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Abstract

Achieving sample efficiency in online episodic reinforcement learning (RL) requires optimally balancing

exploration and exploitation. When it comes to a finite-horizon episodic Markov decision process with

S states, A actions and horizon length H, substantial progress has been achieved toward characterizing

the minimax-optimal regret, which scales on the order of
√

H2SAT (modulo log factors) with T the total

number of samples. While several competing solution paradigms have been proposed to minimize regret,

they are either memory-inefficient, or fall short of optimality unless the sample size exceeds an enormous

threshold (e.g. S6A4 poly(H) for existing model-free methods).

To overcome such a large sample size barrier to efficient RL, we design a novel model-free algorithm,

with space complexity O(SAH), that achieves near-optimal regret as soon as the sample size exceeds the

order of SA poly(H). In terms of this sample size requirement (also referred to the initial burn-in cost),

our method improves—by at least a factor of S5A3—upon any prior memory-efficient algorithm that is

asymptotically regret-optimal. Leveraging the recently introduced variance reduction strategy (also called

reference-advantage decomposition), the proposed algorithm employs an early-settled reference update

rule, with the aid of two Q-learning sequences with upper and lower confidence bounds. The design
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970 G. LI ET AL.

principle of our early-settled variance reduction method might be of independent interest to other RL

settings that involve intricate exploration–exploitation trade-offs.

Keywords: model-free RL; memory efficiency; variance reduction; Q-learning; upper confidence bounds;

lower confidence bounds;

2010 Math Subject Classification: 68T09; 68T37; 68W27; 90C40.

1. Introduction

Contemporary reinforcement learning (RL) has to deal with unknown environments with unprece-

dentedly large dimensionality. How to make the best use of samples in the face of high-dimensional

state/action space lies at the core of modern RL practice. An ideal RL algorithm would learn to

act favorably even when the number of available data samples scales sub-linearly in the ambient

dimension of the model, i.e. the number of parameters needed to describe the transition dynamics of

the environment. The challenge is further compounded when this task needs to be accomplished with

limited memory.

Simultaneously achieving the desired sample and memory efficiency is particularly challenging

when it comes to online episodic RL scenarios. In contrast to the simulator setting that permits sampling

of any state–action pair, an agent in online episodic RL is only allowed to draw sample trajectories by

executing a policy in the unknown Markov decision process (MDP), where the initial states are pre-

assigned and might even be chosen by an adversary. Careful deliberation needs to be undertaken when

deciding what policies to use to allow for effective interaction with the unknown environment, how to

optimally balance exploitation and exploration and how to process and store the collected information

intelligently without causing redundancy.

1.1 Regret-optimal model-free RL? A sample size barrier

In order to evaluate and compare the effectiveness of RL algorithms in high dimension, a recent

body of works sought to develop a finite-sample theoretical framework to analyze the algorithms of

interest, with the aim of delineating the dependency of algorithm performance on all salient problem

parameters in a non-asymptotic fashion [14, 33]. Such finite-sample guarantees are brought to bear

toward understanding and tackling the challenges in the sample-starved regime commonly encountered

in practice. To facilitate discussion, let us take a moment to summarize the state-of-the-art theory for

episodic finite-horizon MDPs with non-stationary transition kernels, focusing on minimizing cumulative

regret—a metric that quantifies the performance difference between the learned policy and the true

optimal policy—with the fewest number of samples. Here and throughout, we denote by S, A and H the

size of the state space, the size of the action space and the horizon length of the MDP, respectively, and

let T represent the sample size. In addition, the immediate reward gained at each time step is assumed

to lie between 0 and 1.

Fundamental regret lower bound. Following the arguments in [3, 28], the recent works [15, 29]

developed a fundamental lower bound1 on the expected total regret for this setting. Specifically, this

lower bound claims that no matter what algorithm to use, one can find an MDP such that the accumulated

1 It is worth emphasizing that [15] adopts the notation T to represent the number of trajectories (with each trajectory containing

H samples), while this paper employs K to denote the number of sample trajectories and T = KH the total number of samples.
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REGRET-OPTIMAL MODEL-FREE REINFORCEMENT LEARNING 971

regret incurred by the algorithm necessarily exceeds the order of

(lower bound)
√

H2SAT , (1.1)

as long as T ≥ H2SA.2 This sublinear regret lower bound in turn imposes a sampling limit if one wants

to achieve ε average regret.

Model-based RL. Moving beyond the lower bound, let us examine the effectiveness of model-based

RL—an approach that can be decoupled into a model estimation stage (i.e. estimating the transition

kernel using available data) and a subsequent stage of planning using the learned model [2, 7, 20, 28, 48].

In order to ensure a sufficient degree of exploration, [7] came up with an algorithm called UCB-VI that

blends model-based learning and the optimism principle, which achieves a regret bound3 Õ
(√

H2SAT
)

that nearly attains the lower bound (1.1) as T tends to infinity. Caution needs to be exercised, however,

that existing theory does not guarantee the near optimality of this algorithm unless the sample size T

surpasses

T ≥ S3AH6,

a threshold that is significantly larger than the dimension of the underlying model. This threshold can

also be understood as the initial burn-in cost of the algorithm, namely, a sampling burden needed for

the algorithm to exhibit the desired performance. In addition, model-based algorithms typically require

storing the estimated probability transition kernel, resulting in a space complexity that could be as high

as O(S2AH) [7].

Model-free RL. Another competing solution paradigm is the model-free approach, which circum-

vents the model estimation stage and attempts to learn the optimal values directly [8, 29, 56, 70]. In

comparison with the model-based counterpart, the model-free approach holds the promise of low space

complexity, as it eliminates the need of storing a full description of the model. In fact, in a number of

previous works (e.g. [29, 56]), an algorithm is declared to be model-free only if its space complexity is

o(S2AH) regardless of the sample size T .

• Memory-efficient model-free methods. [29] proposed the first memory-efficient model-free algo-

rithm—which is an optimistic variant of classical Q-learning—that achieves a regret bound

proportional to
√

T with a space complexity O(SAH). Compared with the lower bound (1.1),

however, the regret bound in [29] is off by a factor of
√

H and hence suboptimal for problems with

long horizon. This drawback has recently been overcome in [75] by leveraging the idea of variance

reduction (or the so-called ‘reference-advantage decomposition’) for large enough T . While the

resulting regret matches the information-theoretic limit asymptotically, its optimality in the non-

asymptotic regime is not guaranteed unless the sample size T exceeds (see (75, Lemma 7))

T ≥ S6A4H28,

Consequently, the lower bound developed in [15] for non-stationary finite-horizon MDPs reads Ω(
√

H3SAK), or equivalently,

Ω(
√

H2SAT) using the notation adopted herein.
2 Given that a trivial upper bound on the regret is T , one needs to impose a lower bound T ≥ H2SA in order for (1.1) to be

meaningful.
3 Here and throughout, we use the standard notation f (n) = O(g(n)) to indicate that f (n)/g(n) is bounded above by a constant

as n grows. The notation Õ(·) resembles O(·) except that it hides any logarithmic scaling. The notation f (n) = o(g(n)) means that

limn→∞ f (n)/g(n) = 0.
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972 G. LI ET AL.

