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Abstract

Historically, emerging and reemerging infectious diseases have caused large, deadly, and
expensive multinational outbreaks. Often outbreak investigations aim to identify who infected
whom by reconstructing the outbreak transmission tree, which visualizes transmission
between individuals as a network with nodes representing individuals and branches repre-
senting transmission from person to person. We compiled a database, called OutbreakTrees,
of 382 published, standardized transmission trees consisting of 16 directly transmitted dis-
eases ranging in size from 2 to 286 cases. For each tree and disease, we calculated several
key statistics, such as tree size, average number of secondary infections, the dispersion
parameter, and the proportion of cases considered superspreaders, and examined how
these statistics varied over the course of each outbreak and under different assumptions
about the completeness of outbreak investigations. We demonstrated the potential utility of
the database through 2 short analyses addressing questions about superspreader epidemiol-
ogy for a variety of diseases, including Coronavirus Disease 2019 (COVID-19). First, we
found that our transmission trees were consistent with theory predicting that intermediate dis-
persion parameters give rise to the highest proportion of cases causing superspreading
events. Additionally, we investigated patterns in how superspreaders are infected. Across
trees with more than 1 superspreader, we found preliminary support for the theory that super-
spreaders generate other superspreaders. In sum, our findings put the role of superspread-
ing in COVID-19 transmission in perspective with that of other diseases and suggest an
approach to further research regarding the generation of superspreaders. These data have
been made openly available to encourage reuse and further scientific inquiry.

Introduction

In the past 20 years, emerging and reemerging infectious diseases have caused large, deadly,
and expensive multinational outbreaks of SARS-CoV (Severe Acute Respiratory Syndrome
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(SARS)), Zika, Ebola, measles, and SARS-CoV-2 (Coronavirus Disease 2019 (COVID-19)).
During outbreaks, public health officials conduct routine investigations to identify who
infected whom and reconstruct the transmission tree. Transmission trees visualize transmis-
sion between cases as directed networks with nodes representing individuals and edges repre-
senting transmission from person to person. Transmission trees are typically reassembled by
case-finding, contact-tracing, and detailed epidemiological interviews, followed sometimes by
genome sequencing and/or probabilistic reconstruction, where the probability that one case
infected another is calculated for each pair of cases [1,2]. These investigations are costly but
valuable because transmission trees are information rich, including details about the settings
of transmission and variation in number of secondary infections.

When published, transmission trees are shown and described in a variety of formats that
makes them difficult to compare across outbreaks, let alone pathogens. Some are presented
graphically using a number of different symbols and colors, or are buried in the text, making
connections hard to piece together. The primary goal of this project was to create a standard-
ized database of transmission trees that is easily accessible and analyzable. We hope that the
OutbreakTrees database allows scientists and public health officials to take further advantage
of outbreak investigations and their findings.

One phenomenon that is apparent in transmission trees is superspreading, which is impor-
tant to the propagation patterns of several infectious diseases [3]. Lloyd-Smith and colleagues
[3] quantitatively defined superspreaders as cases that cause more secondary infections than
the 99th percentile of a Poisson(R,) distribution, where Ry is the basic reproductive number,
or average number of secondary infections per case. Lloyd-Smith and colleagues [3] also con-
ceptualized the offspring distribution (i.e., the number of infections caused by each infected
individual) as a negative binomial distribution with dispersion parameter k and mean R. Large
values of k denote little variation in number of secondary infections caused by each case, while
small values of k (k<1) correspond to high heterogeneity in the offspring distribution. It was
hypothesized that intermediate dispersion parameters between 0.1 and 1, depending on R,
would give rise to the highest proportion of cases causing superspreading events [3].

Lloyd-Smith and colleagues’ theory on superspreading assumes stability of R and k over the
course of an outbreak. In reality, most outbreaks are subject to control measures. These control
measures, as well as changes in behavior, can reduce disease transmission and disperse the oft-
spring distribution, thus leading to shifts in R and k from their pre-control values, as explored
by [3]. Given information on the timing of control measures, parameter values can be com-
pared before and after controls were imposed. In the absence of this information, we propose
that a comparison of parameter values in the first versus second half of a transmission tree
indicates the effect of control measures and behavior changes on a given transmission tree.

