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ARTICLE INFO ABSTRACT

Keywords: Mycobacterial infections represent major concerns for aquatic and terrestrial vertebrates including humans.

Tuberculosis Although our current knowledge is mostly restricted to Mycobacterium tuberculosis and mammalian host in-

I/[cells ) teractions, increasing evidence suggests common features in endo- and ectothermic animals infected with non-
acrophages

tuberculous mycobacteria (NTMs) like those described for M. tuberculosis. Importantly, most of the pathogenic
and non-pathogenic NTMs detected in amphibians from wild, farmed, and research facilities represent, in
addition to the potential economic loss, a rising concern for human health. Upon mycobacterial infection in
mammals, the protective immune responses involving the innate and adaptive immune systems are highly
complex and therefore not fully understood. This complexity results from the versatility and resilience of
mycobacteria to hostile conditions as well as from the immune cell heterogeneity arising from the distinct
developmental origins according with the concept of layered immunity. Similar to the differing responses of
neonates versus adults during tuberculosis development, the pathogenesis and inflammatory responses are stage-
specific in Xenopus laevis during infection by the NTM M. marinum. That is, both in human fetal and neonatal
development and in tadpole development, responses are characterized by hypo-responsiveness and a lower ca-
pacity to contain mycobacterial infections. Similar to a mammalian fetus and neonates, T cells and myeloid cells
in Xenopus tadpoles and axolotls are different from the adult immune cells. Fetal and amphibian larval T cells,
which are characterized by a lower T cell receptor (TCR) repertoire diversity, are biased toward regulatory
function, and they have distinct progenitor origins from those of the adult immune cells. Some early developing T
cells and likely macrophage subpopulations are conserved in adult anurans and mammals, and therefore, they
likely play an important role in the host-pathogen interactions from early stages of development to adulthood.
Thus, we propose the use of developing amphibians, which have the advantage of being free-living early in their
development, as an alternative and complementary model to study the role of immune cell heterogeneity in host-
mycobacteria interactions.

Layered immunity
Comparative immunology
Developmental immunology

1. Introduction heterogeneity with a particular focus on T cells (i.e., layer immunity) in
mycobacteria-host interaction.

The aim of this review is to present the advantages of amphibians as

model organisms for investigating the role of immune cell heterogeneity
in host and mycobacteria interactions. First, we provide a brief update
on mycobacterial diversity and biology with special emphasis on the
features that make Mycobacterium tuberculosis and non-tuberculous
mycobacteria (NTM) serious concerns for human, wildlife, and animal
productions including fish and amphibian farming. Subsequently, we
provide an overview of what is known about the interaction between
NTMs and developing amphibian hosts and discuss the use of amphib-
ians as models to investigate the role of ontogenesis related-immune cell

* Corresponding author.
E-mail address: Jacques Robert@URMC.Rochester.edu (J. Robert).

https://doi.org/10.1016/j.dci.2022.104594

2. Diversity of mycobacteria and mycobacterial diseases

Mycobacteria are a diverse group of aerobic, non-motile, acid fast
bacilli comprising nearly 200 species that are mainly non-pathogenic
environmental saprophytes (Parte, 2014; Tortoli et al., 2019; Turenne,
2019). A fraction of the mycobacterial species has evolved as opportu-
nistic or obligate pathogens, which represent serious concerns for
human health, wildlife conservation, and economy (aquaculture and
research involving animal experimentation). These mycobacterial
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species can be classified in three groups based on their pathogenicity
and their dependence on a host for replication (reviewed in Gagneux,
2018; Johansen et al., 2020; Pereira et al., 2020). The best described are
the Mycobacterium tuberculosis complex, which encompass numerous
closely related species that are the causative agents of tuberculosis in
mammals (e.g., M. tuberculosis (Mtb) in humans and M. bovis in cattle).
Mtb are considered as one of the most adapted pathogens to their hosts
due to a long co-evolutionary history (Gagneux, 2018). They are strictly
pathogenic, depending on the host to survive and propagate (Gagneux,
2018). Before the outbreak of COVID-19, Mtb was the leading cause of
human death due to a single pathogenic agent (WHO, 2021). The second
group is represented by M. leprae, and M. lepromatosis which are obligate
pathogens and cause leprosy in humans (Johansen et al., 2020; Turenne,
2019). The third group is called non-tuberculous mycobacteria (NTM).
NTMs are ubiquitously found in the environment (water, air, and soil),
and can cause opportunistic tuberculosis-like diseases in a wide range of
hosts from humans to birds, reptiles, amphibians and fish (reviewed in
Johansen et al., 2020; Pereira et al., 2020; Turenne, 2019). Most
investigated =~ NTMs are represented by  complexes of
M. marinum-ulcerans, M. avium, and M. abscessus-chelonae (Reviewed in
Hodgkinson et al., 2019; Johansen et al., 2020; Turenne, 2019).

