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Abstract—Synchrophasor data provide unprecedented opportu-
nities for inferring power system dynamics, such as estimating
voltage angles, frequencies, and accelerations along with power
injection at all buses. Aligned to this goal, this work puts forth
anovel framework for learning dynamics after small-signal distur-
bances by leveraging Gaussian processes (GPs). We extend results
on learning of a linear time-invariant system using GPs to the
multi-input multi-output setup. This is accomplished by decompos-
ing power system dynamics into a set of single-input single-output
linear systems with narrow frequency pass bands. The proposed
learning technique captures time derivatives in continuous time,
accommodates data streams sampled at different rates, and can
cope with missing data and heterogeneous levels of accuracy. While
Kalman filter-based approaches require knowing all system inputs,
the proposed framework handles readings of system inputs, out-
puts, their derivatives, and combinations thereof collected from
an arbitrary subset of buses. Relying on minimal system informa-
tion, it further provides uncertainty quantification in addition to
point estimates of system dynamics. Numerical tests verify that
this technique can infer dynamics at non-metered buses, impute
and predict synchrophasors, and locate faults under linear and
non-linear system models under ambient and fault disturbances.

Index Terms—Bayesian estimation, Gaussian processes,
kernel-based learning, linearized swing equation, method of
moments, missing data, rate-of-change-of-frequency (ROCOF),
synchrophasor data.

1. INTRODUCTION

AINTAINING the stability and synchronization of a

power system can be enhanced upon closely monitoring
the voltage angles, frequencies, accelerations (rates of change
of frequency or ROCOF), as well as the power injections at
all buses. Phasor measurement units (PMUs) provide high-
accuracy data on dynamic system states at high temporal res-
olution. However, due to high installation and networking costs,
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not all buses are instrumented with PMUSs, while communication
failures oftentimes result in missing PMU readings [1]. Such
challenges motivate the need for inferring power system dynam-
ics from synchrophasor data using minimal system information.
Since observability may not be always granted, measures for
quantifying the uncertainty are relevant. We propose a frame-
work to estimate the signals involved in power system dynamics
after small-signal disturbances. The suggested framework can
be employed for various applications such as data imputation
and screening, frequency monitoring, and localization of oscil-
lations, to name a few.

Approaches to infer power system dynamics can be broadly
classified into data- and model-based methods. Data-based
methods typically use synchrophasor measurements to learn the
system’s dynamic states. Reference [2] for example advocates
that the matrix collecting PMU measurements across buses
and time instances features a low-rank plus sparse structure,
so missing PMU data could be recovered by means of matrix
completion [3]. If all PMU data is lost for one or more con-
secutive time instances, a robust matrix completion approach
stacking data in a Hankel matrix shows promise to recover the
original PMU data stream [4], [5]; though performance deterio-
rates with prolonged periods of lost communication. The work
in [6] proposes grouping the measured signals prior to robust
principal component analysis to meet the sufficient conditions
of guaranteed data recovery. Arranging synchrophasor readings
in higher-order tensors rather than matrices could potentially re-
solve the latter issue using tensor decomposition techniques [7].
Nonetheless, data-based techniques cannot extrapolate on buses
not instrumented with PMUs, do not utilize readings of power
injections or flows, and ignore any system model information.

Dynamic state estimation (DSE) aims at inferring the power
system states using both a system model and measurements
processed through a Kalman filter (KF); see [8] for arecent com-
prehensive review. Plain KFs are optimal estimators that adopt
a linear system model, while nonlinear power system dynamics
can be handled through KF variants, such as the extended [9];
the unscented [10], [11]; and ensemble KFs [12], [13]. Despite
these developments in sophisticating system models, KF-based
DSE solutions operate on a localized fashion and consider a
singe bus or a single control area of the power system [14], [15].
More importantly, KF-based methods presume all inputs to the
dynamic system of interest (single bus or control area of the
power system) are either known or measured. Such requirement
may not be realistic for the entire power system. Moreover,
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typically KFs operate on data collected over uniformly sampled
time intervals, which renders them vulnerable to missing data or
different sampling rates. Finally, DSE approaches approximate
continuous differential equations with discrete finite differences.

Synchrophasor data can be used to infer more coarse dynamic
system information, such as locating the sources of oscillations.
The latter task can be accomplished by comparing the arrival
time of traveling waves [16] and [17]; by measuring the dissi-
pated energy of power flows [18], [19]; or via robust principal
component analysis [20]. But these methods require access to
data across the entire power network.

In a nutshell, existing methods for inferring power system
dynamics have limitations on the placement and sampling rate
of measurements, while data streams should be reliable and
uninterrupted. To overcome these restrictions, we propose a
comprehensive framework for learning power system dynamics
from PMU data using Gaussian processes (GPs). Our methods
rely on approximate system information, such as the inertia
parameters for generators and the Jacobian matrix of the power
flow equations. A detailed comparison with existing works is
deferred to Section V-D.

Our contribution is threefold: i) Cross-pollinate results for
GP-based inference on a single-input single-output (SISO) linear
time-invariant (LTT) system to the task of learning power system
dynamics; ii) Leverage the physics behind the swing equations
and inter-area oscillations to extend GP modeling from the
SISO to the multi-input multi-output (MIMO) setup and infer
dynamics at non-metered buses; and iii) Develop a scalable
technique for estimating GP model parameters from collected
data using the method of moments.

The proposed toolbox comes with several unique features.
First, signals are modeled in a continuous fashion, which lends
itself a natural way to compute time derivatives, which is ro-
bust even under low sampling rates and missing data. Second,
system inputs and outputs are handled in a unified manner:
Power injections, voltage angles, frequencies, and ROCOFs at
any bus can be treated either as measured or wanted signals
without major changes to the framework. Finally, thanks to its
Bayesian flavor, the GP inference paradigm provides not only
a point estimate, but also a Gaussian probability distribution
function (PDF) for the sought signal. The latter feature allows
for uncertainty quantification for the estimated data streams.
This is important when testing data normality against attacks or
under limited observability.

The rest of the paper is organized as follows. Section II defines
the general problem setup of learning power system dynamics.
Section III reviews Gaussian processes and adopts them to
learning in linear dynamical systems. Section IV builds on the
swing equation to develop a statistical model for power system
dynamics. Section V proposes a model reduction method for
increasing the efficiency of the GP paradigm and estimating the
needed parameters. It also contrasts our new GP-based learning
methodology to existing works. Our methodology is tested under
various application setups in Section VI. Conclusions and future
directions are outlined in Section VII.

Notation: column vectors (matrices) are denoted by lower-
(upper-) case letters. Operator dg(x) returns a diagonal matrix
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with x on its main diagonal. Symbol (-)' stands for transposi-
tion; Iy isthe V x NN identity matrix; & = ‘é—f denotes time dif-
ferentiation; and E is the expectation operator. Operator vec(X)
vectorizes a matrix by stacking its columns in a single vector,
while [X]; ; is the (i, j)-th entry of X. The Kronecker product
of matrices is expressed as X ® Y. The notation x ~ N (s, X)
means x follows a multivariate Gaussian distribution with mean
1 and covariance 3.

