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Abstract—Synchrophasor data provide unprecedented opportu-
nities for inferring power system dynamics, such as estimating
voltage angles, frequencies, and accelerations along with power
injection at all buses. Aligned to this goal, this work puts forth
a novel framework for learning dynamics after small-signal distur-
bances by leveraging Gaussian processes (GPs). We extend results
on learning of a linear time-invariant system using GPs to the
multi-input multi-output setup. This is accomplished by decompos-
ing power system dynamics into a set of single-input single-output
linear systems with narrow frequency pass bands. The proposed
learning technique captures time derivatives in continuous time,
accommodates data streams sampled at different rates, and can
cope with missing data and heterogeneous levels of accuracy. While
Kalman filter-based approaches require knowing all system inputs,
the proposed framework handles readings of system inputs, out-
puts, their derivatives, and combinations thereof collected from
an arbitrary subset of buses. Relying on minimal system informa-
tion, it further provides uncertainty quantification in addition to
point estimates of system dynamics. Numerical tests verify that
this technique can infer dynamics at non-metered buses, impute
and predict synchrophasors, and locate faults under linear and
non-linear system models under ambient and fault disturbances.

Index Terms—Bayesian estimation, Gaussian processes,
kernel-based learning, linearized swing equation, method of
moments, missing data, rate-of-change-of-frequency (ROCOF),
synchrophasor data.

I. INTRODUCTION

M
AINTAINING the stability and synchronization of a

power system can be enhanced upon closely monitoring

the voltage angles, frequencies, accelerations (rates of change

of frequency or ROCOF), as well as the power injections at

all buses. Phasor measurement units (PMUs) provide high-

accuracy data on dynamic system states at high temporal res-

olution. However, due to high installation and networking costs,
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not all buses are instrumented with PMUs, while communication

failures oftentimes result in missing PMU readings [1]. Such

challenges motivate the need for inferring power system dynam-

ics from synchrophasor data using minimal system information.

Since observability may not be always granted, measures for

quantifying the uncertainty are relevant. We propose a frame-

work to estimate the signals involved in power system dynamics

after small-signal disturbances. The suggested framework can

be employed for various applications such as data imputation

and screening, frequency monitoring, and localization of oscil-

lations, to name a few.

Approaches to infer power system dynamics can be broadly

classified into data- and model-based methods. Data-based

methods typically use synchrophasor measurements to learn the

system’s dynamic states. Reference [2] for example advocates

that the matrix collecting PMU measurements across buses

and time instances features a low-rank plus sparse structure,

so missing PMU data could be recovered by means of matrix

completion [3]. If all PMU data is lost for one or more con-

secutive time instances, a robust matrix completion approach

stacking data in a Hankel matrix shows promise to recover the

original PMU data stream [4], [5]; though performance deterio-

rates with prolonged periods of lost communication. The work

in [6] proposes grouping the measured signals prior to robust

principal component analysis to meet the sufficient conditions

of guaranteed data recovery. Arranging synchrophasor readings

in higher-order tensors rather than matrices could potentially re-

solve the latter issue using tensor decomposition techniques [7].

Nonetheless, data-based techniques cannot extrapolate on buses

not instrumented with PMUs, do not utilize readings of power

injections or flows, and ignore any system model information.

Dynamic state estimation (DSE) aims at inferring the power

system states using both a system model and measurements

processed through a Kalman filter (KF); see [8] for a recent com-

prehensive review. Plain KFs are optimal estimators that adopt

a linear system model, while nonlinear power system dynamics

can be handled through KF variants, such as the extended [9];

the unscented [10], [11]; and ensemble KFs [12], [13]. Despite

these developments in sophisticating system models, KF-based

DSE solutions operate on a localized fashion and consider a

singe bus or a single control area of the power system [14], [15].

More importantly, KF-based methods presume all inputs to the

dynamic system of interest (single bus or control area of the

power system) are either known or measured. Such requirement

may not be realistic for the entire power system. Moreover,
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typically KFs operate on data collected over uniformly sampled

time intervals, which renders them vulnerable to missing data or

different sampling rates. Finally, DSE approaches approximate

continuous differential equations with discrete finite differences.

Synchrophasor data can be used to infer more coarse dynamic

system information, such as locating the sources of oscillations.

The latter task can be accomplished by comparing the arrival

time of traveling waves [16] and [17]; by measuring the dissi-

pated energy of power flows [18], [19]; or via robust principal

component analysis [20]. But these methods require access to

data across the entire power network.

In a nutshell, existing methods for inferring power system

dynamics have limitations on the placement and sampling rate

of measurements, while data streams should be reliable and

uninterrupted. To overcome these restrictions, we propose a

comprehensive framework for learning power system dynamics

from PMU data using Gaussian processes (GPs). Our methods

rely on approximate system information, such as the inertia

parameters for generators and the Jacobian matrix of the power

flow equations. A detailed comparison with existing works is

deferred to Section V-D.

Our contribution is threefold: i) Cross-pollinate results for

GP-based inference on a single-input single-output (SISO) linear

time-invariant (LTI) system to the task of learning power system

dynamics; ii) Leverage the physics behind the swing equations

and inter-area oscillations to extend GP modeling from the

SISO to the multi-input multi-output (MIMO) setup and infer

dynamics at non-metered buses; and iii) Develop a scalable

technique for estimating GP model parameters from collected

data using the method of moments.

The proposed toolbox comes with several unique features.

First, signals are modeled in a continuous fashion, which lends

itself a natural way to compute time derivatives, which is ro-

bust even under low sampling rates and missing data. Second,

system inputs and outputs are handled in a unified manner:

Power injections, voltage angles, frequencies, and ROCOFs at

any bus can be treated either as measured or wanted signals

without major changes to the framework. Finally, thanks to its

Bayesian flavor, the GP inference paradigm provides not only

a point estimate, but also a Gaussian probability distribution

function (PDF) for the sought signal. The latter feature allows

for uncertainty quantification for the estimated data streams.

This is important when testing data normality against attacks or

under limited observability.

The rest of the paper is organized as follows. Section II defines

the general problem setup of learning power system dynamics.

Section III reviews Gaussian processes and adopts them to

learning in linear dynamical systems. Section IV builds on the

swing equation to develop a statistical model for power system

dynamics. Section V proposes a model reduction method for

increasing the efficiency of the GP paradigm and estimating the

needed parameters. It also contrasts our new GP-based learning

methodology to existing works. Our methodology is tested under

various application setups in Section VI. Conclusions and future

directions are outlined in Section VII.

Notation: column vectors (matrices) are denoted by lower-

(upper-) case letters. Operator dg(x) returns a diagonal matrix

with x on its main diagonal. Symbol (·)⊤ stands for transposi-

tion; IN is the N ×N identity matrix; ẋ = dx
dt denotes time dif-

ferentiation; and E is the expectation operator. Operator vec(X)
vectorizes a matrix by stacking its columns in a single vector,

while [X]i,j is the (i, j)-th entry of X. The Kronecker product

of matrices is expressed as X⊗Y. The notation x ∼ N (µ,Σ)
means x follows a multivariate Gaussian distribution with mean

µ and covariance Σ.

II. PROBLEM STATEMENT AND RELEVANT APPLICATIONS

We are interested in monitoring power system dynamics un-

der small-signal disturbances using synchrophasor data. Power

system dynamics are modeled here through an approximate

multi-input multi-output (MIMO) linear time-invariant (LTI)

system. The inputs to this MIMO LTI system are the devia-

tions from the scheduled active power injections. Its outputs

or states correspond to deviations from the steady-state rotor

angles or speeds, denoted by θn(t) and ωn(t) = θ̇n(t) per bus

n. For brevity, we henceforth drop the term deviations. The

rate-of-change-of-frequency (ROCOF) or acceleration ω̇n(t)
may be measured or may be of interest. The angle, speed,

and acceleration of a synchronous machine is captured by the

angle, speed (frequency), and acceleration of the related voltage

phasor. To avoid confusion between frequency ωn(t) and the

frequency-domain analysis of time signals, we will henceforth

refer to ωn(t) as speed. The parameters of the aforesaid MIMO

LTI system are assumed to be known, precisely or approxi-

mately [21], [22]. These parameters include generator constants

(e.g., inertia and damping) as well as the Jacobian matrix of the

power flow equations evaluated at the current operating point or

the flat voltage profile.

The envisioned application setup is described next. The sys-

tem operator is collecting synchronized data of voltage angles,

speeds, ROCOFs, or power injections on a subset of buses.

The collected data may be of different degrees of accuracy

due to instrumentation or estimation noise. The goal is to infer

non-metered grid quantities related to power system dynamics.

The collected data are noisy and sampled partially across buses

and time. They are also heterogeneous since they may include

system inputs, outputs, and their derivatives.

The proposed learning framework can be used in different ap-

plication setups, such as: i) Given voltage angles at some buses,

monitor the speeds at non-metered buses to ensure stability; ii)

Given voltage angles, speeds, and power injections at generator

buses (all or a subset of them), infer the power injections at

the remaining buses to localize faults or sources of oscillations;

iii) Impute missing entries from a synchrophasor data stream

or cross-validate a data stream that has been deemed erroneous

or suspicious; and iv) Compute reliable estimates for speeds

and ROCOFs to drive load-frequency control and grid-forming

inverters.