While previous work has characterized the biological and social factors that give rise to
superspreading events [4], how superspreaders are generated (i.e., who spreads to supersprea-
ders) is poorly understood. In 2020, Beldomenico [5] suggested that the generation of super-
spreaders may be linked to biological patterns in initial viral dosage: If individuals with
unusually high viral shedding cause those they infect to also have high viral shedding, then
cases infected by superspreaders may be disproportionately likely to be superspreaders them-
selves. Another possibility is that superspreaders may be more likely to engage in riskier behav-
ior (such as attending large gatherings or not taking precautionary measures) making them
more likely to infect others with similar behavior. This behavioral heterogeneity may be a
larger contributor to superspreader generation than biological heterogeneity [6]. We investi-
gate this issue using transmission tree data, hypothesizing that superspreaders will be more
likely to be infected by other superspreaders than non-superspreading cases.
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Methods
Data

Transmission trees were collected by searching Google Scholar, Scopus, PubMed, and Google
Images for published literature containing graphs of transmission trees or written accounts of
transmission events. We used the following terms to find papers containing transmission tree
information: “transmission AND (tree OR network OR chain) AND (outbreak OR disease),”
“outbreak investigation,” “contact tracing,” “case report,” and “transmission tree outbreak
reconstruction.” We also used the bibliographies of other papers (e.g., [3]) to find more refer-

» «

ences. With the emergence of COVID-19, we expanded our search for transmission trees to
include news articles and preprints (e.g., medRxiv.org). For COVID-19, many of the trees
were identified with an online database [7]. If trees could not be collected from a public source
or if trees did not identify single infectors for each infectee, we contacted the authors of identi-
fied documents for further clarification or additional information. We also compiled readily
available node attributes reported in the tree source. Attributes available for each tree varied
but included age, sex, context of transmission, date of symptom onset, occupation, quarantine
status, survival status, location, hospital, ward of hospital or care facility, symptomatic status,
duration of exposure to infected individual, whether the edge was probabilistically recon-
structed, relationship between individuals, serial interval, immunization status, source of edge
(if tree was constructed from 2 sources), and strain or genomic sequence. Articles in languages
other than English were translated using Google Translate software.

Examples of trees contained in our published database OutbreakTrees are shown in Fig 1.

Inclusion criteria

For consistency, we required that trees meet the following criteria for inclusion in the
database:

o Trees must have contained 2 or more individuals; case studies of isolated infected individuals
were excluded.

o Trees must represent outbreaks of directly transmitted infectious diseases in humans; trees
describing sexually transmitted, foodborne, vector-borne, or waterborne diseases, as well as
diseases in nonhumans (e.g., outbreaks among farm animals [11,12]) were excluded.

o Trees were constructed through epidemiological or probabilistic methods; trees constructed
using only genomic or phylogenetic methods were excluded.

Trees had to report a single infector per infectee (i.e., trees that had multiple possible infec-
tors for any case were excluded). However, if tree topology was unaffected by randomly
assigning ambiguous infectors, we included the tree and omitted specific attribute data for
the assigned infector.

Trees were presented as completed investigations in the publication; we excluded trees pre-
sented as under ongoing investigation at the time of reporting.

Data entry

Trees were manually encoded as data.tree [13] objects using relevant information from each
source and converted to igraph [14] objects for manipulation and accession. Any assumptions
made in entering the tree are listed with the tree in the database (e.g., if an infector is assumed
due to nodes obscuring branches or a case of an ambiguous infector assignment). All scripts to
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Fig 1. We compiled infectious disease transmission trees from the literature along with reported attribute information. Shown here are example trees in the
database. (A) Ebola spread in different contexts [8]. (B) Measles spread in different locations [9]. (C) COVID-19 spread among age classes [10]. Primary sources for
transmission trees are available in OutbreakTrees and listed in the Supporting information. OutbreakTrees may be accessed online at http://outbreaktrees.ecology.uga.
edu. COVID-19, Coronavirus Disease 2019.

https://doi.org/10.1371/journal.pbio.3001685.g001

compile trees and analyze data are available at http://github.com/DrakeLab/taube-
transmission-trees, and tree sources are listed in S1 File. The database is available online at
http://outbreaktrees.ecology.uga.edu.

