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Abstract—Building a knowledge graph is a time-consuming
and costly process which often applies complex natural language
processing (NLP) methods for extracting knowledge graph triples
from text corpora. Pre-trained large Language Models (PLM)
have emerged as a crucial type of approach that provides readily
available knowledge for a range of Al applications. However, it is
unclear whether it is feasible to construct domain-specific knowl-
edge graphs from PLMs. Motivated by the capacity of knowledge
graphs to accelerate data-driven materials discovery, we explored
a set of state-of-the-art pre-trained general-purpose and domain-
specific l anguage m odels t o e xtract k nowledge triples f or metal-
organic frameworks (MOFs). We created a knowledge graph
benchmark with 7 relations for 1248 published MOF synonyms.
Our experimental results showed that domain-specific PLMs con-
sistently outperformed the general-purpose PLMs for predicting
MOF related triples. The overall benchmarking results, however,
show that using the present PLMs to create domain-specific
knowledge graphs is still far from being practical, motivating
the need to develop more capable and knowledgeable pre-trained
language models for particular applications in materials science.

Index Terms—Knowledge Graph, Pre-trained Language
Model, Prompt Probing, Materials Science, Metal-Organic
Frameworks

I. INTRODUCTION

Knowledge graphs (KG) are a hallmark for representing
domain knowledge in a graph structure with edges being a
set of triples in the format of (head,predicate,tail). Each
triple captures a relationship (the predicate) between a subject
entity (the head) and an object entity (the tail). A domain
knowledge graph provides an easy way to query and rea-
son about domain knowledge. Despite this ease, building a
knowledge graph is a time-consuming and costly process,

978-1-6654-8045-1/22/$31.00 ©2022 IEEE 3651

Fernando J. Uribe-Romo
Kyle Langlois
Jacob Furst
Department of Chemistry
University of Central Florida
Orlando, FL, USA
fernando @ucf.edu

Diego A. Gémez-Gualdrén
Fernando Fajardo-Rojas
Katherine Ardila
Chemical and Biological Engineering
Colorado School of Mines
Golden, CO, USA
dgomezgualdron @mines.edu

Corey A. Harper
Ron Daniel Jr.
Elsevier Labs
New York, NY, USA
{c.harper,r.daniel } @elsevier.com

given the aim to extract and organize information from a wide
variety of sources including vast amount of unstructured texts.
Extracting triples from textural sources requires complex,
costly, and specific natural language processing methods [5],
[35]. For example, in data-driven materials science, researchers
constantly trudge through various journal articles, patents, or
company reports to glean useful research and experimental
results. The growing number of scientific publications and the
wide variety of ways that scientists publish their findings have
posed a significant challenge to building knowledge graphs [3],
[54].

Pre-trained large Language Models (PLM) such as BERT
[16], RoBERTa [31], GPT-3 [10], and TS5 [40] have emerged
as a crucial type of approach that provides readily available
knowledge to a range of Al applications [48]. PLMs have
attracted a significant attention in AI and NLP communities.
A recent emerging paradigm leveraging the PLMs is to
use textual prompts to solve problems. For example, for
Knowledge Graph Construction (KGC), given a piece of
text “HKUST-1 is a metal organic framework.”,
we can use a textual prompt “HKUST-1 is a metal
organic framework. HKUST-1 contains ___
which is a metal.” to ask a PLM to fill up the
blank with a chemical element such as Cu or Copper. The
downstream applications using this paradigm are reformulated
to predict a missing or next word using a PLM. We designate
this paradigm as prompting on pre-trained large language
models or prompt@PLM for short.

In a recent challenge for Knowledge Base Construction from
Pre-trained Language Models (KBC-LM) ! which is collocated

Thttps://Im-kbe.github.io/
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Fig. 1. The knowledge graph of metal-organic frameworks (MOF-KG) de-
scribes the structural, chemical, electric, and physical properties of MOFs that
were gleaned from multiple disparate sources. In this study, we investigated
the performance of a set of pre-trained language models for extracting the
information of a MOF depicted in the shaded ovals of the figure.
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with the 21st International Semantic Web Conference (ISWC-
2022), participants constructed knowledge bases in general
domains from a set of pre-trained language models including
BERT-related LMs [16], RoBERTa, Transformer-XL, GPT-
2, BART, etc. Various systems including our own [2], [19]
have achieved the overall macro average recall ranging from
53% to 69%, overall macro average precision from 73% to
80%, and overall macro average F1-scores ranging from 49%
to 67%, a significant improvement to the existing baseline
LAMA (LAnguage Model Analysis) system [38] (ref. Table
V).

