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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Historically, emerging and reemerging infectious diseases have caused large, deadly, and

expensive multinational outbreaks. Often outbreak investigations aim to identify who infected

whom by reconstructing the outbreak transmission tree, which visualizes transmission

between individuals as a network with nodes representing individuals and branches repre-

senting transmission from person to person. We compiled a database, called OutbreakTrees,

of 382 published, standardized transmission trees consisting of 16 directly transmitted dis-

eases ranging in size from 2 to 286 cases. For each tree and disease, we calculated several

key statistics, such as tree size, average number of secondary infections, the dispersion

parameter, and the proportion of cases considered superspreaders, and examined how

these statistics varied over the course of each outbreak and under different assumptions

about the completeness of outbreak investigations. We demonstrated the potential utility of

the database through 2 short analyses addressing questions about superspreader epidemiol-

ogy for a variety of diseases, including Coronavirus Disease 2019 (COVID-19). First, we

found that our transmission trees were consistent with theory predicting that intermediate dis-

persion parameters give rise to the highest proportion of cases causing superspreading

events. Additionally, we investigated patterns in how superspreaders are infected. Across

trees with more than 1 superspreader, we found preliminary support for the theory that super-

spreaders generate other superspreaders. In sum, our findings put the role of superspread-

ing in COVID-19 transmission in perspective with that of other diseases and suggest an

approach to further research regarding the generation of superspreaders. These data have

been made openly available to encourage reuse and further scientific inquiryAU : PleasenotethatAuthorsummaryhasbeenremovedfromthemanuscript; asperPLOSjournalpolicy:.

Introduction

In the past 20 years, emerging and reemerging infectious diseases have caused large, deadly,

and expensive multinational outbreaks of SARS-CoV (Severe Acute Respiratory Syndrome
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(SARS)), Zika, Ebola, measles, and SARS-CoV-2 (Coronavirus Disease 2019 (COVID-19)).

During outbreaks, public health officials conduct routine investigations to identify who

infected whom and reconstruct the transmission tree. Transmission trees visualize transmis-

sion between cases as directed networks with nodes representing individuals and edges repre-

senting transmission from person to person. Transmission trees are typically reassembled by

case-finding, contact-tracing, and detailed epidemiological interviews, followed sometimes by

genome sequencing and/or probabilistic reconstruction, where the probability that one case

infected another is calculated for each pair of cases [1,2]. These investigations are costly but

valuable because transmission trees are information rich, including details about the settings

of transmission and variation in number of secondary infections.

When published, transmission trees are shown and described in a variety of formats that

makes them difficult to compare across outbreaks, let alone pathogens. Some are presented

graphically using a number of different symbols and colors, or are buried in the text, making

connections hard to piece together. The primary goal of this project was to create a standard-

ized database of transmission trees that is easily accessible and analyzable. We hope that the

OutbreakTrees database allows scientists and public health officials to take further advantage

of outbreak investigations and their findings.

One phenomenon that is apparent in transmission trees is superspreading, which is impor-

tant to the propagation patterns of several infectious diseases [3]. Lloyd-Smith and colleagues

[3] quantitatively defined superspreaders as cases that cause more secondary infections than

the 99th percentile of a Poisson(R0) distribution, where R0 is the basic reproductive number,

or average number of secondary infections per case. Lloyd-Smith and colleagues [3] also con-

ceptualized the offspring distribution (i.e., the number of infections caused by each infected

individual) as a negative binomial distribution with dispersion parameter k and mean R. Large

values of k denote little variation in number of secondary infections caused by each case, while

small values of k (k<1) correspond to high heterogeneity in the offspring distribution. It was

hypothesized that intermediate dispersion parameters between 0.1 and 1, depending on R,

would give rise to the highest proportion of cases causing superspreading events [3].

Lloyd-Smith and colleagues’ theory on superspreading assumes stability of R and k over the

course of an outbreak. In reality, most outbreaks are subject to control measures. These control

measures, as well as changes in behavior, can reduce disease transmission and disperse the off-

spring distribution, thus leading to shifts in R and k from their pre-control values, as explored

by [3]. Given information on the timing of control measures, parameter values can be com-

pared before and after controls were imposed. In the absence of this information, we propose

that a comparison of parameter values in the first versus second half of a transmission tree

indicates the effect of control measures and behavior changes on a given transmission tree.

