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Abstract

The stated skein algebra of a punctured bordered surface (or equiva-
lently, a marked surface) is a generalization of the well-known Kauffman
bracket skein algebra of unmarked surfaces and can be considered as an
extension of the quantum special linear group Oq2(SL2) from a bigon to
general surfaces.

We show that the stated skein algebra of a punctured bordered surface
with non-empty boundary can be embedded into quantum tori in two
different ways. The first embedding can be considered as a quantization
of the map expressing the trace of a closed curve in terms of the shear
coordinates of the enhanced Teichmüller space, and is a lift of Bonahon-
Wong’s quantum trace map. The second embedding can be considered as
a quantization of the map expressing the trace of a closed curve in terms
of the lambda length coordinates of the decorated Teichmüller space, and
is an extension of Muller’s quantum trace map. We explain the relation
between the two quantum trace maps. We also show that the quantum
cluster algebra of Muller is equal to a reduced version of the stated skein
algebra. As applications we show that the stated skein algebra is an
orderly finitely generated Noetherian domain and calculate its Gelfand-
Kirillov dimension.
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1 Introduction

1.1 Kauffman bracket skein algebra and Bonahon-Wong’s
quantum trace

Let S be an oriented surface. The ground ring R is a commutative Noetherian
domain with 1, containing a distinguished invertible element q1/2. For example
R = Z[q±1/2], or R = C and q1/2 is a non-zero complex number.

The Kauffman bracket skein algebra S̊ (S), introduced by Przytycki [46] and
Turaev [51, 52], is the R-module freely generated by framed unoriented links in
the thickened surface S× (−1, 1) subject to the Kauffman skein relations

= q + q−1 , = (−q2 − q−2) .

The product is given by stacking. See Section 3 for details.
The skein algebra S̊ (S) and its analogs have played an important role in

low dimensional topology and quantum algebra as they have applications and
connections to objects such as character varieties [12, 47, 51, 13, 15], the Jones
polynomial and its related topological quantum field theory (TQFT) [27, 6, 53],
(quantum) Teichmüller spaces and (quantum) cluster algebras [8, 20, 44], the
AJ conjecture [22, 36], and many more. It is important to understand algebraic

properties of the skein algebra S̊ (S), for example its representation theory.
In an important development, Bonahon and Wong [8] proved that when S

is the result of removing at least one puncture from a closed surface, the skein
algebra S̊ (S) can be embedded into a quantum torus by the quantum trace
map

tr : S̊ (S) ↪→ T(Q)
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which is a quantization of the map expressing the trace of curves in the shear
coordinates of Teichmüller space. Here the quantum torus of an antisymmetric
r × r integral matrix Q is the R-algebra

T(Q) := R⟨x±1
i , i = 1, . . . , r⟩/(xixj = qQijxjxi).

Thus T(Q) is the algebra of Laurent polynomials in the r variables xi which
might not commute but are q-commuting in the sense that xixj = qQijxjxi.
The quantum torus T(Q) is known to a be a Noetherian domain with Gelfand-
Kirillov dimension r and is well-understood in algebraic terms. The subalge-
bra generated by non-negative powers of xi is called the quantum space. As a
Noetherian domain, T(Q) has a ring of fractions Fr(T(Q)) which is a division
algebra.

To every ideal triangulation ∆ of the punctured surface S, one can as-
sociate a quantum torus Ybl(S; ∆), which is the square root version of the
Chekhov-Fock algebra [8, 25], known as the quantum Teichmüller space [14, 31],
as it quantizes the enhanced Teichmüller space of the surface. The Bonahon-
Wong quantum trace embeds the skein algebra S̊ (S) into the quantum torus
Ybl(S; ∆). For another triangulation there is a coordinate change isomorphism
between the two rings of fractions of the Chekhov-Fock algebras which permutes
the quantum trace maps.

The quantum trace helps to understand the skein algebra algebraically, and
opens possibilities to quantize Thurston’s theory of hyperbolic surfaces to build
hyperbolic topological field theory and to better understand the volume conjec-
ture [30, 45].

1.2 Stated skein algebra

To better understand the quantum trace map, the first author [35] introduced
the stated skein algebra S (S) for a punctured bordered surface S, which is
the result of removing a finite number of punctures from a compact oriented
surface. We assume that every connected component of the boundary ∂S is
diffeomorphic to the open interval (0, 1). The stated skein algebra S (S) is a
quotient of a coarser version considered by Bonahon and Wong. In addition
to framed links, framed tangles properly embedded into the thicken surface
S× (−1, 1) are allowed, and new relations are introduced at the boundary. The
tangles are equipped with states, which assign a positive sign or a negative sign
to each endpoint of the tangles. For details, see Section 3.

A main feature of the stated skein algebra is the existence of the splitting
homomorphism

θc : S (S) → S (S′), (1)

where S′ is the result of slitting S along an ideal arc c. The splitting map θc
is an algebra embedding and is given by a simple state sum. The precise image
is described by a certain invariant subspace in terms of Hochschild cohomology
[10, 33]. The splitting map gives a new, simple proof of the existence of the
quantum trace map.
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The stated skein algebra theory has a rich mathematical content, far beyond
the application in the understanding of the quantum trace, as it fits well with the
integral quantum group associated to SL2(C) and its integral dual Oq2(SL2).
Many algebraic facts concerning the quantum groups have simple transparent
interpretations by geometric formulas via the theory of stated skein algebra.
For example, the stated skein algebra S (B) of the bigon B, with its natural
cobraided structure, is isomorphic to the cobraided Hopf algebra Oq2(SL2), and
under the isomorphism the natural basis of S (B) maps to Kashiwara’s canoni-
cal basis [29] of Oq2(SL2), see [10]. The stated skein algebra has connections to
the moduli algebra of Alekseev-Gross-Schomerus [2] and Buffenoir-Roche [11]
and factorization homology of surfaces [4], see [17, 32, 38], and was further stud-
ied in [10, 33, 7], among others. There are generalizations to other Lie algebras
[26, 37, 39].

Suppose ∆ is an ideal triangulation of S. One can define the Chekhov-
Fock algebra Ybl(S; ∆). Bonahon-Wong’s quantum trace, defined on a coarser
version of the stated skein algebra, actually gives an algebra homomorphism

tr∆ : S (S) → Ybl(S; ∆). (2) eq.22

When the boundary of S is empty, ∂S = ∅, the quantum trace map tr∆ is
an algebra embedding, which helps to study the algebraic structure of S (S).
However when ∂S ̸= ∅ the map tr∆ is not injective, and its kernel is determined
in [10] (see also Section 6.8). As embeddings into quantum tori tell us a lot
about the algebraic structure of S (S), we are looking for such embeddings
for surfaces with boundaries. One main goal of this paper is to show that two
such embbedings exist, one is closely related the to shear coordinates of the
Teichmüller space and the other is closely related to the length coordinates.
For this purpose we need quantum tori with dimension higher than that of the
Chekhov-Fock algebra Ybl(S; ∆).

1.3 Shear coordinate quantum trace map

Assume ∆ is an ideal triangulation of a punctured bordered surface S. We will

define a bigger quantum torus Ȳbl
(S; ∆) that comes with an R-linear projection

pr : Ȳbl
(S; ∆) ↠ Ybl(S; ∆) onto the original Chekhov-Fock algebra used in

Bonahon-Wong’s quantum trace map (2).

thm.1aa Theorem 1 (part of Theorem 6.5). There is a natural algebra embedding

ϕ∆ : S (S) ↪→ Ȳbl
(S; ∆) (3) eq.qtr2a

which lifts the Bonahon-Wong quantum trace map (2), i.e., one has tr∆ =
pr ◦ϕ∆.

Here, naturality is with respect to triangulation changes. This means for
another triangulation ∆′, there is a coordinate change isomorphism

Θ̄∆′∆ : Fr(Ȳbl
(S; ∆)) → Fr(Ȳbl

(S; ∆′))
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which transfers ϕ∆ to ϕ∆′ . Here Fr(A) is the ring of fractions of the Ore domain
A. The coordinate change isomorphism is functorial, and it extends the original
coordinate change isomorphism of the Chekhov-Fock algebra defined in [25, 8,
14, 40].

Using the top degree part of the extended quantum trace ϕ∆, we will estab-
lish the following facts about the stated skein algebra of a punctured bordered
surface.

thm-noether10 Theorem 2 (See Theorem 6.7). Let S be a punctured bordered surface.

a. The R-algebra S (S) is orderly finitely generated. This means, there are
elements α1, . . . , αn ∈ S (S) such that the set {αk11 . . . αknn | ki ∈ N} spans
S (S) over R.

b. S (S) is a Noetherian domain.

c. If S has an ideal triangulation, then the Gelfand-Kirillov dimension of
S (S) is

r(S)
def
== 3|P∂ | − 3χ(S), (4) eq.rs

where P∂ is the set of boundary punctures and χ(S) is the Euler charac-
teristic.

Part (c) of Theorem 2 will imply that the domain and the target space of
the embedding ϕ∆ in (3) have the same Gelfand-Kirillov dimension. Hence the
embedding ϕ∆ is tight in the sense that its image cannot lie in a quantum torus
of lower dimension.

If ∂S = ∅ then S (S) is the ordinary skein algebra, and most of Theorem
6.7 was known: the finite generation (without order) was proved in [12], the
orderly finite generation was proved in [1], and the Noetherian domain property
was established in [48].

1.4 Length coordinate quantum trace map

Suppose the punctured bordered surface S has non-empty boundary. Except
for a few simple cases, S has a quasitriangulation, which is a collection of
ideal arcs whose endpoints are on the boundary and which cuts S into ideal
triangles and once punctured monogons, see Section 4. We will associate to
a quasitriangulation E a quantum torus X̄(S; E) which contains the quantum
space X̄+(S; E).

Theorem 3 (part of Theorem 4.1). There is a natural algebra embedding

φE : S (S) ↪→ X̄(S; E)

such that the image φE(S (S)) is sandwiched between X̄+(S; E) and X̄(S; E).
The algebra S (S) is an Ore domain and its ring of fractions Fr(S (S)) is a
division ring isomorphic to the ring of fractions Fr(X̄(S; E)).
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The embedding map φE has a simple geometric interpretation. As S (S) is
sandwiched between the quantum space and the quantum torus, one can derive
many consequences. For example, the center of S (S) is the intersection of
S (S) and the center of the quantum torus X(S; E), which is easy to calculate.
Representations of S (S) can be studied from this point of view. In this aspect
the embedding φE is better than the embedding ϕ∆ of Theorem 1.

It was observed in [35] that the subspace S +(S) of S (S) spanned by tan-
gles with positive states is isomorphic to the Muller skein algebra [44]. For
the Muller subalgebra S +(S), the map φE , with a smaller target space, was
constructed in [44] in the case when there is no interior puncture, and in [41]
for the general case. When there is no interior puncture and q = 1, the space
S +(S) can be identified with a space of functions on the decorated Teichmüller
space, and φE(α) for a loop α expresses the trace of α in the holonomy repre-
sentation of the hyperbolic metric in terms of the lambda lengths of the edges
of the triangulation. Thus our embedding φE is an extension/generalization of
Muller’s quantum trace map to the full stated skein algebra. It should be noted
that the additional negative states present non-trivial obstacles that we have to
overcome.

1.5 Relation between the two quantum trace maps

Suppose S has non-empty boundary, and E is a quasitriangulation of S. There
is a unique ideal triangulation ∆ which is an extension of E . We now have two
quantum trace maps, the algebra embeddings ϕ∆ and φE .

thm.equi2 Theorem 4 (part of Theorem 7.1). There is an R-algebra embedding

ψE : X̄(S; E) ↪−→ Ȳbl(S; ∆)

making the following diagram commute:

Ȳbl(S; ∆)

S (S)

X̄(S; E)

ϕ∆

φE

ψE

The map ψE has a transparent, simple geometric interpretation. Moreover,
we show that Ȳbl(S; ∆) is a central quadratic extension of X̄(S; E). WhenS has
no interior puncture and q = 1, the map ψE is essentially the well-known map
which changes shear coordinates to lambda-length coordinates in Teichmüller
spaces.

1.6 Quantum cluster algebra of Muller

For the case when S has no interior puncture and non-empty boundary, Muller
[44] constructed a quantum cluster algebra A(S), which is a quantization of
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the cluster algebra associated to S defined in [23, 18]. The quantum cluster
algebra A(S) is a subalgebra of the localization S +(S)M−1, where M is the
multiplicative subset generated by boundary edges. Recall that S +(S), the
Muller skein algebra, is the submodule of S (S) generated by tangles with
positive states only. When S has at least two boundary punctures, Muller
showed that S +(S)M−1 = A(S).

The kernel of Bonahon-Wong’s quantum trace (2) is calculated in [10], and
is generated by the so called bad arcs, see Section 4. By factoring out the kernel,
one gets the reduced skein algebra and an algebra embedding

trrd∆ : S rd(S) ↪→ Ybl(S; ∆). (5)

Consider the composition

κ : S +(S) ↪→ S (S) ↠ S rd(S)

which maps the Muller algebra S +(S) to the reduced skein algebra.

thm.rdclus Theorem 5 (See Theorem 5.2). Suppose S is a connected punctured bordered
surface. The embedding κ extends uniquely to an R-algebra isomorphism κ̃ :

S +(S)M−1
∼=−→ S rd(S).

Consequently, when S has at least two punctures but no interior puncture,
the quantum cluster algebra A(S) is naturally isomorphic to the reduced skein
algebra S rd(S).