Inspired by this effort and the promising results of KBC-
LM@ISWC-2022, we turn our attention to an under-explored
area which aims to directly extract structured knowledge from
PLMs for scientific domains, for example, materials science.
A feasible approach of doing prompt@PLM for scientific
domains would greatly reduce the cost and expedite the
process of knowledge graph construction. Motivated by data-
driven materials discovery, we created a knowledge graph
benchmark for a particular type of material, metal-organic
frameworks (MOF), and investigated a set of state-of-the-art
general-purpose and domain-specific PLMs?. Figure 1 shows
the ontological definition for the knowledge graph of metal-
organic frameworks (MOF-KG). Our benchmark framework
consists of triples described by the shaded entities and their
associated relationships.

This rest of the paper reports the study and our findings.
In particular, Section II discusses related work. Section III
describes MOFs and the information captured by the MOF-
KG. Section IV details the process of creating the MOF-KG
benchmark. Section V reviews the PLMs we chose to explore.
Section VI describes the relation-specific prompts for LM
probing. Section VII outlines the experiments. Section VIII
presents the results and findings. Finally, Section IX points to
future work and concludes the paper.

Zhttps://github.com/anyuanay/MOF_KG_LAMA
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II. RELATED WORK

An increasing number of studies have been reported using
prompt@PLM to solve text classification [10], [20], [41], [42],
named-entity recognition [14], natural language inference [20],
[41], [42], sentiment analysis [28], relation extraction [12],
[22], text summarization [1], and parsing [13]. For Knowledge
Base Construction from LM Probing, the seminal work is
LAMA (LAnguage Model Analysis) [38] which manually
created cloze templates to probe knowledge in PLMs. Few-
shot learning on the original LAMA datasets has also been
evaluated [24]. More studies have been reported on probing
PLMs for complicated knowledge [39], temporal knowledge
[17], and domain specific knowledge such as BioLAMA [45]
and MedLAMA [32]. However, applications of PLMs in
materials science are just scarcely explored.

III. METAL-ORGANIC FRAMEWORKS (MOF)
KNOWLEDGE GRAPHS (KG)

In this section, we introduce the type of material, metal-
organic frameworks. The underlined phrases in the following
description highlight the concepts and associations we seek
to capture in the knowledge graph. Metal-Organic Frame-
works (MOFs) are a class of modular, porous crystalline
materials that have great potential to revolutionize applications
such as gas storage, molecular separations, chemical sensing,
catalysis, and drug delivery. The crystal structures of MOFs
can be (conceptually) modified by “swapping” constituent
building blocks corresponding to metal-based clusters and
organic linkers. These building blocks are interconnected in
a pattern described by an underlying net. Figure 2 shows the
framework structure of the MOF with the synonym ‘MOF-3’
and its underlying net which is coded as ‘srs’ using the RCSR
database [37].
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Fig. 2. The Underlying Net and Framework of MOF-3

The scientific potential of MOFs is primarily due to their
usually high surface area and exceptionally tunable properties
[50]. But the combinatorics of such building blocks means that
chemists have access to a (not fully explored) “material design
space” of trillions of structures. The sheer number has made
the identification of optimal MOFs (and subsequent) synthesis
for a given application a significantly challenging task. As
a result, considerable effort have been put into developing
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organic linker (o)

# | Relation Description Example
1 | hasType The published name (s) is a type of | (MROF-1,
MOF material (o) hasType,
[MOF, Metal-Organic Framework])
2 | hasMetals The named MOF (s) has (HKUST-1,
metal clusters (0) hasMetals,
[Cu, Copper])
3 | hasOrganicLinker | The named MOF (s) has (MOZIF-1,

hasOrganicLinker,
[O=N(=0)C1=NC=C[N]1])

4 | hasMOFFamily The named MOF (s) is in (TMU-60,
the MOF family (o) hasMOFFamily,
[Zn-oxide, zinc oxide])
5 | hasCrystalSystem | The named MOF (s) has (URMOF-4,
a crystal system (0) hasCrystalSystem,
[trigonal])
6 | hasTopology The named MOF (s) has (IRMOF-61,
a topology code (o) hasTopology,
[peu])
7 | hasSpaceGroup The named MOF (s) has (NTU-5,
a space group (0) hasSpaceGroup,
[C2/c])