Table 1 Comparisons between prior art and our results for non-stationary episodic MDPs when

T ≥ H2SA. The table includes the order of the regret bound, the range of sample sizes that achieve

the optimal regret Õ(
√

H2SAT), and the memory complexity, with all logarithmic factors omitted for

simplicity of presentation. The red text highlights the suboptimal part of the respective algorithms.

Algorithm Regret Range of sample sizes T Space

that attain optimal regret complexity

UCB-VI
√

H2SAT + H4S2A [S3AH6, ∞) S2AH
[7]

UCB-Q-Hoeffding
√

H4SAT never SAH
[29]

UCB-Q-Bernstein
√

H3SAT +
√

H9S3A3 never SAH
[29]

UCB2-Q-Bernstein
√

H3SAT +
√

H9S3A3 never SAH
[8]

UCB-Q-Advantage
√

H2SAT + H8S2A
3
2 T

1
4 [S6A4H28, ∞) SAH

[75]

UCB-M-Q
√

H2SAT + H4SA [SAH6, ∞) S2AH
[44]
Q-EarlySettled-Advantage

(this work)
√

H2SAT + H6SA [SAH10, ∞) SAH

Lower bound
√

H2SAT n/a n/a
[15]

a requirement that is even far more stringent than the burn-in cost imposed by [7].

• A memory-inefficient ‘model-free’ variant. The recent work [44] put forward a novel sample-

efficient variant of Q-learning called UCB-M-Q, which relies on a carefully chosen momentum

term for bias reduction. This algorithm is guaranteed to yield near-optimal regret Õ
(√

H2SAT
)

as

soon as the sample size exceeds T ≥ SApoly(H), which is a remarkable improvement vis-à-vis

previous regret-optimal methods [7, 75]. Nevertheless, akin to the model-based approach, it comes

at a price in terms of the space and computation complexities, as the space required to store all

bias-value function is O(S2AH) and the computation required is O(ST), both of which are larger by

a factor of S than other model-free algorithms like [75]. In view of this memory inefficiency, UCB-

M-Q falls short of fulfilling the definition of model-free algorithms in [29, 56]. See (44, Section 3.3)

for more detailed discussions.

A more complete summary of prior results can be found in Table 1.

1.2 A glimpse of our contributions

In brief, while it is encouraging to see that both model-based and model-free approaches allow for near-

minimal regret as T tends to infinity, they are either memory-inefficient, or require the sample size to

exceed a threshold substantially larger than the model dimensionality. In fact, no prior algorithms have

been shown to be simultaneously regret-optimal and memory-efficient unless

T ≥ S6A4 poly(H),
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REGRET-OPTIMAL MODEL-FREE REINFORCEMENT LEARNING 973

which constitutes a stringent sample size barrier constraining their utility in the sample-starved and

memory-limited regime. The presence of this sample complexity barrier motivates one to pose a natural

question:

Is it possible to design an algorithm that accommodates a significantly broader sample size

range without compromising regret optimality and memory efficiency?

In this paper, we answer this question affirmatively, by designing a new model-free algorithm,

dubbed as Q-EarlySettled-Advantage, that enjoys the following performance guarantee.

Theorem 1.1. informalThe proposed Q-EarlySettled-Advantage algorithm, which has a space

complexity O(SAH), achieves near-optimal regret Õ
(√

H2SAT
)

as soon as the sample size exceeds

T ≥ SA poly(H).

As can be seen from Table 1, the space complexity of the proposed algorithm is O(SAH), which is far

more memory-efficient than both the model-based approach in [7] and the UCB-M-Q algorithm in [44]

(both of these prior algorithms require S2AH units of space). In addition, the sample size requirement

T ≥ SA poly(H) of our algorithm improves—by a factor of at least S5A3—upon that of any prior

algorithm that is simultaneously regret-optimal and memory-efficient. In fact, this requirement is nearly

sharp in terms of the dependency on both S and A, and was previously achieved only by the UCB-M-Q

algorithm at a price of a much higher storage burden.

Let us also briefly highlight the key ideas of our algorithm. As an optimistic variant of variance-

reduced Q-learning,Q-EarlySettled-Advantage leverages the recently introduced reference-advantage

decompositions for variance reduction [75]. As a distinguishing feature from prior algorithms, we

employ an early-stopped reference update rule, with the assistance of two Q-learning sequences that

incorporate upper and lower confidence bounds (LCBs), respectively. The design of our early-stopped

variance reduction scheme, as well as its analysis framework, might be of independent interest to other

settings that involve managing intricate exploration–exploitation trade-offs.

1.3 Related works

We now take a moment to discuss a small sample of other related works. We limit our discussions

primarily to RL algorithms in the tabular setting with finite state and action spaces, which are the closest

to our work. The readers interested in those model-free variants with function approximation are referred

to [19, 22, 45] and the references therein.

Probably approximately correct (PAC) bounds for synchronous and asynchronous Q-learning.

Q-learning is arguably among the most famous model-free algorithms developed in the RL literature

[26, 57, 60, 65], which enjoys a space complexity O(SAH). Non-asymptotic sample analysis and PAC

bounds have seen extensive developments in the last several years, including but not limited to the

works of [10, 12, 21, 37, 62] for the synchronous setting (the case with access to a generative model or

a simulator), and the works of [10, 13, 21, 42, 50] for the asynchronous setting (where one observes a

single Markovian trajectory induced by a behavior policy). Finite-time guarantees of other variants of Q-

learning have also been developed; partial examples include speedy Q-learning [5], double Q-learning

[68], variance-reduced Q-learning [42, 63], momentum Q-learning [67], pessimistic Q-learning [53] and

Q-learning for linearly parameterized MDPs [64]. This line of works did not account for exploration,

and hence the success of Q-learning in these settings heavily relies on the access to a simulator or a

behavior policy with sufficient coverage over the state-action space.

