
TAAS: A Timing-Aware Analytical Strategy for AQFP-Capable
Placement Automation

Peiyan Dong*1 Yanyue Xie*1 Hongjia Li*1 Mengshu Sun1 Olivia Chen2 Nobuyuki Yoshikawa3 Yanzhi Wang1,4
1Northeastern University 2Tokyo City University 3Yokohama National University 4CoCoPIE LLC

1{dong.pe, xie.yany, li.hongjia, sun.meng, yanz.wang}@notheastern.edu, 2olivia.chen@ieee.org, 3nyoshi@ynu.ac.jp

ABSTRACT
Adiabatic Quantum-Flux-Parametron (AQFP) is a superconducting
logic with extremely high energy efficiency. AQFP circuits adopt
the deep pipeline structure, where the four-phase AC-power serves
as both the energy supply and the clock signal and transfers the
data from one clock phase to the next. However, the deep pipeline
structure causes the stage delay of the data propagation is com-
parable to the delay of the zigzag clocking, which triggers timing
violations easily. In this paper, we propose a timing-aware ana-
lytical strategy for the AQFP placement, TAAS, that immensely
reduces timing violations under specific spacing constraints and
wirelength constraints of AQFP. TAAS includes two main charac-
teristics: 1) a timing-aware objective function that incorporates a
four-phase timing model for the analytical global placement. 2) a
unique detailed placement including the timing-aware dynamic
programming technique and the time-space cell regularization. To
validate the effectiveness of TAAS, various representative circuits
are adopted as benchmarks. As shown in the experimental results,
our strategy can increase the maximum operating frequency by up
to 30% ∼ 40% with a negligible wirelength increase -3.41%∼1%.
ACM Reference Format: Peiyan Dong, Yanyue Xie, Hongjia Li, Meng-
shu Sun, Olivia Chen, Nobuyuki Yoshikawa, Yanzhi Wang. 2022. TAAS:
A Timing-Aware Analytical Strategy for AQFP-Capable Placement Au-
tomation. In 2022 59th ACM/IEEE Design Automation Conference (DAC),
July 2022, San Francisco, CA, USA. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3489517.3530487
1 INTRODUCTION
AQFP is a superconducting logic with very low energy dissipa-
tion, which can play as a promising energy-efficient alternative to
complementary metal-oxide-semiconductor (CMOS) circuits. AQFP
logic delivers extraordinary high energy efficiency by adopting adi-
abatic switching [9], in which the potential energy profile evolves
from a single well to a double well so that the logic state can change
quasi-statically. AQFP circuits use the fabrication processes such
as the AIST standard process 2 (STP2) and the MIT-LL SFQ process
[11]. It can potentially achieve 104 −105 energy-efficiency gain com-
pared with state-of-the-art CMOS and operate at a clock frequency
of several GHz [3].

* The first three authors contribute equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
DAC '22, July 10–14, 2022, San Francisco, CA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9142-9/22/07…$15.00
https://doi.org/10.1145/3489517.3530487

AND

‘0’

a

xoutxin

b c

d

inv ‘1’ inv

a

xoutxin

b c

d

MAJ
a

xoutxin

b c

d

SPLITTER
a

xoutxin

db c

(a) (b) (c) (d)

buffer bufferbuffer buffer bufferbuffer

NAND

Figure 1: (a) The symbol of AND gate; (b) The symbol of NAND gate;
(c) The symbol of MAJ gate; (d) The symbol of 1-to-3 splitter [3].

To deliver the promising energy efficiency, it is crucial to in-
vestigate the choice of logic gates, circuits, architecture and de-
velop efficient design automation tools for AQFP circuits. However,
AQFP differs from CMOS circuits in terms of active components
(transistor in CMOS vs. Josephson Junction (JJ) in AQFP), passive
components, logic gates (AQFP relies on the efficient realization
of majority/minority gates), clocking scheme (four-phase clock-
ing scheme in AQFP), and data propagation. Moreover, the timing
requirements of AQFP differ from CMOS as well. In specific, multi-
level gates are supposed to meet timing constraints as a group in
CMOS circuits, i.e multi-level gates for pipelining, while each gate
must satisfy the timing in AQFP circuits, i.e the gate-level pipelining.
So the currently mature design automation tools for CMOS cannot
be directly applied to the design of superconducting electronics.

Timing is also one of themost important concerns of AQFP. Since
AQFP circuits employ the deep pipeline architecture (each logic
gate is modulated by a clock signal), the clock signal runs through
each of the AQFP logic gates in a zigzag manner, as shown in Figure
2. This deep pipeline architecture also leads to a short stage delay,
which is comparable to the time for the clock signal to pass through
each zigzag row. This reveals that the strong timing constraints
in the physical design of the AQFP, and the positions of the cells
and the wirelength of the cells in a row have a great impact on
the timing closure. Besides, there are still various other constraints,
including spacing constraints and max-wirelength constraints [8],
which indicates that all the above constraints must be considered
together during the placement process. Traditional placers [2, 8]
that address wirelength constraints alone are no longer sufficient to
close timing for AQFP. To address it, we introduce a timing-aware
placement framework for AQFP circuits, which considers timing
and cell positions in different phases during the physical design
and generates placement results free of timing violations.

Our major contributions are summarized as follows:
• We design an analytical global placement method with a
novel objective function which is carefully crafted with the
four-phase timing model of AQFP. Furthermore, we solve
the global placement by DREAMPlace [10] tools under our
multi-k approximation strategy.
• We introduce a detailed placement method, which maintains
the quality inherited from the global placement and refines
the timing-wirelength trade-offs by the timing-aware dy-
namic programming and the time-space cell regularization.

