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Abstract— We develop a model-free learning algorithm for
the infinite-horizon linear quadratic regulator (LQR) problem.
Specifically, (risk) constraints and structured feedback are
considered, in order to reduce the state deviation while allowing
for a sparse communication graph in practice. By reformulating
the dual problem as a nonconvex-concave minimax problem, we
adopt the gradient descent max-oracle (GDmax), and for model-
free setting, the stochastic (S)GDmax using zero-order policy
gradient. By bounding the Lipschitz and smoothness constants
of the LQR cost using specifically defined sublevel sets, we
can design the stepsize and related parameters to establish
convergence to a stationary point (at with high probability).
Numerical tests in a networked microgrid control problem have
validated the convergence of our proposed SGDmax algorithm
while demonstrating the effectiveness of risk constraints. The
SGDmax algorithm has attained a satisfactory optimality gap
compared to the classical LQR control, especially for the full
feedback case.

I. INTRODUCTION

The linear quadratic regulator (LQR) problem is one of
the most fundamental problems in optimal control theory
[1], [2]. Recently, there is significant interest in model-
free learning of the standard LQR problem using gradient-
based approaches [3]-[5], with connection to the popular
reinforcement learning (RL) methods. Nonetheless, model-
free learning and convergence analysis for general LQR
problems are still lacking such as constrained LQR and
structured feedback design.

Constrained formulations have attracted recent interest
for the LQ [6]-[8] and general RL problems [9], [10].
Constraints can improve the safety of resultant policies while
potentially increasing the learning rates as a regularization.
In particular, recent work [6], [8] has considered the mean-
variance risk for the LQR problems, that can effectively
mitigate the random state deviation from its mean due to
noisy disturbance. More interestingly, [6] has shown that
this risk measure is equivalent to a quadratic constraint
function that is similar to the LQR cost. In addition, [8]
has developed a dual-ascent based double-loop algorithm by
utilizing the global convergence of LQR learning [3], [4]
for the inner-loop. Nonetheless, this double-loop procedure
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may be complicated to implement in practice because the
inner-loop convergence is in a probabilistic way due to the
stochastic gradient.

Meanwhile, decentralized control problems [11]-[13] arise
in various real-world applications where sensors and actu-
ators are distributed in a networked system. For example,
it is very useful for power system control designs such as
wide-area damping control [14], [15] or networked microgird
control [16], [17]. In decentralized LQR problems, a sparse
communication graph leads to structured feedback gain,
which has also been considered in recent gradient-based
learning approaches [3], [18]. In general, the stabilizable
region of structured LQR is disconnected with a complex
geometry [19], and thus it is difficult to analyze. While
gradient-based learning for structured LQR does not lead
to global convergence as in the unstructured case [3], [4],
it is easy for implementation as the gradient can be simply
performed over the non-zero entries [3], [18].

Our goal is to develop model-free learning algorithms
for risk-constrained LQR problem under sparse feedback
structure that arises in networked systems. The structured
feedback is incorporated by considering the sparse non-zero
entries only, and thus the gradient computation and updates
can be performed without accounting for such structured
constraint. Nonetheless, it leads to convergence to only a
stationary point. As for the constraint function, it is similar
to the LQR cost with the mean-variance risk as a special case
as shown by [6], [7]. To deal with this constraint, we consider
the dual problem which shares the stationary point (SP) with
the minimax problem for the Lagrangian function. The re-
sultant nonconvex-concave minimax reformulation motivates
us to adopt Gradient-Descent max-oracle (GDmax) and the
stochastic (S)GDmax algorithms in [20] to solve the outer
minimization problem via GD updates. More specifically, the
SGDmax relies on the zero-order policy gradient (ZOPG)
[21] which has bounded noise variance.

Nonetheless, the key challenge in establishing the con-
vergence lies in the LQR cost function, which is shown to
exhibit local-only Lipschitz and smoothness with location-
dependent constants [3], [4]. To tackle this, we introduce a
compact sublevel set within which the upper bounds of Lip-
schitz and smoothness constants hold. Such analysis enables
us to carefully design the stepsize and related parameters to
establish the convergence to SP, while the convergence of
SGDmax in a model-free setting can be attained with a high
probability. Numerical results have validated the convergence
of our algorithms and demonstrated the impact of having risk
constraint and structured feedback in learning LQR policy.
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The SGDmax algorithm have attained satisfactory optimality
gap compared to the classical LQR control, especially for the
full feedback case.

