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given the aim to extract and organize information from a wide

variety of sources including vast amount of unstructured texts.

Extracting triples from textural sources requires complex,

costly, and specific natural language processing methods [5],

[35]. For example, in data-driven materials science, researchers

constantly trudge through various journal articles, patents, or

company reports to glean useful research and experimental

results. The growing number of scientific publications and the

wide variety of ways that scientists publish their findings have

posed a significant challenge to building knowledge graphs [3],

[54].

Pre-trained large Language Models (PLM) such as BERT

[16], RoBERTa [31], GPT-3 [10], and T5 [40] have emerged

as a crucial type of approach that provides readily available

knowledge to a range of AI applications [48]. PLMs have

attracted a significant attention in AI and NLP communities.

A recent emerging paradigm leveraging the PLMs is to

use textual prompts to solve problems. For example, for

Knowledge Graph Construction (KGC), given a piece of

text ªHKUST-1 is a metal organic framework.º,

we can use a textual prompt ªHKUST-1 is a metal

organic framework. HKUST-1 contains __

which is a metal.º to ask a PLM to fill up the

blank with a chemical element such as Cu or Copper. The

downstream applications using this paradigm are reformulated

to predict a missing or next word using a PLM. We designate

this paradigm as prompting on pre-trained large language

models or prompt@PLM for short.

In a recent challenge for Knowledge Base Construction from

Pre-trained Language Models (KBC-LM) 1 which is collocated

1https://lm-kbc.github.io/

AbstractÐBuilding a knowledge graph is a time-consuming 
and costly process which often applies complex natural language 
processing (NLP) methods for extracting knowledge graph triples 
from text corpora. Pre-trained large Language Models (PLM) 
have emerged as a crucial type of approach that provides readily 
available knowledge for a range of AI applications. However, it is 
unclear whether it is feasible to construct domain-specific knowl-
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benchmark with 7 relations for 1248 published MOF synonyms. 
Our experimental results showed that domain-specific PLMs con-
sistently outperformed the general-purpose PLMs for predicting 
MOF related triples. The overall benchmarking results, however, 
show that using the present PLMs to create domain-specific 
knowledge graphs is still far from being practical, motivating 
the need to develop more capable and knowledgeable pre-trained 
language models for particular applications in materials science.
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I. INTRODUCTION

Knowledge graphs (KG) are a hallmark for representing

domain knowledge in a graph structure with edges being a

set of triples in the format of ⟨head, predicate, tail⟩. Each

triple captures a relationship (the predicate) between a subject

entity (the head) and an object entity (the tail). A domain

knowledge graph provides an easy way to query and rea-

son about domain knowledge. Despite this ease, building a

knowledge graph is a time-consuming and costly process,
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Fig. 1. The knowledge graph of metal-organic frameworks (MOF-KG) de-
scribes the structural, chemical, electric, and physical properties of MOFs that
were gleaned from multiple disparate sources. In this study, we investigated
the performance of a set of pre-trained language models for extracting the
information of a MOF depicted in the shaded ovals of the figure.

with the 21st International Semantic Web Conference (ISWC-

2022), participants constructed knowledge bases in general

domains from a set of pre-trained language models including

BERT-related LMs [16], RoBERTa, Transformer-XL, GPT-

2, BART, etc. Various systems including our own [2], [19]

have achieved the overall macro average recall ranging from

53% to 69%, overall macro average precision from 73% to

80%, and overall macro average F1-scores ranging from 49%

to 67%, a significant improvement to the existing baseline

LAMA (LAnguage Model Analysis) system [38] (ref. Table

IV).

Inspired by this effort and the promising results of KBC-

LM@ISWC-2022, we turn our attention to an under-explored

area which aims to directly extract structured knowledge from

PLMs for scientific domains, for example, materials science.

A feasible approach of doing prompt@PLM for scientific

domains would greatly reduce the cost and expedite the

process of knowledge graph construction. Motivated by data-

driven materials discovery, we created a knowledge graph

benchmark for a particular type of material, metal-organic

frameworks (MOF), and investigated a set of state-of-the-art

general-purpose and domain-specific PLMs2. Figure 1 shows

the ontological definition for the knowledge graph of metal-

organic frameworks (MOF-KG). Our benchmark framework

consists of triples described by the shaded entities and their

associated relationships.

