Digital Compatible Synthesis, Placement and Implementation of

Mixed-Signal Time-Domain Computing

Zhengyu Chen, Hai Zhou, and Jie Gu
Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA
zhengyuchen2015@u.northwestern.edu, {haizhou, jgu}@northwestern.edu

ABSTRACT

Mixed-signal time-domain computing (TC) has recently drawn
significant attention due to its high efficiency in applications such
as machine learning accelerators. However, due to the nature of
analog and mixed-signal design, there is a lack of a systematic flow
of synthesis and place & route for time-domain circuits. This paper
proposed a comprehensive design flow for TC. In the front-end, a
variation-aware digital compatible synthesis flow is proposed. In
the back-end, a placement technique using graph-based
optimization engine is proposed to deal with the especially
stringent matching requirement in TC. Simulation results show
significant improvement over the prior analog placement methods.
A 55nm test chip is used to demonstrate that the proposed design
flow can meet the stringent timing matching target for TC with
significant performance boost over conventional digital design.

1 INTRODUCTION

Traditional digital circuits rely on the scaling of technology and
supply voltage Vdd to improve the power consumption of the
circuits, following the energy consumption equation of aCVdd’
where C represents the capacitance of the circuit and o is the
associated activity factor. As the technology scaling slows down,
the energy consumption for digital circuits has reached a bottleneck
leading to the urgent need for alternative computing methods. For
example, approximate computing provides a good tradeoff between
power consumption and accuracy [1]. However, such a technique
still follows conventional Boolean operation principles and does
not fundamentally change the energy limitation for digital circuits.

Analog computing, which encodes information in analog
voltage, provides another solution for energy efficient computing.
Numerous examples have shown that analog computing can exceed
the energy efficiency of digital design [2]. Unfortunately, analog
computing suffers from the issues such as static power
consumption, and incompatibility to automatic digital design flow.

Recently, a new class of computing, mixed-signal time-domain
computing (TC) emerges as a promising alternative to the existing
computing methods [3-6]. TC utilizes digital circuits to encode and
process data in time domain. Essentially, TC is similar to analog
computing as the data is linearly encoded in a signal line rather than
multi-bit binary signals. Benefit from the usage of digital circuits,
TC offers the digital compatibility and the technology scalability.

Despite of many existing demonstration of highly efficient
operation using TC [3-6], most of existing work for time-domain

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

DAC '19, June 2-6, 2019, Las Vegas, NV, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6725-7/19/06...815.00
https://doi.org/10.1145/3316781.3317800

computing is based on analog/mixed-signal design flow, which
requires significant manual design and layout effort. This is
partially due to the stringent timing control requirement of the
technology leading to the difficulty of adoption into a large-scale
design. Hence, it is important to develop a comprehensive design
methodology for the automatic synthesis, place & route for TC. It
is worth to mention that time-based design has been well explored
in traditional mixed-signal circuits such as all digital phase-locked
loops (ADPLL), ring-based analog-digital converter (ADC) as well
as mixed-signal sensors such as time-domain configurable analog
modules and time-based resistive sensor interfaces [7, 8].

To address such a growing demand and deliver the missing
design automation element, this paper lays out a systematic design
automation flow for TC. More specifically, a digital compatible
synthesis and backend flow is developed with novel variation
aware RTL mapping and ACG-based placement algorithm to
enable the automation of TC design. The proposed scheme is
compared with existing analog placement and commercial EDA
tool showing significant improvement in the matching performance.
A test chip is used to show the satisfactions of design specification,
e.g. mismatch, using the proposed digital compatible design flow.

2 TIME-DOMAIN COMPUTING (TC)
2.1 Time-Domain Computing Overview

TC encodes information into the time or delay of digital circuits
and perform computation in time domain [3-6]. The system
normally consists of time encoders for digital to time conversion,
time-domain logic modules and optional time decoders for time to
digital conversion as shown in Fig. 1.

CMP out A MAX MIN
A Mt A HADoMax(A B)i | AJHoMin(A B)
A 4 !
°"“’@L i e L
Outh ——tyaiark) 1§ | minia 8

! i = 5T N é '
: {7 i
‘D‘*ﬁD o %’c Y
:_ _____________ : N ~ - 7 é

Time Logic N Time Decoding

Figure 1: Overview of time-domain computing.