III. GAUSSIAN PROCESSES FOR LEARNING IN DYNAMICAL

SYSTEMS

This section reviews the basics of Gaussian processes and

explains how GPs can model single-input single-output (SISO)
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LTI dynamical systems. A GP is a random process with the

additional property that any collection of a finite number of its

samples forms a Gaussian random vector [23, Ch.1]. Consider

for example a time series x(t) and two distinct sets of time

indices T1 and T2. A signal x(t) is a GP if the two vectors x1

and x2 collecting samples of x(t) over T1 and T2 are jointly

Gaussian or
[

x1

x2

]

∼ N
([

µ1

µ2

]

,

[

Σ11 Σ⊤
21

Σ21 Σ22

])

. (1)

Due to (1), the conditional probability density function (PDF)

of x2 given x1 is also Gaussian with mean and covariance [24,

Ch. 6.4]

E[x2|x1] = µ2 +Σ21Σ
−1
11 (x1 − µ1) (2a)

Cov[x2|x1] = Σ22 −Σ21Σ
−1
11Σ

⊤
21. (2b)

Such modeling is useful because knowing the value of x1, the

minimum mean square error (MMSE) estimator of x2 is (2a).

Moreover, the uncertainty of this estimate is described by (2b).

In the learning problems to be addressed in this work, we

do not indent to make any observability claim and determine

whether the dynamic signals of interest in x2 can be observed

from the given measurements in x1. Nonetheless, thanks to

the Bayesian nature of the approach, the diagonal entries of

Cov[x2|x1] can be used as confidence intervals. As an example,

under limited number of measurements or when x2 cannot be

observed from x1, the covariance Cov[x2|x1] would take large

values on its diagonal entries, which prompt us that E[x2|x1]
is not a reliable estimate of x2. The statistical characterization

of x2 in (2) can also be utilized for anomaly detection. Suppose

thatx2 is actually observed, but is not trustworthy. One can use a

trustworthy x1 and the formulae in (2) to compute the Gaussian

conditional PDF p(x2|x1). If this PDF takes on a relatively small

value when evaluated at the actual x2, then x2 can be flagged as

anomalous.

Let us review how GPs can be used for learning in LTI

systems; see [25], [26] for details. Consider the SISO LTI system

described by the ordinary differential equation (ODE)

ÿ(t) + γẏ(t) + λy(t) = x(t) (3)

for given γ, λ > 0, and initial conditions y(0) and ẏ(0). If x(t)
is known, then y(t) can be computed as the solution of (3) using

standard ODE methods. For the inverse problem, if the output

y(t) is known, its derivatives can be computed and the input x(t)
can be found by simple substitution in (3).

Both problems get more complicated when the known signal

(input or output) is observed through noisy discrete-time sam-

ples. Moreover, for the inverse problem, one may not have access

to all derivatives {y, ẏ, ÿ}. And perhaps the measurements of

{x, y, ẏ, ÿ} are originating from sensors or estimation methods

with different levels of accuracy. The goal is to estimate the

non-metered signals. Modeling y(t) as a GP provides a statistical

framework to do so as explained next.

Let us model y(t) as a zero-mean GP with the covariance

E[y(t)y(t′)] = k(t, t′). Function k(t, t′) is known as the kernel

function and can be decided based on prior knowledge about the

signal. We are interested in the joint PDF for samples of y(t)

collected at times T := {t1, . . . , tT }, and stacked in vectory :=
[y(t1) · · · y(tT )]⊤. Without loss of generality, the sampled times

have been ordered as t1 < . . . < tT . It is not hard to verify that

y ∼ N (0,K)whereK � 0 and [K]ij = k(ti, tj) for all ti, tj ∈
T . Since the latter holds for any collection of time instances T ,

signal y(t) is a GP indeed.

Let us focus on the covariance matrixK ofy. DespiteK being

dependent on T , our notation drops that dependence for simplic-

ity. The choice of k(ti, tj) is crucial for modeling y(t). A signal

that is a linear function of t as y(t) = w1t with w1 ∼ N (0, 1)
possesses the kernel functionk(ti, tj) = E[y(ti)y(tj)] = titj . If

a signal is a quadratic function of t as y(t) = w2t
2 + w1t+ w0

with weights being independent zero-mean Gaussian random

variables with variances E[w2
2] = E[w2

0] = 1 and E[w2
1] = 2,

the signal gets the kernel function k(ti, tj) = (1 + titj)
2. The

previous two examples explain how the kernel function and

hence K as [K]i,j = k(ti, tj), specify the shape of y(t) [24]. A

typical choice for kernel function is the Gaussian bell k(ti, tj) =

e−β(ti−tj)
2

for β > 0, which is appropriate for modeling smooth

functions y(t) [23, Ch. 4]. Note that GPs have been used in power

systems before, e.g., to detect data attacks to steady-state state

estimation [27], or to predict prices in electricity markets [28].

Here we leverage the interesting properties of GPs when it comes

to time signals to learn grid dynamics.

An appealing property of GPs is that time integration and

differentiation of a GP yields a GP [26]. If the y(t) of (3) is

a zero-mean GP, then ẏ(t) is also a zero-mean GP. If vector ẏ

collects the samples of ẏ(t) over T , define its covariance matrix

as

K̇ := E[ẏẏ⊤]. (4)

Interestingly, matrix K̇ can be obtained from K as follows:

[K̇]i,j = E

[

∂y(ti)

∂ti

∂y(tj)

∂tj

]

=
∂2

E[y(ti)y(tj)]

∂ti∂tj
=

∂2k(ti, tj)

∂ti∂tj
.

We can similarly show that the (i, j)-th entry ofE[yẏ⊤] can be

computed as ∂k(ti, tj)/∂tj . In general, the covariance between

any pair of the signals (y, ẏ, ÿ) appearing in (3) can be derived

from the kernel function likewise.

Another property of GPs is that a linear combination of GPs

is a GP itself: If the state y(t) of the system in (3) and its

derivatives are GPs, then its input x(t) is a GP as well. In a

nutshell, because the kernel k(ti, tj) is known analytically, we

can readily compute any covariance among (x, y, ẏ, ÿ).
Armed with a GP model for (3), several learning scenarios

related to the SISO system of (3) can be addressed, such as:

1) Filtering: Given samples of x(t), find the state y(t).
2) Smoothing/prediction: Given y, infer y(t′) for t′ within or

outside the observation interval (t1, tT ).
3) Inverse task: Given y, find x(t) within or outside T .

4) Mixed setups: Given samples of (x, y, ẏ, ÿ) (some or all),

find the remaining signals at the same or different times.

In all scenarios, the observed signals may be corrupted by

noise and/or sampled at non-uniform intervals.

The GP toolbox can cope with all tasks in a systematic and

unified fashion as long as the covariances appearing in (2) are

known. We explained earlier that upon postulating a kernel

Authorized licensed use limited to: University of Texas at Austin. Downloaded on April 14,2023 at 20:32:19 UTC from IEEE Xplore.  Restrictions apply. 



4412 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 37, NO. 6, NOVEMBER 2022

Fig. 1. Possible applications of processing PMU data for learning dynamic grid signals. Imputation refers to finding missing entries, while interpolation entails
tasks such as upsampling or sampling at different time instances. Anomaly detection is possible by having a probabilistic characterization (such as a PDF) for
a random signal, so outlying (erroneous or suspicious) instantiations of this signals can be pinpointed. Extrapolation is the ability to learn dynamic grid signals
on non-metered buses. It can be particularized to any of the applications A1)–A4). Localization relates to learning the inputs to the dynamic grid model (power
injections), and could be useful for unveiling sources of oscillations.

for y(t), all the covariances needed for learning over (3) can

be readily computed. The previous discussion is unfortunately

limited to the SISO case. If we extend this GP-based learning

framework to the MIMO setup of power system dynamics, we

will be able to handle a gamut of applications, such as those

depicted in Fig. 1; note that the applications are described in

detail in later sections. To extend GPs from the SISO to the

MIMO setup, covariances should be computed across both time

and buses. We do so by leveraging swing dynamics as elaborated

next.

IV. MODELING POWER SYSTEM DYNAMICS

The dynamic behavior of a power system can be modeled

by a set of nonlinear differential equations in terms of the

rotor angles and speeds of the synchronous machines at each

bus. Focusing on small-signal analysis, these equations can be

linearized around the current operating point yielding the swing

equation [29]. Consider a power system having N buses hosting

synchronous generators comprising set N with rotor angles and

speeds collected respectively in θ(t) := [θ1(t) · · · θN (t)]⊤ and

ω(t) := [ω1(t) · · ·ωN (t)]⊤ with ω(t) = θ̇(t). The mismatch

between the electric and mechanical power at each generator

is stacked in vector p(t) := [p1(t) · · · pN (t)]⊤.1 With these def-

initions in place, the swing equation can be expressed as [29,

Ch. 3]

Mω̇(t) +Dω(t) + Lθ(t) = p(t) (5)

where M and D are diagonal matrices collecting the inertia and

damping coefficients of generators Mn and Dn, and L is the

negative Jacobian matrix of the power flow equations evaluated

at the current operating point and after Kron reduction to remove

the effect of non-dynamic buses; see e.g., [30], [31, Ch. 7] for

details. Within some standard approximations, matrix L can be

assumed to be symmetric positive semidefinite (psd); see [22]

for details.

As evidenced by (5), grid dynamics can be approximately

modeled by a second-order MIMO LTI system. We henceforth

1In Section III, vectors collected samples of one signal across time instances
t ∈ T . Hereafter, vectors indexed by t collect signals across buses at time t.

select ω to be the state of this system. It is worth noting that

swing dynamics are oftentimes expressed as a first-order dy-

namical system whose state concatenates ω and θ, and forms its

standard state-space representation. Here we intentionally keep

swing dynamics in their original second-order form. This will

provide intuition, motivate simplifications, and lead to tractable

statistical models.