II. PROBLEM STATEMENT AND RELEVANT APPLICATIONS

We are interested in monitoring power system dynamics un-
der small-signal disturbances using synchrophasor data. Power
system dynamics are modeled here through an approximate
multi-input multi-output (MIMO) linear time-invariant (LTI)
system. The inputs to this MIMO LTI system are the devia-
tions from the scheduled active power injections. Its outputs
or states correspond to deviations from the steady-state rotor
angles or speeds, denoted by 6, () and w,, (t) = 6,,(t) per bus
n. For brevity, we henceforth drop the term deviations. The
rate-of-change-of-frequency (ROCOF) or acceleration wy,(t)
may be measured or may be of interest. The angle, speed,
and acceleration of a synchronous machine is captured by the
angle, speed (frequency), and acceleration of the related voltage
phasor. To avoid confusion between frequency w,,(t) and the
frequency-domain analysis of time signals, we will henceforth
refer to w,, (t) as speed. The parameters of the aforesaid MIMO
LTI system are assumed to be known, precisely or approxi-
mately [21], [22]. These parameters include generator constants
(e.g., inertia and damping) as well as the Jacobian matrix of the
power flow equations evaluated at the current operating point or
the flat voltage profile.

The envisioned application setup is described next. The sys-
tem operator is collecting synchronized data of voltage angles,
speeds, ROCOFs, or power injections on a subset of buses.
The collected data may be of different degrees of accuracy
due to instrumentation or estimation noise. The goal is to infer
non-metered grid quantities related to power system dynamics.
The collected data are noisy and sampled partially across buses
and time. They are also heterogeneous since they may include
system inputs, outputs, and their derivatives.

The proposed learning framework can be used in different ap-
plication setups, such as: i) Given voltage angles at some buses,
monitor the speeds at non-metered buses to ensure stability; ii)
Given voltage angles, speeds, and power injections at generator
buses (all or a subset of them), infer the power injections at
the remaining buses to localize faults or sources of oscillations;
iii) Impute missing entries from a synchrophasor data stream
or cross-validate a data stream that has been deemed erroneous
or suspicious; and iv) Compute reliable estimates for speeds
and ROCOFs to drive load-frequency control and grid-forming
inverters.

III. GAUSSIAN PROCESSES FOR LEARNING IN DYNAMICAL
SYSTEMS

This section reviews the basics of Gaussian processes and
explains how GPs can model single-input single-output (SISO)
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LTI dynamical systems. A GP is a random process with the
additional property that any collection of a finite number of its
samples forms a Gaussian random vector [23, Ch.1]. Consider
for example a time series x(¢) and two distinct sets of time
indices 77 and 73. A signal z(t) is a GP if the two vectors x;
and xo collecting samples of x(t) over 7; and 73 are jointly

Gaussian or
<{/J'1:| [211 Z321:|)_ (1)
M2 ’ 221 222

]
X2

Due to (1), the conditional probability density function (PDF)
of x, given x; is also Gaussian with mean and covariance [24,
Ch. 6.4]

(2a)
(2b)

Elxa|x1] = po + B B} (x1 — py)
COV[X2|X1] = 222 — 22121711251.

Such modeling is useful because knowing the value of x1, the
minimum mean square error (MMSE) estimator of x5 is (2a).
Moreover, the uncertainty of this estimate is described by (2b).

In the learning problems to be addressed in this work, we
do not indent to make any observability claim and determine
whether the dynamic signals of interest in x5 can be observed
from the given measurements in xX;. Nonetheless, thanks to
the Bayesian nature of the approach, the diagonal entries of
Cov[xa|x1] can be used as confidence intervals. As an example,
under limited number of measurements or when x5 cannot be
observed from x1, the covariance Cov|[xz|x;] would take large
values on its diagonal entries, which prompt us that E[x2|x]
is not a reliable estimate of x5. The statistical characterization
of x5 in (2) can also be utilized for anomaly detection. Suppose
that x5 is actually observed, but is not trustworthy. One can use a
trustworthy x; and the formulae in (2) to compute the Gaussian
conditional PDF p(x3|x7 ). If this PDF takes on a relatively small
value when evaluated at the actual xo, then x5 can be flagged as
anomalous.

Let us review how GPs can be used for learning in LTI
systems; see [25], [26] for details. Consider the SISO LTI system
described by the ordinary differential equation (ODE)

§(t) +79(t) +2y(t) = x(t) 3)

for given v, 2 > 0, and initial conditions y(0) and (0). If a(¢)
is known, then y(¢) can be computed as the solution of (3) using
standard ODE methods. For the inverse problem, if the output
y(t) is known, its derivatives can be computed and the input x(¢)
can be found by simple substitution in (3).

Both problems get more complicated when the known signal
(input or output) is observed through noisy discrete-time sam-
ples. Moreover, for the inverse problem, one may not have access
to all derivatives {y, v, 4}. And perhaps the measurements of
{z,y, 7,7y} are originating from sensors or estimation methods
with different levels of accuracy. The goal is to estimate the
non-metered signals. Modeling y(t) as a GP provides a statistical
framework to do so as explained next.

Let us model y(t) as a zero-mean GP with the covariance
Ely(t)y(t')] = k(¢,t"). Function k(t,t’) is known as the kernel
function and can be decided based on prior knowledge about the
signal. We are interested in the joint PDF for samples of ()
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collected attimes T := {t1, ..., {7}, and stacked in vectory :=
[y(t1)---y(tr)]". Without loss of generality, the sampled times
have been ordered as t; < ... < tp. It is not hard to verify that
y ~N(0,K)where K > Oand [KJ;; = k(t;,t;) forallt;, t; €
T. Since the latter holds for any collection of time instances 7T,
signal y(t) is a GP indeed.

Letus focus on the covariance matrix K of y. Despite K being
dependent on 7, our notation drops that dependence for simplic-
ity. The choice of k(t;, t;) is crucial for modeling y(t). A signal
that is a linear function of ¢ as y(t) = w1t with wy ~ N (0,1)
possesses the kernel function k(¢;, t;) = E[y(t;)y(t;)] = tit;. If
a signal is a quadratic function of ¢ as y(t) = wat? + wyt + wo
with weights being independent zero-mean Gaussian random
variables with variances E[w3] = E[w?] =1 and E[w?] = 2,
the signal gets the kernel function k(;,t;) = (1 + t;t;)?. The
previous two examples explain how the kernel function and
hence K as [KJ; ; = k(t;,t;), specify the shape of y(¢) [24]. A
typical choice for kernel function is the Gaussian bell k(t;,t;) =
e Pti=t)? for B > 0, which is appropriate for modeling smooth
functions y(¢) [23, Ch. 4]. Note that GPs have been used in power
systems before, e.g., to detect data attacks to steady-state state
estimation [27], or to predict prices in electricity markets [28].
Here we leverage the interesting properties of GPs when it comes
to time signals to learn grid dynamics.

An appealing property of GPs is that time integration and
differentiation of a GP yields a GP [26]. If the y(t) of (3) is
a zero-mean GP, then ¢(t) is also a zero-mean GP. If vector y
collects the samples of () over T, define its covariance matrix
as

K =E[yy']. @
Interestingly, matrix K can be obtained from K as follows:

K| =E Oy(t:) dy(t;)| _ O*Ely(t)y(t;)] _ 0%k(tit;)
! ot; Ot Ot;0t; ooty

We can similarly show that the (i, j)-thentry of E[yy ' | can be
computed as 0k(t;,t;)/0t;. In general, the covariance between
any pair of the signals (y, ¢, §) appearing in (3) can be derived
from the kernel function likewise.

Another property of GPs is that a linear combination of GPs
is a GP itself: If the state y(¢) of the system in (3) and its
derivatives are GPs, then its input z(¢) is a GP as well. In a
nutshell, because the kernel & (¢;, tj) is known analytically, we
can readily compute any covariance among (z,y, ¥, ¥)-

Armed with a GP model for (3), several learning scenarios
related to the SISO system of (3) can be addressed, such as:

1) Filtering: Given samples of x(t), find the state y(t).

2) Smoothing/prediction: Giveny, infer y(¢') for ¢’ within or

outside the observation interval (¢y, t7).

