in general.

Suppose ¢ C e is one of the two boundary edges of & which is part of e. There is a
diffeomorphism g : & — &’ \ {€¢’} which is unique up to isotopy. Thus, we have a morphism
f:6 — &', which is the composition

6L e \{}—6.

The morphism f induces an injective (but not surjective) algebra morphism f, : .7 (&) —
(&)

3. HOPF ALGEBRA STRUCTURE OF THE BIGON AND O,2(SL(2))

We will define using geometric terms a dual quasitriangular (a.k.a. cobraided) Hopf al-
gebra structure on the stated skein algebra .#(B) of the bigon B and then show that it is
naturally isomorphic to the dual quasitriangular Hopf algebra O (SL(2)). We also show sim-
ple pictures of the canonical basis of O, (SL(2)), and discuss the Jones-Wenzl idempotents
in .7(B). In this section R = Z[g*'/?] unless otherwise stated.

3.1. Monogon and Bigon. Let D be the standard disk

D ={(z,y) eR*[2” +y* < 1}
and v; = (0, —1) and vy = (0,1) are two points on the circle dD. The punctured bordered
surface M = D \ {v;} is called the monogon, and B = D \ {v1,vy} is called the bigon. Let
e;, e, be the two boundary edges of B as depicted in Figure 6. For i = (pq,..., ) and
7= (m,...,n) in {£}* let azz € S (B) be the element presented by k parallel arcs as in

Figure 6, with (n;,...,7x) being the states on e; in increasing order and (uq,. .., ux) being
the states on e, in increasing order.

00 ee

.............................................................................................................................

FIGURE 6. Monogon, bigon with its edges ¢; and e,, elements oy and oy
Note that for a;z the height order is indicated by the arrows.
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We have (M) = R. Moreover, one has

T DC

Here the circle enclosing x and two vertical lines attaching to it stand for a stated 0S-tangle
diagram. The proof follows by using the skein relation (7), then the loop relation (8), and
finally the arc relation (9) to reduce x to a scalar.

We study the algebra .#(B) in this section. Let rot : B — B be the rotation (of the
plane containing B) by 180° about the center of B, which is a self-diffeomorphism of B and
induces an R-algebra involution

(35) rot, : S (B) = Z(B).

3.2. Coproduct. Suppose e is a boundary edge of a punctured bordered surface &. Let &
be the result of cutting out of & a bigon B whose right edge e, is identified with e. Since &' is
canonically isomorphic to & in the category of punctured bordered surfaces, we will identify
S (6) with .7(&"). The splitting homomorphism gives an injective algebra homomorphism

S (G) = LS(GUB) =.7(6)ar S (B).
Since we identify . (&) with (&), this map becomes an R-algebra homomorphism
(36) A, S (6) = S (6) @r L(B).

A~ —
=
n /

FIGURE 7. The coaction A..

L/

Suppose x € B(S, 0) is a basis element, where o is a given orientation of 9&. Assume the
state of x on e is fi, then we have (see Figure 7):

(37) Ac(z)= > 2;® ags,
ﬁeszﬁe

where S, is the set of all states of N e and z;; is « with the state on e switched to 7.
In particular, when & = B and e = ¢,, we get an R-algebra homomorphism A = A, |

(38) A: S (B)— S (B)@r S (B).
Theorem 2.15(c) implies that A is coassociative, i.e.

(39) (A @id)A = (id ® A)A.
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Applying (37) to = v, with v, u € {£}, we get

(40) Alay) = Dy @ ay,.
ne{£}

3.3. Presentation of ./(B). A presentation of the algebra .7 (B) was given in [Le2]. We
give here a presentation of .#/(B) in a form which is suitable for us. Recall that C(n) = C}
for n € {£} were defined by (11). We form the following matrix

ct cty 0 ¢
(41) = ((J— O:) - (—q5/2 0 )

Lemma 3.1. The R-algebra ./ (*B) is generated by {cv,,, | v, € {£}} with the following
relations:

(42) C=A'CA
(43) C = ACA',

where A is the transpose of A and

A= [ O
: o, a )

Proof. Explicitly, the relations (42) and (43) are respectively

(44) Cr-1= Z C(Magam, = Cray,a_, + CLaoy, Vv, e {x}
ne{+}

(45) Ch-1= Z C(M) oy = Crayroy, + Clan,_ayy Vv, e {£}.
ne{+}

Let e be the only boundary edge of the monogon M. Because /(M) = R and R ®
L (B) = Z(B), the R-algebra map A, : (M) = S (M) @r #(B) is an R-algebra map
A, : R — Z(B). As any R-linear map, we must have A.(c) = ¢- 1, where 1 is the unit of
S (B). Apply A, to the simple arc in the monogon whose endpoints are stated by v and
and we get a proof of (44) as follows:

v VoA,
c @ N @n/ @ =Y C)agag,.
H n,n E{i} ne{£}

Equation (45) is obtained from Equation (44) by applying the map rot, of (35).
Using Theorem 2.9 one sees that the set
(46) B={a" o o |hkleNU{a" " o' _|hkleNEk>1}

is an R-basis of .(B). In particular, .(B) is generated by «,, with v, € {£}.
Using these relations it is easy to check that any monomial in the «,, can be expressed
as an R-linear combinations of B. The proposition follows. 0]
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3.4. Counit. The embedding ¢ : B < M gives rise to an R-linear map ¢, : . (B) —
(M) =TR. Define € : #(B) — R as the composition € = ¢, o inv,,

inve

c:.Z(B) 23 7(B) = S (M) =R,

where inv,_ is defined in Section 2.8. Explicitly, if « is a stated dB-tangle diagram as in
Figure 8, then

(47) e(a) = Ce (a) o,
where o' is described in Figure 8 and C., («) is defined by (24).

m V1 f— —\ 1 n
m Vk\\/nl it

8% (87 87

O

151

N
ol

h

=

Vg

FIGURE 8. How to obtain o' and o” from « in the definition of counit and
antipode. Height order is indicated by the arrows on the boundary edges.
Then o is the same «, but considered as a tangle diagram in M with its
states on the edge e, switched from v to 7 = —v. And " is obtained from «
by a rotation of 180°, and switching all the states v to v.

Using (47) and the values of C'(n), one can check that
1 ifv=u
48 o) = 0y = .
( ) E(O{ N) 14 {0 lf v # M
Proposition 3.2. The algebra .7 (B) is a bialgebra with counit € and coproduct A.

Proof. We already saw that A is an algebra homomorphism and is associative. It remains
to show that € is an algebra homomorphism, and

(49) (e®id)o A(z) =2 = (id®¢€) o A(x).
Let x,y € .(B) be presented by tangle diagrams schematically depicted as in Figure 9.

© ©

FIGURE 9. Elements z,y € . (B). Each horizontal strand stands for several
horizontal lines which are tangled in the two small disks.
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The following shows that e(zy) = e(z , i.e. € is an algebra homomorphism:

() el D

Here we use equality (34) in the third identity.
As both A and € are algebra homomorphisms, one only needs to check (49) for the gener-
ators = a,,, with v, p € {£}. Using (40) and (48), we have

(e®id) o A(ay,) = (e ®1id) Z Quy @ Oy = Qi

n

which proves the first identity of (49). The other identity is proved similarly. O

3.5. Antipode. Define S : .7(B) — .#(B), by S := rot, o (inv,, o (inv,,) 1), where inv and
inv are defined in Subsection 2.8. Explicitly, if « is a stated 0B-tangle diagram as in Figure
8, then

(50) S(a) = gjéz)) o’

where o’ is described in Figure 8. In particular, we have

(51) () = Gyt

Explicitly,

(52) Slayy)=a, S(a_)=ayy, Slar )= —¢’ay, Slay)=—qa_,.

Proposition 3.3. The map S is an antipode of the bialgebra 7 (B), making #(B) a Hopf
algebra.

Proof. From the definition (50) one sees that S is an anti-homomorphism, i.e.
S(zy) = S(y)S(@).

It remains to check the following property of an antipode:

(53) Z S(x)a" =e(x)l = Zx'S(x"),

where we use the Sweedler’s notation for the coproduct Az = ) 2’ ® ”. Since S is an anti-
homomorphism and € is an algebra homomorphism, it is enough to check (53) for generators
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z = a,,. In that case, using (40) we have A(z) = A(a,,) = >, quy ® ayy, and

ZS(J:’)x" = Z S (o) oy
ne{+}
C(n)
= Z W@ﬁp@énu by (51)
ne{+}
c” -1
=t 44
oy (44)
=0, -1 =¢€(ay,) -1 by definition of C(v) and (48),

which proves the first identity of (51). The second identity of (51) is proved similarly. O

3.6. Quantum algebra O, (SL(2)). Let us recall the definition of the quantum coordinate
ring O,2(SL(2)) of SLy(C), which is the Hopf dual of the quantum group U,(slz). See [Maj].

Definition 1 (Op2(SL(2))). The Hopf algebra O, (SL(2)) is the R-algebra generated by
a, b, c,d with relations

(54) ca = ¢*ac, db = ¢*bd, ba = ¢*ab, dc = ¢*cd,

(55) be = cb, ad — ¢ %be =1 and da — ¢*cb = 1.

Its coproduct structure is given by

Aa) = a®a+b®c, A(b) = a®b+b®d, A(e) = c®a+d®ec, A(d) = c®b+d®d.
Its counit is defined as €(a) = €(d) = 1,e(b) = €(c) = 0 and its antipode is defined by
S(a) =d,S(d) = a,S(b) = —¢*b, S(c) = —q2%c.

Theorem 3.4. There exists a Hopf algebra isomorphism ¢ : ./ (B) — O,2(SL(2)) given on
the generators by

(56) d(oy 1) =a, P(oy,-) =0, Pla-4) =c, Pla--) =d.
Furthermore, under the identification of .7 (B) with O2(SL(2)) via the isomorphism ¢, the
involution rot, : . (B) — . (B), given by the rotation of 180° around the center of the

bigon (see (35)), becomes the R-algebra involution r : Op(SL(2)) — Op(SL(2)) given by

r(a) = a,r(b) = c¢,r(c) = b,r(d) = d. Moreover, r is a co-algebra antimorphism, i.e.
(rer)oA? =Aor.

Proof. By Lemma 3.1, the R-algebra .7 (B) is generated by a4 with relations (42) and (43).

Under the assignment ¢ given on generators a4y by (56), the matrix relations (42) and (43)

become respectively

(57) ca = ¢*ac, db = ¢*bd, ad — q %cb =1, da — ¢*bc = 1

(58) ba = ¢*ab, dc = ¢*cd, ad — q *bc =1, da — ¢*cb =1

Each of these identities is a consequence of the relations in (54) and (55). Conversely, all the

relations in (54) and (55), except for be = cb, are among the identities (57) and (58). The

remaining relation bc = cb is obtained by taking the difference between the last identity of
(57) and the last identity of (58). Hence ¢ is an R-algebra isomorphism.
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To check that ¢ is a Hopf algebra isomorphism it is sufficient to check this on the level of
generators where it is straightforward.
The last statement is a direct verification. U

3.7. Geometric depiction of co- R-matrix, a lift of the co- R-matrix. The Hopf algebra
O, (SL(2)) is “dual quasitriangular” (see [Maj| Section 2.2) or “cobraided” (see e.g. |Kass|,
Section VIIL.5) , i.e. it has a co-R-matrix with the help of which one can make the category
of O,2(SL(2))-modules a braided category. Formally, a co-R-matriz is a bilinear form

p:O0p(SL(2)) ® 0p(SL(2)) — R

such that there exists another bilinear form p : Op(SL(2)) ® Op2(SL(2)) — R (the “inverse"
of p) satistying for any z,y,z € U,

59) > ol 2 @y") =Y pla' @y )pla’ @y") = e(x)e(y)
60) Zp (2" ® y” Yy'a' = Zp(as’ @y )x"y"

61) plry@z)=> /J(x’ ® Z’)p " @ 2" )e(x")e(y)
62) rRyz) = pla 2" @y")e(z")e(y)

Here we use Sweedler’s notation for the coproduct. Relations (61) and (62) show that p is
totally determined by its values at a set of generators of the algebra O,2(SL(2)), and the
values p at a set of generators are given by (see [Kass|)

(
(
(
(

a®Ra bR a®b b®a qg 0 0 0
(63) p c®c d®d c®d d®c _ 10 ¢ O 0

a®c b®d a®d b®c 00 q¢' q—q?

c®a d®b c®b d®a 00 0 g

Theorem 3.5. Under the identification of .7 (B) and O,2(SL(2)) via the isomorphism ¢,
the co-R-matriz p and its inverse p have the following geometric description

(o8] (8
(©5) »(lof=lof) - ().

Here a circle enclosing x and two lines adjacent to the circle stand for a stated 0B-tangle
diagram, also denoted by x. The left hand side of (64) stands for p(x @ y).

Proof. Let p' be the map defined by the r.h.s. of (64): we will show that p’ = p. For this
it is enough to show that p’ satisfies (61), (62), and the initial values identity (63), all with
p replaced by p’. We have, where a line labeled by, say z, stands for the stated 0B-tangle

diagram =,
Py @ 2) = (&)
Y



26 FRANCESCO COSTANTINO AND THANG T. Q. LE

Split the bigon by the vertical middle ideal arc, then use the fact that e(u) = > e(u)e(u”)
(in any Hopf algebra) where A(u) = > v/ ® u”, we have

() (&)
= 3" o @ ply’ @ el )e(y).

This proves (61) for p'. The proof of (62) is similar.
To check (63) we have to check 16 identities, all of which are easy. For example, the most
difficult one is the identity of the (3,4) entries:

ﬂw®@:e(§4> gtﬁ)*ql (bd)

=q-q7° 48) and (14)
This proves (63) for the (3,4) entries. Identlty (63) for other entries are similar. O
Remark 3.6. The bilinear form p’ : O,2(SL(2)) ® O,2(SL(2)) — R defined by

(66) pPlrey)=plyer)=c (%)

gives a new co-R-matrix for O, (SL(2)), which is the mirror reflection of p.

3.8. The Jones-Wenzl idempotents as elements of the bigon algebra. In this sub-
section we will work over the ring R'¢ obtained by localizing R over the multiplicative set

—2n

generated by {[n] = qq —L5-,n > 1}. Recall that the n'" Temperely-Lieb algebra T;, (see e.g.

[Tu3|) is the R algebra generated by non-stated simple (n,n)-tangle diagrams in B mod-
ulo isotopy (rel to the boundary) and relation (8). The product is obtained by concatenating

horizontally.
N L
\ \

/ /
N

FIGURE 10. On the left the unit of 75. On the right an element of T5.

A R'"basis of Tj, is given by simple (n,n)-tangle diagrams without closed components;
define € : T,, — R!° be the dual of the element 1 with respect to this basis. The n!" Jones-
Wenzl idempotent is an element JW, € T, defined by recursion as explained in Figure 11.

The following is the key property of the JW,,, see e.g. [Tu3|.

Proposition 3.7. One has e(JW,,) = 1. For allz € T,, it holds JW,x = xJW,, = e(x)JW,,.
In particular JW? = JW,,.
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FIGURE 11. The recursion relation for JW,, € T,. By definition JW; =1 € Tj.

For a simple (n,n)-tangle diagram = € T, and g, i1, € {£}" let x(g, i) be the stated
OB-tangle diagram which is x with states f; on e; and states g, on e,, and the height order
on each of ¢; and e, is from bottom to top. By linearity, for y € T,,, we define y(/1, f1,-). This
is well-defined since (8) is part of the defining relations of stated skein algebra. Thus, if y is
trivial (n, n)-tangle diagram, then y(7, /) is the element a7 described in Figure 12.

Example 3.8. If all the components of 77 are the same and all the components of ji are the
same, then JW,, (7, i) = cyz. Indeed JW, is equal to trivial (n,n)-tangle diagram plus the
linear combination of diagrams each contains an arc whose endpoints are both in e; or in e,;
such an arc is 0 by (9).

Proposition 3.9. For ji € {£}" let o(ji) be obtained by reordering increasingly the states of
i and no(ji) is the minimal number of exchanges needed to do so. Then

(67) TW (g1, i) = q* "W 2 W) JW (o( @), o5,
— — — n — — — —
(68) AW (i, fi7)) = ) IWa, m5) @ JW (1, 1),
J
=0 q'

where 1; 1s the increasing state containing j signs + and n — j signs —.