The mycobacterial structure is characterized by a complex cell en-
velope consisting of a mycolyl-arabinogalactan-peptidoglycan cell wall
with an outer so-called mycomembrane that forms the capsule sur-
rounding the periplasm and plasma membrane (Reviewed in Dulberger
et al., 2020). The mycobacterial cell envelope is an impermeable, robust
and dynamic wall of protection, which drastically impacts host immune
responses and pathogenicity as well as the pathogen sensitivity to an-
tibiotics (Dulberger et al., 2020; Johansen et al., 2020). Besides a natural
tolerance to numerous antibiotics (e.g, Quinolones and f-lactams), the
hydrophobicity of their envelope favors surface attachment, aero-
solization, and it gives the capacity of mycobacteria to aggregate as
clump or serpentine cords (Reviewed in Jarlier and Nikaido, 1994;
Johansen et al., 2020; Pereira et al., 2020). Aggregate formation con-
tributes to the virulence by impairing phagocytosis, promoting the death
of phagocytes, and favoring the progression toward active disease
(Johansen et al., 2020; Julian et al., 2010; Kolloli et al., 2021).
Furthermore, various environmental stresses (e.g., carbon/nutrient
availability, oxidative stress, metal ion availability, pH changes) stim-
ulate mycobacteria to form biofilms, which affects pathogenicity and
tolerance to sanitizers and antibiotics (Belardinelli et al., 2021; Chak-
raborty et al., 2021), reviewed in (Esteban and Garcia-Coca, 2018).
Bacteria from the Mtb complex are transmitted among individuals by
aerosol droplets following coughing. Consequently, Mtb primarily infect
the lungs from which they can disseminate to any tissues. In contrast,
NTM infections are generally not transmitted from host to host but result
from environmental exposure (Johansen et al., 2020; Pereira et al.,
2020; Turenne, 2019). NTM infections can occur by inhalation, swal-
lowing, and wound contact (Johansen et al., 2020; Pereira et al., 2020).
Like Mtb, infecting NTMs are recognized via complex interactions be-
tween Microbe Associated Molecular Patterns (MAMPs) and Pathogen
Recognition Receptors (PRRs) expressed by macrophages and neutro-
phils (Chai et al., 2020; Dubé et al., 2021; Johansen et al., 2020; Love-
well et al., 2021). Upon phagocytosis, the bacilli can persist and
proliferate in these innate immune cells (Chai et al., 2020; Dubé et al.,
2021; Johansen et al., 2020; Lovewell et al., 2021). Activation of PRRs
initiates the production of pro-inflammatory cytokines (IL-1p, type I
IFNs and TNF-alpha) that are protective but also triggers histopathology
such as granulomas (Bernut et al., 2016, reviewed in Chai et al., 2019;
Johansen et al., 2020). Although mycobacteria are generally cleared by
the host immune system, they may be resistant to stressful conditions
triggered by the host antimicrobial defenses (e.g., hypoxia and oxidative
damage) or bactericidal drugs by forming biofilms, manipulating
cellular innate immune defenses, and entering into dormancy (Chakra-
borty et al., 2021 reviewed in Chai et al., 2020; Chao and Rubin, 2010;
Pereira et al., 2020). Dormancy is an adaptation during which bacteria
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do not replicate (Chao and Rubin, 2010; Pereira et al., 2020). Two types
of dormant states arising from natural population heterogeneity have
been described for bacteria including Mtb: (1) a persistent state; and (2)
a viable but nonculturable state (reviewed in Ayrapetyan et al., 2015;
Chao and Rubin, 2010; Chung et al., 2022). Distinct from “persister”, the
viable but nonculturable bacteria are unable to “resuscitate” and form
colonies on nutrient-rich solids used as a standard assay to detect Mtb
(Ayrapetyan et al., 2015; Chengalroyen et al., 2016; Saito et al., 2021).
Similarly, NTM such as M. marinum, M. avium, M. smegmatis and
M. abscessus persist in the host under stressful conditions by stopping
their replication until favorable conditions allow reactivation from their
dormant state (Archuleta et al., 2005; Commandeur et al., 2020; Dick
et al., 1998; Yam et al., 2020). Under favorable conditions NTMs reac-
tivate from their dormant state indicative of a persistent state (Archuleta
et al., 2005; Commandeur et al., 2020; Dick et al., 1998). Additionally,
M. smegmatis like Mtb can develop a nonculturable state suggesting that
the two dormant states are conserved in NTMs as well as in Mtb (Shleeva
et al., 2004). Mycobacterial infections are typically contained by the
host in characteristic inflammatory structures called granulomas, which
are formed by the aggregation of fibrous material and immune cells
(neutrophils, macrophages and lymphocytes) eventually creating a
central necrotic core (Johansen et al., 2020). Dormant mycobacteria are
capable of reactivation or resuscitation after a prolonged time when the
host immune system controls are lifted (i.e., immunosuppression trig-
gered by HIV infection or anti-TNF therapy) to resume replication and
cause active disease (Myllymaki et al., 2018; reviewed in Boom et al.,
2021; Chao and Rubin, 2010). Dormancy is often associated with la-
tency, which is defined as the state in which chronically infected in-
dividuals are asymptomatic with a persistent immune response
(Reviewed in Behr et al., 2021; Chao and Rubin, 2010). The dormant
state has a major role in the wide success of mycobacteria as pathogens.
In the case of Mtb, it is estimated that one quarter of the world’s pop-
ulation is asymptomatically infected, creating a huge potential pathogen
reservoir (WHO, 2021). Importantly, the intrinsic capacity of myco-
bacteria to tolerate multiple bactericidal drugs (e.g., dormancy, biofilm
formation, wall thickening, efflux pumps and drug metabolism) favors
the emergence of multiple drug resistance mutations (Dutta et al., 2019;
Liu et al., 2020; reviewed in Bakkeren et al., 2020; Goossens et al., 2020;
Saxena et al., 2021). Interestingly, during the dormant state, Mtb con-
tinues to accumulate mutations with the same rate as during the active
replication state because of the host-directed oxidative damages (Ford
etal., 2011). Such phenomena are likely to play, and have played, a key
role in the adaptation of Mtb and potentially other mycobacteria to
environmental pressure (metabolic constraint and antibiotic resistance).
In addition to clonal variation, horizontal gene transfer within myco-
bacteria or within the microbial community play a key role in the evo-
lution of environmental mycobacteria (Pereira et al., 2020).

3. Mycobacteriosis in amphibians

Over recent years, the human incidence of NTM infections has
increased over Mtb in several developed countries and represents a
growing health concern for immunocompromised patients (Chai et al.,
2022; Johansen et al., 2020). In animals, data on the incidence of NTMs
are limited to sporadic case studies (Biet and Boschiroli, 2014; Martinho
and Heatley, 2012; Pereira et al., 2020). However, NTM infections have
been reported in multiple economically important farmed animals
(cattle, sheep, pigs, poultry, and fish), research facilities (zebrafish and
frogs) and wild animals (amphibians, birds) (reviewed in Biet and
Boschiroli, 2014; Pereira et al., 2020).