The remainder of this paper is organized as follows.
Sec. II formulates the infinite-horizon risk-constrained LQR
with structured feedback. Sec. III introduces the dual-related
minimax reformulation and analyzes the convergence of
the Gradient Descent with max-oracle (GDmax) algorithm.
Sec. IV extends it to model-free learning by developing the
Stochastic (S)GDmax via zero-order policy gradient. Sec. V
presents the numerical results in a networked load frequency
control (LFC) problem, while the paper is wrapped up in
Sec. VL.

Notations: Let || - || denote the Lo-norm, Vi L the gradient
of £ that admits the structure defined in K, { X7} a sequence
of {X° X! ...}, Py(-) the projection onto the set ), and
the operator ® the Kronecker product of matrices. Last,
E(-) denotes the expectation while P(-) the probability of
an event.

II. PROBLEM FORMULATION

We consider the infinite-horizon LQR problem for a linear
time-invariant system given by

Tit1 = Axy + Buy +wy, t=0,1,... (1

with the state x; € R"™, action u; € R", and random
noise w; € R™ that is uncorrelated across time. In addition,
the model parameters A € R"*™ and B € R™ ™ can
be unknown. The constrained LQR problem with structured
feedback aims to find an optimal linear feedback gain K €

R™*™ for the control policy u; = —Kuxy to:
;| Tl
min Ro(K)= lim —E ;[azj Q¢ + u; Ruy 2)
;| Tl
S.t. Rl(K) :Thj};o TE tz:; [a:tTQiast + utTRiut] <, Vi

where matrices {Q, R} and {Q;, R;};cz are all positive
semi-definite, with Z representing the set of the constraints.
The feasible set /I enforces a structured policy as

K={K:K,,=0if and only if (a,b) ¢ £)}. (3)

Here, the structure pattern £ is specified by the edges of a
given communication or information-exchange graph. Hence,
the action for agent a, denoted as u,,;, is determined as
Uqt = —Kqq:, where K, is a row vector with only
non-zero elements in a-th row of K and z,, is a sub-
vector of x; according to £. The structured C is motivated
by a multi-agent setting for networked control, where in-
dividual agents can access partial feedback only depending
on communication links. Notably, this structured constraint
will lead to a complicated geometry of the feasible region
[31, [19]. While the structured K makes the analysis more
difficult than the full feedback case, it does not increase the
complexity of computing the gradient as denoted by Vi

later on. This is because one can represent the cost as a
function of only non-zero entries in K which can eliminate
this structured constraint [3]. Accordingly, the Vi operation
needs no projection onto /C, and can be thought of as the
gradient for an unstructured K. Therefore, gradient-based
methods are ideal for learning a structured policy.

As for the quadratic constraint in (2), one can consider the
mean-variance risk as a special instance, represented by

T—1
1
R(K)= lim =E " (2] Qu: — B[z Qui|hi])* < 6
T—ooT =0
with the system trajectory h; := {zg,uo,...,Tt—1,Ut—1}

and a risk tolerance §. This risk measure limits the deviation
from the expected cost given the past trajectory, and thus can
mitigate extreme scenarios due to the uncertainty in the noisy
dynamics. Interestingly, under a finite fourth-order moment
of noise wy, [6], [7] has developed a tractable reformulation
R.(K), as

T-1
.1 i}
Re(K)=lim —E ;:()j (42 QW Q¢ + 4z] QM3) <6 (4)

with § = § — my + 4u{(WQ)?} and the (weighted) noise
statistics given as

0 = Elwy], 5)

W = E[(w; — @) (w; — @) "], (6)

M3 = E[(w; — @)(w; — 0) " Q(w; — 0], (7
[

my = E[(w; — ) " Q(w, — ) — tr(WQ))>. (8)

With known noise statistics, this risk constraint shares the
quadratic form in (2) with an additional linear term, which
does not affect our proposed gradient-based learning. Note
that we will consider the general quadratic constraints R;(K)
in Section III, which can be applied to the risk-constraint in
(4) with the exact same manner. The ensuing section first
develops the deterministic algorithm for problem (2), which
can provide insights on the model-free extension later on.