3) Inverse task: Given y, find x(¢) within or outside 7.

4) Mixed setups: Given samples of (x,y, ¢, ¢) (some or all),

find the remaining signals at the same or different times.

In all scenarios, the observed signals may be corrupted by
noise and/or sampled at non-uniform intervals.

The GP toolbox can cope with all tasks in a systematic and
unified fashion as long as the covariances appearing in (2) are
known. We explained earlier that upon postulating a kernel
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Fig. 1.

Possible applications of processing PMU data for learning dynamic grid signals. /mputation refers to finding missing entries, while interpolation entails

tasks such as upsampling or sampling at different time instances. Anomaly detection is possible by having a probabilistic characterization (such as a PDF) for
a random signal, so outlying (erroneous or suspicious) instantiations of this signals can be pinpointed. Extrapolation is the ability to learn dynamic grid signals
on non-metered buses. It can be particularized to any of the applications A1)-A4). Localization relates to learning the inputs to the dynamic grid model (power

injections), and could be useful for unveiling sources of oscillations.

for y(t), all the covariances needed for learning over (3) can
be readily computed. The previous discussion is unfortunately
limited to the SISO case. If we extend this GP-based learning
framework to the MIMO setup of power system dynamics, we
will be able to handle a gamut of applications, such as those
depicted in Fig. 1; note that the applications are described in
detail in later sections. To extend GPs from the SISO to the
MIMO setup, covariances should be computed across both time
and buses. We do so by leveraging swing dynamics as elaborated
next.

IV. MODELING POWER SYSTEM DYNAMICS

The dynamic behavior of a power system can be modeled
by a set of nonlinear differential equations in terms of the
rotor angles and speeds of the synchronous machines at each
bus. Focusing on small-signal analysis, these equations can be
linearized around the current operating point yielding the swing
equation [29]. Consider a power system having N buses hosting
synchronous generators comprising set A/ with rotor angles and
speeds collected respectively in 8(t) := [01(t)---On(t)]" and
w(t) == [wy(t) - wn(t)]T with w(t) = O(t). The mismatch
between the electric and mechanical power at each generator
is stacked in vector p(t) := [p1(t) - - - pn ()] ".! With these def-
initions in place, the swing equation can be expressed as [29,
Ch. 3]

Ms(t) + Dw(t) + LO(t) = p(t) )

where M and D are diagonal matrices collecting the inertia and
damping coefficients of generators M, and D,,, and L is the
negative Jacobian matrix of the power flow equations evaluated
at the current operating point and after Kron reduction to remove
the effect of non-dynamic buses; see e.g., [30], [31, Ch. 7] for
details. Within some standard approximations, matrix L can be
assumed to be symmetric positive semidefinite (psd); see [22]
for details.

As evidenced by (5), grid dynamics can be approximately
modeled by a second-order MIMO LTI system. We henceforth

'In Section III, vectors collected samples of one signal across time instances
t € T. Hereafter, vectors indexed by ¢ collect signals across buses at time ¢.

select w to be the state of this system. It is worth noting that
swing dynamics are oftentimes expressed as a first-order dy-
namical system whose state concatenates w and 6, and forms its
standard state-space representation. Here we intentionally keep
swing dynamics in their original second-order form. This will
provide intuition, motivate simplifications, and lead to tractable
statistical models.

To utilize GP models, we need to be able to compute the
covariance E[w,, (t + 7)w,, (t)] for any pair of buses (n, m) and
any pair of times (¢ + 7,t). There are two challenges here: i)
The number of such covariance functions grows quadratically
with N; and i) If bus n is not metered, learning the covari-
ance E[w,, (t + 7)w, (t)] from data would be impossible even
if bus m is metered. To bypass these challenges, the standard
approach in GP-based learning is to postulate a parametric form
on Elwy, (t + 7)wm (t)] and learn its parameters by maximum
likelihood estimation using metered data. A convenient form is
the so-termed Kronecker model [28], according to which the
covariance is expressed as the product of a spatial and a tempo-
ral kernel as E[wy, (t + 7)wm (t)] = kbus(n, m) - kiime (t + 7, t).
Our experimentation with various forms for ky(n,m) and
kime(t + 7,¢), including spatial covariances decaying with the
electrical distance or propagation delays, was not particularly
fruitful. This is justified because the Kronecker model is quite
restrictive as it presumes that any pair of buses features the same
time cross-covariance function.

To arrive at an effective choice for E[w,, (t + 7)w, (t)], we
should better encode any prior knowledge on the problem at
hand. Given the complexity of grid dynamics, we proceed as:

1) Leverage an approximate stylized model of grid dynamics
to decide a parametric form for Elw,, (t + 7)wy, ()]

2) Use metered data to estimate the parameters involved in
the parametric form for E[w,, (¢ + 7)w., (¢)]. On the field,
these data will be actual PMU readings. For the purposes
of this work, data will be synthesized using realistic power
system models. Heed that the models used to generate data
in our numerical tests have not been derived by the stylized
approximate dynamic grid model studied under a). The
purpose of that model was only to provide reasonable
parametric forms for covariances E[w, (t + T)w,, (t)].
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3) Plug metered data and the learned covariances in (2) to
obtain point and uncertainty estimates for the non-metered
signals of interest.

The rest of this section targets a) by reviewing and expanding
upon an approximate model of grid dynamics. To obtain a simple
yet sufficiently representative model, the key idea is to shift focus
to an intrinsic set of system eigenstates. Modeling eigenstates
instead of the states w,,’s provides a physics-informed way to
capture correlations across wy,’s, and thus, extrapolate across
buses. Our workflow to obtain a parametric form for Efw,, (¢ +
T)wi, (t)] involves three steps: S7) Transform grid dynamics to
a more convenient space of eigenstates; S2) Model eigenstates
as GPs; and S3) Convert eigenstates back to w,,’s. These steps
are delineated next.

S1) Decoupling the MIMO Dynamical System: With w being
the state, the transfer function of the system in (5) is

H(s) = s (M +sD + L)' (6)

with s being complex frequency of the Laplace domain. This
transfer function simplifies significantly under the next assump-
tion, which is adopted frequently to approximate power system
dynamics [32], [33].

Assumption 1 (Uniform damping): The ratio of each gener-
ator’s damping coefficient to its inertia is constant or D = vIM
for a given v > 0.

This assumption relies on the fact that both inertia and
damping coefficients of a synchronous machine scale with the
machine’s power rating [34]. Under this assumption, the transfer
function of swing dynamics can be rewritten as [33]

H(s) = sM 2V (s2T+ 571+ A) " VM /2

where Ly, = VAV ' is the eigenvalue decomposition of matrix
Ly ;= M Y/2LM /2. Because Ly, is psd, its eigenvalues
have non-negative real values and are sorted in increasing order
as 0 = A1 < Ao < ... < Apn. These eigenvalues are placed on
the main diagonal of matrix A. Moreover, the eigenvectors
of L), are real-valued and orthonormal. They are placed as
columns of V.

Let us now transform the original inputs/states of (5) to the
eigeninputs/eigenstates [22], [33]

y(t) == VIMY20(t) and x(t):=V M Y2p(t). (7)
Then the swing dynamics of (5) transform to
y(#) 7y () + Ay (t) = x(t). (8)

As A is diagonal, the original MIMO system decouples into
N SISO eigensystems. Eigensystem ¢ is described as

Ui + VY + Ay = 4 )

which complies with the SISO example of (3). If y; (¢) is selected
as the system output (state), the impulse response of this system
can be found to be [22]

hi(t) = (a;e™" + biedit) u(t) (10)

1 . R
where a;,b; == 5 F 5 ﬂ{’; —; ci,di = 5 £
- i

u(t) is the unit step function.
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Thanks to this decoupling, we next propose a statistical model
for eigenstates y;’s rather than speeds w,,’s. Although our mod-
eling relies on Assumption 1, it should be emphasized that our
numerical tests of Section VI were conducted on power networks
not satisfying this assumption.