1321

https://doi.org/10.1145/3489517.3530487
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3489517.3530487&domain=pdf&date_stamp=2022-08-23

DAC ’22, July 2022, San Francisco, CA, USA. Dong, Xie, and Li, et al.

Data Input

Data Output

Phase 1:

AC1 + DC

Phase 2:

 AC2 - DC

Phase 3:

-(AC1 - DC)

tsetup thold

tpd trd tpd trd

Time

phasei−1
xin

data input
(i-1) output

data output

phasei
xin

Phase 4:

 -(AC2 + DC)

Time

Figure 2: The four-phase clocking scheme and the data propagation
for AQFP circuits.

• Experimental results show that compared with the existing
AQFP placement works, TAAS improves the maximum op-
erating frequency of the circuits by 19.2% on average at the
expense of a wirelength increase of 3.5% on average. When
it comes to the large-scale complex circuits, TAAS can in-
crease the maximum operating frequency by 30%∼40% with
a negligible increase (<1%) in wirelength.
• TAAS is the pioneering work to simultaneously optimize
the timing performance, spacing constraints, and wirelength
constraints of AQFP circuits in the physical design stage.

2 BACKGROUND AND MOTIVATION
2.1 AQFP Superconducting Logic
The standard cell library of AQFP includes basic logic gates such as
BUFFER, INVERTER, AND, OR, MAJORITY, and SPLITTER. The
most basic structure of AQFP circuits is the AQFP buffer, which
consists of a double-Josephson-Junction SQUID [5]. The AQFP in-
verter and constant cell are designed based on the AQFP buffer [1].
The AQFP inverter is designed by negating the coupling coefficient
of the output transformer in the AQFP buffer. And the AQFP con-
stant gate is implemented based on the asymmetry of excitation
flux inductances in the AQFP buffer. Please note that, unlike CMOS
circuits which use wires to connect to the same port for fan-out
directly, the AQFP circuits utilize splitters for fan-out (when the
number of fan-outs is 2 or more). Figure 1 shows some examples of
AQFP logic gates, such as AND, NAND, MAJORITY, and SPLITTER.

Different from the conventional CMOS technology, both combi-
national and sequential AQFP logic cells are driven by AC-power,
which serves as not only the excitation current but also the synchro-
nization mechanism, i.e., a clock signal to synchronize the outputs
of all gates in the same clock phase. Therefore, data propagation in
AQFP circuits requires overlapping clock signals from the neighbor-
ing phase. An example of a four-phase clocking scheme of AQFP
circuits and corresponding data flow is shown in Figure 2. As shown
in Figure 2, each AQFP logic gate is driven by an AC clock signal
and assigned with one specific clock phase, which makes AQFP cir-
cuits “deep-pipelining” in nature. In this clocking scheme, all inputs
for a logic gate should have the same delay (clock phases) from the
primary inputs, i.e., the strict path balancing shall be enforced.
2.2 AQFP Placement and Timing Problem
After the logic synthesis and the buffer/splitter insertion for path
balancing, the AQFP circuit is transformed to a netlist of AQFP
logic cells. The next step is to place each AQFP cell in a specific
position within its assigned row. To fit the AQFP clock architecture,

each cell in the netlist is assigned with a specific, fixed clock phase,
which corresponds to a specific row in Figure 2. The placement
algorithm will not change the specific row index that a logic cell
resides in, but will only optimize the relative, horizontal locations
of logic cells within each row. After the fixed-order, row-wise place-
ment algorithm, the routing algorithm will only need to connect
cells from row 𝑖 to row 𝑖 + 1. Therefore, we could perform routing
separately for every two consecutive rows and greatly accelerate
the routing process.

On the other hand, the AQFP placement algorithm needs to
address various spacing constraints [8], including cell spacing and
zigzag spacing, which lead to a large number of combinatorial
constraints in the AQFP placement problem. For cell spacing, two
adjacent cells in one row need to be either abutting or keeping a
minimum spacing. For zigzag spacing, if vias are adopted to perform
the wire direction shift in AQFP circuits, then these wire zigzags
need to have at least certain pre-defined spacing (e.g. 10𝜇𝑚 for MIT-
LL process). Apart from these spacing constraints, AQFP circuits
should also satisfy the max-wirelength constraint, which defines
that a single connection is limited to𝑊𝐿𝑚𝑎𝑥 (e.g., 1𝑚𝑚 in the MIT-
LL process). If a single connection exceeds the max-wirelength
constraint, then it is required to add an entire row of buffers between
the two rows where the violation appears.

Since the AQFP circuits operate at the clock frequency of sev-
eral GHz, strict timing requirements must be met. AQFP circuits
employ the deep pipeline architecture, where the clocking signal
runs through each of the AQFP logic gates in a zigzag manner. This
zigzag clocking imposes great challenges to AQFP placement algo-
rithms as the cell positions in a fixed row have a great impact on
the timing closure. Therefore, traditional placers [2, 8] that address
wirelength alone may lead to placement results with severe timing
violations. Specifically, placement results need to meet setup and
hold timing requirements. Setup time is the minimum amount of
time before the active edge of the clock that the data must be stable,
while hold time is the minimum amount of time after the active
edge of the clock during which data must be stable. For example, if
two AQFP cells in consecutive rows (phase 2 and phase 3, respec-
tively) are placed both on the left side, then it is possible that data
from the previous row could not keep stable after the active edge
of the clock in the following row, therefore resulting in hold time
violation. The placer should become timing-aware to address the
potential timing violations during the placement stage.