Cases of mycobacterial infection in amphibians have been reviewed
elsewhere (Martinho and Heatley, 2012). Most reports are limited to
captive frogs such as Xenopus colonies (X. laevis and X. tropicalis) and
bullfrogs (Rana catesbeiana). These species are widely used and are
raised in large colonies for biomedical research or meat production,
respectively (FAO, 2022). Based on genome sequences, it was estimated
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that Pipids (Xenopus) and Ranids diverge over 200 million years ago
while X. laevis and X. tropicalis diverged about 48 million years ago
(Hammond et al., 2017; Session et al., 2016). Mycobacterium spp. have
been detected in frog skin and tadpole intestine in laboratory and wild
conditions (Costa et al., 2016; Huang et al., 2021; Kohl and Yahn, 2016).
Amphibian mycobacterial infections have been reported in zoos or in the
wild. M. marinum-ulcerans complex is causing the most devastating
disease and is responsible for important economic losses (Martinho and
Heatley, 2012). M. ulcerans Ecovar Liflandii (i.e., an ecotype of
M. ulcerans the causative agent for Buruli ulcer in humans) is responsible
for devastating mortality outbreaks in research facilities housing
X. laevis and X. tropicalis colonies in United States and Europe (Tobias
et al., 2013). Although M. ulcerans Ecovar Liflandii is not known as a
human pathogen, it has been described as responsible of disease
outbreak in farmed fish (Luo et al., 2022; Zhang et al., 2018). Multiple
NTMs have been reported to infect amphibians, including species from
the complexes of M. chelonae-abscessus and M. avium (Barrows et al.,
2017; Martinho and Heatley, 2012; Slater et al., 2021). Importantly,
among mycobacteria causing disease in amphibians (e.g., M. bovis,
M. szulgai, M. marinum, M. xenopi and M. fortuitum), only M. ulcerans
Ecovar Liflandii has not been reported to date as an opportunistic
pathogens in humans and mammalian livestock (Gcebe et al., 2018;
Haridy et al., 2014; Ikuta et al., 2018; Martinho and Heatley, 2012;
Pereira et al., 2020). M. ulcerans causing Buruli ulcer in humans has also
been detected in wild anurans. Although, M. ulcerans hasn’t been re-
ported as a pathogen for amphibians or fish, it represents a potential
reservoir for human disease (Garchitorena et al., 2014; Willson et al.,
2013).

NTMs are ubiquitous in the environment including aquatic animal
research facilities and households (Mason et al., 2016; Pereira et al.,
2020). Drinking water systems are an important source and reservoir for
NTMs where these pathogens can persist in biofilms (plumbing systems,
sinks, tanks, and hoses). Food and amoebae represent other sources of
NTMs (Chang et al., 2019; Delafont et al., 2014; Mason et al., 2016;
reviewed in Honda et al., 2018; Pereira et al., 2020). Thus, NTMs are
unlikely to be completely eradicated from research facilities or aqua-
culture farms, and strategies to mitigate pathogen outbreaks should be
considered (e.g, environmental sampling, sentinel animals, NTM
adapted sanitizers and removal of the elder individuals; Mason et al.,
2016).

An additional challenge is that infections by NTMs, like Mitb,
frequently persist at a sub-clinical or latent state (i.e., chronic infection;
Chai et al., 2012; Martinho and Heatley, 2012). Mortality or disease
outbreaks typically occur under stressful conditions (e.g., husbandry
facility dysfunction, co-infection from another pathogen and high den-
sity), which impairs the host immune system and triggers acute in-
fections resulting in high death rates (Chai et al., 2012; Martinho and
Heatley, 2012; Ramsay et al., 2009). The first signs of an active myco-
bacterial infection include loss of weight, anorexia, lethargy, edema, and
skin ulcers. A typical feature associated with mycobacterial infection is
the formation of granulomas in organs such as liver, kidney, and lungs,
as well as skin, depending of the route of infection and the spreading of
the infection (Chai et al., 2012; Haridy et al., 2014; Tkuta et al., 2018;
Martinho and Heatley, 2012).

3.1. Host-mycobacterial interactions and layered immunity

Upon infection of mammalian species, mycobacteria are rapidly
recognized and phagocyted by macrophages and neutrophils, which
trigger innate immune signals that recruit various waves of immune cells
to eradicate the pathogenic agent. First responders are innate immune
cells such as monocyte-derived macrophages, neutrophils, dendritic
cells, natural killer cells and innate-like T cells (reviewed in Chai et al.,
2019). Subsequently, upon their activation by antigen-presenting cells
in secondary lymphoid organs, adaptive lymphocytes (B cells, conven-
tional CD8 and CD4 T cells) differentiate and expand into effectors
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before their recruitment to the infection site (reviewed in Ankley et al.,
2020; Chai et al., 2019). The role of the different immune effector cell
populations in the outcome of the disease (clearance vs. persistence) is
very complex and still poorly understood owing to virulence factors used
by mycobacteria to evade or impair immune defenses (reviewed in
Ankley et al., 2020; Chai et al., 2020; Ernst, 2018).

Mtb evades conventional T cell responses by acting at various levels
(Ankley et al., 2020; Chai et al., 2020; Chen and Flies, 2013; Ernst,
2018). In mammals, Mtb targets the MHC-II antigen presentation by
blocking IFNy mediated MHC-II upregulation, by interfering with
mycobacteria-derived antigen-MHC-II assembly, and by impairing
autophagy and phagosome maturation (Ankley et al., 2020; Chai et al.,
2020; Ernst, 2018). Furthermore, Mtb can still impair T cell function at
the peak of the adaptive response by promoting regulatory T cells (Treg)
differentiation and T cell exhaustion (Gern et al., 2021; Jayaraman et al.,
2016; Shafiani et al., 2013: reviewed in Ankley et al., 2020; Ernst, 2018;
Verma et al., 2021). As a result, T cell priming toward Mtb is slow in
comparison to other pathogens, and primed T cells are not very efficient
in recognizing Mtb infected macrophages (Chackerian et al., 2002;
Patankar et al., 2020). Additionally, although granulomas are important
to contain mycobacterial infection, peripheral confinement of T cells
likely limits their efficacy because T cells cannot be directly activated by
infected cells (Ankley et al., 2020; Ernst, 2018).

Unconventional T cells, also referred as pre-set or innate-like T cells
(iT cells), also play a critical role in the host immune response against
Mtb (reviewed in Huang, 2016; Ruibal et al., 2021). In mammals, iT cells
represent a distinct and heterogenous group of T cells including
CD1-restricted invariant Natural Kkiller T cells (iNKT cells) and
MR1-restricted mucosa associated invariant T cells (MAIT -cells)
(reviewed in Mayassi et al., 2021). Unlike conventional T cells, iT cells
exhibit low TCR diversity and interact with conserved molecular pattern
ligands presented by non-polymorphic MHC-I like molecules. iT cells
develop early during ontogenesis and can rapidly respond upon acti-
vation. iT cells are important for tissue homeostasis and protection and
thus, complement the action of conventional T cell responses (reviewed
in Constantinides and Belkaid, 2021; Mayassi et al., 2021). Interestingly,
MAIT cell stimulation can either negatively or positively contribute to
conventional T cell responses against pathogens depending on the
timing of the stimulation (i.e., prior to the infection or under chronic
infection; Sakai et al., 2021). The full cellular mechanisms behind these
dichotomous actions remains largely unknown but may be related to
MAIT cells function in tissue homeostasis and repair (Sakai et al., 2021).
As reviewed by Angelidou et al. (2020), the importance of ontogenesis
on T cell responses and protective immunity during mycobacterial
infection is underscored by the different and inconsistent T cell response
obtained by vaccination with the Bacilli Calmette-Guérin (BCG) in
newborns, infants, children, and adults (Burl et al., 2010; Lutwama
et al., 2014; Ritz et al., 2016; Whittaker et al., 2018). Depending on the
developmental stage and presumably the genetic background of the
human population as well as the BCG strain, different memory T cell
frequencies and BCG specific T cell cytokine production were detected.
BCG represents the only approved vaccine that provides protection in
children (WHO, 2021), which is crucial because children are more
susceptible to tuberculosis than adults. Nevertheless, the cellular
mechanisms responsible for children’s susceptibility to Mtb remain
largely unknown (reviewed in Basu Roy et al., 2019; Vanden Driessche
et al., 2013).