To facilitate the time-domain logic operation, a set of “standard
cell” like modules are built for operation in time domain. One of
the key advantages for TC is that all the building blocks are digital
modules making the whole design digital friendly. Examples of TC
circuits are also shown in Fig. 1.

2.2 Challenges of Time-domain Computing

As TC relies on the precise timing control for information
processing, variation and mismatch of signal timing could lead to
computation errors. As the least-significant-bit (LSB) resolution is
pre-defined, e.g. 25ps used in this work, a variation of timing
beyond this value will lead to single-bit error. Specially, local

variation or mismatch creates the largest threat to the operation
similar to analog computing. Comparing to digital design, a much
more stringent backend layout is needed in consideration of
matching, variation, cross-talk and signal slew rate. In addition, as
TC usually performs more complex algorithms [3, 4], the signal
paths and matching components in TC are much more complicated
than a typical analog design leading to more challenges in the
front-end or back-end design for TC.

2.3 Proposed Digital Compatible Design Methodology

TC-logic TC-logic Place
TCRTL '—4 Synthesis H & Route j

* ACG- based Flow

¢ Embedded Time-based RTL ® Technol P
e Digital RTL Compatible e Variation Aware hesi: e Simulated A i
e Critical-signal Handling
(TC) RTL , (Gate Netlist Layout

‘module NN_module()

A

assign mul0 — a0 *(T) b0;
assign mull — al *(T) bl;

endmodule

Time-domain Library |
Characterization |

TC Cells Monte-Carlo
Slmulallon wnth Various Size
Varlatlon Sensitivity
Function Characterization

Slzmg & Resolutiot

|
I
I
I
LT variation & Area : :
] |
I

Solution: Netlist, Ct

Figure 2: Flowchart of proposed TC automation flow.

, ! Design Specification

|
Variation and I
Performance Target J |

Fig. 2 shows the overview of the proposed digital compatible
design automation flow. Particularly, a specially developed time-
domain RTL code is attached to conventional Verilog language to
denote the special design of the time-domain logic operation.
Based on the hybrid RTL codes, the synthesis tool provides logic
synthesis and technology mapping to create a gate-level netlist
using both standard cells and digital friendly time-domain modules.
Variation awareness is implemented into the synthesis process. At
the back-end, an ACG-based placement technique is developed to
handle the stringent signal matching requirement of TC design.

3 SYTHESIS OF TIME-DOMAIN LOGIC

To create a digital-compatible design flow for TC design,
synthesis has to be performed to create gate-level netlist similar to
the conventional digital design. The proposed technique is realized
by embedding a special plug-in script into existing RTL/synthesis
flow. It handles not only the generation of time-domain cells but
also special requirements in TC, such as variation.

3.1 Overview of Proposed TC Synthesis Technique

3.1.1 Special Synthesis Requirement in TC Design

Since the data is carried by the time or delay of the circuit
cells, variation has large impact on the accuracy of design. Thus,
minimizing the variation of the data path is quite critical for TC.
The special design considerations of TC design are listed as:

1) Determining the size of the modules in TC circuit is a trade-
off between area/energy consumption and variation/error-rate of
the whole design. Increasing the size of a module can decrease the
variation but increase the area and energy of the module.

2) The single-bit delay that represents “1” in digital-domain
must be carefully chosen. Shortening the single-bit delay, can boost
the performance but increase the error rate of the final result.

3.1.2 Proposed Synthesis Flow

The bottom of Fig. 2 shows the flow of the proposed synthesis
technique: (1) the RTL with customized syntax for time-domain

logics is utilized to perform a special TC logic synthesis process.
As a result, both conventional digital and time-domain logics are
synthesized into an initial gate-level netlist. The size of each cell is
set to the smallest size at this step. (2) The initial netlist is then sent
to a netlist optimizer to exercise the sizing options of each module
to meet the variation budget while minimizing area consumption.