III. A PRIMAL GRADIENT DESCENT (GD) APPROACH

To deal with constraints in (2), consider its Lagrangian
function by introducing the multiplier vector A = {\; > 0},

LIK,A) = Ro(K) + 3 ez MilRi(K) — ci]

T—1
. 1
= Th—>n<io TE ;[x:QAxt + u;rRAut] —cn (9

where we define Q) := Q + >,.7 \iQ;, and likewise for
Ry and cy. Clearly, £L(K,\) shares the same structure as
an unconstrained LQR cost which is suitable for first-order
algorithms. For simplicity, consider that the problem (2) is
feasible and thus A is finite [22, Sec. 5.2]. We consider
the bounded set ) := [0, A]l for A\ with a large enough
A € R, which can be set based on a feasible K°. Using the
dual function D(\) := mingex L(K, \), the dual problem
becomes

max D(A) = max min L(K, A).

(10)
AEY A€Y KeK
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As L(K, \) is related to LQR cost, the inner minimization
problem is not convex. Recent works [3], [4], [18] have
extensively analyzed the LQR cost which can be used to
establish the local Lipschitz and smoothness properties of
L(K, \). Specifically, it is possible to find related constants
that hold within a subset G° C K. This compact sublevel
set will be defined later on, but is first introduced here for
bounding the constants as stated below.

Lemma 1 (Lipschitz and smoothness). For any A and K €
GY, the function L(K,)) is locally Lo-Lipschitz within a
radius Vg ; ie., for VK' € G° such that |K — K'|| < vk,
we have ||[L(K,\)— L(K',\)|| < Lo||K — K'||. In addition,
it is also locally fy-smooth within a radius Bk, such that
for VK' € G° that satisfies |K — K'|| < Bk, we have
IVLk(K,N) = VLK V)| < Lol K — K.

Strictly speaking, the recent LQR analysis [4], [18] asserts
that Lipschitz and smoothness are only local properties, and
thus the corresponding constants Ly and ¢k depend on K.
Nonetheless, using a compact set G°, we can obtain the
bounds that can hold for any K € G°, as given by

Ly := 1D

sup Lk, and £y := sup V.
Kego Kego

We can also determine a general neighborhood radius as

po = Kuelgomm{ﬂK,wK} (12)
that holds for any K € G° as well.

Interestingly, the KKT conditions for problem (10) is
related to the stationary point (SP) of a reformulated minimax
problem. Recent results have shown that nonconvex-concave
minimax problems can be solved using the so-termed Gra-
dient Descent with max-oracle (GDmax) algorithm [23]. To
this end, consider the problem

min O(K) where ®(K):= r)\nea;(E(K, A), (13)
which is essentially the minimax counterpart of problem
(10). As the Lagrangian function is linear in J, it is possible
to directly find the best A in (13). Specifically, its i-th
element, namely \;, depends on the feasibility of constraint ¢
under given K i.e., \; equals to O if constraint ¢ is satisfied
and A otherwise. Unfortunately, the function ®(K') is not
differentiable everywhere. To tackle this issue, we consider
its Moreau envelope ®,,(-) for a given p > 0, defined as

L . / i o 2
P, (K):= Ir(rllg}cq)(K )+ 2M”K K|*, VKekK. (14)

It can be used for defining the SP of the non-differentiable
®(K), following from [20, Lemma 3.6].

Lemma 2. For function ®(K) that is £y-weakly convex and
Ly-Lipschitz within the compact set G°, its Moreau envelope
®,,,(K) is convex by setting o := 1/(24y). In addition, the
€-SP of ®(K), namely K., satisfies |V®,,(K.)| <e

The properties of ®(K) in Lemma 2 follow from its
relation to L(K, \), as detailed in [20]. Even though it is non-
differentiable, one can define the SP here based on @, (K)

Algorithm 1: Gradient Descent with max-oracle
(GDmax)

1 Inputs: A feasible policy K°, upper bound A for )\,
threshold ¢, and the initial iteration index 7 = 0.

2 Determine Ly, £y, and po using the set GY and

compute the stepsize as in (15).