Data analysis

We demonstrated how OutbreakTrees can be used to address questions about the time depen-
dence of epidemiological parameters and the role of superspreading in infectious disease trans-
mission through 3 different analyses using trees with 20 or more cases and 2 or more
generations of spread. We calculated key statistics under 2 contrasting assumptions about out-
break investigation completeness, explained in the Sensitivity analyses section below.

Parameter time dependence. Shifts in human behavior or disease control efforts can
cause changes in key epidemiological parameters as outbreaks progress [3]. While infor-
mation on intervention timing was not readily available, we explored how R, k, and the
proportion of cases causing superspreading events varied over time by comparing these
values in the first versus second halves of each tree. Excluding the last generation of the
tree (composed solely of terminal nodes), we divided each tree into first and second halves
by generation. Middle generation nodes were randomly assigned to either the first or sec-
ond half of the tree. We repeated this process 10 times to account for random variation in
the assignment of middle generation nodes and took the mean parameter values over the
10 repetitions. Differences were tested for significance using the Wilcoxon rank test. If
population control efforts or human behavior changed transmission dynamics partway
through the tree, we expected to see decreases in R, k, and the proportion of cases causing
superspreading events between the first and second halves of a tree [3].
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Superspreading events across diseases. To evaluate how common superspreading is
among different diseases, we focused on 2 tree statistics: (1) the proportion of cases caus-
ing superspreading events and (2) the dispersion parameter, k. The proportion of cases
causing superspreading events was calculated by dividing the number of superspreaders
in a tree by the total number of nodes in the tree, where the number of superspreaders was
estimated using the Lloyd-Smith and colleagues [3] definition. The dispersion parameter
was calculated using maximum likelihood estimation with the fitdistr function from the
mass package in R [15] assuming secondary infections followed a negative binomial distri-
bution. Small dispersion parameters indicate more heterogeneous offspring distributions
with fewer individuals accounting for the majority of transmission compared with large
dispersion parameters. We performed sensitivity analyses for cutoffs of trees with 10 and
30 or more cases.

Generation of superspreaders. Next, we investigated patterns in the individuals who
infected superspreaders. We calculated the ratio of observed to expected superspreader-
superspreader dyads. Superspreader-superspreader dyads occur when 1 superspreader
infects another. To determine the expected number of dyads per tree, we calculated the
probability that a given edge connects 2 superspreaders. Denoting the number of super-
spreaders by s, number of terminal nodes (nodes that do not cause onward transmission)
by ¢, and tree size by S, the probability that a node at 1 end of the edge is a superspreader is

3 or p1. Conditional on this first node being a superspreader, the probability that the
Sev
bility of an edge with superspreaders at either end (a dyad) is p;-p,. Given that there are S-

t-1 edges leading to nonterminal nodes in a tree, the expected number of dyads is

S—t—=1)-p,-py= % which simplifies to % Thus, we expect to see “= super-

node on the other end of the edge is a superspreader is or p,. Then, the joint proba-

spreader-superspreader dyads per tree. If generation of superspreaders is not random but
tied to characteristics of the infector, we would expect to see large ratios of observed to
expected superspreader-superspreader dyads.

Sensitivity analyses for tree completeness. We made the assumption that trees in the
database depicted complete epidemics, e.g., that all transmission events were documented and
that terminal nodes did not transmit disease, yet we know that not all trees in the database are
complete (see Limitations section). Recognizing that this is an extreme assumption, we con-
ducted sensitivity analyses of the opposite extreme: Assuming all trees were incomplete, i.e.,
terminal nodes did transmit disease but these transmission events went unreported. In reality,
the database is composed of both types of trees, complete and incomplete, as well as trees
somewhere in between (e.g., last generation terminal nodes are not reliable but terminal nodes
in earlier generations may be reliable), though we cannot identify which trees fall into which
categories. Assuming that trees were complete, we calculated R, k, and the superspreading cut-
off over all nodes in the tree, whereas under the assumption of incompleteness, we calculated
R, k, and the superspreading cutoff by excluding the out-degree (zero) of all terminal nodes in
any generation from the offspring distribution. We expect that R and k estimates will be higher
and proportion of cases causing superspreading events estimates lower when we calculate
these parameters over only nonterminal nodes than when calculated over all nodes in a tree.
Results from our repeated analyses under this alternative set of assumptions can be found in
the Supporting information (S1-53, S6 and S7 Figs).
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Results and discussion
Database summary statistics