To utilize GP models, we need to be able to compute the

covariance E[ωn(t+ τ)ωm(t)] for any pair of buses (n,m) and

any pair of times (t+ τ, t). There are two challenges here: i)

The number of such covariance functions grows quadratically

with N ; and ii) If bus n is not metered, learning the covari-

ance E[ωn(t+ τ)ωm(t)] from data would be impossible even

if bus m is metered. To bypass these challenges, the standard

approach in GP-based learning is to postulate a parametric form

on E[ωn(t+ τ)ωm(t)] and learn its parameters by maximum

likelihood estimation using metered data. A convenient form is

the so-termed Kronecker model [28], according to which the

covariance is expressed as the product of a spatial and a tempo-

ral kernel as E[ωn(t+ τ)ωm(t)] = kbus(n,m) · ktime(t+ τ, t).
Our experimentation with various forms for kbus(n,m) and

ktime(t+ τ, t), including spatial covariances decaying with the

electrical distance or propagation delays, was not particularly

fruitful. This is justified because the Kronecker model is quite

restrictive as it presumes that any pair of buses features the same

time cross-covariance function.

To arrive at an effective choice for E[ωn(t+ τ)ωm(t)], we

should better encode any prior knowledge on the problem at

hand. Given the complexity of grid dynamics, we proceed as:

1) Leverage an approximate stylized model of grid dynamics

to decide a parametric form for E[ωn(t+ τ)ωm(t)].
2) Use metered data to estimate the parameters involved in

the parametric form for E[ωn(t+ τ)ωm(t)]. On the field,

these data will be actual PMU readings. For the purposes

of this work, data will be synthesized using realistic power

system models. Heed that the models used to generate data

in our numerical tests have not been derived by the stylized

approximate dynamic grid model studied under a). The

purpose of that model was only to provide reasonable

parametric forms for covariances E[ωn(t+ τ)ωm(t)].
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3) Plug metered data and the learned covariances in (2) to

obtain point and uncertainty estimates for the non-metered

signals of interest.

The rest of this section targets a) by reviewing and expanding

upon an approximate model of grid dynamics. To obtain a simple

yet sufficiently representative model, the key idea is to shift focus

to an intrinsic set of system eigenstates. Modeling eigenstates

instead of the states ωn’s provides a physics-informed way to

capture correlations across ωn’s, and thus, extrapolate across

buses. Our workflow to obtain a parametric form for E[ωn(t+
τ)ωm(t)] involves three steps: S1) Transform grid dynamics to

a more convenient space of eigenstates; S2) Model eigenstates

as GPs; and S3) Convert eigenstates back to ωn’s. These steps

are delineated next.

S1) Decoupling the MIMO Dynamical System: With ω being

the state, the transfer function of the system in (5) is

H(s) = s
(

s2M+ sD+ L
)−1

(6)

with s being complex frequency of the Laplace domain. This

transfer function simplifies significantly under the next assump-

tion, which is adopted frequently to approximate power system

dynamics [32], [33].

Assumption 1 (Uniform damping): The ratio of each gener-

ator’s damping coefficient to its inertia is constant or D = γM
for a given γ > 0.

This assumption relies on the fact that both inertia and

damping coefficients of a synchronous machine scale with the

machine’s power rating [34]. Under this assumption, the transfer

function of swing dynamics can be rewritten as [33]

H(s) = sM−1/2V
(

s2I+ sγI+Λ
)−1

V⊤M−1/2

whereLM = VΛV⊤ is the eigenvalue decomposition of matrix

LM := M−1/2LM−1/2. Because LM is psd, its eigenvalues

have non-negative real values and are sorted in increasing order

as 0 = λ1 < λ2 ≤ . . . ≤ λN . These eigenvalues are placed on

the main diagonal of matrix Λ. Moreover, the eigenvectors

of LM are real-valued and orthonormal. They are placed as

columns of V.

Let us now transform the original inputs/states of (5) to the

eigeninputs/eigenstates [22], [33]

y(t) := V⊤M1/2θ(t) and x(t) := V⊤M−1/2p(t). (7)

Then the swing dynamics of (5) transform to

ÿ(t) + γẏ(t) +Λy(t) = x(t). (8)

As Λ is diagonal, the original MIMO system decouples into

N SISO eigensystems. Eigensystem i is described as

ÿi + γẏi + λiyi = xi (9)

which complies with the SISO example of (3). If ẏi(t) is selected

as the system output (state), the impulse response of this system

can be found to be [22]

hi(t) =
(

aie
cit + bie

dit
)

u(t) (10)

where ai, bi :=
1
2 ∓ γ

2
√

γ2−4λi

; ci, di :=
−γ
2 ±

√
γ2−4λi

2 ; and

u(t) is the unit step function.

Thanks to this decoupling, we next propose a statistical model

for eigenstates ẏi’s rather than speeds ωn’s. Although our mod-

eling relies on Assumption 1, it should be emphasized that our

numerical tests of Section VI were conducted on power networks

not satisfying this assumption.

S2) Modeling Eigenstates as GPs: To model eigenstates ẏ,

let us first study the eigeninputs x(t). Lacking specific infor-

mation on the system inputs p(t), we model them as random

processes with non-informative prior distributions. In particu-

lar, we postulate p(t) to be a zero-mean white GP with co-

variance E[p(t+ τ)p⊤(t)] = Σpδ(τ), where δ(τ) is the Dirac

delta function. This means that the energy for each input pn(t)
is equally distributed across frequencies. This way x(t) is a

zero-mean GP with covariance computed from (7) as

E[x(t+ τ)x⊤(t)] = Aδ(τ) (11)

whereA := V⊤M−1/2ΣpM
−1/2V. It is natural to assume that

Σp is a diagonal matrix. In fact, if Σp = αM for some α > 0,

matrixA simplifies asA = αIN [22], [33], [35]; our prior work

was limited to this special case [36]. A more reasonable model

could be argued to be Σp = αM2 so that the standard deviation

(and not the variance) of pn(t) scales with the inertia (and hence

the power rating of bus n) [33]. To capture scenarios of any

diagonal Σp or even correlated inputs p(t) due to renewable

generation, we consider a general matrix A in (11) that is to be

found. Having modeled the eigeninputs x, we proceed with the

eigenstates ẏ.

Consider the i-th eigensystem of (9). It is known that when

an LTI system is driven by a wide-sense stationary (WSS)

random process xi(t), its output is a WSS random process

too [37].2 The following proposition summarizes the statistical

characterization of ẏi(t); see also [22] for a related claim.

Proposition 1: If the input xi(t) to the i-th eigensystem is a

zero-mean white GP with variance αii, the system output ẏi(t)
is a zero-mean GP with covariance

E[ẏi(t+ τ)ẏi(t)] = αiikii(τ) (12)

whereαii is the (i, i)-th entry ofA defined in (11), and kii(τ) :=
1
2γ [hi(τ) + hi(−τ)].

Proof: As xi(t) is a zero-mean GP, the output ẏi(t) is a zero-

mean GP. Its covariance can be computed as [37, Ch. 10]

E[ẏi(t+ τ)ẏi(t)] = hi(τ) ∗ hi(−τ) ∗ E[xi(t+ τ)xi(t)]

= αiihi(τ) ∗ hi(−τ)

The first equality holds for the output of any LTI system driven

by a WSS random process. The second equality stems from the

sifting property of the delta function. Computing the convolution

establishes the claim. The result can alternatively be shown in

the Laplace domain.

Cross-covariances between eigenstates are found similarly.

Proposition 2: If eigeninputs x(t) are zero-mean white GPs

with the covariance of (11), then

E[ẏi(t+ τ)ẏj(t)] = αijkij(τ)u(τ) + αijkji(−τ)u(−τ)
(13)

2A random process z(t) is WSS if its mean E[z(t)] and autocovariance
function E[z(t+ τ)z(t)] do not depend on t [37, Ch. 9].
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where kij(τ) := aije
ciτ + bije

diτ and

aij :=
−c2i

(ci + cj)(ci + dj)(ci − di)

bij :=
d2i

(cj + di)(di + dj)(ci − di)

and αij is the (i, j)-th entry of A defined in (11).

Proof: The cross-covariance between the outputs of two LTI

systems driven by WSS processes can be computed as

E[ẏi(t+ τ)ẏj(t)] = hi(τ) ∗ hj(−τ) ∗ E[xi(t+ τ)xj(t)]

= αijhi(τ) ∗ hj(−τ).

The convolution hi(τ) ∗ hj(−τ) can be evaluated from tables

as kij(τ)u(τ) for τ ≥ 0. For τ < 0, it holds

E[ẏi(t+ τ)ẏj(t)] = E[ẏi(t)ẏj(t− τ)] = E[ẏj(t− τ)ẏi(t)].

The last term equals kji(−τ)u(−τ) because now −τ > 0.�

So far, we have computed the auto- and cross-covariances

between eigenstates ẏi’s. The covariances between any pair of

(yi, ẏi, ÿi) and for any pair of (i, j) can be computed by time

integration or differentiation of the corresponding kij(t1, t2) =
kij(t2 + τ, t2) = kij(τ) as discussed in Section III.

S3) Modeling System States as GPs: Having statistically

modeled the eigenstates, it is now easy to model ωn’s. If ẏ(t) is

a zero-mean GP, then ω is also a zero-mean GP with covariance

computed from (7) and (12)–(13) as

E[ω(t+ τ)ω⊤(t)] = M−1/2VE[ẏ(t+ τ)ẏ⊤(t)]V⊤M−1/2.
(14)

The covariance of (14) completes our GP model and allows

us to use the Bayesian framework of (2) to perform a broad

range of learning tasks related to grid dynamics. This is because

once we have a covariance (kernel) function forω, we can easily

compute covariances between θ, ω, ω̇, and p, as detailed in the

next Section V. Moreover, Section V explains how modeling

states through eigenstates offers additional computational and

observability advantages. Before that, we next consider a more

detailed model of power system dynamics.