Proof. Observe that if one exchanges a sign — and a 4 which are not in the increasing
order along e, then by (10) one gets ¢* times the reordered term and q% times a term killed
by JW,. Since a similar argument (using Lemma 2.4) shows that each reordering along ¢,
multiplies JW by ¢2, the first statement follows. The second statement is a consequence of
the fact that JW? = JW in T,, and Proposition 2.17. O

3.9. Kashiwara’s basis for O,(SL(2)). We will see that the celebrated Kashiwara canon-
ical basis of O,2(SL(2)), see [Kal, is the geometrically defined basis B(B, 0.) of Theorem 2.9,
up to powers of q. Here o, is the positive orientation of the boundary 9B of the bigon B.

++ |
|

+ -—
<+

FIGURE 12. Elements Sz (left) and §; (right) with 77 = (—,+,+) and ji =
(— — +); the difference is the direction of the left edge.
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First recall B(B,0.). For sequences 77, fi € {£}" let 87z be the stated 0B-tangle diagram
consisting of n horizontal arcs and stated by 77 on the left edge and /i on the right edge, with
height order given by o, ; see Figure 12. Then

B(B,o04) = {85, | 7, ii are increasing}.
Let ;7,/1 be the same 35 ; with reverse height order on the left edge, see Figure 12. Define
Bean = {855 | Bia € B(B;o1)} = {ag | 77 is decreasing, 7/ is increasing. }.

Here a;; is defined in Figure 6.
From Lemma 2.4 which deals with height exchange, one can easily show that

) . 1
(69) B = ¢"D Bz, h(7]) = 5(n+n_ +ny +n_ —n: —n?)

where n (respectively n_) is the number of + (respectively —) in the sequence 7. It follows
that Bea, is also an R-basis of .7 (B).

Proposition 3.10. Via the isomorphism of Theorem 3.4, the basis Bea, coincides with the
canonical basis defined by Kashiwara [Ka, Proposition 9.1.1]. Both bases Bea, and B(B;0.)
are positive with respect to the product and to the coproduct, i.e. for B = B, or B(B;o04)
and o, B € B one has

af € Nj¢*']- B
A(a) € N[¢*'] - B® B.

Proof. The first statement is an observation directly following Theorem 3.4: in [Ka, Propo-
sition 9.1.1] the basis is {cla™b",[,m,n > 0} U {d™b",I,n > 0,m > 0}. As B(B;o,)
is equal to B, up to powers of ¢, one needs only to prove the second statement for Be.,.
For positivity of multiplication, it is sufficient to check it on pairs of generators: there are
then 16 cases. All of them are straightforward; we provide some instances among the most
complicated cases where the right hand sides are in N[gT!] - Beay:

oy 0y =04 Oy ,0y  -O__ = q_2Oé__ Oy, - = q2Oé_+ O

ap o = o agp L agy ol =q P gy, apycasy = hal o
Once positivity is known for multiplication, the statement for comultiplication can be
checked on generators where it is straightforward. U

Remark 3.11. A direct proof of positivity using pictures is also easy and left to the reader.

4. COMODULE STRUCTURES, CO-TENSOR PRODUCTS AND BRAIDED TENSOR PRODUCTS

In this section we show that given any edge of & the skein algebra .7 (&) has a natural
structure of O,2(SL(2))-comodule algebra. We show how to decompose this comodule into
finite dimensional comodules. We then identify the image of the splitting homomorphism
using the Hochshild cohomology, and give a dual result using Hochshild homology. When G
is the result of gluing two surfaces G; and G, to two edges of an ideal triangle, we show that
the skein algebra .(&) is canonically isomorphic to the braided tensor product of . (&)
and .7(8,). In this section R = Z[¢*'/?].
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4.1. Comodule. Suppose e is a boundary edge of a punctured bordered surface G. Recall
that by cutting out of & a bigon B whose right edge is e and canonically identifying &\ int(8)
with &, we get an R-linear map

A, S(6) = L(6)®.L(B),
see Figure 7. Similarly cutting out of & a bigon B whose left edge is e and canonically
identifying & \ int(B) with &, we get an R-linear algebra homomorphism
AL (6) - L (BUG)=S(B)®.S(6).

Proposition 4.1. (a) The map A, : .7 (6) - L (6)®.L(B) gives L (S) a right comodule-
algebra structure over the Hopf algebra .7 (9B). Similarly (A gives gives . (&) a left comodule-
algebra structure over the Hopf algebra .7 (%B).

(b) It holds ;A = flo(Id y(s) ®10t,) 0 A, where fl(z®y) = y®ax and rot, : S (B) — S (B)
is the algebra involution defined by (35).

(¢) If eq, es are two distinct boundary edges, the coactions on the two edges commute, i.e.

(A, ®id) 0 A, = (I ®id)o(A,, ®id) 0 A,.

Proof. (a) The associativity of A, follows from the the commutativity of the splitting maps of
theorem 2.15(c). Applying (id ® €) to Equation (37) and using the value of €(az;z) from (48),
we get that

(id®e)A(z) =2z =z, Vre B(6,o).
Hence A, gives . (&) the structure of a right .(B)-comodule.

Recall that (&) is a comodule-algebra over the bialgebra .7 (98), see e.g. |[Kass, Propo-
sition IT1.7.2], if and only if the map A, : ./ (6) — ¥ (6) ® . (*B) is an algebra homomor-
phism. The last fact follows easily from the definition of A..

(b) Observe that (rot, ® rot.) o A% = A o rot,.

(c) is clear from the definition. O

By identifying . (B) with O,2(SL(2)) using Theorem 3.4, the above proposition also pro-
vides (&) with the structure of a O,2(SL(2))-comodule. More in general, we will use the
following terminology:

Definition 2 (Surfaces with indexed boundary). A punctured bordered surface & has in-

dexed boundary if its boundary edges are partitioned into two ordered sets (the left and right

ones, with indices L and R respectively): el ... ek et .. el

If & has indexed boundary then (&) is naturally endowed with a structure of
(O,2(SL(2))®", 0,2(SL(2))®™) — bicomodule
by the left coaction A¥ : (&) — Op2(SL(2))*" @ . (S) defined by
AL — (Id%n2 éL(? %) eﬁA> o (Id%n2(§L(2)) ® 65_1A) 0---0 (IquQ(SL(2)) & eQLA) o elLA
and the right coaction

Al = (A, r® Id@m g (2))) © (Ae§ ® Id%n; sZL(z))) "o (Aeﬁ_l ® Id@qz(SL@))) oA

Furthermore notice that (&) is not only a bicomodule but a bicomodule-algebra as each
of the above maps A_r or .£A are also morphisms of algebras.
i J
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4.2. Quantum group Up.(sly). Recall that the quantized enveloping algebra Uz (sly) is the
Hopf algebra generated over the field Q(q'/?) by K*!, E, F with relations

K— K1
(70) KE =q¢'EK, KF=q'FK, [EF]=——-—>".
q —q

The coproduct and the antipode are given by
(71) AK)=K®K, AE)=10E+E®K, AF)=K'@F+F®Il
(72) S(K)=K™', S(F)=—-FEK™ ', S(F)=—KF.

We emphasize that Uz (sly) is defined over the field Q(g'/2). There is an integral version
UqL2 (sly), defined by Lusztig [Lus|, which is the R-subalgebra of U, (sly) generated by K*!

and the divided powers E™ := %, Fo) . % Here [n]! =TT, (¢* — ¢ *)/(¢* — ¢ ?).
One has a non degenerate Hopf pairing

(73) () 1 Ug(sly) ®r Op2(SL(2)) = Q(¢'?).
This is a Hopf duality since it satisfies (with Sweedler’s coproduct notation)
(74) <xuy1y2> = Z<x/7y1><x”7y2>7 <$1$2>y> = Z<xl7y/><x27y//>

The values of the form on generators are given by

(e )= () )= 6o) (5 a)) - (o)

Lemma 4.2. The form (73) on Uj(sly) is integral, i.e. il restricts to a map
Uk (sly) @r Op(SL(2)) = R = Zg?).

Proof. Tt is enough to check that (E™ z) (F™ z) € R for n > 1 and x € O,z (SL(2)).
Since A(EM™) = 3" ¢#=IEO @ EM=)K? it is sufficient to check the statement for the
evaluations of £ and K7 on a, b, ¢, d where this is a straightforward computation. Similarly
for F™). O

Recall that the rotation by 180° of the bigon induces the involution r : Op.(SL(2)) —
0,2 (SL(2)), see Theorem 3.4. Let r* : Up(sly) — Ug(sly) be the adjoint of the map r. We
will show that r* is equal to the map p of Lusztig’s book [Lus, Chapter 19|, which is used in
the study of canonical bases of quantum groups.

Let Up(sly) — Mod (respectively Mod — U,(slz)) be the monoidal category of left (respec-
tively right) U,z (slz)-modules.

Lemma 4.3 (Left and right modules). (a) The map r* is an algebra antimorphism involution
and a coalgebra morphism, i.e. for x,y € Ugp(sly) one has

P@) =z ri(ay) =ry)rt@), AF(x) = (" @) o Alr).
Ezxplicitly, the value of r* on the generators is

(76) r*(E) = ¢KF, r(K)=K, r(F)=qEK"
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(b) The map r* induces monoidal functors
LR : Up(sly) — Mod — Mod — U,(sly), and RL : Mod — Uy (sly) — Uy (sly) — Mod

which are inverse to each other as follows: for each left (resp. right) module M the module
LR(M) (resp. RL(M)) is the right (resp. left) module whose underlying vector space is M
and on which the action of x € Up(sly) is given by, with on o € M,

a-z:=r"(z)-a (resp. x -a:=a«a- -r*(z)).
Remark 4.4. Formula (76) shows that 7* is equal to p of [Lus, Chapter 19].

Proof. (a) Since r is a algebra involution and a co-algebra antimorphism by Theorem 3.4
and the Hopf pairing is non-degenerate, its dual r* is an algebra antimorphism involution
and a coalgebra morphism.

It is sufficient to compute r* on the generators where one can verify the values provided
in the statement. For instance:

(r*(E),a) = (E,a) = 0= (¢°KF,a) = (K ® F,a® a+ c®Db)
(r*(E),b) = (E,¢) = 0= (*?KF,b) = (* K ® F,a® b+ b® d)
(r*(E),c) =(B,b) =1=(KF,c) = (K ® F,c®a+d®:c)

(r*(E),d) = (E,d) = 0= (KF,d) = (K ® F,c® b+ d ®d)
The verification for the pairings with a, b, ¢, d for r*(F) and r*(K) are similar.
(b) LR and RL are functors as r* : Up(sly) — Up(sly) is an algebra antimorphism; they
are inverse to each other as r* is an involution. Monoidality is a consequence of the fact that
r* is a coalgebra morphism. 0J

4.3. Module structure of .(S&). As usual, the Hopf duality implies that every right (resp.
left) O,2(SL(2))-comodule V' has a natural structure of a left (resp. right) U,(sl;)-module,
via the following construction. For a € Ugp(sly) and v € V, one has

(77) a-vi= Z(m b o', where A,.(v)= Zv’ RV,

To be precise, we have to replace V by V ®r Q(g'/?), since U (sl) is defined over Q(q'/?).

In particular, for an edge e of & the right comodule structure ;A : .7 (6) —» . (6)®.7(B)
gives .7(6&) ®x Q(¢/?) a left module structure over Ug(sly), and we want to understand
this module structure.

Fix an orientation o of the boundary 0&. Recall that B(&;0) is an R-basis of .7 (S).
For each edge e let B, 4(&;0) C B(S;0) be the set of all « € B(S;0) such that jaNe| =d
and all the states on oM e are signs +. Let B.(S;0) = UX B.4(S;0). For a € B, 4(6;0)
and 77 € {&}¢, let a(7f) be the same « except for the states of e N o which are given by
s(x;) = n;, where xq, ..., x4 are the points of a N e listed in decreasing order. In particular
let a; == a(+,+, - ,+,—,—,...,—) where the number of — is j. For example, a = .

Lemma 4.5 (Module structures of .7 (&) along an edge e). The left action of Up(sly) on
S (6) @r Q(¢/?), dual to A, is:

Kiepi(o) = g

Eieqi(og) =0, and Ejepi(a;) = [jlpza;—1 mod Fj_4

2(d—2j)aj
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Fiefe(ag) = 0, and Fiepi() = [d — jlgzajn - mod Fg
where F5 | = F5 (7 (8) @r Q(¢'/?)) is the Q(¢"/?)-span of elements 8 € B(S;0) with
|6 Ne|l <d. The right action, dual to A, is given by the left action of r*(K),r*(E),r*(F)
(see Lemma 4.2).
Proof. By (37), A(a(7])) = > zcqrye @(€) ® gy where agy is defined in Figure 6. If we define
inductively AlY = (A ®1d®“@2) o AlF-1 for d > 3, with AR = A, then

(78) AM(K) = K*1,
d
(79) A(E) = Z 19200 @ B @ K®W@-9),
j=1
d
(80) AR =Y (K @ Fe 1977,
j=1

Applying these to compute the Hopf pairing of K, E, F' with ag; we get
Kiepi(a(7)) = ¢* =" a(i),

d
— d -
Elepe((1)) = Z@nj,—)qQZ’“:J“nka(ﬁh C M1 Mt Ma)s
j=1
d -
— — J—
Fleft(a(n)) = Z(éﬁj7+)q sz:l nka(nla t 777j717 R nj+17 e 777d)-
j=1
Now the main claim is a direct computation using relation (10). O

Let & have indexed boundary 06 = {eF,...ek el ... el} as explained in Subsection 4.1.
The Hopf duality gives . (&)@ Q(q'/?) an algebra bimodule structure over (Uyz(sly)®", Uz (sl2)®™).
(Notice the inversion between left and right when passing to modules).

For each m € N™ and 77 € N”, let By 7(S;0) be defined as:

By #(6;0) = (ﬂ Bef,mi<6;o)> N (ﬂ Bef,nj(6§°>> :
i=1 j=1

Let also, for each j < i and h<i (component-wise) and each o € By 7(6;0) let a5 €

B(6:;0) be the skein identical to a but for its state which is increasing and contains j (resp.

1) signs — on the left (resp. right) edges.
Theorem 4.6. Suppose that & has indezed boundary 0& = {ek, ... ek ef . e}

(a) For each m € N™ and it € N and each o € By 5(6;0), the (Up(sly)®", Up(sly)®™)-
bimodule generated by o (namely U (sl)®™ - o - Upz(sly)®™ ) is irreducible and isomorphic to
Vi @VEeVE @..-@VE where ViE (resp. ViF) is the irreducible left (resp. right)
module on U (sly) with highest weight k.

(b) As (Up(sly)®", Up(sly)®™)-bimodules, we have

(81) 7 (6) @r Q(q"?) = P Up(sh)®" - a - Upe(sr) *™
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where the sum is taken over all m € N™ 17 € N", and all o € By 7(S;0). In particular, the
bimodule .7 (&) is a direct sum of finite dimensional bimodules over (U (sly)®", Up(sly)®™).

(¢) Furthermore the bimodule structure restricts to that of a (Uq%(s[2)®”,UqL2(5[2)®m)—
bimodule (where Uk(sly) is the integral version of Ug(sly)) and a decomposition similar
to the above one holds:

(82) EB —|— (UL (sly)®" - i,;-UqLQ(s[Q)@m)

sh<i

where the direct sum is taken over allm € N™, 77 € N" and all « € By (S5 0), and the +5
symbol stands for the non direct sum.
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Proof. (a) Fix m;,n; and « as in the statement and let JW («) be the skein obtained by
inserting a JW,,, near e/ and a JW, near eff for all i,j. By Example 3.8 it is clear that
a = JW (a) and by Lemma 4.5 that it is a highest weight vector of weight ¢*™ for the action
of the i*"-copy of U (sly) for each 1 < m; similarly it is a highest weight vector of weight

¢*" for the right action of the j"-copy of U (sly). Furthermore, by Lemma 4.5 and the fact
that the m!*-Jones Wenzl projector kills the self-returns, the orbit of « is exactly the span
of the vectors JW (a; ;) with j<mand h <.

(b) It is straightforward from a) and from Theorem 2.9.