While S +(S) and its localization S +(S)M−1 are defined using only pos-
itive states, the reduced stated skein algebra S rd(S) uses both positive and
negative states. Hence it is a surprise that we can have the above result, which
demonstrates the ubiquity of the stated skein algebra and gives a new perspec-
tive for the quantum cluster algebra of surfaces.

1.7 Applications, related works

Let R = C and q be a root of 1. For applications in hyperbolic TQFT theory,
one would like to know representations theory of S (S). For this one needs
to know the center of S (S), and dimension of S (S) over its center. Besides
S (S) is a Poisson order [9], and to understand the representations of S (S)
one would like to calculate the Poisson structure on the center of S (S). All
these problems can be approached using the embeddings of S (S) into quantum
tori, and we will explore these questions in upcoming work.

Our embedding of the stated skein algebra into quantum tori is close to, and
actually related to, results about embedding of quantized enveloping algebras
into quantum tori [16, 50]. Some geometric ideas and techniques in the current
paper can be applied to higher ranked Lie algebra in our upcoming work [39]
concerning the quantum trace of SLn skein algebra.
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1.9 Organization of the paper

In Section 2 we fix some notations and explain some algebraic facts. Section
3 contains basics of stated skein algebras. Section 4 has the embedding of
S (S) into a quantum torus which is the quantization of length coordinate
functions. Section 5 discusses the reduced skein algebra and the quantum cluster
algebra. Section 6 presents the embedding of S (S) into a quantum torus which
is the quantization of shear coordinate functions. Section 7 explains the relation
between the two quantum trace maps.

2 Notations, algebraic preliminaries
sec.alg

We fix notations and review the theory of quantum tori and Gelfand-Kirillov
dimension.

2.1 Notations, conventions

Throughout the paper the ground ring R is a commutative Noetherian domain
with unit, with a distinguished invertible element q1/2. All algebras are R-
algebras unless otherwise stated.

Two elements x, y in an R-algebra A are q-proportional, denoted by x
(q)
= y,

if there is k ∈ Z such that x = qk/2y. Two elements x, y ∈ A are q-commuting
if xy and yx are q-proportional

We denote by N,Z,C respectively the set of non-negative integers, the set of
integers, and the set of complex numbers. We emphasize that our N contains 0.

2.2 Weyl ordering

Suppose x1, x2, . . . , xn are pairwise q-commuting elements, xixj = qcijxjxi. The
well-known Weyl normalization of the product x1x2 . . . xn is

[x1x2 . . . xn] = q−
1
2

∑
i<j c(xi,xj)x1x2 . . . xn.

The factor is chosen such that the normalization does not depend on the order of
the product. That is, if σ is a permutation of {1, 2, . . . , n}, then [x1x2 . . . xn] =
[xσ(1)xσ(2) . . . xσ(n)].
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2.3 Quantum torus

The quantum torus associated to an antisymmetric r × r integral matrix Q is
the algebra

T(Q)
def
== R⟨x±1

1 , . . . , x±1
r ⟩/(xixj = qQijxjxi).

For k = (k1, . . . , kr) ∈ Zr, let

xk
def
== [xk11 x

k2
2 . . . xkrr ] = q−

1
2

∑
i<j Qijkikjxk11 x

k2
2 . . . xkrr

be the (Weyl) normalized monomial. Then {xk | k ∈ Zr} is a free R-basis of
T(Q), and

xkxk
′
= q

1
2 ⟨k,k

′⟩Qxk+k′
, where ⟨k,k′⟩Q :=

∑
1≤i,j≤r

Qijkik
′
j , (6) eq.prod

xkxk
′
= q⟨k,k

′⟩Qxk
′
xk. (7) eq.commu

It follows that the decomposition

T(Q) =
⊕
k∈Zr

Rxk (8) eq.grad

gives the algebra T(Q) a Zr-grading. A quantum torus is a Noetherian domain
[24]. In particular, it has a ring of fractions, denoted by Fr(T(Q)), which is a
division algebra.

Suppose Q′ is another antisymmetric r′ × r′ integral matrix and H is an
r× r′ integral matrix such that HQ′HT = Q, where HT is its transpose. Then
the R-linear map T(Q) → T(Q′) given on the basis by xk 7→ xkH is an algebra
homomorphism, called a multiplicatively linear homomorphism. Here kH is the
product of the row vector k and the matrix H.

When R = Z[q±1/2], there is a unique Z-linear ring anti-automorphism

ω : T(Q) → T(Q), given by ω(q1/2) = q−1/2, ω(xi) = xi.

Here anti-automorphism means isomorphism to the opposite ring. Thus, ω(x+
y) = ω(x) + ω(y), ω(xy) = ω(y)ω(x). Clearly ω2 = id. We will call ω the
reflection anti-involution of the quantum torus. An element z ∈ T(Q) is reflec-
tion invariant if ω(z) = z. A map f : T(Q) → T(Q′) is reflection invariant if
f ◦ω = ω◦f . For example, all normalized monomials xk are reflection invariant,
and all multiplicatively linear homomorphisms are reflection invariant.

2.4 Monomial subalgebra

Still assume Q is an antisymmetric integral r × r matrix. If Λ ⊂ Zr is a
submonoid, then the R-submodule A(Q; Λ) ⊂ T(Q) spanned by {xk | k ∈ Λ}
is an R-subalgebra of T(Q), called a monomial subalgebra. When Λ = Nr, the
corresponding subalgebra is the quantum space, denoted by T+(Q), which is
Noetherian [9].
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r.mono Lemma 2.1. If Λ ⊂ Zr is a submonoid finitely generated as an N-module, then
the monomial subalgebra A(Q; Λ) ⊂ T(Q) is a Noetherian domain.

Proof. As A(Q; Λ) is a subalgebra of T(Q), it is a domain. Suppose {n1, . . . ,nk}
is an N-spanning set of Λ. Then Λ is the quotient of the free N-module with
basis {n1, . . . ,nk}. Let Pij = ⟨ni,nj⟩Q. Then A(Q; Λ) is a quotient of T+(P ),
and hence Noetherian.

Note when Λ is a subgroup, then A(Q; Λ) is a quantum torus. This occurs
as the image of a multiplicatively linear homomorphism.

Another example of a monomial subalgebra is the center. As T(Q) is graded
by (8), its center Z(T(Q)) is a graded subalgebra. In other words, there is a
subgroup Λ(Q, q) ⊂ Zr such that Z(T(Q)) is the R-linear span of {xk | k ∈
Λ(Q, q)}. That is Z(T(Q)) = A(Q; Λ(Q, q)). From the commutation relation
(7) we see that

Λ(Q, q) = {k ∈ Zr | q⟨k,k
′⟩Q = 1 for all k′ ∈ Zr}.

2.5 Embedding into quantum torus

r.Ore Proposition 2.2. Let Q be an antisymmetric integral r×r matrix, and let A be
an R-algebra containing the quantum space T+(Q) as a subalgebra. Assume that
A is a domain, and for every a ∈ A there is k ∈ Nr such that xka ∈ T+(Q) ⊂ A.

Then A is an Ore domain, and the embedding T+(Q) ↪→ T(Q) can be
uniquely extended to an algebra embedding A ↪→ T(Q) which induces an iso-

morphism of the rings of fractions Fr(A)
∼=−→ Fr(T(Q)).

Proof. Uniqueness is obvious. From (6) we see that for every k ∈ Nr the map

τk : T(Q) → T(Q), τk(a) = xkax−k

is an algebra automorphism which preserves T+(Q). If xka = u ∈ T+(Q), then

xk(axk − (τk)
−1(u)) = xku− xku = 0.

Since A is a domain, we have axk = (τk)
−1(u) ∈ T+(Q).

We now show that the multiplicative subset S = {qn/2xk | n ∈ Z,k ∈ Nr} is
an Ore set of A. Let a ∈ A and k ∈ Nr. To show that S is right Ore, we have to
show that Axk ∩ Sa ̸= ∅. By assumption xna ∈ T+(Q) for some n ∈ Nr. The
following element

(xkxn)a = xk(xna) = τk(x
na)xk

belongs to both Sa and Axk. Thus S is a right Ore multiplicative subset of A.
Similarly S is also a left Ore subset. The right Ore localization A[S−1] contains
A as a subset since S, as a subset of A, does not have zero divisor.

It is clear that S is also a right Ore set of T+(Q). Since localization is exact,
we have an embedding

γ : T(Q) = T+(Q)[S−1] ↪→ A[S−1]. (9)
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Since for every a ∈ A there is k ∈ Nr such that axk ∈ T+(Q), we see γ is
surjective, and hence γ is an isomorphism. The restriction of γ−1 onto A is the
desired extension.

As Fr(T+(Q)) = Fr(T(Q)) and A is sandwiched between T+(Q) and T(Q),
we see that A is an Ore domain, and Fr(A) = Fr(T(Q)).

2.6 Gelfand-Kirillov dimension

The Gelfand-Kirillov dimension is a noncommutative analog of the Krull di-
mension. Let A be a finitely generated algebra over a field k, and let V be
a finite dimensional generating subspace, e.g., the span of the generators. Set
V 0 = k, V n = {a1a2 . . . an | ai ∈ V, i = 1, . . . , n} and An =

∑n
i=0 V

i. The
Gelfand-Kirillov dimension, or GK dimension, is defined as

GKdimA
def
== lim sup

n→∞

log dimk(An)

log n
.

The dimension is independent of the choice of V . We extend the definition to
an R-algebra A by letting k = Fr(R), the field of fractions of R, and

GKdimA
def
== GKdim(A⊗R k).

lemma-GKdim Lemma 2.3. Let A be a finitely generated R-algebra.

a. If B is a (finitely generated) subquotient of A, then GKdimB ≤ GKdimA.

b. Suppose {Fk}∞k=0 is a finite dimensional filtration of A, then the associated
graded algebra GrA has the same dimension GKdim(GrA) = GKdimA.

c. The quantum torus T(Q) and the quantum space T+(Q) has GK dimension
r, the number of generators.

d. More generally, the GK dimension of the monomial subalgebra A(Q; Λ) is
rankΛ.

Proof. (a) and (b) can be found in [43, Propositions 8.2.2, 8.6.5]. (c) can be
found in [49, Theorem 25].

For (d), let Λ̄ ⊂ Zr be the subgroup generated by Λ. Thus A(Q; Λ) is
contained in the quantum torus A(Q; Λ̄) with k = rankΛ generators. Λ contains
a free N-module of rank k. Hence the monomial algebra A(Q,Λ) contains an
isomorphic image of a quantum space with k generators. By (a) and (c), all
three algebras have GK dimension k.

3 Stated skein algebra
sec.surfaces

3.1 Punctured bordered surfaces

A punctured bordered surface S is a surface of the form S = S\P, where S is a
compact oriented surface with (possibly empty) boundary ∂S, and P is a finite
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set such that every connected component of the boundary ∂S has at least one
point in P. We do not require S be to connected. Each connected component
of the boundary ∂S is an open interval called a boundary edge of S.

Points in P are called punctures ofS. A puncture belonging to the boundary
∂S is called a boundary puncture, and the rest are interior punctures. Let P∂
and P̊ be the set of all boundary punctures and the set of all interior punctures
respectively.

An ideal n-gon is the standard disk with n points on its boundary removed.
For n = 1, 2, 3, 4, we also call them monogon, bigon, triangle and quadrilateral,
respectively.

An ideal arc of S is an embedding a : (0, 1) → S that can be extended to
an immersion ā : [0, 1] → S with ā(0), ā(1) ∈ P . We call ā(0) and ā(1), which
might coincide, the ideal endpoints of a. As usual we identify an ideal arc with
its image, which is considered as a non-oriented 1-dimensional submanifold.
Isotopies of ideal arcs are considered in the class of ideal arcs. If ā(0) = ā(1)
and ā bounds a disk in S, a is called a trivial ideal arc.

3.2 Tangles in thickening of surface

Fix a punctured bordered surface S. The thickening of S is the 3-manifold
S̃ = S× (−1, 1) with the orientation induced from those of S and (−1, 1). If b

is a boundary edge of S then b × (−1, 1) is called a boundary wall of S̃. The

union of all the boundary walls is the boundary ∂S̃ of S̃.
The height of a point (z, t) ∈ S̃ is t. A vector at (z, t) is called vertical if it

is a positive vector of {z} × (−1, 1). A framing of a 1-dimensional submanifold
α of S× (−1, 1) is a continuous choice of a vector transverse to α at each point
of α. If α is equipped with a framing we say that α is framed.

By a ∂S̃-tangle α in S̃ = S × (−1, 1) we mean a framed 1-dimensional
compact submanifold of M such that

� ∂α ⊂ ∂S̃ and the framing at each point in ∂α is vertical, and

� the boundary points of α in a boundary wall have distinct heights.

For any ∂S̃-tangle α, there is the partial order called the height order on ∂α,
where x > y if and only if x, y are in the same boundary wall and the height of
x is greater than that of y. If x > y and there is no z such that x > z > y, then
we say x and y are consecutive.

Two ∂S̃-tangles are isotopic if they are isotopic in the class of ∂S̃-tangles.
In particular, ∂S̃-isotopies do not change the height order. The empty set, by
convention, is a ∂S̃-tangle which is isotopic only to itself.