The swing dynamics of (5) can be augmented to incorporate

droop turbine control. For generatorn, let τn be the time constant

of its turbine and rn its droop control coefficient. The effect

of the governor is ignored due to its relatively fast response

compared to the turbine. Incorporating droop control, power

system dynamics can be modeled as

Mω̇ +Dω + Lθ = p+ pc

Tṗc + pc = −R−1ω

where diagonal matrices T and R collect the turbine and droop

parameters; and vector pc the adjustments in mechanical power.

By eliminating pc, we arrive at the third-order model

TMω̈ + (M+TD)ω̇ + (D+R−1 +TL)ω + Lθ = Tṗ

+ p

As in (5), the above MIMO system can be decomposed into

N SISO eigensystems under the ensuing assumptions [33].

Fig. 2. Basic steps for learning grid dynamics from synchrophasor data.

Proposition 3 ([33]): Grid dynamics including turbine and

droop control can be decomposed into N SISO systems

τ
...
y i + (1 + γτ)ÿi + (γ + r + τλi)ẏi + λiyi = τ ẋi + xi

through the transformation of (7) if D = γM, R−1 = rM, and

T = τI for given positive γ, τ , and r.

V. INFERRING POWER SYSTEM DYNAMICS

This section explains how to practically infer dynamic grid

signals using the aforesaid GP-based framework. Before delving

into the details, let us summarize the key steps of the process

as illustrated in Fig. 2. First, given matrix LM , compute its

eigenvalue decomposition to obtain matrices V and Λ. System

parameters (such as inertia coefficients, current operating point,

line impedances, and network topology) are assumed known.

If a specific range of oscillations is of interest (such as the

range of inter-area oscillations), the operator may use only

the say D eigenvalues falling within that frequency range; we

will elaborate on this feature later in Section V-B. Given γ
and {λi}Di=1, construct then the eigenstate covariance matri-

ces from (12)–(13). At this stage, the covariance matrices are

in parametric form since the values of αij’s are not known.

Upon filtering synchrophasor data, find αij’s via the method

of moments as explained in Section V-C. Once αij’s have been

estimated, find the complete covariance of system oscillations

using Proposition 2. Having modeled the covariance between

the collected measurements and the unknown dynamic grid

signals of interest (see Section V-A for details), provide point and

uncertainty estimates for the latter using the Bayesian estimation

formulas of (2). We next elaborate on the details.
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A. Spatiotemporal Covariance of Dynamic Oscillations

To infer power system dynamics, we first need to identify

which quantities are given [vector x1 in (1)] and which are to

be found [x2 in (1)]. We then need to find their joint covariance.

Knowing this matrix, the sought quantities and their uncertain-

ties can be found from (2).

Suppose the inference task refers to T times comprising set

T . To simplify the exposition, we assume all measured signals

are sampled for all t ∈ T . Arrange speeds across all buses and

times in the T ×N matrix

Ω := [ω(1) ω(2) · · · ω(T )]⊤. (15)

Stacking the columns ofΩ on top of each other yields theTN -

long vector ω := vec(Ω). The matrices of angles Θ, powers

P, and eigenstates Ẏ are defined similarly. These matrices get

vectorized into the TN -long vectors (θ,p, ẏ), accordingly.

Define the 3TN -long vector z := [θ⊤ω⊤p⊤]⊤ collecting all

random variables of interest; we ignore accelerations to keep

the notation uncluttered. Measured and wanted quantities are

subsets of the entries of z. For example, one may be measuring

angles at a subset of buses M over T , and would like to infer the

angles or speeds at the remaining buses N \M again over T .

Or, one may be measuring angles and powers at some buses, and

would like to find the speeds at all buses. All such scenarios can

be handled using the formulas of (2) granted the related means

and covariances are known.

To keep the exposition general, let us find the mean and

covariance of the entire z. Lacking prior information, vector

z has been modeled as zero-mean. For its covariance, we start

with the E[ωω⊤] block of E[zz⊤]. From (7) and (15), it follows

that Ω = ẎV⊤M−1/2. Upon vectorizing both sides and using

the property of the Kronecker product vec(ABC) = (C⊤ ⊗
A) vec(B), we get that ω = (M−1/2V ⊗ IT )ẏ, so that

E[ωω⊤] = (M−1/2V ⊗ IT )E[ẏẏ
⊤](V⊤M−1/2 ⊗ IT ). (16)

MatrixE[ẏẏ⊤] has a block structure where the (i, j)-thT × T
block stores E[ẏi(t)ẏj(t

′)] for all t, t′ ∈ T . These blocks can

be computed from (12)–(13). The remaining blocks of the

covariance E[zz⊤] can be found similarly. For example, the

covariance E[θω⊤] can be modeled by replacing E[ẏẏ⊤] in (16)

with E[yẏ⊤] and integrating the covariances of (12)–(13) with

respect to their first time argument.

Depending on the learning setup, not all entries of z are

needed. If angles and powers are not measured or they are

not to be inferred, then z does not contain any entries from

θ or p. In particular, suppose we measure speeds at a subset of

buses M and would like to find the speeds at bus n /∈ M. The

part of z corresponding to the collected data can be written as

zM = vec(ΩSM) where matrix SM selects the columns of Ω

related toM. In this case, the required covariance matrixE[zz⊤]
is obtained from (16) by replacing M−1/2V with S⊤

MM−1/2V.

Different bus selection matrices may have to be used for θ,

ω, and p. Selection matrices may also be needed for sampling

across time. For example, to collect angles over times T ′ ⊆ T ,

we can premultiply Ω with a selection matrix ST ′ . This would

mean replacing the identity matrix IT in (16) with ST ′ . Despite

being mundane, the formulas are straightforward to comprehend

and code.

We have hitherto assumed that the part of z related to col-

lected data is noise-free. In reality, grid dynamic data include

measurement noise and modeling inaccuracies (e.g., higher-

order dynamics or Assumption 1 being violated). To keep the

statistical model tractable, we postulate that the collected data

have been corrupted by additive zero-mean Gaussian noise that

is independent across measurements and time. To incorporate

the effect of noise on z, add the diagonal matrix of all noise

variances on the block of E[zz⊤] related to the measured data

[cf. submatrix Σ11 in (1)]. In fact, this noise component ensures

Σ−1
11 exists for all learning scenarios. Nevertheless, inverting

Σ11 can be computationally challenging when more buses are

metered over longer time intervals. We next discuss a model

reduction technique.

B. Model Reduction of Spatiotemporal Covariances

It can be argued that our primary goal has been to esti-

mate eigenstates as they will provide a simple parametric form

for covariance E[ωn(t+ τ)ωm(t)] across actual states. Once

eigenstates ẏ have been estimated, the original states ω can be

computed as linear combinations of ẏ from (7). Nonetheless,

vectors ω and ẏ are of the same dimension N , and hence, ẏ

may be unobservable unless all buses are metered. To bypass

this challenge, the idea here is to focus on a reduced number of

eigenstates associated with inter-area oscillations [29]. Industry

experience and recent analytical studies [33], [38], reveal that

inter-area oscillations occupy the lower frequency spectrum of

dynamic grid signals θ, ω, and ω̇. As the name suggests, such

oscillations can be observed over larger geographical areas or

even across the entire power system [29, Ch. 12]. Different from

intra-area oscillations which can be damped effectively by local

controllers, inter-area oscillations are harder to control and are

thus of particular interest [39].

To target inter-area oscillations, we leverage key frequency-

domain properties of eigenstates. The frequency response of the

i-th eigensystem can be computed from (9) as3

|Hi(w)|2 =
1

(

λi

w − w
)2

+ γ2
. (17)

Fig. 3 plots |Hi(w)|2 for the eigensystems associated with

the ten smallest eigenvalues of matrix LM for the IEEE 300-

bus power network. As evident from (17) and Fig. 3, each

eigensystem i exhibits a frequency selective behavior with its

passband centered around the resonant frequency wi :=
√

λi.

Moreover, all eigensystems have the same frequency response

value Hi(wi) = 1/γ at their resonant frequency. Let us define

the bandwidth of a system as the range of frequencies over which

|Hi(w)|2 is larger than half of its maximum value 1/γ2. Solving

for |Hi(w)|2 = 1
2γ2 yields the cutoff frequencies of eigensystem

3We use the symbol w for angular frequency of a signal to avoid confusion

with the voltage speed at buses denoted by ωn = θ̇n’s.
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Fig. 3. Frequency responses of the first ten eigensystems for the IEEE 300-bus
system.

Fig. 4. Frequency responses of the first ten eigensystems for the IEEE 300-bus
system with turbine dynamics and droop control.

i:

wi :=
−γ +

√

γ2 + 4λi

2
and wi :=

γ +
√

γ2 + 4λi

2
.

Then, the bandwidth of eigensystem i is wi − wi = γ, which

interestingly remains the same for all i. In a nutshell, eigen-

systems exhibit the same passband shape centered at resonant

frequencies ordered as 0 = w1 < w2 ≤ . . . ≤ wN .

The same frequency-selective behavior of eigensystems ap-

pears also when considering the third-order system with turbine

dynamics and droop control from Proposition 3. This is demon-

strated in Fig. 4. Upon including turbine and droop dynamics,

the frequency response of each eigensystem may not have the

same bandwidth or peak amplitude, while resonant frequencies

have been shifted compared to those of Fig. 3. Nonetheless,

frequency selectivity remains and that is the critical property to

be exploited later.