(c) If a left (resp. right) U,(sly)-module weight M (over Q(g'/?)) has a basis formed
by weight vectors over which the action of E") F() r > 1 has coefficients in R, then M
restricts to a UqL2 (sly)-module; we claim that the basis B(S;0) of .(&) has this property.
Indeed since the structure of module is induced by the right (resp. left) comodule structure
on each edge and the Hopf pairing between U (sly) and O, (SL(2)), and since the comodule
structure is integral in the basis B(&;0), it is sufficient to observe that the Hopf pairing
between Ugp(sly) and Op(SL(2)) = .#(9B) extends to a R-bilinear Hopf pairing between
UqL2 (sly) in the basis B(®8,0): this is the content of point (1) of Lemma 4.2.

To prove that the direct sum decomposition still holds, let

Bj 7(8:0) == {a € B(&;0)|#(aNef) <mi, #(anef) <ny Vi <m,Vj < n}\ Bpa(S;o).
To prove the claim, we will show that for each o € By 7(S;0), the following holds:

(R ’ B?%,ﬁ(e; 0)) ﬂ —I— (Uqu(ﬁ[g)® CQ Uqlé(ﬁ[g)@m> = {0}.

<y
S

1,h<
We start by remarking that if o € B #(&;0), then a = JW(a) and so, over Q(¢'/?), its
orbit is a direct summand of . (&) and thus it has trivial intersection with the R-span of
B (65 0):
(R B 4(6:0)) [ (Up(s)®" - a - Upe(sly)®™) = {0}.
Furthermore, by the point (b), given j < i, h < i, there exist (7, FL) € R\ 0 and
((j,h) € R - By .(&;0) such that ¢(j, h)az; + £(j, h) is in the orbit of a:

Y
e
9

c(j, h)az s+ 0(j, h) € Uk(sh)®" - a- Uk (sly)®™
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Now suppose that for some [; € UqLQ (sl)®™ and r; € Ung (sl5)®™ and some i, h; it holds
Z li-az ;-1 € R- B 1(8;0)\ {0}.

Then, multiplying by [], ¢(;, H) (Which gives a non-zero vector as .7 (&) is free as a R-
module) we also get that ) l;-a-r; € R+ B 2(6;0) \ {0}, which as already argued is
impossible.

U

Example 4.7. Let B be the bigon whose edges ¢; and e, are declared to be respectively of
type L and R. Then by Theorem 3.4, .(*8) is the right and left module U, (5[2)—module
O,2(SL(2)): the left action is induced by the right comodule structure coming from e and
the right action from el. If we let B% be the bigon where both ¢; and e, are declared to be
of type R (right), then . (B%) is a left (U,2(slz))®**module; the action of z ® y on a skein
b e S (B") is given by
(x®y)-b=x-b-1"(y)

where 7*(y) is the algebra antimorphism provided in Lemma 4.3 and the left and right actions
are those on .(28) described above.

4.4. Co-tensor product. Suppose U is a coalgebra over a ground ring R. Assume M is a
left U-comodule with coaction Ay, : M — U®r M, and N a right U-comodule with coaction
Ayxn: N — N ®gU. Then the cotensor product Ny M is

NOgM = {1} e NM ’ (AN ®1dM)(v) = (1dN & AM)(U)}

Cotensor product is a special case of the following notion of Hochshild cohomology. Assume
V' is a R-module with a left U-coaction and a right U-coaction:

A V=oVeU A VSURV.
The 0-th Hochshild cohomology of V' is defined by
HH(V)={z eV | A (z) = 1(A(z)),

where fl: V@U - U®V is the flip llz ®y) =y ® x.
With M and N as above, define a left U-coaction and a right U coaction on N ®pr M by

A, NRrM — N M ®gU, Ar(n®m Zn @m@u if Ax(n Zn ®u
ZAIN®RM—>U®RN®RM, ZA( Zu”@n@m"lfAM Zu”@m

Then the cotensor product NOyM = HHO(N ®@r M).

4.5. Splitting as co-tensor product and Hochshild cohomology. Suppose ¢, cy are
distinct boundary edges of a punctured bordered surface &’ and & = &'/(¢; = ¢3), with ¢ C
S being the common image of ¢; and cy. The splitting homomorphism gives an embedding
0. : S (6) — (&) and we will make precise the image of 0.
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-------------------------------------------------------------------------------------------

FIGURE 13. (a) The middle shaded part is the bigon, while the left and the
right shaded parts are part of &'. Gluing ¢; = ¢; gives the right coaction A,
and gluing e, = ¢y gives the left coaction ;A. (b) Element z5; € .(&’). The
horizontal lines are part of z. Note the order of indices.

Theorem 4.8. Suppose ci, ¢y are distinct boundary edges of a punctured bordered surface &'
and & = &'/(c1 = ¢3). The splitting homomorphism

(83) 0. (&) — S (&).

maps . (S) isomorphically onto the Hochshild cohomology HH®(.#(&")), which is a % (B)-
bimodule via the left coaction |A = ., A and the right coaction A, = A., (see Figure 15(a)).

In particular, if ¢1 is a boundary edge of &) and cy is a boundary edge of & which is
disjoint from &}, and & = (&) U S,)/(c1 = ¢a), then 0. maps /(&) isomorphically onto
the cotensor product of (&) and L (&)) over .7 (B).

Proof. Let us identify . (&) with its image under .. From the splitting formula (27) it
is easy to see that (&) C HH°(.#(&')). Let us prove the converse inclusion. Assume
0#£ve HH((&')). By definition, this means

(84) Ay (v) = 1GA(v)) =0.

Choose an orientation o of 06 and an orientation of ¢. Then o and the orientation of ¢;
and ¢, induced from ¢ give an orientation o’ of 9&’. Recall that B(&’;0) is a free R-basis
of .#(&'). Let B(&';0') be the set of all isotopy classes z of o’-ordered OM’-tangle diagrams
which are increasingly stated on every boundary edge except for ¢; and co. If [i is a state
of x Nc; and 7 is a state of x N ¢y, let 57 be the stated o’-ordered OM’-tangle diagram
whose states on x N¢; and x N ¢y are respectively fi and 7. See Figure 13(b). If /i and 7/ are
increasing, then z;; € B(&',0') is a basis element. For each i = 1,2 let Syn., and Simci be
respectively the set of all states and the set of all increasing states of x N ¢;. Then

B(6',0") ={zsz |z € B(&',0'),ji€ S, .7 € Slm@}

xMNecy?

Using the above R-basis B(&';0") of # (&), we can present v € (&) in the form

(85) Z Z Z coef (v, Tz) Taz,

IGX ) U‘eszﬁcl VeSZﬁCQ

where X C B(G’; 0’) is a minimal finite set, so that for each z € X, there are (i, 7 such that
the coefficient coef(v, z5;) is non-zero.

Let m(v) = max{|x N ¢, |z N |,z € X(v)}. We show by induction on m(v) that
ve S (6).
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Fori=1,2let X;(v) ={z € X(v),|lzN¢| =m}. If z € X;(v) N Xa(v), then |z Ney| =
|z N o] = m(v), and there is an element T € B(S, 0) such that x has coefficient non-zero in
the result of splitting z along c. From the definition of the splitting map we have

(86) coef(0(z), x77) = 1,
where 7 = (4)™ is the state consisting of m plus signs. Let
vV=v— Z coef (v, xzz) 0(Z).
ze€X1(v)NX2(v)

If m(v') < m(v) then we are done by induction. Assume that m(v') = m(v). One of
X;(v"), X2(v') is not empty, and without loss of generality assume X, (v') # (). Formula (85)
for v’ has the form

(87) v = Z Z Z coef (v, xpz) xog,

xEX(v’) /jeslﬁcl DGSL‘WCQ

and because of (86) we can assume that there is no x,, on the right hand side of (87).

Let p22 : (&) — (&) be the projection onto the homogeneous part G2 (. (&')), and
por o L (3B) — L (B) be the projection onto the homogeneous part G& (.7 (B)), see the end
of Section 2.10. Explicitly, for x € X (v’) we have

0 fUv#£7 0 if i
(88) P2 () = T2 e (o) = e
f T f n=

oA

Qpr

e

From Formula (37) for the coaction, we have, for x € X (v') and (v, i) # (7, T),

A, P @pit
(89) T — Z x;ﬁ®aﬁﬁ —" 0

ﬁesxﬂcl
0 if ¢ Xs(v)
90 T g ® T, —> Trg Q Qpp p .
( ) WESZ Ui i Z il 77 {m?ﬁ ® e lf T c XQ(U/).
zMNcy

It follows that

0= (2 @) AAW) ~AW) = 3 3 Y coot(v), wn) T © .

z€Xo(v') gest | - ves!

zNeq zMecy

As the right hand side is a linear combination of elements of a basis, all the coefficients
v there are 0. This means X5(v") = (), a contradiction. Thus m(v") < m(v) and we are
done. 0

Remark 4.9. Theorem 4.8 holds also if we change the base ring to C by evaluating ¢ to a
non-zero complex number.

Using the above result together with Theorem 4.6 we can deduce a similar result for
U, (sly)-modules. Recall that for a bi-module V over a Q(q'/?)-algebra U the 0-homology
group is

HHy(V) = V/Q(¢"*)-spania-v—v-a|a € Uwv V).
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Theorem 4.10. Suppose c1, co are distinct boundary edges of a punctured bordered surface &'
and & = &'/(¢1 = o), with ¢ being the common image of ¢y and co. Then the composition

(91) Z(8) @r Q(g"?) 2= #(&') @5 Q(¢"?) — HHo(.(&') 05 Q(q'?))

is an isomorphism of Q(q*/?)-vector spaces. Here (&') @r Q(q¢"/?) is a Uz (sly)-bimodule
via the dual actions of A, and .,A.

In particular, if & = &1 U &y with ¢; C &1 and ¢y C Sy, then the map in (91) is an
isomorphism betueen (&) ©rQ(¢"") and (#(81)ErQ(@) D1 ) ((62) 81 0Q(?)).

Proof. The decomposition of .7 (&') @ Q(¢'/?) given by part (b) of Theorem 4.6 shows that
it is sufficient to prove that if V.2 (resp. VX ) is the irreducible mo + 1-dimensional (resp.
my + 1-dimensional) right (resp. left) U, (sly)-module, then the composition of natural map

(92) HH (V) @VE)=VE oVE - HH(VE @ VE)

is an isomorphism of vector spaces. We will see that this follows from the fact that every
finite-dimensional Uz (sly)-module V' is equivalent to its dual V*.

First observe that since the pairing between O,2(SL(2)) and U,(sly) is non degenerate,
HH°(V;E @ V) can be equivalently defined as

HH(VE @VE)={vewe Vi aVijz vaw=v@w- z, Yo € Ug(sh)}.
Then using the isomorphism between V£ and (V% )* we have :

HE(VE © V) = Homy iy (Vi VE) = Sy s Q(g?)

ma2? " my

by Schur’s lemma.
Now let’s take the dual of the above equation and get:

(93) (HHy(Vyy, @ Vi)™ = (V)" @ (V)" = (HH(V,y, @ Vi)

where the first arrow maps an element of (HHy(V,L @ VE ))* to some f € (V2 @V, )* such
that f(z-v®w) = flv@w - z) for all x € Up(sly) and v@w € VL @ VI Using again
the isomorphism between (VX )* and V% we have that the image of (HHo(V,L @ VI ))* in
Vi, ® (Vi)™ is Homuy sy Vi, Vi) = Smy.m;Q(q/?) by Schur’s lemma.

To conclude, observe that if m; = my then the image of the inclusion HH (V) @ V) —
Vi @VE ~VE @ (VE) = Hom(VL VL) is given by the multiples of the identity map.

But the kernel of the projection Vi @ VR — HHy(VE ® V.I) is the sub vector space of

Hom(V,k , VL ) spanned by the matrices of the form M — Mz where x represents the action

of an element of Up(sly) and M € Hom(V,L VL ); thus it is contained the set of matrices
with zero trace and so the projection of HH*(V,} @ VR ) in HHy (V5 @ V,1) is nonzero.

O

Remark 4.11. By the splitting theorem and Proposition 4.10, (&) is both a submodule
and a quotient module of . (&’).

Example 4.12. Clearly, if in Theorem 4.10 ¢; = ef* and ¢, = e} belong to two distinct
connected components of &', then one can restate the H H, simply as a tensor product over
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a copy of Up(sly) acting on the left on the skein algebra of one component and on the right
on the other.

In particular, if G is obtained by glueing a bigon B along its right edge to a left edge of
&' then 7(6) = S (&) Qu ,(s1,) 7 (B) is isomorphic to .7 (&') as it can be seen directly by
Theorem 2.15.

If B% is the bigon whose edges are both declared to be of type R (right), then .7 (B%) is
a left module over Uz (sly)®? (see Example 4.7). Then glueing B* to &' along one edge of
type L, shows that

<Eﬂ(65>:<y<65)®U25[2 y(%R)

The resulting surface & is still homeomorphic to & but the edge on which the glueing
has been performed has been transformed from an edge of type L to one of type R. This
corresponds to applying Lemma 4.3 to the module structure coming from that edge.

Remark 4.13. If ¢, ¢, are two other edges of &’ (and then of 0&), (91) is an isomorphism
of U, (sly)-modules for the structure associated to ¢} and ¢,. Furthermore the theorem can be
applied independently to glue also ¢} and ¢, and the final isomorphism between .7 (&' /(¢; =
c2, ¢} = cy)) ® Q(¢*/?) and HH((&') ® Q(¢*/?)) (with respect to the Uz (sly)®*-bimodule
structure) does not depend on the order in which the glueing was performed.

4.6. Braided tensor product. Let U be a dual quasitriangular Hopf algebra. Assume
A is an algebra admitting two right U-comodule-algebra structures A; : A - A ® U and
As: A — A® U which commute, i.e.

(94) (Al &® IdU) o AQ = (IdA & ﬂ) o (AQ &® IdU) @) Al

where fl : U® U — U ®@U is the flip operator. Denote the common operator of (94) by Ajs.
Observe that since A; and A, commute, A can be endowed with a right U-comodule
structure A := A1xAy: A — A® U defined by

(95) Zx ® uyug if Aja(x Zx QU ® Us.

However A : A — A®U is not an algebra homomorphism, i.e. A is not a right U-comodule
algebra with respect to A, even though it is a right U-comodule algebra with respect to each
of Ay and A,. So we define a new product. For z,y € A let

(96) x*y—Zx u®v) if Ag(x Zm ® u, Aq( Zy ®v.

It is easy to check that x gives A a new associative product, and we call A with this new
product the self braided product of A; and A, and denote it ®A.

Lemma 4.14. With respect to the product x and the right U-comodule given by A = A1xAs,
the algebra A is a right U-comodule-algebra.

Proof. We have to show that for z,y € A one has
(97) Afaxy) = Az)x Ay).
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Let us now write Ajp(z) and Alg( ) as
ANPYE Zx®u1®u€A®U®U
A (y Zy®U®U2€A®U®U
Using the commutativity of A; and A, and a simple calculation, we obtain
(98) A(xxy) Z p(u" @ ") 2"y @ uyv'u'vy
(99) Z p(u )2y @ ugu"v" vy,

where A(u) = Y v/ ® u”,A(v) = v’ ® v"” are coproducts in U. The right hand sides of
(98) and (99) are equal thanks to (60). This proves (97). For those who are familiar with
graphical calculations in Hopf algebras, we provide a graphical proof in Figure 14. O

e e N Je K
KK

FIGURE 14. The proof of the compatibility of A and x. The diagrams are to be
read from bottom to top, the thick (resp. thin) strands are A-colored (resp. U-
colored), the crossings are flips, the white (resp. gray) solid dots represent A,
(resp. As), the rectangle represents the co- R-matrix p, the black (resp. white)
triangle is the product (resp. coproduct) of U, the thick trivalent vertex is
the initial product in A. The equalities follow in order from: compatibility
of A; with the product of A, A; commutes with of A,, coassociativity of A;,
associativity of the product in U, equation (60), coassociativity of A;, A;
commutes with of Ay, associativity of the product in U.