3 while ||V L(K7,M)| > € do

4 Obtain M < argmaxycy L(K7, \)

5 | Update K/t + KJ —nVicL(K7,\);

6 Set j«+—j+1.

7 end

8 Return: the final iterate K.

which will be used for the convergence analysis of GD
updates later on. Notably, the e-SP of ®(K) is equivalently
related to the stationarity conditions for £(K, X). According
to [20, Prop. 4.12], one can utilize K. from Lemma 2
to generate the following pair (f(e,;\e) by performing an
additional O(e~2) number of gradient updates:

IV LKA < e
Py (A + (1/6)VAL(E X)) = A

S 6/50

where Py stands for the projection onto ). Clearly, when
e — 0 this represents the Lagrangian optimality conditions
for problem (10), and thus the pair (f(e, ;\6) can be viewed
as the e-SP for L(K, \).

We can solve (13) using iterative GD updates, as tabulated
in Algorithm 1. With an initial K°, we need to find the
subgradient of ®(K7) at every iteration j. Interestingly,
this is equivalent to the gradient of £ over K 7 [20]; ie.,
OP(K7) = Vi L(K?,N) with M being the optimal mul-
tiplier for the given K7. Hence, the Lagrangian £ will be
used to perform the GD updates for ®(K’) minimization. The
convergence of Algorithm 1 can be established below with
the detailed proof in [24, Appendix A].

Theorem 1. With an initial K° € K and by setting stepsize

€2
<min{d ——
n= mln{4€0L%ap0}a
Algorithm 1 is guaranteed to converge to K. for ®(K),
which can be used to obtain an €-SP for the dual problem

(10). The number of iterations required for attaining K. is
O(loL3®,,, (K°) /).

15)

As discussed in [24, Appendix A], we can bound the iter-
ative changes in ®,,(K7), which ensures that the sequence
{®,,(K7)} is non-increasing. Thus, if we define the sublevel
set to be

G% = {K € K[®,,(K) < ®,,(K°)}, (16)

then the iterates { K7} are guaranteed to be within G°. This
is exactly how one can bound the constants Ly and ¢, as
given by (11). Of course, the choice of pg in the sublevel
set Gy depends on £y, which may not be known before G° is
constructed. This issue is discussed in the following remark.
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Algorithm 2: Zero-Order Policy Gradient (ZOPG)
1 Inputs: smoothing radius r, the policy K and its
perturbation U € Sk, both of nx non-zeros.
2 Obtain \' < argmax,cy, L(K 47U, \);
3 Estimate the gradient
VKL(K;U) = "8 L(K +rU,\)U.
4 Return: Vi L(K;U).

Remark 1 (Sublevel set). With initial K° given, the set Ggo
is defined with the value o, which depends on the upper
bound of Lx within G° as shown in (11). This dependence
can be addressed by determining the value of po in an
adaptive fashion. Starting with a rough estimate of ¢y and
Lo, one can first construct a GY and compare the resultant
bound with the original estimate on £y. If the latter is larger,
then GO works well. Otherwise, one can gradually increase
the Ly estimate to achieve that condition. Our experimental
experience suggests some conservative choice of stepsize can
ensure the convergence in practice.

IV. STOCHASTIC GD FOR MODEL-FREE LEARNING

To account for unknown system dynamics, we extend the
GDmax approach to a model-free setting. The iterative gra-
dient will be obtained via the zero-order optimization [21].
Unfortunately, this stochastic gradient update can complicate
the convergence analysis as detailed later, mainly due to the
aforementioned issue on local properties of LQR cost.

Zero-order policy gradient (ZOPG) has been popularly
developed in recent years for model-free gradient-based
learning. It provides an unbiased gradient estimate in an
efficient manner. For the function ®(K), ZOPG aims to
evaluate the function value at any K under a structured,
random perturbation from the set Sx = {U € K : ||U| =
1}, as detailed in Algorithm 2. Note that the structure of
perturbation U is the same as that of K with non-zero
entries randomly sampled from e.g., the uniform distribution,
followed by a normalization step to ensure unity norm. Given
a smoothing radius r > 0, the ZOPG is estimated using the
resultant (K + rU) from this perturbation by finding the
corresponding optimal A in (13). We denote nyx as the total
number of nonzero entries in K, which is used to scale the
gradient estimate. Since the estimated VL follows from
matrix U, it maintains the same sparse structure given by K.