Regret analysis for model-free RL with exploration. When it comes to online episodic RL (so that

a simulator is unavailable), regret analysis is the prevailing analysis paradigm employed to capture the
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974 G. LI ET AL.

trade-off between exploration and exploitation. A common theme is to augment the original model-free

update rule (e.g. the Q-learning update rule) by an exploration bonus, which typically takes the form

of, say, certain upper confidence bounds (UCBs) motivated by the bandit literature [4, 35]. In addition

to the ones in Table 1 for episodic finite-horizon settings, sample-efficient model-free algorithms have

been investigated for infinite-horizon MDPs as well [16, 27, 43, 70, 74, 76].

Variance reduction in RL. The seminal idea of variance reduction was originally proposed to

accelerate finite-sum stochastic optimization, e.g. [24, 32, 46]. Thereafter, the variance reduction

strategy has been imported to RL, which assists in improving the sample efficiency of RL algorithms in

multiple contexts, including but not limited to policy evaluation [17, 34, 61, 69], RL with a generative

model [54, 55, 63], asynchronous Q-learning [42] and offline RL [53, 71].

Model-based approach. Model-based RL is known to be minimax-optimal in the presence of a

simulator [1, 6, 41], beating the state-of-the-art model-free algorithms by achieving optimality for

the entire sample size range [41]. When it comes to online episodic RL, [7] was the first work that

managed to achieve near-optimal regret (at least for large T); in fact, this was also the first result (for

any algorithm) matching existing lower bounds for large T . The sample efficiency of the model-based

approach has subsequently been established for other settings, including but not limited to discounted

infinite-horizon MDPs [25], MDPs with bounded total reward [72, 74], offline RL [40, 52] and Markov

games [39, 73].

Regret lower bound. Inspired by the classical lower bound argument developed for multi-armed

bandits [3], the work [28] established a regret lower bound for MDPs with finite diameters (so that for

an arbitrary pair of states, the expected time to transition between them is assumed to be finite as long

as a suitable policy is used), which has been reproduced in the note [47] with the purpose of facilitating

comparison with [9]. The way to construct hard MDPs in [28] has since been adapted by [29] to exhibit

a lower bound on episodic MDPs (with a sketched proof provided therein). It was recently revisited in

[15], which presented a detailed and rigorous proof argument with a different construction.

2. Problem formulation

In this section, we formally describe the problem setting. Here and throughout, we denote by Δ(S) the

probability simplex over a set S, and introduce the notation [M] := {1, · · · , M} for any integer M > 0.

Basics of finite-horizon MDPs. Let M = (S, A, H, {Ph}H
h=1, {rh}H

h=1) represent a finite-horizon

MDP, where S := {1, · · · S} is the state space of size S, A := {1, · · · , A} is the action space of size

A, H denotes the horizon length and Ph : S × A → Δ(S) (resp. rh : S × A → [0, 1]) represents

the probability transition kernel (resp. reward function) at the h-th time step, 1 ≤ h ≤ H, respectively.

More specifically, Ph(· | s, a) ∈ Δ(S) stands for the transition probability vector from state s at time

step h when action a is taken, while rh(s, a) indicates the immediate reward received at time step h for a

state–action pair (s, a) (which is assumed to be deterministic and fall within the range [0, 1]). The MDP

is said to be non-stationary when the Ph’s are not identical across 1 ≤ h ≤ H. A policy of an agent is

represented by π = {πh}H
h=1 with πh : S → A the action selection rule at time step h, so that πh(s)

specifies which action to execute in state s at time step h. Throughout this paper, we concentrate on

deterministic policies.

Value functions, Q-functions and Bellman equations. The value function Vπ
h (s) of a (determinis-

tic) policy π at step h is defined as the expected cumulative rewards received between time steps h and

H when executing this policy from an initial state s at time step h, namely,

Vπ
h (s) := E

st+1∼Pt(·|st ,πt(st)), t≥h

[
H∑

t=h

rt

(
st, πt(st)

) ∣∣∣ sh = s

]
, (2.1)
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REGRET-OPTIMAL MODEL-FREE REINFORCEMENT LEARNING 975

where the expectation is taken over the randomness of the MDP trajectory {st | h ≤ t ≤ H}. The action-

value function (a.k.a. the Q-function) Qπ
h (s, a) of a policy π at step h can be defined analogously except

that the action at step h is fixed to be a, that is,

Qπ
h (s, a) := rh(s, a) + E

sh+1∼Ph(·|s,a),
st+1∼Pt(·|st ,πt(st)), t>h

[
H∑

t=h+1

rt

(
st, πt(st)

) ∣∣∣ sh = s, ah = a

]
. (2.2)

In addition, we define Vπ
H+1(s) = Qπ

H+1(s, a) = 0 for any policy π and any state–action pair (s, a) ∈
S × A. By virtue of basic properties in dynamic programming [11], the value function and the Q-

function satisfy the following Bellman equation:

Qπ
h (s, a) = rh(s, a) + E

s′∼Ph(·|s,a)

[
Vπ

h+1(s
′)
]
. (2.3)

A policy π� = {π�
h }H

h=1 is said to be an optimal policy if it maximizes the value function simultaneously

for all states among all policies. The resulting optimal value function V� = {V�
h}H

h=1 and optimal Q-

functions Q� = {Q�
h}

H
h=1 satisfy

V�
h(s) = Vπ�

h (s) = max
π

Vπ
h (s) and Q�

h(s, a) = Qπ�

h (s, a) = max
π

Qπ
h (s, a) (2.4)

for any (s, a, h) ∈ S×A× [H]. It is well known that the optimal policy always exists [49], and satisfies

the Bellman optimality equation:

∀(s, a, h) ∈ S × A × [H] : Q�
h(s, a) = rh(s, a) + E

s′∼Ph(·|s,a)

[
V�

h+1(s
′)
]
. (2.5)

Online episodic RL. This paper investigates the online episodic RL setting, where the agent is

allowed to execute the MDP sequentially in a total number of K episodes each of length H. This amounts

to collecting

T = KH samples

in total. More specifically, in each episode k = 1, . . . , K, the agent is assigned an arbitrary initial state

sk
1 (possibly by an adversary), and selects a policy πk = {πk

h }H
h=1 learned based on the information

collected up to the (k − 1)-th episode. The k-th episode is then executed following the policy πk and the

dynamic of the MDP M, leading to a length-H sample trajectory.