Currently, OutbreakTrees includes 382 trees describing 16 directly transmitted infectious dis-
eases (see Fig 1 for examples), most of which are caused by viruses (Fig 2). COVID-19 trees
comprise 256, or approximately 67%, of the trees in the database. Trees range in size from 2 to
286 individuals; half are composed of 3 cases or fewer. This database contains data for out-
breaks that took place in the years 1946 through 2020. The most common node attributes for
trees include context of transmission (work, school, family, etc.), date of symptom onset, sex,
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Fig 2. Characteristics of transmission trees in OutbreakTrees. (A) Tree size varies from 2 to 286 with a median of 3 and most trees represent outbreaks taking
place in the past 20 years (only trees with 10 or more cases shown in date plot due to large number of small COVID-19 trees from 2020). (B) The largest trees are
from HIN1 and SARS outbreaks, while the highest proportion of trees in the database are from outbreaks of COVID-19, followed by adenovirus and Ebola. Tree
size axes in both plots are shown on a log;, scale to better illustrate variation in medium-sized trees. All trees are used in this analysis. The data to reproduce this
figure can be found at https://doi.org/10.5061/dryad.nk98sf7w7. COVID-19, Coronavirus Disease 2019; MERS, Middle East Respiratory Syndrome; SARS, Severe
Acute Respiratory Syndrome.

https://doi.org/10.1371/journal.pbio.3001685.9002
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Table 1. List of most common attributes for individuals in trees.

Attribute Database code Number of trees
Transmission context cont 301

Symptom onset onset 137

Sex sex 86

Age age 69

Location loc 56

Quarantine status quar 36

Occupation occp 34

Survival surv 20

https://doi.org/10.1371/journal.pbio.3001685.t001

and age (Table 1). Due to imperfect investigation or recall, specific attributes are not available
for every node in every individual tree (S1 Table).

Analyses

For the following analyses, we use a subset of trees in the database to ensure sufficient sample
size for statistical analysis [16]. Specifically, estimates of R, the dispersion parameter k, the
threshold number of secondary infections to be considered a superspreader, and the propor-
tion of cases causing superspreading events for each tree are limited to trees with 20 or more
cases and at least 2 generations of spread. There were 39 trees in our database that fit these cri-
teria. The differences in R and k values depending on our assumptions of tree completeness
are shown in S1 and S2 Figs. Note that when we calculate R assuming all cases are reported
and the infection has died out, then R is necessarily <1 (S1 Fig). Applying the Lloyd-Smith
and colleagues [3] definition of superspreading with R~1, the superspreading threshold is
always more than 4 secondary infections. When we instead assume that a transmission tree is
incomplete (i.e., not all cases are reported) and exclude terminal nontransmitting nodes from
our calculation of R, we observe higher R values, and consequently higher superspreading cut-
offs that show greater variation across diseases (S1 Fig).