S2) Modeling Eigenstates as GPs: To model eigenstates y,
let us first study the eigeninputs x(¢). Lacking specific infor-
mation on the system inputs p(¢), we model them as random
processes with non-informative prior distributions. In particu-
lar, we postulate p(t) to be a zero-mean white GP with co-
variance E[p(t + 7)p ' (t)] = £,6(7), where §(7) is the Dirac
delta function. This means that the energy for each input p,, ()
is equally distributed across frequencies. This way x(t) is a
zero-mean GP with covariance computed from (7) as

E[x(t +7)x" (t)] = Ad(7) (11)

where A := V' M~1/2% M~1/2V . Itis natural to assume that
3., is a diagonal matrix. In fact, if 3, = oM for some o > 0,
matrix A simplifies as A = aly [22], [33], [35]; our prior work
was limited to this special case [36]. A more reasonable model
could be argued to be X, = «M? so that the standard deviation
(and not the variance) of p,, (t) scales with the inertia (and hence
the power rating of bus n) [33]. To capture scenarios of any
diagonal 3, or even correlated inputs p(¢) due to renewable
generation, we consider a general matrix A in (11) that is to be
found. Having modeled the eigeninputs x, we proceed with the
eigenstates y.

Consider the i-th eigensystem of (9). It is known that when
an LTI system is driven by a wide-sense stationary (WSS)
random process x;(t), its output is a WSS random process
too [37].2 The following proposition summarizes the statistical
characterization of y;(t); see also [22] for a related claim.

Proposition 1: If the input z;(¢) to the i-th eigensystem is a
zero-mean white GP with variance «;;, the system output ; ()
is a zero-mean GP with covariance

B[y (t +7)9:(t)] = cvighii () (12)

where «;; is the (7, 7)-th entry of A definedin (11), and k;;(7) :=
L hu(r) + ha(=7)]

Proof: As z;(t) is a zero-mean GP, the output y; (¢) is a zero-
mean GP. Its covariance can be computed as [37, Ch. 10]

E[g:(t + 7)3(0)] = hi(7) * hi(=7) * Elai (£ + 7)a:(t)]
= Oéiihi(T) * hi(—T)

The first equality holds for the output of any LTI system driven
by a WSS random process. The second equality stems from the
sifting property of the delta function. Computing the convolution
establishes the claim. The result can alternatively be shown in
the Laplace domain.

Cross-covariances between eigenstates are found similarly.

Proposition 2: If eigeninputs x(t) are zero-mean white GPs
with the covariance of (11), then

E[g:(t + 7)3; ()] = aijkij(T)u(r) + qijkji(—=7)u(-T)
(13)

2A random process z(t) is WSS if its mean E[z(¢)] and autocovariance
function E[z(¢ + 7)z(¢)] do not depend on ¢ [37, Ch. 9].
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where k;;(7) := a;;€%" + b;jedi™ and

—2
(ci +cj)(ei +dj)(ei — di)
d2
bij = !
" (Cj +di)(di —&-dj)(ci —d;)
and «; is the (i, j)-th entry of A defined in (11).
Proof: The cross-covariance between the outputs of two LTI
systems driven by WSS processes can be computed as

E[gi(t + 7)g;(t)] = hi(7) * hj(=7) * Blzi(t + 7);(t)]
- Ozijhi(T> * hj(—T).

aij =

The convolution h;(7) * h;(—7) can be evaluated from tables
as ki;(7)u(r) for 7 > 0. For T < 0, it holds

E[gi(t +7)9; ()] = Elga(0)g;(t — )] = Elg; (¢ = 7)5:(1)].

The last term equals k;;(—7)u(—7) because now —7 > 0.0

So far, we have computed the auto- and cross-covariances
between eigenstates y;’s. The covariances between any pair of
(yi, Ui, i) and for any pair of (¢, ) can be computed by time
integration or differentiation of the corresponding k;;(t1,t2) =
kij(ta + 7,t2) = ki;(7) as discussed in Section III.

S3) Modeling System States as GPs: Having statistically
modeled the eigenstates, it is now easy to model w,,’s. If y (¢) is
a zero-mean GP, then w is also a zero-mean GP with covariance
computed from (7) and (12)—(13) as

Elw(t+ 7w’ (t)] = MYV2VE[y(t +7)y' (t)]V M~Y/2,
(14)

The covariance of (14) completes our GP model and allows
us to use the Bayesian framework of (2) to perform a broad
range of learning tasks related to grid dynamics. This is because
once we have a covariance (kernel) function for w, we can easily
compute covariances between 8, w, w, and p, as detailed in the
next Section V. Moreover, Section V explains how modeling
states through eigenstates offers additional computational and
observability advantages. Before that, we next consider a more
detailed model of power system dynamics.

The swing dynamics of (5) can be augmented to incorporate
droop turbine control. For generator n, let 7,, be the time constant
of its turbine and r,, its droop control coefficient. The effect
of the governor is ignored due to its relatively fast response
compared to the turbine. Incorporating droop control, power
system dynamics can be modeled as

Mo + Dw + L8 = p + p.
Tp. +pc = _R_lw

where diagonal matrices T and R collect the turbine and droop
parameters; and vector p. the adjustments in mechanical power.
By eliminating p., we arrive at the third-order model

TM& + (M +TD)w + (D+ R+ TL)w + LO = Tp
+p

As in (5), the above MIMO system can be decomposed into
N SISO eigensystems under the ensuing assumptions [33].
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Fig. 2. Basic steps for learning grid dynamics from synchrophasor data.

Proposition 3 ([33]): Grid dynamics including turbine and
droop control can be decomposed into N SISO systems

TYi+ (L +7)ii + (v + 7+ Th) ¥ + Aiys = Td + 3

through the transformation of (7) if D = M, R ! =rM,and
T = 71 for given positive v, 7, and 7.

V. INFERRING POWER SYSTEM DYNAMICS

This section explains how to practically infer dynamic grid
signals using the aforesaid GP-based framework. Before delving
into the details, let us summarize the key steps of the process
as illustrated in Fig. 2. First, given matrix Ly, compute its
eigenvalue decomposition to obtain matrices V and A. System
parameters (such as inertia coefficients, current operating point,
line impedances, and network topology) are assumed known.
If a specific range of oscillations is of interest (such as the
range of inter-area oscillations), the operator may use only
the say D eigenvalues falling within that frequency range; we
will elaborate on this feature later in Section V-B. Given 7y
and {A;}2 |, construct then the eigenstate covariance matri-
ces from (12)-(13). At this stage, the covariance matrices are
in parametric form since the values of «a;;’s are not known.
Upon filtering synchrophasor data, find o;;’s via the method
of moments as explained in Section V-C. Once «;;’s have been
estimated, find the complete covariance of system oscillations
using Proposition 2. Having modeled the covariance between
the collected measurements and the unknown dynamic grid
signals of interest (see Section V-A for details), provide point and
uncertainty estimates for the latter using the Bayesian estimation
formulas of (2). We next elaborate on the details.
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A. Spatiotemporal Covariance of Dynamic Oscillations

To infer power system dynamics, we first need to identify
which quantities are given [vector x; in (1)] and which are to
be found [x2 in (1)]. We then need to find their joint covariance.
Knowing this matrix, the sought quantities and their uncertain-
ties can be found from (2).