Goal: regret minimization. In order to evaluate the quality of the learned policies {πk}1≤k≤K , a

frequently used performance metric is the cumulative regret defined as follows:

Regret(T) :=
K∑

k=1

(
V�

1(sk
1) − Vπk

1 (sk
1)
)
. (2.6)

In words, the regret reflects the sub-optimality gaps between the values of the optimal policy and those

of the learned policies aggregated over K episodes. A natural objective is thus to design a sample-

optimal algorithm, namely, an algorithm whose resulting regret scales optimally in the sample size T .
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976 G. LI ET AL.

Accomplishing this goal requires carefully managing the trade-off between exploration and exploitation,

which is particularly challenging in the sample-limited regime.

Notation. Before presenting our main results, we take a moment to introduce some convenient

notation to be used throughout the remainder of this paper. For any vector x ∈ RSA that constitutes

certain quantities for all state–action pairs, we shall often use x(s, a) to denote the entry associated with

the state–action pair (s, a), as long as it is clear from the context. We shall also let

Ph,s,a = Ph(· | s, a) ∈ R
1×S (2.7)

abbreviate the transition probability vector given the (s, a) pair at time step h. Additionally, we denote

by ei the i-th standard basis vector, with the only non-zero element being in the i-th entry and

equal to 1.

3. Algorithm and theoretical guarantees

In this section, we present the proposed algorithm called Q-EarlySettled-Advantage, as well as the

accompanying theory confirming its sample and memory efficiency.

3.1 Review: Q-learning with UCB exploration and reference advantage

This subsection briefly reviews the Q-learning algorithm with UCB exploration proposed in [29], as well

as a variant that further exploits the idea of variance reduction [75]. These two model-free algorithms

inspire the algorithm design in this paper.

Q-learning with UCB exploration (UCB-Q or UCB-Q-Hoeffding). Recall that the classical Q-

learning algorithm has been proposed as a stochastic approximation scheme [51] to solve the Bellman

optimality equation (2.5), which consists of the following update rule [65, 66]:

Qh(s, a) ← (1 − η)Qh(s, a) + η
{

rh(s, a) + P̂h,s,aVh+1︸ ︷︷ ︸
stochastic estimate of Ph,s,aVh+1

}
. (3.1)

Here, Qh (resp. Vh) indicates the running estimate of Q�
h (resp. V�

h ), η is the (possibly iteration-varying)

learning rate or stepsize and P̂h,s,aVh+1 is a stochastic estimate of Ph,s,aVh+1 (cf. (2.7)). For instance, if

one has available a sample (s, a, s′) transitioning from state s at step h to s′ at step h + 1 under action a,

then a stochastic estimate of Ph,s,aVh+1 can be taken as Vh+1(s
′), which is unbiased in the sense that

E
[
Vh+1(s

′)
]

= Ph,s,aVh+1.

To further encourage exploration, the algorithm proposed in [29]—which shall be abbreviated as

UCB-Q or UCB-Q-Hoeffding hereafter—augments the Q-learning update rule (3.1) in each episode

via an additional exploration bonus:

QUCB
h (s, a) ← (1 − η)QUCB

h (s, a) + η
{
rh(s, a) + P̂h,s,aVh+1 + bh

}
. (3.2)

The bonus term bh ≥ 0 is chosen to be a certain UCB for (̂Ph,s,a − Ph,s,a)Vh+1, an exploration-efficient

scheme that originated from the bandit literature [35, 36]. The algorithm then proceeds to the next

episode by executing/sampling the MDP using a greedy policy w.r.t. the updated Q-estimate. These

steps are repeated until the algorithm is terminated.
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REGRET-OPTIMAL MODEL-FREE REINFORCEMENT LEARNING 977

Q-learning with UCB exploration and reference advantage (UCB-Q-Advantage). The regret

bounds derived for UCB-Q [29], however, fall short of being optimal, as they are at least a factor of√
H away from the fundamental lower bound. In order to further shave this

√
H factor, one strategy is

to leverage the idea of variance reduction to accelerate convergence [32, 42, 55, 63]. An instantiation

of this idea for the regret setting is a variant of UCB-Q based on reference-advantage decomposition,

which was put forward in [75] and shall be abbreviated as UCB-Q-Advantage throughout this paper.

To describe the key ideas of UCB-Q-Advantage, imagine that we are able to maintain a collection

of reference values VR = {VR
h }H

h=1, which form reasonable estimates of V� = {V�
h}H

h=1 and become

increasingly more accurate as the algorithm progresses.

At each time step h, the algorithm adopts the following update rule:

QR
h (s, a) ← (1 − η)QR

h (s, a) + η
{

rh(s, a) + P̂h,s,a

(
Vh+1 − VR

h+1

)
︸ ︷︷ ︸

stochastic estimate of Ph,s,a

(
Vh+1−VR

h+1

)
+
[̂PhVR

h+1

]
(s, a) + bR

h

}
. (3.3)

Two ingredients of this update rule are worth noting:

• Akin to the UCB-Q case, we can take P̂h,s,a

(
Vh+1 − VR

h+1

)
to be the stochastic estimate Vh+1(s

′) −
VR

h+1(s
′) if we observe a sample transition (s, a, s′) at time step h. If Vh+1 is fairly close to the

reference VR
h+1, then this stochastic term can be less volatile than the stochastic term P̂h,s,aVh+1 in

(3.2).

• Additionally, the term ̂PhVR
h+1 indicates an estimate of the one-step look-ahead value PhVR

h+1, which

shall be computed using a batch of samples.

• The variability of ̂PhVR
h+1 can be well controlled through the use of batch data, at the price of an

increased sample size.

Accordingly, the exploration bonus term bR
h is taken to be a UCB for the above-mentioned two

terms combined. Given that the uncertainty of (3.3) largely stems from these two terms (which can both

be much smaller than the variability in (3.2)), the incorporation of the reference term helps accelerate

convergence.

3.2 The proposed algorithm: Q-EarlySettled-Advantage

As alluded to previously, however, the sample size required for UCB-Q-Advantage to achieve optimal

regret needs to exceed a large polynomial S6A4 in the size of the state/action space. To overcome this

sample complexity barrier, we come up with an improved variant called Q-EarlySettled-Advantage.

Motivation: early settlement of a reference value. An important insight obtained from previous

algorithm designs is that in order to achieve low regret, it is desirable to maintain an estimate of Q-

function that (i) provides an optimistic view (namely, an over-estimate) of the truth Q�, and (ii) mitigates

the bias Q − Q� as much as possible. With two additional optimistic Q-estimates in hand—QUCB
h based

on UCB-Q, and a reference QR
h —it is natural to combine them as follows to further reduce the bias

without violating the optimism principle:

Qh(sh, ah) ← min
{

QR
h (sh, ah), QUCB

h (sh, ah), Qh(sh, ah)
}

. (3.4)
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978 G. LI ET AL.