TABLE 1
MOF-KG BENCHMARK RELATION NAMES, DESCRIPTIONS, AND EXAMPLE TRIPLES. IN THE DESCRIPTION, (S) INDICATES SUBJECTENTITY AND (0)
FOR OBJECTENTITY.

effective computational techniques to screen and isolate can-
didate MOF structures for the application of choice. Previous
efforts include the creation of large MOF databases which
contain both synthesized and “hypothesized” MOF structures
[4]. However, a large amount of critical information about
MOF properties and synthesis procedures remains scattered in
scientific literature. Here, it is simply impossible for a human
to scan and glean relevant information [49]. A MOF knowl-
edge graph that extracts and integrates data from both MOF
databases and scholarly articles presents a novel approach to
identifying MOF prediction, discovery, and synthesis.

A MOF-KG requires an ontology that defines member
terms. Due to the rapid development in the related field,
there is not a general agreed system of nomenclature for
describing MOFs and associated activities. Prior initiatives
have attempted to standardize terminologies [7], [37], however,
the diversity in the focus and the scientific inquiry can lead to a
variety of terminological usages for this class of compounds.
For the purpose of building the MOF-KG, we analyzed the
structural and chemical information of many MOFs in the
Cambridge Structural Database (CSD) [33] and propose an
MOF ontology as illustrated in Figure 1. In the next section,
we describe the process of generating triples for the knowledge
graph benchmark.

IV. BUILDING THE MOF-KG BENCHMARK

We selected a set of 7 relations, each covering an
aspect of MOF. For each relation, we generated a set
of (SubjectEntity, relation, ObjectEntity) triples as ground
truth. Table I lists the relations along with their descriptions
and ground truth examples.

We generated the benchmark data based on the MOF collec-
tion [33] in the Cambridge Structural Database (CSD) curated
by the Cambridge Crystallographic Data Centre (CCDC), a
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world-leading organization that compiles and maintains small-
molecule organic and metal-organic crystal structures. The
CSD MOF collection contains approximately 16,300 suc-
cessful MOFs structures (crystals) that have been realized
experimentally, with crystal structure measured and solved for
using diffraction techniques (X-rays, neutrons, electrons). We
first queried the CSD MOF collection to extract 1,248 MOFs
with published synonyms. We use these synonyms as MOF
names for further data collection as illustrated below. The
underlined phrases correspond to the types of triples captured
in the benchmark.

o The 1,248 names are considered as a type of MOF (i.e,
Metal-Organic Framework) material.

e We queried the CSD crystal database to extract the
information about crystal system and space group.

o We used the CSD ConQuest tool to identify a MOF’s
family by applying the search criteria developed by
Moghadam et al. in [34]. There are six prototypical MOF
families identified: Zr-oxide nodes (e.g. UiO-66), Cu—Cu
paddlewheels (e.g. HKUST-1), ZIF-like, Zn-oxide nodes,
IRMOF-like, and MOF-74/CPO-27-like materials.

o Finally, we leveraged the MOFid system® developed
by Bucior et al. in [11] to identify a MOF’s metals,
organic linker, and topology.

After building the MOF-KG benchmark, we probed the
pre-trained language models to measure their capabilities for
constructing the knowledge graph.

V. PRE-TRAINED LANGUAGE MODELS

General Architecture. Standard language models are trained
to predict text in an autoregressive fashion, that is, predicting

3https://github.com/snurr-group/mofid
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the tokens in the sequence one at a time. The sequence gener-
ally progresses from left to right, but alternative sequences
can also be pursued. Representative examples of modern
pre-trained left-to-right autoregressive LMs include GPT-3
[10]. A disadvantage of the autoregressive language models
lies in the directionality of processing text. To predict text
based on surrounding text, masked language models (MLM)
have been developed that use bidirectional objective function.
Representative pre-trained models using MLMs include BERT
[16], ERNIE [53] and many variants. An alternative class is
the prefix LM, a left-to-right LM that decodes a target text
y conditioned on a prefixed sequence x as for translation.
Example prefix LMs include UniLM 1-2 [6], [18] and ERNIE-
M [36]. Another approach is the encoder-decoder model which
uses a left-to-right LM to decode a target text y conditioned
on a separate encoder for text  with a fully-connected mask.
Example encoder-decoder pre-trained models include T5 [40],
BART [27], MASS [44] and their variants.