Suppose the inference task refers to 7' times comprising set
T. To simplify the exposition, we assume all measured signals
are sampled for all ¢ € 7. Arrange speeds across all buses and
times in the 7" x N matrix

Q= [w(l) w2 w(T)]". (15)

Stacking the columns of €2 on top of each other yields the T'N -
long vector w := vec(§2). The matrices of angles ®, powers
P, and eigenstates Y are defined similarly. These matrices get
vectorized into the T'N-long vectors (6, p,y), accordingly.

Define the 37’ N-long vector z := [0 'w'p"|" collecting all
random variables of interest; we ignore accelerations to keep
the notation uncluttered. Measured and wanted quantities are
subsets of the entries of z. For example, one may be measuring
angles at a subset of buses M over 7, and would like to infer the
angles or speeds at the remaining buses A/ \ M again over 7.
Or, one may be measuring angles and powers at some buses, and
would like to find the speeds at all buses. All such scenarios can
be handled using the formulas of (2) granted the related means
and covariances are known.

To keep the exposition general, let us find the mean and
covariance of the entire z. Lacking prior information, vector
z has been modeled as zero-mean. For its covariance, we start
with the E[ww "] block of E[zz ]. From (7) and (15), it follows
that 2 = YVTM~1/2. Upon vectorizing both sides and using
the property of the Kronecker product vec(ABC) = (C' ®
A) vec(B), we get that w = (M~'/2V @ Ir)y, so that

Elww'] = (MY2V @ I7)E[yy (VI M Y2 @ 17). (16)

Matrix E[yy '] has a block structure where the (i, j)-thT x T'
block stores E[g;(t)y,(t')] for all ¢, € T. These blocks can
be computed from (12)-(13). The remaining blocks of the
covariance E[zz '] can be found similarly. For example, the
covariance E[@w | can be modeled by replacing E[yy '] in (16)
with E[yy "] and integrating the covariances of (12)—~(13) with
respect to their first time argument.

Depending on the learning setup, not all entries of z are
needed. If angles and powers are not measured or they are
not to be inferred, then z does not contain any entries from
6 or p. In particular, suppose we measure speeds at a subset of
buses M and would like to find the speeds at bus n ¢ M. The
part of z corresponding to the collected data can be written as
zr = vec(Q2S ) where matrix S selects the columns of
related to M. In this case, the required covariance matrix E[zz ']
is obtained from (16) by replacing M~1/2V with S|, M~/2V.
Different bus selection matrices may have to be used for 6,
w, and p. Selection matrices may also be needed for sampling
across time. For example, to collect angles over times 7' C T,
we can premultiply €2 with a selection matrix S7-. This would
mean replacing the identity matrix I in (16) with S7. Despite
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being mundane, the formulas are straightforward to comprehend
and code.

We have hitherto assumed that the part of z related to col-
lected data is noise-free. In reality, grid dynamic data include
measurement noise and modeling inaccuracies (e.g., higher-
order dynamics or Assumption 1 being violated). To keep the
statistical model tractable, we postulate that the collected data
have been corrupted by additive zero-mean Gaussian noise that
is independent across measurements and time. To incorporate
the effect of noise on z, add the diagonal matrix of all noise
variances on the block of E[zz "] related to the measured data
[cf. submatrix 3217 in (1)]. In fact, this noise component ensures
>, exists for all learning scenarios. Nevertheless, inverting
3311 can be computationally challenging when more buses are
metered over longer time intervals. We next discuss a model
reduction technique.

B. Model Reduction of Spatiotemporal Covariances

It can be argued that our primary goal has been to esti-
mate eigenstates as they will provide a simple parametric form
for covariance E[w,, (t + T)wn, (t)] across actual states. Once
eigenstates y have been estimated, the original states w can be
computed as linear combinations of y from (7). Nonetheless,
vectors w and y are of the same dimension /N, and hence, y
may be unobservable unless all buses are metered. To bypass
this challenge, the idea here is to focus on a reduced number of
eigenstates associated with inter-area oscillations [29]. Industry
experience and recent analytical studies [33], [38], reveal that
inter-area oscillations occupy the lower frequency spectrum of
dynamic grid signals 0, w, and w. As the name suggests, such
oscillations can be observed over larger geographical areas or
even across the entire power system [29, Ch. 12]. Different from
intra-area oscillations which can be damped effectively by local
controllers, inter-area oscillations are harder to control and are
thus of particular interest [39].

To target inter-area oscillations, we leverage key frequency-
domain properties of eigenstates. The frequency response of the
i-th eigensystem can be computed from (9) as®

1
(b —w) 72

w

|H;(w)|* = (17)

Fig. 3 plots |H;(w)|? for the eigensystems associated with
the ten smallest eigenvalues of matrix Lj; for the IEEE 300-
bus power network. As evident from (17) and Fig. 3, each
eigensystem ¢ exhibits a frequency selective behavior with its
passband centered around the resonant frequency w; := v/A;.
Moreover, all eigensystems have the same frequency response
value H;(w;) = 1/~ at their resonant frequency. Let us define
the bandwidth of a system as the range of frequencies over which
| H;(w)]? is larger than half of its maximum value 1/+2. Solving
for |H;(w)]? = # yields the cutoff frequencies of eigensystem

3We use the symbol w for angular frequency of a signal to avoid confusion
with the voltage speed at buses denoted by w,, = 0,,’s.
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Fig. 3.
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Frequency responses of the first ten eigensystems for the IEEE 300-bus
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Fig.4. Frequency responses of the first ten eigensystems for the IEEE 300-bus
system with turbine dynamics and droop control.
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Then, the bandwidth of eigensystem ¢ is w; — w,; = -y, which
interestingly remains the same for all <. In a nutshell, eigen-
systems exhibit the same passband shape centered at resonant
frequencies ordered as 0 = wy < wo < ... < wy.

The same frequency-selective behavior of eigensystems ap-
pears also when considering the third-order system with turbine
dynamics and droop control from Proposition 3. This is demon-
strated in Fig. 4. Upon including turbine and droop dynamics,
the frequency response of each eigensystem may not have the
same bandwidth or peak amplitude, while resonant frequencies
have been shifted compared to those of Fig. 3. Nonetheless,
frequency selectivity remains and that is the critical property to
be exploited later.

Remark 1: Note that the aforesaid properties hold for the
linearized swing dynamics and only under Assumption 1. It is
only then that the MIMO system of grid dynamics decouples
into the set of N SISO eigensystems. Recall that this stylized
model of grid dynamics is used only to justify a reasonably
complex yet representative prior in terms of a parametric form
for Elw,, (t + 7)wy, (t)]. Once that form has been derived, the
estimation of the covariance parameters and the inference of
non-metered signals operate on on actual dynamic grid data,
which do not fully comply with the stylized model.

Due to the frequency selective shape of eigensystem i, the
frequency content of eigenstate y;(¢) can be approximately
confined within (w,,w;). Hence ¢;(t) can be associated to the
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resonant frequency w;. Therefore, to study inter-area oscillations
typically observed within the frequency range

Q :=[0.1,0.8]Hz,

the operator can confine its attention only on the eigenstates
falling within that range. To explain this, let us partition y into
the subvector y; collecting all eigenstates falling within €2, and
subvector y» collecting the remaining eigenstates. We partition
the matrix of eigenvectors V similarly into V; and V5. Then,
the transformation in (7) can be expanded as

w=M1Y*Vy =M Y2V, y, + M /?V,y,.