Remark 1: Note that the aforesaid properties hold for the

linearized swing dynamics and only under Assumption 1. It is

only then that the MIMO system of grid dynamics decouples

into the set of N SISO eigensystems. Recall that this stylized

model of grid dynamics is used only to justify a reasonably

complex yet representative prior in terms of a parametric form

for E[ωn(t+ τ)ωm(t)]. Once that form has been derived, the

estimation of the covariance parameters and the inference of

non-metered signals operate on on actual dynamic grid data,

which do not fully comply with the stylized model.

Due to the frequency selective shape of eigensystem i, the

frequency content of eigenstate ẏi(t) can be approximately

confined within (wi, wi). Hence ẏi(t) can be associated to the

resonant frequencywi. Therefore, to study inter-area oscillations

typically observed within the frequency range

Ω := [0.1, 0.8]Hz,

the operator can confine its attention only on the eigenstates

falling within that range. To explain this, let us partition ẏ into

the subvector ẏ1 collecting all eigenstates falling within Ω, and

subvector ẏ2 collecting the remaining eigenstates. We partition

the matrix of eigenvectors V similarly into V1 and V2. Then,

the transformation in (7) can be expanded as

ω = M−1/2Vẏ = M−1/2V1ẏ1 +M−1/2V2ẏ2.

Interestingly, due to linearity, the frequency content of ω(t)
along Ω is attributed only to the first summand of the previous

expansion. The second summand has no (or negligible) content

along frequency range Ω. We would like to estimate ẏ1, but the

metered entries of ω depend on both ẏ1 and ẏ2. Nonetheless,

thanks to the separation of ẏ1 and ẏ2 in the frequency domain,

we can tune out the effect of ẏ2 without knowing either ẏ1

or ẏ2. This can be achieved by simply passing rotor speed

measurements through a filter havingΩ as its pass band. Ifω1(t)
denotes the filtered ω(t), we obtain that

ω1(t) = M−1/2V1ẏ1(t). (18)

The importance of (18) is that without knowing the eigenstates

ẏ2, their contribution can be removed from all measurements.

Reference [38] introduced this idea for graph signal processing

of synchrophasor data. We can now use filtered speed data to

estimate the inter-area eigenstates ẏ1(t). Using (18), we can

replace (16) by

E[ω1ω
⊤
1 ] = (M−1/2V1 ⊗ IT )E[ẏ1ẏ

⊤
1 ](V

⊤
1 M

−1/2 ⊗ IT ).
(19)

Aiming for ẏ1 rather than ỹ emphasizes on inter-area os-

cillations, is expected to improve upon observability, as well

as offers computational benefits. To see the latter, suppose

we maintain only D ≪ N eigenstates. We have replaced the

NT ×NT matrix E[ẏẏ⊤] of (16) with the DT ×DT matrix

E[ẏẏ⊤] of (19). The computational gain is not only in the matrix

products of (19), but also in the matrix inversion of Σ11 in (2).

Matrix Σ11 takes the form Σ11 = BE[ẏẏ⊤]B⊤ + σ2
nI, where

B := S⊤
MM−1/2V1 ⊗ IT is of dimension MT ×DT if M

buses are metered. One can utilize the matrix inversion lemma to

find Σ−1
11 in O(MD2T 3) instead of O(M3T 3) operations with

D ≪ M . Focusing on inter-area oscillations and the bandpass

nature of eigensystems simplify also the task of finding the

parameters in (12)–(13) as discussed next.

Remark 2: From (18), it holds that ω̃n(t) =
e⊤nM

−1/2V1ỹ(t). Evidently, the (n, i)-th entry of M−1/2V1

determines the participation of ˙̃yi(t) in ω̃n(t). Consider a

scenario where the i-th eigenstate has negligible participation in

all measured quantities. Naturally, the GP estimates of speeds

at non-metered buses where ẏ1 has a high contribution will be

inaccurate.
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C. Parameter Estimation

To evaluate the kernel functions of (12)–(13), we need to know

the N2 entries of A = E[x(t)x⊤(t)]. We use data to learn these

entries αij’s. If the focus is on D inter-area eigenstates, we

only need to find the corresponding D ×D submatrix Ã of A.

Parameters involved in GP models are typically found via max-

imum likelihood estimation [23]–[25], though such approaches

are computationally complex and entail solving non-convex op-

timization problems. We propose a scalable estimation approach

instead based on the method of moments (MoM) [40, Ch.9].

Suppose the collected filtered data consist of speeds measured

at a subset M of M buses, that is z(t) = SMω1(t). To find Ã,

we consider (14) for lag τ . With a slight abuse in notation, we

define the D ×D matrix K̃τ such that [K̃τ ]ij := kij(τ) for i, j
indexing the eigenstates within the frequency band of interest.

Ignoring noise for now, it holds

E[z(t+ τ)z⊤(t)]

= SMM−1/2V1

(

Ã⊙ K̃τ

)

V⊤
1M

−1/2S⊤
M (20)

where ⊙ denotes the element-wise product between two matri-

ces. Note that the data covariance matrix depends linearly on

Ã. Matrix K̃τ is known from (13). The ensemble covariance of

(20) can be approximated by the sample covariance matrix

Cτ =
1

T

T
∑

t=1

z(t+ τ)z(t)⊤. (21)

The MoM suggests using the sample in lieu of the ensemble

covariance to estimate Ã. Vectorizing (20) and the Kronecker

product property vec(ABC) = (C⊤ ⊗A) vec(B) yield that

cτ = U vec(Ã⊙ K̃τ ) = U dg(k̃τ )α̃ (22)

where cτ := vec(Cτ ); α̃ := vec(Ã); k̃τ := vec(K̃τ ); and

U := (SMM−1/2V1)⊗ (SMM−1/2V1).
Due to the symmetry of Cτ and Ã, we have to estimate

(D2 +D)/2 parameters collected in α̃. Exploiting the fre-

quency selective nature of eigensystems, we can reduce further

the number of αij’s that need to be found: The eigeninputs xi(t)
and xj(t) pass through eigensystems of known passbands. If the

two passbands do not overlap, the corresponding entry of k̃τ is

close to zero for all τ , and so αij is irrelevant for our learning.

In other words, this particular αij does not have to be found.

We estimate the remaining entries of α or equivalently Ã using

a least-squares (LS) fit on the entries of c0 based on the linear

model of (22) subject to the constraint that the complete Ã is

positive semidefinite.

To account for noise, an additional term dg(σ) should be

added on the right-hand side of (20). The M -length vector

σ collects the variances for all terms of measurement noise.

Assuming noise is white, the term appears only for τ = 0. If

σ is known from the manufacturer of the metering devices or

historical data, matrix dg(σ) should be subtracted from Cτ .

Otherwise, vector σ can be estimated jointly with α.

TABLE I
COMPARING METHODS FOR LEARNING FROM PMUS PER APPLICATION.

(APPLICATIONS ARE DEFINED IN FIG. 1)

D. Comparison With Existing Works

Having presented our GP-based methodology for learning

grid dynamics, we are now able to compare it with prior

works related to processing synchrophasor data. As reviewed

in the Introduction, such works can be grouped into those

using synchrophasor data alone and those falling under the

dynamic state estimation (DSE) paradigm. With reference to

the applications depicted in Fig. 1, Table I compares how each

group of approaches handles each application and under what

requirements. Data-based methods are pertinent when a power

system model is not available, and the goal is to impute entries

from a few datastreams that are otherwise metered. They can also

be used for anomaly detection or locating oscillatory sources by

triangularization. DSE methods on the other hand, build upon

a detailed dynamic power system model to estimate, predict,

or differentiate the unknown system state. They usually focus

on a single bus or a single control area, and they presume that

all inputs to this dynamical system are metered. Our proposed

GP-based methodology applies to grid-wide inference tasks

when observability criteria are not met, none or a few inputs

are metered, and one can only rely on an approximate dynamic

grid model. In addition to multi-datastream applications, the

GP-based methodology can handle single-datastream applica-

tions of practical interest, such as finding voltage speeds from

angles (differentiation), prediction, or imputation.

VI. NUMERICAL TESTS

The novel GP-based learning framework was tested on several

of the applications discussed at the end of Section III. Before

elaborating on the applications, let us first explain how dynamic

grid data were generated. Numerical tests were not conducted

under the stylized dynamic grid model of Section IV, but on

more realistic setups. In particular, data were synthesized using

the IEEE 39- and 300-bus benchmarks. Upon Kron reduction,

the two benchmarks were converted to 10- and 69-machine

networks [41]. The IEEE 39-bus benchmark is also known as the

10-machine New England power system and has been widely
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used in the literature on dynamics. We used three models to

simulate grid dynamics:
� Model M1) simulates the 69-machine system based on the

linearized model of (5). Linearization was performed at the

nominal operating point.
� Model M2) is used for modeling the nonlinear 10-machine

system using fourth-order generator models with automatic

voltage regulators (AVR) included.
� Model M3) models the nonlinear 10-machine system using

fourth-order generator models along with turbine/governor

dynamics, droop control, and AVR.