3 THE PROPOSED OVERALL FRAMEWORK
Figure 3 demonstrates the overall flow of our framework, which
can be divided into three parts: global placement, detailed place-
ment, and placement legalization. In this section, we elucidate the
implementation details of these steps.

3.1 Global Placement
Three requirements should be satisfied in the global placement: (1)
A refinement of cell locations from the perspective of the global
performance; (2) Minimize the total wirelength under the specific
spacing constraints and wirelength constraints of AQFP; (3) With
the deep pipeline structure, timing violations should be eliminated
to achieve the final high-frequency circuit. Accordingly, our timing-
aware global placement introduces three parts: (1) Four-phase tim-
ingmodel, where through the static timing analysis process (STA) of

1322

TAAS: A Timing-Aware Analytical Strategy for AQFP-Capable Placement Automation DAC ’22, July 2022, San Francisco, CA, USA.

Input: Path
Balanced Netlist

Global Placement

Detailed Placement

Wirelength
& Timing Violations

Buffer Insertion

Timing-aware
Teris-like

Legalization
Yes

No

Timing-aware

Dynamic Programming

Pre-Time-Space

Cell Regularization

Time-Space

Cell Regularization

Timing-aware Teris-
like Legalization

Figure 3: The overall workflow of the timing-aware analytical strat-
egy: TAAS.

Phase + clk

Phase

Phase + 1
2 clk

Phase + 3
4 clk

COMB D

CK

Q COMB COMB D
CK

Q COMBD

CK

Q D

CK

Q D

CK

QD

CK

QAC1+DC

AC2-DC -(AC1-DC) -AC2+DC AC1+DC

Phase + 1
4 clk

Figure 4: The STA equivalent circuit of AQFPwith 4-phase clocking.

the equivalent circuit of AQFP as Figure 4, we obtain the timing con-
straints and the relative positions constraints between connected
cells. (2) Timing-aware analytical function, where the objective
function of the global placement in ASAP [2] is reconstructed with
the timing penalty, and solved by DREAMPlace. (3) Multi-k approxi-
mation strategy, by which we search the optimal timing-wirelength
trade-offs in a fine-grained wise. Please note that we fix the dis-
tance between adjacent phases (rows), while only adjusting the
x-direction. And we also perform the placement process row by
row from top to bottom, in which we place the current row with
the previous ones fixed. Moreover, we only calculate one data path
each time because the cell has the one-to-one connection pattern.
3.1.1 Four-phase Timing Model. Based on the deep pipeline struc-
ture, we transform the AQFP circuit into Figure 4 to demonstrate
the STA. The timing model is derived as follows:

𝑡𝑟𝑑 = 1
2𝑐𝑙𝑘 − 2𝑡𝑝𝑑 ,

𝑡𝑝𝑑 + 𝑡0 + 𝑑𝑒𝑙𝑎𝑦 (𝑥𝑝) ≤ 1
4𝑐𝑙𝑘 − 𝑡𝑠𝑒𝑡𝑢𝑝 + 𝑡0 + 𝑑𝑒𝑙𝑎𝑦 (𝑥𝑠),

𝑡𝑝𝑑 + 𝑡𝑟𝑑 + 𝑡0 + 𝑑𝑒𝑙𝑎𝑦 (𝑥𝑝) ≥ 1
4𝑐𝑙𝑘 + 𝑡ℎ𝑜𝑙𝑑 + 𝑡0 + 𝑑𝑒𝑙𝑎𝑦 (𝑥𝑠),

𝑡𝑝𝑑 + 𝑡0 + 𝑑𝑒𝑙𝑎𝑦 (𝑥𝑝) ≥ 1
4𝑐𝑙𝑘 − 𝑐𝑙𝑘 + 𝑡ℎ𝑜𝑙𝑑 + 𝑡0 + 𝑑𝑒𝑙𝑎𝑦 (𝑥𝑠).

(1)

where 𝑡𝑟𝑑 is the generated signal length in the next phase as the
Figure 2; 𝑡𝑝𝑑 is the clock-to-q time of cell; 𝑐𝑙𝑘 is the clock cycle;
𝑡0 is the time when one data coming; 𝑑𝑒𝑙𝑎𝑦 (𝑥𝑝) is the clock delay
of the cell in the upper phase while 𝑑𝑒𝑙𝑎𝑦 (𝑥𝑠) for the lower one;
𝑡𝑠𝑒𝑡𝑢𝑝 is the setup time of cell, while 𝑡ℎ𝑜𝑙𝑑 is the hold time. The

NM

akak

−x(th) x(ts)

Figure 5: The comparison of the numerical distribution between
the Equantion (5) and the Equantion (6) (𝑘 = 5 in experiments).

second equation in Equation (1) can be easily violated under a high
operating frequency (small 𝑐𝑙𝑘). Given the specific clock setting,
we obtain the timing window:

−𝑡ℎ ≤ 𝑇𝑖𝑚𝑖𝑛𝑔_𝑊𝑖𝑛𝑑𝑜𝑤 ≤ 𝑡𝑠 ,

−𝑡ℎ = 1
4𝑐𝑙𝑘 + 𝑡𝑠𝑒𝑡𝑢𝑝 + 𝑡𝑝𝑑 ,

𝑡𝑠 = − 1
4𝑐𝑙𝑘 − 𝑡ℎ𝑜𝑙𝑑 + 𝑡𝑝𝑑 + 𝑡𝑟𝑑 .