Chosen PLMs for this Study. For triple extraction, we focus
on Masked Language Models (MLM) given that they are
trained to predict text by surrounding context. We aim to probe
both general-purpose and domain-specific PLMs for construct-
ing the MOF-KG. We selected two domain-specific BERT-like
models trained on materials science corpora, MatBERT [46]
and MatSciBERT [21]. We also selected the SciBERT PLM
[8] trained on general science related text. For general-purpose
PLMs, we chose the BERT large-cased PLM and an optimized
variation, RoBERTa [31]. Table II lists the characteristics of
the chosen PLMs for this study.

PLM Size Training Corpora
BERT-large 340M BooksCorpus (800M tokens) and
parameters | English Wikipedia (2.5B tokens)
RoBERTa 355M BooksCorpus (800M tokens) and
parameters | English Wikipedia (2.5B tokens)
CC-NEWS (63M news articles)
OPENWEBTEXT (36GB web content)
STORIES (31GB story text)
SciBERT similar to 1.14M scientific papers from Semantic
BERT Scholar (3.1 billion tokens)
MatBERT similar to two million peer-reviewed
BERT materials science journal articles
(61 million paragraphs, 8.8B tokens)
MatSciBERT | similar to continue pre-training SCiBERT
SciBERT with 150K papers from Elsevier
Science Direct Database spanning
four materials science families:
inorganic glasses, metallic glasses,
alloys, and cement and concrete

TABLE I
CHARACTERISTICS OF THE CHOSEN PLMS

VI. PROMPT DESIGN FOR PROBING THE PLMS

In general, there are two types of prompts. Cloze prompts
are those which fill in blanks in a textual string. Prefix prompts
differ in that they continue filling a prefixed string, rather than
just a blank token. Prompts can be designed manually based
on human intuition [10], [38], [41] or automatically through
mining [26], paraphrasing [23], [52], gradient-based search
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1. [SUB] contains [MASK] which is a metal.
[SUB] contains a metal which is [MASK].

3. [SUB] is a metal organic framework. [SUB] contains [MASK]
which is a metal.

4. As a metal organic framework, [SUB] contains a metal which
is [MASK].

5. [SUB] is a MOF. [SUB] has SBU metal [MASK].

6. [SUB] is MOF. [SUB] contains [MASK].

7. [SUB] contains [MASK].

8. [SUB] is a metal organic framework. [SUB] contains [MASK].

9. The SBU of [SUB] is [MASK].

10. [SUB] is a metal organic framework structure composed of metal
cluster [MASK].

11. [SUB] is a metal organic framework.
[SUB] has SBU metal [MASK].

12. [MASK] was used as metal center in the
synthesized [SUB] material.

TABLE III
THE TEMPLATES FOR GENERATING PROMPTS FOR THE RELATION
“HASMETALS”

[47], generation [9], and scoring [15]. In addition to discrete
hard prompts, researchers have also developed continuous soft
prompts that interact directly with LMs in the embedding
space. Soft prompts have their own parameters that can be
tuned through different strategies including prefix tuning [29],
hard-prompt initialized tuning [55], and hybrid tuning [30].

In this study, we focus on manually developing templates
for generating prompts. A template modifies the original
text by adding extra tokens. For example, the template
“[SUB] is a metal organic framework. [SUB]
contains [MASK] which is a metal.” generates
the prompt we used for Knowledge Graph Construction
(KGC), where “[SUB]” corresponds to the SubjectEntity
in the original text, and the token “[MASK]” stands for a
blanked-out ObjectEntity to be filled up. In our case, the
original text is a triple such as “(HKUST-1, hasMetals,
Copper)”. For each relation, we crafted 12 different
templates for generating prompts. Each template is designed
carefully based on analyzing the relevant publications that
report some MOFs’ structural and property information. Table
III displays the 12 templates for the relation hasMetals.
The templates designed for other relations are available in
the Jupyter notebooks containing experiments in the github
repository here (link provided in Footnote 2).

Given a triple (SubjectEntity, predicate, ObjectEntity)
in the benchmark dataset, a template will generate a prompt
by replacing [SUB] with the SubjectEntity. The generated
prompt is sent to a PLM to predict the ObjectEntity by filling
up the [MASK] in the prompt. In next section, we describe the
experimental process and outline how to evaluate the answers
returned by a PLM.