While previous work has characterized the biological and social factors that give rise to

superspreading events [4], how superspreaders are generated (i.e., who spreads to supersprea-

ders) is poorly understood. In 2020, Beldomenico [5] suggested that the generation of super-

spreaders may be linked to biological patterns in initial viral dosage: If individuals with

unusually high viral shedding cause those they infect to also have high viral shedding, then

cases infected by superspreaders may be disproportionately likely to be superspreaders them-

selves. Another possibility is that superspreaders may be more likely to engage in riskier behav-

ior (such as attending large gatherings or not taking precautionary measures) making them

more likely to infect others with similar behavior. This behavioral heterogeneity may be a

larger contributor to superspreader generation than biological heterogeneity [6]. We investi-

gate this issue using transmission tree data, hypothesizing that superspreaders will be more

likely to be infected by other superspreaders than non-superspreading cases.
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Methods

Data

Transmission trees were collected by searching Google Scholar, Scopus, PubMed, and Google

Images for published literature containing graphs of transmission trees or written accounts of

transmission events. We used the following terms to find papers containing transmission tree

information: “transmission AND (tree OR network OR chain) AND (outbreak OR disease),”

“outbreak investigation,” “contact tracing,” “case report,” and “transmission tree outbreak

reconstruction.” We also used the bibliographies of other papers (e.g., [3]) to find more refer-

ences. With the emergence of COVID-19, we expanded our search for transmission trees to

include news articles and preprints (e.g., medRxiv.org). For COVID-19, many of the trees

were identified with an online database [7]. If trees could not be collected from a public source

or if trees did not identify single infectors for each infectee, we contacted the authors of identi-

fied documents for further clarification or additional information. We also compiled readily

available node attributes reported in the tree source. Attributes available for each tree varied

but included age, sex, context of transmission, date of symptom onset, occupation, quarantine

status, survival status, location, hospital, ward of hospital or care facility, symptomatic status,

duration of exposure to infected individual, whether the edge was probabilistically recon-

structed, relationship between individuals, serial interval, immunization status, source of edge

(if tree was constructed from 2 sources), and strain or genomic sequence. Articles in languages

other than English were translated using Google Translate software.

Examples of trees contained in our published database OutbreakTrees are shown in Fig 1.

Inclusion criteria

For consistency, we required that trees meet the following criteria for inclusion in the

database:

• Trees must have contained 2 or more individuals; case studies of isolated infected individuals

were excluded.

• Trees must represent outbreaks of directly transmitted infectious diseases in humans; trees

describing sexually transmitted, foodborne, vector-borne, or waterborne diseases, as well as

diseases in nonhumans (e.g., outbreaks among farm animals [11,12]) were excluded.

• Trees were constructed through epidemiological or probabilistic methods; trees constructed

using only genomic or phylogenetic methods were excluded.

• Trees had to report a single infector per infectee (i.e., trees that had multiple possible infec-

tors for any case were excluded). However, if tree topology was unaffected by randomly

assigning ambiguous infectors, we included the tree and omitted specific attribute data for

the assigned infector.

• Trees were presented as completed investigations in the publication; we excluded trees pre-

sented as under ongoing investigation at the time of reporting.

Data entry

Trees were manually encoded as data.tree [13] objects using relevant information from each

source and converted to igraph [14] objects for manipulation and accession. Any assumptions

made in entering the tree are listed with the tree in the database (e.g., if an infector is assumed

due to nodes obscuring branches or a case of an ambiguous infector assignment). All scripts to
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compile trees and analyze data are available at http://github.com/DrakeLab/taube-

transmission-trees, and tree sources are listed in S1 File. The database is available online at

http://outbreaktrees.ecology.uga.edu.

Data analysis

We demonstrated how OutbreakTrees can be used to address questions about the time depen-

dence of epidemiological parameters and the role of superspreading in infectious disease trans-

mission through 3 different analyses using trees with 20 or more cases and 2 or more

generations of spread. We calculated key statistics under 2 contrasting assumptions about out-

break investigation completeness, explained in the Sensitivity analyses section below.

Parameter time dependence. Shifts in human behavior or disease control efforts can

cause changes in key epidemiological parameters as outbreaks progress [3]. While infor-

mation on intervention timing was not readily available, we explored how R, k, and the

proportion of cases causing superspreading events varied over time by comparing these

values in the first versus second halves of each tree. Excluding the last generation of the

tree (composed solely of terminal nodes), we divided each tree into first and second halves

by generation. Middle generation nodes were randomly assigned to either the first or sec-

ond half of the tree. We repeated this process 10 times to account for random variation in

the assignment of middle generation nodes and took the mean parameter values over the

10 repetitions. Differences were tested for significance using the Wilcoxon rank test. If

population control efforts or human behavior changed transmission dynamics partway

through the tree, we expected to see decreases in R, k, and the proportion of cases causing

superspreading events between the first and second halves of a tree [3].