This rest of the paper reports the study and our findings.

In particular, Section II discusses related work. Section III

describes MOFs and the information captured by the MOF-

KG. Section IV details the process of creating the MOF-KG

benchmark. Section V reviews the PLMs we chose to explore.

Section VI describes the relation-specific prompts for LM

probing. Section VII outlines the experiments. Section VIII

presents the results and findings. Finally, Section IX points to

future work and concludes the paper.

2https://github.com/anyuanay/MOF KG LAMA

II. RELATED WORK

An increasing number of studies have been reported using

prompt@PLM to solve text classification [10], [20], [41], [42],

named-entity recognition [14], natural language inference [20],

[41], [42], sentiment analysis [28], relation extraction [12],

[22], text summarization [1], and parsing [13]. For Knowledge

Base Construction from LM Probing, the seminal work is

LAMA (LAnguage Model Analysis) [38] which manually

created cloze templates to probe knowledge in PLMs. Few-

shot learning on the original LAMA datasets has also been

evaluated [24]. More studies have been reported on probing

PLMs for complicated knowledge [39], temporal knowledge

[17], and domain specific knowledge such as BioLAMA [45]

and MedLAMA [32]. However, applications of PLMs in

materials science are just scarcely explored.

III. METAL-ORGANIC FRAMEWORKS (MOF)

KNOWLEDGE GRAPHS (KG)

In this section, we introduce the type of material, metal-

organic frameworks. The underlined phrases in the following

description highlight the concepts and associations we seek

to capture in the knowledge graph. Metal-Organic Frame-

works (MOFs) are a class of modular, porous crystalline

materials that have great potential to revolutionize applications

such as gas storage, molecular separations, chemical sensing,

catalysis, and drug delivery. The crystal structures of MOFs

can be (conceptually) modified by ªswappingº constituent

building blocks corresponding to metal-based clusters and

organic linkers. These building blocks are interconnected in

a pattern described by an underlying net. Figure 2 shows the

framework structure of the MOF with the synonym ‘MOF-3’

and its underlying net which is coded as ‘srs’ using the RCSR

database [37].

Fig. 2. The Underlying Net and Framework of MOF-3

The scientific potential of MOFs is primarily due to their

usually high surface area and exceptionally tunable properties

[50]. But the combinatorics of such building blocks means that

chemists have access to a (not fully explored) ªmaterial design

spaceº of trillions of structures. The sheer number has made

the identification of optimal MOFs (and subsequent) synthesis

for a given application a significantly challenging task. As

a result, considerable effort have been put into developing
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# Relation Description Example

1 hasType The published name (s) is a type of (MROF-1,
MOF material (o) hasType,

[MOF, Metal-Organic Framework])

2 hasMetals The named MOF (s) has (HKUST-1,
metal clusters (o) hasMetals,

[Cu, Copper])

3 hasOrganicLinker The named MOF (s) has (MOZIF-1,
organic linker (o) hasOrganicLinker,

[O=N(=O)C1=NC=C[N]1])

4 hasMOFFamily The named MOF (s) is in (TMU-60,
the MOF family (o) hasMOFFamily,

[Zn-oxide, zinc oxide])

5 hasCrystalSystem The named MOF (s) has (URMOF-4,
a crystal system (o) hasCrystalSystem,

[trigonal])

6 hasTopology The named MOF (s) has (IRMOF-61,
a topology code (o) hasTopology,

[pcu])

7 hasSpaceGroup The named MOF (s) has (NTU-5,
a space group (o) hasSpaceGroup,

[C2/c])

TABLE I
MOF-KG BENCHMARK RELATION NAMES, DESCRIPTIONS, AND EXAMPLE TRIPLES. IN THE DESCRIPTION, (S) INDICATES SUBJECTENTITY AND (O)

FOR OBJECTENTITY.

effective computational techniques to screen and isolate can-

didate MOF structures for the application of choice. Previous

efforts include the creation of large MOF databases which

contain both synthesized and ªhypothesizedº MOF structures

[4]. However, a large amount of critical information about

MOF properties and synthesis procedures remains scattered in

scientific literature. Here, it is simply impossible for a human

to scan and glean relevant information [49]. A MOF knowl-

edge graph that extracts and integrates data from both MOF

databases and scholarly articles presents a novel approach to

identifying MOF prediction, discovery, and synthesis.