VII. EXPERIMENTS AND EVALUATION

We probed the 5 selected PLMs (Table II) using 7 relations
(Table I) from the MOF-KG. Each relation is instantiated as
a number of triples. Due to the limits of the data collection
process (Section IV), not all the 1,248 named MOFs have
complete number of triples for all relations. The minimum
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number of triples for a relation (hasFamily) is 393, the
maximum number of triples (e.g., hasType) is 1,248, and the
total number of triples is 7,253. For each triple, 12 prompts
are generated by the templates of the associated relation. After
receiving the prompts, a PLM predicts the ObjectEntity by
returning a list of ranked answers in the PLM’s vocabulary.
All the benchmark data and experimental code are available
in the public github repository (link provided in Footnote 2).
Evaluation Metric. In our benchmark dataset, a triple can
be correctly filled up by one or more ObjectEntitys, each of
which can contain one or more tokens, or even a SMILES
string representing a molecular structure. We use top-k accu-
racy (acc@k), which is 1 if any of the top-k answers returned
by a PLM matches an ObjectEntity, and is 0 otherwise.
We use exact case-insensitive string matching to determine
whether a returned answer matches an ObjectEntity. Formally,
let M be the total number of triples for probing a relation, let
N be the number of triples that have an ObjectEntity matched
by a predicted answer in the top-k list returned by a PLM.
Then, accQk = % We evaluate the performance by acc@k,
where k € {1,5,10,50}.

VIII. RESULTS AND DISCUSSION

Results. We first evaluate the overall performance of the cho-
sen PLMs in terms of predicting MOF related triples. Figure
3 shows the average acc@1, acc@5, acc@10, and acc@50
of each PLM over all the triples. The figure clearly indicates
that the domain-specific PLM, MatBERT, outperformed all the
other PLMs in all the metrics.

0.4

03
02
01 I I
o -I ml T

BERT MatBERT MatSciBERT RoBERTa
Pre-trained Language Models

Average Accuracy of All Relations

SciBERT

)

Fig. 3. For 5 individual PLMs: the average accuracy at top-k of 7 MOF-KG
relations, k = 1, 5, 10, 50

Next, we evaluate the performance of the chosen PLMs on
predicting MOF related triples for individual relations. Figure
4 show the acc@1, acc@5, acc@10, and acc@50 of each PLM
predicting the triples of the 7 individual relations. The figure
indicates that MatBERT outperformed other PLMs in 4 out 7
cases for all metrics. For the relation hasFamily, the BERT
large-cased model has the best performance. For the relation
hasTopology, the SciBERT has better performance on acc@5
and acc@10 than MatBERT, while MatBERT outperformed
SciBERT on acc@50. Finally, no PLM could correctly predict
any ObjectEntitys for the relation hasLinker. Since all the
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ObjectEntitys of the relation hasLinker are SMILES strings
such as [O—]C(= O)clcee(ecl)clece(ecl)C(= O)[O—], all
the current PLMs are limited in predicting such an object.
An interesting test for future domain-specific PLMs would be
to have special processing of SMILES strings or other non-
natural language inclusions such as mathematical formulas.

Table IV shows the performance comparison of several
published benchmarking systems for knowledge base construc-
tion from PLMs. All the systems are suffixed with ‘LAMA’
which stands for LAnguage Model Analysis. The original
baseline LAMA [38] system probes general knowledge with
manually-designed prompts. BioLAMA [45] is a benchmark-
ing system on biological knowledge with both manually-
designed (marked as Manual_BioLAMA) and automatically-
learned prompts (marked as Opti._BioLAMA). MedLAMA
[32] developed a benchmark from the Unified Medical Lan-
guage System (UMLS) Metathesaurus. For probing PLMs,
MedLAMA applied a self-supervised contrastive approach
that adjusted the underlying PLMs. The last row, MOF-KG
LAMA, is our benchmarking system on probing MOF-related
knowledge from PLMs. Each benchmarking system probed
multiple general and domain-specific PLMs. We extracted the
best available acc@k results achieved by a PLM from the
respective publications. The values of acc@1 show that there is
still a significant gap between constructing general knowledge
bases from PLMs (the baseline) vs. domain-specific ones (all
the other systems).