(2)

where 𝑇𝑊 (𝑥𝑠 , 𝑥𝑝) = 𝑑𝑒𝑙𝑎𝑦 (𝑥𝑠) − 𝑑𝑒𝑙𝑎𝑦 (𝑥𝑝); when 𝑇𝑊 = −𝑡ℎ , 𝑥 =

−𝑥 (𝑡ℎ); when𝑇𝑊 = 𝑡𝑠 , 𝑥 = 𝑥 (𝑡𝑠). (𝑇𝑊 stands for𝑇𝑖𝑚𝑖𝑛𝑔_𝑊𝑖𝑛𝑑𝑜𝑤 .)
3.1.2 Timing-aware Analytical Function. ASAP integrates the max-
imum wirelength constraints of AQFP into the RePlace [4]:

𝐹𝑒 = 𝑒
𝐿𝑒−𝑊𝐿𝑚𝑎𝑥
𝑊𝐿𝑚𝑎𝑥 (3)

where 𝐸 is the set of nets that the cells are incident to and 𝑒 ∈ 𝐸;
𝐿𝑒 is the wirelength cost using the weighted average wirelength
model [7] to approximate half-perimeter wirelength (HPWL) accu-
rately; With𝑊𝐿𝑚𝑎𝑥 being the maximum wirelength, the Equan-
tion (3) will be punished exponentially when the wirelength over
𝑊𝐿𝑚𝑎𝑥 . However, this optimization goal focuses on the wirelength
constraints of AQFP and the overlap rate of the cell, while ignoring
the timing limitations of AQFP with the four-phase clocking.

More concretely, the four-phase clocking scheme and its one-
to-one cell connection can trigger timing violations easily. Since
under the high operating frequency, the delay of the zigzagging
clock of each cell has the same order of magnitude as the stage
delay so that it is challenging for a single cell with a narrow timing
window to capture the correct data. Accordingly, we introduce the
timing-aware analytical function and embed it into DREAMPlace,
which maps the cell position (𝑥𝑖 , 𝑦𝑖) into the weights of the neural
networks (NN) and performs NN training. The proposed timing-
aware analytical function is as follows:

min
∑︁
𝑒∈𝐸
(𝐹𝑒 + 𝛽𝑇 (𝑥)) + 𝜆𝐷 (𝑐) (4)

where to reduce timing violations, we model the timing penalty,
𝑇 (𝑥), as a separated adding item with a 𝛽 correction coefficient:

𝑇 (𝑥) =
{
0 if 𝑥 ∈ [−𝑥 (𝑡ℎ), 𝑥 (𝑡𝑠)]
𝑁𝑀 if 𝑥 ∈ (−∞,−𝑥 (𝑡ℎ))

⋃ (−𝑥 (𝑡𝑠), +∞) (5)

where 𝑥 (𝑡𝑠) and 𝑥 (𝑡ℎ) obtained in Equation (2) serve as the com-
mensurate delay length; 𝑁𝑀 can be set based on specific circuits.

3.1.3 Multi-k Approximation Strategy. Equation (5) is a non-smooth
Heaviside Function and will generate invalid gradients in NN train-
ing so that we apply the multi-k logic function to progressively

1323

DAC ’22, July 2022, San Francisco, CA, USA. Dong, Xie, and Li, et al.

approximate the Equation (5):

𝑇 (𝑥) = 𝑁𝑀

{
1
2 +

1
4 𝑡𝑎𝑛ℎ

{
𝑎𝑘 [−𝑥 − 𝑙 (𝑡ℎ)] +

1
4 𝑡𝑎𝑛ℎ {𝑎𝑘 [𝑥 − 𝑙 (𝑡𝑠)]}

}}
(6)

And Figure 5 presents the smooth effect of Equation (6) which is
amicable to the backpropagation of NN training. We asymptotically
approach the Equation (5) to reinforce the timing constraints in a
fine-grained wise. In the initialization of each k-stage, we model
the 𝛽 = 𝛽𝑘 to keep the numerical dimension uniform between the
timing effect and the wirelength effect:

𝛽𝑘 =

∑
𝑒∈𝐸 |𝜕𝐹𝑒 |∑
𝑒∈𝐸 |𝜕𝑇𝑥 |

(7)

3.2 Detailed Placement
In the detailed placement, we introduce three parts: (1) the timing-
aware dynamic programming technique, which minimizes the tim-
ing cost and the total wirelength of AQFP circuits with the fixed-
order cells under the spacing constraints and the wirelength con-
straints of AQFP. (2) the time-space regularization, which reorders
cells to reduce unresolvable timing violations in the fixed-order
dynamic programming. (3) the Tetris-like legalization incorporat-
ing timing constraints of AQFP, through which we finalize the
placement to ensure circuits execute properly.