Parameter time dependence. We found a significant decrease in R (p<0.0001, Wilcoxon
rank test) and the proportion of cases causing superspreading events (p<0.01, Wilcoxon rank
test) between the first and second halves of transmission trees with 20 or more nodes and 2 or
more generations of spread assuming tree completeness (Fig 3A and 3C). The dispersion
parameter did not change significantly between the first and second halves of these transmis-
sion trees (Fig 3B, Wilcoxon rank test). While all but 3 trees had R>1 in the first half of the
tree, all trees had R<1 in the second half of the tree (Fig 3D). Under the assumption of incom-
plete trees, all 3 parameters changed significantly between the first and second halves of the
trees (S3 Fig); R decreased (p<0.0001, Wilcoxon rank test), k increased (p<0.01, Wilcoxon
rank test), and the proportion of cases causing superspreading events decreased (p<0.001,
Wilcoxon rank test). The observed decreases in R may be the result of control measures or
behavior changes in the affected populations, or could be caused by reporting biases where
case follow-up is more robust in earlier generations. Similarly, the decreases in proportion of
cases causing superspreading events could be due to control measures, but also superspreaders
may be more likely to be identified in earlier generations if superspreading events spur out-
break investigations which may only trace transmission so far back in time. The increase in k
under an assumption of tree incompleteness contradicts our expectation but may be due to the
truncation of the offspring distribution to a minimum of 1 secondary infection when terminal
nodes are dropped from our calculations. This truncation may disproportionately affect the
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Fig 3. The time dependence of R, k, and the proportion of cases causing superspreading events. (A) R decreased significantly between the first and second halves
of transmission trees. (B) k did not differ significantly between the first and second halves of transmission trees. Y-axis is on a log;, scale for visual aid. (C) The
proportion of cases causing superspreading events decreased significantly between the first and second halves of transmission trees. (D) Decrease in R shown for
each tree by disease. R was below 1 in the second half of all trees; red line denotes R = 1. The Wilcoxon rank test was used for all significance tests (*: p<0.05, **:
p<0.01, ***: p<0.001, ****: p<0.0001), and results are shown in red stars. Trees were assumed to be complete and only trees with 20 or more cases and at least 2
generations of spread were used in these analyses. Results assuming tree incompleteness are shown in S3 Fig. The data to reproduce this figure can be found at
https://doi.org/10.5061/dryad.nk98sf7w7. COVID-19, Coronavirus Disease 2019; MERS, Middle East Respiratory Syndrome; SARS, Severe Acute Respiratory
Syndrome.

https://doi.org/10.1371/journal.pbio.3001685.9003
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assuming tree incompleteness are shown in S6 Fig. The data to reproduce this figure can be found at https://doi.org/10.5061/dryad.nk98sf7w7. COVID-19,

Coronavirus Disease 2019; MERS, Middle East Respiratory Syndrome; SARS, Severe Acute Respiratory Syndrome.
https://doi.org/10.1371/journal.pbio.3001685.9004

second half of a tree with many terminal nodes, decreasing the heterogeneity in the number of
secondary infections, and increasing k. This analysis informs the following 2 analyses by indi-
cating how frequently our trees may be capturing disease spread after interventions are

imposed or behavior changes take place.

Superspreading characteristics across diseases. Consistent with theory proposed by [3],
intermediate dispersion parameters gave rise to the highest proportion of cases causing super-
spreading events (Fig 4A). COVID-19 trees had a median dispersion parameter (k = 0.14) (Fig
4B) between that of SARS (0.06) and Middle East Respiratory Syndrome (MERS) (0.24). Six
diseases had overdispersed offspring distributions (median k<1): measles, SARS, COVID-19,
Ebola, MERS, and influenza. Norovirus was the only disease with median k>1. Dispersion
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Disease

COVID-19
Ebola
Influenza
Measles
MERS
Plague
SARS
Smallpox
More dyads Tuberculosis

than expected
67%

Tree

Fewer dyads
than expected
28%

T
0 2 4 6 8 10
Ratio of Observed to Expected Superspreader—Superspreader Dyads
Fig 5. In two-thirds of transmission trees, superspreaders infect superspreaders more often than would be expected by chance. The expected number of
superspreader-superspreader dyads was calculated by “;%tl) for each tree, where s is the number of superspreaders in the tree, ¢ is the number of terminal nodes (nodes
that do not cause onward transmission), and S is tree size. Ratios larger than 1 indicate more superspreader-superspreader dyads were observed than would be
expected by chance. This analysis was limited to trees with more than 1 superspreader, 20 or more cases, and 2 or more generations of spread. We assumed tree

completeness here, but results assuming incompleteness are shown in S7 Fig. The data to reproduce this figure can be found at https://doi.org/10.5061/dryad.
nk98sf7w7. COVID-19, Coronavirus Disease 2019; MERS, Middle East Respiratory Syndrome; SARS, Severe Acute Respiratory Syndrome.