The establishment of the mammalian adult immune system is
thought to result from the timed succession of non-redundant phases in a
particular order, which are marked by waves of distinct hematopoietic
progenitors differentiating into distinct mature immune cell populations
(reviewed in Hornef and Torow, 2020; Park et al., 2020). This defines
the concept of layered immunity in which the establishment of immune
homeostasis, immune competence, and host-microbial interaction
depend on an early developmental window (Hornef and Torow, 2020;
Park et al., 2020). For example, different tissues resident immune cells
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(macrophages and iT cells) differentiate during human fetal develop-
ment, which lay the foundation for postnatal immunity (reviewed in
Feyaerts et al., 2022; Miah et al., 2021). In mice and in humans,
increasing evidence suggests that the neonatal/fetal immune cells are
phenotypically and functionally distinct from those of adults (Carey
et al., 2016; Mold et al., 2010; Smith et al., 2018; reviewed in Bennett
and Bennett, 2020; Davenport et al., 2020; Miah et al., 2021; Rudd,
2020). Although pre/neonatal immune cells can respond to infection,
their effector functions must be tightly regulated to prevent excessive
impairment of vital functions and avoid tissue damage (reviewed in
Oschwald et al., 2020; Zhang et al., 2017). In contrast to macrophages
and DCs, whose phenotypes are highly influenced by the tissue micro-
environment (e.g, cytokines, nutrients, microbiota), neonatal naive T
cell phenotypes have been suggested to be intrinsic (Bain and Mac-
Donald, 2022; Bennett and Bennett, 2020; Papaioannou et al., 2021;
Smith et al., 2018; Wang et al., 2016). However, a recent transcriptomic
analysis in humans is challenging this view by indicating that naive
human T cells follow a progressive maturation during late fetal devel-
opment (Bunis et al., 2021). While layered development of naive T cells
needs to be further investigated, populations of unconventional T cells
such as tissue resident yd T cells and MAIT cells are generated and
functional at early developmental stages (Constantinides et al., 2019; Di
Marco Barros et al., 2016; Tieppo et al., 2019; reviewed in (Con-
stantinides and Belkaid, 2021; Mayassi et al., 2021; Ribot et al., 2021).
Thus, it remains conceivable that conventional and unconventional
neonatal T cells persisting until adulthood might conserve distinctive
phenotypes and function, which could complement adult-generated T
cells in immune competence, tissue homeostasis and pathogenesis
(Constantinides and Belkaid, 2021; Smith et al., 2018; reviewed in
Davenport et al., 2020; Rudd, 2020).

4. Amphibians and layered immune systems: A study case of
M. marinum infection in X. laevis

After an overview about mycobacteria and host immune interactions
in mammals, we now turn to amphibians, especially X. laevis, as alter-
native models to study the layered development of immune defenses
against mycobacteria with special emphasis on T cells.

Amphibians represent a heterogenous group comprising three or-
ders: the Gymnophiona (caecilians); Urodela (salamanders and newts);
and Anura (frogs and toads). Gymnophiona are limbless and vermiform.
Urodela have elongated bodies, distinct heads, necks, well-developed
limbs, and a tail which remains through life. Anura have robust
bodies; they are tailless, neckless with highly developed hindlimbs
specialized in propulsion (jump and swimming). Amphibians evolved
around 350 million years ago and represent early tetrapods as well as the
transition group from water to land. Although some species keep the
larval form for their entire life (neoteny), skip the larval stage (direct
development), or are viviparous, many amphibians transit from the free
aquatic larval stage to the adult form (San Mauro et al., 2014). This
transition state is referred to metamorphosis. The extent of the
morphological changes vary considerably among the orders of am-
phibians: Anura undergo the most dramatic changes, while Urodela and
Gymnophiona retain numerous larval features (reviewed in Alibardi,
2019; Wake, 2006). Similar to the transition of neonatal and infant
stages to adulthood in mammals, metamorphosis marks the
endocrine-controlled transition from larval to adult frog immune sys-
tems (reviewed in Robert and Ohta, 2009; Rollins-Smith, 1998). Like
fetal and human neonates, the larval immune system in Xenopus is
distinct from the adult counterpart. Although X. laevis tadpoles show
delayed and hypo-immune responsiveness in comparison to
one-year-old adults, they are immunocompetent. Tadpoles can develop
active immune responses including effector functions during viral in-
fections, immune tolerance during allograft/tumor rejection, and tissue
regeneration (Aztekin et al., 2020, 2019; Edholm et al., 2019; Kalia
et al., 2022; Rhoo et al., 2019; reviewed in Banach and Robert, 2019;
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Robert et al., 2017; Robert and Ohta, 2009; Rollins-Smith, 1998). In
larval wood frogs, virus loads, but not prevalence of infection, appear to
be dependent on MHC- Class II alleles (Savage et al., 2019). Similar to
newborns with group B Streptococcus and respiratory syncytial virus
infections, anuran tadpoles, and especially metamorphic-stage frogs, are
more susceptible than adult frogs to pathogens such as ranaviruses
(Kalia et al., 2022), reviewed in (Chen and Robert, 2011; Kollmann
et al., 2020).