A MOF-KG requires an ontology that defines member

terms. Due to the rapid development in the related field,

there is not a general agreed system of nomenclature for

describing MOFs and associated activities. Prior initiatives

have attempted to standardize terminologies [7], [37], however,

the diversity in the focus and the scientific inquiry can lead to a

variety of terminological usages for this class of compounds.

For the purpose of building the MOF-KG, we analyzed the

structural and chemical information of many MOFs in the

Cambridge Structural Database (CSD) [33] and propose an

MOF ontology as illustrated in Figure 1. In the next section,

we describe the process of generating triples for the knowledge

graph benchmark.

IV. BUILDING THE MOF-KG BENCHMARK

We selected a set of 7 relations, each covering an

aspect of MOF. For each relation, we generated a set

of ⟨SubjectEntity, relation,ObjectEntity⟩ triples as ground

truth. Table I lists the relations along with their descriptions

and ground truth examples.

We generated the benchmark data based on the MOF collec-

tion [33] in the Cambridge Structural Database (CSD) curated

by the Cambridge Crystallographic Data Centre (CCDC), a

world-leading organization that compiles and maintains small-

molecule organic and metal-organic crystal structures. The

CSD MOF collection contains approximately 16,300 suc-

cessful MOFs structures (crystals) that have been realized

experimentally, with crystal structure measured and solved for

using diffraction techniques (X-rays, neutrons, electrons). We

first queried the CSD MOF collection to extract 1,248 MOFs

with published synonyms. We use these synonyms as MOF

names for further data collection as illustrated below. The

underlined phrases correspond to the types of triples captured

in the benchmark.

• The 1,248 names are considered as a type of MOF (i.e,

Metal-Organic Framework) material.

• We queried the CSD crystal database to extract the

information about crystal system and space group.

• We used the CSD ConQuest tool to identify a MOF’s

family by applying the search criteria developed by

Moghadam et al. in [34]. There are six prototypical MOF

families identified: Zr-oxide nodes (e.g. UiO-66), Cu±Cu

paddlewheels (e.g. HKUST-1), ZIF-like, Zn-oxide nodes,

IRMOF-like, and MOF-74/CPO-27-like materials.

• Finally, we leveraged the MOFid system3 developed

by Bucior et al. in [11] to identify a MOF’s metals,

organic linker, and topology.

After building the MOF-KG benchmark, we probed the

pre-trained language models to measure their capabilities for

constructing the knowledge graph.

V. PRE-TRAINED LANGUAGE MODELS

General Architecture. Standard language models are trained

to predict text in an autoregressive fashion, that is, predicting

3https://github.com/snurr-group/mofid
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the tokens in the sequence one at a time. The sequence gener-

ally progresses from left to right, but alternative sequences

can also be pursued. Representative examples of modern

pre-trained left-to-right autoregressive LMs include GPT-3

[10]. A disadvantage of the autoregressive language models

lies in the directionality of processing text. To predict text

based on surrounding text, masked language models (MLM)

have been developed that use bidirectional objective function.

Representative pre-trained models using MLMs include BERT

[16], ERNIE [53] and many variants. An alternative class is

the prefix LM, a left-to-right LM that decodes a target text

y conditioned on a prefixed sequence x as for translation.

Example prefix LMs include UniLM 1-2 [6], [18] and ERNIE-

M [36]. Another approach is the encoder-decoder model which

uses a left-to-right LM to decode a target text y conditioned

on a separate encoder for text x with a fully-connected mask.

Example encoder-decoder pre-trained models include T5 [40],

BART [27], MASS [44] and their variants.

Chosen PLMs for this Study. For triple extraction, we focus

on Masked Language Models (MLM) given that they are

trained to predict text by surrounding context. We aim to probe

both general-purpose and domain-specific PLMs for construct-

ing the MOF-KG. We selected two domain-specific BERT-like

models trained on materials science corpora, MatBERT [46]

and MatSciBERT [21]. We also selected the SciBERT PLM

[8] trained on general science related text. For general-purpose

PLMs, we chose the BERT large-cased PLM and an optimized

variation, RoBERTa [31]. Table II lists the characteristics of

the chosen PLMs for this study.