Fig 1. We compiled infectious disease transmission trees from the literature along with reported attribute information. AU : AbbreviationlistshavebeencompiledforthoseusedinFigs1� 5andS1 � S7:Pleaseverifythatallentriesarecorrect:Shown here are example trees in the

database. (A) Ebola spread in different contexts [8]. (B) Measles spread in different locations [9]. (C) COVID-19 spread among age classes [10]. Primary sources for

transmission trees are available in OutbreakTrees and listed in the Supporting information. OutbreakTrees may be accessed online at http://outbreaktrees.ecology.uga.

edu. COVID-19, Coronavirus Disease 2019.

https://doi.org/10.1371/journal.pbio.3001685.g001
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Superspreading events across diseases. To evaluate how common superspreading is

among different diseases, we focused on 2 tree statistics: (1) the proportion of cases caus-

ing superspreading events and (2) the dispersion parameter, k. The proportion of cases

causing superspreading events was calculated by dividing the number of superspreaders

in a tree by the total number of nodes in the tree, where the number of superspreaders was

estimated using the Lloyd-Smith and colleagues [3] definition. The dispersion parameter

was calculated using maximum likelihood estimation with the fitdistr function from the

mass package in R [15] assuming secondary infections followed a negative binomial distri-

bution. Small dispersion parameters indicate more heterogeneous offspring distributions

with fewer individuals accounting for the majority of transmission compared with large

dispersion parameters. We performed sensitivity analyses for cutoffs of trees with 10 and

30 or more cases.

Generation of superspreaders. Next, we investigated patterns in the individuals who

infected superspreaders. We calculated the ratio of observed to expected superspreader-

superspreader dyads. Superspreader-superspreader dyads occur when 1 superspreader

infects another. To determine the expected number of dyads per tree, we calculated the

probability that a given edge connects 2 superspreaders. Denoting the number of super-

spreaders by s, number of terminal nodes (nodes that do not cause onward transmission)

by t, and tree size by S, the probability that a node at 1 end of the edge is a superspreader is
s

S�t, or p1. Conditional on this first node being a superspreader, the probability that the

node on the other end of the edge is a superspreader is s�1

S�t�1
, or p2. Then, the joint proba-

bility of an edge with superspreaders at either end (a dyad) is p1�p2. Given that there are S-
t-1 edges leading to nonterminal nodes in a tree, the expected number of dyads is

S � t � 1ð Þ � p1 � p2 ¼
ðS�t�1Þsðs�1Þ

ðS�tÞðS�t�1Þ
which simplifies to

sðs�1Þ

S�t . Thus, we expect to see
sðs�1Þ

S�t super-

spreader-superspreader dyads per tree. If generation of superspreaders is not random but

tied to characteristics of the infector, we would expect to see large ratios of observed to

expected superspreader-superspreader dyads.

Sensitivity analyses for tree completeness. We made the assumption that trees in the

database depicted complete epidemics, e.g., that all transmission events were documented and

that terminal nodes did not transmit disease, yet we know that not all trees in the database are

complete (see Limitations section). Recognizing that this is an extreme assumption, we con-

ducted sensitivity analyses of the opposite extreme: Assuming all trees were incomplete, i.e.,

terminal nodes did transmit disease but these transmission events went unreported. In reality,

the database is composed of both types of trees, complete and incomplete, as well as trees

somewhere in between (e.g., last generation terminal nodes are not reliable but terminal nodes

in earlier generations may be reliable), though we cannot identify which trees fall into which

categories. Assuming that trees were complete, we calculated R, k, and the superspreading cut-

off over all nodes in the tree, whereas under the assumption of incompleteness, we calculated

R, k, and the superspreading cutoff by excluding the out-degree (zero) of all terminal nodes in

any generation from the offspring distribution. We expect that R and k estimates will be higher

and proportion of cases causing superspreading events estimates lower when we calculate

these parameters over only nonterminal nodes than when calculated over all nodes in a tree.