The stochastic ZOPG will make it more difficult to main-
tain the iterative updates to stay within a sublevel set, and
likewise for bounding Lipschitz and smoothness constants.
Fortunately, [4] has developed an approach to attain this
condition with a high probability. Specifically, one can set
up a ten-fold sublevel set, given by

G' = {K € K|®,,(K) <10 &, (K")}. (17)

Using G', one can determine Lo, %, and py over the set
G' similar to (11)-(12), and they will be used for the
convergence analysis. Note that the choice of pg in G!
depends on the ¢, value, which can be addressed as discussed
in Remark 1.

Algorithm 3: Stochastic Gradient Descent with max-
oracle (SGDmax)

1 Inputs: A feasible policy K°, upper bound A for )\,
threshold ¢, and number of ZOPG samples M.
Determine Ly, 4y, and py with the set G and
compute r, 1, and J as in (18);
for j =0,1,...,J—1do
for s=1,...,M do
Sample the random Uy € Sk;
Use Algorithm 2 to return VL (K7;U,).
end

s | Update K/« Ki—g (ﬁ M VLK, Us)).
9 end
Return: the final iterate K.

[S)

S TN NE T R N

—
=

Algorithm 3 tabulates the ZOPG-based model-free learn-
ing approach for solving (10), termed as the Stochastic
Gradient Descent with max-oracle (SGDmax) [23]. Its con-
vergence guarantee can be established with the detailed proof
in [24, Appendix B].

Theorem 2. With an initial K° € K and a given € > 0, we
can set the parameters as
2

L() vV M} < €

to 1= by (L2 + Br2/M)
2v/10a®,,, (K°
and J = 20T ) 5 o(K7)
ne

with Lo, ly and po being specified using G', and a large

constant «. Then, Algorithm 1 converges to the e-SP K.
. e 4 4

with probability at least (0.9 — = — \/M)'

Last, the proposed algorithms can be easily extended to
the case of full feedback K, with computational advantages
over existing solutions as discussed below.

Remark 2 (Full feedback K). For the full feedback case,
we can directly implement the proposed Algorithms 1-3
by dropping the structured set K. This setting has been
considered in [8] by using a dual-ascent based double-
loop scheme where the inner-loop minimizes K till conver-
gence for any fixed \. In contrast, our proposed algorithms
eliminate this inner-loop, which is more computationally
efficient. Investigating the global convergence property of
our proposed SGDmax algorithm for the full feedback case
constitutes as an interesting future direction.

r < min {po,

(18)

V. NUMERICAL TESTS

To demonstrate the effectiveness of the proposed model-
free learning approach, we consider the load frequency
control (LFC) problem in a low-inertia networked microgrid
(MG) system with a risk constraint on the frequency states.
Fig. 1 depicts a radially connected system with N = 6
MGs, while the detailed model parameters are given in [17].
Consider the communication graph to be the same as the
MG network show in Fig. 1. Thus, each MG a can only
exchange information with their neighboring MGs that are
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Fig. 1: A radially connected networked microgrid system.
physically connected by tie-lines, and the structured feedback
K is specified accordingly.

Each MG a is assumed to follow linearized power-
frequency dynamics including turbine swing and primary
control based on the automatic generation control (AGC)
signal. Thus, the following symbols all correspond to the
deviation from steady-state values as denoted by A. First, the
primary frequency control in each MG a is proportional to
frequency deviation as APf, = —(1/R,)Af, based on the
given droop R,. Second, the secondary AGC signal AP,
constitutes as the control action u; in (1) to be designed.
The two controls jointly determine the power output of MG
a as denoted by APg ,. Last, Af, is also affected by the
unknown load demand deviation APy, , and the total power
inflow APy o, in addition to APg .. Note that APy, , is
the total tie-line power inflow from all neighboring MGs due
to their frequency differences, as

APtie,a = / Z Ktie,a(Afa - Afb)dt,
a<>b
where a <> b indicates two MGs are connected to each other.
In addition to the MG dynamics, the Area Control Error
(ACE) defined as zq := B,Afy + APije,q is also a state
variable as an integral control input with the bias factor 5, =
D, +1/R, [25].