https://doi.org/10.1371/journal.pbio.3001685.9005

parameter estimates calculated over all nodes tend to be lower than (or at the lower end) of val-
ues/ranges in the literature, while estimates calculated excluding all terminal nodes (shown in
S6 Fig) tend to be higher than (or at the higher end) of values/ranges in the literature [3,17-
31]. Given that our assumptions about tree completeness lie at opposite extremes, we expect
the true outbreak dispersion parameters to fall between these extremes, which aligns well with
the literature. The most notable exceptions are influenza, which is not typically associated with
superspreading (though our median dispersion parameter estimate was less than 1), and noro-
virus, for which we could not find a previously published dispersion estimate. As observed
with some of the large standard errors of k, and covered extensively in [16], these estimates are
imprecise, especially when based on smaller trees. However, we observe little change in median
dispersion parameter estimates or the relationship between dispersion parameter and propor-
tion of cases causing superspreading events when we restrict the analysis to trees with at least 2
generations of spread and 10 or more cases (S4 Fig) or 30 or more cases (S5 Fig). Lack of fol-
low-up in outbreak investigations may result in underreporting of onward transmission,
affecting tree offspring distributions, and consequently, estimates of k.

Generation of superspreaders. The ratio of observed to expected superspreader-super-
spreader dyads, calculated by enumerating superspreader-superspreader pairs divided by all
possible nonterminal infector-infectee pairs, was greater than 1 for 12 of 18 trees, indicating
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that superspreaders infected other superspreaders more than would be expected by chance in
two-thirds of eligible trees (Fig 5). Notably, both COVID-19 trees under consideration had
large ratios of observed to expected superspreader-superspreader dyads. (Recall that we expect
% dyads in a tree of size S with s superspreaders and t terminal nodes.) Despite most trees in
our sample being small—29 of 39 trees have less than 50 cases—our observation of a large
number of dyads suggests that this transmission pattern must be common. If we instead
assume tree incompleteness, only 4 trees have enough superspreaders to compare ratios of
observed to expected dyads (S7 Fig). Though additional information regarding the contexts in
which superspreaders are infected would be required to understand these patterns, these
results suggest some nonrandomness in generation of superspreaders providing preliminary

support for our hypothesis that superspreaders infect other superspreaders.

Limitations of OQutbreakTrees

While OutbreakTrees has allowed us to investigate questions about the nature of superspreading,
the database has several limitations. First, trees in the database do not constitute a random nor
necessarily representative sample of directly transmitted infectious disease outbreaks. For exam-
ple, we omitted nearly 100 reported transmission events and trees due to lack of single infector
identification, which limits the generalizability of our findings. Furthermore, as shown by Lloyd-
Smith and colleagues [3], diseases with larger variation in offspring distributions have a greater
chance of extinction. Early superspreading events may prevent extinction by increasing the size
from which the outbreak grows and making infection propagation more likely [32]. The probabil-
ity of detecting an outbreak may also be higher if there is a superspreading event because public
health officials are more likely to investigate a cluster than an isolated case. Thus, the trees repre-
sented in our database are prone to both selection bias, in which outbreaks are noticed, and publi-
cation bias, in which outbreaks are published in an accessible format.

Second, although trees are meant to be complete representations of clusters (see Inclusion crite-
ria), they are typically a subset from a larger chain of transmission events. For example, Ebola was
likely only introduced once in the 2014 outbreak in West Africa, yet we have several separate trees
because the transmission events could not all be connected. Moreover, outbreak investigations
may miss cases, sometimes in random or consistent ways. For example, secondary cases with
ambiguous infectors may be more readily attributed to superspreaders than their actual infectors,
making it look like superspreaders accounted for more cases than they actually did. Or, as an out-
break continues, later cases may not be investigated in the same depth as earlier generations,
underrepresenting the number of secondary infections produced by cases in later generations.

Third, control measures or behavior changes can alter parameters of disease spread in the
middle of an outbreak. Due to limited available data, we have not included the timing of these
events in the database, but they have the potential to affect every outbreak. For example, inter-
ventions may reduce the number and disperse the distribution of secondary infections caused
by each individual. The scope of the database also does not include details about how each tree
was constructed for publication. Reconstruction methods may be biased in different ways;
methods focused on symptomatic cases may miss asymptomatic cases and transmission
events. We were mindful of these biases and sought to examine how several key parameters
change over the generations in our trees. These limitations should be kept in mind by others
using the database for different purposes.