Results from our repeated analyses under this alternative set of assumptions can be found in

the Supporting information (S1–S3, S6 and S7 Figs).
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Results and discussion

Database summary statistics

Currently, OutbreakTrees includes 382 trees describing 16 directly transmitted infectious dis-

eases (see Fig 1 for examples), most of which are caused by viruses (Fig 2). COVID-19 trees

comprise 256, or approximately 67%, of the trees in the database. Trees range in size from 2 to

286 individuals; half are composed of 3 cases or fewer. This database contains data for out-

breaks that took place in the years 1946 through 2020. The most common node attributes for

trees include context of transmission (work, school, family, etc.), date of symptom onset, sex,

Fig 2. Characteristics of transmission trees in OutbreakTrees. (A) Tree size varies from 2 to 286 with a median of 3 and most trees represent outbreaks taking

place in the past 20 years (only trees with 10 or more cases shown in date plot due to large number of small COVID-19 trees from 2020). (B) The largest trees are

from H1N1 and SARS outbreaks, while the highest proportion of trees in the database are from outbreaks of COVID-19, followed by adenovirus and Ebola. Tree

size axes in both plots are shown on a log10 scale to better illustrate variation in medium-sized trees. All trees are used in this analysis. The data to reproduce this

figure can be found at https://doi.org/10.5061/dryad.nk98sf7w7. COVID-19, Coronavirus Disease 2019; MERS, Middle East Respiratory Syndrome; SARS, Severe

Acute Respiratory Syndrome.

https://doi.org/10.1371/journal.pbio.3001685.g002
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and age (Table 1). Due to imperfect investigation or recall, specific attributes are not available

for every node in every individual tree (S1 Table).

Analyses

For the following analyses, we use a subset of trees in the database to ensure sufficient sample

size for statistical analysis [16]. Specifically, estimates of R, the dispersion parameter k, the

threshold number of secondary infections to be considered a superspreader, and the propor-

tion of cases causing superspreading events for each tree are limited to trees with 20 or more

cases and at least 2 generations of spread. There were 39 trees in our database that fit these cri-

teria. The differences in R and k values depending on our assumptions of tree completeness

are shown in S1 and S2 Figs. Note that when we calculate R assuming all cases are reported

and the infection has died out, then R is necessarily <1 (S1 Fig). Applying the Lloyd-Smith

and colleagues [3] definition of superspreading with R�1, the superspreading threshold is

always more than 4 secondary infections. When we instead assume that a transmission tree is

incomplete (i.e., not all cases are reported) and exclude terminal nontransmitting nodes from

our calculation of R, we observe higher R values, and consequently higher superspreading cut-

offs that show greater variation across diseases (S1 Fig).

Parameter time dependence. We found a significant decrease in R (p�0.0001, Wilcoxon

rank test) and the proportion of cases causing superspreading events (p�0.01, Wilcoxon rank

test) between the first and second halves of transmission trees with 20 or more nodes and 2 or

more generations of spread assuming tree completeness (Fig 3A and 3C). The dispersion

parameter did not change significantly between the first and second halves of these transmis-

sion trees (Fig 3B, Wilcoxon rank test). While all but 3 trees had R>1 in the first half of the

tree, all trees had R<1 in the second half of the tree (Fig 3D). Under the assumption of incom-

plete trees, all 3 parameters changed significantly between the first and second halves of the

trees (S3 Fig); R decreased (p�0.0001, Wilcoxon rank test), k increased (p�0.01, Wilcoxon

rank test), and the proportion of cases causing superspreading events decreased (p�0.001,

Wilcoxon rank test). The observed decreases in R may be the result of control measures or

behavior changes in the affected populations, or could be caused by reporting biases where

case follow-up is more robust in earlier generations. Similarly, the decreases in proportion of

cases causing superspreading events could be due to control measures, but also superspreaders

may be more likely to be identified in earlier generations if superspreading events spur out-

break investigations which may only trace transmission so far back in time. The increase in k
under an assumption of tree incompleteness contradicts our expectation but may be due to the

truncation of the offspring distribution to a minimum of 1 secondary infection when terminal

nodes are dropped from our calculations. This truncation may disproportionately affect the

Table 1. List of most common attributes for individuals in trees.

Attribute Database code Number of trees

Transmission context cont 301

Symptom onset onset 137

Sex sex 86

Age age 69

Location loc 56

Quarantine status quar 36

Occupation occp 34

Survival surv 20

https://doi.org/10.1371/journal.pbio.3001685.t001
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Fig 3. The time dependence of R, k, and the proportion of cases causing superspreading events. (A) R decreased significantly between the first and second halves

of transmission trees. (B) k did not differ significantly between the first and second halves of transmission trees. Y-axis is on a log10 scale for visual aid. (C) The

proportion of cases causing superspreading events decreased significantly between the first and second halves of transmission trees. (D) Decrease in R shown for

each tree by disease. R was below 1 in the second half of all trees; red line denotes R = 1. The Wilcoxon rank test was used for all significance tests (�: p�0.05, ��:

p�0.01, ���: p�0.001, ����: p�0.0001), and results are shown in red stars. Trees were assumed to be complete and only trees with 20 or more cases and at least 2

generations of spread were used in these analyses. Results assuming tree incompleteness are shown in S3 Fig. The data to reproduce this figure can be found at

https://doi.org/10.5061/dryad.nk98sf7w7. COVID-19, Coronavirus Disease 2019; MERS, Middle East Respiratory Syndrome; SARS, Severe Acute Respiratory