As usual, ∂S̃-tangles are depicted by their diagrams on S as follows. Ev-
ery ∂S̃-tangle is isotopic to one with vertical framing. Suppose a vertically
framed ∂S̃-tangle α is in general position with respect to the projection π :
S× (−1, 1) → S. The restriction π|α : α→ S is an immersion with transverse
double points as the only possible singularities, and there are no double points
on the boundary of S. Then D = π(α), together with
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� the over/underpassing information at every double point, and

� the linear order on π(α) ∩ b for each boundary edge b induced from the
height order

is called a ∂S-tangle diagram, or simply a tangle diagram on S. Isotopies of
∂S-tangle diagrams are ambient isotopies in S.

Clearly the ∂S-tangle diagram of a ∂S̃-tangle α determines the isotopy
class of α. When there is no confusion, we identify a ∂S-tangle diagram with
its isotopy class of ∂S̃-tangles.

Let o be an orientation of ∂S, which may or may not be the orientation
inherited from S. A ∂S-tangle diagram D is o-ordered if for each boundary
edge b, the order of ∂D on b is increasing when one goes along b in the direction
of o. It is clear that every ∂S̃-tangle can be presented by an o-ordered ∂S-tangle
diagram after an isotopy. If o is the orientation coming from S, the o-order is
called the positive order.

3.3 Stated skein algebra
sec.sk

A state on a finite set X is a map s : X → {±}. If α is a ∂S̃-tangle or a
∂S-tangle diagram, then α is stated if it is equipped with a state on the set ∂α
of boundary points.

Let S (S) be the R-module freely spanned by isotopy classes of stated ∂S̃-
tangles modulo the defining relations, which are the skein relation (10), the
trivial loop relation (11), the trivial arc relations (12), and the state exchange
relation (13):

= q + q−1 , (10) eq.skein

= (−q2 − q−2) , (11) eq.loop

+

− = q−1/2 ,
+

+ = 0,
−
− = 0, (12) eq.arcs

−
+ = q2

+

− + q−1/2 . (13) eq.order

Here each shaded part is a part of S, with a stated ∂S-tangle diagram on it
indicated by the thick lines. Each thin line is part of a boundary edge, and the
height order on that part is indicated by the arrow, and the points on that part
are consecutive. The order of other endpoints away from the picture can be
arbitrary and are not determined by the arrows of the pictures.

For two ∂S̃-tangles α1 and α2, the product α1α2 is defined as the result
of stacking α1 above α2. The product makes S (S) an R-algebra, which is
non-commutative is general.

Given a proper embedding of punctured bordered surfaces ι : S → S′ where
each boundary edge of S′ contains the image of at most one boundary edge of
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S, there is an induced map on the stated skein algebras

ι∗ : S (S) → S (S′)

defined on the stated ∂S-tangle diagrams in the obvious way. It is clear that ι∗
respects the product structure. Thus ι∗ is a well defined R-algebra homomor-
phism.

rem.hS Remark 3.1. Relations (12) appeared in [8]. Relation (13) appeared in [35]
where the stated skein algebra was introduced.

3.4 Related constructions

If we use only the relations (10) and (11) in the definition of S (S), we get a
coarser version S BW(S), which was defined by Bonahon and Wong [8].

The subalgebra S +(S) spanned by ∂S̃-tangles whose states are all + is
naturally isomorphic to the skein algebra defined by Muller [44]. For more
details, see [35, 41].

The ordinary skein algebra is defined using links (tangles with only closed

components) and the relations (10) and (11). Since the interior S̊ of S does not

have boundary, arc components are not allowed in the thickening of S̊, and the
relations (12) and(13) are vacuous. Thus S (S̊) is identified with the ordinary

skein algebra of S. The inclusion S̊ ↪→ S induces a natural algebra embedding
S (S̊) ↪→ S (S), see [35].

3.5 Height exchange relations, reflection

lemma-height Lemma 3.2 (Height exchange relations, Lemma 2.4 of [35]). For ν ∈ {±} one
has

ν

+ = q−ν
+

ν ,
−
ν = qν

ν

− , (14) eq.reor1

q3/2
−
+ − q−3/2 −

+ = (q2 − q−2) . (15) eq.reor2

Here we have identified ± with ±1 when we write qν .

lemma-r.reflection Proposition 3.3 (Reflection anti-involution, Proposition 2.7 in [35]). When R =
Z[q±1/2], there exists a unique Z-linear map ω : S (S) → S (S) such that

� ω(q1/2) = q−1/2,

� ω is an anti-automorphism, and ω2 = id,

� if α is a stated ∂S-tangle diagram then ω(α) is the result of switching all
the crossings of α and reversing the height order on each boundary edge.

We call ω the reflection anti-involution. A map f : S (S) → S (S′) is
reflection invariant if f ◦ ω = ω ◦ f . For example, the map ι∗ induced by a
surface embedding ι is reflection invariant.

Similarly, for an antisymmetric integer matrix Q, a map f : S (S) → T(Q)
is reflection invariant if f ◦ ω = ω ◦ f .
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3.6 Basis
sec.basis0

A ∂S-tangle diagram α is simple if it has neither double point nor trivial com-
ponent. Here a closed component of α is trivial if it bounds a disk in S, and
an arc component of α is trivial if it can be homotoped relative to its boundary
to a subset of a boundary edge. By convention, the empty set is considered as
a simple stated ∂S̃-tangle diagram.

Define an order on {±} so that the sign − is less than the sign +. Recall
the set of boundary points ∂α has a partial order (the height order). A state
s : ∂α → {±} is increasing if s is an increasing function, i.e., s(x) ≤ s(y)
whenever x ≤ y.

Let B(S) be the set of of all isotopy classes of increasingly stated, positively
ordered simple ∂S-tangle diagrams.

thm.basis Theorem 3.4 (Theorems 2.11 and Proposition 4.4 in [35]). Suppose S is a punc-
tured bordered surface. The set B(S) is a free R-basis of S (S). The algebra
S (S) is a domain. In other words, if xy = 0 where x, y ∈ S (S), then x = 0
or y = 0.

3.7 Splitting homomorphism
sec.splitting

Suppose c is an ideal arc in the interior of a puncture bordered surface S. The
splitting of S along c is a punctured bordered surface S′ with two boundary
edges a, b such that gluing a and b in S′ gives S and a and b both project to c.

A ∂S̃-tangle α ⊂ S̃ is vertically transverse to c if

� α is transverse to c× (−1, 1), and

� the points in ∂cα
def
== α ∩ (c × (−1, 1)) have distinct heights and vertical

framing.

Suppose α is a stated ∂S̃-tangle vertically transverse to c. By splitting α along
c×(−1, 1) we get a ∂S̃′-tangle α̃ which is stated at every boundary point except

for points in p−1(∂cα), where p : S
′ × (−1, 1) → S̃ = S× (−1, 1) is the natural

projection. For every s : ∂cα → {±} let (α̃, s) be the ∂S̃′-tangle α̃ where the
state of a point x in p−1(∂cα) is s(p(x)).

thm.1a Theorem 3.5 (Splitting Theorem, Theorem 3.1 in [35]). Suppose c is an ideal
arc in the interior of a punctured bordered surface S, and S′ is the splitting of
S along c.

a. There is a unique R-algebra homomorphism θc : S (S) → S (S′), called

the splitting homomorphism along c, such that if α is a stated ∂S̃-tangle
vertically transverse to c, then

θc(α) =
∑

s:∂cα→{±}

(α̃, s). (16) eq.split

b. In addition, θc is injective and reflection invariant.
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c. If c1 and c2 are two disjoint ideal arcs in the interior of S, then

θc1 ◦ θc2 = θc2 ◦ θc1 .

Remark 3.6. If S1 and S2 are two punctured bordered surfaces, then there is
a natural algebra isomorphism

S (S1)⊗R S (S2) ∼= S (S1 ⊔S2)

where α1 ⊗ α2 is identified with α1 ⊔ α2 for ∂S̃i-tangles αi, i = 1, 2. Thus if
the splitting of S along c is the disconnected surface S1 ⊔S2, we can write the
splitting homomorphism as

θc : S (S) → S (S1)⊗ S (S2).

This statement easily generalizes to surfaces with more than two components.

3.8 Bigon and coaction on surface
sec.bigon

Let B be an ideal bigon, with two boundary edges eL and eR. For µ, ν ∈ {±}
let aµν be the stated arc depicted in Figure 1. The algebra S (B) is generated
by aµν with µ, ν ∈ {±}. There are geometrically defined coproduct, counit,
and antipode for S (B) which turns S (B) into a Hopf R-algebra isomorphic
to the well-known quantum coordinate ring Oq2(SL2) of the Lie group SL2, see
[10, 33].

µ
a

ν

eReL

Figure 1: Bigon and arc aµν .fig:bigon

The counit ε : S (B) → R is the R-algebra homomorphism defined on
generators by

ε(aµν) = δµ,ν . (17) eqn-counit

If α is a stated ∂B̃-tangle, then ε(α) is the matrix element of the Reshetikhin-
Turaev operator invariant of the tangle α, see [10], and is also equal to TrB(α)
of [8, Proposition 13]. There is a conservation of charge property, which says
for any ∂B-tangle diagram α with state s : ∂α→ {±} ≡ {±1},

ε(α) = 0 if
∑

x∈∂α∩eL

s(x) ̸=
∑

x∈∂α∩eR

s(x). (18) eq.charge

r.plus Lemma 3.7. Suppose α is a stated simple ∂B-tangle diagram whose states are
positive. Then ε(α) = qk/2 for some k ∈ Z. In particular, it is nonzero.
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Proof. Use a diagramD of α where the height orders on eL and eR are given from
bottom to top. In general D has crossing. Because the states are all positive,
there is only one way to resolve all the crossings of D so that the resulting
diagram is not 0. Thus D is q-proportional to the diagram with horizontal
parallel arcs, whose ε value is 1 by (17).

Suppose e is a boundary edge of a punctured bordered surface S. By split-
ting S along an ideal arc e′ isotopic to e and lying in the interior of S, we get
a bigon and a surface diffeomorphic to S. The splitting homomorphism gives
an algebra map

S (S) → S (S)⊗ S (B) (19)

which provides S (S) with a right S (B)-comodule structure. See [10] for prop-
erties of this comodule. In particular, when S = B, the above comodule map
is the coproduct.

4 Embedding into quantum torus, length coor-
dinate version

sec.length

Throughout this section S is a connetced punctured bordered surface with non-
empty boundary. In particular, the set P∂ of boundary punctures is non-empty.
For simplicity we also assume that S is not a monogon or a bigon.

We will show that there is an embedding of S (S) into a quantum torus

φ : S (S) ↪→ T(P̄ )

such that the image of φ is sandwiched T+(P̄ ) and T(P̄ ). This fact makes
it easy to study the representations of S (S). The matrix P̄ depends on a
quasitriangulation of S.

When S does not have interior punctures and q = 1, and α is a simple closed
curve, the image φ(α) expresses the lambda length of α as a Laurent polynomial
in the lambda length coordinates of the decorated Teichmüller space.

4.1 Disjoint ideal arcs
sec.P.arc

An ideal arc of S is boundary ending if its endpoints are boundary punctures.
For disjoint boundary ending ideal arcs a and b (which can be isotopic), define
the integer P (a, b) by

P (a, b) = #

(
b a

)
−#

(
a b

)
.

To be precise, by removing a point in a we get two half-edges of a, each is
incident with exactly one boundary puncture. For a boundary puncture v and
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two disjoint half-edges a′, b′ let Pv(a
′, b′) = 0 if one of a′, b′ is not incident with

v; otherwise let

Pv(a
′, b′) =

{
1, b′ is counterclockwise to a′,

−1, b′ is clockwise to a′.

Let P (a, b) =
∑
Pv(a

′, b′) where the sum is over half-edges a′ of a and half-edges
b′ of b and all boundary punctures v. It is evident that P (a, b) only depends on
the isotopy classes of a and b.

4.2 Quasitriangulation and its vertex matrix

An ideal multiarc in S is a finite collection of disjoint ideal arcs, and it is
boundary ending if each component is boundary ending. In this paper, a qu-
asitriangulation of S is a maximal boundary ending ideal multiarc E whose
components are non-trivial and no two of them are isotopic. Any boundary
edge of S is isotopic to an element of E . Since S is not a monogon nor a bigon,
every boundary edge of S is isotopic to an element of E , and two different
boundary edges are not isotopic. Thus, after an isotopy, we can assume that E
contains the set E∂ of all boundary edges. Let E̊ = E \ E∂ be the set of interior
ideal arcs of E . If we split S along all e ∈ E̊ , we get a collection of ideal triangles
and once-punctured monogons.

Let P : E × E → Z be the antisymmetric function whose values P (a, b)

are defined in Section 4.1. Let Ê∂ = {ê | e ∈ E∂} be another copy of the set

E∂ of boundary edges, and let Ē = E ⊔ Ê∂ . Define an antisymmetric function
P̄ : Ē × Ē → Z, which is an extension of P , by

P̄ (a, b̂) = −#

(
b a

)
−#

(
a b

)
, if a ∈ E , b ∈ E∂ , (20) eq.P2

P̄ (â, b̂) = −P (a, b), if a, b ∈ E∂ .

The right hand side of (20) counts the number of times when a half-edge of a
and a half-edge of b meet at a boundary puncture (with a minus sign).

Recall that P̊ is the set of interior punctures. Let R[P̊] be the polynomial
algebra in variables which are the interior punctures. Define the quantum torus
associated to the antisymmetric form P̄ with ground ring R[P̊]:

X̄(S; E) = R[P̊]⟨x±1
a , a ∈ Ē⟩/(xaxb = qP̄ (a,b)xbxa).