3.2.1 Timing-aware Dynamic Programming. We ameliorate the cell
positions within each row. The algorithm is operated row by row
with other rows fixed. The mathematical formulation for this work-
flow can be simplified as follows:

min
𝑥𝑖

∑︁
𝑒∈𝐸

𝐿(𝑒), (8a)

s.t. 𝐿(𝑒) ≤𝑊𝐿𝑚𝑎𝑥 , ∀𝑒 ∈ 𝐸, (8b)
𝑥𝑖−1 +𝑤𝑖−1 ≥ 𝑥𝑖 − 𝐵𝐼𝑖 , 𝑖 = 2, . . . , 𝑁 , (8c)

𝑥𝑖−1 +𝑤𝑖−1 ≤ 𝑥𝑖 − 𝑝𝑚𝑖𝑛
𝑖 𝐼𝑖 , 𝑖 = 2, . . . , 𝑁 , (8d)

𝑥𝑖 ∈ {𝑥1𝑖 , 𝑥
2
𝑖 , . . . , 𝑥

𝑀
𝑖 }, 𝑖 = 1, 2, . . . , 𝑁 (8e)

𝑧𝑖 ∈ {0, 1}, 𝑖 = 1, 2, . . . , 𝑁 − 1, (8f)
where with 𝐼𝑖 being a binary variable, 𝐵 being a big positive con-
stant, (8c) and (8d) guarantee two horizontal-neighboring cells can
either be abutting or keeping a minimum spacing 𝑝𝑚𝑖𝑛

𝑖
. The two

equations can be integrated into 𝑥𝑖−1 +𝑤𝑖−1 = 𝑥𝑖 for 𝐼𝑖 = 0. Equa-
tion (8b) prevents wirelength violations. Equation (8e) ensures the
legal locations satisfying the horizontal spacing requirements.

This is a discrete optimization problem so that we simulate the
detailed placement as the shortest path problem and apply the
dynamic programming algorithm. We first exploit the Lagrangian
multiplier method to obtain the Lagrangian subproblem $ (𝑥 ; 𝜆):

argmin
𝑥𝑖

∑︁
𝑒∈𝐸

𝐿𝑒 +
∑︁
𝑒∈𝐸

𝜆𝑒 (𝐿𝑒 − 𝐿𝑚𝑎𝑥), (9a)

s.t. 𝜆𝑒 > 0, (9b)
𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (8𝑐) ∼ (8𝑓) . (9c)

In Figure 6, the blue circles indicate the candidate positions set
of each cell. With the 𝑁 being the number of cells in the current
phase, the 𝑀 denote the 𝑀 candidate positions. Integrating the
timing attribute andwirelength attribute of AQFP into the candidate

Start

x11

x21

xM1

x12

x22

xM2

x13

x23

xM3

x1
N

x2
N

xM
N

Target

c(s,
x1 1)

c(s, x11)

c(s, x 11)

c(s, x11) c(s, x11)

c(s, x 11)
c(s, x 11)

c(s, x
11)

Figure 6: The shortest path model for Lagrangian subproblem
$ (𝑥, 𝜆) . And the green line is the selected shortest path.
position, the cost of each edge is defined as follows:

𝑐 (𝑥𝑢𝑖−1, 𝑥
𝑣
𝑖) = 𝑆𝑃 (𝑥𝑢𝑖−1, 𝑥

𝑣
𝑖) +

∑︁
𝑒∈𝐸
(1 + 𝜆𝑒)𝑊𝐿𝑒 ·𝑇𝑃 (𝑥𝑢𝑖−1),

𝑆𝑃 (𝑥𝑢𝑖−1, 𝑥
𝑣
𝑖) =


0, if 𝑥𝑢

𝑖−1 +𝑤𝑖−1 = 𝑥𝑣
𝑖
or

𝑥𝑢
𝑖−1 +𝑤𝑖−1 ≤ 𝑥𝑣

𝑖
− 𝑝𝑚𝑖𝑛

𝑖
,

∞, others,

𝑇𝑃 (𝑥𝑢𝑖−1) =
{
1, if 𝑇𝑊 ,

𝑒−𝑡𝑠−𝑡ℎ+|𝑥
𝑢
𝑖−1−𝑡𝑠 |+ |𝑥𝑢𝑖−1+𝑡ℎ |, others.

(10)

where 𝑆𝑃 is the spacing cost keeping no overlap between adjacent
cells;𝑇𝑃 is the timing cost merging into the wirelength as a penalty
item, and 𝑇𝑊 follows Equantion (2). Since timing violations can
be improved or even eliminated by the subsequent time-space cell
regularization and timing-violation-free legalization, we set 𝑇𝑃 as
a soft constraint but in form of an exponential penalty.

We adopt the subgradient method to update the multiplier 𝜆 at
the 𝑘th iteration and gradually solve the generated subproblem. Ac-
cording to [6], 𝜆𝑘+1𝑒 is updated as: max

(
0, 𝜆𝑘𝑒 + 𝑡𝑘 (𝐿𝑒 −𝑊𝐿𝑚𝑎𝑥)

)
,

where 𝑡𝑘 controls the step size of updating.

Algorithm 1: Timing-aware Dynamic Programming

1 Given an ordered sequence of cells 1, 2, . . . , 𝑁 ;
2 𝜆𝑒 ← 1, ∀ 𝑒 ∈ 𝐸, 𝑝𝑟𝑒_𝑟𝑒𝑔𝑢𝑙𝑖𝑧𝑒𝑑 ← 𝑅𝑒𝑔𝑁𝑢𝑚;
3 while not converged and not reach maximum iteration do
4 Solve Lagrangian subproblem L(𝑥 ;𝜆) with the shortest path

algorithm;
5 Update 𝜆 according to Equation (11);
6 if 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ≥ 𝑝𝑟𝑒_𝑟𝑒𝑔𝑢𝑙𝑖𝑧𝑒𝑑 then
7 Preform Pre-Time-Space Cell Regularization;
8 end
9 end

10 Update the positions of the cells in one row.

Pre-Time-Space Cell Regularization. To alleviate the conflict
with the numerical solution space of the next stage, the time-space
cell regularization, we insert the pre-time-space cell regularization
in the last few iterations of the timing-aware dynamic programming.
Algorithm 1 illustrates the whole procedure on one row.
3.2.2 Time-Space Cell Regularization. The fixed-order strategy
compresses the search space of the dynamic programming. How-
ever, the dynamic order is necessary for timing optimization when
AQFP circuits contain compact cells, such as sorter32. To fix re-
maining timing violations, we introduce the time-space cell regular-
ization. Specifically, we pin the cell in the previous rows and adjust
the position of the cell. As shown in Figure 7(a), when no timing
violations, the penalty for the wire is 1 and the cell has no moving

1324

TAAS: A Timing-Aware Analytical Strategy for AQFP-Capable Placement Automation DAC ’22, July 2022, San Francisco, CA, USA.