Syndrome.

https://doi.org/10.1371/journal.pbio.3001685.g003
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second half of a tree with many terminal nodes, decreasing the heterogeneity in the number of

secondary infections, and increasing k. This analysis informs the following 2 analyses by indi-

cating how frequently our trees may be capturing disease spread after interventions are

imposed or behavior changes take place.

Superspreading characteristics across diseases. Consistent with theory proposed by [3],

intermediate dispersion parameters gave rise to the highest proportion of cases causing super-

spreading events (Fig 4A). COVID-19 trees had a median dispersion parameter (k = 0.14) (Fig

4B) between that of SARS (0.06) and Middle East Respiratory Syndrome (MERS) (0.24). Six

diseases had overdispersed offspring distributions (median k<1): measles, SARS, COVID-19,

Ebola, MERS, and influenza. Norovirus was the only disease with median k>1. Dispersion

Fig 4. The importance and expected frequency of superspreading across diseases. (A) The highest proportion of cases causing superspreading events is observed at

intermediate dispersion parameters, as predicted by theory [3]. (B) Dispersion parameter (k) of a negative binomial distribution fit to the offspring distribution of trees

by disease (for diseases with at least 3 trees). Lower dispersion parameters are indicative of greater variation in number of secondary infections. Vertical line and value

printed in each facet shows the median k and standard error for each disease. X-axes are on a log10 scale in both plots for visual aid. Trees were assumed to be complete

and only trees with 20 or more cases and at least 2 generations of spread were used in these analyses. Other size cutoffs are shown in S4 and S5 Figs and results

assuming tree incompleteness are shown in S6 Fig. The data to reproduce this figure can be found at https://doi.org/10.5061/dryad.nk98sf7w7. COVID-19,

Coronavirus Disease 2019; MERS, Middle East Respiratory Syndrome; SARS, Severe Acute Respiratory Syndrome.

https://doi.org/10.1371/journal.pbio.3001685.g004
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parameter estimates calculated over all nodes tend to be lower than (or at the lower end) of val-

ues/ranges in the literature, while estimates calculated excluding all terminal nodes (shown in

S6 Fig) tend to be higher than (or at the higher end) of values/ranges in the literature [3,17–

31]. Given that our assumptions about tree completeness lie at opposite extremes, we expect

the true outbreak dispersion parameters to fall between these extremes, which aligns well with

the literature. The most notable exceptions are influenza, which is not typically associated with

superspreading (though our median dispersion parameter estimate was less than 1), and noro-

virus, for which we could not find a previously published dispersion estimate. As observed

with some of the large standard errors of k, and covered extensively in [16], these estimates are

imprecise, especially when based on smaller trees. However, we observe little change in median

dispersion parameter estimates or the relationship between dispersion parameter and propor-

tion of cases causing superspreading events when we restrict the analysis to trees with at least 2

generations of spread and 10 or more cases (S4 Fig) or 30 or more cases (S5 Fig). Lack of fol-

low-up in outbreak investigations may result in underreporting of onward transmission,

affecting tree offspring distributions, and consequently, estimates of k.

Generation of superspreaders. The ratio of observed to expected superspreader-super-

spreader dyads, calculated by enumerating superspreader-superspreader pairs divided by all

possible nonterminal infector–infectee pairs, was greater than 1 for 12 of 18 trees, indicating

Fig 5. In two-thirds of transmission trees, superspreaders infect superspreaders more often than would be expected by chance. The expected number of

superspreader-superspreader dyads was calculated by
sðs�1Þ

S�t for each tree, where s is the number of superspreaders in the tree, t is the number of terminal nodes (nodes

that do not cause onward transmission), and S is tree size. Ratios larger than 1 indicate more superspreader-superspreader dyads were observed than would be

expected by chance. This analysis was limited to trees with more than 1 superspreader, 20 or more cases, and 2 or more generations of spread. We assumed tree

completeness here, but results assuming incompleteness are shown in S7 Fig. The data to reproduce this figure can be found at https://doi.org/10.5061/dryad.