This is precisely what is conducted in UCB-Q-Advantage. However, while the estimate QR
h obtained

with the aid of reference-advantage decomposition provides great promise, fully realizing its potential

in the sample-limited regime relies on the ability to quickly settle on a desirable ‘reference’ during the

initial stage of the algorithm. This leads us to a dilemma that requires careful thinking. On the one hand,

the reference value VR needs to be updated in a timely manner in order to better control the stochastic

estimate of Ph,s,a

(
Vh+1 − VR

h+1

)
. On the other hand, updating VR too frequently incurs an overly large

sample size burden, as new samples need to be accumulated whenever VR is updated.

Built upon the above insights, it is advisable to prevent frequent updating of the reference value VR.

In fact, it would be desirable to stop updating the reference value once a point of sufficient quality—

denoted by VR, final—has been obtained. Locking on a reasonable reference value early on means that

(a) fewer samples will be wasted on estimating a drifting target PhVR
h+1, and (b) all ensuing samples can

then be dedicated to estimating the key quantity of interest PhVR, finalh+1.

Remark 1. In [75], the algorithm UCB-Q-Advantage requires collecting Õ
(
SAH6

)
samples for each

state before settling on the reference value, which inevitably contributes to the large burn-in cost.
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REGRET-OPTIMAL MODEL-FREE REINFORCEMENT LEARNING 979

The proposed Q-EarlySettled-Advantage algorithm. We now propose a new model-free

algorithm that allows for early settlement of the reference value. A few key ingredients are as follows.

• An auxiliary sequence based on LCB. In addition to the two optimistic Q-estimates QR
h and QUCB

h

described previously, we intend to maintain another pessimistic estimate QLCB
h ≤ Q�

h using the

subroutine update-lcb-q, based on LCBs. We will also maintain the corresponding value

function VLCB
h , which lower bounds V�

h .

• Termination rules for reference updates. With VLCB
h ≤ V�

h in place, the updates of the references

(lines 15-18 of Algorithm 1) are designed to terminate when

Vh(sh) ≤ VLCB
h (sh) + 1 ≤ V�

h(sh) + 1. (3.5)

Note that VR
h keeps tracking the value of Vh before it stops being updated. In effect, when the

additional condition in lines 15 is violated and thus (3.5) is satisfied, we claim that it is unnecessary

to update the reference VR
h afterwards, since it is of sufficient quality (being close enough to the

optimal value V�
h ) and further drifting the reference does not appear beneficial. As we will make it

rigorous shortly, this reference update rule is sufficient to ensure that |Vh − VR
h | ≤ 2 throughout the

execution of the algorithm, which in turn suggests that the standard deviation of P̂h,s,a(Vh+1 −VR
h+1)

might be O(H) times smaller than that of P̂h,s,aVh+1 (i.e. the stochastic term used in (3.1) of UCB-

Q). This is a key observation that helps shave the addition factor H in the regret bound of UCB-Q.

• Update rules for QUCB
h and QR

h . The two optimistic Q-estimates QUCB
h and QR

h are updated using

the subroutine update-ucb-q (following the standard Q-learning with Hoeffding bonus [29])

and update-ucb-q-advantage, respectively. Note that QR
h continues to be updated even after

VR
h is no longer updated.

Q-learning with reference-advantage decomposition. The rest of this subsection is devoted to

explaining the subroutine update-ucb-q-advantage, which produces a Q-estimate QR based on

the reference-advantage decomposition similar to [75]. To facilitate the implementation, let us introduce

the parameters associated with a reference value VR, which include six different components, i.e.

[
μref

h (s, a), σ ref
h (s, a), μadv

h (s, a), σ adv
h (s, a), δR

h (s, a), BR
h (s, a)

]
, (3.6)

for all (s, a, h) ∈ S × A × [H]. Here, μref
h (s, a) and σ ref

h (s, a) estimate the running mean and the second

moment of the reference
[
PhVR

h+1

]
(s, a); μadv

h (s, a) and σ adv
h (s, a) estimate the running (weighted) mean

and the second moment of the advantage
[
Ph(Vh+1 − VR

h+1)
]
(s, a); BR

h (s, a) aggregates the empirical

standard deviations of the reference and the advantage combined; and last but not least, δR
h (s, a) is the

temporal difference between BR
h (s, a) and its previous value.

As alluded to previously, the Q-function estimation follows the strategy (3.3) at a high level. Upon

observing a sample transition (sh, ah, sh+1), we compute the following estimates to update QR(sh, ah).

• The term P̂h,s,a

(
Vh+1 − VR

h+1

)
is set to be Vh+1(sh+1)− VR

h+1(sh+1), which is an unbiased stochastic

estimate of Ph,s,a

(
Vh+1 − VR

h+1

)
.
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980 G. LI ET AL.

• The term
[
PhVR

h+1

]
(s, a) is estimated via μref, Rh (cf. line 11). Given that this is estimated using

all previous samples, we expect the variability of this term to be well-controlled as the sample size

increases (especially after VR is locked).

• The exploration bonus bR
h (s, a) is updated using BR

h (sh, ah) and δR
h (sh, ah) (cf. lines 7-8 of Algorithm

2), which is a confidence bound accounting for both the reference and the advantage. Let us

also explain line 8 of Algorithm 2 a bit. If we augment the notation by letting b
R, n+1
h (s, a) and

B
R, n+1
h (s, a) denote, respectively, bR

h (s, a) and BR
h (s, a) after (s, a) is visited for the n-th time, then

this line is designed to ensure that

ηnb
R, n+1
h (s, a) + (1 − ηn)B

R,n
h (s, a) ≈ B

R, n+1
h (s, a).

With the above updates implemented properly, QR
h provides the advantage-based update of the

Q-function at time step h, according to the update rule (3.3).
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REGRET-OPTIMAL MODEL-FREE REINFORCEMENT LEARNING 981

3.3 Main results

Encouragingly, the proposed Q-EarlySettled-Advantage algorithm manages to achieve near-optimal

regret even in the sample-limited and memory-limited regime, as formalized by the following theorem.

Theorem 3.1. Consider any δ ∈ (0, 1), and suppose that cb > 0 is chosen to be a sufficiently large

universal constant. Then there exists some absolute constant C0 > 0 such that Algorithm 1 achieves

Regret(T) ≤ C0

(√
H2SAT log4 SAT

δ
+ H6SA log3 SAT

δ

)
(3.7)

with probability at least 1 − δ.