Example 4.15 (Braided tensor product). The first example of the above structure is the
well-known braided tensor product of two right comodule-algebras, which we describe in de-
tails for the reader’s convenience. Suppose A;, Ay are right comodule-algebras over a dual
quasitriangular Hopf algebra U. The tensor product A = A; ®% Ay has two commuting right
U-comodule structures. Namely Ay = (Ida, ® fl) o (A4, ® Ida,) and Ay = Tdy, @ Ag,.

By the above construction, A has the structure of a right U-comodule algebra, with the
coaction A = A;*xA,y and the product x*. Explicitly, for v € Ay and y € Ay, the coaction is

é(m@y):Z( Ry @uvif Ay, (z Zaj ® u, Aa,(y Zy ® .
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Let us now describe the product . Identify A; with A; ® {1} and Ay with {1} ® A, (as
subsets of A} ®r Ay). Then the new product (96) is given by

xy if z,y€e Ajor x,y € A,y
(100) THY =L TRy if veA,ye A,
Yopluv)(y @) if xe Asy € Ay,

where Ay, (x) =D 2" @u, Ay (y) = > y'®, and p is the co- R-matrix.
The algebra A; ®r As with this new product is called the braided tensor product of A,
and Aj, and is denoted by A;®,,As. For details see [Maj].

Example 4.16 (Transmutation). Assume that U is a dual quasitriangular Hopf algebra and
let A=U. Then Ay :=A: A — A®U gives A a right U-comodule algebra structure. To
get another right U-comodule structure one converts the standard left comodule structure
to a right one by

(101) Ay (z) :sz'@S( if A(x Zu@x

However A; is not compatible with the algebra structure of A. One can twist the product
of A using the co-R-matrix p of U to make both A; and A, right comodule algebras as
follows. Define a new product on A using the common value of (60) ie

(102) rOy=> pl@y)"y’, fA@) =) es" Aly)=> vy’

It is easy to check that this gives A a new product, with which both A; and A, give A right
U-comodule algebra structures. Besides, A; and Ay commute.

Our construction now gives A a right U-comodule algebra structure whose coaction A =
A1xAs and whose product * are given by

(103) A(x) :Zx"®5 2" if (A @ Idy) o Az Zx @z ®x"
(104) x*y—Zx" " / ///)®S( lfA Zy ®y//

[t turns out that the coaction (103) is exactly the right coadjoint action, see [Maj, Example
1.6.14] and the product % is exactly the covariantized product of [Maj, Example 1.6.14].
The algebra A, with this new product * and the original coproduct A, is known as the
transmutation of A, and is a braided group in the braided category of U-comodules, see [Maj].

4.7. Attaching an ideal triangle is a braided tensor product. Suppose e, e, ey are
oriented edges of an ideal triangle P5 as depicted in Figure 15.

Let & be a (possibly disconnected) punctured bordered surface, with two boundary edges
ai,ay C 06. Define & = (G U Ps)/(e1 = ay,ea = az), see Figure 15. (A special case is when
G =6,U65and a; C &,a; C &".) For i = 1,2 the algebra (&) has a right comodule
algebra structure A; := A, : (6) = S (6) ® O,2(SL(2)). The two coactions Ay and A,
commute, see Lemma 4.1. Hence we can define the self braided tensor product ®.7 (&) of
Ay and Ay, which gives .7 (&) a new right comodule algebra structure over O,2(SL(2)). On
the other hand, A, : /(8) — 7 (6) ® O,.2(SL(2)) gives (&) a right comodule algebra
structure over O,2(SL(2)).
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FIGURE 15. Left: Ideal triangle P3. Middle: Glueing & and P3 by a1 = e
and ay; = ey to get 6. Right: tangle diagram x € (&) and its image
f(z) € 7(8)

Theorem 4.17. The right O,2(SL(2))-comodule algebra . (&) is naturally isomorphic to
the self braided tensor product ®.%(6), defined with the co-R-matriz p’ of (66).

In particular when & = &1 UGy and ay C &1, a9 C Sy, the right comodule algebra .7 (S)
over Op2(SL(2)) is naturally isomorphic to the braided tensor product /' (61)®.7(6,).

Proof. Let 0, be the positive orientation of the boundaries of & and &. In the proof all
tangle diagrams will have positive height order.

For a stated 0&-tangle diagram z let f(z) be the stated 0&-tangle diagram obtained from
x by extending the strands ending on a; L as until they end on e, with order on e given by
its positive direction, see Figure 15. We require that f(z) has no crossing inside Ps and this
makes f(x) unique up to isotopy. Since f clearly preserves the defining relations of a stated
skein algebra, we can extend it to an R-linear map [ : S (6) — S(&).

Recall that ®.7(6) is the same .7 (&) with a new product % given by (96).

Lemma 4.18. The map f: .7 (6) — L (6) is an algebra homomorphism.
Proof. Let x,y be stated 0G-tangle diagrams.

FIGURE 16. zy, f(zy), and f(z)f(y)

We present zy, f(zy), f(z)f(y) schematically as in Figure 16. By splitting along the dashed
line in the picture of f(x)f(y) and using the counit property which says u = > u'e(u”), we
get, with Ag(z) => 2’ @ uand Ay(y) => v @,

z%%m

= Z f(@'y)p (u®wv), using co-R-matrix p’ of (66)

= f(zxy) by (96).
Thus f is an algebra homomorphism. O
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It remains to show that f is an R-linear isomorphism. For [ € N let F(/(6)) =
F"(#(6)) and Fi(L(6)) = F"*(.#(S)) be the filtrations defined in Subsection 2.10.
In other words, Fj(.(&)) is the R-submodule spanned by stated tangle diagrams a such
that I(a, a1) + (o, a2) <, and similarly for F;(.(&)). Denote by Gr, the corresponding
graded R-modules. Tt is clear that f preserves the filtrations F;. It is enough to show that
Gr(f) is a bijection.

Let By, be the set of isotopy classes of simple 0&-tangle diagrams « such that I(«, a;) =
m, I(a,az) = n and « is increasingly stated on each boundary edge, except for a; and ay
where it is not stated. Then

(105) Gr(# (@)= P Vi

m+n=l, t€Bm n

(106) Gr(# (@)= P W)

m+n=l, t€Bm n
Here V(x) is the R-submodule of Gr;(.#(&)) spanned by o € B(S; 0, ) such that a = x if
we forget the states on a; U as, and W(z) is the R-submodule of Gr;(.#(&)) spanned by
z € B(S;0,4) such that 2N S = z. It is enough to show that Gr(f) is an isomorphism from
V(z) to W(x) for x € By, .

Note that both V(z) and W (x) are free R-modules, and both have rank (m + 1)(n + 1).
Indeed there are m + 1 increasing states on x Na; and n + 1 increasing states on N as and
these can be chosen independently, thus rkg(V(z)) = (m + 1)(n + 1). For what concerns
W (z), observe that if z € B(&; 0, ) such that 2 NS = x then z N Py consists of k arcs (for
some k € [0, min(m,n)]) connecting e; and ey, m — k arcs connecting e; and e, and finally
n — k arcs connecting e; and e; furthermore z N e is increasingly stated so that there are
exactly (m +mn — 2k + 1) such z. Thus we have:

min(m,n)

tke(W(z)) = Y (m+n—2k+1)=(m+1)(n+1).

k=0

The reordering relation (10) implies the relation in Figure 17, which converts arcs connecting
e; and ey to arcs with one end in e. This shows that Gr(f) : V(z) — W (x) is surjective.

A = nh Ay

+ — —+
FIGURE 17.

Since both V(z) and W (x) are free R-modules having the same rank, we conclude that
Gr(f) : V(z) — W(x) is an isomorphism. This completes the proof of the theorem. O

4.8. Examples: Polygons, punctured bigons, and punctured monogons.

Example 4.19 (Polygon). The polygon P, is the standard disc with n punctures on its
boundary removed. Note that the triangle P3 is the result of attaching an ideal triangle to
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two bigons. By Theorem 4.17 we have
(107) S (P3) = Oq2(SL(Z))@OQQ(SL@))O(]Q(SL<2)),

where each copy of O,2(SL(2)) is a right O,2(SL(2))-comodule algebra via the coproduct.
Consequently, .7 (P3) = O,2(SL(2)) ®r O,2(SL(2)) as R-modules, and its algebra structure is
described by (100). From here one can get a presentation of .(Ps). In [Le2|, a presentation
of .7 (P3) was obtained by brute force calculation.

The n-gon P, is the result of attaching an ideal triangle to the disjoint union of P,,_; and
the bigon. By induction, we obtain

Corollary 4.20. One has
Z(Pn) = 0p2(SL(2))® - -- @0, (SL(2)),
where there are (n — 1) copies of Op2(SL(2)).
Example 4.21 (Punctured bigons). Let B,, be the bigon B with n interior punctures
removed. For example By = B. Like in the case of B, we will show that .(%8,) has a

natural structure of a Hopf alagebra where all the operations can be defined geometrically.
Recall that we denote e; and e, the left and right boundary edges of B.

O O O O

Q O O O O ©
O O O O

FIGURE 18. The embedding of the 4-punctured bigon B, into Bg and the
splitting homomorphism. The composition gives the coproduct.

Let ¢ : B, — B85, be the inclusion identifying B,, with the complement of n closed
disjoint arcs, each connecting two punctures of the 2n-punctures of By, ; See Figure 18. Let
A (B, = L(B,) @ L(B,) be the map induced by ¢ and then splitting along the
vertical arc connecting the two boundary ideal vertices of 85, and identifying the two halves
with B,,.

Let also € : Z(B,) — R be the map obtained by including B,, in By, = B and then
applying € : S (B) — R.

Finally define S : £ (%8,) — Z(B,) as the R-linear map whose value on a stated tangle
a in B, x (—1,1) is obtained by first switching all the states n to —n and all the framing
vectors v to —v, then rotating o by 180° around the axis passing through the two boundary
ideal vertices and finally multiplying the result by (yv/—1¢)%(®)=% () (where 6,(a) was
defined in Subsection 2.10 as the sum of the states on awNe). It is easily checked that all the
defining relations (7)-(10) are preserved so that S is well-defined.

Proposition 4.22. For each n > 0 the skein algebra . (*B,), endowed with A €, S, is a
Hopf algebra.

Proof. From the definition of the splitting homomorphism it is clear that A is an algebra
homomorphism. The coassociativity of A is a direct consequence of the fact that applying



44 FRANCESCO COSTANTINO AND THANG T. Q. LE

twice ¢ induces the same morphism as the identification of B, with the complement of n
disjoint arcs in B3, each containing 3 punctures as depicted here:

Q O O O O

The map € is a morphism of algebras by its definition; to verify that (e ®Id) oA = Id observe
that if in Figure 18 we fill the left punctures then we obtain the initial 8B,,.
That S is an antimorphism is a consequence of the fact the revolution by 180° about the
the axis connecting the two boundary vertices reverses the height order in B, x (—1,1).
We are left to prove that

(108) (S®Id)c A=(Id® S)o A =g,

and since S is an antimorphism, it is enough to check this identity on a set of generators.
From relation (10) we get that the set of horizontal arcs, with all possible states, generates
Z(B,). If a,,, is a horizontal arc with state n on the left and state p on the right, then the
definition gives

S(ay) = agy and S(ay) = —¢" oy,
so that on By = B, S coincides with the antipode defined in (51). Now Identity (108) for
a, follows from the same identity for the antipode in .7(B) = O, (SL(2)). O

Remark 4.23. (a) Since B, is the result of attaching 2n ideal triangles to n + 1 bigons,
Theorem 4.17 can be used to show that as R-algebras .7 (%8,) = O, (SL(2))®™*+Y where
the tensor product is over R and the algebra structure of Oz (SL(2))®™*Y is the unique one
determined by:

(i) the subset A; = 120D @z 0,2(SL(2)) @z 1810 C O,2(SL(2))®" V) is isomorphic
to O,2(SL(2)) as R-algebras for each i =1,...,n+ 1, and

(ii) for @ € A; and b € A; with 7 < j, one has ab = a ® b and

(109) ba — Zﬁ,(b/ ® a/)pl(b/// ® a/”)a//b”

where p’ is the co-R-matrix defined by (66) and g’ is its inverse.
(b) For the case n = 1, Proposition 4.22 and a presentation of .%(B,) were also indepen-
dently obtained in |Ko| via a direct calculation.

Example 4.24 (Punctured monogons). Let M,, be the monogon M with n punctures in
its interior removed, see Figure 19. Let A : S (M,) — S (M,) ® L (B) be the right
< (B)-comodule algebra structure induced by the only boundary edge of M,,.

Similarly .(98,,) has two commuting right comodule-algebra structures over . (*8) in-
duced by e; and e,, let A; be the one induced e; and Ay be the one induced by e,.

Like in the bigon case, let ¢ : M, — Mas, be the inclusion identifying M, with the
complement of n disjoint arcs, each connecting two punctures of Ms,. Observe that My,
is the result of attaching an ideal triangle to two copies of M,,, see Figure 19. By Theorem
4.17 we have isomorphism of algebras .7 (My,) = S/ (M,,)®.7(M,). Let A : S (M,) —
S (Ma,) = S (M,)2.7(M,,) be the map induced by ¢, and this isomorphism.
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O O O O

FIGURE 19. The inclusion ¢ : My — Mg and the decomposition of Mg in a
triangle and two copies of M, used to fix the isomorphism . (Mg) =

S (M) RS (My).

Proposition 4.25. (a) For eachn > 0 the algebra (M) endowed with the map A and the
map € : S (M,) = S (My) = R induced by inclusion is a bialgebra object in the category
of Op2(SL(2))-comodules (i.e. its product, coproduct, unit and counit are morphisms of
O, (SL(2))-comodules).

(b) The Op2(SL(2)) comodule-algebra 7 (M.,,) is isomorphic to the self braided tensor
product @.% (Bp_1). In particular . (M) is isomorphic as a Hopf algebra to BSL,(2), the
“transmutation” of O,2(SL(2)), or “braided version” or “covariant version” of O, (SL(2)) (see
[Maj| Examples 4.3.4 and 10.3.3).

Proof. (a) The inclusion ¢ induces an injective algebra homomorphism ¢, : % (M,) —
L (May,) = S (M,)®.7(M,). As in the case of bigons, the coassociativity follows from the
fact that applying twice ¢ induces the same morphism as the identification of M,, with the
complement of n disjoint arcs in M3, each containing 3 punctures as depicted here:

0O 0O O O

The map € is a morphism of comodule-algebras by its definition; to verify that (e®Id)oA = Id
observe that if in Figure 19 we fill the left punctures then we obtain the initial M,,. The
last fact to verify is that A is a morphism of comodules, i.e. denoting A : . (M,) —
L (M) @ Z(B) the right comodule structure, that

(A®Id)cA=(IdeIdem)(ld@fl®Ild)o (A®A)o A,

where m : (B) ® L (B) — (*B) is the multiplication and fl is the flip. Since A is
a morphism of algebras, it is sufficient to check this on generators of M,,. For this we
refer to Figure 20, where we depict the case n = 1 but the proof is similar for other n.
Letting a(x,y) € B(M,,0) be the generator represented by a horizontal arc whose states
are y,z € {£} depicted in the figure; the equality in the figure shows that we have:

Ala(r,y) = g2al(+y)@o(r, =) — gia(=.y)ga(r, +).
Also, from the definition of A one computes A(a(z,y)) = 3, a(n,€) @ (ayzay,) where

ayy denote the standard generators of .7(8). Now the verification is a straightforward
computation.
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VANT Y LONT YN
= —q +4q :

FIGURE 20. Re-expressing A(a(z,y)) as a braided tensor product. The equal-
ity is a consequence of (10).

njot
[N

FIGURE 21. (a) The R-linear map 7" embeds B into M; as shown, after
applying the map m;l and rotating by 7. (b) The right coaction of .7 (B)
on (M) is obtained by cutting on the dotted arc; in the figure, a skein
# = T(a) is cut in three parts by the dotted arc, the mid one is T'(a(z))
while the rightmost and leftmost are respectively S(a(1)) and as) so that their
product in the bigon cut out by the dotted curve is S(a(1))a(s). This shows
that the pullback of A is the adjoint coaction.

(b) As M,, is obtained by attaching an ideal triangle to 2B, _;, the claim follows from
Theorem 4.17. The isomorphism of .’(M;) with BSL,(2) then follows from Example 4.16.
Let us make explicit the isomorphism.