Benchmarking Best acc@1 | Best acc@5 | Best acc@10
System

Baseline LAMA 0.32 N/A N/A
Manual_BioLAMA | 0.12 0.26 N/A
Opti._BioLAMA 0.11 0.25 N/A
MedLAMA 0.08 N/A 0.30
MOF-KG LAMA 0.16 0.30 0.37

TABLE IV

THE PERFORMANCE COMPARISON OF THE PUBLISHED BENCHMARKING
LAMA SYSTEMS ON GENERAL-PURPOSE AND SPECIFIC-DOMAIN
KNOWLEDGE BASE CONSTRUCTION. A BOLDFACED NUMBER IS THE BEST
ACCURACY AT ITS CORRESPONDING RANK.

For each relation, we investigated the prompt that was used
to probe a PLM which generated the best accuracy at the
highest possible rank. Table V lists such prompt templates
for all the relations. For example, for the relation hasType,
the PLM MatBERT achieved the best accuracy at top-1 being
probed with the prompt template ” [ SUB] is an [MASK] made
of metal center and organic linkers.”

Discussion. All the prompts were manually designed based
on human experience and trial-and-error. Research [19], [32],
[45] has indicated that prompts have significant impacts on
the performance of PLMs for predicting knowledge triples. It
would be more advantageous if prompts could be developed
in a systematic and general way for future KBC-LM tasks. In
the current study, answers are evaluated by simple exact string
matching to the triples’ ObjectEntitys. More sophisticated
answer processing could be developed to extract the correct
answers from the output space of a PLM. Researchers have
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Fig. 4. For each of the 7 MOF-KG relations: the accuracy at top-k generated by each individual PLM, k = 1, 5, 10, 50; the empty plot for hasLinker
indicates that no PLM could predict any results for the relation hasLinker; the last two empty plots are unused space.

No. | Relation top-k | PLM Prompt Template
1. hasType 1 MatBERT [SUB] is an [MASK] made of metal center and organic linkers.
2. hasMetals 1 MatBERT | [MASK] was used as metal center in the synthesized [SUB] material.
3. hasOrganicLinker | N/A N/A No template and PLM predicted the linker.
4. hasFamily 1 BERT [SUB] is a type of [MASK] MOF.
5. hasCrystalSystem | 1 MatBERT | [SUB] is an metal organic framework. [SUB]’s crystal system is [MASK].
6. hasTopology 5 SciBERT [SUB] is an MOF. [SUB] is an type of [MASK] topology.
7. hasSpaceGroup 1 MatBERT [SUB] has SBUs and organic linkers. The space group of [SUB] is [MASK].

TABLE V
THE MOST ACCURATE TEMPLATE/PLM COMBINATION FOR EACH RELATION (AT THE HIGHEST POSSIBLE RANK K)

developed manual approaches using verbalizers [14], [25],
[38], [51] and automatic methods through paraphrasing [26],
pruning [43], and label decomposition [12]. It is also worth
noting that different PLMs had different performance on
individual relations. It would be more effective to develop
a learning strategy for choosing the most relevant PLM or
creating an ensemble of PLMs for probing. Unexpectedly, we
see that RoBERTa’s performance is the worst, indicating the
danger of assuming that the new and improved model is in
fact always an improvement.

IX. CONCLUSION AND FUTURE WORK

We developed a LAMA benchmark to probe pre-trained
language models for constructing a knowledge graph of metal-
organic frameworks (MOFs), an emerging material that has
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a game-changing capacity for many applications. Efficient
and holistic structured knowledge integration related to MOFs
would greatly assist domain experts in screening, designing,
and synthesizing them. We explored a set of state-of-the-
art pre-trained general-purpose and domain-specific language
models. The probing results showed that a domain-specific
PLM, MatBERT, consistently outperformed other general or
specific PLMs for predicting MOF related triples.

The overall results, however, indicate that using the present
PLMs to create domain-specific knowledge graphs is still far
from being practical. This shortcoming has also been demon-
strated by other LAMA benchmarking results in biological
and medical domains. The study leads us to several future
directions for improvements:

o Expanding the study to test more PLMs including dis-
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tilled PLMs for computational efficiency and extract more
knowledge graph facts such as synthesis procedures.

o Developing more capable and knowledgeable pre-trained
language models for particular applications in materials
science.

o Developing approaches for fine-tuning on PLMs and
prompt-tuning for probing.

o Investigating automatic methods that can learn appropri-
ate prompts by matching training triples to text corpora.

o Developing machine learning approaches that can auto-
matically choose the most appropriate PLM for a partic-
ular type of knowledge or combining several PLMs as an
ensemble.

« Developing more effective strategies to extract answers
from the sets of tokens returned by a PLM or an ensemble
of PLMs.
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