The set {xk | k ∈ ZĒ} is a free R[P̊]-basis of X̄(S; E). The R[P̊]-submodule
spanned by {xk | k ∈ NĒ} is denoted by X̄+(S; E).

4.3 Quantum trace, length coordinates version

thm.embed1 Theorem 4.1. Suppose S is a connected punctured bordered surface with non-
empty boundary, and S is not a monogon or a bigon. Let E be a quasitriangu-
lation of S.
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There is an R-algebra embedding φE : S (S) ↪→ X̄(S; E) such that

X̄+(S; E) ⊂ φE(S (S)) ⊂ X̄(S; E). (21)

Consequently S (S) is an Ore domain, and φE induces an isomorphism of the

division rings φ̃E : Fr(S (S))
∼=−→ Fr(X̄(S; E)).

When R = Z[q±1/2], the map φE is reflection invariant.

The fact that φ(S (S)) is sandwiched between the quantum space X̄+(S; E)
and the quantum torus X̄(S; E) has many applications. For example, it follows
that the center of S (S) is the restriction of the center of X̄(S; E). Any repre-
sentation of S (S) in which the actions of xa, a ∈ E are invertible extends to a
representation of the quantum torus whose representation theory is known.

Another immediate consequence is the easy construction of the coordinate
change isomorphism. For another quasitriangulation E ′, the coordinate change
isomorphism is defined as

ΨE′E : Fr(X̄(S; E)) → Fr(X̄(S; E ′)), ΨE′E = φ̃E′ ◦ (φ̃E)
−1.

By construction, ΨEE′ is reflection invariant, that is, ΨEE′ commutes with the
extension ω̃ of the reflection anti-involution to the ring of fractions.

Corollary 4.2. The coordinate change isomorphism is functorial in the sense
that for quasitriangulations E , E ′, E ′′, one has

ΨEE = id, ΨE′′E = ΨE′′E′ ◦ΨE′E .

In addition, φE′ = ΨE′E ◦ φE .

It should be noted that the coordinate change isomorphism for the (quan-
tum) coordinate embedding of Section 6 is much more difficult to construct.
In [40, 25, 8], one first constructed the coordinate change isomorphism (for the
shear quantum trace map) for flips of triangulations, then showed that the iso-
morphism does not depend on the sequence of flips representing the change of
triangulations.

Remark 4.3. When S does not have interior puncture, Müller [44] first defined
the matrix P and showed that there is an embedding of the subalgebra S +(S)
into the smaller quantum torus X(S; E) ⊂ X̄(S; E) generated by x±1

a , a ∈ E .
He showed that when q = 1, the embedding expresses the lambda length of a
simple closed curve as a Laurent polynomial in the lambda lengths of the edges
of the quasitriangulation. The embedding result is extended to the case when
S has interior punctures in [41]. Here we extend the result to the whole algebra
S (S), using the bigger the quantum torus X̄(S; E). Because of the relation to
the length coordinates for the case when there is no interior punctures, we call
φE the length coordinate version quantum trace map. We don’t know a precise
relation between φE(α), when q = 1 and α is an open arc,and the hyperbolic
geometry of S. We hope to go back to this question in the future.
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4.4 Idea of proof, ideal arcs as elements of S (S)
sec.bad

The idea is to use Proposition 2.2 to embed S (S) into a quantum torus. The
polynomial ring R[P̊] will be considered as a subalgebra of the center of S (S),
where we identify a puncture v ∈ P̊ with a small loop Xv in S surrounding v.
Such a loop will be called a peripheral loop.

Next we will find a finite set {Xa, a ∈ Ē} ⊂ S (S) which q-commute with
the q-commutation described by the P̄ -matrix, i.e.

XaXb = qP̄ (a,b)XbXa. (22)

This means there is an algebra map from the quantum space X̄+(S; E) to S (S),
given by xa → Xa. We will show that the map is an embedding, and for any
element of y ∈ S (S) there is a monomial z in the Xa’s such that yz belongs to
the image of quantum space X̄+(S; E). Now Proposition 2.2 shows that there
is an embedding of S (S) into the quantum torus X̄(S; E).

In this subsection we describe the elements Xa, and give the proof of Theo-
rem 4.1 in the next subsection.

From Theorem 3.4, the set
•

B consisting of positively ordered, increasingly
stated, simple ∂S-tangle diagrams without peripheral loops is a free R[P̊]-basis
of S (S).

α D(α)

Figure 2: Moving left: From ideal multiarc α to D(α).fig:movingleft

For each ideal multiarc α, let D(α) be the simple ∂S-tangle diagram ob-
tained from α by slightly moving all the strands of α coming to each boundary
puncture p to strands ending on the boundary edge lying to the left of p, see
Figure 2, and imposing positive order on each boundary edge. Note that D(α)
is well-defined up to isotopy. When e ∈ E∂ is a boundary edge D(e) is called a
corner arc, see Figure 3.

D(e) e

+

−
D(e) e −

+
eD(e)

Figure 3: Left: Boundary edge e and corner arc D(e). Middle: Bad arc
D(e)(+,−). Right: Bad arc D(e)(+,−) when two endpoints of e coincide.fig:barc1
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For each e ∈ Ē define Xe ∈ S (S) as follows. For e ∈ E , let

Xe =

{
D(e)(+,+), if endpoints of e are disctinct,

q−1/2D(e)(+,+), if endpoints of e are identical,

where D(e)(+,+) is D(e) equipped with positive states at both endpoints. The
factor q−1/2 is introduced so that Xe is reflection invariant (when R = Z[q±1/2]),
which follows from the height exchange relation (14).

For e ∈ E∂ define Xê ∈ S (S), called the bad arc corresponding to e following
[10], by

Xê =

{
D(e)(+,−), if endpoints of e are disctinct,

q1/2D(e)(+,−), if endpoints of e are identical,

where D(e)(+,−) is D(e) with states assigned as in Figure 3. Again Xê is
reflection invariant.

r.badarc Lemma 4.4. Let α be a stated ∂S-tangle diagram.

a. In S (S), α is q-commuting with any bad arc Xê. Consequently Xê is a
normal element of S (S) in the sense that the left ideal generated by Xê

is the same as the right ideal generated by Xê.

b. Suppose α ∈
•

B. Let α′ be the union of all the bad arcs in α and α′′ is the
union of the remaining components. Then α′α′′ is q-proportional to α.

Proof. For part (a), first assume that the two endpoints of e are distinct. Let a
be the boundary edge lying to the left of e. The diagrams of the products Xêα
and αXê, together with the diagram Y which is a disjoint union of α and Xê,
are given in Figure 4. All boundary orders are positive.

−

+

Xê

e

a

α

−
+

−
+

Xê

Figure 4: From left to right: Diagram of Xêα, Diagram Y , and Diagram of
αXê.fig:badarc

For a boundary edge c let δc(α) be the sum of all the states of boundary
points of α on c, where we identify ± with ±1. The height exchange relation
(14) gives

Xêα = qδe(α)Y (23) eq.bad1

= qδe(α)+δa(α)αXê. (24)
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When the two endpoints of e are identical, then a = e and a similar calculation
shows

Xêα = q2δe(α)αXê. (25)

If α is positively ordered and increasingly stated, then the bad arc compo-
nents looks like diagram Y . Thus (b) follows Identify (23).

Let
•

Bbad ⊂
•

B be the set of stated ∂S-tangle diagrams in
•

B whose compo-
nents are bad arcs only, and

•

Brd ⊂
•

B be the set of stated ∂S-tangle diagrams in
•

B containing no bad arcs. Let D(S) be the R[P̊]-subalgebra of S (S) generated
by the bad arcs. Then

•

Bbad is a freeR[P̊]-basis of D(S). From Lemma 4.4(b) we
have the following corollary, which actually appeared implicitly in [10, Section
7.2].

r.badbasis Corollary 4.5. As a left D(S)-module S (S) is freely spanned by
•

Brd.

4.5 Proof of Theorem 4.1
sec.P.proof

Proof. From the height exchange relation (14) one gets that for any a, b ∈ Ē ,

XaXb = qP̄ (a,b)XbXa.

This means there is a well-define R[P̊]-algebra homomorphism

ι : X̄+(S; E) → S (S), ι(xe) = Xe.

which is reflection invariant (when R = Z[q±1/2]).
[[ Rewrite, add figure.
Now we show that ι is injective by showing that ι maps the R[P̊]-basis

{xk | k ∈ NĒ} of X̄+(S; E) injectively into a subset of an R[P̊]-basis of S (S).
For k ∈ NĒ let k′ ∈ NE be defined by k′(e) = k(e) if e ∈ E̊ and k′(e) = k(e)+k(ê)
for e ∈ E∂ . Let Ek′

be the ideal multiarc consisting of k′(e) parallel copies of
e for every e ∈ E . Let D(Ek′

;k) be the ∂S-tangle diagram D(Ek′
) equipped

with the increasing states such that on each boundary edge e there are exactly
k(ê) negative states. From the height exchange relation (14), we have that ι(xk)
is q-proportional to D(Ek′

;k). Note that D(Ek′
;k) ∈

•

B, and if k1 ̸= k2 then
D(Ek′

1 ;k1) ̸= D(Ek′
2 ;k2). It follows that ι is injective. ]]

Let us identify X̄+(S; E) with a subset of S (S) by the embedding ι.

lemma-Laurent Lemma 4.6. For any α ∈ S (S), there k ∈ NĒ such that xkα ∈ X̄+(S; E).
Moreover one can choose k such that k(ê) = 0 for all e ∈ E∂ .

Since S (S) is a domain (see Theorem 3.4), Lemma 4.6 and Proposition 2.2
show that the embedding X̄+(S; E) ↪→ X̄(S; E) has a unique extension which is
an R[P̊]-algebra embedding φE : S (S) ↪→ X̄(S; E), proving the theorem.

It remains to prove Lemma 4.6, which is a generalization [44, Corollary 6.9]
and [41, Lemma 6.5], where it was showed that the lemma is true when α has
only positive states.
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We use induction on the number of negative states of α, denoted d(α). If
d(α) = 0, then α is positively stated, and the previous results apply. Now
assume d(α) > 0.

Recall that D(S), defined in Subsection 4.4 as the R[P̊]-subalgebra of S (S)
generated by bad arcs, is a subalgebra of X̄+(S; E). As S (S) is spanned over
D(S) by

•

Brd (by Corollary 4.5), and bad arcs q-commute with monomials xk

(by Lemma 4.4), we can assume that α ∈
•

Brd.
Assume that α has a negative state on some boundary edge e. Consider the

product Xeα, whose diagram is depicted in Figure 5, where we also depict Y+
and Y− which are respectively the result of positive and negative resolution of
the diagram of Xeα at the lowest crossing.

+

+

Xe

e

−

α

+

−
+ +

−

+

Figure 5: Diagrams of Xeα and Y+, Y−.fig:bad2

By the skein relation Xeα = qY+ + q−1Y−. Since Y− has a bad arc,
Lemma 4.4 shows that Y− is an D(S)-linear combination of elements in

•

Brd

with less than d(α) negative states. The diagram Y+ contains an arc whose two
endpoints are in e, and by resolving all the crossing on this arc and using the
defining relation (12), we get that Y+ is also an D(S)-linear combination of ele-
ments in

•

Brd with less than d(α) negative states. Thus by induction, the lemma
holds for α. This completes the proof of Lemma 4.6 and the theorem.

r.bad5 Remark 4.7. The induction proof of Lemma 4.6 shows that for every α ∈
S (S) there is a monomial m in the variables Xe, e ∈ E∂ such that mα ∈
S +

bad(S), the R[P̊]-subalgebra of S (S) generated by bad arcs and S +(S).

5 Reduced skein algebra and quantum cluster
algebra

sec.red

5.1 Reduced skein algebra

Suppose S = S \P is a punctured bordered surface with non-empty boundary.
Let Ibad be the left ideal generated by all bad arcs defined in Subsection 4.4.
By Lemma 4.4, the ideal Ibad is a two-sided ideal. The quotient S rd(S) =
S (S)/Ibad is the reduced skein algebra introduced in [10], where it is shown
that Ibad is the kernel of Bonahon-Wong’quantum trace map, see Section 6.

Recall the basis of S (S) is given by B(S), the set of isotopy classes of in-
creasingly stated, positively-ordered simple ∂S-tangle diagrams. Let Brd(S) ⊂
B(S) be the subset of diagrams which contain no bad arcs.
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Theorem 5.1 (Theorems 7.1 and 7.12 in [10]). Suppose S is a punctured bor-
dered surface with non-empty boundary. The algebra S rd(S) is a domain, and
Brd(S) is a free R-basis of S rd(S).

5.2 Quantum cluster algebra

Recall that the Muller skein algebra S +(S) ⊂ S (S) is the R-subalgebra gen-
erated by ∂S-tangle diagrams with positive states. For every ideal arc e in S
we defined an element Xe, which is the result of moving endpoints of e to the
left and equipping them with positive states at both endpoints, see Subsection
4.4.

Let M denote the multiplicative subset generated by Xe where e runs over
the set E∂ of boundary edges. Muller showed in [44] that M is a two sided
Ore set in S +(S). Let A(S) be the R-subalgebra of the Ore localization
S +(S)M−1 generated by all Xa, where a can be any ideal arc, and the inverses
of Xe, e ∈ E∂ . When S has no interior points, Muller [44] showed that A(S)
is a quantum cluster algebra (in the sense of [5]) which quantizes the classical
cluster algebra associated with (S,P) defined in [23, 18]. If in addition each
connected component of S is triangulable and has at least two puncture, then
Muller showed that A(S) = S +(S)M−1.