Both benchmarks violated Assumption 1 on constant

damping-to-inertia coefficient ratios Dn/Mn = γ for all n. In

the 69-machine system, ratios lie within the relatively narrow

range of [0.19,0.4], so Assumption 1 may be reasonable. In

the 10-machine benchmark however, Dn/Mn ratios take on the

distinct values {0.002, 0.024, 0.028, 0.04}. In the same system,

the ratios r−1
n /Mn of inverse-droop to inertia coefficients take

values in [0.09,6.8]. Turbine time constants τn’s take the distinct

values of {8, 8.7, 10} seconds. Even though τn’s seem to be

relatively close to each other, the Dn/Mn and r−1
n /Mn ratios

vary by one or two orders of magnitude, thus severely violating

the assumptions stated in Assumption 1 and Proposition 3. Note

that in the IEEE 39-bus benchmark, generator 1 represents an

aggregation of a large number of generators, and that may

explain the large disparity in ratios compared to the IEEE

300-bus (69-machine) benchmark. Either way, this 10-machine

system serves as an excellent worst-case benchmark to evaluate

the robustness of the proposed GP-based framework against

discrepancies between the actual dynamic grid model and the

stylized model used to derive covariances in Section IV.

To derive the parametric form for covariances under models

M1) and M2), we need to know (M, γ,L). Under M3), we

additionally need to know τ and r. We chose

γ =
1⊤D1

1⊤M1
, r =

1⊤R−11

1⊤M1
, and τ :=

1⊤T1

N
.

For M1), we obtained L from MATPOWER’s function

makeJac. To generate data under M1 ), the swing equation

was converted to its state-space representation using MATLAB’s

ss, and was solved using MATLAB’s ode45 for a given input

p(t). For M2) and M3), we used the power system analysis

toolbox PSAT [42], which further simulates automatic voltage

regulators, turbine/droop control, and computes synchrophasor

data to be used as PMU readings after adding measurement

noise.

We simulated both ambient and non-ambient (fault) condi-

tions. Ambient conditions were tested under M1) and M2), with

power injections p(t) being synthesized as zero-mean Gaussian

processes having covarianceE[p(t+ τ)p⊤(t)] = 0.01M2δ(τ).
For non-ambient conditions, we simulated a fault scenario as

follows: A three-phase fault occurred at a substation connected

to one of the generators. The fault caused the breakers of adjacent

lines to open after 3 ms from the occurrence of the fault. After an

additional 3 ms, the breakers re-closed and the fault was cleared.

Under M1), the described disturbance was simulated using an

impulse function. Under M2) and M3), PSAT simulated the

Fig. 5. Speed estimation at bus 14 of the 69-machine system under ambient
disturbances using angle (top panel) and speed (bottom panel) measurements.
The shaded area shows the ±σ uncertainty.

fault and breaker operation in detail. Observe that under either

ambient and fault conditions, the assumption on independent

eigeninputs postulated by the stylized dynamic grid model of

Section IV was not met.

Data were corrupted by zero-mean additive white Gaussian

noise of variance 0.01 rd for angle, and 0.005 rd/sec for rotor

speed data. Dynamics were simulated at a time resolution of

1 ms, but processed at the reporting rate of 15 samples per

second [43]. Focusing on inter-area oscillations, measurements

were passed through a band-pass filter with [0.5,0.8] Hz pass-

band using Matlab’s designfilt and filtfilt functions.

Even though inter-area oscillations usually appear in the range

of [0.1,0.8] Hz, we selected a narrower passband as the adopted

benchmarks did not exhibit resonant frequencies in [0.1,0.5] Hz.

The parameter matrix Ã was estimated using the MoM. The

αij’s for eigensystems that have no overlap within (2wi, 2wi)
were set to zero.

The rest of this section is organized into four application

setups: Section VI-A infers angle or speed oscillations at non-

metered buses using angle or speed data at metered data under

ambient and fault conditions. Section VI-B aims at locating a

fault by estimating the power injections at all buses using rotor

speed measurements. Sections VI-C and VI-D focus on infer-

ence problems related to a single bus, and hence, no dynamic

grid model needed as covariances are now only functions of time

and not space. Section VI-C imputes missing data from a single

synchrophasor datastream, while Section VI-D estimates a rotor

speed signal from a rotor angle datastream (time differentiation).

A. Inferring Rotor Angles and Speeds at Non-Metered Buses

1) Inferring Rotor Angles and Speeds Using M1): We first

tested the proposed method under M1) excited by ambient

disturbances. Measurements (angle or speed) were randomly

collected from 50 out of the 69 generators. Angle measurements

were contaminated by an additive white Gaussian noise with a

standard deviation of 0.005 rd to model noise under small-signal

disturbances. We estimated speeds at non-metered buses using

angle measurements first and speed measurements secondly.

Fig. 5 depicts the obtained GP estimates. The shaded areas

demonstrate the ±σ uncertainty interval obtained by taking the

square root of the diagonal entries of the covariance matrix
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Fig. 6. Estimating rotor speeds under ambient dynamics on the 69-machine
network using angle (top) and speed (bottom) data from 50 buses. Regardless of
using angle or speed data, the buses with the largest and smallest time-averaged
errors did not change.

of (2b). The results in Fig. 5 confirm the ability of our method

to estimate speeds using angle or speed data.

Estimation accuracy was measured as the absolute errorEn(t)
in per unit between the actual and the predicted speed at bus n
and time t

En(t) :=
|ωn(t)− ω̂n(t)|

ω0
and En :=

1

T

T
∑

t=1

En(t)

whereω0 is the nominal angular velocity. The errorEn(t) for the

buses attaining the largest and smallest time-averaged errors En

are shown in Fig. 6. The goal of this test was to estimate speeds

at non-metered buses using angle or speed measurements at 50

randomly sampled buses. The error varies with time because the

measurement noise variance remains constant across time while

the actual signals oscillate.

The previous experiment was for a single placement of me-

tered buses. To explore how different placements of metered

buses affect the estimation accuracy, we performed two addi-

tional tests: one with Monte Carlo runs on random placements

and another test with an intentionally poor placement. For the

first test, we estimated the speeds at non-metered buses using

angle or speed measurements collected at 40, 50, and 60 ran-

domly sampled buses. The test was repeated for 100 different

random placements of metered buses. The obtained results are

shown in Fig. 7. The absolute error on estimating speeds was

averaged over the non-metered buses and over the Monte Carlo

runs of random placements. Fig. 7 demonstrates that on the

average, the GP-based estimator attains speed errors smaller than

3.5 · 10−3 rad/sec or 5.5 · 10−4 Hz. As expected, the estimation

error decreases with increasing number of metered buses. Of

course, plotting results averaged over buses and placements

Fig. 7. Studying the effect of the number and placement of metered buses on
estimating speeds from angle (top) and speed (bottom) data. Absolute errors on
speeds have been averaged over the non-metered buses and over 100 random
metering placements of 40, 50, and 60 buses.

Fig. 8. Estimating speeds at buses 31 (top) and 68 (bottom) of the 69-bus
system under ambient conditions using speed measurements at buses {22−
30, 32− 61}. The speed at bus 68 depends heavily on eigenstate ẏ4(t). This
eigenstate depends weakly on the measured speeds. As expected, the estimate
of ω68(t) is unreliable, yet this is signified by the wider uncertainty interval
inferred.

can be hiding severe observability issues. To showcase such

issues, we conducted a second test. We metered speeds at buses

{22− 30, 32− 61}. These buses seemed to have little effect on

eigenstate ẏ4(t), that is the coefficients associated with these

buses on the 4-th row of matrix V⊤M1/2 in (7) were negligible.

On the other hand, we identified that speed ω̃68(t) depends

heavily on ẏ4(t), and ω̃31(t) does not. Fig. 8 shows the speed

estimates for buses 68 and 31. The estimate for bus 31 is reliable,

whereas the one for bus 68 is not. Interestingly enough though,

the proposed method returned very broad confidence intervals

for ω̂68(t), which essentially flag this estimate as unreliable.

Next, we aimed at finding angles under a fault at generator

69. We used angle and frequency data at 50 buses with bus 69

apparently excluded. Fig. 9 depicts the absolute error in angle

estimates for the buses with the largest (bus 67) and smallest (bus

16) time-averaged errors. Fig. 10 showcases that GP learning can
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Fig. 9. Estimating angle dynamics following a generator trip using angle (top)
and speed (bottom) data metered at 50 buses. The plot shows absolute estimation
errors for the buses with the smallest/largest mean absolute error (MAE) of En.

Fig. 10. Estimating the angle at bus 69 of the 69-machine system after a fault
near the same bus using angle (top) and speed (bottom) measurements from 50
buses.

successfully infer angles from speeds, and can deal with different

types of disturbances. The latter conclusion is important because

the correlation among system states depends on the type and

magnitude of disturbances. Thanks to the parametric covariance

model using Ã, the GP framework is adaptable to different

dynamic conditions.

2) Inferring Rotor Angles and Speeds Using M2): We next

evaluated GP learning using data generated by the nonlinear

higher-order model M2) under ambient and non-ambient con-

ditions. Under ambient conditions, angle and speed data were

collected at all buses except {1, 5, 7}. For non-ambient con-

ditions, we simulated a 3-phase fault near bus 7, and collected

angle speed at all buses except {3, 6, 7}. Figs. 11 and 12 illustrate

the inferred oscillations in rotor speeds and ROCOFs at non-

metered buses. The results in Fig. 12 corroborate that although

the parametric form of covariances was designed under the

stylized model of Section IV (linearized swing dynamics with

uniform damping excited by specific Gaussian perturbations),

GP learning yields accurate results when trained and operated

Fig. 11. Speed estimates at bus 1 of the nonlinear higher-order system model
M2) under ambient dynamics using angle (top) and speed (bottom) data of the
system except buses {1, 5, 7}.

Fig. 12. Speed (top) and ROCOF (bottom) estimates at bus 7 of the nonlinear
system model M2) under a 3-phase fault near bus 7 using speed measurements
across the system except buses {3, 6, 7}.

over data from a higher-order nonlinear model with non-uniform

damping excited by (non)-ambient perturbations.