Let T : ./ (B) — (M) be the R-linear isomorphism obtained on a skein a by embedding

rot*(ﬁ;ll(a)) (see Subsection 2.8) in the monogon through the embedding depicted in Figure

21 (a) and finally extending the strands of rot*(ﬁ;l(a)) until they hit the boundary of M,
(i.e. by applying the map f defined in the proof of Theorem 4.17). We claim that pulling back
through T the coaction of .7 (M) we get the right adjoint coaction on O,2(SL(2)) = .7 (*B)
and pulling back the product * on .(M;) we get the product * on BSL,(2) defined in
Example 4.16:

Acoad:(T_l(X)[d)OéoT and i:T_lo(-*-)O(T®T).

Using the definitions of T, of the antipode on .(8) (50) and of A, one verifies directly
that (I '®Id)oAoT (z) = 2" @S (2")2” for any x € Op2(SL(2)) = .7 (B) (see Figure 21 (b)).
Then since * and A are compatible it is sufficient to check that the pullback of * equals * on
the generators of O,2(SL(2)); this is a straightforward computation. A graphical explanation
is as follows. Observe that if © = T'(a),y = T'(b), then z xy = (T(a * b))1)e((T(a * b))(2))
(this holds in general comodule algebras), so that we have:
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DAY

and that the right hand side equals
T(ag) - be)p (S(aw)ae @ S(bw))e(bs) = T(aw) - b)) (S(an))ae © S(ba))
where p’ was defined in (66). This proves that x =T 1o (-x ) o (T ®T). O

5. A LIFT OF THE RESHETIKHIN-TURAEV OPERATOR INVARIANT

In this section we show that a Reshetikhin-Turaev operator invariant of tangles can be
lifted to an invariant with values in O,2(SL(2)). In this section R = Z[¢*'/%].

5.1. Category of non-directed ribbon graphs. We will present the category of non-
directed ribbon graphs [Tu3|, also known as framed tangles [Oh], in the form convenient for
us.

The bigon is canonically isomorphic (in the category of punctured bordered surface) to
the square S = [0, 1] x (0,1). Under the isomorphism ¢; and e, are mapped respectively to
{0} x (0,1) and {1} x (0, 1), and abusing notation we also denote {0} x (0,1) and {1} x (0, 1)
respectively e, and e,. We identify S with S x {0} in M := S x (—1,1). We have OM =
0S8 x (=1,1) = (e, Ue,) x (—1,1).

6 !
€ l 67‘ ﬁ '6
S B® B Bo

FIGURE 22. Left: Square S = [0,1] x (0,1), with edges ¢, and e,. Middle:
tensor product S ® . Right: composition 3 o ', which can be defined only
when |05 = [0,0'| .

Recall that in the definition of a 0M-tangle we require the boundary points over any
boundary edge have distinct heights (see Subsection 2.4). If we change this requirement to:
all boundary points are in dS (in particular they all have the same height) we get the notion
of a 0S-tangle. Formally, a 0S-tangle is a framed compact 1-dimensional unoriented manifold
B properly embedded in M = S x (—1,1) such that 93 has height 0, i.e. 95 C 0S = ¢, Ue,,
and the framing at every boundary point of 5 is vertical. Let 9,8 = Ne, and 0,0 = S Ne;.
Two 0S-tangles are 0S-isotopic if they are isotopic in the class of 0S-tangles. If |0,.5| = k and
|0,8] = [, then our notion of a dS-tangle is the notion of a non-directed ribbon (k,1)-graph
without coupons in [Tu3|.

After an isotopy we can bring f to a generic position (with respect to the projection from
S x (—1,1) onto S) and make the framing vertical everywhere . The projection of /3 together
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with the over/under information at every crossing, is called a dS-tangle diagram of 3. The
isotopy class of [ is totally determined by any of its diagrams.

The non-directed ribbon graph category is the category whose set of objects is N and a
morphism from k to [ is an isotopy class of 0S-tangle B such that |0.5| = k and |0,5] = [,
with the usual composition (see Figure 22). If the tangles are oriented, then one would get
the usual ribbon tangle category.

If 5,5 are two 0S-tangles, define their tensor product S ® ' as the result of putting S
above [’ as in Figure 22. Under the tensor product and the composition, morphisms of the
non-directed ribbon tangle category are generated by the five elementary 0S-tangles depicted

M % K |4 b

FIGURE 23. Five elementary tangles

From the ribbon category of finite-dimensional modules over the quantum group U,(sls)
we get the Reshetikhin-Turaev operator invariant of 0S-tangles, see [Tu3|. Let us describe
this operator invariant in a special case. Let V be the free R-module with basis g, ,g_.
The above mentioned operator invariant is the unique functor Z from the non-directed
ribbon tangle category to the category of R-modules preserving the tensor product such
that Z(n) = V®" and the values of the elementary tangles are given by

(110)

Z( C) V2 SR, gy ®g. = q %, g-®gs = —q 3, g1 @9 =0, g ®g_ —0
(111)

Z(D ) RV 1= —¢3 (9, ®9-) +¢2 (9- @ g4)
(112)

Z(x) L YE2 2 Z(N) — gid+ ¢! <Z (p |> oZ(| q))
(113)

Z(x) Y2y e Z(N) :q_lid—l—q<Z (p |> oZ<| q>>

see |Co|. Here our g4 are related to the basis vectors gy in [Co| by

gy =—v—1 q_3/29%, g-=9-1

Thus if 8 is a dS-tangle with |9,5] = [ and |0,| = k then Z(5) is an R-linear map
V@ 5 V@ which depends only on the isotopy class of f3.

For 7 = (v1,...,u) € {£} and i = (p1,..., ) € {}* we can define the matrix entry
#Z(B)z € R such that

(114) ZB) g ® - ®gu) = > GZ(B)) Gn ® - @ gy

ve{+}
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Remark 5.1. In fact V and all its tensor powers are modules over the quantum group
Up(sly), and all the operators Z(/3) are U (sly)-morphisms. But we don’t need the structure
of U2 (sly)-modules here. When k =1 = 0, we have Z() € R, which is equal to the Kauffman
bracket polynomial of f3.

5.2. From OM-tangles to 0S-tangles. Suppose 7 is a dM-tangle. We can 0M-isotope 7
so that its diagram D has the height order on e; and e, determined by the arrows in Figure
24. This diagram determines a unique class of 0S-tangle, denoted by 4. Note that the arrows
of e,, e; are irrelevant for 7. It is easy to see that the map v — 7 is a bijection from the set
of OM-isotopy classes of dM-tangles to the set of 0S-isotopy classes of 9S5-tangles.

FIGURE 24. Direction of boundary edges, used to determine the height order

Suppose |y Ne| =1land |[yNe,| =k, and 7= (v1,...,1) € {£} and i = (uy,..., ) €
{£}*. Let vz be the stated M-tangle whose underlying tangle is v and whose states
on N e (respectively on v Ne,) from top to bottom by the height order are vy,... 1,

(respectively g1, ..., pg).

Theorem 5.2. Assume the above notation. Consider vz as an element of 7 (B). Then
(115) €)= 72V

Thus we see that the tangle invariant of ;v; with values in .(B) is stronger than the
Reshetikhin-Turaev operator invariant.

Proof. Suppose 71,7, are dM-tangles. Since 7175 = 71 ® o, if (115) is true for v = 77 and

v = 7y, it is true for v = 1.
Now suppose 71,72 are obtained by splitting a dM-tangle 5 along an ideal edge. By the
splitting formula (40) and the definition of A,

A@Br) =D s(n)aa(r)i
i
Applying € ® id to the above, we get

05 =Y els(1)7) 7(12)z-

Applying € to the above, we get

e(587) = > e(5(m)7) e(7(72)7),

7

which shows that if (115) holds for v = v, and 7 = 75 then it holds for 8 = 7 o ..
Thus it is enough to check (115) for the elementary tangles, for which (115) follows from
the explicit formulas (110)—(113). O
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5.3. A 1+ 1-TQFT. Let Cob;; be the symmetric monoidal category whose:

Objects are numbered disjoint unions of open unoriented segments.

Morphisms are diffeomorphism classes of punctured bordered surfaces & with indexed
boundary. Explicitly if 06 = el -+ el eft... elf then & € Mor(eFU---Uek efU---Lek)
and the composition of morphisms is given by the glueing of marked surfaces explained above
(associativity of compositions is ensured by the fact that we consider diffeomorphism classes
of surfaces). In particular the identity morphism of e; - - - Lle, is a disjoint union of n copies
of B.

Tensor product is the disjoint union, where the components of (e; L - -Lle, ) U(ejU---Lel)
are ordered as e; LI ---e, e =epp1 L€, = €min-

In order to define the target category of our TQFT functor, let us fix some notation.
Given a finite set C, we will then denote by Uy (slz)®“ the algebra obtained as the tensor
product @, Ugp(slz) where each copy of Ug(sly) in the tensor product is indexed by a
distinct element of C.

Definition 3 (Ugp(sl)—finBim). Let Ugp(sl,) —finBim be the category whose objects are
pairs (C,[M]) where C is a finite set, M is a right module over Ug(sly)®¢ which is a
direct sum of finite dimensional modules and [M] is its isomorphism class. A morphism
from (C,[M]) to (C'",[M']) in Ug(sl)—finBim is the isomorphism class of a bimodule B
over (Ugp(s12)®C, Upz(sly)®C") which is a direct sum of finite dimensional bimodules and
such that [M B 5 (s1)9€ B] = [M']. The composition of [B] : (C,[M]) — (C",[M']) and
[B'] : (C',[M']) = (C",[M"]) is [B B 3 (s12) 5" B'| (the composition is associative as we con-
sider bimodules up to isomorphisms). The monoidal structure on Ugp(sly)—finBim is given
by (C,[M]) ® (C",[M']) := (CUC",[M ®@r M']) and its symmetry is given by exchanging
(€, [M]) and (C", [MT]).

Then let . : Coby 1 — Ug2(sly) —finBim be defined as
L(eyU--Uey) = (C ={e1, ...}, [Q(¢"?) @ 7 (B)*))

and for a punctured bordered surface & whose boundary is a union of C' = {eF, ... el

and C' = {ef, ... ef} let .7(8) be the isomorphism class of the (U (sly)®C, U,z (s1)®%")-
bimodule Q(¢*/?) ®% .7 (&).

L

Theorem 5.3 (Skein algebra as a TQFT). The functor % is a symmetric monoidal functor
into Ugp(sly) —finBim.

Proof. By point b) of Theorem 4.6 it holds Q(¢'/?) ®r 7 (B) = @, Vi* @ V¥ where V"

(resp. V') is the irreducible i + 1-dimensional left (resp. right) module over Up(sly). Then,
arguing exactly as in the proof of Theorem 4.10 one sees that for each j > 0 it holds

Vi ®u 1) (Qa'?) @= 7 (B))] = [V/f].

Then Q(q'/?) @z 7 (B) represents the identity morphism ({e},[M]) — ({e},[M]) (for any
edge e) if restricted to finite dimensional right U, (sl;)-modules (which are all direct sums
of V/7’s). Let & and &" be two bordered punctured surfaces with boundaries indexed so

that 9*&" = {ey,...,e,} = 0%S&” and let & be the surface obtained by glueing & and
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G&” by identifying the corresponding edges of *&’ and 9%&” via an orientation reversing
diffecomorphism. Then .7 (&) (resp. .(6")) is a right (resp. left) module over Up(sly)?"®
(resp. over U, (5[2)8R6":8L6'). To conclude, a repeated application of Theorem 4.10 shows
that the following holds up to isomorphism:

S(6) = S (&) Oy, (yyearer (S).
O

Remark 5.4. The previous construction can be improved by passing to the setting of 2-
categories in order to consider objects no longer up to isomorphisms. This requires to consider
marked surfaces and bimodules and will be dealt with in another work.

6. A NON-SYMMETRIC MODULAR OPERAD

In this section we show that stated skein algebras provide an example of “non symmetric
geometric modular operad”. Such objects were defined by Markl (|[Mark|) as a generali-
sation of “modular operads” initially defined by Geztler and Kapranov (|GK]). Given a
monoidal category C', Markl defined a NS modular operad in C' as a monoidal functor
NSO : MultiCyc — C' where MultiCyc is a suitable category of MultiCyc “multicyclic sets”.
In this section we rephrase Markl’s definition in the case of a suitable category of punctured
bordered surfaces TopMultiCyc; then we define a NS geometric modular operad as a monoidal
functor NSO : TopMultiCyc — C'. Finally we re-interpret skein algebras as an example of
an NS geometric modular operad with values in U (sly) —finBim (see Definition 3).

6.1. The category of topological multicyclic sets TopMultiCyc. In this section all sur-
faces will be oriented and all homeomorphisms will preserve the orientation.

A cutting system in a bordered punctured surface & is a finite linearly ordered set « of
pairwise disjoint ideal oriented arcs ay,--- ,ax C & (see Subsection 2.2); a homeomorphism
of cutting systems a and [ in & is a homeomorphism ¢ : & — & such that ¢(a) = 3 so
that it preserves the ordering and the orientations of the arcs. Cutting along all the arcs of
a cutting system a produces a bordered punctured surface cut, (&) whose homeomorphism
class depends only on the homeomorphism class of a. We will say that a cutting system «
is disconnecting if each arc in « disconnects .

If the connected components of G are linearly ordered then one can order the connected
components of cut, (&) as follows. Since cut, (&) = cuta, (cuta, , (---cuts, (6))), it is suffi-
cient to define how to do it for of the cut along a single ideal arc a. If a does not disconnect,
then there is a natural bijection between the components of & and cut, (&) which induces
the ordering on those of the latter surface. If o disconnects &, since both o and & are
oriented there is a well defined notion of the connected component of cut, (&) “lying at the
left” and “at the right of o’ we then order them so that left precedes right and they are
in the same position in the global ordering of the components of G as the component they
come from.

Definition 4 (TopMultiCyc, TopForest). Let TopMultiCyc be the category whose objects are
homeomorphism classes of punctured bordered surface whose connected components are lin-
early ordered, and where a morphism & — & is a homeomorphism class of a cutting system
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a in & such that cut,(S) is homeomorphic to &'. The category TopForest is the subcategory
whose objects are disjoint unions of polygons (see Example 4.19) and whose morphisms are
those represented by disconnecting cutting systems.

If : 6 — cuty(S) and ¢ : & — cutg(G”) are homeomorphisms, then the composition
of the morphisms associated to « and [ is the homeomorphism class of ¥(a) Ll 5 C &”
where the numbering of the arcs of ¥ («) is lower than those of 5. The identity morphism is
represented by the class of the empty cutting system and it is straightforward to check that
the composition is associative, so that the above are indeed categories.

Both TopMultiCyc and TopForest are symmetric monoidal categories. Indeed the tensor
product of &' =& U --- UG, and & = &, U--- UGS, (where &), S; are connected for all
i, 7 and the linear order of the components is increasing from left to right) is defined as

SR6:=61U---6,UG U UG,

On the level of morphisms, if « C &; and  C G, are two cutting systems then a® 3 = alU
where the linear order of the arcs of « is lower than that of the arcs in 5. The symmetry is
given by exchanging the components, so with the above notations s(&' ® &) = & ® &’ and
sla®f)=F®a.

The following definition is a reformulation of Markl’s [Mark]| (Definition 4.1) in the context
of punctured bordered surfaces:

Definition 5 (NS Modular Operads). Let C' be a symmetric monoidal category. A NS (non
symmetric) geometric modular operad in C is a symmetric monoidal functor

O : TopMultiCyc — C.

A NS cyclic operad in C is a symmetric monoidal functor O : TopForest — C'.

6.2. NS geometric modular operads from skein algebras. Recall that if 8 is the
bigon with one edge of type “left” and one of type “right”, then .(B) = 0, (SL(2)) as a
(Ugp(sla), Ug(sly))-bimodule. Let also B be the bigon whose edges are declared to be both
of type R (right edges) then .7 (B7%) is the left module over U, (sly)®? whose underlying space
is O,2(SL(2)) and on which the action of  ® y € Upz(sl)®* is given by 2 ® y-b=x-b-r*(y)
(see Example 4.7).