nk98sf7w7. COVID-19, Coronavirus Disease 2019; MERS, Middle East Respiratory Syndrome; SARS, Severe Acute Respiratory Syndrome.

https://doi.org/10.1371/journal.pbio.3001685.g005
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that superspreaders infected other superspreaders more than would be expected by chance in

two-thirds of eligible trees (Fig 5). Notably, both COVID-19 trees under consideration had

large ratios of observed to expected superspreader-superspreader dyads. (Recall that we expect
sðs�1Þ

S�t dyads in a tree of size S with s superspreaders and t terminal nodes.) Despite most trees in

our sample being small—29 of 39 trees have less than 50 cases—our observation of a large

number of dyads suggests that this transmission pattern must be common. If we instead

assume tree incompleteness, only 4 trees have enough superspreaders to compare ratios of

observed to expected dyads (S7 Fig). Though additional information regarding the contexts in

which superspreaders are infected would be required to understand these patterns, these

results suggest some nonrandomness in generation of superspreaders providing preliminary

support for our hypothesis that superspreaders infect other superspreaders.

Limitations of OutbreakTrees

While OutbreakTrees has allowed us to investigate questions about the nature of superspreading,

the database has several limitations. First, trees in the database do not constitute a random nor

necessarily representative sample of directly transmitted infectious disease outbreaks. For exam-

ple, we omitted nearly 100 reported transmission events and trees due to lack of single infector

identification, which limits the generalizability of our findings. Furthermore, as shown by Lloyd-

Smith and colleagues [3], diseases with larger variation in offspring distributions have a greater

chance of extinction. Early superspreading events may prevent extinction by increasing the size

from which the outbreak grows and making infection propagation more likely [32]. The probabil-

ity of detecting an outbreak may also be higher if there is a superspreading event because public

health officials are more likely to investigate a cluster than an isolated case. Thus, the trees repre-

sented in our database are prone to both selection bias, in which outbreaks are noticed, and publi-

cation bias, in which outbreaks are published in an accessible format.

Second, although trees are meant to be complete representations of clusters (see Inclusion crite-

ria), they are typically a subset from a larger chain of transmission events. For example, Ebola was

likely only introduced once in the 2014 outbreak in West Africa, yet we have several separate trees

because the transmission events could not all be connected. Moreover, outbreak investigations

may miss cases, sometimes in random or consistent ways. For example, secondary cases with

ambiguous infectors may be more readily attributed to superspreaders than their actual infectors,

making it look like superspreaders accounted for more cases than they actually did. Or, as an out-

break continues, later cases may not be investigated in the same depth as earlier generations,

underrepresenting the number of secondary infections produced by cases in later generations.

Third, control measures or behavior changes can alter parameters of disease spread in the

middle of an outbreak. Due to limited available data, we have not included the timing of these

events in the database, but they have the potential to affect every outbreak. For example, inter-

ventions may reduce the number and disperse the distribution of secondary infections caused

by each individual. The scope of the database also does not include details about how each tree

was constructed for publication. Reconstruction methods may be biased in different ways;

methods focused on symptomatic cases may miss asymptomatic cases and transmission

events. We were mindful of these biases and sought to examine how several key parameters

change over the generations in our trees. These limitations should be kept in mind by others

using the database for different purposes.

Usage notes

We have constructed the database so that other research groups may take advantage of this

new resource, but we acknowledge that care and understanding of the limitations are required
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for responsible analyses. Thus, we provide these recommendations for future users to encour-

age appropriate use and generalizable conclusions. We opted to include small trees in the data-

base for the sake of completeness and to allow for the possibility of minor outbreak analysis in

the future (e.g., [33]), but suggest that these smaller trees be excluded if users are seeking to cal-

culate epidemiological quantities (as we did with a size cutoff of 20 individuals in our analyses).

We also urge caution in viewing trees as absolute or complete. Several trees in the database are

the result of probabilistic reconstruction, and so may represent only one possible way in which

transmission may have occurred. Lack of ongoing transmission at the terminal nodes of a tree

may be real but also could be due to lack of follow-up or investigation. While conclusions

drawn from the database may be biased, they are no more biased than the original inferences

drawn from the individual trees which compose the database. With these suggestions in mind,

we hope that OutbreakTrees can be used to properly address new questions in the future.