PLM Size Training Corpora

BERT-large 340M BooksCorpus (800M tokens) and
parameters English Wikipedia (2.5B tokens)

RoBERTa 355M BooksCorpus (800M tokens) and
parameters English Wikipedia (2.5B tokens)

CC-NEWS (63M news articles)
OPENWEBTEXT (36GB web content)
STORIES (31GB story text)

SciBERT similar to 1.14M scientific papers from Semantic
BERT Scholar (3.1 billion tokens)

MatBERT similar to two million peer-reviewed
BERT materials science journal articles

(61 million paragraphs, 8.8B tokens)

MatSciBERT similar to continue pre-training SciBERT
SciBERT with 150K papers from Elsevier

Science Direct Database spanning
four materials science families:
inorganic glasses, metallic glasses,
alloys, and cement and concrete

TABLE II
CHARACTERISTICS OF THE CHOSEN PLMS

VI. PROMPT DESIGN FOR PROBING THE PLMS

In general, there are two types of prompts. Cloze prompts

are those which fill in blanks in a textual string. Prefix prompts

differ in that they continue filling a prefixed string, rather than

just a blank token. Prompts can be designed manually based

on human intuition [10], [38], [41] or automatically through

mining [26], paraphrasing [23], [52], gradient-based search

1. [SUB] contains [MASK] which is a metal.
2. [SUB] contains a metal which is [MASK].
3. [SUB] is a metal organic framework. [SUB] contains [MASK]

which is a metal.
4. As a metal organic framework, [SUB] contains a metal which

is [MASK].
5. [SUB] is a MOF. [SUB] has SBU metal [MASK].
6. [SUB] is MOF. [SUB] contains [MASK].
7. [SUB] contains [MASK].
8. [SUB] is a metal organic framework. [SUB] contains [MASK].
9. The SBU of [SUB] is [MASK].

10. [SUB] is a metal organic framework structure composed of metal
cluster [MASK].

11. [SUB] is a metal organic framework.
[SUB] has SBU metal [MASK].

12. [MASK] was used as metal center in the
synthesized [SUB] material.

TABLE III
THE TEMPLATES FOR GENERATING PROMPTS FOR THE RELATION

ªHASMETALSº

[47], generation [9], and scoring [15]. In addition to discrete

hard prompts, researchers have also developed continuous soft

prompts that interact directly with LMs in the embedding

space. Soft prompts have their own parameters that can be

tuned through different strategies including prefix tuning [29],

hard-prompt initialized tuning [55], and hybrid tuning [30].

In this study, we focus on manually developing templates

for generating prompts. A template modifies the original

text by adding extra tokens. For example, the template

ª[SUB] is a metal organic framework. [SUB]

contains [MASK] which is a metal.º generates

the prompt we used for Knowledge Graph Construction

(KGC), where ª[SUB]º corresponds to the SubjectEntity

in the original text, and the token ª[MASK]º stands for a

blanked-out ObjectEntity to be filled up. In our case, the

original text is a triple such as ª⟨HKUST-1, hasMetals,

Copper⟩º. For each relation, we crafted 12 different

templates for generating prompts. Each template is designed

carefully based on analyzing the relevant publications that

report some MOFs’ structural and property information. Table

III displays the 12 templates for the relation hasMetals.

The templates designed for other relations are available in

the Jupyter notebooks containing experiments in the github

repository here (link provided in Footnote 2).

Given a triple ⟨SubjectEntity, predicate, ObjectEntity⟩
in the benchmark dataset, a template will generate a prompt

by replacing [SUB] with the SubjectEntity. The generated

prompt is sent to a PLM to predict the ObjectEntity by filling

up the [MASK] in the prompt. In next section, we describe the

experimental process and outline how to evaluate the answers

returned by a PLM.

VII. EXPERIMENTS AND EVALUATION

We probed the 5 selected PLMs (Table II) using 7 relations

(Table I) from the MOF-KG. Each relation is instantiated as

a number of triples. Due to the limits of the data collection

process (Section IV), not all the 1,248 named MOFs have

complete number of triples for all relations. The minimum

Authorized licensed use limited to: Drexel University. Downloaded on April 15,2023 at 02:15:13 UTC from IEEE Xplore.  Restrictions apply. 
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number of triples for a relation (hasFamily) is 393, the

maximum number of triples (e.g., hasType) is 1,248, and the

total number of triples is 7,253. For each triple, 12 prompts

are generated by the templates of the associated relation. After

receiving the prompts, a PLM predicts the ObjectEntity by

returning a list of ranked answers in the PLM’s vocabulary.