Table 1: The comparison on the total HPWL and the timing performance between baselines and TAAS.

Circuits GORDIAN-based[8] TAAS Impro. Ratio

HPWL Buffers Violations
(5 GHz)

Frequency
(GHz)

WNS
(ps) HPWL Buffers Violations

(5 GHz)
Frequency
(GHz)

WNS
(ps)

WLI.
Ratio

FRI.
Ratio

WNS.
Ratio

adder8 10948 24 # 6.1 # 12360 24 # 6.2 # 12.90% 1.64% #
apc32 15915 26 # 5.8 # 15915 26 # 5.8 # 0 0 #
c432 51009 46 # 5.4 # 52208 45 # 5.5 # 2.35% 1.85% #

decoder 141151 34 360 4.3 -8.8 156213 33 26 5.1 -1.4 10.67% 18.60% 3.50%
sorter32 168208 29 274 4.4 -6.9 180427 29 29 4.7 -3.3 7.26% 6.82% 1.74%
apc128 254068 117 2157 2.8 -40.7 245416 110 317 3.9 -10.1 -3.41% 39.29% 12.72%
c499 430659 62 1978 3.1 -29.9 431108 62 234 4.3 -8.9 1.00% 38.71% 9.13%
c1355 422556 58 2011 3.1 -31.4 426099 58 257 4.1 -9.1 0.84% 32.26% 9.64%
c1908 358271 67 1720 3.3 -25.5 361071 66 213 4.4 -6.9 0.78% 33.34% 8.25%

Note: *HPWL are the summation of all nets measured using 𝜇𝑚; *Violations are test under 5GHz; *Frequency is the maximum operating frequency; *Frequency is the maximum
operating frequency; *WLI Ratio is the increased ratio of the total wirelength; *FRI Ratio is the increased ratio of the maximum operating frequency; *WNS Ratio is the decrease ratio
of the worst negative slack.

AC

AC
BA C D E

Phase i-1

Phase i

AC

AC
B AC D E

AC

AC
CA D E F

Phase i-1

Phase i

AC

AC
B CA DEFB

(a) (b)

Figure 7:Two examples of the time-space cell regularization. The up-
per side shows 𝑝ℎ𝑎𝑠𝑒𝑖−1%4 = 1 and the lower side shows 𝑝ℎ𝑎𝑠𝑒𝑖−1%4 =
3. (a) Before the cell regularization, there are 4 timing violations (red
lines) on the upper side and 3 on the lower side. (b) After the cell
regularization, cells with timing violations will be driven close to
the AC entrance.

tendency. If timing violations exist in a data path, the corresponding
wire will be punished by 𝑎(1 + 𝑡𝑠𝑙𝑎𝑐𝑘) or 𝑎 1

1+𝑡𝑠𝑙𝑎𝑐𝑘 (𝑝ℎ𝑎𝑠𝑒𝑖−1%4 = 1
or 𝑝ℎ𝑎𝑠𝑒𝑖−1%4 = 3), where 𝑡𝑠𝑙𝑎𝑐𝑘 denotes the value part beyond
the timing window and 𝑎 restricts the new wirelength <𝑊𝐿𝑚𝑎𝑥 .
The cell will be approaching the clock entrance in that phase, re-
ducing the phase difference with the connected cells. Finally, we
employ the Tetris-like legalization modified by the four-phase tim-
ing model (timing-aware legalization). Maintaining the legal timing,
the legalization sorts the cells in the row by ascending x-coordinate
and places them from left to right without overlap. After the time-
space cell regularization, the position of the cell can be changed as
Figure 7(b). The relevant details are shown in Algorithm 2.
3.2.3 Overall Detailed Placement. The overall detailed placement
shown in Algorithm 3. Lines 1 ∼ 3 performs the fixed-order timing-
aware dynamic programming, and 4 ∼ 8 for the time-space cell
regularization to reorder the cells in each row. Then insert a row of
buffers between the two rows with the violations and then conduct
the time-space cell regularization as described in rows 9 ∼ 16. The
procedure terminates until there are no violations in the circuit. Fi-
nally, we finalize the placement with the timing-aware legalization.