Interestingly, due to linearity, the frequency content of w()
along (1 is attributed only to the first summand of the previous
expansion. The second summand has no (or negligible) content
along frequency range (2. We would like to estimate y1, but the
metered entries of w depend on both y; and y». Nonetheless,
thanks to the separation of y; and ys in the frequency domain,
we can tune out the effect of y, without knowing either y;
or yo. This can be achieved by simply passing rotor speed
measurements through a filter having €2 as its pass band. If w1 ()
denotes the filtered w(t), we obtain that

wi (t) = M2V (). (18)

The importance of (18) is that without knowing the eigenstates
Y2, their contribution can be removed from all measurements.
Reference [38] introduced this idea for graph signal processing
of synchrophasor data. We can now use filtered speed data to
estimate the inter-area eigenstates y; (¢). Using (18), we can
replace (16) by

Elwiw(] = (M™?V, @ I)E[y13, | (VIM/? @ Ir).
19)

Aiming for y; rather than y emphasizes on inter-area os-
cillations, is expected to improve upon observability, as well
as offers computational benefits. To see the latter, suppose
we maintain only D < N eigenstates. We have replaced the
NT x NT matrix E[yy '] of (16) with the DT x DT matrix
E[yy "] of (19). The computational gain is not only in the matrix
products of (19), but also in the matrix inversion of 311 in (2).
Matrix 31, takes the form 21, = BE[yy|B" + 021, where
B := SLM’l/QVl ® It is of dimension MT x DT if M
buses are metered. One can utilize the matrix inversion lemma to
find 37} in O(M D2T?) instead of O(M>T?) operations with
D < M. Focusing on inter-area oscillations and the bandpass
nature of eigensystems simplify also the task of finding the
parameters in (12)—(13) as discussed next.

Remark  2: From (18), it holds that @,(t)=
e/ M~/2V,y(t). Evidently, the (n,i)-th entry of M~1/2V,
determines the participation of %;(t) in @, (t). Consider a
scenario where the ¢-th eigenstate has negligible participation in
all measured quantities. Naturally, the GP estimates of speeds
at non-metered buses where y; has a high contribution will be
inaccurate.
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C. Parameter Estimation

To evaluate the kernel functions of (12)—(13), we need to know
the N2 entries of A = E[x(#)x ' (¢)]. We use data to learn these
entries y;’s. If the focus is on D inter-area eigenstates, we
only need to find the corresponding D x D submatrix A of A.
Parameters involved in GP models are typically found via max-
imum likelihood estimation [23]-[25], though such approaches
are computationally complex and entail solving non-convex op-
timization problems. We propose a scalable estimation approach
instead based on the method of moments (MoM) [40, Ch.9].

Suppose the collected filtered data consist of speeds measured
at a subset M of M buses, that is z(t) = Syw (t). To find A,
we consider (14) for lag 7. With a slight abuse in notation, we
define the D x D matrix K, such that [K,];; := k;;(7) for, j
indexing the eigenstates within the frequency band of interest.
Ignoring noise for now, it holds

Elz(t+ 1)z (t)]

— S, M2V, (A ® KT) ViMY28T, (20
where © denotes the element-wise product between two matri-
ces. Note that the data covariance matrix depends linearly on
A. Matrix K- is known from (13). The ensemble covariance of
(20) can be approximated by the sample covariance matrix

Cr==) at+7)z(t).

t=1

2n

Nl =

The MoM suggests using the sample in lieu of the ensemble
covariance to estimate A. Vectorizing (20) and the Kronecker
product property vec(ABC) = (CT ® A) vec(B) yield that

¢, = Uvec(A 0 K,) = Udg(k, )& (22)

where ¢, := vec(C,); & :=vec(A); k, :=vec(K,); and
U = (SyM™1/2V)) @ (SyM1/2Vy).

Due to the symmetry of C, and A, we have to estimate
(D? 4+ D)/2 parameters collected in &. Exploiting the fre-
quency selective nature of eigensystems, we can reduce further
the number of «;;’s that need to be found: The eigeninputs z; (¢)
and x;(t) pass through eigensystems of known passbands. If the
two passbands do not overlap, the corresponding entry of k is
close to zero for all 7, and so «; is irrelevant for our learning.
In other words, this particular «;; does not have to be found.
We estimate the remaining entries of « or equivalently A using
a least-squares (LS) fit on the entries of ¢y based on the linear
model of (22) subject to the constraint that the complete A is
positive semidefinite.

To account for noise, an additional term dg(o ) should be
added on the right-hand side of (20). The M-length vector
o collects the variances for all terms of measurement noise.
Assuming noise is white, the term appears only for 7 = 0. If
o is known from the manufacturer of the metering devices or
historical data, matrix dg(o) should be subtracted from C..
Otherwise, vector o can be estimated jointly with .

TABLE I
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COMPARING METHODS FOR LEARNING FROM PMUS PER APPLICATION.
(APPLICATIONS ARE DEFINED IN FIG. 1)

Data-based DSE
[2]-{7] [S]-[15] GP approach
Al) | multi-stream vE v
A2) | X vE v
A3) | X vE v
A4) | multi-stream v v
AS) | X X v
A6) | [18]-[20] X v
No need for dy- | Need system inputs | —Single-PMU

namic system in-
put or model

and model (single
bus/area)

applications do
not need inputs or

model.
—Multi-PMU appli-
cations need ~, L,
and M; inputs are
not necessary

D. Comparison With Existing Works

Having presented our GP-based methodology for learning
grid dynamics, we are now able to compare it with prior
works related to processing synchrophasor data. As reviewed
in the Introduction, such works can be grouped into those
using synchrophasor data alone and those falling under the
dynamic state estimation (DSE) paradigm. With reference to
the applications depicted in Fig. 1, Table I compares how each
group of approaches handles each application and under what
requirements. Data-based methods are pertinent when a power
system model is not available, and the goal is to impute entries
from a few datastreams that are otherwise metered. They can also
be used for anomaly detection or locating oscillatory sources by
triangularization. DSE methods on the other hand, build upon
a detailed dynamic power system model to estimate, predict,
or differentiate the unknown system state. They usually focus
on a single bus or a single control area, and they presume that
all inputs to this dynamical system are metered. Our proposed
GP-based methodology applies to grid-wide inference tasks
when observability criteria are not met, none or a few inputs
are metered, and one can only rely on an approximate dynamic
grid model. In addition to multi-datastream applications, the
GP-based methodology can handle single-datastream applica-
tions of practical interest, such as finding voltage speeds from
angles (differentiation), prediction, or imputation.

VI. NUMERICAL TESTS

The novel GP-based learning framework was tested on several
of the applications discussed at the end of Section III. Before
elaborating on the applications, let us first explain how dynamic
grid data were generated. Numerical tests were not conducted
under the stylized dynamic grid model of Section IV, but on
more realistic setups. In particular, data were synthesized using
the IEEE 39- and 300-bus benchmarks. Upon Kron reduction,
the two benchmarks were converted to 10- and 69-machine
networks [41]. The IEEE 39-bus benchmark is also known as the
10-machine New England power system and has been widely
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used in the literature on dynamics. We used three models to
simulate grid dynamics:

e Model M) simulates the 69-machine system based on the
linearized model of (5). Linearization was performed at the
nominal operating point.

® Model M2) is used for modeling the nonlinear 10-machine
system using fourth-order generator models with automatic
voltage regulators (AVR) included.

® Model M3) models the nonlinear 10-machine system using
fourth-order generator models along with turbine/governor
dynamics, droop control, and AVR.