Theorem 3.1 delivers a non-asymptotic characterization of the performance of our algorithm Q-

EarlySettled-Advantage. Several appealing features of the algorithm are noteworthy.

• Regret optimality. Our regret bound (3.7) simplifies to

Regret(T) ≤ Õ
(√

H2SAT
)

(3.8)

as long as the sample size T exceeds

T ≥ SA poly(H). (3.9)

This sublinear regret bound (3.8) is essentially optimal, as it coincides with the existing lower bound

(1.1) modulo some logarithmic factor.

• Sample complexity and substantially reduced burn-in cost. As an interpretation of our theory (3.8),

our algorithm attains ε average regret (i.e. 1
K

Regret(T) ≤ ε) with a sample complexity

Õ
(SAH4

ε2

)
.

Crucially, the burn-in cost (3.9) is significantly lower than that of the state-of-the-art memory-

efficient model-free algorithm [75] (whose optimality is guaranteed only in the range T ≥
S6A4 poly(H)).

• Memory efficiency. Our algorithm, which is model-free in nature, achieves a low space complexity

O(SAH). This is basically un-improvable for the tabular case, since even storing the optimal Q-

values alone takes O(SAH) units of space. In comparison, while [44] also accommodates the sample

size range (3.9), the algorithm proposed therein incurs a space complexity of O(S2AH) that is S

times higher than ours.

• Computational complexity. An additional intriguing feature of our algorithm is its low computational

complexity. The runtime of Q-EarlySettled-Advantage is no larger than O(T), which is propor-

tional to the time taken to read the samples. This matches the computational cost of the model-free

algorithm UCB-Q proposed in [29], and is considerably lower than that of the UCB-M-Q algorithm

in [44] (which has a computational cost of at least O(ST)).

4. Analysis

In this section, we outline the main steps needed to prove our main result in Theorem 3.1.
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982 G. LI ET AL.

4.1 Preliminaries: basic properties about learning rates

Before continuing, let us first state some basic facts regarding the learning rates. Akin to [29], the

proposed algorithm adopts the linearly rescaled learning rate

ηn =
H + 1

H + n
(4.1)

for the n-th visit of a state–action pair at any time step h. For notation convenience, we further introduce

two sequences of related quantities defined for any integer N ≥ 0 and n ≥ 1:

ηN
n :=

⎧
⎪⎨
⎪⎩

ηn

∏N
i=n+1(1 − ηi), if N > n,

ηn, if N = n,

0, if N < n

and ηN
0 :=

{∏N
i=1(1 − ηi) = 0, if N > 0,

1, if N = 0.
(4.2)

As can be easily verified, we have

N∑

n=1

ηN
n =

{
1, if N > 0,

0, if N = 0.
(4.3)

The following properties play an important role in the analysis.

Lemma 1. For any integer N > 0, the following properties hold:

1

Na
≤

N∑

n=1

ηN
n

na
≤

2

Na
, for all

1

2
≤ a ≤ 1, (4.4a)

max
1≤n≤N

ηN
n ≤

2H

N
,

N∑

n=1

(ηN
n )2 ≤

2H

N
,

∞∑

N=n

ηN
n ≤ 1 +

1

H
. (4.4b)

Proof. See Appendix B. �

4.2 Additional notation used in the proof

In order to enable a more concise description of the algorithm, we have suppressed the dependency of

many quantities on the episode number k in Algorithms 1 and 2. This, however, becomes notationally

inconvenient when presenting the proof. As a consequence, we shall adopt, throughout the analysis, a

more complete set of notation, detailed below.

• (sk
h, ak

h): the state–action pair encountered and chosen at time step h in the k-th episode.

• kn
h(s, a): the index of the episode in which (s, a) is visited for the n-th time at time step h; for the

sake of conciseness, we shall sometimes use the shorthand kn = kn
h(s, a) whenever it is clear from

the context.

• kn
h(s): the index of the episode in which state s is visited for the n-th time at time step h; we might

sometimes abuse the notation by abbreviating kn = kn
h(s).
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REGRET-OPTIMAL MODEL-FREE REINFORCEMENT LEARNING 983

• Pk
h ∈ {0, 1}1×|S|: the empirical transition at time step h in the k-th episode, namely,

Pk
h(s) = 1

(
s = sk

h+1

)
. (4.5)

In addition, for several parameters of interest in Algorithm 1, we introduce the following set of

augmented notation.

• Nk
h(s, a) denotes Nh(s, a) by the end of the k-th episode; for the sake of conciseness, we shall often

abbreviate Nk = Nk
h(s, a) or Nk = Nk

h(s
k
h, ak

h) (depending on which result we are proving).

• Qk
h(s, a), Vk

h(s) and Q
UCB,k
h (s, a) denote, respectively, Qh(s, a), Vh(s) and QUCB

h (s, a) at the

beginning of the k-th episode.

• Q
LCB,k
h (s, a) and V

LCB,k
h (s) denote, respectively, QLCB

h (s, a) and VLCB
h (s) at the beginning of the k-th

episode.

• QR
h , k(s, a), VR

h , k(s) and uk
ref(s) denote, respectively, QR

h (s, a), VR
h (s) and uref(s) at the beginning of

the k-th episode.

•
[
μref, kh, σ ref, kh, μadv, kh, σ adv, kh, δR, kh, BR, kh

]
denotes

[
μref

h , σ ref
h , μadv

h , σ adv
h , δR

h , BR
h

]
at the

beginning of the k-th episode.

Further, for any matrix P = [Pi,j]1≤i≤m,1≤j≤n, we define ‖P‖1 := max1≤i≤m

∑n
j=1 |Pi,j|. For any

vector V = [Vi]1≤i≤n, we define its 
∞ norm as ‖V‖∞ := max1≤i≤n |Vi|. We often overload scalar

functions and expressions to take vector-valued arguments, with the understanding that they are applied

in an entrywise manner. For example, for a vector x = [xi]1≤i≤n, we denote x2 = [x2
i ]1≤i≤n. For any two

vectors x = [xi]1≤i≤n and y = [yi]1≤i≤n, the notation x ≤ y (resp. x ≥ y) means xi ≤ yi (resp. xi ≥ yi)

for all 1 ≤ i ≤ n. For any given vector V ∈ RS, we define the variance parameter w.r.t. Ph,s,a (cf. (2.7))

as follows:

Varh,s,a(V) := E
s′∼Ph,s,a

[(
V(s′) − Ph,s,aV

)2] = Ph,s,a

(
V2
)
−
(
Ph,s,aV

)2
. (4.6)

Finally, let X :=
(
S, A, H, T , 1

δ

)
. The notation f (X) � g(X) (resp. f (X) � g(X)) means that there

exists a universal constant C0 > 0 such that f (X) ≤ C0g(X) (resp. f (X) ≥ C0g(X)); the notation

f (X) � g(X) means that f (X) � g(X) and f (X) � g(X) hold simultaneously.