Usage notes

We have constructed the database so that other research groups may take advantage of this
new resource, but we acknowledge that care and understanding of the limitations are required
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for responsible analyses. Thus, we provide these recommendations for future users to encour-
age appropriate use and generalizable conclusions. We opted to include small trees in the data-
base for the sake of completeness and to allow for the possibility of minor outbreak analysis in
the future (e.g., [33]), but suggest that these smaller trees be excluded if users are seeking to cal-
culate epidemiological quantities (as we did with a size cutoff of 20 individuals in our analyses).
We also urge caution in viewing trees as absolute or complete. Several trees in the database are
the result of probabilistic reconstruction, and so may represent only one possible way in which
transmission may have occurred. Lack of ongoing transmission at the terminal nodes of a tree
may be real but also could be due to lack of follow-up or investigation. While conclusions
drawn from the database may be biased, they are no more biased than the original inferences
drawn from the individual trees which compose the database. With these suggestions in mind,
we hope that OutbreakTrees can be used to properly address new questions in the future.

Conclusions

In summary, we developed OutbreakTrees, an open-access database of infectious disease
transmission trees, for research and public health officials. We illustrated how this database
can be used to explore questions surrounding superspreader epidemiology, and we calculated
a few important parameters for COVID-19 and examined their time dependence. In particu-
lar, we estimated the dispersion parameter from transmission trees and the value for COVID-
19 was in between that of SARS and MERS. Additionally, our analysis provided tentative sup-
port for the theory that superspreaders generate other superspreaders. The development and
release of OutbreakTrees highlights the benefits of data sharing and offers a new resource for
epidemiologic research.

Supporting information

S1 File. Sources for transmission trees in OutbreakTrees which were used for this analysis.
(PDF)

S1 Fig. R values for each disease varied depending on calculation method. R values tended
to be highest when calculated over nonterminal nodes and lowest when calculated over all
nodes, with estimates based on early generation nodes (root and first generation nodes) falling
somewhere in between. Nonterminal node estimates tended to be at the high end of literature
values and early generation estimates at the low end, with estimates calculated over all nodes
typically far below literature values [20,29,34-44], except for MERS and SARS which had low
literature R estimates [3,21,30,45]. Analysis was limited to trees with 20 or more cases and at
least 2 generations of spread and diseases with at least 3 trees that meet these criteria. The data
to reproduce this figure can be found at https://doi.org/10.5061/dryad.nk98st7w7. COVID-19,
Coronavirus Disease 2019; MERS, Middle East Respiratory Syndrome; SARS, Severe Acute
Respiratory Syndrome.

(PDF)

S2 Fig. Dispersion parameters were consistently higher when calculated over only nonter-
minal nodes versus all nodes in a tree. Dispersion parameter calculated over all nodes is on
x-axis on log10 scale; dispersion parameter calculated over all nonterminal nodes is on y-axis
on log10 scale. Dashed red line is y = x. Analysis was limited to trees with 20 or more cases and
at least 2 generations of spread. The data to reproduce this figure can be found at https://doi.
org/10.5061/dryad.nk98sf7w7. COVID-19, Coronavirus Disease 2019; MERS, Middle East
Respiratory Syndrome; SARS, Severe Acute Respiratory Syndrome.

(PDF)
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S3 Fig. The time dependence of R, k, and the proportion of cases causing superspreading
events assuming trees are incomplete. (A) R decreased significantly between the first and sec-
ond halves of transmission trees. (B) k increased significantly between the first and second
halves of transmission trees. Seven of 39 trees had nonoptimizable degree distributions for the
second half of the tree in each of 10 repetitions; these trees are excluded from this analysis and
the boxplot. Y-axis is on a log;, scale for visual aid. (C) The proportion of cases causing super-
spreading events decreased significantly between the first and second halves of transmission
trees. (D) While, on average, R decreased between first and second halves of trees, some trees
had higher values of R in the second half of the tree than the first. Red line denotes R = 1. The
Wilcoxon rank test was used for all significance tests (*: p<0.05, **: p<0.01, ***: p<0.001, ****:
p<0.0001) and results are shown in red stars. Only trees with 20 or more cases and at least 2
generations of spread were used in these analyses. The data to reproduce this figure can be
found at https://doi.org/10.5061/dryad.nk98sf7w7. COVID-19, Coronavirus Disease 2019;
MERS, Middle East Respiratory Syndrome; SARS, Severe Acute Respiratory Syndrome.