Theorem 6.1 (Skein algebras as non symmetric operads). There is a geometric NS-modular
operad NSO in Ug(sly)—finBim defined on an object & of TopMultiCyc as

NSO(&) = (Edges(®), [Q(¢'/?) ®r 7 (6)])

where & is the surface whose edges are all indexed to be of type L (left) and where we see
Q(¢"?) ®@r (&) as a right module over Uy (sly)®E%€=(®) qs explained in Subsection 4.3.
If ¢ : & — & is a morphism associaled to a cutlting system o, then let

NSO(¢) _ [Q(q1/2) ® y(%)@)Edges(G) ® y<%R)®a]

where . (BE)® s the skein algebra of a disjoint union of one copy of B" per arc oy € «
whose boundary edges correspond to the edges of 06’ lying respectively at the left and at the
right of ;.
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Proof. First of all observe that the functor is well defined as all surfaces are seen up to
orientation preserving diffeomorphism and all modules and bimodules in Ug(sl,) —finBim
are seen up to isomorphism. Then we observe that the skein algebra of a disjoint union of n
bigons

@(ql/Q) o y(u?:1%j> _ Q(qlﬂ) Rr 5/(53)@% _ Q(q1/2) Rr Oqz(SL(Q))@)n

is the identity of ({1,2,---,n}, [M]) (where i is the left edge of the i*"-bigon) for any right
module M which is a direct sum of finite dimensional modules over U (sl;)®". Indeed M
is a direct sum of modules of the form W ® V; where V;? is the j 4 1-dimensional irrep of
U,2(sly) and W is a right module over U,z (sly)®" ! which is itself a tensor product of finite
dimensional modules. As proved in Theorem 4.6 . (B) = O,2(SL(2)) = @, V* @ Vi so
that by the same arguments as in the proof of Theorem 4.10 it holds:

W @ VE @y ety (69 V- ® Vﬁ)] — B @ (Vi v Vi) @ Vi = W V.

()

This shows that tensoring over Up:(sly) with a single copy of Q(¢'/?) ®% . (B) provides the
identity morphism; by Remark 4.13 repeating this along all the boundary edges one gets
that tensoring with Q(¢'/?) @z O, (SL(2))®" is the identity of ({1,2,---,n},[M]) for any
M decomposing into a direct sum of finite dimensional modules.

Now we prove that if 4, j are two distinct boundary edges of a (possibly disconnected)
surface &', then

(116) (&) @y, sty 0y 7 (B™)] = [7(8))]

where . (BR) is seen as left module over Ug(sly)!} and & is the surface obtained by
glueing the edges ¢, by an orientation reversing homeomorphism. Indeed by Remark 4.13
and Example 4.12 to glue B along i and j, one can first glue & and BF along i thus
obtaining the surface &’ whose edge ¢ has been changed to type R (see Example 4.12) and
then operating a self-glueing along ¢ and ;7 on this surface. By Theorem 4.10 the overall
result is Q(¢*/?) @z .#(&). Then if a is a cutting system given by c arcs, by Remark 4.13
applying ¢ times (116) we get that tensoring with Q(¢/?) @z . (B7)®* is performing the
glueing inverting the cut associated to the cutting system a.

O

7. REDUCED SKEIN ALGEBRA

We show that the stated skein algebra .7 (&) has a nice quotient .7 (&), called the reduced
stated skein algebra, which can be embedded in a quantum torus. This quotient is still big
enough to contain the ordinary skein algebra and the Muller skein algebra. Unlike the case
of the full fledged version .#(&), when & is an ideal triangle, the reduced version .7 (&) is
a quantum torus. The construction of the quantum trace map follows immediately from the
splitting theorem for the reduced stated skein algebra.

Throughout we fix a punctured bordered surface & = &\ P and we will denote . = .7 (&).
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7.1. Definition. A non-trivial arc o C &, which is the closed interval [0, 1] properly em-
bedded in & not homotopic relative its endpoints to a subset of the boundary 06, is called
a corner arc if it is as that depicted in Figure 25(a), i.e. it cuts off from & a triangle with
one ideal vertex. Such an ideal vertex is said to be surrounded by the corner arc a.

A bad arc is a stated corner arc whose states are as in the figure Figure 25, i.e. they are
— followed by + if we go along the arc counterclockwise around a surrounded vertex. The

(a) ()
FIGURE 25. (a) a bad arc (b) the splitting of a bad arc

reduced stated skein algebra .7 (&) is defined to be the quotient of .7 (&) by the 2-sided
ideal ZP24 generated by bad arcs.

7.2. Basis. Let o, be the orientation of J& induced by that of &, i.e. every boundary edge
has positive orientation. Then B := B(&;0,) is an R-basis of .7 (&). Let B = B(6) C B
be the subset consisting of all elements in B which contain no bad arc.

Theorem 7.1. The set B is a free R-basis of the R-module .7(&).

Proof. Let A C . be the R-span of B and A’ C .# be the R-span of B\ B. One has
S =A@ A'. Let us prove that the ideal Z"* is equal to A’

Proof that A’ C Z. Let v € (B \ B), i.e. 7 contains a bad arc. We have to show that
v € I, Tf an arc in v (at some corner) is bad, then the positive orientation and increasing
states imply that all the arcs closer to the vertex of that corner are bad, see Figure 26.

FIGURE 26. If the outer arc is bad, then all inner arcs are bad, too.

Thus we assume that v has a bad arc which is an inner most arc, see Figure 27(b).

We have the relations in Figure 28, which are part of Lemma 2.4. The first relation
allows us to move the end of the red arc with state — (in ) up until we get the diagram
in Figure 27(a), which is of the form a3, where «a is a bad arc. The result is that v = af.
Thus, v € 7.

Proof that ZP* C A’. We have to show that af,3a € A’ for any bad arc a and any
b€ B.

The product af: In this case, af is presented as in Figure 27(a). We already saw that
af3 = v, where v is as in Figure 27(b). Since v € A, we see that a8 € A".
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jé A;é
(a) (b)

FIGURE 27. (a) The product a3, here « (in red) is a bad arc, (b) an element
v € B which has a bad innermost arc (in red).

+

(0)

FIGURE 29. (a) Product So, where « is a bad arc (in red), (b) the diagram ~

The product Sa: In this case, Sa is presented as in Figure 29(a). Using the 2nd relation
in Figure 28, we get that Ba = 7, where 7 is as in Figure 29(b). Since v € A’, we see that
ap e A

Thus, 7" = A’. Hence as R-modules, .7 (&) = .#/J = A, which has B as an R-
basis. 0

Remark 7.2. Positive order is used substantially in the proof. For other orientation of 08,
the set similar to B might not be the basis of . (&).

Corollary 7.3. The ordinary skein algebra ii((‘S) and the Muller skein algebra /(&)
embed naturally into the reduced skein algebra .7 (S).

Proof. Clearly the standard basis of the ordinary skein algebra and the standard basis of the
Muller skein algebra (where all the states are +) are subsets of the basis B of .7 (&). O

7.3. Corner elements.

Proposition 7.4. Let u be a stated corner arc with both states positive and v be the same
arc with both states negative. Then uv =vu =1 in . (6).
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Proof. In .7 (&) we have
v

-l el

where the second identity follows from (10) and the last follows from (14). Similarly,
+
o — ﬁ— _ q—2 * g0 j 5/
+ -_—
where the second identity follows from ( 0) and the last follows from (14). O

7.4. Filtration. For a finite collection 2 of ideal arcs or simple closed loops let F*(.#(&)) be
the R-submodule of .¥(&) spanned by stated tangle diagrams « such that Y, o I(a, @) < n.
Then (F¥(7(&)))%, is a filtration of (&) compatible with the algebra structure. Denote
by Gr*(.#(6)) the associated graded algebra:

6)) = P Grl(F(8)), where Gr}i(F(8)) = F;(F(8))/FL(L(8)).

From Theorem 7.1 we have the following analog of Proposition 2.12.

Proposition 7.5. Suppose 2 is a collection of boundary edges of &.
(a) The set {a € B| Y. o I(a,a) < n} is an R-basis of F*(F(S)).
(b) The set {o € B |, o I(a;a) =n} is an R-basis of Gr(.7(&)).

ac

acA
7.5. Splitting theorem.

Theorem 7.6. Suppose &' is the result of splitting & along an interior ideal arc a. The
splitting algebra embedding 0, : /(&) — (&) descends to an algebra embedding

(117) 0, : .7 (6) = Z(&.
Besides, if a and b are two disjoint ideal arcs in the interior of S, then
(118) 0400, = 0,00,

Proof. Suppose a@ C & is a bad arc. The geometric intersection I(a,a) is 0 or 1. In the
first case 0,(a) = « is also a bad arc in &'. In the second case the splitting of «, given in
Figure 25(b), has a bad arc for both values of v € {£}. It follows that 6,(Z"*) C ZPxd.
Hence 6, descends to an algebra homomorphism 0, : .7 (&) — .#(&') and we also have (118).
It remains to show that 6, is injective. Let 0 # 2 € .#(&). We have to show that
0,(z) # 0. Since B(&) is an R-basis, there is a non-empty finite set S C B(&) such that

(119) r = Z ca, 0#cy €R.

a€eS

Let k = maxaes [(a,a). Then 8" := {a € S| I(ev,a) = k} is non-empty.
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Let pr : & — & be the projection and a',a” C &' be the boundary edges which are
pr—'(a). To simplify the notations we write F* and Gry for respectively Fi(.7(&')) and
CGr(.#(&")). From the formula of the splitting homomorphism, for every a € S,

Bu(a) € FX N FY c Fi

Let P: A" = Grl®™"} be the canonical projection. Clearly if a € 5\ S’ then P(a)) = 0.
We consider Case 1 and Case 2 below.
Case 1: There exists § € S such that P(6,(8)) # 0.

% (
TL TR
Y a//v
a/
BL BR
e >

F1GURE 30. The split surface &', with orientations o’ on 0&’. The top left,

top right, bottom left, and bottom right corners are marked respectively
TL,TR,BL,BR.

Choose an orientation of a such that the induced orientation on a” is positive. Then the
induced orientation on a’ is negative, see Figure 30. Let o’ be the orientation of 9&" which is
positive everywhere except for the edge a’ where it is negative. For o € S” its lift & = pr=!(«)
is a partially stated tangle diagram: it is stated everywhere except for endpoints on a’ N a”,
and the endpoints on each of ¢’ and a” are ordered by o’. Let &' be the same & except that
the order on @' (and hence on all edges) is given by the positive orientation.

For 0 < j < k let s;(&) (respectively s;(a™)) be the stated tangle diagram which is &
(respectively at) where the states on each of ¢’ and a” are increasing and having exactly j
minus signs. Then s;(a*) is either equal to 0 in .#(&') or belongs to the basis set B(&').

By Proposition 2.17 and then Proposition 2.14 we have, for some f(a,j) € Z,

Lk Lk
12 P(0,()) = si(@) = Hed)g (at).
(120) =32 (5) i@ =3 (5) s

Since P(,(53)) # 0, there is [ such that s;(8%) # 0 in .#(&’) and hence s,(5) € B(&').
Using (120) we have

k
(121) P =X 3 (1) a0

a€s’ j=0

As a € S’ can be recovered from @, if a # ( then the two partially stated diagrams &
and ( are not isotopic. It follows that s;(31) # sj(a™) for all j and all o # . It is also
clear that s;(6%) # s,(67) for j # I. Hence the right hand side of (121) is not 0, since the
basis element s;(31) has non-zero coefficient, and all other elements s;(a") is either 0 or a

basis element different from s;(5%). Thus P(6,((x)) # 0 and consequently 0,(x) # 0. This
completes the proof in Case 1.
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Case 2: For all a € S we have P(0,(a)) = 0. Identity (120) shows that s;(a*) = 0 for all
0<j<kandall e ¥

Incident with a’ there are two corners, the top left corner and the bottom left corner.
Similarly, incident with a” there are the top right corner and the bottom right corner, see
Figure 30. A corner arc of & at one of these four corners has one end stated and one end
not stated, and it is called a negative (respectively positive) corner arc if this only state is
negative (respectively positive).

For o € S" and v € {£} let TL,(«) be the number of top left corner arcs whose only state
is v. Define TR4 (), BL4(«), BR + () similarly.

Lemma 7.7. Suppose a € S’'. One of the following two mutually exclusive cases happens:
(i) TL_(«) > 0 and BLy(a) > 0, or
(11) BR_(a) > 0 and BR; () > 0.

Proof. Since so(a*) is 0 in #(&’), it has a bad arc. This implies either TL_(a) > 0 or
BR_(a) > 0.

Assume TL_(«) > 0. Since a does not have a bad arc, we conclude that TR, (a) = 0.
Then from si(a™) = 0 we see that BR, (o) > 0. Again since o does not have a bad arc, we
conclude that BR_(«) = 0. Thus we have case (i) but not case (ii).

Assume BR_(a) > 0. Since a does not have a bad arc, we conclude that BL, () = 0.
Then from so(@™) = 0 we see that TR, () > 0. Again since « does not have a bad arc, we
conclude that BL_(a) = 0. Thus we have case (ii) but not case (i). O

The cases (i) and (ii) of Lemma 7.7 partition S’ = S} U S}, where
S, ={ae S |TL_(«)BL (a) >0}, Sp={a€S |BR_(«a)BR,(a)>0}.
Lemma 7.8. If a € S| then 0,(c) = 0 in Gr{ . Similarly, if a € S}, then 6,(a) = 0 in Gr".

Proof. Suppose o € S}. For 7 = (vy,...,vy) the stated tangle diagram (&, V) is defined to
be & with states on both o’ and a” are sequence I/ listed from top to bottom. By definition,

(122) Ou(e) = > (&, D).

ve{£}*

Let (&™,7); be a™ whose states on a” is given by 77 but whose state on a’ is given by a
permutation of 7/ such that the states are increasing on a’. By Proposition 2.14

(123) (&,7) = (&, 7), in Gr?.

If 7 has at least one negative sign then (&*,7); has a bad arc in the bottom left corner
(because BL,(a) > 0) and hence is equal to 0 in .#(&'). If ¥ has at least one positive sign
then (&*, ), has a bad arc in the top left corner (because T'L_(a)) > 0) and hence is equal
to 0 in #(&'). Thus we always have (&*,7);, = 0 in .(&'). From (123) and (122) we
conclude that 6,(a) = 0 in Gr{ .

The other case follows from the above case by noticing that if one rotates the Figure 30
by 180°, then the top left corner becomes the bottom right corner. 0]
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As ) # 85" = 5] U Sk, one of S} and S% is non-empty. Without loss of generality we can
assume that S} is not empty.

Let d = min{TL_() |« € S;} and S” = {a € S} | TL_(a) = d}. Then S” # ().

Let P, : /(&) — .#(&') be the R-linear map defined on basis elements v € B(&') by

P(7) = v if I(y,d") =d,I(y,d") =k, all states on o’ are +
* 0 otherwise.

For a € S” let & be the stated tangle diagram obtained from at by first removing the d
negative top left corner arcs then providing states on a’ and a” so that all states on a’ are +
and the states on a” are increasing and having exactly d negative signs. Since BR_ () =0,
we see that & is an element of the basis B(&'). As a can be recovered from @, the map
o — a from S” to B(&') is injective.

Let u be a top left corner arc whose both states are +.

Lemma 7.9. For a € S one has

B —(k—d)(k—d—1)/2 X - g
Py (Bu(0) ut) = {‘1 & Yac

(124) 0 ifads"

Proof. One has S = (SR, U S )U(S\S). If a € (S\S) then I(a,a) < k and hence
Pt(0,(a)) = 0.

If o € S}, then by Lemma 7.8 one has 6,(a) = 0 in Gr? which means f,(a) is a linear
combination of elements v € B with (v, a") < k. It follows that P, (f,(a)) = 0.

It remains to consider the case a € S’L =S5"U (S, \S"). From (122),

(125) P(f = > Pu(@i)u’).
ve{+}k

B(&') one defines d,(3) as the sum of all the states of 3N a’. From the
# k — d then PT(f3) = 0. If ¥/ has m negative signs where m > d then

b (@, ) u?) =k —2m +d < k — d,

and hence P, ((&,7)u?) = 0. Thus we can assume that in the sum in (125), the number of
negative signs in 7/ is < d.