Urodeles retain numerous larval phenotypic features after meta-
morphosis. Therefore, the immune system doesn’t show such drastic
changes as in the Anura. Similar to tadpoles, the urodele immune system
shows a weak and delayed immune response to pathogens and graft
rejection (reviewed in Chen and Robert, 2011; Rollins-Smith, 1998). As
a consequence, like anuran tadpoles, salamanders (e.g., Ambystoma)
show high susceptibility to ranavirus infection in comparison to adult
anurans (Chen and Robert, 2011). In the following sections, we describe
(1) our current understanding at the cellular and molecular levels of the
developing larval immune function, phenotype, and regulation in the
context of infection and (2) evidence showing that amphibians represent
a model of interest to study the role of layered immunity in the
host-mycobacteria interaction because larval immune cells persist in the
adult immune system.

a. Anuran amphibian larval T cells and macrophages are distinct from
adult-derived cells and are biased toward tolerance and tissue ho-
meostasis/repair
i. Tcells

As previously reviewed by Benedict et al. (2000), Rudd (2020),
Zemlin et al. (2002), mammalian fetal T cells are defined by different
TCR and B cell receptor (BCR) repertoires accounting for different gene
usages and a constrained complementarity-determining region 3 (CDR3)
in comparison to their adult counterparts (Carey et al., 2016; Rechavi
et al., 2015). After birth for rodents and during gestation in human,
Terminal deoxynucleotidyl transferase (TdT) expression increases
greatly in the thymus of rat, mice and likely human, together with the
increase of TCR and BCR N-region diversity (Bogue et al., 1992; Carey
et al., 2016; Carisson and Holmberg, 1990; Gregoire et al., 1979;
Rechavi et al., 2015; Souto-Carneiro et al., 2005). In Xenopus, TdT
mRNA was detected at a low level in the thymus of tadpoles but is
substantially increased during metamorphosis and in adults together
with N-region diversity in the B cell repertoire (Lee and Hsu, 1994;
Schwager et al., 1991). In two-week-old Xenopus tadpoles (stage 50-51),
the TCR repertoire of CD8"® and CD8Y™ T cells is dominated by six
invariant TCR alpha chains (Edholm et al., 2013). These data indicate
that Xenopus TCR and BCR repertoires are constrained in terms of CDR3
length and segment usage before metamorphosis similar to mammalian
fetal T cells. In the Mexican axolotl (a urodele), TdT transcripts are
detected in the thymus from the larval to adult stages (Golub et al.,
2004). Furthermore, the BCR and TCR repertoire diversity is apparently
low without major changes occurring during axolotl ontogenesis. The
TCR N-region diversity does not drastically change during development,
and the TCRp repertoire is highly shared among individuals and between
larval and adult stages, i.e., public TCRp repertoire (Kerfourn et al.,
1996; Schwager et al., 1991). Interestingly, tdt deficiency in mice re-
duces the TCR repertoire diversity and peptide specificity, while it fa-
vors polyreactive TCR, promiscuous peptide recognition, and public T
cell repertoire, which is reminiscent of fetal and neonatal B and T cells
(Benedict et al., 2000; Davenport et al., 2020; Gavin and Bevan, 1995).
This convergence in low TCR diversity and cross-reactivity among
mammalian fetal T cells, anuran tadpole T cells, and urodelan T cells
appears to be related to the constraints of (1) generating a TCR reper-
toire with a small number of T cells (Giorgetti et al., 2021) and (2)
limiting autoreactivity against self-antigens (Reviewed by Rudd, 2020)
and (3) limiting a strong and harmful T cell inflammatory responses (i.e.,
cytokine production and clonal expansion) against non-self-antigens (i.
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e., tolerance; Carey et al., 2016; Schreurs et al., 2021; Stutz et al., 2021).

The difference in TCR repertoire between X. laevis tadpole and adult
T cells is also characterized by a difference in TCR restriction and
reactivity. Unlike the mammalian fetus, X. laevis tadpoles are deprived
of MHC-Class Ia restricted T cells because MHC-Class Ia surface protein
expression appears at the onset of metamorphosis; Flajnik et al., 1986).
As previously speculated (Reviewed in Flajnik et al., 1987), the absence
of MHC-Class I at the protein level might represent an adaptation to the
small number of T cells present in Xenopus tadpoles. The development of
both MHC-Class II and MHC-Class I restricted T cells would require a
higher number of cells. In X. laevis, metamorphosis is marked by a
drastic loss of thymocytes and splenic T cells, which are replenished a
few weeks after metamorphosis in young froglets (Du Pasquier and
Weiss, 1973; Robert and Ohta, 2009; Rollins-Smith, 1998). Like
mammalian neonatal T cells that must be educated to distinguish be-
tween beneficial and pathogenic microbiota, the metamorphic froglet T
cells must learn to tolerate newly synthetized adult proteins as well as
new food-derived antigens since metamorphosis is also marked by a
change in the diet and microbiota (Reviewed in Colombo et al., 2015;
Robert and Ohta, 2009). The drastic loss of lymphocytes in the thymus
and spleen during metamorphosis is postulated to be a mechanism of
central and peripheral tolerance/selection. The latter would eliminate
larval immune cells that would be autoreactive to the newly generated
adult-derived antigens. In urodeles, the change associated with meta-
morphosis remains largely uncharacterized. In urodele larvae, although
MHC Class Ia is expressed at the transcript level as in X. laevis tadpoles,
the protein expression is unknown due to the lack of reagents (Salter-Cid
et al., 1998; Tournefier et al., 1998). MHC Class II shows developmental
stage specific cellular distribution in Xenopus as in the axolotl (Roll-
ins-Smith and Blair, 1990; Volk et al., 1998). Indeed, most T cells and
thymocytes express MHC-Class II only after metamorphosis in X. laevis
and axolotl (Rollins-Smith and Blair, 1990; Volk et al., 1998). Consti-
tutive expression of MHC Class II by T cells and thymocytes has also been
detected in the horse (Lunn et al., 1993). In humans and rats, MHC Class
II is expressed mainly on activated peripheral T cells, while mice lack
MHC Class II expression on thymocytes and T cells (Reviewed by Lee
et al., 2009). Although, the role of MHC Class II on thymocytes and T
cells remains to be characterized in X. laevis (Reviewed in human by Lee
et al., 2009), the absence of surface MHC Class II expression on tadpole
thymocytes and T cells, as well as process of central/peripheral toler-
ance during metamorphosis, impies that tadpole and adult T cells have a
distinct TCR specificity.