5.3 Relation between reduced skein algebra and quantum
cluster algebra

The set B+(S) ⊂ B(S) consisting of diagrams with positive states is an R-basis
of S +(S). As B+(S) ⊂ Brd(S), the inclusion S +(S) ↪→ S (S) descends to
an injective map

κ : S +(S) ↪→ S rd(S). (26) eq.incl1

While S +(S) and its localization S +(S)M−1 are defined using only pos-
itive states, the reduced stated skein algebra S rd(S) uses both positive and
negative states. Hence it is a surprise that we can have the following, which
demonstrates the ubiquity of the stated skein algebra and gives another per-
spective for the quantum cluster algebra A(S).

thm.reduced-cluster Theorem 5.2. Suppose S is a connected punctured bordered surface with non-
empty boundary. The embedding κ extends uniquely to an R-algebra isomor-
phism

κ̃ : S +(S)M−1 → S rd(S).

Consequently, when S has at least two punctures and no interior punctures,
the quantum cluster algebra A(S) is naturally isomorphic to the reduced skein
algebra S rd(S).

Proof. A crucial fact [10, Proposition 7.4] is that the elements Xe, e ∈ E∂ are
invertible in S rd(S). The inverse of Xe is given by the same arc, only with
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negative states on both endpoints. The universality of the Ore extension shows
that there is a unique R-algebra extension

κ̃ : S +(S)M−1 → S rd(S).

To show κ̃ is surjective, for any α ∈ S rd(S), choose a lift α′ ∈ S (S). There
exists m ∈ M such that mα′ ∈ S +

bad(S) by Remark 4.7, where S +
bad(S) is the

R[P̊]-subalgebra of S (S) generated by bad arcs and S +(S). Passing to the
reduced algebra, mα ∈ S +(S). Thus α = m−1(mα) is in the image of κ̃.

Identify S +(S) with a subset of S rd(S). Since every m ∈ M is invertible
in S rd(S) and the map κ̃ is surjective, S rd(S) is a left ring of fractions of
S +(S) with respect to M. By the uniqueness of left ring of fractions, see [24,
Corollary 6.4], the map κ̃ is an isomorphism.

6 Embedding into quantum torus, shear coordi-
nate version

sec-shear

In this section, S is a punctured bordered surface with at least one puncture.
Unlike the case considered in Section 4, we do not require S to have non-empty
boundary.

We will show that there is an algebra embedding of S (S) into a quantum
torus

ϕ : S (S) ↪→ T(Q̄).

The matrix Q̄ depends on an ideal triangulation of S.
When S does not have boundary, then S (S) is the ordinary skein algebra

and the map ϕ was constructed by Bonahon and Wong [8]. In this case, when
q = 1 the image ϕ(α) of a simple closed curve α expresses the trace of α as a
Laurent polynomial in the shear coordinates of the enhanced Teichmüller space.

Besides, we will show that S (S) is Noetherian, orderly finitely generated,
and calculate the Gelfand-Kirillov dimension of S (S).

6.1 Ideal triangulation and Chekhov-Fock algebra

A punctured bordered surface is triangulable if it has at least one puncture, and
it is not one of the following: a monogon, a bigon, and the sphere with 1 or 2
punctures. In this section we assume that S is triangulable.

An ideal triangulation of S is a maximal collection ∆ of non-trivial ideal arcs
which are pairwise disjoint and pairwise non-isotopic. Every boundary edge is
isotopic to an element of ∆, and distinct boundary edges are not isotopic. After
an isotopy, we can assume that ∆ contains the set ∆∂ of all boundary edges. Of
course ∆∂ is the same as E∂ of Section 4, but since we use the notation ∆ for
the set of edges of the triangulation, we use ∆∂ for the set of boundary edges.
Let ∆̊ = ∆ \∆∂ be the set of all interior edges of the triangulation.

By splitting S along all interior edges in ∆̊, we get a collection F of ideal
triangles with the projection p :

⊔
T∈F T ↠ S. If a, b, c are the edges of a triangle
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T in F , then we call (p(a), p(b), p(c)) a triangular triple. Two of the edges may
coincide, in which case we call T a self-folded triangle, and the repeated edge is
called a self-folded edge. p(T) is a punctured monogon in this case.

The Thurston form of ∆ is the antisymmetric function Q∆ : ∆ × ∆ → Z
defined by

Q∆(a, b) = #

(
b a

)
−#

(
a b

)
. (27) eq.Q

Here each shaded part is a corner of an ideal triangle. Thus, the right hand
side of (27) is the number of corners where b is counterclockwise to a minus
the number of corners where a is clockwise to b, as viewed from the puncture.
The Thurston form is related to the Weil-Petersson Poisson structure of the
enhanced (or holed) Teichmüller space in shear coordinates, see e.g. [8, 19].
The matrix Q∆ is called the face matrix in [34].

The Chekhov-Fock algebra Y(S; ∆) is the quantum torus associated to Q∆

Y(S; ∆) := R⟨y±1
a , a ∈ ∆⟩/(yayb = qQ∆(a,b)ybya).

The set {yk | k ∈ Z∆} is a free R-basis of Y(S; ∆). A map k : ∆ → Z
is balanced if k(a) + k(b) + k(c) is even whenever a, b, c are a triangular triple.
Let Ybl(S; ∆) be the monomial subalgebra of Y(S; ∆) spanned by all yk with
balanced k. Then Ybl(S; ∆) is itself a quantum torus. Let Fr(Ybl(S; ∆)) be
the division algebra of fractions of Y(S; ∆).

Hiatt [25] and Bonahon and Wong [8], extending the work of Chekhov-Fock
[14] and Liu [40], showed that given another ideal triangulation ∆′, there is a
natural coordinate change isomorphism

Θ∆∆′ : Fr(Ybl(S; ∆′)) → Fr(Ybl(S; ∆))

such that Θ∆∆ = id and Θ∆∆′ ◦Θ∆′∆′′ = Θ∆∆′′ .
Let us discuss a criterion for a monomial to be balanced. Suppose α is a ∂S-

tangle diagram. For an ideal arc a the geometric intersection number I(a, α) is
the minimum among all |α′∩a|, where α′ is isotopic to α. We say α is taut with
respect to a finite collection X of disjoint ideal arcs in S if |α ∩ a| = I(α, a) for
all a ∈ X.

Define nα : ∆ → N by nα(a) = I(α, a) for a ∈ ∆. It is easy to show that
nα is balanced. Besides, any element in 2Z∆ is clearly balanced. The follow-
ing characterization of balanced elements, which is easy to prove, is essentially
contained in [8, Section 2].

r.bl1 Lemma 6.1. An element k ∈ Z∆ is balanced if and only there is a ∂S-tangle
diagram α such that k− nα ∈ 2Z∆.

6.2 Bonahon-Wong quantum trace and its descendants
sec.BW

Recall that the Bonahon-Wong version S BW(S) is the skein algebra defined
just like S (S), where one uses only the skein relation (10) and the trivial knot
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relation (11). Thus our S (S) is the quotient of S BW(S), factored out by the
other two relations (12) and (13).

The quantum trace map Bonahon and Wong is an algebra homomorphism

trBW
∆ : S BW(S) → Ybl(S; ∆),

compatible with the coordinate change isomorphisms: for another ideal trian-
gulation ∆′,

trBW
∆ = Θ∆∆′ ◦ trBW

∆′ . (28) eq.comp

When S has no boundary, the map trBW
∆ is injective [8]. However, if ∂S ̸= ∅,

then trBW
∆ is not injective. It is proved in [35] that trBW

∆ descends to an algebra
homomorphism

tr∆ : S (S) → Ybl(S; ∆).

The map tr∆ is still not injective. In [10] it is proved that the kernel of tr∆
is the ideal Ibad generated by bad arcs. Hence trBW

∆ further descends to an
algebra embedding

tr∆ : S rd(S) ↪→ Ybl(S; ∆). (29)

6.3 Extended Chekhov-Fock algebra
sec.ext_CF

To embed S (S) into a quantum torus, we extend the balanced Chekhov-Fock
algebra Ybl(S; ∆) to a bigger quantum torus.

Let ∆̂∂ = {ê | e ∈ ∆∂} be another copy of ∆∂ and ∆̄ = ∆⊔ ∆̂∂ . Extend the
Thurston form Q∆ to an antisymmetric function Q̄∆ : ∆̄ × ∆̄ → Z so that the
values of Q̄∆ on the extension set (∆̄× ∆̄) \ (∆×∆) are 0 except

Q̄∆(ê, e) = 1 = −Q̄∆(e, ê) for all e ∈ ∆∂ .

The geometric origin of Q̄∆ will be given in Subsection 6.9. Consider the quan-
tum torus

T(Q̄∆) = R⟨z±1
a , a ∈ ∆̄⟩/(zazb = qQ̄∆(a,b)zbza). (30) eq.TQbar

Identify Y(S; ∆) with a subalgebra of T(Q̄∆) via the embedding ya 7→ za, a ∈ ∆.

Let Ȳbl
(S; ∆) be the subalgebra of T(Q̄) generated by Ybl(S; ∆) and all the

z±2
ê , e ∈ ∆∂ . We have an R-linear map pr : Ȳbl

(S; ∆) ↠ Ybl(S; ∆) defined by

pr(zk) =

{
zk, if k(ê) = 0 for all e ∈ ∆∂ ,

0, otherwise,
(31) eq.pr

which is identity on Ybl(S; ∆).
Let Z(S; ∆) be the subalgebra of T(Q̄) generated by Ybl(S; ∆) and z2ê , e ∈

∆∂ . Then the restriction pr : Z(S; ∆) → Ybl(S; ∆) is an R-algebra homomor-
phism.

For a stated simple ∂S-tangle diagram α with state s, define n̄α : ∆̄ → N
by: {

n̄α(a) := nα(a) = I(α, a), a ∈ ∆,

n̄α(ê) := |α ∩ e| −
∑
x∈(α∩e) s(x), e ∈ ∆∂ .

(32) eq.bbn
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From Lemma 6.1, one has the following characterization of Ȳbl
(S; ∆) and

Z(S; ∆).

r.bl Lemma 6.2. Suppose k ∈ Z∆̄. Then zk ∈ Ȳbl
(S; ∆) if and only if there is

a stated simple ∂S-tangle diagram α such that k − n̄α ∈ 2Z∆̄. Furthermore
zk ∈ Z(S; ∆) if and only if in addition k(ê) ≥ 0.

6.4 Parameterization of basis B(S)

By Theorem 3.4, the set B(S) of isotopy classes of increasingly stated, positively
ordered, simple ∂S-tangle diagrams is an R-basis of S (S).

r.para Proposition 6.3. Suppose ∆ is a triangulation of a triangulable punctured bor-
dered surface S. The map B(S) → Z∆̄ given by α → n̄α is injective, and its
image is the submonoid Λ∆ ⊂ Z∆̄ consisting of n ∈ N∆̄ such that

a. for any triangular triple a, b, c ∈ ∆, n(a) + n(b) + n(c) ∈ 2N and n(a) ≤
n(b) + n(c),

b. for e ∈ ∆∂ , n(ê) ∈ 2N and n(ê) ≤ 2n(e).

Moreover, the rank of Λ∆ is r(S) := |∆̄|.

Remark 6.4. Let χ(S) be the Euler characteristic and |P∂ | the number of
boundary punctures. An easy counting argument shows that

r(S) = 3|P∂ | − 3χ(S). (33) eqn-r-def

Proof. If α ∈ B(S) it is easy to show that n̄α ∈ Λ∆. In the opposite direction,
it is well known [42] that (a) implies that there is a unique (non-stated) simple
∂S-tangle diagram α such that nα(a) = n(a) for a ∈ ∆. The number of + and
− states of α∩ e are also uniquely determined by n(ê) given (b), and the states
are completely fixed for increasingly stated diagrams. Thus for every n ∈ Λ∆,
there is a unique α ∈ B(S) such that n̄α = n.

To compute the rank, we show that the group generated by Λ∆ contains
(2Z)∆̄. Let 2 ∈ Z∆̄ be the constant map 2, and da ∈ Z∆̄ be the indicator
function on a ∈ ∆̄. It is clear that 2 and 2+ 2da are in Λ for all a ∈ ∆̄. Thus
the difference 2da is in the group generated by Λ∆, and they span (2Z)∆̄.

6.5 Filtrations
sec.filtr

Define a group homomorphism deg◦ : Z∆̄ → Z by

deg◦(k) =
∑
e∈∆

k(e).

Note that k(ê), e ∈ ∆∂ , are not taken into account. Then deg◦ induces a Z-
grading of T(Q̄∆) from (8), and it further induces a filtration as follows. For
k ∈ N, let Fk(T(Q̄∆)) ⊂ T(Q̄∆) be the R-submodule spanned by zk such that
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deg◦(k) ≤ k. Then {Fk(T(Q̄∆))} is a filtration of T(Q̄∆) compatible with the
algebra structure. On a subalgebra A, there is an induced filtration by letting
Fk(A) := Fk(T(Q̄∆)) ∩A.