All the benchmark data and experimental code are available

in the public github repository (link provided in Footnote 2).

Evaluation Metric. In our benchmark dataset, a triple can

be correctly filled up by one or more ObjectEntitys, each of

which can contain one or more tokens, or even a SMILES

string representing a molecular structure. We use top-k accu-

racy (acc@k), which is 1 if any of the top-k answers returned

by a PLM matches an ObjectEntity, and is 0 otherwise.

We use exact case-insensitive string matching to determine

whether a returned answer matches an ObjectEntity. Formally,

let M be the total number of triples for probing a relation, let

N be the number of triples that have an ObjectEntity matched

by a predicted answer in the top-k list returned by a PLM.

Then, acc@k = N

M
. We evaluate the performance by acc@k,

where k ∈ {1, 5, 10, 50}.

VIII. RESULTS AND DISCUSSION

Results. We first evaluate the overall performance of the cho-

sen PLMs in terms of predicting MOF related triples. Figure

3 shows the average acc@1, acc@5, acc@10, and acc@50

of each PLM over all the triples. The figure clearly indicates

that the domain-specific PLM, MatBERT, outperformed all the

other PLMs in all the metrics.

BERT MatBERT MatSciBERT RoBERTa SciBERT
Pre-trained Language Models

0.0

0.1

0.2

0.3

0.4

Av
er

ag
e 

Ac
cu

ra
cy

 o
f A

ll 
Re

la
tio

ns

acc@k
1
5
10
50

Fig. 3. For 5 individual PLMs: the average accuracy at top-k of 7 MOF-KG
relations, k = 1, 5, 10, 50

Next, we evaluate the performance of the chosen PLMs on

predicting MOF related triples for individual relations. Figure

4 show the acc@1, acc@5, acc@10, and acc@50 of each PLM

predicting the triples of the 7 individual relations. The figure

indicates that MatBERT outperformed other PLMs in 4 out 7

cases for all metrics. For the relation hasFamily, the BERT

large-cased model has the best performance. For the relation

hasTopology, the SciBERT has better performance on acc@5

and acc@10 than MatBERT, while MatBERT outperformed

SciBERT on acc@50. Finally, no PLM could correctly predict

any ObjectEntitys for the relation hasLinker. Since all the

ObjectEntitys of the relation hasLinker are SMILES strings

such as [O−]C(= O)c1ccc(cc1)c1ccc(cc1)C(= O)[O−], all

the current PLMs are limited in predicting such an object.

An interesting test for future domain-specific PLMs would be

to have special processing of SMILES strings or other non-

natural language inclusions such as mathematical formulas.

Table IV shows the performance comparison of several

published benchmarking systems for knowledge base construc-

tion from PLMs. All the systems are suffixed with ‘LAMA’

which stands for LAnguage Model Analysis. The original

baseline LAMA [38] system probes general knowledge with

manually-designed prompts. BioLAMA [45] is a benchmark-

ing system on biological knowledge with both manually-

designed (marked as Manual_BioLAMA) and automatically-

learned prompts (marked as Opti._BioLAMA). MedLAMA

[32] developed a benchmark from the Unified Medical Lan-

guage System (UMLS) Metathesaurus. For probing PLMs,

MedLAMA applied a self-supervised contrastive approach

that adjusted the underlying PLMs. The last row, MOF-KG

LAMA, is our benchmarking system on probing MOF-related

knowledge from PLMs. Each benchmarking system probed

multiple general and domain-specific PLMs. We extracted the

best available acc@k results achieved by a PLM from the

respective publications. The values of acc@1 show that there is

still a significant gap between constructing general knowledge

bases from PLMs (the baseline) vs. domain-specific ones (all

the other systems).

Benchmarking Best acc@1 Best acc@5 Best acc@10
System

Baseline LAMA 0.32 N/A N/A
Manual BioLAMA 0.12 0.26 N/A
Opti. BioLAMA 0.11 0.25 N/A
MedLAMA 0.08 N/A 0.30

MOF-KG LAMA 0.16 0.30 0.37

TABLE IV
THE PERFORMANCE COMPARISON OF THE PUBLISHED BENCHMARKING

LAMA SYSTEMS ON GENERAL-PURPOSE AND SPECIFIC-DOMAIN

KNOWLEDGE BASE CONSTRUCTION. A BOLDFACED NUMBER IS THE BEST

ACCURACY AT ITS CORRESPONDING RANK.