3.2 Implementation of TC Synthesis

3.2.1 Special Logic Mapping in TC Design

The proposed logic synthesis script can recognize special
syntax used for the TC RTL. In the TC RTL, a special syntax is
developed to denote the TC operation, e.g. add and multiplication.
The special keyword “(T)” after the operation symbol “+” or “x” is
used to denote the TC operation as shown in Table 1. The synthesis
script works as a plug-in script on top of conventional synthesis tool.
Special mapping functions are called for generating time-domain
circuits similar to the conventional technology mapping. For
instance, the “?”” operation symbol in time-domain RTL, is mapped
into a time-domain comparator which was shown in Fig. 1.

3.2.2 Variation Sensitivity Function

The variation sensitivity function is introduced for netlist
optimization. We define the 3-sigma variation of TC modules,
which is a function of the size s as g(s). Apparently, the o(s)
decreases as s increases. The area of TC modules is a function of
the size s as A(s). The variation sensitivity function is shown as:

__da(s)
Fren(s) = 7 2280 (1)
where 22 term represents the variation sensitivity comes from the

dA()
module, and y term represents the significance of the module, e.g.
module in a convergent path. As most TC cells are standard-cell
like, we follow the standard cell sizing convention, e.g. 1X, 2X, etc.
3.2.3 Netlist Optimization

Assume that we have totally n modules, Xi, Xa, ... Xn, the size
of'each module is 57,52, ... su. Besides, there are p critical paths need
to be considered in the placement. The optimization problem of
netlist is then formed in (2) and (3):

Minimize Y7 A(S;) 2

V paths € P,s.t.\/[¥ 0,2(s;) < or 3)

where 0,,(s;) is the variation comes from Xj, and A(s;) is the area
of X:. The pseudo code of the optimization is shown as follows.

Algorithm 1 Netlist Optimization Algorithm

Input: Initial netlist of module Xi, X2, ...Xa, with minimum sizing s;,s2, ... Sx.
Output: Netlist which satisfies variation budget with minimum area
1: for all critical paths p in the netlist do

2 while /¥ 0;2(s;) > or do

3 fori=1tondo

4 find the module j = 7, with maximum Fye, (s;)

S: end

6: Increase the size of module j by 1X, update s;

7: end

8: end

9: Return the netlist with current sizing

Given the initial netlist generated by TC logic mapping from
TC RTL with minimum sizing, we first check if the variation of all
critical paths meets the budget oy . If yes, the optimization is
completed. Otherwise, the following step is performed in which we
traverse the netlist to find out the most effective module in the
critical path, i.e. highest variation sensitivity. The size s of this
module is then increased by 1X. We keep repeating the previous
steps until the variation targets of all critical paths are met.

3.2.4 Design Example on Time-domain Neural Network Module

An example of a simple TC neural network building block of
vector by matrix classifier [5] is shown in Fig. 3 (a). The circuit
contains 2 MAC and 1 CMP in time domain with RTL given in
Table 1. The synthesised TC netlist with proper sizing after
optimization is shown in Table 2. Fig. 3 (b) shows the design
trade-off between the area and error rate (variation) by a given LSB
resolution. Under different resolution and error tolerance, the
optimal area of such a TC NN module is shown in Fig. 3 (b). With
the same resolution, the area drops with the variation increases. For
example, the areas are 195um? and 110um? with variation of
0.3 LSB and 1 LSB respectively when resolution is set to 20ps.

Vector-by-Matrix Classifier Operation for NN Node:
CMP(3 0,® W, 5 by® W)
15
R - RY paraten
- 1.0 S
< Target

Woa Wna S, ;rror Free

JL ' 2
<
50 100 150 200
Won W Area (um?)
(a) (b)

Figure 3: (a) Schematic NN module, (b) design trade-off
between error tolerance and area with given single bit delay.

N
o

Variation (LSB)

d
o

Table 1: Example RTL implementation of TC-neural node.
1 module NN_module (a0, al, a2, a3, b0, b1, b2, b3, out);

2 input [1:0] a0, al, a2, a3;

6 assign mul0 = a0 *(T) b0,

11 assign macl = mul2 +(T) mul3;

12 assign out = (mac0 >=macl) 2(T) 0: I;

13 endmodule

Table 2: Example netlist of TC-neural node from synthesis.
1 module NN_module (a0, al, a2, a3, b0, b1, b2, b3, in, out);

2 input [1:0] a0, al, a2, a3;