For a stated simple ∂S-tangle diagram α define deg◦(α)
def
== deg◦(n̄α) =∑

a∈∆ nα(a). Note that n̄α(ê), e ∈ ∆∂ , are not taken into account. For k ∈ N,
let Fk(S (S)) ⊂ S (S) be the R-submodule spanned by stated simple ∂S-
tangle diagrams α such that deg◦(α) ≤ k. Then {Fk(S (S))} is an N-filtration
of S (S), which is compatible with the algebra structure. The set Bk(S) :=
{α ∈ B(S) | deg◦(α) ≤ k} is a free R-basis of Fk(S (S)).

6.6 Quantum trace map, GK dimension, and orderly finite
generation

thm.embed3 Theorem 6.5. Suppose S is a triangulable punctured bordered surface and ∆
is an ideal triangulation of S.

a. There is an algebra embedding

ϕ∆ : S (S) ↪→ Z(S; ∆) (34) eq.qtr2

which is a lift of the quantum trace tr∆, i.e., the map tr∆ is the composition

S (S)
ϕ∆−−→ Z(S; ∆)

pr−→ Ybl(S; ∆).

In addition, if R = Z[q±1/2], then ϕ∆ is reflection invariant.

b. The homomorphism ϕ∆ is compatible with the filtrations defined in Sub-
section 6.5. Moreover, if α is a stated simple ∂S-tangle diagram, then
there is t(α) ∈ 1

2Z such that

ϕ∆(α) = qt(α)zn̄α mod Fdeg◦(α)−1(Z(S; ∆)). (35) eqn-tr-highest

c. For another ideal triangulation ∆′, the coordinate change

Θ∆∆′ : Fr(Ybl(S; ∆′)) → Fr(Ybl(S; ∆))

extends to a unique algebra isomorphism

Θ̄∆∆′ : Fr(Ȳbl
(S; ∆′)) → Fr(Ȳbl

(S; ∆))

given on extra variables zê by Θ̄(z2ê) = z2ê for all e ∈ ∆∂ . For yet another
ideal triangulation ∆′′, we have Θ̄∆′′∆′ ◦ Θ̄∆′∆ = Θ̄∆′′∆ and Θ̄∆∆ = id.

The embedding ϕ∆ is compatible with coordinate change, i.e.,

Θ̄∆′∆ ◦ ϕ∆ = ϕ∆′ . (36) eq.comp1

As consequences, we have the following two statements.
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r.degen Theorem 6.6. With the assumption of Theorem 6.5, the associated graded al-
gebra of S (S) with respect to the filtration Fk(S (S)) is isomorphic to the
monomial subalgebra A(Q̄; Λ∆) of the quantum torus T(Q̄), where the submonoid
Λ∆ is defined in Proposition 6.3.

thm-noether1 Theorem 6.7. Let S be a punctured bordered surface.

a. As an R-algebra, S (S) is orderly finitely generated by arcs and loops.
This means, there are one-component simple stated ∂S-tangle diagrams
α1, . . . , αn such that the set {αk11 . . . αknn | ki ∈ N} spans S (S) over R.

b. S (S) is a Noetherian domain.

c. If S is triangulable, then the GK dimension of S (S) is r(S) defined by
(33).

Part (c) of Theorem 6.7 means the domain and the target space of the
embedding (34) have the same GK dimension. Hence S (S) cannot embed into
a quantum torus of less dimension.

Remark 6.8. When S is the closed surface of genus g, the method of this
paper does not apply as there is no ideal triangulation. In this case one can still
show that GK dimension of S (S) is still −3χ(Σg) = 6g− 6, as defined in (33).
For a proof see [28].

rmk-qpower Remark 6.9. In part (b) of Theorem 6.5, the exponent t(α) can be easily
determined using the reflection invariance property. In particular, if the diagram
has at most one endpoint on each boundary edge, then t(α) = 0 since the
diagram is already reflection invariant.

Remark 6.10. The reasons we call ϕ∆ the shear coordinate version quantum
trace map are the following. First, the codomain of the map ϕ∆ is the quan-
tum torus whose matrix Q̄ describes the Weil-Petersson Poisson structure of
the enhanced (or holed) Teichmüller space of the extended surface S∗ in shear
coordinates. Second, when q = 1 and S has no boundary, the ideal triangula-
tion ∆ identifies the enhanced Teichmüller space of S with a Euclidean space
via shear coordinates, and the image ϕ∆(α) = trBW

∆ (α) of a simple closed curve
α expresses the trace of ρ(α), where ρ is the PSL2(R)-representation of the
fundamental group π1(S) corresponding to the hyperbolic structure, as a Lau-
rent polynomial in the shear coordinates. See [8] for the precise statement and
details. When ∂S ̸= ∅, we don’t know a precise relation, but we expect that
ϕ∆(α), for q = 1 and α is an open arc, is closely related to the holonomy of α in
a suitable hyperbolic metric of S. We hope to explore this question in a future
work.

In the remaining of this section we give proofs of Theorems 6.5–6.7. The
strategy is to embed S into a bigger surface S∗ and utilize the quantum trace
map of S∗. First we recall the quantum trace map (via splitting) and some of
its properties in Subsections 6.7–6.2.
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6.7 Ideal triangle
sec.triangle

Let T be an ideal triangle, with boundary edges a, b, c in counterclockwise order
as in Figure 6. Then ∆ = {a, b, c} is the unique ideal triangulation of T, and
Y(T) = Y(T; ∆) is the quantum torus

Y(T) := R⟨y±1
a , y±1

b , y±1
c ⟩/(qyayb = ybya, qybyc = ycyb, qycya = yayc). (37)

bc

a

µ
α

ν

bc

a

b′
c′
a′

Figure 6: Left: Ideal triangles with arc α(µ, ν). Right: ideal arcs a′, b′, c′.fig:tria1

The ideal triangle T has an order 3 rotational symmetry. The algebra S (T)
has 12 generators given by α(µ, ν), µ, ν ∈ {±}, as in Figure 6, and their images
under the rotational symmetries. The quantum trace map trT : S (T) → Y(T)
is the reflection invariant algebra homomorphism, equivariant under rotation,
defined by

tr(α(µ, ν)) =

{
0, (µ, ν) = (−,+),

[yµc y
ν
b ], otherwise.

(38) eq.triangle

Recall ± are identified with ±1. Note that tr(α(µ, ν)) = 0 exactly when α(µ, ν)
is a bad arc.

r.tri5 Lemma 6.11. Suppose α is a stated simple ∂T-tangle diagram with state s :
∂α→ {±}. For e ∈ {a, b, c}, let k(e) =

∑
x∈e∩α s(x). Then

trT(α) = Coeff(α)yk, Coeff(α) ∈ R. (39) eq.tri1

In addition, if all the states of α are positive, then Coeff(α) = qt for some
t ∈ 1

2Z.

Proof. For e ∈ {a, b, c}, choose an ideal arc e′ isotopic to e. Splitting along e′

creates a bigon Be as in Figure 6. We assume α is taut with respect to a′, b′, c′.
Let T′ be the triangle bounded by a′, b′, c′. The obvious diffeomorphism from T′

to T gives an identification S (T) ≡ S (T′). Choose a linear order of connected
components of α∩T′. Isotope the height of α so that each connected component
of α∩T′ has constant height, and the heights satisfy the linear order. This also
induces a linear order on α ∩ e′ for each e ∈ {a, b, c}. Applying the splitting
homomorphism on T along a′, b′, c′ and using the counit on the bigons, we get
that the composition

S (T) → S (T′)⊗ (S (Ba)⊗ S (Bb)⊗ S (Bc))
id⊗ε−−−→ S (T)
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is the identity. It follows that

trT(α) =
∑
s′

{trT′(α ∩ T′, s′)}
∏

e∈{a,b,c}

[ε(α ∩Be, s
′)] , (40)

where s′ runs over the set s′ : {a′, b′, c′} → {±}, and (α∩T′, s′) and (α∩Be, s
′)

are the corresponding tangle diagrams where the states on e′ are given by s′. For
e ∈ {a, b, c} let ks′(e) =

∑
x∈α∩e′ s

′(x). By the charge conservation property,
Equation (18), one of the scalars in the square bracket is 0 unless ks′ = k. From
Formula (38), the element in the curly bracket is proportional to yks . Hence we
have (39).

When all the states are positive, all values of s′ must be positive to produce
a nonzero term since it is the only state satisfying the charge conservation. In
this case, none of the components of α ∩ T′ is a bad arc. Hence the element
in the curly bracket is q-proportional to yk. By Lemma 3.7 the scalar in the
square bracket is a power of q1/2. The lemma follows.

By removing a from T we get a bigon, which, for the purpose of later
identification, is denoted by Bc. Under the quantum trace trT, the counit
ε : S (Bc) → R lifts to a R-linear map ε∗ : Y(T) → R defined by

ε∗(yk) =

{
1, if k(c) = k(b) and k(a) = 0,

0, otherwise.
(41) eq.ves

That is, for x ∈ S (Bc) we have

ε∗(trT(x)) = ε(x). (42) eq.ve

6.8 Bonahon-Wong’s quantum trace
sec.BW1

By splitting S along interior edges a ∈ ∆̊ we get a collection F of ideal triangles.
Every interior edge a becomes two edges a′, a′′ after splitting in the set of all
edges of the triangles in F . The quantum trace map is the composition

tr∆ : S (S)
θ
↪−→

⊗
T∈F

S (T)
⊗ trT
↪−−−→

⊗
T∈F

Y(T), (43) eqn-tr-def

where θ is the splitting homomorphism. The image is contained in a subalgebra
isomorphic to Ybl(F ; ∆).

Let us explain how Ybl(F ; ∆) embeds in the target space A :=
⊗

T∈F Y(T).

Each Y(T) is a subalgebra of A by the obvious embedding. If a ∈ ∆̊ split into
two edges a′, a′′, let ya := [ya′ya′′ ]. If a ∈ ∆∂ , then a does not split and remains
an edge of a triangle in F . Now for every a ∈ ∆ we have an element ya ∈ A.
The subalgebra of A generated by y±1

a , a ∈ ∆ is isomorphic to Y(S; ∆), and
will be identified with Y(S; ∆).
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6.9 Proof of Theorem 6.5
sec.coord

Let us first explain the geometric origin of Q̄∆ and the strategy of the proof.
The idea is to embed ι : S ↪→ S∗ into a bigger surface such that ι induces an
embedding of S (S) into the reduced skein algebra S rd(S∗) of the bigger sur-
face S∗, then use the ordinary quantum trace map of S∗, which is an embedding
on S rd(S∗).

Let S∗ be the result of attaching an ideal triangle Te to each boundary edge
e of S by identifying e with an edge of Te. Denote the other two edges of Te are
by ê, ê′ as in Figure 7. Then ∆∗ = ∆ ∪ (

⋃
e∈∆∂

{ê, ê′}) is an ideal triangulation

of S∗, and ∆∗ ⊃ ∆̄. The form Q̄∆ is simply the restriction of the Thurston
form Q∆∗ : ∆∗ ×∆∗ → Z onto ∆̄, with a change of sign Q̄∆(ê, e) = −Q∆∗(ê, e)
for all e ∈ ∆∂ . The sign change makes it more convenient to formula certain
facts.

Proof. (a) There is a smooth embedding ι : S ↪→ S∗ which maps e to ê and
is identity outside a small neighborhood of e for every boundary edge e, see
Figure 7. In particular ι(a) = a for all a ∈ ∆̊.

ê
ê′

S

e

Te

S

e

α
ι−→

ê

ι(α)

Figure 7: Left: attaching triangle Te. Right: the embedding ι : S ↪→ S∗..fig:extSurf

We will show that the following composition

ϕ∆ : S (S)
ι∗−→ S (S∗)

p−→ S rd(S∗)
trrd∆∗
↪−−−→ Ybl(S∗; ∆∗) (44) eq.phiD

is quantum trace map we are looking for. It is important to note that under ι
the image of a ∂S-arc is never a corner arc, and a fortiori it is not a bad arc. It
follows that the composition p ◦ ι∗ maps the R-basis B(S) of S (S) injectively
into the basis Brd(S∗) of S rd(S∗). This shows p ◦ ι∗ is injective. Hence the
composition ϕ∆ is injective.

Since Q∆∗(e, ê) = 1 = −Q̄∆(e, ê), we can identify the quantum torus T(Q̄)
of (30) as a subalgebra of Y(S∗; ∆∗) via the embedding

za 7→ ya, a ∈ ∆̊,

ze 7→ [yeyê], e ∈ ∆∂ ,

zê 7→ y−1
ê , e ∈ ∆∂ .

(45) eq.yz

r.phi1 Lemma 6.12. Suppose α is a stated simple ∂S-tangle diagram. With n̄α de-
fined by (32),

ϕ∆(α)
(q)
= zn̄αu ∈ Z(S; ∆) (46) eq.ss0
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where u is a polynomial in the variables z−2
a , a ∈ ∆̄ with constant term 1.