Human infant and X. laevis tadpole T cell hypo-responsiveness likely
limits the capacity to control mycobacterial infection. Infants show a
general diminished T cell-mediated response including cytokine secre-
tions (e.g., IL-1p, TNFa) and delayed T cell responses to BCG (Reviewed
in Basu Roy et al.,, 2019; Vanden Driessche et al., 2013). Although
X. laevis adult frogs produce a strong pro-inflammatory CD8 T cells
response against M. marinum, including the up-regulation of IL-1f and
TNFa gene transcripts and the formation large granulomas, tadpole
immune responses are characterized by a prominent iT cell response, a
minimal pro-inflammatory gene expression change, and enhanced
expression of anti-inflammatory genes such as IL-10 (Rhoo et al., 2019).
Children under five years of age also exhibit reduced cavity formation (i.
e, the ultimate granuloma state), higher risk of developing the
disseminated form of tuberculosis (e.g, meningitis and miliary tuber-
culosis), and a higher risk of developing active disease in comparison to
adults (Basu Roy et al., 2019; Vanden Driessche et al., 2013). Similarly,
tadpole infection by M. marinum is characterized by the formation of
fewer microgranulomas surrounded by rare T cells and persistence of
higher pathogen loads in comparison to adult frogs (Rhoo et al., 2019).
Importantly, tadpoles and adult frogs do not show a statistical difference
in their survival rate during mycobacterial challenges (Rhoo et al.,
2019). This is unlike children under five year of age who are more likely
to die from tuberculosis than adults (Basu Roy et al., 2019; Vanden
Driessche et al., 2013). Altogether, these data suggest some similarity
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between the infant and tadpole immune systems including T cell
hypo-responsiveness to mycobacterial infection and increased bacterial
dissemination in comparison to the adult counterpart.

Functionally, neonatal T cells are intrinsically biased toward toler-
ance compared to their adult counterparts (Davenport et al., 2020;
Rudd, 2020). Interestingly, mammalian neonatal Tregs and likely uro-
dele and anuran larval T cells show important regeneration capacity that
islost in older infants and in adult anurans after metamorphosis (Aztekin
et al., 2020; Fukazawa et al., 2009; Leigh et al., 2018; Li et al., 2019).
Furthermore, adult allograft rejection can be delayed by injection of
thymocytes derived from metamorphic isogenic frogs supporting the
immunoregulatory function of pre-adult T cells (Du pasquier and Ber-
nard, 1980). The difference of metamorphosis between Urodela and
Anura coincides with different capacities for tissue regeneration. Uro-
deles retain an extended capacity for tissue regeneration throughout life,
whereas this capacity is highly reduced after metamorphosis in anurans
(Godwin and Rosenthal, 2014). In newts, treatment with the T
cell-inhibitor Cyclosporin A inhibited tissue regeneration (Fahmy and
Sicard, 2002) and, in axolotls, thymectomy in juveniles and adults
boosted antibody responses (Charlemagne, 1979). These data suggested
that putative urodele Tregs may contribute to the retention of an
extended regeneration capacity after metamorphosis. Thus, similar to
fetal/neonatal T cells, tadpole/metamorphic frog and axolotl T cells are
likely distinct from their adult counterparts and are biased toward an
immunoregulatory function and anti-inflammatory activity. Such biases
likely limit the capacity to restrain mycobacterial infection in X. laevis
tadpoles and neonates/infants.

ii. Innate-like T cells have a major role in X. laevis larval immune
defenses

MHC Class Ib restricted T cell similar to mammalian MAIT and iNKT
cells have been functionally described outside mammals only in X. laevis
to date (Edholm et al., 2013, 2018). Xenopus iT cells share some onto-
genetic and phenotypic features with mammalian MAIT cells and iNKT
cells as previously reviewed (Banach and Robert, 2019; Hyoe and
Robert, 2019). Inferring the phylogeny of MHC Class I related genes in
jawed vertebrates is complex because, although they are present in all
investigated species, their rapid evolution rate often hampers the
establishment of a clear orthology (Almeida et al., 2020, 2021; Boudinot
etal., 2016; Goyos et al., 2011). Therefore, the evolutionary relationship
between X. laevis and mammalian iT cells remains unknown.

The limited capacity to restrain mycobacterial infections of tadpoles
and neonates might be related to the prominence of iT cells (Mayassi
et al., 2021; Sakai et al., 2021). Tadpole survival against M. marinum is
critically dependent on the MHC1b-UBA4 interacting with iT cells
expressing the invariant and germ-line encoded Va45-Jal.14 (iVa45;
Edholm et al., 2018). Using short hairpin RNAs (shRNA) targeting the
CDR3, the iVa45 was shown to be important for these cells for liver
homeostasis, which raises the possibility that iVa45 deficiency com-
promises tadpole survival by impacting liver repair during infection
(Edholm et al., 2018; Rhoo et al., 2019). Consistent with the prominent
role of MHC Class Ib-restricted iT cells in tadpole’s resistance, tissue
homeostasis and repair, tadpole immune resistance might rely on the
tolerance of higher mycobacterial pathogen loads and hypo-reactivity
(Edholm et al., 2018; Rhoo et al., 2019).

iii. Myeloid cells

Macrophages, and to a lesser extent neutrophils, are central for tissue
repair, viral and mycobacterial infection in Xenopus and axolotls as in
mammals (Aztekin et al., 2020; Fukazawa et al., 2009; Leigh et al., 2018;
Popovic et al., 2019). Notably, macrophage polarization by two evolu-
tionarily unrelated ligands of the Colony stimulating factor 1 receptor
(Csflr), Csfl and Interleukin-34 (IL-34), drastically impact anti-viral and
anti-mycobacterial immune responses in adult X. laevis (Grayfer and
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Fig. 1. Kinetics of M. marinum pathogen load in the peritoneal myeloid
cells in adult and tadpole Xenopus by flow cytometry. For this study, 3 x
10° CFU and 1 x 10° CFU of DsRed + M. marinum were inoculated in the
peritoneum of X. laevis tadpoles and adult frogs, respectively. (A) Representa-
tive flow cytograms of adults and tadpoles showing DsRed -+ M. marinum signal
in peritoneal CSF1R + macrophages and CSF1R-granulocytes at 3 dpi. (B)
DsRed Mean Fluorescence Intensity (MFI) in CSF1R + macrophages and CSF1R-
granulocytes from tadpoles and adults at 3, 6 and 12 day post infection as
represented by the orange and blue dots respectively. Sampling of peritoneal
leucocytes was repeated in the same individual at each time points. n = 6-10
from two independent experiments. a,e indicate statistical significance (Krus-
kal-Wallis test, p < 0.05). rCSF1, recombinant CSF1