3) Inferring Rotor Speeds Using M3): We also estimated

speed oscillations using model M3), which includes tur-

bine/droop control. We simulated a fault near generator 2, and

measured all buses except for {6, 7}. Non-metered speeds were

found using the covariance model of Proposition 3. Fig. 13

shows the estimation results at bus 7. This result proves that the

physics-informed covariance model can be modified to capture

other dynamic components of the system.

B. Localizing Sources of Oscillations Using M1):

So far, we have focused on inter-area oscillations. However,

in some applications such as fault identification, the eigenstate

corresponding to the zero eigenvalue is required. This is because

this eigenstate is directly related to the system frequency, also

known as c enter of inertia. To test the ability of GP learning

to locate faults, we tried estimating the power injections across

the 69-bus system under a fault near generator 69. To this end,
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Fig. 13. Speed estimation at bus 7 of the 10-bus system under a fault near bus
2 using speed measurements.

Fig. 14. GP learning can be used to infer power injections given angle or
speed measurements. Here we estimate the power injection at each bus upon
processing speed data at all buses following a fault near bus 69.

we passed speed measurements collected at 50 buses through a

low-pass filter with a cut-off frequency of 2 Hz (Ω = [0, 2] Hz).

Fig. 14 illustrates the estimated power injections at all buses. The

results show that the GP framework can successfully localize the

bus where the fault occurred. Since we are working with filtered

data, the recovered power injections shown in Fig. 14 correspond

to the filtered power injections, and hence, the impulse-like fault

injection at bus 69 appears as a smoothed sync-type form and

of reduced magnitude; the nominal value of the active power

injection at the faulted bus was p69 = 0.08 pu. Nonetheless, it

is still very clear that the disturbance occurred at bus 69.

C. Model-Free Imputation of Missing Data Across Time

The previous experiments focused on learning oscillations

at non-metered buses. To be able to extrapolate across buses,

we used the covariance model of (16), which relies on an

approximate dynamic model of the power system. Neverthe-

less, in applications where one processes a single grid signal,

there is no need of knowing the power system model; temporal

covariances of the form E[ωn(t)ωn(t+ τ)] suffice. To see one

such application, consider a dynamic speed signal from bus

4 of model M2) under a three-phase fault near generator 2.

Due to communication failures, some samples over stretches of

consecutive time instances are missing. We aim at inferring the

missing data using the available speed data from bus 4. Focusing

on inter-area oscillations, we filter the measurements using

Ω = [0.5, 0.8] Hz. In this setup, we learn a Gaussian (temporal

only) covariance for rotor speeds. Its parameters used in the

Fig. 15. Model-free imputation of missing data for the speed of generator 4 of
the 10-bus system. For periods of missing data of shorter duration, estimation
accuracy improves and uncertainty decreases.

Fig. 16. Model-free rotor speed estimation at bus 1 of the 10-bus system.

Gaussian kernel were estimated using MATLAB’s fitRGP

toolbox. Fig. 15 demonstrates the imputed oscillations over

three intervals of increasing duration. As expected, estimation

improves and uncertainty decreases when the missed interval is

shorter.

D. Model-Free Imputation of Rotor Speeds From Angle Data

Finally, we used GP learning to compute speeds given angle

measurements collected at the same bus. In essence, GP learning

is used here in lieu of time differentiation. This could serve as

an alternative to the Fourier-based frequency estimation tech-

niques implemented by PMU devices. We assumed that rotor

angle data are available at generator 1 of model M3) under

a fault near generator 2. We modeled angle covariances using

the Gaussian covariance functions. Rotor covariances can be

derived as discussed in (4). The rotor speed estimation results are

shown in Fig. 16. The results confirm that model-free covariance

functions can be used with the proposed GP framework for

implementing time differentiation. It can be observed that the

uncertainty interval lies within ±0.0025 rad/s or ±0.0004 Hz.

Therefore, 3σ = 0.0012Hz is less than the maximum frequency

measurement error specified by the IEEE C37118 Standard for

PMU measurements [43].

VII. CONCLUSION AND FUTURE WORK

A novel method for inferring the non-metered dynamic os-

cillations in a power system using synchrophasor data has been

put forth. The key idea has been to capture voltage frequen-

cies as GPs and systematically propagate this GP model to
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voltage angles, speeds, ROCOFs, and power injections. Lever-

aging information on the power network model and generator

parameters, the proposed GP framework can interpolate and

extrapolate dynamic grid signals across buses and time. It can

process synchrophasor data with diverse characteristics, such

as sampling rate, type (angles, speeds/frequencies, ROCOFs),

and accuracy, or with missing entries. Signals corresponding to

time derivatives can be learned by analytically differentiating

kernel functions rather than approximating them using finite

differences. Due to its Bayesian nature, the proposed model

provides confidence intervals in addition to point estimates.

Although the statistical model was developed on linearized

dynamics presuming uniform damping, numerical tests on the

IEEE 300- and 39-bus benchmarks have corroborated that the

method performs well under non-uniform and/or nonlinear sys-

tem models under both ambient and fault conditions. The tests

have shown how: i) one can estimate speeds or ROCOF and to

locate faults using angle and speed data; ii) accuracy improves

with increasing number of measurements and remains accept-

able in general for a random meter placement; iii) observability

issues can arise and are identified by the uncertainty estimates

provided by the method.

This work sets the foundations for interesting research di-

rections. The online implementation of the method, frequency

prediction, system model estimation, and modal analysis are

a few practically pertinent extensions. Finally, exploring more

detailed generator models and using other measurements such as

field voltages and line flows could improve estimation accuracy.

REFERENCES

[1] U. S. Department of Energy, “Factors affecting PMU installation
costs,” Oct. 2014. [Online]. Available: https://www.smartgrid.gov/files/
documents/PMU-cost-study-final-10162014.pdf

[2] P. Gao, M. Wang, S. G. Ghiocel, and J. H. Chow, “Modeless reconstruc-
tion of missing synchrophasor measurements,” in Proc. IEEE PES Gen.

Meeting, 2014, pp. 1–5.
[3] P. Gao, M. Wang, S. G. Ghiocel, J. H. Chow, B. Fardanesh, and G.

Stefopoulos, “Missing data recovery by exploiting low-dimensionality in
power system synchrophasor measurements,” IEEE Trans. Power Syst.,
vol. 31, no. 2, pp. 1006–1013, Mar. 2016.

[4] S. Zhang and M. Wang, “Correction of corrupted columns through fast
robust hankel matrix completion,” IEEE Trans. Signal Process., vol. 67,
no. 10, pp. 2580–2594, May 2019.

[5] S. Zhang, Y. Hao, M. Wang, and J. H. Chow, “Multichannel hankel matrix
completion through nonconvex optimization,” IEEE J. Sel. Topics Signal

Process., vol. 12, no. 4, pp. 617–632, Aug. 2018.
[6] K. Chatterjee, N. Ray Chaudhuri, and G. Stefopoulos, “Signal selection for

oscillation monitoring with guarantees on data recovery under corruption,”
IEEE Trans. Power Syst., vol. 35, no. 6, pp. 4723–4733, Nov. 2020.

[7] D. Osipov and J. H. Chow, “PMU missing data recovery using tensor
decomposition,” IEEE Trans. Power Syst., vol. 35, no. 6, pp. 4554–4563,
Nov. 2020.

[8] J. Zhao et al., “Power system dynamic state estimation: Motivations,
definitions, methodologies, and future work,” IEEE Trans. Power Syst.,
vol. 34, no. 4, pp. 3188–3198, Jul. 2019.

[9] Kuang-Rong Shih and Shyh-Jier Huang, “Application of a robust algorithm
for dynamic state estimation of a power system,” IEEE Trans. Power Syst.,
vol. 17, no. 1, pp. 141–147, Feb. 2002.

[10] S. J. Julier and J. K. Uhlmann, “Unscented filtering and nonlinear estima-
tion,” Proc. IEEE, vol. 92, no. 3, pp. 401–422, Mar. 2004.

[11] S. Wang, W. Gao, and A. P. S. Meliopoulos, “An alternative method for
power system dynamic state estimation based on unscented transform,”
IEEE Trans. Power Syst., vol. 27, no. 2, pp. 942–950, May 2012.

[12] W. S. Rosenthal, A. M. Tartakovsky, and Z. Huang, “Ensemble kalman
filter for dynamic state estimation of power grids stochastically driven
by time-correlated mechanical input power,” IEEE Trans. Power Syst.,
vol. 33, no. 4, pp. 3701–3710, Jul. 2018.

[13] N. Zhou, D. Meng, and S. Lu, “Estimation of the dynamic states of
synchronous machines using an extended particle filter,” IEEE Trans.

Power Syst., vol. 28, no. 4, pp. 4152–4161, Nov. 2013.
[14] A. K. Singh and B. C. Pal, “Decentralized dynamic state estimation in

power systems using unscented transformation,” IEEE Trans. Power Syst.,
vol. 29, no. 2, pp. 794–804, Mar. 2014.

[15] J. Zhao and L. Mili, “Power system robust decentralized dynamic state
estimation based on multiple hypothesis testing,” IEEE Trans. Power Syst.,
vol. 33, no. 4, pp. 4553–4562, Jul. 2018.

[16] J. S. Thorp, C. E. Seyler, and A. G. Phadke, “Electromechanical wave
propagation in large electric power systems,” IEEE Trans. Circuits Syst. I,
vol. 45, no. 6, pp. 614–622, Jun. 1998.

[17] P. N. Markham and Y. Liu, “Electromechanical speed map de-
velopment using FNET/GridEye frequency measurements,” in Proc.

IEEE Power Energy Soc. Gen. Meeting, National Harbor, MD, 2014,
pp. 1–5.