6 TC_TE X3 10 (.IN(in), .DIN(a0), .OUT(te0));

13 TC MUX X417 ((A(mul2), .B(te3), .S(b3), .OUT(macl));
14 TC_CMP_X2 I8 (.a(mac0), .b(macl), .out(out));

15 endmodule

4 PROPOSED MIXED-SIGNAL PLACEMENT

Due to the lack of prior techniques on automatic placement for
TC circuits [3-6], in this section, we propose a practical and
efficient placement technique for TC circuit utilizing adjacent
constraint graph (ACG) based optimization engine to deal with the
stringent matching requirements. It is worth to mention that
although automatic placement has been proposed previously for
analog/mixed-signal design [9, 10], TC poses special challenges,
i.e. massive-stage-symmetry (MASS), as referred in this paper, and
hence requires special techniques not available from the prior work.

The special matching requirement of MASS for time domain
circuits are highlighted as follows:

1) Module symmetry and stage symmetry constraint: modules
within certain groups must be placed symmetrically with respect to
a horizontal or a vertical axis to maintain the matching of critical
TC signal. Moreover, modules on symmetry paths need to be place
symmetrically in each stage.

2) Clustering constraint: certain TC modules must be placed
near to each other in order to isolate the critical TC modules from
other digital modules.

3) Shortest critical signal path constraint: the wire length of
critical paths must be minimized in order to relieve the variation
impact of TC circuit and improve slew rate of the signals.

Similar constraints are observed in the existing analog
placement/floorplan design, but TC design has more challenges due
to its larger numbers of components as described in the follows.

4.1 Preliminaries

4.1.1 Comparison with Previous Analog Placement Work
Topological representations are widely used in solving analog
placement problems, in which, the relative positions between the
modules are encoded. Typical topological representations are
slicing tree [11], sequence-pairs (SP) [12], O-tree [13], B*-trees
[14], and TCG-S [15]. Most of these works have been applied to
handle the symmetry constraint and other constraints like the
centroid constraint. However, these representations are not suitable
for solving the MASS placement problem of TC design as

explained as follows.
symmetry
aroup

symmetry symmetry

axis of

2-module
symmetry
pair

(b)
Figure 4: Symmetry group in (a) conventional analog design,
(b) time-domain computing design.

1) A complete representation is preferred in order to efficiently
handle the special constraints like symmetry and critical path
constraints. For example, tree-based representation doesn’t provide
complete topological information, which makes it harder to check
the relations, e.g. horizontal relation, between modules.

2) When dealing with symmetry constraint, we form a
symmetry group with multiple symmetry pairs. However, in most
of analog placement problem, each symmetry pair in the symmetry
group only contains few modules as shown in Fig. 4 (a). On the
other hand, in the TC design, large numbers of modules, defined by
the algorithm, e.g. LDPC [3], need to be allocated symmetrically
through hierarchies as shown in Fig. 4 (b).

3) For TC design, we not only need to place the modules
symmetrically within a set, but also need to guarantee the matching
across different hierarchy on the long signal paths. As shown in
Fig.4 (b), the modules on path pp must be symmetric with the
modules on paths p; — p3leading to stringent multi-path matching
problems for sequence of modules. This not only requires a massive
symmetry placement within a symmetry group but also requires
carefully match at each stage. Thus, the MASS becomes a special
challenge in the TC placement.

Adjacent Constraint Graph (ACG) [16] representation is chosen
in this work due to the following advantages: compared with
existing placement techniques, ACG has the advantage of
efficiency and succinctness when dealing with the symmetry and
other constraints. Without the redundant edges, the number of
edges in ACG is O(nlog(n)), much smaller than the O(n?) number
of edges in TCG-S or SP. ACG is also more flexible than other
representations in performing packing.

4.1.2 Problem Formulation

Assume we are given a set of n modules with areas 4; where i
=1...n, together with a set of j nets N1, N2. .. N;. Our objective is
to obtain a placement F of the circuit satisfying all the placement
constraints mentioned previously while minimizing a cost function:

C(F) = A(F) + a x W(F) + B x W_penalty(F) ()]

where A(F) is the total area of F, W(F) is the total wire length of
F, W_penalty(F) is the total wire length of wires between the
modules which violated the constraint after the packing stage. & and
p are empirical coefficients used for regulating the weights of wire
length and wiring violation.