Conclusions

In summary, we developed OutbreakTrees, an open-access database of infectious disease

transmission trees, for research and public health officials. We illustrated how this database

can be used to explore questions surrounding superspreader epidemiology, and we calculated

a few important parameters for COVID-19 and examined their time dependence. In particu-

lar, we estimated the dispersion parameter from transmission trees and the value for COVID-

19 was in between that of SARS and MERS. Additionally, our analysis provided tentative sup-

port for the theory that superspreaders generate other superspreaders. The development and

release of OutbreakTrees highlights the benefits of data sharing and offers a new resource for

epidemiologic research.

Supporting information

S1 File. Sources for transmission trees in OutbreakTrees which were used for this analysis.

(PDF)

S1 Fig. R values for each disease varied depending on calculation method. R values tended

to be highest when calculated over nonterminal nodes and lowest when calculated over all

nodes, with estimates based on early generation nodes (root and first generation nodes) falling

somewhere in between. Nonterminal node estimates tended to be at the high end of literature

values and early generation estimates at the low end, with estimates calculated over all nodes

typically far below literature values [20,29,34–44], except for MERS and SARS which had low

literature R estimates [3,21,30,45]. Analysis was limited to trees with 20 or more cases and at

least 2 generations of spread and diseases with at least 3 trees that meet these criteria. The data

to reproduce this figure can be found at https://doi.org/10.5061/dryad.nk98sf7w7. COVID-19,

Coronavirus Disease 2019; MERS, Middle East Respiratory Syndrome; SARS, Severe Acute

Respiratory Syndrome.

(PDF)

S2 Fig. Dispersion parameters were consistently higher when calculated over only nonter-

minal nodes versus all nodes in a tree. Dispersion parameter calculated over all nodes is on

x-axis on log10 scale; dispersion parameter calculated over all nonterminal nodes is on y-axis

on log10 scale. Dashed red line is y = x. Analysis was limited to trees with 20 or more cases and

at least 2 generations of spread. The data to reproduce this figure can be found at https://doi.

org/10.5061/dryad.nk98sf7w7. COVID-19, Coronavirus Disease 2019; MERS, Middle East

Respiratory Syndrome; SARS, Severe Acute Respiratory Syndrome.

(PDF)
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S3 Fig. The time dependence of R, k, and the proportion of cases causing superspreading

events assuming trees are incomplete. (A) R decreased significantly between the first and sec-

ond halves of transmission trees. (B) k increased significantly between the first and second

halves of transmission trees. Seven of 39 trees had nonoptimizable degree distributions for the

second half of the tree in each of 10 repetitions; these trees are excluded from this analysis and

the boxplot. Y-axis is on a log10 scale for visual aid. (C) The proportion of cases causing super-

spreading events decreased significantly between the first and second halves of transmission

trees. (D) While, on average, R decreased between first and second halves of trees, some trees

had higher values of R in the second half of the tree than the first. Red line denotes R = 1. The

Wilcoxon rank test was used for all significance tests (�: p�0.05, ��: p�0.01, ���: p�0.001, ����:

p�0.0001) and results are shown in red stars. Only trees with 20 or more cases and at least 2

generations of spread were used in these analyses. The data to reproduce this figure can be

found at https://doi.org/10.5061/dryad.nk98sf7w7. COVID-19, Coronavirus Disease 2019;

MERS, Middle East Respiratory Syndrome; SARS, Severe Acute Respiratory Syndrome.

(PDF)

S4 Fig. Proportion of cases causing superspreading events and dispersion parameter esti-

mates do not differ considerably with cutoff of 10 or more cases. (A) The highest proportion

of cases causing superspreading events is observed at intermediate dispersion parameters, as

predicted by theory [3]. (B) Dispersion parameter (k) of a negative binomial distribution fit to

the offspring distribution of trees by disease (for diseases with at least 3 trees). Lower disper-

sion parameters are indicative of greater variation in number of secondary infections. Vertical

line and value printed in each facet shows the median k and standard error for each disease.

X-axes are on a log10 scale in both plots for visual aid. Only trees with 10 or more cases and at

least 2 generations of spread were used in these analyses, and trees were assumed to be com-

plete. The data to reproduce this figure can be found at https://doi.org/10.5061/dryad.

nk98sf7w7. COVID-19, Coronavirus Disease 2019; MERS, Middle East Respiratory Syndrome;

SARS, Severe Acute Respiratory Syndrome.