Robert, 2015; Popovic et al., 2019). Using the transgenic mpeg:GFP
X. laevis line strain and DsRed + M. marinum, the recruitment of GFP +
macrophages and the formation of granuloma structure have been
monitored in tadpoles (Hyoe and Robert, 2019). Developmental origin
and function (e.g., tissue homeostasis) also determines the role of
myeloid cells in mycobacterial pathogenicity. For example, Mtb evades
immune surveillance by taking advantage of the more permissive lung
alveolar macrophages in comparison to interstitial macrophages and
neutrophils (Huang et al., 2018; Pisu et al., 2020). As reviewed by
Vanden Driessche et al. (2013), the neonate/infant susceptibility toward
tuberculosis might be due to hypo- or distinct responsiveness and
limited anti-microbial activity of macrophages and neutrophils (Goenka
et al., 2020; Shey et al., 2014). To explore these possibilities in X. laevis,
we used a tagged recombinant X. laevis Csf1 to label a subset of CSF1R+
macrophages in combination with DsRed + M. marinum to determine by
flow cytometry pathogen loads in peritoneal myeloid cells of tadpoles
and adult X. laevis. The use of labelled recombinant ligand such as Csfl
or chemokine is commonly used as surrogate of specific antibody to
investigate the cellular distribution of their respective receptors (Csflr)
(Samanta et al., 2021; Wu et al., 2021). Our results showed than upon
intraperitoneal inoculation, DsRed + M. marinum is detected in perito-
neal Csflr + macrophages and Csflr-granulocytes of both tadpoles and
adults (Fig. 1A). This result suggests that similar to mammals, macro-
phages and neutrophils are involved both in early immune responses
and in immune evasion (Lovewell et al., 2021, reviewed in Huang et al.,
2018). Infected myeloid cells from tadpoles show a higher DsRed Mean
Fluorescence Intensity (MFI) signal than their adult counterparts, which
suggests that X. laevis tadpoles myeloid cells are more permissive
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and/or elicit lower antimicrobial activity toward M. marinum".

Fluorescence Intensity (MFI) signal than their adult counterparts,
which suggests that X. laevis tadpoles’ myeloid cells are more permissive
and/or elicit lower antimicrobial activity toward M. marinum (Fig. 1B).
Importantly, both in tadpoles and adult frogs, the DsRed MFI signifi-
cantly decreased overtime (Fig. 1B). These results reinforce previous
work showing that tadpoles are immunocompetent and develop a
delayed immune response (Chen and Robert, 2011). The hypo- and
distinct responsiveness leading to the permissiveness of larval frogs and
human infants toward mycobacteria could be related to intrinsic fea-
tures of the larval/fetal-derived myeloid cells as suggested in vitro with
human macrophages (Goenka et al., 2020; o Maoldomhnaigh et al.,
2021; Shey et al., 2014). In agreement with this view, a subpopulation of
tadpole-specific myeloid cells in the kidney of X. laevis have recently
been proposed to be responsible of the lower ranavirus load observed in
tadpoles (Kalia et al., 2022). An alternative and non-exclusive possibility
is that the larval/fetal tissue microenvironment may have immunoreg-
ulatory activity on innate immune cells to prevent a potentially delete-
rious tissue inflammatory response (Bain and MacDonald, 2022;
Papaioannou et al., 2021).

b. Potential persistence of larval T cells in adults and relevance for adult
immune response

As reviewed by Rudd (2020), increasing evidence suggests that
mammalian fetal-derived T cells represent a distinct lineage from their
adult counterparts like fetal-derived B1 B cells and adult-derived B2 B
cells. In addition to representing a major component of the immune
defense early in development, mammalian fetal-derived T cells are
maintained in adulthood where they preserve their unique function in
self-tolerance and protection during infection (Reynaldi et al., 2019;
Smith et al., 2018; Yang et al., 2015). As reviewed by Zhivaki and
Lo-Man (2017) and Rackaityte and Halkias (2020), infants are also
thought to have developed specific T cell memory responses after in
utero exposure to viruses, plasmodium, and bacteria including Mtb
(Malhotra et al., 1997; Mishra et al., 2021; Odorizzi et al., 2018). In
X. laevis, it has been suggested that larval-derived T and B cell memory
can persist through metamorphosis and could be important for the adult
T cell mediated immune responses (reviewed in Flajnik et al., 1987;
Rollins-Smith, 1998). Likewise, it has been reported that immunization
of bullfrog tadpoles with adult-derived hemoglobulin prevented the
development of adult globin after metamorphosis (Maniatis et al.,
1969). As reviewed by Rollins-Smith (1998), immunization with T
cell-dependent antigens, T cell-mediated allograft rejection, or T
cell-dependent tumor rejection during the larval stage accelerated
rejection in adult Anura and at a lesser extent in Urodela. In X. laevis,
several  groups have shown that MHC- or  Minor
Histocompatibility-disparate allografts are tolerated by tadpoles and
metamorphic frogs, and adults frogs primed by these allografts develop a
persisting active T cell-mediated tolerance (Barlow and Cohen, 1983;
Ono and Tochinai, 1995; reviewed by Robert and Ohta, 2009; Roll-
ins-Smith, 1998). This tolerance can be ablated by inhibiting T cells with
cyclophosphamide or by eliminating T cells by thymectomy (Barlow and
Cohen, 1983; Horton et al., 1989; Ono and Tochinai, 1995). Further-
more, immunization of tadpoles with X. laevis lymphoid tumor cells did
not induce tolerance to skin grafts transplanted during adult life but
rather accelerated their rejection (Robert et al., 1997), and priming with
irradiated lymphoid tumor cells at tadpole stages partially protected
young adult frogs challenged with live tumors (Robert et al., 1995).
Finally, it has been shown using thymus transfers that tadpole-derived T
cell persist after metamorphosis (Rollins-Smith and Davis, 1992; Turpen
and Smith, 1989).

As previously mentioned, early developing MAIT cells in mice can
highly impact the pathogen load by boosting the conventional T cell
response in mice (Mayassi et al., 2021; Sakai et al., 2021). To date, it is
unknown whether larval iT cells persist in adult frogs or differentiate
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Fig. 2. Comparative overview of X. laevis and
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during metamorphosis the number of peripheral T
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for details).

from new precursors leading to adult-type iT cells. Although, reverse
genetics has shown that MHC1b-UBA4 interacting iVa45 positive cells
are critically involved in the tadpole anti-mycobacterial response, their
role in the adult remains elusive (Rhoo et al., 2019). In mammals, early
developing MAIT cells can impact adult anti-mycobacterial immune
defenses (Sakai et al., 2021). Thus, it is possible that early developing T
cell-mediated immune defenses in tadpoles can interfere with the
outcome of the mycobacterial disease in adult frogs as well as in
mammals.

c. Islarval and adult immune cell function imprinted by their precursor
origin?