Assume that TL_(a) = m. Note that the m negative top left corner arcs of & are below
any other components of &. Hence the number of the first m components of ¥/ must be
negative since otherwise one of the m top left corner arcs is bad and (&, 7) = 0 in A (&').
We conclude that if TL_(«) > d (that is, if « € 57\ 5”), then

Recall that for § €
definition, if ./ (5)

(126) Py (0,(a)u’) = 0.
Moreover, if TL_(«) = d (that is, a € S”), then
(127) Py (0a(a)u) = Py((a, 7a) u),

where 7; € {£}* is the sequence whose first d components are — and all other components
are +. The d negative top left corner arcs of (a Vd) are all v, the corner edge with negative
states on both ends. Hence we have (&, 7) = a/v?, where & is the same as & except that
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the order on a’ is negative. Using the height exchange move between positive states, see
Equation (15), and relation vu = 1 we get that

P ((&, ) ul) = g~ k-Dk=d=1)/25
which proves (124) and completes the proof of the lemma. 0

Let us continue the proof of the theorem for Case 2. From Lemma 7.9 we have
Py (Ba()ut) = Y coqmhmDhmd=0/2G,

OZGS”

which is non-zero since {a} are distinct elements of the basis B(&"). The theorem is proved.
U

7.6. The bigon. The elements «,, € .7 (B) are defined in Section 3.

Proposition 7.10. Let B be the bigon. There is an algebra isomorphism . (B) = R[z*!]
given by oy —x, a__ =2 ay. =0, a_L — 0.

Proof. A presentation of the algebra .(B) = O,2(SL(2)) is given by Theorem 3.4, with
generators @ = ay4,b=a__,c = a_;,d = a__ and relations (54) and (55). The only bad
arcs in B are a_; = cand o, = b. Thus #(B) = .#(B)/Z"* has a presentation like that
of O,2(SL(2)), with additional relations b = ¢ = 0. From the quantum determinant relation
in (55) we get ad = 1 in ./ (B).

On the other hand it is easy to check that the relations b = ¢ = 0 and ad = 1 imply all
other relations in (54) and (55). Hence

Z(B) 2 Rl{a,b,c,d)/(ad = 1,b = c = 0) = Rla™"].
O

7.7. The triangle. Let P;3 be the ideal triangle, with boundary edges a, b, ¢ as in Figure 31.
Let «, 3,7 be the corner arcs which are opposite respectively to a,b and c. For p,v € {£+}
and £ € {«, 8,7} let £(uv) be the arc & with states p and v on the end points such that v
follows u along & counter-clockwise (with respect to the vertex surrounded by &).

FIGURE 31. Edges a,b, c opposite to corner arcs «, 3,7

For an anti-symmetric n x n matrix A = (ay)f,;=; the quantum torus associated to A is
the algebra with presentation

Rz i=1,...n)/(vz; = ¢“Izz;).

7 )

For basic properties of quantum tori see for example [Lel, Section 2|.
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To the triangle P3 we associate the quantum torus T with presentation

T :=R(a™, 5, 7*)/(qaB = Ba, 4By = 7B, qya = ya).
The cyclic group Z/3 = (7 | 73 = 1) acts by algebra automorphisms on each of the algebras

S (Ps), L (Ps), and T as follows. In short 7 is rotation 7 by 27/3 counterclockwise about
the center of the triangle. This rotation induces the algebra automorphism 7 of S (Ps3); it
also induces the algebra automorphism 7 of .#(P3). On T and 7 is given by

T(a) =8, 7(8) =7, 7(7) = a.

Theorem 7.11. The reduced skein algebra .7 (Ps) of the ideal triangle is isomorphic to the
quantum torus T. The isomorphism is 7 /3-equivariant and given by

(128) Oé(—f——f—) — Q, Oé(—f-—) — q_%7B> Oé(——f—) — 07 Oé(——) — a_l‘
Proof. By [Le2, Theorem 4.6] the algebra .(Ps) is generated by
X = {a(v,v), B(v,v),v(v,V) | v,V € {£}}

subject to the following relations and their images under 7 and 72:

(129) Bl v) a(p, V) = qav, V) B, 1) — ¢ Clry (V' )
(130) a(—,v)a(+,V) = fa(+,v) (=, V) — ¢°°Cl,
(131) alv, =) a(V,+) = Pa(v, +) (v, —) — ¢*CY,

(132) a(—,v) B, +) = ¢a(+,v) (v, =) — ¢ (v, )
(133) a(v, =) v(+, V) = Palv, ) v(=,V) + ¢ B, v).

As the only bad arcs are a(—, +), 8(—, +), 7(—, +), the quotient .7 (P3) is obtained by adding

the relations a(—,4) = B(—,4) = v(—,+) = 0, and from this presentation one can check

that the map given by (128) and its images under the action of Z/3 is an isomorphism.
Here is an alternative, more geometric proof. First in .7 (P3) we have

(134) a(++)a(——) =1, B(++)a(++) = qa(++) B(++),

and all its images under Z/3. In fact the first identity follows from Proposition 7.4 and the
second follows from the height exchange identity (15). It follows that the Z/3-equivariant
map f: T — . (Ps) given by

fla) =a(++), fla™) =a(——), and images under Z/3,

gives a well-defined algebra homomorphism, as all the defining relations of T are preserved
under f. In .(P;) we have

(135) Y(+=) = ¢ 2 B(++) (=),

which follows from the identity in Figure 17 (where the left hand arc is stated to become
a(+—)). Thus all elements in the generator set X are in the image of f. This shows that f
is surjective.
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Let us show f is injective. The set {a*8™y" | k,m,n, € Z} is an R-basis of T. Assume
that there is a finite set S C Z3 such that

(136) f Z Ck,m,nakﬁm’yn = 07 Ck,m,n €R.
(k,m,n)eS

Multiplying the identity (136) on the left by f(a* 8™~™) with large k', m/,n’ and using
the g-commutations between «, 3,7 we can assume that k,m,n > 0 in (136). For each
(k,m,n) € N? let z(k, m,n) be the stated simple tangle diagram consisting of k arcs parallel
to a, m arcs parallel to 3, and n arcs parallel to v, with all state positive. Note that
z(k,m,n) € B(Ps). Clearly the map z : N* — B(Ps3) is injective. As the diagram of
f(a*Bm~™) can be obtained from z(k, m,n) by a sequence of height change moves of positively
stated endpoints, the first identity of (15) shows that

F(a*Bmy") = g &) 2(k, m, n)
for some g(k,m,n) € Z. From (121) we get
Z Comn@® "™ 2(k,m,n) = 0.
(k,mn)eS
As z(k,m,n) are distinct elements of the basis B(P3), this forces all ¢t ., = 0. Hence f is

injective.
O

7.8. The quantum trace map. Assume that & is triangulable, i.e. & is not one of the
following: a monogon, a bigon, a sphere with one or two punctures. A triangulation &£ of
G is a collection consisting of all boundary edges and several ideal arcs in the interior of &
such that
(i) no two arcs in £ intersect and no two are isotopic, and
(ii) if @ is an ideal arc not intersecting any ideal arc in £ then a is isotopic to one in &.

It is known that if © is triangulable, then by splitting & along all interior ideal arcs in
E we get a collection F(&) of ideal triangles. By the splitting theorem, we get an algebra
embedding of .#(&) into a quantum torus

0:.7(68) = ®T.
F(€)

In addition to the quantum torus T we associate the quantum torus T’ to the standard
ideal triangle Ps:

(137) T := R{a™', b, ) /(qab = ba, gbc = ¢b, gca = ac).

One should think of a, b, ¢ as the edges opposite to «a, 3,7, see Figure 31.
The cyclic group Z/3 = (7 | 78 = 1) acts by algebra automorphisms on T’ by

7(a) =b, 7(b) =¢, 7(c) = a.
There is a Z/3-equivariant algebra embedding T < T’ defined by

o — ¢"%be, B ¢ %ca, v — ¢%ab.
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Consider the composition tr, given by

On the collection of all edges of all the triangles in F (&) define the equivalence relation
such that o’ = d” if @’ and a” are glued together in the triangulation. Then the set of
equivalence classes is canonically isomorphic to €. Let Y(&) be the subalgebra of ®f(g) T

generated by all o’ ®a” with a = o’ and all boundary edges (each boundary edge is equivalent
only to itself). It is easy to see that the image of tr, is in V(). Thus, tr, restricts to

tr, : (&) = V(E).

The algebra V() is a quantum torus, known as the Chekhov-Fock algebra associated to a
triangulation £ of &, see [BW, CF1, Le2] The quantum trace map of Bonahon and Wong

is an algebra homomorphism fr, : .7 (& ( ) — Y(E), where ﬁ@) is the coarser version of
(6) defined using only (7) and (8), see Subsection 2.5.

Theorem 7.12. If £ is a triangulation of & then the algebra embedding tr, : .7 (&) — V(&)
is a refinement of the the quantum trace map of Bonahon and Wong in the sense that tr, is

the composition ,5/’\(6) - .7(6) X V.
Proof. In |Le2| an algebra homomorphism s : (&) — V(&) is defined as the composition
) — ® S (Ps) — ® T,
F(€)

where the map from .#(Ps) to T’ is exactly the composition .7 (Ps) — Z(Ps) — T Tt
follows that s is the composition .7 (&) — .7 (&) & V. In |Le2] it is proved that tr, is the

composition 5/”\(6) — .7(6) B ). Hence tr, is also the composition 5/”\(6) - 7(6) i
V. O

Besides giving another proof of the existence of the quantum trace map, Theorem 7.12
shows that the kernel of tr, is the ideal generated by relations (9), (10), and the ideal Z".

7.9. Co/module structure for .7 (&). The Hopf algebra structure of .%(B) descends to
a Hopf algebra of .7 (B). We identify .#(B) = R[z*!] using the isomorphism of Proposition
7.10. Then A(z) =2 ® x and €(x) = 1.

Arguing exactly as in Subsection 4.1, one sees that for each surface G and each edge e of
&, the algebra .#(&) has both a left and a right R[z*']-comodule algebra structure (which
is equivalent to a Z-valued grading counting the number of + and — states of each skein
along e):

Proposition 7.13. (a) The map A, : 7 (6) — .7(6)®.7(B) gives .7 (&) a right comodule-
algebra structure over the Hopf algebra R[z* 1] Similarly A gives gives .7 (S) a left comodule-
algebra structure over the Hopf algebra R[x*!].
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b) I €1,€9 are two distinct boundary ed €s, the coactions on the two edges commute, 1.€.
Y g
fOT mnstance

(A, ®id) 0 A, = (A, ®id) 0 A,,.

In the reduced setting, though, Theorem 4.8 does no longer hold: indeed, with the notation
in there, if 3 € B(&) is a basis element intersecting a cutting edge exactly once, then its
image 0(3) under the cutting morphism is 6(8) = 3, + 3'_ where .., _ € B(&') are
identical except for their states on ' N (¢; U cy). But it is not difficult to check that £, is
balanced:

ACI (ﬁirJr) = ﬁ/++ @ aqq + 6;7 oy = BSFJF ® oy = czA(ﬁjr+)
because the class of a_, = oy =0 € 7 (B), still 5 is not in the image of 6.

8. THE CLASSICAL CASE: TWISTED BUNDLES

In this section we will suppose that & is a connected, oriented surface with a non-empty
set of boundary edges and let o be the positive orientation of S i.e. that induced by the
orientation of &. We will prove that if g2 = 1 then .%(&) is isomorphic to the algebra of
regular functions on the affine variety of “twisted bundles” on &. A similar result for the
case when 06 = () is well known (see for instance [Thul).

Fix an arbitrary Riemannian metric and let UG be the unit tangent bundle over &, with
the canonical projection 7 : US — &. A point in UGS is a pair (p,v), where p € &, v €
1,6, ||v]| = 1. For each immersion « : [0,1] — & its canonical lift is the path (a(?) a0

 la(®)]l
in UG. In particular, since each edge e of 06 is oriented by o, it has a canonical lift

e C OUG; we will denote 06 := Ucpe€. If we let —e be the edge oriented in the opposite
way, then we get a different lift which we will denote (—e)™. Let —06 = U.cos(—e)™ and
+06 =06 U —06.

For a point z € & the fiber @ = 7 !(x) is a circle, and we will orient it according to the
orientation of &. It is clear that the free homotopy class of @ does not depend on z.

For each boundary edge e choose a point x € e. Let v € T(e) be the unit tangent vector
with orientation 0. Then both (z,v) and (z, —v) are in 7—!(z), and the half circle of 7—!(z)
going from (z,v) to (z, —v) in the positive direction is denoted by 1/Q,. The exact position
of x on e will not be important in what follows.

Definition 6 (Fundamental Groupoids). Let X be a path connected topological space and
{E;}ier disjoint contractible subspaces of X. The fundamental groupoid m (X, {E;}ier) is the
groupoid (i.e. a category with invertible morphisms) whose objects are {E;,1 € 1} and whose
morphisms are the homotopy classes of oriented paths in X with endpoints in U;erB;. A
morphism of groupoids if a functor of the corresponding categories.

Recall that a group is a groupoid with only one object.

Lemma 8.1 (Extension of morphisms). With the above notation, let E C X be a contractible
subspace disjoint from UjerE;. Then given a morphism p : m(X,{FE;}ic;) — G for some
group G, an oriented path v connecting some E; to E, and an arbitrary g € G there is a
unique extension p' : m (X, {E;tier U{E}) = G of p such that p'(v) = g and p'(a) = p(«a)
for all « € Mor(E;, E;) for some i, j.
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Proof. We sketch a proof. Let 8 be a homotopy class of an oriented path connecting E to
some FE;; write 8 = (8 0~)o~y~t. Observe that S o~ € Mor(E;, E;) thus p is defined on
it; hence define p'(8) = p(B o) - g~*. Similarly if 3 is a path connecting E; to E define
0 (B) = g-p(y~top). Finally if 3 is an endomorphism of E define p/'(3) = g-p(yoBoy~1)-g~1.
We leave to the reader to verify that this is indeed a functor with the required properties. [J

We shall be interested in two particular groupoids: m1(6, 96) and m (U6, 5(‘/5) Note that
m: (UG,06) — (6,06) induces a surjective morphism 7, of groupoids.

Definition 7 ( Flat twisted SLy(C)-bundle). A flat twisted SLa(C)-bundle (“twisted bundle”

in what follows to keep notation short) on & is a morphism p : m(UG; a%) — SLy(C) such
that p(0) = —Id.

By Lemma 8.1 we extend p to a morphism (with the same notation) p : m (UG; j:é(v‘S) —
SLy(C) such that for every boundary edge e,

0 —1
(138) p(\/®e):<1 0 )
Since & is not a closed surface, its fundamental group 7 (&) is a free group.

Lemma 8.2. Suppose that 0& # (). Then the set tw(S) of twisted bundles on & is the
affine algebraic variety SLy(C)"* where

n=—1+ #{e C 06} and k = rank(m(S)).

In particular the algebra x (&) of its reqular functions is generated by the matriz entries of
each of the copies of SLy(C).

Proof. Since UG is trivial, the fundamental groupoids m1(&;06) and m (UGS, 06) are iso-
morphic. More explicitly, we claim that there are non canonical injective morphisms of
fundamental groupoids s, : m(6;06) — m(US,06). To build one, pick any non-zero
vector field on & which is positively tangent to the edges of 0&: it exists because we are
not prescribing its behavior near the (non compact) cusps. This trivializes US as & x S%;
let s: 6 — & x {1} be a section of 7: UG — &.

The above isomorphism allows to provide an isomorphism from the set of twisted bundles
to morphisms from m(&; 06) — SLy(C). Indeed to each twisted bundle p : m (UG;06) —
SLy(C) we associate p’ : m(6;06) — SLy(C) defined as p' = po s, . Reciprocally given
P m(6;06) — SLy(C) we extend it to p : m (US;06) — SLy(C) by setting p(OQ) = —1Id
and plr exq1y) = 0.