4.2 Adjacent Constraint Graph (ACG) Representation

The basic idea of the ACG representation, briefly described
below, is to encode any rectangle packing as an ordered module
sequences with edges which indicates the spatial relations [16].

As an illustration, for a floorplan given in Fig. 5 (a), its
constraint graph in both horizontal and vertical directions are
shown in Fig. 5 (b). As the essential idea of constraint graph is used
for avoiding module overlap, any two modules must have at least
one relation (“left” or “below to”). Thus, over-specification has no
benefit in terms of representation. Since those redundant edges are
unnecessary for placement, we can remove those edges and the
result is an ACG representation (Fig. 5 (c)). The corresponding
ACG data structure is shown in Fig. 5 (d). The vertices will be
doubly linked in a linear order. Edges are all directed from left to
right. The edges above the vertex line represent horizontal (H)
relations and those below represent vertical (V) relations.

(a) (b) (c) (d
Fig. 5. (a) A floorplan, (b) constraint graphs in horizontal (solid
edges) and vertical (dotted edges) directions, (¢) ACG Graph,
(d) ACG data structure.

4.3 Proposed TC Placement Approach

Perturbation

Switch modules,
¢ Group
exchange

|
] | Editing edges

Initial
ACG

cost

Area & B Solutionl|
wiring Penalty ‘ |

Figure 6: Flowchart of the proposed placement.

Simulated annealing is employed as the basic searching engine
in our approach with ACG as the representation. Our proposed
placement algorithm works as follows. It first generates an initial
ACG representation following the default cells order, which also
satisfies all the constraints proposed by the designer. After the
initial solution is generated, the simulated annealing process is
applied. In each iteration the following steps are performed: (1)
three categories of perturbations/moves are introduced. All these
perturbations are complete in terms of the searching space; (2)
After the perturbation, a new ACG is generated and the
corresponding packing is produced based on the longest path
algorithm; (3) Area and interconnect cost with extra penalties are
computed based on the new packing. (4) Check whether the
annealing process should continue based on the current temperature
and cost. The flowchart is shown in Fig. 6.

4.4 Handling of Placement Constraints in TC

4.4.1 Handling of Symmetry Constraint

In TC circuit, symmetry constraint (marked in blue in Fig. 7 (a))
can be handled as follows (we assume the symmetric modules are
symmetric with respect to a horizontal axis):

1) If modules Y1, Y2, Y3, and Y3 are required to be symmetric,
all of them must be in vertical relations. In the other word, every
two of them must be connected by horizontal edges in the ACG.

2) The x coordinates of modules Y1, Y2, Y3, and Y4 must be
same which can be regulated during the packing stage.

3) The distances between adjacent modules must be same.
Cluster

try symmetry
gropp

e

() (b) (c)
Figure 7: Example of (a) symmetric constraint, (b) clustering
constraint, (c) critical signal path constraint.

4.4.2 Handling of Clustering Constraint

Clustering constraint can be handled by forcing the modules in
the same clustering group to abut each other in ACG representation.
Besides, we introduce the penalty term in the cost function to force
the placement to obey the constraint. An example of clustering
constraint among modules Y1-Yyis shown in Fig. 7 (b).
4.4.3 Handling of Critical-Signal Path Constraint

To handle this constraint, the total wire lengths of these paths
need be as short as possible (P1 and Po in Fig. 7 (¢)). The constraint
can be handled by (1) guaranteeing horizontal relations for the
modules in same critical path in ACG, e.g. Y1, Y2, Y3 and Y3; (2)
increasing the weight of nets which are on the critical paths when
calculating the cost of total wire length. As a result, the placement
engine tends to move the modules which are not on critical signal
path, e.g. X1, away from the critical path Po.

4.5 Set of Perturbations/Moves

__group exchange
v~ X

v [T
13§

(a) (b) (©)
Figure 8: Example of moves in (symmetry group are marked in
blue): (a) category 1, (b) category 2, (c) category 3.