(PDF)

S5 Fig. Proportion of cases causing superspreading events and dispersion parameter esti-

mates do not differ considerably with cutoff of 30 or more cases, though fewer diseases are

eligible for median dispersion parameter analysis. (A) The highest proportion of cases caus-

ing superspreading events is observed at intermediate dispersion parameters, as predicted by

theory [3]. (B) Dispersion parameter (k) of a negative binomial distribution fit to the offspring

distribution of trees by disease (for diseases with at least 3 trees). Lower dispersion parameters

are indicative of greater variation in number of secondary infections. Vertical line and value

printed in each facet shows the median k and standard error for each disease. X-axes are on a

log10 scale in both plots for visual aid. Only trees with 30 or more cases and at least 2 genera-

tions of spread were used in these analyses, and trees were assumed to be complete. The data

to reproduce this figure can be found at https://doi.org/10.5061/dryad.nk98sf7w7. COVID-19,

Coronavirus Disease 2019; MERS, Middle East Respiratory Syndrome; SARS, Severe Acute

Respiratory Syndrome.

(PDF)

S6 Fig. Peak proportion of cases causing superspreading events is observed at a higher dis-

persion parameter (�1), and dispersion parameter estimates are an order of magnitude

higher when terminal nodes are excluded from dispersion parameter and R calculations

than when terminal nodes are included. (A) The highest proportion of cases causing super-

spreading events is observed at intermediate dispersion parameters near 1, as opposed to the
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range of 0.2 to 0.6, as predicted by theory for higher values of R [3]. (B) Dispersion parameter

(k) of a negative binomial distribution fit to the offspring distribution of trees by disease (for

diseases with at least 3 trees). Lower dispersion parameters are indicative of greater variation

in number of secondary infections. SARS now has the lowest median dispersion parameter of

0.87, mildly overdispersed. MERS, Ebola, and influenza would no longer be considered over-

dispersed. Vertical line and value printed in each facet shows the median k and standard error

for each disease. X-axes are on a log10 scale in both plots for visual aid. Only trees with 20 or

more cases and at least 2 generations of spread were used in these analyses. Terminal nodes

were excluded from offspring distributions, i.e., trees were assumed to be incomplete. The data

to reproduce this figure can be found at https://doi.org/10.5061/dryad.nk98sf7w7. COVID-19,

Coronavirus Disease 2019; MERS, Middle East Respiratory Syndrome; SARS, Severe Acute

Respiratory Syndrome.

(PDF)

S7 Fig. There are too few trees with 2 or more superspreaders to examine superspreader

dyads when R is calculated excluding terminal nodes. The expected number of supersprea-

der-superspreader dyads was calculated by
sðs�1Þ

S�t for each tree, where s is the number of super-

spreaders in the tree, t is the number of terminal nodes, and S is tree size. Ratios larger than 1

indicate more superspreader-superspreader dyads observed than would be expected by

chance. This analysis was limited to trees with more than 1 superspreader, 20 or more cases,

and 2 or more generations of spread. The data to reproduce this figure can be found at https://

doi.org/10.5061/dryad.nk98sf7w7. MERS, Middle East Respiratory Syndrome; SARS, Severe

Acute Respiratory Syndrome.

(PDF)

S1 Table. The mean proportion of nodes with complete attribute information when that

attribute was listed as available for a given tree. Analysis was limited to 5 most common

attributes in the database and trees with 20 or more cases and 2 or more generations of spread.

(PDF)
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8. Faye O, Boëlle PY, Heleze E, Faye O, Loucoubar C, Magassouba N, et al. Chains of transmission and

control of Ebola virus disease in Conakry, Guinea, in 2014: An observational study. Lancet Infect Dis.

2015; 15(3):320–6. https://doi.org/10.1016/S1473-3099(14)71075-8 PMID: 25619149

9. Komabayashi K, Seto J, Tanaka S, Suzuki Y, Ikeda T, Onuki N, et al. The largest measles outbreak,

including 38 modified measles and 22 typical measles cases, Yamagata, Japan, 2017 in its elimination

era. Jpn J Infect Dis. 2018; 71(6):413–8. https://doi.org/10.7883/yoken.JJID.2018.083 PMID: 29962488

10. AU : PleasenotethattheprovidedURLisnotvalid=accessibleinreference10:PleasecheckandprovideanupdatedURL:Ohio Department of Health. COVID-19 Update: Masks in Schools, Rapid Testing, Community Spread

and Spread from Faith-Based Settings, Dr. Amy Acton; 2020. Available from: https://coronavirus.ohio.

gov/resources/news-releases-news-you-can-use/covid-19-update-08-04-20.

11. Vergne T, Fournié G, Markovich MP, Ypma RJ, Katz R, Shkoda I, et al. Transmission tree of the highly

pathogenic avian influenza (H5N1) epidemic in Israel, 2015. Vet Res. 2016; 47(109).
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