(PDF)

S4 Fig. Proportion of cases causing superspreading events and dispersion parameter esti-
mates do not differ considerably with cutoff of 10 or more cases. (A) The highest proportion
of cases causing superspreading events is observed at intermediate dispersion parameters, as
predicted by theory [3]. (B) Dispersion parameter (k) of a negative binomial distribution fit to
the offspring distribution of trees by disease (for diseases with at least 3 trees). Lower disper-
sion parameters are indicative of greater variation in number of secondary infections. Vertical
line and value printed in each facet shows the median k and standard error for each disease.
X-axes are on a log; scale in both plots for visual aid. Only trees with 10 or more cases and at
least 2 generations of spread were used in these analyses, and trees were assumed to be com-
plete. The data to reproduce this figure can be found at https://doi.org/10.5061/dryad.
nk98sf7w7. COVID-19, Coronavirus Disease 2019; MERS, Middle East Respiratory Syndrome;
SARS, Severe Acute Respiratory Syndrome.

(PDF)

S5 Fig. Proportion of cases causing superspreading events and dispersion parameter esti-
mates do not differ considerably with cutoff of 30 or more cases, though fewer diseases are
eligible for median dispersion parameter analysis. (A) The highest proportion of cases caus-
ing superspreading events is observed at intermediate dispersion parameters, as predicted by
theory [3]. (B) Dispersion parameter (k) of a negative binomial distribution fit to the offspring
distribution of trees by disease (for diseases with at least 3 trees). Lower dispersion parameters
are indicative of greater variation in number of secondary infections. Vertical line and value
printed in each facet shows the median k and standard error for each disease. X-axes are on a
logyo scale in both plots for visual aid. Only trees with 30 or more cases and at least 2 genera-
tions of spread were used in these analyses, and trees were assumed to be complete. The data
to reproduce this figure can be found at https://doi.org/10.5061/dryad.nk98sf7w7. COVID-19,
Coronavirus Disease 2019; MERS, Middle East Respiratory Syndrome; SARS, Severe Acute
Respiratory Syndrome.

(PDF)

S6 Fig. Peak proportion of cases causing superspreading events is observed at a higher dis-
persion parameter (~1), and dispersion parameter estimates are an order of magnitude
higher when terminal nodes are excluded from dispersion parameter and R calculations
than when terminal nodes are included. (A) The highest proportion of cases causing super-
spreading events is observed at intermediate dispersion parameters near 1, as opposed to the
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range of 0.2 to 0.6, as predicted by theory for higher values of R [3]. (B) Dispersion parameter
(k) of a negative binomial distribution fit to the offspring distribution of trees by disease (for
diseases with at least 3 trees). Lower dispersion parameters are indicative of greater variation
in number of secondary infections. SARS now has the lowest median dispersion parameter of
0.87, mildly overdispersed. MERS, Ebola, and influenza would no longer be considered over-
dispersed. Vertical line and value printed in each facet shows the median k and standard error
for each disease. X-axes are on a log; scale in both plots for visual aid. Only trees with 20 or
more cases and at least 2 generations of spread were used in these analyses. Terminal nodes
were excluded from offspring distributions, i.e., trees were assumed to be incomplete. The data
to reproduce this figure can be found at https://doi.org/10.5061/dryad.nk98sf7w7. COVID-19,
Coronavirus Disease 2019; MERS, Middle East Respiratory Syndrome; SARS, Severe Acute
Respiratory Syndrome.

(PDF)

S7 Fig. There are too few trees with 2 or more superspreaders to examine superspreader
dyads when R is calculated excluding terminal nodes. The expected number of supersprea-
der-superspreader dyads was calculated by % for each tree, where s is the number of super-
spreaders in the tree, t is the number of terminal nodes, and S is tree size. Ratios larger than 1
indicate more superspreader-superspreader dyads observed than would be expected by
chance. This analysis was limited to trees with more than 1 superspreader, 20 or more cases,
and 2 or more generations of spread. The data to reproduce this figure can be found at https://
doi.org/10.5061/dryad.nk98st7w7. MERS, Middle East Respiratory Syndrome; SARS, Severe
Acute Respiratory Syndrome.

(PDF)

S$1 Table. The mean proportion of nodes with complete attribute information when that
attribute was listed as available for a given tree. Analysis was limited to 5 most common
attributes in the database and trees with 20 or more cases and 2 or more generations of spread.
(PDF)
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