Hence, MG a has the state vector z, = [Af,, APg,,
APiic a, f 2,]" and the control action u, = APc,, with
load disturbance w, = APy, ,. Assuming all MGs having
the same parameter values, we can drop the parameter index
a and represent the aggregated network dynamics by:

t=UN®@A1+L®A)r+ (In @ By)u+ (In @ By)w

with each variable collecting all MGs’ respective state,
action, and disturbance while the system matrices Ay, Ao, By,
and B,, are given in [24]. For the aggregated dynamics, the
LQR objective cost is specified by

Q:INL®QCL7 andR:INL ® R,

where the matrices ), and R, are same for every MG a and
aim to penalize the deviation of both state and action from
steady-state values. As discussed in Section II, we further
consider a risk constraint R.(-) in (4) for reducing the mean-
variance risk in order to improve frequency regulation.

We consider the following three cases to demonstrate the
impact of structured K along with the risk constraint:

o Case 1): Structured K with risk constraint

e Case 2): Full K with risk constraint

o Case 3): Full K without risk constraint
For cases 1 and 2, we implemented Algorithm 3 using
SGDmax while a simple ZOPG-based algorithm [4] was

19)
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Fig. 2: Comparison of LQR objective trajectories for the
three cases.

used for case 3. For all algorithms, we set a = 10* with
a smoothing radius » = 1 and M = 100 samples for
ZOPG, which makes the probability of convergence to be
at least 0.887 and the stepsize < 1.24 x 10~* as given
in Theorem 2. We picked the stepsize of n = 107%. All
three cases have shown to converge to a steady-state with
sufficient updates, as shown by Fig. 2. Case 1 demonstrates
the highest steady-state LQR cost out of the three, as it has
the most restrictive conditions. However, the minimum LQR
cost by case 1 is still pretty close to that by case 3, implying
some good optimality gap. Notably, case 1 has shown some
large fluctuations along the learning process, indicating a
complicated geometry that the problem may have. This issue
has affected its convergence speed. Interestingly, all three
cases converge at the similar number of iterations.

We also test the converged policy by each case by gen-
erating a scenario that all six MGs have some random load
changes in a 20-second window. Each area experiences a
step load change at a random time. Fig. 3 compares the
frequency deviation and the total power inflow for MG 2.
Clearly, Fig. 3(a) demonstrates that the risk constraint can
effectively reduce the frequency deviation, as case 2 has the
smallest deviation among all three. With the risk constraint,
case 1 tends to exhibit great frequency performance as
well, but also shows some small oscillations possibly due to
the structured feedback policy. This observation points out
that limited information exchange can potentially affect the
control performance. Similar patterns have been observed in
Fig. 3(b). While case 1 can maintain the tie-line inflow at the
same level as case 2, it still has more noticeable oscillations.
As the power inflow is proportional to frequency difference,
reducing the risk of frequency deviation can enhance the
performance in maintaining the level of power inflow.

To sum up, our numerical tests have validated the conver-
gence performance of the proposed SGDmax based policy
gradient method for risk-constrained LQR problem with
structured policy. The effectiveness of risk constraint in
mitigating large state deviation have been verified, while
the sparse structure of K has shown to save communication
overhead at the cost of transient oscillations.
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Fig. 3: Comparison of the (a) frequency deviation and (b)
total power inflow at MG 2 for the three cases.

VI. CONCLUSIONS

The paper developed a model-free learning framework for
risk-constrained LQR problem under structured feedback in
a networked setting. By dualizing the risk constraint, we
consider the minimax reformulation of the dual problem and
leverage the stochastic (S)GDmax algorithms to approach the
stationary points (SPs). Specifically, the SGDmax algorithm
relies on the ZOPG-based updates, making it suitable for
model-free learning. Using the recent results on the local
Lipschitz and smoothness of LQR cost, convergence of the
(S)GDmax algorithms can be established by properly bound-
ing the related constants for choosing the stepsize. Notably,
for SGDmax the convergence can only be shown with a high
probability, due to the additional noise in the gradient esti-
mate. Numerical tests on a networked microgrid system have
validated the convergence of our proposed algorithms while
demonstrating the impact of risk and structured constraints
for the LQR problem. Exciting future research directions
open up on investigating the landscape for the converged SP
in the structured feedback case and establishing the global
convergence for the full feedback case.
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