[18] X. Deng, D. Bian, D. Shi, W. Yao, Z. Jiang, and Y. Liu, “Line outage
detection and localization via synchrophasor measurement,” in Proc. IEEE

Conf. Innov. Smart Grid Technol., Chengdu, China, 2019, pp. 3373–3378.
[19] S. N. Nuthalapati, Power System Grid Operation Using Synchrophasor

Technology. Cham, Switzerland: Springer, 2019.
[20] T. Huang, N. M. Freris, P. R. Kumar, and L. Xie, “A synchrophasor

data-driven method for forced oscillation localization under resonance
conditions,” IEEE Trans. Power Syst., vol. 35, no. 5, pp. 3927–3939,
Sep. 2020.

[21] L. Dosiek, N. Zhou, J. W. Pierre, Z. Huang, and D. J. Trudnowski,
“Mode shape estimation algorithms under ambient conditions: A com-
parative review,” IEEE Trans. Power Syst., vol. 28, no. 2, pp. 779–787,
May 2013.

[22] P. Huynh, H. Zhu, Q. Chen, and A. E. Elbanna, “Data-driven estimation
of frequency response from ambient synchrophasor measurements,” IEEE

Trans. Power Syst., vol. 33, no. 6, pp. 6590–6599, Nov. 2018.
[23] C. Rasmussen and C. Williams, Gaussian Processes for Machine Learn-

ing. Cambridge, MA, USA: MIT Press, 2006.
[24] C. M. Bishop, Pattern Recognition and Machine Learning. New York, NY,

USA: Springer, 2006.
[25] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Inferring solutions of

differential equations using noisy multi-fidelity data,” J. Comput. Phys.,
vol. 335, pp. 736–746, Apr. 2017.

[26] T. Graepel, “Solving noisy linear operator equations by Gaussian pro-
cesses: Application to ordinary and partial differential equations,” in Proc.

Int. Conf. Mach. Learn., Washington, DC, USA, 2003, pp. 234–241.
[27] O. M. Anubi and C. Konstantinou, “Enhanced resilient state estimation

using data-driven auxiliary models,” IEEE Trans. Ind. Informat., vol. 16,
no. 1, pp. 639–647, Jan. 2020.

[28] V. Kekatos, Y. Zhang, and G. B. Giannakis, “Electricity market forecasting
via low-rank multi-kernel learning,” IEEE J. Sel. Topics Signal Process.,
vol. 8, no. 6, pp. 1182–1193, Dec. 2014.

[29] P. Kundur, Power System Stability and Control. New York, NY, USA:
McGraw-Hill, 1994.

[30] M. K. Singh and V. Kekatos, “Optimal power flow schedules with reduced
low-frequency oscillations,” in Proc. Power Syst. Comput. Conf., Porto,
Portugal, 2021, (submitted Aug. 2021). [Online]. Available: https://www.
faculty.ece.vt.edu/kekatos/papers/PSCC2022b.pdf

[31] P. W. Sauer and M. A. Pai, Power System Dynamics and Stability. Cham-
paign, IL, USA: Prentice Hall, 1998.

[32] L. Guo, C. Zhao, and S. H. Low, “Graph laplacian spectrum and primary
frequency regulation,” in Proc. IEEE Conf. Decis. Control, Miami Beach,
FL, USA, 2018, pp. 158–165.

[33] F. Paganini and E. Mallada, “Global analysis of synchronization perfor-
mance for power systems: Bridging the theory-practice gap,” IEEE Trans.

Autom. Contr., vol. 65, no. 7, pp. 3007–3022, Jul. 2020.
[34] B. K. Poolla, S. Bolognani, and F. Dorfler, “Optimal placement of virtual

inertia in power grids,” IEEE Trans. Autom. Contr., vol. 62, no. 12,
pp. 6209–6220, Dec. 2017.

[35] S. Liu, H. Zhu, and V. Kekatos, “A dynamic response recovery frame-
work using ambient synchrophasor data,” 2021. [Online]. Available: https:
//arxiv.org/abs/2104.05614

[36] M. Jalali, V. Kekatos, S. Bhela, and H. Zhu, “Inferring power system
frequency oscillations using Gaussian processes,” in Proc. IEEE Conf.

Decis. Control, Austin, TX, Dec. 2021, pp. 3670–3676.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on April 14,2023 at 20:32:19 UTC from IEEE Xplore.  Restrictions apply. 



JALALI et al.: INFERRING POWER SYSTEM DYNAMICS FROM SYNCHROPHASOR DATA USING GAUSSIAN PROCESSES 4423

[37] A. Leon-Garcia, Probability, Statistics, and Random Processes for Electri-

cal Engineering, 3rd ed. Upper Saddle River, NJ, USA: Pearson/Prentice
Hall, 2008.

[38] R. Ramakrishna and A. Scaglione, “Grid-graph signal processing (grid-
GSP): A graph signal processing framework for the power grid,” IEEE

Trans. Signal Process., vol. 69, pp. 2725–2739, 2021.
[39] M. Klein, G. Rogers, S. Moorty, and P. Kundur, “Analytical investigation

of factors influencing power system stabilizers performance,” IEEE Trans.

Energy Convers., vol. 7, no. 3, pp. 382–390, Sep. 1992.
[40] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation

Theory. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1993.
[41] T. Ishizaki, A. Chakrabortty, and J. Imura, “Graph-theoretic analysis of

power systems,” Proc. IEEE, vol. 106, no. 5, pp. 931–952, May 2018.
[42] F. Milano, “An open source power system analysis toolbox,” IEEE Trans.

Power Syst., vol. 20, no. 3, pp. 1199–1206, Aug. 2005.
[43] IEEE Standard for Synchrophasor Measurements for Power Systems, IEEE

Std C37.118.1-2011 (Revision of IEEE Std C37.118-2005), pp. 1–61, Dec.
28, 2011, doi: 10.1109/IEEESTD.2011.6111219.

Mana Jalali (Student Member, IEEE) received the
B.S. degree in electrical engineering from the Uni-
versity of Tehran, Tehran, Iran, in 2017, and the
M.Sc. degree in electrical engineering from Virginia
Tech, Blacksburg, VA, USA, in 2019. She is currently
working toward the Ph.D. degree with Virginia Tech.
In 2021, she interned at Engineering Analytics and
Modeling group of Dominion Energy, Richmond, VA,
USA. Her research interests include application of
optimization and machine learning on smart grids.

Vassilis Kekatos (Senior Member, IEEE) received
the Diploma, M.Sc., and Ph.D. in computer science
and engineering from the University of Patras, Patras,
Greece, in 2001, 2003, and 2007, respectively. He
is an Associate Professor with the Bradley Depart-
ment of Electronics and Communications Engineer-
ing, ECE Virginia Tech, Blacksburg, VA, USA. He
has been a Research Associate with ECE Department,
University of Minnesota, Minneapolis, MN, USA,
where he received the Postdoctoral Career Develop-
ment Award (honorable mention). During 2014, he

was a Visiting Researcher with the University of Texas, Austin, TX, USA,
and Ohio State University, Columbus, OH, USA. His research focuses on
optimization and learning for future energy systems. He is currently the editorial
board of theIEEE TRANSACTION ON SMART GRID.He was the recipient of the
NSF Career Award in 2018 and the Marie Curie Fellowship.

Siddharth Bhela (Member, IEEE) received the B.S.
degree in electrical engineering from Texas A&M
University, College Station, TX, USA, in 2007, and
the M.Sc. and Ph.D. degrees in electrical engineering
from Virginia Tech, Blacksburg, VA, USA, in 2015
and 2019, respectively. He is a Research Scientist
with Siemens Technology, Princeton, NJ, USA. He is
also a Registered Professional Engineer with the state
of Texas. His research interests include application
of optimization, control, and graph-theoretic tech-
niques, and also development of algorithmic solutions

for smart power systems.

Hao Zhu (Senior Member, IEEE) received the B.S.
degree from Tsinghua University, Beijing, China, in
2006, and the M.Sc. and Ph.D. degrees from the
University of Minnesota, Minneapolis, MN, USA, in
2009 and 2012, respectively. She is an Assistant Pro-
fessor of electrical and computer engineering (ECE)
with The University of Texas, Austin, TX, USA. From
2012 to 2017, she was a Postdoctoral Research Asso-
ciate and then an Assistant Professor of ECE with
the University of Illinois, Urbana-Champaign, IL,
USA. Her research focuses on developing innovative

algorithmic solutions for problems related to learning and optimization for future
energy systems. Her current interests physics-aware and risk-aware machine
learning for power system operations, and designing energy management system
accounting for cyber-physical coupling. She was the recipient of the NSF
CAREER Award and the Siebel Energy Institute Seed Grant Award, and also the
Faculty Advisor for three Best Student Papers awarded at the North American
Power Symposium. She is currently a Member of the IEEE Power & Energy
Society (PES) Long Range Planning (LRP) Committee.

Virgilio A. Centeno (Senior Member, IEEE) received
the M.S. and Ph.D. degrees in electrical engineering
from Virginia Polytechnic Institute and State Univer-
sity (Virginia Tech), Blacksburg, VA, USA, in 1988
and 1995, respectively. From 1991 to 1997, he was a
Project Engineer in the development of phasor mea-
surement units with Macrodyne, Inc., Clifton Park,
NY, USA. In 1997, he joined the Faculty of Virginia
Tech as a Visiting Professor, where he became an
Associate Professor in 2007, and a Full Professor
in 2020. His research interests include wide-area

measurement and its applications to power system protection, control, and
cybersecurity.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on April 14,2023 at 20:32:19 UTC from IEEE Xplore.  Restrictions apply. 