We employ the following set of moves to perturb a current
candidate ACG. The moves/perturbations can be divided into three
categories: (a) exchange of two random modules, (b) group
exchange of the symmetric sets, and (c) editing edges in the current
ACG representation. The details of moves are given as follows:

1) In the first category (Fig. 8 (a)), there are three different types
of exchanges: (1) Exchange two random modules which are not in
any of the symmetry groups. (2) Exchange two random modules
within a symmetric set. (3) Exchange one module which is inside
of one symmetry group and another module which is outside of that
symmetry group. This movement cannot be guaranteed to not
violate the symmetry constraint. Thus, a special checker is
implemented to check the feasibility of the new generated ACG. If
such a move violates the constraints, penalty will be added to the
cost function shown in eq. (4).

2) Fig.8 (b) shows one example of second category. This group
exchange also needs special checker to check the feasibility of the
new ACQG after such a move. It provides the chance of moving away
the modules which are located inside of a symmetry group.

3) The third category involves the modification of ACG edges
including (1) changing current edge type from horizontal to vertical
or vice versa; (2) Adding or removing the existing current edges
while following the ACG requirement. We only allow modifying
the edges of the modules which are outside of symmetry group. In
this way, all the constraint within the symmetry group cannot be
violated. An example of modify the edge between Y14 and Y15 from
vertical to horizontal is shown in Fig. 8 (c).

4.6 Packing and Routing

A new packing algorithm is derived from conventional packing
scheme based on the longest path algorithm. Different from
previous work, the proposed packing algorithm allows us to pack
the selected modules in respect to the symmetry axis instead of only
to the lower bottom corner of plane [12, 14]. The packing example
of conventional and our proposed ways are shown in Fig. 9 with
symmetric modules marked in blue.

Figure 9: Example of packing (a) to lower-bottom corner, and
(b) respect to the symmetry axis.

We utilize the Innovus tool to handle the routing job. Since the
TC cells follow the digital cell’s implementation and are well
organized after the proposed placement, e.g. the cells on the same
critical path are placed abut to each other, the Innovus tool can
handle the routing job appropriately. However, we expect more
sophisticated routing methods to be developed for larger TC design
as a future work.

5 EXPERIMENTAL RESULTS
5.1 Time-domain WTA Operation Implementation

critical path 0 Out_AB
- criticallpath1 Out_CD| Decode |Out[2:0]

critical path 7 i Logic

Figure 10: Topology and implementation of WTA in TC.

We compare our proposed ACG-based placement flow to other
existing work [12,14] on a winner-take-all (WTA) circuit, which is
a commonly used digital module in machine learning based
classifiers. Fig.10 shows the design of the 8-input 6-bit WTA. The
algorithm of WTA is based on binary comparison tree. The critical
signals are propagated through 3 stages and the matching of 8
critical paths is the key concern of the design. The total number of
critical digital modules for matching are 84 which is much larger
than a typical matching problem observed in an analog design.

We experiment the placement of WTA by different approaches:
(a) use B* tree based placement method from [14], (b) use sequence
pair (SP) based placement method from [12], (c) use the proposed
placement method. The layout results of approaches (a), (b) and (c)
are shown in the Fig. 11. All the methods maintain a good
symmetry property in the 1%t stage (WTA2). However, both B* tree
based and SP based placement methods have troubles in placing the
modules properly in the stages 2 and 3 as (1) the modules in 2" and
3t stages are not placed in the central region with respect to the 1%
stage leading to large signal routing mismatch between critical
signals; (2) The critical TC modules are not separated with other
non-critical modules causing the slew rate degradation of the
critical signals. These failures are mainly due to the following
reasons: (1) both previous placement approaches pack the modules
from lower bottom corner leading to difficulty in placing the
selected modules in respect to the symmetry axis; (2) Both previous
placement methods are short of the ability to deal with the
clustering and critical-path constraints. As a result, they failed to
place the critical time-domain modules to be close to each other
avoiding non-critical modules to block the critical paths. On the
other hand, due to the efficiency and succinctness of ACG-based
representation, it’s much easier to handle the cluster and critical
path constraints. As a result, the above issues can be properly
resolved by the proposed ACG-based placement with good
matching through stages of critical paths (Fig.11 (c)).