4.3 Key properties of Q-estimates and auxiliary sequences

In this subsection, we introduce several key properties of our Q-estimates and value estimates, which

play a crucial role in the proof of Theorem 3.1. The proofs for this subsection are deferred to

Appendix C.s

Properties of the Q-estimate Qk
h: monotonicity and optimism. We first make an important

observation regarding the monotonicity of the value estimates Qk
h and Vk

h . To begin with, it is

straightforward to see that the update rule in Algorithm 3 (cf. line 12) ensures the following monotonicity

property:

Qk+1
h (s, a) ≤ Qk

h(s, a) for all (s, a, k, h) ∈ S × A × [K] × [H], (4.7a)
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984 G. LI ET AL.

which combined with line 13 of Algorithm 3 leads to monotonicity of Vh(s) as follows:

Vk+1
h (s) = Qk+1

h

(
s, πk+1

h (s)
)

≤ Qk
h

(
s, πk+1

h (s)
)

≤ Vk
h(s). (4.7b)

Moreover, by virtue of the update rule in line 12 of Algorithm 3, we can immediately obtain (via

induction) the following useful property:

QR
h , k(s, a) ≥ Qk

h(s, a) for all(k, h, s, a) ∈ [K] × [H] × S × A. (4.8)

In addition, Qk
h and Vk

h form an ‘optimistic view’ of Q�
h and V�

h , respectively, as asserted by the

following lemma.
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REGRET-OPTIMAL MODEL-FREE REINFORCEMENT LEARNING 985

Lemma 2. Consider any δ ∈ (0, 1). Suppose that cb > 0 is some sufficiently large constant. Then with

probability at least 1 − δ,

Qk
h(s, a) ≥ Q�

h(s, a) and Vk
h(s) ≥ V�

h(s) (4.9)

hold simultaneously for all (s, a, k, h) ∈ S × A × [K] × [H].

Lemma 2 implies that Qk
h (resp. Vk

h) is a pointwise upper bound on Q�
h (resp. V�

h ). Taking this result

together with the non-increasing property (4.7), we see that Qk
h (resp. Vk

h) becomes an increasingly

tighter estimate of Q�
h (resp. V�

h ) as the number of episodes k increases. This important fact forms the

basis of the subsequent proof, allowing us to replace V�
h with Vk

h when upper bounding the regret.

Combining Lemma 2 with (4.8), we can straightforwardly see that with probability at least 1 − δ:

QR
h , k(s, a) ≥ Q�

h(s, a) for all(k, h, s, a) ∈ [K] × [H] × S × A. (4.10)

Properties of the Q-estimate Q
LCB,k
h : pessimism and proximity. In parallel, we formalize the fact

that Q
LCB,k
h and V

LCB,k
h provide a ‘pessimistic view’ of Q�

h and V�
h , respectively. Furthermore, it becomes

increasingly more likely for Q
LCB,k
h and Qk

h to stay close to each other as k increases, which indicates that

the confidence interval that contains the optimal value Q�
h becomes shorter and shorter. These properties

are summarized in the following lemma.

Lemma 3. Consider any δ ∈ (0, 1), and suppose that cb > 0 is some sufficiently large constant. Then

with probability at least 1 − δ,

Q
LCB,k
h (s, a) ≤ Q�

h(s, a) and V
LCB,k
h (s) ≤ V�

h(s) (4.11)

hold for all (s, a, k, h) ∈ S × A × [K] × [H], and

H∑

h=1

K∑

k=1

1

(
Qk

h(s
k
h, ak

h) − Q
LCB,k
h (sk

h, ak
h) > ε

)
�

H6SA log SAT
δ

ε2
(4.12)

holds for all ε ∈ (0, H].

Interestingly, the upper bound (4.12) only scales logarithmically in the number K of episodes, thus

implying the closeness of Q
LCB,k
h and Qk

h for a large fraction of episodes. Note that it is straightforward

to ensure the monotonicity property of V
LCB,k
h from the update rule in Algorithm 3 (cf. line 14):

V
LCB,k+1
h (s) ≥ V

LCB,k
h (s) for all(s, k, h) ∈ S × [K] × [H], (4.13)

which in conjunction with (4.11), implies that V
LCB,k
h (s) gets closer to V�

h(s) as the number of episodes

k increases. Together with the monotonicity of Vk
h (cf. (4.7b)), an important consequence is that the

reference value VR
h will stop being updated shortly after the following condition is met for the first time
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986 G. LI ET AL.

(according to lines 15–18 of Algorithm 1)

Vk
h(s) ≤ V

LCB,k
h (s) + 1 ≤ V�

h(s) + 1 for alls ∈ S. (4.14)

Properties of the reference VR
h , k. The above fact ensures that VR

h , k will not be updated too many

times. In fact, its value stays reasonably close to Vk
h even after being locked to a fixed value, which

ensures its fidelity as a reference signal. Moreover, the aggregate difference between VR, kh and the

final reference VR, kh over the entire trajectory can be bounded in a reasonably tight fashion (owing to

(4.12)), as formalized in the next lemma. These properties play a key role in reducing the burn-in cost

of the proposed algorithm.

Lemma 4. Consider any δ ∈ (0, 1). Suppose that cb > 0 is some sufficiently large constant. Then with

probability exceeding 1 − δ, one has

∣∣Vk
h(s) − VR, kh(s)

∣∣ ≤ 2 (4.15)

for all (k, h, s) ∈ [K] × [H] × S, and

H∑

h=1

K∑

k=1

(
VR, kh(s

k
h) − VR, kh(s

k
h)
)

≤ H2S +
H∑

h=1

K∑

k=1

(
Qk

h(s
k
h, ak

h) − Q
LCB,k
h (sk

h, ak
h)
)
1

(
Qk

h(s
k
h, ak

h) − Q
LCB,k
h (sk

h, ak
h) > 1

)
(4.16)

� H6SA log
SAT

δ
. (4.17)

In words, Lemma 4 guarantees that (i) our value function estimate and the reference value are always

sufficiently close (cf. (4.15)), and (ii) the aggregate difference between VR
h , k and the final reference

value VR, kh is nearly independent of the sample size T (except for some logarithmic scaling).