Both benchmarks violated Assumption 1 on constant
damping-to-inertia coefficient ratios D,, /M,, = ~ for all n. In
the 69-machine system, ratios lie within the relatively narrow
range of [0.19,0.4], so Assumption 1 may be reasonable. In
the 10-machine benchmark however, D,, /M, ratios take on the
distinct values {0.002, 0.024, 0.028, 0.04}. In the same system,
the ratios r,,* /M, of inverse-droop to inertia coefficients take
values in [0.09,6.8]. Turbine time constants 7,,’s take the distinct
values of {8,8.7,10} seconds. Even though 7,,’s seem to be
relatively close to each other, the D,,/M,, and r,'/M,, ratios
vary by one or two orders of magnitude, thus severely violating
the assumptions stated in Assumption 1 and Proposition 3. Note
that in the IEEE 39-bus benchmark, generator 1 represents an
aggregation of a large number of generators, and that may
explain the large disparity in ratios compared to the IEEE
300-bus (69-machine) benchmark. Either way, this 10-machine
system serves as an excellent worst-case benchmark to evaluate
the robustness of the proposed GP-based framework against
discrepancies between the actual dynamic grid model and the
stylized model used to derive covariances in Section I'V.

To derive the parametric form for covariances under models
M1) and M2), we need to know (M, ~,L). Under M3), we
additionally need to know 7 and r. We chose

1'D1 1'R'1 _
ERYTE r= T ML and 7 := N

For M1I), we obtained L. from MATPOWER’s function
makeJac. To generate data under M/ ), the swing equation
was converted to its state-space representation using MATLAB’s
ss, and was solved using MATLAB’s ode45 for a given input
p(t). For M2) and M3), we used the power system analysis
toolbox PSAT [42], which further simulates automatic voltage
regulators, turbine/droop control, and computes synchrophasor
data to be used as PMU readings after adding measurement
noise.

We simulated both ambient and non-ambient (fault) condi-
tions. Ambient conditions were tested under M) and M2), with
power injections p(¢) being synthesized as zero-mean Gaussian
processes having covariance E[p(t + 7)p ' (¢)] = 0.01M2§(7).
For non-ambient conditions, we simulated a fault scenario as
follows: A three-phase fault occurred at a substation connected
to one of the generators. The fault caused the breakers of adjacent
lines to open after 3 ms from the occurrence of the fault. After an
additional 3 ms, the breakers re-closed and the fault was cleared.
Under M1), the described disturbance was simulated using an
impulse function. Under M2) and M3), PSAT simulated the

7y
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Fig. 5. Speed estimation at bus 14 of the 69-machine system under ambient

disturbances using angle (top panel) and speed (bottom panel) measurements.
The shaded area shows the ¢ uncertainty.

fault and breaker operation in detail. Observe that under either
ambient and fault conditions, the assumption on independent
eigeninputs postulated by the stylized dynamic grid model of
Section IV was not met.

Data were corrupted by zero-mean additive white Gaussian
noise of variance 0.01 rd for angle, and 0.005 rd/sec for rotor
speed data. Dynamics were simulated at a time resolution of
1 ms, but processed at the reporting rate of 15 samples per
second [43]. Focusing on inter-area oscillations, measurements
were passed through a band-pass filter with [0.5,0.8] Hz pass-
band using Matlab’s designfilt and £i1t£filt functions.
Even though inter-area oscillations usually appear in the range
of [0.1,0.8] Hz, we selected a narrower passband as the adopted
benchmarks did not exhibit resonant frequencies in [0.1,0.5] Hz.
The parameter matrix A was estimated using the MoM. The
;s for eigensystems that have no overlap within (2w;, 2w;)
were set to zero.

The rest of this section is organized into four application
setups: Section VI-A infers angle or speed oscillations at non-
metered buses using angle or speed data at metered data under
ambient and fault conditions. Section VI-B aims at locating a
fault by estimating the power injections at all buses using rotor
speed measurements. Sections VI-C and VI-D focus on infer-
ence problems related to a single bus, and hence, no dynamic
grid model needed as covariances are now only functions of time
and not space. Section VI-C imputes missing data from a single
synchrophasor datastream, while Section VI-D estimates a rotor
speed signal from a rotor angle datastream (time differentiation).

A. Inferring Rotor Angles and Speeds at Non-Metered Buses

1) Inferring Rotor Angles and Speeds Using M1): We first
tested the proposed method under M) excited by ambient
disturbances. Measurements (angle or speed) were randomly
collected from 50 out of the 69 generators. Angle measurements
were contaminated by an additive white Gaussian noise with a
standard deviation of 0.005 rd to model noise under small-signal
disturbances. We estimated speeds at non-metered buses using
angle measurements first and speed measurements secondly.
Fig. 5 depicts the obtained GP estimates. The shaded areas
demonstrate the +¢ uncertainty interval obtained by taking the
square root of the diagonal entries of the covariance matrix
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Fig. 6.  Estimating rotor speeds under ambient dynamics on the 69-machine
network using angle (top) and speed (bottom) data from 50 buses. Regardless of
using angle or speed data, the buses with the largest and smallest time-averaged
errors did not change.

of (2b). The results in Fig. 5 confirm the ability of our method
to estimate speeds using angle or speed data.

Estimation accuracy was measured as the absolute error E,, ()
in per unit between the actual and the predicted speed at bus n
and time ¢

_ |wn (t) — @ (t)]

E,(t): o

T
and E, := %ZEn(t)
t=1

where wy is the nominal angular velocity. The error £, (t) for the
buses attaining the largest and smallest time-averaged errors E,,
are shown in Fig. 6. The goal of this test was to estimate speeds
at non-metered buses using angle or speed measurements at 50
randomly sampled buses. The error varies with time because the
measurement noise variance remains constant across time while
the actual signals oscillate.

The previous experiment was for a single placement of me-
tered buses. To explore how different placements of metered
buses affect the estimation accuracy, we performed two addi-
tional tests: one with Monte Carlo runs on random placements
and another test with an intentionally poor placement. For the
first test, we estimated the speeds at non-metered buses using
angle or speed measurements collected at 40, 50, and 60 ran-
domly sampled buses. The test was repeated for 100 different
random placements of metered buses. The obtained results are
shown in Fig. 7. The absolute error on estimating speeds was
averaged over the non-metered buses and over the Monte Carlo
runs of random placements. Fig. 7 demonstrates that on the
average, the GP-based estimator attains speed errors smaller than
3.5 - 1073 rad/sec or 5.5 - 10~* Hz. As expected, the estimation
error decreases with increasing number of metered buses. Of
course, plotting results averaged over buses and placements
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Fig. 7. Studying the effect of the number and placement of metered buses on
estimating speeds from angle (top) and speed (bottom) data. Absolute errors on
speeds have been averaged over the non-metered buses and over 100 random
metering placements of 40, 50, and 60 buses.
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Fig. 8. Estimating speeds at buses 31 (top) and 68 (bottom) of the 69-bus
system under ambient conditions using speed measurements at buses {22 —
30,32 — 61}. The speed at bus 68 depends heavily on eigenstate 94 (t). This
eigenstate depends weakly on the measured speeds. As expected, the estimate
of wes(t) is unreliable, yet this is signified by the wider uncertainty interval
inferred.

can be hiding severe observability issues. To showcase such
issues, we conducted a second test. We metered speeds at buses
{22 — 30,32 — 61}. These buses seemed to have little effect on
eigenstate y4(t), that is the coefficients associated with these
buses on the 4-th row of matrix V" M/2 in (7) were negligible.
On the other hand, we identified that speed wgs(t) depends
heavily on g4(t), and @31 (t) does not. Fig. 8 shows the speed
estimates for buses 68 and 31. The estimate for bus 31 is reliable,
whereas the one for bus 68 is not. Interestingly enough though,
the proposed method returned very broad confidence intervals
for wes (t), which essentially flag this estimate as unreliable.
Next, we aimed at finding angles under a fault at generator
69. We used angle and frequency data at 50 buses with bus 69
apparently excluded. Fig. 9 depicts the absolute error in angle
estimates for the buses with the largest (bus 67) and smallest (bus
16) time-averaged errors. Fig. 10 showcases that GP learning can
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Fig.9. Estimating angle dynamics following a generator trip using angle (top)
and speed (bottom) data metered at 50 buses. The plot shows absolute estimation
errors for the buses with the smallest/largest mean absolute error (MAE) of E,,.
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Fig. 10.  Estimating the angle at bus 69 of the 69-machine system after a fault
near the same bus using angle (top) and speed (bottom) measurements from 50
buses.

successfully infer angles from speeds, and can deal with different
types of disturbances. The latter conclusion is important because
the correlation among system states depends on the type and
magnitude of disturbances. Thanks to the parametric covariance
model using A, the GP framework is adaptable to different
dynamic conditions.