FTn i

(a) (b
Figure 11: Layout of placement methods: (a) B* tree based [14],
(b) sequence pair based [12], (c) proposed design in this work.

o slewrate=22ps ey slewrate =19 ps, slewrate =13 ps slew rate = 26 ps
S S LS
2 - S Ky SO A 9 PRI
At=5.3 ps At=45ps”°| At<1ps ©| At=11.8ps
t (ps) t (ps) tps) — t(ps)
(a) (b) (© (d)

Figure 12: Simulation result of mismatch for (a) B* tree based
placement [14], (b) sequence pair based placement [12], (c) our
proposed technique, (d) conventional digital design.

After the layout is generated from Innovus, we import the
layout back into Cadence Virtuoso to perform spice simulation with
parasitic extraction. The simulation result of matching for the 8
critical paths is shown in Fig 12 in comparison among B* tree
method, SP method, proposed method and conventional digital
design using EDA tools. As we can see, the mismatch from using
B* tree based and SP based placement method are better than that
from the conventional digital flow. However, the mismatch from
these two methods are still significantly larger than our proposed
ACG-based placement method whose mismatch is less than 1ps.
Thus, the proposed placement methodology provides both the
efficiency and accuracy in dealing with TC design. Table 3
summarizes the performance of different methods. The algorithms
are implemented in C++ and run on a Windows machine with
2.6GHz i7 Quad-core and 8GB RAM. Note that ACG-based

placement method also achieves the lowest runtime mainly due to
the efficient and succinct representation when deal with complex
matching constraints. For example, the number of edges in ACG is
O(nlog(n)), while it’s O(n?) in SP. Even though the edge number is
only O(n) in B* tree, it lacks a complete topology information used
for dealing with TC constraints which makes the number of
searching iteration larger.

Table 3: Performance Comparison for Placement Methods.

Methods B* tree [14] SP [12] This work
Mismatch (ps) 5.3 4.5 1
Slew rate (ps) 22 19 13
Run time (s) 23 85 18
Area (um?) 1484 1536 1600

5.2 Time-domain Image Processing Implementation

For demonstration, we adopt a basic facial recognition
algorithm into a hybrid ASIC design with time-domain
accelerators. The operations of the image recognition algorithm
involve three steps: (1) feature extraction which performs median
filtering and detects edges in four directions. (2) Vector formation;
(3) Classification where the generated feature vector is classified
by a winner-take-all (WTA) classifier. In our design, the median
filter for feature extraction and WTA for final classification were
designed in time-domain to remove the bottlenecks of the
algorithm [17]. In particular, the proposed synthesis and placement
techniques were applied on the WTA design leading to the layout
for the fabricated chips.

5.3 Measurement Results

The 55nm test chip was fabricated and measured across 10
chips. No error was observed at internal time-domain results or
final classification at the design target speed of 1.33GHz.

1 mghip2 wchip3 = ¢hipd mchips mchipé m chip? ®mchip8 mchip9 = chip1d

3 sigma
variation targe-r'__f'

=
(=

Variation (ps)

path path path path path path path path ‘3,- {q?

0 1 2 4 5 6 1 ®7
Figure 13: Mismatch measurement results; y axis denotes the
absolute variation from the nominal delay.

Fig. 13 shows the measured on-chip mismatch of 8 critical
paths from 10 chips in WTA circuits. The mismatches were
measured by using an on-chip time-digital-converter (TDC) with
Sps resolution. As shown, the measured mismatch is within 0.5
LSB, which verifies the feasibility of handling variation (synthesis)
and layout mismatch (placement) of the proposed methodology.
No systematic mismatch was observable from the measurement
proving the good matching performance of the placement
algorithm. The mismatch was dominated by the random process
variation which has been properly budgeted (within half of LSB,
i.e. 12ps as 3-sigma variation target) from the proposed synthesis
flow. The die micrograph and the specification of WTA is shown
in Fig. 14. The design is compared with conventional ASIC with
standard synthesis and place and route implementation. A 42% area
saving, a 1.7X speedup and a 23% power saving, is observed in the
time-domain WTA accelerator compared to ASIC implementation.

The overall image recognition processor operates at 1.33GHz with
a state-of-art throughput of 72 frames per second.