4 IMPLEMENTATION AND RESULTS
We implement our framework in Python and the procedure runs
on an AMD Ryzen Threadripper 2920X Processor with 12 high-
performance cores and 24 parallel threads. We test our proposed

Algorithm 2: Time-Space Cell Regularization

1 Given a vector 𝑣𝑒𝑐 includes cells that needs to be relocated;
2 Let 𝑎 be the penalty for the wire with timing violations, 𝑎← 𝑎𝑚𝑎𝑥 ;
3 foreach 𝑐𝑒𝑙𝑙𝑖 ∈ 𝑣𝑒𝑐 do
4 𝑓 𝑙𝑎𝑔 = 𝐹𝑎𝑙𝑠𝑒 ;
5 while 𝑓 𝑙𝑎𝑔 == 𝐹𝑎𝑙𝑠𝑒 do
6 𝑠𝑢𝑚← 0, 𝑤𝑒𝑖𝑔ℎ𝑡 ← 0, 𝑣𝑘𝑒𝑝 ← 𝑐𝑒𝑙𝑙𝑖 .𝑥 ;
7 foreach 𝑐𝑒𝑙𝑙 𝑗 connects with 𝑐𝑒𝑙𝑙𝑖 do
8 if (𝑡𝑠𝑙𝑎𝑐𝑘 ← TimingCheck(𝑐𝑒𝑙𝑙 𝑗 ,𝑐𝑒𝑙𝑙𝑖)) ! = 0 then
9 𝑠𝑢𝑚 + = (𝑎 (1 + 𝑡𝑠𝑙𝑎𝑐𝑘)𝑐𝑒𝑙𝑙𝑖 .𝑥) or

(𝑎
1+𝑡𝑠𝑙𝑎𝑐𝑘 𝑐𝑒𝑙𝑙𝑖 .𝑥);

10 else
11 𝑠𝑢𝑚 + = 𝑐𝑒𝑙𝑙𝑖 .𝑥 ;
12 end
13 𝑤𝑒𝑖𝑔ℎ𝑡 + = 1;
14 end
15 𝑐𝑒𝑙𝑙𝑖 .𝑥 ← 𝑠𝑢𝑚

𝑤𝑒𝑖𝑔ℎ𝑡
;

16 if WirelengthCheck() == 𝐹𝑎𝑙𝑠𝑒 then
17 𝑎 − = 𝛿 , 𝑐𝑒𝑙𝑙𝑖 .𝑥 ← 𝑣𝑘𝑒𝑝 , 𝑓 𝑙𝑎𝑔 = 𝐹𝑎𝑙𝑠𝑒 ;
18 else
19 𝑓 𝑙𝑎𝑔 = 𝑇𝑟𝑢𝑒 ;
20 end
21 end
22 end
23 Timing-aware Legalization().

placement framework using classic benchmark circuits for AQFP
testing [3], including 32-bit approximate parallel counter (apc32),
8-bit Kogge-Stone adder (adder8), decoder, 27-channel interrupt
controller (c432), 32-bit sorter (sorter32), 32-bit approximate paral-
lel counter (apc128). We also validate it on the ISCAS’85 benchmark
circuits to demonstrate the effectiveness of our proposed frame-
work on large circuits. In Table 1, we compare our results with the
GORDIAN-based AQFP placement method in [8].
4.1 Results of the Overall Workflow of TAAS
As shown in Table 1, the GORDAN-based framework can gener-
ate placement results with a shorter wirelength (5% shorter on
average for small circuits, e.g. adder8, apc32, c432), which is not
an obvious advantage on larger circuits compared to our method
(2.4% shorter on average for large circuits, e.g. decoder, sorter32,

1325

DAC ’22, July 2022, San Francisco, CA, USA. Dong, Xie, and Li, et al.

Algorithm 3: Overall Detailed Placement

1 foreach 𝑟𝑜𝑤 ∈ 𝑁𝑒𝑠𝑡𝑙𝑖𝑠𝑡 do
2 Timing-aware Dynamic Programming (𝑟𝑜𝑤);
3 end
4 while not converge do
5 foreach 𝑟𝑜𝑤 ∈ 𝑁𝑒𝑠𝑡𝑙𝑖𝑠𝑡 do
6 Time-Space Cell Regularization(𝑟𝑜𝑤);
7 end
8 end
9 while wire & timing violation exists do
10 foreach 𝑟𝑜𝑤 ∈ 𝑁𝑒𝑠𝑡𝑙𝑖𝑠𝑡 do
11 if wire & timing violation exists then
12 Insert a Buffer row;
13 Time-Space Cell Regularization(𝑟𝑜𝑤);
14 end
15 end
16 end
17 RowDistanceAjustment();
18 Timing-aware Legalization().

apc128, c499, c1355, c1908). However, the GORDIAN-based method
suffers from timing violations when the circuits target at a high
clock frequency, since it does not analyze the timing constraints of
AQFP circuits with the deep pipeline architecture. At 5 GHz, the
generated placement results can work correctly for small circuits
such as the adder8, while serious timing violations will occur for
a slightly larger circuit such as the sorter32, not to mention the
circuits with more complex functions (e.g. c499, c1355, c1908).

In contrast, TAAS improves the timing performance extremely
while maintaining comparable advantages on the total wirelength.
For small circuits, such as adder8, apc32, c432, TAAS can further
increase the FRI of the circuit by 0% ∼ 12.9%. For large circuits with
complex logic such as apc128, c499, c1355, c1908, TAAS can increase
the FRI by 30%∼40% with a negligible -3.41% ∼ 1% increase of the
WLI compared with the GORDIAN-based placement. In brief, TAAS
improves the FRI of the circuits by 19.2% on average at the cost of the
WLI increase of 3.5% on average, and lessens the WNS of the circuit
by 5.0% on average. Note that our framework does not augment
the number of buffers while optimizing the timing performance,
and reaches a slight decrease in buffers, such as apc128.
4.2 Results of TAAS without Time-Space Cell