2) Inferring Rotor Angles and Speeds Using M2): We next
evaluated GP learning using data generated by the nonlinear
higher-order model M2) under ambient and non-ambient con-
ditions. Under ambient conditions, angle and speed data were
collected at all buses except {1,5,7}. For non-ambient con-
ditions, we simulated a 3-phase fault near bus 7, and collected
angle speed at all buses except {3, 6, 7}. Figs. 11 and 12 illustrate
the inferred oscillations in rotor speeds and ROCOFs at non-
metered buses. The results in Fig. 12 corroborate that although
the parametric form of covariances was designed under the
stylized model of Section IV (linearized swing dynamics with
uniform damping excited by specific Gaussian perturbations),
GP learning yields accurate results when trained and operated
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Fig. 11.  Speed estimates at bus 1 of the nonlinear higher-order system model
M?2) under ambient dynamics using angle (top) and speed (bottom) data of the
system except buses {1, 5, 7}.
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Fig. 12.  Speed (top) and ROCOF (bottom) estimates at bus 7 of the nonlinear
system model M2) under a 3-phase fault near bus 7 using speed measurements
across the system except buses {3, 6, 7}.

over data from a higher-order nonlinear model with non-uniform
damping excited by (non)-ambient perturbations.

3) Inferring Rotor Speeds Using M3): We also estimated
speed oscillations using model M3), which includes tur-
bine/droop control. We simulated a fault near generator 2, and
measured all buses except for {6, 7}. Non-metered speeds were
found using the covariance model of Proposition 3. Fig. 13
shows the estimation results at bus 7. This result proves that the
physics-informed covariance model can be modified to capture
other dynamic components of the system.

B. Localizing Sources of Oscillations Using M1):

So far, we have focused on inter-area oscillations. However,
in some applications such as fault identification, the eigenstate
corresponding to the zero eigenvalue is required. This is because
this eigenstate is directly related to the system frequency, also
known as c¢ enter of inertia. To test the ability of GP learning
to locate faults, we tried estimating the power injections across
the 69-bus system under a fault near generator 69. To this end,
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Fig. 14. GP learning can be used to infer power injections given angle or
speed measurements. Here we estimate the power injection at each bus upon
processing speed data at all buses following a fault near bus 69.

we passed speed measurements collected at 50 buses through a
low-pass filter with a cut-off frequency of 2 Hz (Q2 = [0, 2] Hz).
Fig. 14 illustrates the estimated power injections at all buses. The
results show that the GP framework can successfully localize the
bus where the fault occurred. Since we are working with filtered
data, the recovered power injections shown in Fig. 14 correspond
to the filtered power injections, and hence, the impulse-like fault
injection at bus 69 appears as a smoothed sync-type form and
of reduced magnitude; the nominal value of the active power
injection at the faulted bus was pgg = 0.08 pu. Nonetheless, it
is still very clear that the disturbance occurred at bus 69.

C. Model-Free Imputation of Missing Data Across Time

The previous experiments focused on learning oscillations
at non-metered buses. To be able to extrapolate across buses,
we used the covariance model of (16), which relies on an
approximate dynamic model of the power system. Neverthe-
less, in applications where one processes a single grid signal,
there is no need of knowing the power system model; temporal
covariances of the form E[w,, (¢)w,, (¢t + 7)] suffice. To see one
such application, consider a dynamic speed signal from bus
4 of model M?2) under a three-phase fault near generator 2.
Due to communication failures, some samples over stretches of
consecutive time instances are missing. We aim at inferring the
missing data using the available speed data from bus 4. Focusing
on inter-area oscillations, we filter the measurements using
2 = (0.5, 0.8] Hz. In this setup, we learn a Gaussian (temporal
only) covariance for rotor speeds. Its parameters used in the

4421

* training data points
— filtered frequency deviation at bus 4
|+ estimated frequency deviation at bus 4

4
=

o©

o

a
T

Speed deviation [rad/s]
o

-0.05
-0.1 L 1 1
1 1.5 2 .3 4 4.5 5
Time [s]
Fig. 15. Model-free imputation of missing data for the speed of generator 4 of

the 10-bus system. For periods of missing data of shorter duration, estimation
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Fig. 16.  Model-free rotor speed estimation at bus 1 of the 10-bus system.

Gaussian kernel were estimated using MATLAB’s £itRGP
toolbox. Fig. 15 demonstrates the imputed oscillations over
three intervals of increasing duration. As expected, estimation
improves and uncertainty decreases when the missed interval is
shorter.

D. Model-Free Imputation of Rotor Speeds From Angle Data

Finally, we used GP learning to compute speeds given angle
measurements collected at the same bus. In essence, GP learning
is used here in lieu of time differentiation. This could serve as
an alternative to the Fourier-based frequency estimation tech-
niques implemented by PMU devices. We assumed that rotor
angle data are available at generator 1 of model M3) under
a fault near generator 2. We modeled angle covariances using
the Gaussian covariance functions. Rotor covariances can be
derived as discussed in (4). The rotor speed estimation results are
shown in Fig. 16. The results confirm that model-free covariance
functions can be used with the proposed GP framework for
implementing time differentiation. It can be observed that the
uncertainty interval lies within £0.0025 rad/s or £0.0004 Hz.
Therefore, 30 = 0.0012 Hz is less than the maximum frequency
measurement error specified by the IEEE C37118 Standard for
PMU measurements [43].

VII. CONCLUSION AND FUTURE WORK

A novel method for inferring the non-metered dynamic os-
cillations in a power system using synchrophasor data has been
put forth. The key idea has been to capture voltage frequen-
cies as GPs and systematically propagate this GP model to
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voltage angles, speeds, ROCOFs, and power injections. Lever-
aging information on the power network model and generator
parameters, the proposed GP framework can interpolate and
extrapolate dynamic grid signals across buses and time. It can
process synchrophasor data with diverse characteristics, such
as sampling rate, type (angles, speeds/frequencies, ROCOFs),
and accuracy, or with missing entries. Signals corresponding to
time derivatives can be learned by analytically differentiating
kernel functions rather than approximating them using finite
differences. Due to its Bayesian nature, the proposed model
provides confidence intervals in addition to point estimates.

Although the statistical model was developed on linearized
dynamics presuming uniform damping, numerical tests on the
IEEE 300- and 39-bus benchmarks have corroborated that the
method performs well under non-uniform and/or nonlinear sys-
tem models under both ambient and fault conditions. The tests
have shown how: i) one can estimate speeds or ROCOF and to
locate faults using angle and speed data; i) accuracy improves
with increasing number of measurements and remains accept-
able in general for a random meter placement; iii) observability
issues can arise and are identified by the uncertainty estimates
provided by the method.

This work sets the foundations for interesting research di-
rections. The online implementation of the method, frequency
prediction, system model estimation, and modal analysis are
a few practically pertinent extensions. Finally, exploring more
detailed generator models and using other measurements such as
field voltages and line flows could improve estimation accuracy.
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