3 S~ Technology 55 nm
Frequency (GHz) 1.33
Total Chip Area 0.64
(mm?)
ASIC TC
WTA Area (um?) 2800 1600
WTA Power (mW) 3.1 2.4
WTA Frequency 1.2 2
(GHz)

Figure 14: Die photo and specifications of the WTA design.
6 CONCLUSION

This paper proposed a comprehensive digital compatible design
flow including front-end synthesis and backend placement for TC.
In the synthesis stage, our proposed technique can handle the
variation requirement while minimizing the estimated area of the
circuit. In the backend stage, an ACG-based placement algorithm
is developed to handle the complex placement constraints for TC
design. The comparison with prior analog placement schemes
shows much improved matching performance from the proposed
method. The proposed synthesis and placement flow is
demonstrated by a 55nm test chip showing on-target mismatch
results and significant performance enhancement from TC
compared with digital implementation.

REFERENCE

[11 Yong Shim, et al, “Low-Power Approximate Convolution Computing Unit with
Domain-Wall Motion Based “Spin-Memristor” for Image Processing
Applications”, IEEE/ACM DAC, 2016

[2] F. N. Buhler, et al, “A 3.43TOPS/W 48.9pJ/Pixel 50.1nJ/Classification 512
Analog Neuron Sparse Coding Neural Network with On-Chip Learning and
Classification in 40nm CMOS”, VLSI Symposium, 2017.

[3] Daisuke Miyashita, et al,” An LDPC Decoder With Time-Domain Analog and
Digital Mixed-Signal Processing”, IEEE JSSC, 2014.

[4] Anvesha Amravati, et al,”A 55nm Time-Domain Mixed-Signal Neuromorphic
Accelerator with Stochastic Synapses and Embedded Reinforcement Learning
for Autonomous Micro-Robots”, ISSCC, 2018.

[S] Daisuke Miyashita, et al, “Time-Domain Neural Network: A 48.5 TSOp/s/W
Neuromorphic Chip Optimized for Deep Learning and CMOS Technology”,
IEEE ASSCC, 2016.

[6] M. Liu, et al,” A Scalable Time-based Integrate-and-Fire Neuromorphic Core
with Brain-Inspired Leak and Local Lateral Inhibition Capabilities”, I[EEE
CICC, 2017.

[71 Yunju Choi, Yoontaek ,Seung-Heon Baek, Sung-Joon Lee, Jacha Kim, “A
Field-Programmable Mixed-signal IC with Time-domain Configurable Analog
Blocks”, IEEE Symposium on VLSI Circuits, 2016.

[8] Jorge Marin, E. Sacco, J. Vergauwen,Georges Gielen, “A Single-Temperature-
Calibration 0.18-um CMOS Time-Based Resistive Sensor Interface with Low
Drift over a— 40° C to 175° C Temperature Range”, IEEE ESSCIRC, 2018.

[91 Lin, P.H., et al, “Analog Placement Based on Hierarchical Module Clustering”,
IEEE/ACM DAC, 2008.

[10] Biying Xu, et al, “A scaling compatible, synthesis friendly VCO-based delta-
sigma ADC design and synthesis methodology”, IEEE/ACM DAC, 2017.

[11] Chang-Tzu Lin, et al, “An Efficient Genetic Algorithm for Slicing Floorplan
Area Optimization”, [EEE ISCAS, 2002.

[12] Qiang Ma, et al, “Simultaneous Handling of Symmetry, Common Centroid, and
General Placement Constraints”, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 2011.

[13] P.-N. Guo, et al, “An O-Tree Representation of Non-Slicing Floorplan and Its
Applications, ” [EEE/ACM DAC, 1999.

[14] Pang-Yen Chou, et al, “Heterogeneous B*-trees for Analog Placement with
Symmetry and Regularity Considerations,” IEEE ICCAD, 2011.

[15] J.-M. Lin and Y.-W. Chang, “TCG-S: Orthogonal Coupling of P*- Admissible
Representations For General Floorplans,” IEEE Trans. CAD, 2004.

[16] Hai Zhou and Jia Wang, “ACG-Adjacent Constraint Graph for General
Floorplans”, IEEE ICCD, 2004.

[17] Z. Chen, et al, “A Time-Domain Computing Accelerated Image Recognition
Processor With Efficient Time Encoding and Non-Linear Logic Operation,”
IEEE JSSC, Nov. 2019.