Regularization
We implement TAAS without the cell regularization to show the
effects of the timing-aware dynamic programming and the time-
space cell regularization respectively as shown in Table 2. For small
circuits (adder8, apc32, c432), TAAS without the cell regularization
achieves the same effect as the complete TAAS workflow. It implies
that the timing-aware dynamic programming is sufficient to solve
the timing violations of small circuits. For larger circuits (sorter32,
decoder), the FRI increase is a little limited (6.98% vs. 18.6%, 2.27
vs. 6.82%), even though WLI with a <5% increase. Moreover, if the
complete workflow on the decoder, its frequency can be increased
to 5.1 GHz (>5 GHz), which is higher than the target frequency as
Table 1. It proves that the time-space cell regularization plays a
pivotal role for circuits containing compact cells. For more complex
circuits (apc128, c499, c1355, c1908), the WLI has only a slight

Table 2: The comparison on the total HPWL and the maxi-
mum frequency between baselines and TAAS (w/o time-space
cell regularization).

Circuits GORDIAN-based
TAAS (w/o Cell
Regularization) Impro. Ratio

HPWL Frequency
(GHz) HPWL Frequency

(GHz)
WLI.
Ratio

FRI.
Ratio

adder8 10948 6.1 12360 6.2 12.90% 1.64%
apc32 15915 5.8 15915 5.8 0 0
c432 51009 5.4 52208 5.5 2.35% 1.85%

decoder 141151 4.3 147841 4.6 4.74% 6.98%
sorter32 168208 4.4 172124 4.5 2.33% 2.27%
apc128 254068 2.8 255169 3.2 0.43% 14.29%
c499 430659 3.1 434214 3.9 0.83% 25.81%
c1355 422556 3.1 422919 3.7 0.09% 19.35%
c1908 358271 3.3 359142 3.9 0.24% 18.18%

increase of <1%, with the FRI being optimized by 19.4% on average. It
shows that the timing-aware dynamic programming can effectively
improve timing performance for circuits with relatively scattered
cells after the placement.
5 CONCLUSION
In this work, we propose a timing-aware framework, TAAS, for
the AQFP placement, which is the first to simultaneously optimize
the timing performance and spacing constraints of AQFP in the
physical design. Experiments show that TAAS can greatly improve
timing performance with a negligible HPWL increase.

REFERENCES
[1] Ruizhe Cai, Olivia Chen, Ao Ren, Ning Liu, Caiwen Ding, Nobuyuki Yoshikawa,

and Yanzhi Wang. 2019. A majority logic synthesis framework for adiabatic
quantum-flux-parametron superconducting circuits. In Proceedings of the 2019 on
Great Lakes Symposium on VLSI. 189–194.

[2] Yi-Chen Chang, Hongjia Li, Olivia Chen, Yanzhi Wang, Nobuyuki Yoshikawa,
and Tsung-Yi Ho. 2020. ASAP: an analytical strategy for AQFP placement. In 2020
IEEE/ACM International Conference On Computer Aided Design (ICCAD). IEEE,
1–7.

[3] Olivia Chen, Ruizhe Cai, Yanzhi Wang, Fei Ke, Taiki Yamae, Ro Saito, Naoki
Takeuchi, and Nobuyuki Yoshikawa. 2019. Adiabatic quantum-flux-parametron:
Towards building extremely energy-efficient circuits and systems. Scientific
reports 9, 1 (2019), 1–10.

[4] Chung-Kuan Cheng, Andrew B Kahng, Ilgweon Kang, and Lutong Wang. 2018.
Replace: Advancing solution quality and routability validation in global place-
ment. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 38, 9 (2018), 1717–1730.

[5] John Clarke and Alex I Braginski. 2006. The SQUID handbook: Applications of
SQUIDs and SQUID systems. John Wiley & Sons.

[6] Michael Held, PhilipWolfe, andHarlan P Crowder. 1974. Validation of subgradient
optimization. Mathematical programming 6, 1 (1974), 62–88.

[7] Meng-Kai Hsu, Yao-Wen Chang, and Valeriy Balabanov. 2011. TSV-aware analyt-
ical placement for 3D IC designs. In Proceedings of the 48th Design Automation
Conference. 664–669.

[8] Hongjia Li, Mengshu Sun, Tianyun Zhang, Olivia Chen, Nobuyuki Yoshikawa,
Bei Yu, YanzhiWang, and Yibo Lin. 2021. Towards AQFP-Capable Physical Design
Automation. In Design, Automation and Test in Europe Conference.

[9] Konstantin K Likharev and Vasilii K Semenov. 1991. RSFQ logic/memory family:
A new Josephson-junction technology for sub-terahertz-clock-frequency digital
systems. IEEE Transactions on Applied Superconductivity 1, 1 (1991), 3–28.

[10] Yibo Lin, Zixuan Jiang, Jiaqi Gu, Wuxi Li, Shounak Dhar, Haoxing Ren, Brucek
Khailany, and David Z Pan. 2020. Dreamplace: Deep learning toolkit-enabled gpu
acceleration for modern vlsi placement. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 40, 4 (2020), 748–761.

[11] Sergey K Tolpygo, Vladimir Bolkhovsky, Terence J Weir, Alex Wynn, Daniel E
Oates, Leonard M Johnson, and Mark A Gouker. 2016. Advanced fabrication pro-
cesses for superconducting very large-scale integrated circuits. IEEE Transactions
on Applied Superconductivity 26, 3 (2016), 1–10.

1326

	MAIN MENU
	Go to Previous View
	Help
	Search
	Print
	Author Index
	Table of Contents