For each relation, we investigated the prompt that was used

to probe a PLM which generated the best accuracy at the

highest possible rank. Table V lists such prompt templates

for all the relations. For example, for the relation hasType,

the PLM MatBERT achieved the best accuracy at top-1 being

probed with the prompt template º[SUB] is an [MASK] made

of metal center and organic linkers.º

Discussion. All the prompts were manually designed based

on human experience and trial-and-error. Research [19], [32],

[45] has indicated that prompts have significant impacts on

the performance of PLMs for predicting knowledge triples. It

would be more advantageous if prompts could be developed

in a systematic and general way for future KBC-LM tasks. In

the current study, answers are evaluated by simple exact string

matching to the triples’ ObjectEntitys. More sophisticated

answer processing could be developed to extract the correct

answers from the output space of a PLM. Researchers have
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Fig. 4. For each of the 7 MOF-KG relations: the accuracy at top-k generated by each individual PLM, k = 1, 5, 10, 50; the empty plot for hasLinker
indicates that no PLM could predict any results for the relation hasLinker; the last two empty plots are unused space.

No. Relation top-k PLM Prompt Template

1. hasType 1 MatBERT [SUB] is an [MASK] made of metal center and organic linkers.
2. hasMetals 1 MatBERT [MASK] was used as metal center in the synthesized [SUB] material.
3. hasOrganicLinker N/A N/A No template and PLM predicted the linker.
4. hasFamily 1 BERT [SUB] is a type of [MASK] MOF.
5. hasCrystalSystem 1 MatBERT [SUB] is an metal organic framework. [SUB]’s crystal system is [MASK].
6. hasTopology 5 SciBERT [SUB] is an MOF. [SUB] is an type of [MASK] topology.
7. hasSpaceGroup 1 MatBERT [SUB] has SBUs and organic linkers. The space group of [SUB] is [MASK].

TABLE V
THE MOST ACCURATE TEMPLATE/PLM COMBINATION FOR EACH RELATION (AT THE HIGHEST POSSIBLE RANK K)

developed manual approaches using verbalizers [14], [25],

[38], [51] and automatic methods through paraphrasing [26],

pruning [43], and label decomposition [12]. It is also worth

noting that different PLMs had different performance on

individual relations. It would be more effective to develop

a learning strategy for choosing the most relevant PLM or

creating an ensemble of PLMs for probing. Unexpectedly, we

see that RoBERTa’s performance is the worst, indicating the

danger of assuming that the new and improved model is in

fact always an improvement.

IX. CONCLUSION AND FUTURE WORK

We developed a LAMA benchmark to probe pre-trained

language models for constructing a knowledge graph of metal-

organic frameworks (MOFs), an emerging material that has

a game-changing capacity for many applications. Efficient

and holistic structured knowledge integration related to MOFs

would greatly assist domain experts in screening, designing,

and synthesizing them. We explored a set of state-of-the-

art pre-trained general-purpose and domain-specific language

models. The probing results showed that a domain-specific

PLM, MatBERT, consistently outperformed other general or

specific PLMs for predicting MOF related triples.

The overall results, however, indicate that using the present

PLMs to create domain-specific knowledge graphs is still far

from being practical. This shortcoming has also been demon-

strated by other LAMA benchmarking results in biological

and medical domains. The study leads us to several future

directions for improvements:

• Expanding the study to test more PLMs including dis-
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tilled PLMs for computational efficiency and extract more

knowledge graph facts such as synthesis procedures.

• Developing more capable and knowledgeable pre-trained

language models for particular applications in materials

science.

• Developing approaches for fine-tuning on PLMs and

prompt-tuning for probing.

• Investigating automatic methods that can learn appropri-

ate prompts by matching training triples to text corpora.

• Developing machine learning approaches that can auto-

matically choose the most appropriate PLM for a partic-

ular type of knowledge or combining several PLMs as an

ensemble.

• Developing more effective strategies to extract answers

from the sets of tokens returned by a PLM or an ensemble

of PLMs.
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