Proof. We can assume ι(α) ∩ S = α. For each boundary edge e ∈ ∆∂ , the
intersection ι(α) ∩ Te is a collection of parallel arcs with endpoints in e and ê.
For a ∈ ∆̊ choose an arbitrary linear order on the set α ∩ a, while for e ∈ ∆∂ ,
choose the order on ι(α)∩e = α∩e to be the height order of ∂α. Let F∗ denote
the set of all triangles of the triangulation ∆∗ of S∗. Using the definition (43)
of the quantum trace via splitting, we have

ϕ∆(α) = tr∆∗(ι(α)) =
∑
s∈S

∏
T∈F∗

trT(ι(α) ∩ T, s), (47) eq.st00

where S is the set of all maps s : ι(α) ∩ (
⋃
a∈∆∗ a) → {±} such that the values

of s on ι ∩ ê, e ∈ ∆∂ , are the states of ι(α). The summand corresponding to
s in the right hand side of (47) is called the s-summand. By Lemma 6.11, the
s-summand is of the form Coeff(s)yks , with Coeff(s) ∈ R and ks : ∆∗ → Z is
given by ks(a) =

∑
x∈α∩a s(x) for a ∈ ∆∗. As s(x) = ±1, we have

|α ∩ a| − ks(a) ∈ 2N, for a ∈ ∆̄. (48) eq.h1

For e ∈ ∆∂ , if x ∈ α ∩ e and s(x) < s(ι(x)), then the arc (in α ∩ Te)
connecting x and ι(x) is a bad arc, making the s-summand equal to 0. Hence in
(47), S can be replaced by the subset S′ consisting of s such that s(x) ≥ s(ι(x)).
Then for s ∈ S′,

ks(e)− ks(ê) ∈ 2N for e ∈ ∆∂ . (49) eq.h2

By the embedding (45), we have yks = zms , where

ms(a) = ks(a) for a ∈ ∆,

ms(ê) = ks(e)− ks(ê) for e ∈ ∆∂ .

By definition (32) of n̄α, one has n̄α(a) = |a ∩ α| for a ∈ ∆ and n̄α(ê) =
|α ∩ e| − ks(ê) for e ∈ ∆∂ . Hence conditions (48) and (49) imply

n̄α −ms ∈ 2N∆̄, ms(ê) ≥ 0 for e ∈ ∆∂ . (50) eq.z0

In addition, ms = n̄α exactly when s = s+, which takes value + on all a ∈ ∆.
Lemma 6.11 shows that Coeff(s+) = qt for t ∈ 1

2Z. Thus, from (47) we have

ϕ∆(α) =
∑
s∈S′

Coeff(s)zms = qtzn̄α +
∑

s∈S′\{s+}

Coeff(s)zms ,

which implies (46) by (50) and Lemma 6.2.

Thus we can consider ϕ∆ as an algebra embedding

ϕ∆ : S (S) ↪→ Z(S; ∆).

When R = Z[q±1/2], all the maps in (44) are reflection invariant, hence so
is ϕ∆.
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Let us now prove that pr ◦ϕ∆ = tr∆. Let F ⊂ F∗ be the subset of triangles
in S, i.e., the triangles of ∆. Consider the following diagram, where θ is the
splitting homomorphism:

S (S)
⊗
T∈F

S (T)⊗
( ⊗
e∈∆∂

S (Te)
) ⊗

T∈F

Y(T)⊗
( ⊗
e∈∆∂

Y(Te)
)

S (S)
⊗
T∈F

S (T)
⊗
T∈F

Y(T)

θ′

id⊗ε

⊗ trT

id⊗ε∗

θ ⊗ trT

(51) eq.dia2

Here ε is the counit of the skein algebra of the bigon Be = Te \ ê′. The left
square is commutative by the counit property. The right square is commutative
due to (42). The composition of the top line is ϕ∆, while the composition of
the second line is tr∆. Hence (id⊗ε∗) ◦ ϕ∆ = tr∆.

For zk ∈ Ȳbl(S; ∆), the definitions of ε∗ by (41) and pr by (31) show that
(id⊗ε∗)(zk) = pr(zk). Hence we have pr ◦ϕ∆ = tr∆. This completes the proof
of part (a) of Theorem 6.5.

(b) By Lemma 6.12, the top degree term of ϕ∆(α) is q-proportional to z
n̄α ,

proving (b).
(c) Given another ideal triangulation ∆′ of S, there is a coordinate change

isomorphism

Θ∆′∗∆∗ : Fr(Ybl(S∗; ∆∗))
∼=−→ Fr(Ybl(S∗; ∆′∗)).

From the compatibility with the quantum trace map, we have

Θ∆′∗∆∗ ◦ ϕ∆ = ϕ∆′ . (52) eq.comp2

Let us first prove

Θ∆∗∆′∗(Fr(Ȳbl
(S; ∆))) ⊂ Fr(Ȳbl

(S; ∆′)) (53) eq.uu

Inclusion (53) follows easily from explicit formulas of Θ∆∗∆′∗ given in [25], which
involves many cases and are cumbersome. So we present another argument here.

Let A(2) be the division subalgebra of Fr(Ybl(S∗; ∆∗)) generated by y2a, a ∈
∆̄. Similarly let A′(2) be the division subalgebra of Fr(Ybl(S∗; ∆′∗)) generated

by y2a, a ∈ ∆̄
′
. The transition from ∆′ to ∆ changes only edges lying in the inte-

rior of S. Hence the locality property [3] of the coordinate change isomorphism
tells us that

Θ∆′∗∆∗(y2ê) = y2ê , e ∈ ∆∂ , (54) eq.z

Θ∆′∗∆∗(A(2)) ⊂ A′(2), (55) eq.zzz

and the restriction of Θ∆′∗∆∗ on Fr(Ȳbl
(S; ∆)) is Θ∆′∆.
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Assume zk ∈ Ȳbl
(S; ∆). By Lemma 6.2, there are a stated simple ∂S-tangle

diagram α and v ∈ A(2) such that zk = vzn̄α . Formula (46) shows that there is
v′ ∈ A(2) such that zn̄α = v′ϕ∆(α). Hence

zk = vv′ϕ∆(α).

Applying Θ∆′∗∆∗ and use the compatibility (52),

Θ∆′∗∆∗(zk) = Θ∆′∗∆∗(vv′)ϕ∆′(α).

The first factor is in A′(2) by (55), while the second factor is in Ȳbl
(S; ∆′). This

proves the inclusion (53).

Define Θ̄∆′∆ as the restriction of Θ∆′∗∆∗ to Fr(Ȳbl
(S; ∆)). By (54) the

algebra map Θ̄∆′∆ is the extension of Θ∆′∆ given by Θ̄∆′∆(z
2
ê) = z2ê . The

compatibility (36) follows from (52). Theorem 6.5 is proved.

6.10 Proof of Theorem 6.6

Proof. We consider ϕ∆ : S (S) → T(Q̄) as a map of filtered algebra and con-
sider its associated graded homomorphism. By definition the associated graded
algebra is, with the convention F−1(S (S)) = {0},

Gr(S (S)) =
∞⊕
k=0

Fk(S (S))/Fk−1(S (S)).

As Gr(T(Q̄)) = T(Q̄), one has the associated algebra homomorphism

Gr(ϕ∆) : Gr(S (S)) → T(Q̄). (56) eq.z6

Recall the set Bk(S) = {α ∈ B(S) | deg◦(α) ≤ k} is an R-basis of Fk(S (S)).
Hence Bk(S) \ Bk−1(S) is an R-basis of Fk(S (S))/Fk−1(S (S)). It follows
that B(S) is also an R-basis of Gr(S (S)).

By (35), for any α ∈ B(S), there is t(α) ∈ 1
2Z such that

Gr(ϕ∆)(α) = qt(α)zn̄α . (57) eq.z5

By Proposition 6.3, the set {zn̄α | α ∈ B(S)} is an R-basis of the monomial
algebra A(Q̄; Λ∆). Equation (57) shows that Gr(ϕ∆) map the R-basis B(S) of
Gr(S (S)) bijectively onto an R-basis of A(Q̄; Λ∆). Hence the map Gr(ϕ∆) of
(56) is an isomorphism. This proves Theorem 6.6.

Remark 6.13. This proof does not rely on the injectivity of ϕ∆. Thus it can
serve as a proof of injectivity of ϕ∆ without using the reduced skein algebra.
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6.11 Proof of Theorem 6.7

Proof. First we assume that S is triangulable, with an ideal triangulation ∆.
(a) The submonoid Λ∆ ⊂ N∆̄ is finitely generated as an N-module since it is

a pointed integral polyhedral cone. Let k1, . . . ,kn be a minimal set of generators
of N-module Λ∆. Then each kj cannot be the sum of two non-zero elements
of Λ∆. Let αi ∈ B(S) be the element such that n̄αi = ki. It follows that
each αi has one component. The set {(zk1)m1(zk2)m2 . . . (zkn)mn | mi ∈ N}
spans A(Q̄; Λ∆) over Z. An induction on the degree using (57) shows that the
corresponding set {αm1

1 αm2
2 . . . αmn

n | mi ∈ N} spans S (S) over R. This proves
{α1, . . . , αn} is an orderly generating set for S (S).

(b) By Lemma 2.1 the ring A(Q̄,Λ∆) is a Noetherian domain. As an asso-
ciated algebra of S (S) is a Noetherian domain, so it S (S).

(c) By Lemma 2.3, the monomial algebra A(Q̄; Λ∆) has GK dimension
r(S) = |∆̄|, the rank of Λ∆. For each k, the R-module Fk(S (S)) is free of
finite rank. Then the GK dimension of S (S) is the same as the GK dimension
of the associated graded algebra A(Q̄; Λ∆), which is r(S).

This completes the proof of the theorem for the case of triangulable surfaces.
Suppose S is not triangulable. We already know S (S) is a domain. By remov-
ing enough points from S, we can obtain a new surface S′ which is triangulable.
As S (S) is a quotient of S (S′), we get the orderly finite generation and the
Noetherian property for S (S).

7 Relation between the quantum trace maps
sec.rel

7.1 Comparing two quantum trace maps

Assume that S is a triangulable punctured bordered surface with non-empty
boundary, with P̊ the set of interior punctures.

Let E be a quasitriangulation of S. Then E can be uniquely completed to
an ideal triangulation ∆ = E ∪ (

⋃
v∈P̊ ev), where ev is an ideal arc disjoint from

E , and connecting v and the vertex of the monogon containing v, see Figure 8.

ev
v

Figure 8: The interior puncture v is in a monogon, and ev connects v and the
vertex of the monogon.fig:monarc

By Theorems 4.1 and 6.5, we have two algebra embeddings, the length co-
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ordinate quantum trace map and the shear coordinate quantum trace map

φE : S (S) ↪→ X̄(S; E), (58) eq.ll

ϕ∆ : S (S) ↪→ Ȳbl
(S; ∆). (59)

Here X̄(S; E) is the quantum torus over R[P̊] generated by xe, e ∈ Ē , with rela-

tions xaxb = qP̄ (a,b)bbxa for a, b,∈ Ē , while Ȳbl
(S; ∆) is the balanced subalgebra

of T(Q̄∆).
The polynomial ring R[P̊] is considered as a subring of the center of S (S)

by identifying v ∈ P̊ with a small loop Xv ⊂ S surrounding v. The map φE in
(58) is an R[P̊]-algebra homomorphism. Identify R[P̊] as a subalgebra of the
Laurent polynomial ring R[P̊]⋄ := R[x±1

v , v ∈ P̊] by v = xv+x
−1
v . By extending

the ground ring from R[P̊] to R[P̊]⋄ from (58) we get

φ⋄
E : S ⋄(S) ↪→ X̄⋄(S; E), (60) eq.ll2

where S ⋄(S) = S (S)⊗R[P̊] R[P̊]⋄ and X̄⋄(S; E) = X̄(S; E)⊗R[P̊] R[P̊]⋄.

Note that X̄⋄(S; E) is the quantum torus over R associated to the anti-
symmetric function P̄ ⋄ : (Ē ∪ P̊) × (Ē ∪ P̊) → Z which is the 0 extension of
P̄ : Ē × Ē → Z.

We will consider X̄(S; E) as a subalgebra of X̄⋄(S; E) by the obvious em-

bedding, and also use φE to denote the composition S (S)
φE
↪−→ X̄(S; E) ↪→

X̄⋄(S; E).

thm-len2shear Theorem 7.1. Let S be a triangulable connected punctured bordered surface
with non-empty boundary, E be a quasitriangulation of S, and ∆ be the unique
triangulation containing E.

There is a unique multiplicatively linear R-algebra isomorphism

ψE : X̄⋄(S; E)
∼=−→ Ȳbl(S; ∆)

such that ψE(xv) = yev for v ∈ P̊ and the following diagram commutes:

Ȳbl(S; ∆)

S (S)

X̄⋄(S; E)

ϕ∆

φE

ψE

Let us explain the strategy of the proof and the geometric definitions of
ψE and its inverse in simple cases. For a ∈ E recall Xa is the stated ∂S-
arc obtained by moving the endpoints of a to the left with states + at both
ends (with a normalization), see Section 4.4. As φE(xa) = Xa, we must have
ψE(xa) = Φ∆(Xa), the quantum trace of Xa. In particular if Xa intersects edges
e1, . . . , ek ∈ E , and intersects each exactly once, then

ψE(a) = [ye1 . . . yek ].
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If a, b, c, d, e ∈ E such that a is a diagonal of the quadrilateral (of the trian-
gulation), see Figure 9, then the inverse ψ−1

E (y2a) is

ψ−1
E (y2a) = [xbx

−1
c xdx

−1
e ].

The full descriptions of ψE and its inverse are given in the proof. To show that
two multiplicatively linear homomorhisms are inverse of each other, we show
that the two corresponding matrices are inverse of each other. The detailed
proof is given in Subsection 7.2.