The intrinsic differences of T cells between mammalian fetal and
adult stages is postulated to be due to the distinct developmental origin
of their progenitors (Davenport et al., 2020; Mold et al., 2010). As
reviewed by Ciau-Uitz et al. (2010) and more recently by Elsaid et al.
(2020), mammalian, bird, Xenopus, and fish blood cells derive from
three orchestrated waves of hematopoietic progenitors of different ori-
gins during embryogenesis, which sustain hematopoiesis throughout the
lifetime (Ciau-Uitz et al., 2000; Turpen and Smith, 1989). In mammals,
primitive hematopoiesis is initiated in the extra-embryonic yolk sac and
rapidly seeds the liver. This is followed by a second wave of progenitors

from the extra-embryonic yolk sac that provides definitive hematopoi-
esis. The precursors expand in the liver before migrating to the bone
marrow (Bennett and Bennett, 2020; Feyaerts et al., 2022; Lavin et al.,
2015). In Xenopus and axolotl, the liver most likely represents the main
hematopoietic organ throughout life (Debuque et al., 2021; Elsaid et al.,
2020). For the thymus, precursors migrate in two waves in mice and
zebrafish, whereas three successive waves have been identified in Xen-
opus as in birds (Ciau-Uitz et al., 2010). In Xenopus, the third wave of
stem cell migration into the thymus occurs after metamorphosis (Roll-
ins-Smith and Davis, 1992; Turpen and Smith, 1989). Thus, as in
mammals, the functional and phenotypical differences between tadpole
and adult T cells are likely intrinsic and related to their distinct em-
bryonic origins (Mold et al., 2010).

In mammals, tissue resident macrophages (TRM) originally arise
during embryogenesis from the yolk sac. Over the life course, TRMs are
replenished from liver and bone marrow-derived macrophages
depending on their subtypes (e.g., microglia vs. alveolar macrophages)
or following infection or disease. So far only the microglia have been
detected with a phenotype that is impacted by their developmental
origin (i.e., liver vs. bone marrow; Bain and MacDonald, 2022; Bennett
and Bennett, 2020). In contrast to neutrophils and dendritic cells from
secondary lymphoid organs that are considered to be short-lived circu-
lating immune cells, TRMs are self-renewing macrophages that can
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persist throughout life (Liu et al., 2007; reviewed in Patel et al., 2021).
TRMs are important in local immune surveillance, remodeling, ho-
meostasis and specific functions based on their tissue residency, (e.g,
alveolar macrophages in the lung, osteoclasts in the bones and microglia
in the brain; reviewed in Bain and MacDonald, 2022; Bennett and
Bennett, 2020; Murray and Wynn, 2011). In non-mammalian species
including Xenopus and axolotl, ontogenesis, and lifespan of TRMs re-
mains largely unknown and may differ from mammals. Contrasting with
mammals, embryonic microglia in zebrafish are replaced by a second
wave of embryonic monocytes in the absence of injury or disease (Fer-
rero et al., 2018). After metamorphosis in Xenopus, the bone marrow is
formed where the late stage of myelopoiesis takes place (Grayfer and
Robert, 2013; Yaparla et al., 2020). In Urodela, the bone marrow is not
involved in myelopoiesis, which probably only takes place in the liver
throughout the life (Debuque et al., 2021). In fact, liver-derived mac-
rophages play a major role in organ regeneration in axolotls (Debuque
et al., 2021). While the importance of ontogenetic imprinting remains to
be fully evaluated, it is clear that this will need to be combined with
tissue microenvironments to acquire mature resident identity. This un-
deniably represents a major factor influencing macrophage phenotypes
and function (Bain and MacDonald, 2022), as we are reminded by the
evolutionarily conserved plasticity of macrophages and monocytes in
vertebrates (Edholm et al., 2017; Grayfer et al., 2018).

5. Conclusion and perspectives

Current knowledge on amphibian immunology suggests that like in
the mammalian fetus, amphibian larval T cells and myeloid cells are
distinct phenotypically and functionally from their adult counterparts
(Fig. 2 for T cells). Both developing amphibian tadpole- and mammalian
fetal-derived cells cells must be able to elicit immune defenses against
prevalent pathogens, prevent harmful inflammation, maintain tolerance
toward environmentally-derived antigens, promote organogenesis and
establish tissue resident immune populations (Al Nabhani and Eberl,
2020; Constantinides et al., 2019; Davenport et al., 2020; Feyaerts et al.,
2022; Olszak et al., 2012). In contrast to free-living amphibian larval T
cells, human fetal T cell-mediated pro-inflammation/tolerance will be
solicited only after birth and during weaning stages when the devel-
oping mammals is devoid of the mother’s protection (Al Nabhani et al.,
2019; Al Nabhani and Eberl, 2020; Feyaerts et al., 2022). The small
number of T cells at these early life stages appears to result in a narrower
TCR repertoire (segment usage and N-region diversity) favoring thymic
positive selection, detection of conserved antigens related to tissue ho-
meostasis, avoiding strong microbiota- and self-reactive T cell inflam-
matory response. Evidence suggests that in X. laevis some T cell
populations persist in adult amphibians and may play a role in the
host-mycobacteria interaction as recently observed in mice with MAIT
cells (Sakai et al., 2021). As such, free-living amphibian larvae represent
a model of choice to investigate (1) early developing immune cell reg-
ulatory mechanisms in tetrapods involved in immune tolerance, tissue
homeostasis, and host pathogen interaction; and (2) the interaction
between early and late developing immune cells. X. laevis is also an ideal
model to unravel potential developmental immunotoxic effects of pol-
lutants which are irreversible or long lasting (Robert et al., 2019),
reviewed in (Nagel et al., 2020). Advanced genome editing techniques
(CRISPR/Cas9, siRNA) are being increasingly used to investigate MHC
Class Ib restricted iT cells in Xenopus (Edholm et al., 2013, 2018). In
mammals, the molecular mechanisms regulating fetal immunity and
their role in the adult host-mycobacterial interaction remains largely
understudied. Improving our knowledge of larval/fetal T cells and
myeloid cells is crucial to design new vaccines for protecting animal and
neonates/infants from mycobacteriosis as well as against other infec-
tious diseases. In fact, the neonates and infants are relatively unre-
sponsive to current vaccines (Zhang et al., 2017).
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