To conclude we now argue that the set of morphisms p’ : 7, (&;9&) — SLy(C) is in bijec-
tion with SLy(C)"**. Indeed fix a set of immersed smooth paths ay, ..., a, C & connecting
a fixed edge eqg C 96 to each other edge of 0G as well as a set of paths whose endpoints are
in e representing generators gi, ..., gx of m(6;ep) (which is free because & # (). Since
the fundamental group of & is free, the list of values (p'(cv), ..., p (), P/ (g1) -, p'(gk)) €
SLy(C)"** provides the sought non canonical bijection. O

Example 8.3. Let P, be the n-polygon with vertices numbered in the orientation sense from
0 to n—1; then tw(P,) = SLy(C)"~! where the n — 1 matrices are given by the holonomies of
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the diagonals connecting the edge vyv; to each other edge. Then x(P,) = O(SLy)®" ! and
in particular x(B) = O(SLy) and x(Ps) = O(SLs) ® O(SLy) (where by “equal” we mean
“non-canonically isomorphic to”).

Remark 8.4. The notion of flat twisted SLy(C)-bundle is closely related to the one consid-
ered in [Thul.

8.1. Trace functions for non oriented curves. We will identify the states of a stated
tangles with vectors in C? as follows:

(3= ()

If 7,5 € C? let det(Z|y) denote the determinant of the matrix whose first column is ¥ and
second is .

We will say an immersion a : [0,1] — & is in good position if a(0),a(1) € 06 and the
tangent vectors a(0),a(1) are positively tangent to 06.

An immersion « : [0, 1] — & is transversal if a(0),a(1) € 06 and « is transversal to 0&
at 0 and 1. One can bring such a transversal a to an arc a in good position by an isotopy
(relative 0 and 1) in a small neighborhood of «(0) and «(1). The canonical lift of a will be
denoted by & and is called the good lift of . Note that the homotopy class of & is uniquely
determined by «, and we will consider & as an element of m(US;9&). Note that the good
lift of the inverse path a™!, defined by a™'(¢) = a(1 —t), is not the inverse of &, since before
lifting one has to isotope a~! to a good position.

A stated transversal immersion is a transversal immersion whose end points are stated {£}.

Definition 8 (Trace). Let p be a twisted bundle on S.
Assume « : [0,1] — & is a stated transversal immersion with state € at «(0) and n at
a(l). Define the trace of a by

tr(a) := det(n|p(a) - €).

Assume 5 :[0,1] — & is an immersed closed curve (i.e. 5(0) = (1) and [ has the same
tangent at 0 and 1). Define the trace of 5 by

tr(B) = tr(p(B"),
where ' is any smooth closed curve isotopic to 5 such that 5'(0) € 06.

In the first case if o/ is homotopic to a through stated transversal immersions and has the
same states as o then tr(a/) = tr() (indeed the homotopy lifts to a homotopy of @ and o).
In the second case it is easy to see that tr(3) does not depend on the choice of ', as the
images under p of any two such /3’ are conjugate in SLy(C) and hence have the same trace.

Example 8.5. Let a : [0,1] — & be a stated transversal immersion with state £ at «/(0)
and n at «(1).

R a b
pr(a):<c d
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We remark that the matrix on the right, expressing the values of the traces for an immersed
transverse stated arc « is p(\/@_l)p(d) (see Equation (138)).

Remark 8.6. The notion of trace here is similar to the one introduced in [Mu], where trace
is defined only for oriented arcs. The novelty here is the good lift, which is used to define
traces for unoriented arcs and the use of twisted bundles as representations of fundamental
groupoids.

When « is stated, we provide a~! with states so that the state of a™1(t) is equal to the
state of (1 —¢) for t =0, 1.

Lemma 8.7. Suppose p is a twisted bundle on &. (a) Let « be a stated transversal immer-
ston. One has

pla™t) = —p(a)~".
As a consequence, tr(a) = tr(a™t).
(b) Let B :]0,1] — & be an immersed closed curve such that 5(0) € 06. Then

p(B) = p(67Y).
As a consequence, if v is any immersed closed curve then tr(vy) = tr(y™1).

Proof. (a). A direct inspection shows that the homotopy class of the closed simple loop in
UG given by the concatenation a1 o & is O (see the left hand side of Figure 32). The first
equality follows as by definition p is a functor such that p(Q) = —Id.

To prove that tr(a) = tr(a™),

we compute the traces using the notation and content of Example 8.5:

n\e |+ -

pr(ﬁz—p(évw:(}d _ba),thentrm)=det<n',p<a>~e'>= e

But since the state at a=1(0) is 7 and that at a=1(1) is ¢, we get the claim in this case by
directly comparing with the transpose of the matrix of values provided in Example 8.5.

(b). Observe that if 3 is the black curve depicted in the r.h.s. of Figure 32, then 371
regularly homotopic to the dotted curve ' in the same picture. By construction 5/(0) = 6(0)
and ' o f is regularly homotopic to an eight-shaped immersed curve in a disc. Then B\—/l is
homotopic to 4’ in UG and it holds p(3'08) = Id, thus p(8~1) = p(8)~". The last statement
now follows because p(3) € SLy(C) so that tr(p(5)) = tr(p(6)~1).

O

Suppose o = Ucq;, where each «; is either a stated transversal non-oriented arc or a
non-oriented immersed closed curved. Define

= Htr(ai).

Lemma 8.8. If ¢z = 1 the map tr : L (B) — x(B) sending a stated skein to its trace is an
isomorphism of algebras. The same holds for tr : #(Pn) — x(Pn) for every n > 2.
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FIGURE 32. On the left the unoriented horizontal arc can be lifted to UG in
two different ways (dotted), depending on the choice of an orientation; their
composition is homotopic in US to . On the right we exhibit a smooth
oriented curve 3 (solid) and a curve 8’ (dotted) which is regularly homotopic
to 371 . The composition of the two is a nullhomotopic 8-shaped loop in US.

Proof. Applying Theorem 3.4 at g2 = 1 we get an explicit algebra isomorphism ¢ : .7 (B) —
O(SLy); by Example 8.3, we know that x(8) is isomorphic to O(SLs). Furthermore, by
Example 8.5, the map tr is an algebra isomorphism. One argues similarly for P,: applying
Corollary 4.20 at q2 = 1 we get an explicit algebra isomorphism ¢ : . (P,) — O(SLy)*"1;
by the proof of Corollary 4.20 a system of algebra generators of . (P,) is easily seen to be
the arcs connecting the edge ey to each other edge and stated arbitrarily. By Example 8.5,
the map tr on these generators provides a system of generators of O(SL9)®"! which by
Example 8.3 is isomorphic to x(P,). O

8.2. Splitting theorem for trace functions. In all this subsection, let ¢ C & be an ideal
arc oriented arbitrarily, let & be the result of cutting & along ¢ and let pr : & — & be
the projection and pr: U6’ — UG the projection induced on the unit tangent bundles. Let
prt(c) = ¢; Ucy C 06’ so that ¢ has the positive orientation and ¢y the negative one with
respect to the orientation induced by that of & on the boundary. For each ¢; let ¢; C UG’
be its canonical lift and (—¢;)™ the canonical lift of —¢;. Similarly let ¢ be the canonical lift
of ¢ in UG and (—c)™ be the canonical lift of —c.

Lemma 8.9. Each [a] € m (UG; O/é) can be written as a composition [ay|o [ag_1]0---o[aq]
of homotopy classes of immersed paths o; : [0,1] — UGS such that «;({0,1}) C 06 U ¢
and a; N7 (c) = day NC. Such a decomposition is unique up to insertion/deletions of
compositions [o/] o [a'7!] for [o/] € m(US;¢) and replacement of [aj] by [a]'] o [of] o [a)] for
some [af],[a]'] € m(US;06 U?T) and [aff] € m(UG;¢) such that [oy] =[] o [af] o [o)] (or
reciprocally).

Proof. Observe that 7—'(¢) C US is homeomorphic to an annulus A = R x S! so that
¢ = Rx{1}. Represent the class [a] by a smooth curve « : [0, 1] — UG so that it is transverse
to A; then homotope it so that it intersects A exactly along ¢: this provides an instance of

the claimed splitting. If o/ : ([0,1],{0,1}) — (UGS, 06) is another smooth representative of
the same class intersecting A exactly along ¢, let h(t,s) : [0,1] x [0,1] — UGS be a smooth
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homotopy between o and o/ which is transverse to A. Then h~1(A) is a disjoint union of arcs
and circles embedded in [0, 1] x [0, 1] with boundary in [0, 1] x {0, 1} containing a finite number
of maxima and minima with respect to the height function given by the second coordinate s.
Pick a finite number of heights so = 0 < s1 < ... < s, = 1 so that each strip [0, 1] X [s;, ;1]
contains at most one maximum or minimum of the diagram of h~*(A). Each immersed path
ag, (t) :== h(t,s;) : [0,1] — UGS intersects A transversally a finite number of times and we
can then modify h locally around h='(A) N ([0,1] x {s;}) without inserting new maxima and
minima so that o, (t) intersects A only along ¢. Then the homotopies hl, s,,,] transform
the immersed path «j, into ay,,, by the moves described in the thesis: passing through a
minimum replaces a smooth curve o with a composition o’ o o’ o " were all of o, o', @, /"
intersect A only along ¢ and in their boundary; passing through a maximum has the converse
effect. Finally a strip containing no maxima and minima corresponds to a finite number of
moves consisting in rewriting coa’ with ao 3037 oa’ where 8 € m (US;?) is the homotopy
class represented by the restriction of h to a “vertical arc” of h™'(A) N[0, 1] X [s;, si11] (i-e.
an arc joining [0,1] x {s;} and [0, 1] x {s;41}). O

Ifp:m(U& 5(75/’) — SLy(C) is a twisted bundle, then by Lemma 8.1 we can extend it to

a twisted bundle p" : 7, (US';0&' U (—c2)™) — SLa(C) by setting p”(1/Oq,) = ( (1) _01 )

where /Q,, is the path connecting ¢; and (—c2)™ by following in the positive direction the
fiber 7~1(z) for some x € cs.

Proposition 8.10. There is a surjective map i* : tw(&') — tw(S) defined as follows. Given
a € m(US;06), decompose it as o = a0 ay,_1 0 -+ - 0y where each a; € m(US;06 UC)
intersects m1(c) at most in its endpoints and exactly along ¢ (such a decomposition exists
by Lemma 8.9). Then for each p' € tw(&') let

i*(p") () = p" ()" (e _y) - " ()

where o, = pr- ' (oy) is the lift of a; to m(US';06" U (—cy)™). Passing to the algebras x (&)
and x(&") of reqular functions on the algebraic varieties tw(&) and tw(S&'), i* induces an
injective algebra morphism i : x(&) — x(&') which we will call the “cutting morphism”
associated to c.

Proof. By Lemma 8.9 to check that ¢* is well defined it is sufficient to check that for each «
the choice of the decomposition does not affect the result of i*(p’)(«). But this is evident if
we make an exchange as o aq <> ap o’ oa’toa; or a ¢+ o’ o’ o™ as in the statement
of Lemma 8.9 because p’ is a functor.

To prove surjectivity observe that by Lemma 8.1 we can extend any morphism p :

m(US;06) — SLy(C) to p: m(US;06 UcU (—c)~) — SLy(C) setting in particular
0 -1
p( \Y% @c> = ( 1 0 ) .
Then if o € m(U&'; 06" U (—co)™) define p' : m (US; 96" U (—c2)™) — SLy(C) by p'(af) =

p(pr,(a)) where pr, : 7T1(U6/;5v6/ U(—c)™) — Wl(UG;é(TB U (—¢)™) is the morphism
induced by the continuous map pr : U&" — UGS. Then letting o’ be the restriction of
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P to m (UG, 56\5/’) we have that by construction p = i*(p’). Surjectivity of i* implies the
injectivity of i. ([l

The following proposition tells us that the trace functions behave exactly as the skeins
under cutting along an ideal arc (see Theorem 2.15). Suppose « is a stated transverse smooth
simple curve intersecting transversally c¢. Then o/ := pr~!(a) is a transverse smooth simple
curve which is stated at every boundary point except for newly created boundary points,
which are points in prl(c) N/ = (c; Uep) N’ A lift in & of « is a stated transverse
smooth simple curve 3 in & which is o equipped with states on pr~*(c N «) such that if
z,y € prt(cNa) with pr(z) = pr(y) then x and y have the same state. If |cN a| = k, then
« has 2% lifts in &'.

Proposition 8.11 (Cutting trace functions). Let a be a stated transverse smooth simple
curve intersecting transversally c. Then

(139) iftr(a) = 3 tr(8)

where the sum is taken on all the lifts in &' of a (i.e. as in Theorem 2.15). Furthermore if
d C & is another ideal arc disjoint from c and i’ is the associated cutting morphism, it holds
oi=1io07.

Proof. Since by Proposition 8.10 we already know that 7 is a well defined injective algebra
morphism, it is sufficient to check the statement for a system of stated transverse smooth
curves {v; € I} which generate x(&) as an algebra. By the proof of Lemma 8.2, we can
choose a finite system of such 7; such that |y, N¢| < 2,Vi. Let o € {;,7 € I} be represented
by a smooth immersion « : [0,1] — & intersecting transversally ¢ with states st(a(0)) =
e, st(a(l)) = n; if |a N¢| = 0 the statement is true. If | N¢| = 1 then o = g 0 vy where
«; are transverse smooth simple curves with a;(1) = ay(0) € ¢ and are partially stated
by st(ai(0)) = ¢, st(as(l)) = n. Furthermore, up to switching o to a~! we can suppose
(A1 (1), ¢) form a positive basis of &.

Let then A; (resp. A) be the 2 X 2 matrix expressing the values of tr(«;) (resp. tr(«))
with states in {4} as in Example 8.5; then, as remarked in the example 4; = p(v/O.) ' p(@;)
(resp. A = p(v/O.) p(Q)) so that Equation (139) rewrites in this case as A = Ay - A;.

Now since the orientation induced by pr~'(c) is negative on ¢y then in US the good lift &
of a is homotopic to pr(ag) o \/OTC_I o pr(a;) where «; are depicted in the left hand side of
Figure 33, therefore

A= p(+/O.) ' p(@) = p(v/O.) ' p(@z) 0 p(+/O) o plar) = Ay - A,

and the claim is proved.

Suppose now that |o N ¢| = 2 where « is a stated smooth immersion transverse to c;
by the proof of Lemma 8.2 we can suppose that the sign of the intersections of o and c is
opposite and we can split « as a3 0 aig 0 ap where «; are transverse smooth immersions with
a1(1) = as(0), as(1l) = a3(0) and partially stated so that st(a;(0)) = € and st(as(1)) = n.
Furthermore, up to switching o and a~* we can suppose that (¢(1),¢) form a positive basis
of &.
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FIGURE 33. On the Lh.s. the curve a (horizontal, solid) intersects once c
(vertical, solid). The dotted curve is regularly homotopic to « and is cut by

¢ into ay o \/@71 and «; where «; are in good position in &’. On the r.h.s.
« intersects twice ¢ with opposite orientations. The dotted curve is regularly

homotopic to v and is cut by ¢ in ag, \/@_1 0@y 0 \/@_1 and aq, where «; are
in good position in US&'.

As above let A; = p(0.)7! - p(@;) and A = p(0,)~!- p(@) and Equation (139) is equivalent
to A= As-As- Ay. Then again, as shown in the right hand side of Figure 33, « is regularly
homotopic in US to pr(az) o VO, o pr(az) o VO, o pr(ay). Therefore we have:

A=p(0.)"p(@) = p(0,) " p(az) - p(Oe) " - p(az) - p(Oc) " - p(ay) = As - A - Ay
and the thesis follows. O

8.3. The classical limit of stated skein algebras.

Theorem 8.12. Suppose ¢'/> = 1. The map sending a skein to its trace induces an algebra
1somorphism,

tr: S (6) — x(6).

Proof. We first claim that the relations (7), (8), (9), (10) with ¢z = 1 are satisfied by the
trace functions. By Lemma 8.8 the claim is true for bigons. But by Proposition 8.10 cutting
induces an injective algebra map, thus to verify local relations we can verify them in a bigon
containing the disc where the relations are depicted: this proves the claim in general.

The algebra isomorphism is proved as follows: pick an ideal triangulation of & and apply
to each edge of the triangulation Proposition 8.11 on the side of x(&) and Theorem 2.15 on
Z(S). We get the following diagram of algebra morphisms of which the horizontal lines are
injective and which is commutative by Proposition 8.11 and Theorem 2.15:

S(6) — @, (T))

(140) trl Jtr
X(6) — &, x(T7)-
Since by Lemma 8.8 the right vertical arrow is an isomorphism we conclude.
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