Figure 9: Edges of a quadrilateral with diagonal afig:abcde

r.iso5 Corollary 7.2. Suppose S is a triangulable connected punctured bordered sur-
face with non-empty boundary, and ∆ is an ideal triangulation of S, not nec-
essarily coming from a quasitriangulation. The shear coordinate quantum trace

ϕ∆ : S (S) ↪→ Ȳbl
(S; ∆) can be extended to an isomorphism of division algebras

ϕ̃∆ : Fr(S ⋄(S))
∼=−→ Fr(Ȳbl

(S; ∆)) (61)

such that the coordinate change isomorphism is given by Θ̄∆∆′ = ϕ̃∆ ◦ ϕ̃−1
∆′ .

Proof. Suppose ∆1 is the completion of a quasitriangulation E . Define ϕ̃∆1
as

the composition

Fr(S ⋄(S))
Fr(φ⋄

E)−−−−→ Fr(X̄⋄(S; E)) Fr(ψE)−−−−→ Fr(Ȳbl(S; ∆1)),

which is an isomorphism by Theorem 7.1. For any triangulation ∆ define ϕ̃∆ =
Θ̄∆∆1

◦ ϕ̃∆1
. It is trivial to verify the properties of ϕ̃∆.

If in addition, S has no interior punctures, then Ē = ∆̄ and X̄⋄(S; E) =
X̄(S; E).

r.iso6 Corollary 7.3. Suppose S is a triangulable connected punctured bordered sur-
face with non-empty boundary and no interior punctures, and ∆ is an ideal

triangulation of S. The algebra embedding ϕ∆ : S (S) ↪→ Ȳbl
(S; ∆) induces an

isomorphism Fr(ϕ∆) : Fr(S (S))
∼=−→ Fr Ȳbl

(S; ∆) of division algebras.

With the assumption of Corollary 7.3, one can prove the existence of the co-
ordinate change isomorphism, which is much simpler than the original construc-
tion: If ∆′ is another ideal triangulation, then define Θ̄∆∆′ = Fr(ϕ∆)◦Fr(ϕ∆′)−1.

Remark 7.4. If there are interior punctures and potentially empty boundary,
we can use the “open up” procedure in [21, 34], which can give an alternative
definition of Θ̄∆∆′ . The details require a significant detour, so we are not going
to explore this possibility here.
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7.2 Proof of Theorem 7.1
sec:proof5

Recall that for a ∈ Ē there is a normalized stated arc Xa mapping to xa under
φE , see Subsection 4.4. It is not hard to show that ϕ∆(Xa) is a monomial as in
the following.

lemma-matrix-K Lemma 7.5. (Compare Lemma 6.12) For a ∈ Ē one has ϕ∆(Xa) = yKa , where
Ka : ∆̄ → N is given by

Ka(c) = #

(
c a

)
+

{
−2, if a = ê = c for some e ∈ ∆∂ ,

0, otherwise.
(62) eq.Darc

Remark 7.6. The picture in (62) appeared in Subsection 4.1 when both arcs
are boundary ending. The definition still makes sense as long as the arcs do not
meet at an interior puncture. Since a is boundary ending, Ka(c) is well defined.
Note when a = c, ĉ or vice versa, the correct count requires an isotopy so that
a and c are disjoint.

Proof. Recall the element Xa is defined by assigning states to the arc D(a),
which is obtained by moving the endpoints of a to the left. We also need to
apply the map ι : S → S∗ to compute ϕ∆(Xa). To draw the arc ι(Xa), near
each end of the ideal arc a, start slightly to the left of a and draw a segment in
the counterclockwise direction all the way to the boundary of S∗. Now connect
the two segments, which crosses a at one point since the two segments are on
different sides of a. This is shown in Figure 10. (Technically the corners should
also be smoothed.)

ê1

e1

ê2

e2

ι(Xa)
a

+

+

(a) a ∈ ∆̊

e

ι(Xa)

ê1

e1

ê
±+

(b) a = e, ê for e ∈ ∆̊

Figure 10: The arc ι(Xa).fig-arc-matrix

Fix a direction of Xa and choose the height to be increasing following the
direction. In the state sum formula (47), where α = Xa, the only s which does
not result in a bad arc is the one taking only value + on Xa ∩ (

⋃
b∈∆ b). This

can be seen by starting at the endpoint with + state. Each time the arc crosses
an edge of ∆ up to the point where it meets a, avoiding bad arcs forces the sign
to be +. This only term gives a monomial in y, and by the description above,

the exponent is given by Ka of (62). Thus, ϕ∆(Xa)
(q)
= yKa . Then reflection

invariance forces ϕ∆(Xa) = yKa .

41



For the generators xa of the quantum torus X̄⋄(S; E) define ψE(xa) =
ϕ∆(Xa) for a ∈ Ē , and define ψE(xv) = yev for v ∈ P̊. We have ψE(xaxb) =
ψE(xa)ψE(xb) for a, b ∈ Ē because ϕ∆ is an algebra homomorphism. The re-
maining variables xv, v ∈ P̊, are central, and their images yev are also cen-
tral. Thus all the defining relations among the variables of the quantum torus
Ȳbl(S; ∆) are respected, and we can extend ψE to an algebra homomorphism

ψE : X̄⋄(S; E) → Ȳbl
(S; ∆), which is multiplicatively linear because the image

of each variable is a monomial. The restriction of ψE to X̄(S; E) is ϕ∆, since
ϕ∆(v) = yev + y−1

ev by the state sum formula (47) with α = Xv.
The map ψE is injective since otherwise its image is a quantum torus of fewer

variables, i.e., of GK dimension less than r(S), but the image of ψE contains
the image of the injective map ϕ∆, which has GK dimension r(S).

Let us now prove that ψE is surjective. Recall by Lemma 6.2, the algebra

Ȳbl
(S; ∆) is generated by elements of the form zn̄α with α a stated simple ∂S-

tangle diagram and z±2
e with e ∈ ∆̄. As α ∈ S (S) ⊂ X̄(S; E), ϕ∆(α) = ψE(α)

is in the image of ψE . Since the image is a monomial subalgebra, the top degree
monomial, zn̄α by Lemma 6.12, is also in the image. It remains to show that
z2e , or alternatively y2e , is in the image of ψE . Define H̄e : Ē ∪ P̊ → Z for each
e ∈ ∆̄ by

� xH̄ev := x2v for v ∈ P̊,

� xH̄e := [xax
−1
b xcx

−1
d ] for e ∈ ∆̊ \ P̊, where e, a, b and e, c, d are triangular

triples in counterclockwise order,

� xH̄e := [xax
−1
b xê], x

H̄ê := [xex
−1
ê ] for e ∈ ∆∂ , where e, a, b form a trian-

gular triple in counterclockwise order.

We will show

ψE(x
H̄e) = yσe :=

{
y2eyev , e bounds a monogon containing v ∈ P̊,
y2e , otherwise.

(63) eq.zt1

This is trivial when e ∈ P̊. For e ∈ Ē , H̄e(P̊) = 0. Thus (63) is equivalent to

σe(c) =
∑
a∈Ē

H̄e(a)Ka(c), c ∈ ∆̄, (64) eq.eq1

which is proved after Lemma A.1 in the Appendix. This completes the proof of
Theorem 7.1.

A Triangulation and quasitriangulation

A.1 Face and vertex matrices

Here we give a more formal definition of the face and vertex matrices.
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Suppose ∆ is an ideal triangulation of the punctured bordered surface S.
For each non-self-folded face T ∈ F , the edges of T are cyclically ordered. Given
a, b ∈ ∆, if a and b are distinct edges of T, define

QT(a, b) =

{
1, b is clockwise to a,

−1, b is counterclockwise a.

Otherwise, let QT(a, b) = 0. For a self-folded face T, set QT = 0. Then the face
matrix is

Q =
∑
T∈F

QT. (65) eqn-Q-sum

The vertex matrix is defined for a quasitriangulation E . For each boundary
puncture v ∈ P∂ and half-edges a′, b′, let P+,v(a

′, b′) = 1 if a′ ̸= b′ and b′ is
counterclockwise to a′ at v. Otherwise let P+,v(a

′, b′) = 0. Define the “positive
part” P+ of the vertex matrix by

P+(a, b) =
∑

P+,v(a
′, b′),

where the sum is over punctures v ∈ P̊ and half-edges a′, b′ of arcs a, b ∈ E .
For this definition to make sense, an isotopy might be necessary to make a and
b disjoint, which is important for the diagonal elements. The vertex matrix is
then P = P+ − PT+ . Alternatively, let Pv(a

′, b′) = P+,v(a
′, b′) − P+,v(b

′, a′).
Then P (a, b) =

∑
Pv(a

′, b′).

A.2 Extended matrices

Define the projection matrix J : ∆×∆∂ → Z or J : E × E∂ → Z (depending on
the context) by

J(a, b) =

{
1, a = b,

0, a ̸= b.

The extended matrices Q̄ : ∆̄×∆̄ → Z and P̄, P̄+ : Ē ×Ē → Z can be written
in block matrix form

Q̄ =

(
Q −J
JT 0

)
, Q̄∗ =

(
Q J

−JT 0

)
(66)

P̄ =

(
P −(P+ + PT+ )J

JT (P+ + PT+ ) −JTPJ

)
, (67)

P̄+ =

(
P+ P+J
JTP+ JTP+J − 2I

)
. (68) eqn-Pp-def

Since J is a projection, it picks out blocks of matrices with the correct dimension.
Here we also included the restriction Q̄∗ : ∆̄ × ∆̄ → Z of Q∆∗ , which can be
used to define Ȳbl(S; ∆) using y coordinates.
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A.3 Face-vertex matrix duality

For a punctured bordered surface S with at least one boundary puncture, there
is a relation between the face matrix and the vertex matrix. Consider a qu-
asitriangulation E and its completion ∆. Let H = I∂ − QE , where QE is the
restriction to E × E , and I∂ = JJT . The restriction to E does not lose any in-
formation, since by definition, all entries involving a self-folded edge is 0, so the
full matrix can be recovered by a 0-extension, i.e., Q = QE ⊕ 0. The extended
matrix H̄ is defined by, using the block matrix form,

H̄ =

(
−QE J
JT −I

)
.

lemma-H-inverse Lemma A.1. HP+ = 2I, H̄P̄+ = 2I.

Proof. The extended case follows from the first part by a routine calculation.
The punctured monogon is a special case we can directly verify. Here P+ =

(2) and H = (1). Thus we focus on other surfaces from now on. In particular,
all edges that bound self-folded faces are interior.

There are three cases to consider.

i

a

b

c

d

(a) Interior edgefig-quad-i

i

ab

(b) Boundary edgefig-tri-i

Figure 11: Local pictures of the computation

Case 1. Suppose i ∈ E̊ does not bound a self-folded face. By definition,

(HP+)(i, j) =
∑
k∈E

H(i, k)P+(k, j) = P+(a, j)− P+(b, j) + P+(c, j)− P+(d, j),

where a, b, c, d are as in Figure 11a. Some of the sides might coincide, but using
the sum-of-faces definition (65) of Q, the result is unaffected. We further split
the sum into half-edges, and group the half-edges into pairs by corners of the
quadrilateral.

First we consider j /∈ {i, a, b, c, d}. If a half-edge j′ ends on one of the
boundary punctures of the quadrilateral, then every corner incident to that
puncture is entirely on one side of j′. Thus every such corner contributes 1− 1
or 0− 0 to the sum, so the total is 0.

If j ∈ {a, b, c, d}, isotope j into the interior of the quadrilateral. j goes
through two consecutive corners, and they contribute 1 − 1 to the sum. In the
two corners that j does not go through, the calculation is as before and they
cancel out.
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If j = i, then a and c both contribute +1 in the local picture, and any other
corner incident to either end of i contributes 0 as before. Thus the total is 2.

Case 2. Suppose i ∈ E̊ bounds a self-folded face. We can use the same
picture Figure 11a and identify c = d. In this case

(HP+)(i, j) = P+(a, j)− P+(b, j).

a and b form a (punctured) bigon. We can group half-edges of a and b into
corners and repeat the calculation as in Case 1.

Case 3. Suppose i ∈ E∂ , then

(HP+)(i, j) = P+(i, j) + P+(a, j)− P+(b, j),

where a, b are as in Figure 11b. The calculation is again analogous to the first
case. Note even though the i and a terms have the same sign, there is nothing
counterclockwise to the i, a corner.

Proof of (63). This is a matrix equation, where σ,K : Ē × ∆̄ → Z are given by

σ(a, c) = σa(c), K(a, c) = Ka(c).

Then (63) can be written as σ = H̄K. By Lemma A.1, we just need to show
P̄+σ = 2K, i.e. ∑

b∈Ē

P̄+(a, b)σb(c) = 2Ka(c), a ∈ Ē , c ∈ ∆̄. (69) eqn-P-K

Also note P̄+ is the restriction of K to Ē × Ē by definition. Compare (62) with
(68).

If c ∈ Ē , then σb(c) is nonzero only when b = c, and σc(c) = 2. Thus the
equation is satisfied.

If c = ev for v ∈ P̊, then σb(ev) is nonzero only when b = bv is the arc
bounding the monogon containing v. In this case, σbv (ev) = 1. (69) is then
equivalent to

P̄+(a, bv) = 2Ka(ev).

This is true by checking the local picture at v. We can always isotope a to be
outside of the monogon. Then for each half edge of a, either bv counts twice and
ev counts once, or none of them counts. Thus we have the desired equality.
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[36] T. T. Q. Lê and T. Tran, On the AJ conjecture for knots, Indiana Univ.
Math. J. 64 (2015), 1103–1151.
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