4.4 Main steps of the proof

We are now ready to embark on the regret analysis for Q-EarlySettled-Advantage, which consists of

multiple steps as follows.

Step 1: regret decomposition. Lemma 2 allows one to upper bound the regret as follows:

Regret(T) :=
K∑

k=1

(
V�

1(sk
1) − Vπk

1 (sk
1)
)

≤
K∑

k=1

(
Vk

1(sk
1) − Vπk

1 (sk
1)
)
. (4.18)
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To continue, it boils down to controlling Vk
1(sk

1) − Vπk

1 (sk
1). Toward this end, we intend to examine

Vk
h(sk

h) − Vπk

h (sk
h) across all time steps 1 ≤ h ≤ H, which admits the following decomposition:

Vk
h(sk

h) − Vπk

h (sk
h)

(i)= Qk
h(s

k
h, ak

h) − Qπk

h (sk
h, ak

h)

= Qk
h(s

k
h, ak

h) − Q�
h(s

k
h, ak

h) + Q�
h(s

k
h, ak

h) − Qπk

h (sk
h, ak

h)

(ii)= Qk
h(s

k
h, ak

h) − Q�
h(s

k
h, ak

h) + Ph,sk
h,ak

h

(
V�

h+1 − Vπk

h+1

)

(iii)= Qk
h(s

k
h, ak

h) − Q�
h(s

k
h, ak

h) +
(
Ph,sk

h,ak
h
− Pk

h

)(
V�

h+1 − Vπk

h+1

)
+ V�

h+1(s
k
h+1) − Vπk

h+1(s
k
h+1)

≤ QR, kh(s
k
h, ak

h) − Q�
h(s

k
h, ak

h) +
(
Ph,sk

h,ak
h
− Pk

h

)(
V�

h+1 − Vπk

h+1

)
+ V�

h+1(s
k
h+1) − Vπk

h+1(s
k
h+1).

(4.19)

Here, (i) holds since πk
h is a greedy policy w.r.t. Qk

h and πk
h (sk

h) = ak
h, (ii) comes from the Bellman

equations

Qπk

h (s, a) − Q�
h(s, a) =

(
rh(s, a) + Ph,s,aVπk

h+1

)
−
(
rh(s, a) + Ph,s,aV�

h+1

)
= Ph,s,a

(
Vπk

h+1 − V�
h+1

)
,

(iii) follows from Pk
h(V

�
h+1 − Vπk

h+1) = V�
h+1(s

k
h+1) − Vπk

h+1(s
k
h+1) (see the notation (4.5)), whereas the

last inequality comes from (4.8). Summing (4.19) over 1 ≤ k ≤ K and using Lemma 2, we obtain

K∑

k=1

(
V�

h(sk
h) − Vπk

h (sk
h)
)

≤
K∑

k=1

(
Vk

h(sk
h) − Vπk

h (sk
h)
)

≤
K∑

k=1

(
QR, kh(s

k
h, ak

h) − Q�
h(s

k
h, ak

h)
)
+

K∑

k=1

(
Ph,sk

h,ak
h
− Pk

h

)(
V�

h+1 − Vπk

h+1

)

+
K∑

k=1

(
V�

h+1(s
k
h+1) − Vπk

h+1(s
k
h+1)
)
. (4.20)

This allows us to establish a connection between
∑

k

(
V�

h(sk
h)−Vπk

h (sk
h)
)

for step h and
∑

k

(
V�

h+1(s
k
h+1)−

Vπk

h+1(s
k
h+1)
)

for step h + 1.

Step 2: managing regret by recursion. The regret can be further manipulated by leveraging the

update rule of QR, kh as well as recursing over the time steps h = 1, 2, · · · , H with the terminal condition

Vk
H+1 = Vπk

H+1 = 0. This leads to a key decomposition as summarized in the lemma below, whose proof

is provided in Appendix D.
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988 G. LI ET AL.

Lemma 5. Fix δ ∈ (0, 1). Suppose that cb > 0 is some sufficiently large constant. Then with probability

at least 1 − δ, one has

K∑

k=1

(
Vk

1(sk
1) − Vπk

1 (sk
1)
)

≤ R1 + R2 + R3, (4.21)

where

R1 :=
H∑

h=1

(
1 +

1

H

)h−1 (
HSA + 8cbH2(SA)3/4K1/4 log

SAT

δ
+

K∑

k=1

(
Ph,sk

h,ak
h
− Pk

h

)(
V�

h+1 − Vπk

h+1

))
,

(4.22a)

R2 :=
H∑

h=1

(
1 +

1

H

)h−1 K∑

k=1

BR, kh(s
k
h, ak

h), (4.22b)

R3 :=
H∑

h=1

K∑

k=1

λk
h

(
(Pk

h − Ph,sk
h,ak

h
)(V�

h+1 − VR, kh+1)

+

∑Nk
h(sk

h,ak
h)

i=1

(
V

R,ki
h(s

k
h,ak

h)

h+1 (s
ki

h(s
k
h,ak

h)

h+1 ) − Ph,sk
h,ak

h
VR, kh+1

)

Nk
h(s

k
h, ak

h)

)
, (4.22c)

with

λk
h :=
(

1 +
1

H

)h−1 NK−1
h (sk

h,ak
h)∑

n=Nk
h(sk

h,ak
h)

ηn

Nk
h(sk

h,ak
h)

.

This lemma attempts to upper bound the target quantity
∑K

k=1

(
Vk

1(sk
1) − Vπk

1 (sk
1)
)

via three

terms (see (4.21)). Informally, these terms reflect (i) the influence of the initialization as well as

the finite-sample uncertainty of Pk
h(V

�
h+1 − Vπk

h+1), (ii) the influence of the size of the bonus terms

and (iii) the discrepancy term when the running value iterates are replaced by the reference values.

As we shall see in the analysis, the key to obtaining these terms lies in properly expanding the

component
∑K

k=1

(
QR, kh(s

k
h, ak

h) − Q�
h(s

k
h, ak

h)
)

in (4.20), as well as applying induction across all

h = 1, · · · , H.

Step 3: controlling the terms in (4.22) separately. As it turns out, each of the terms in (4.22) can

be well controlled. We provide the bounds for these terms in the following lemma.
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Lemma 6. Consider any δ ∈ (0, 1). With probability at least 1− δ, we have the following upper bounds:

R1 ≤ Cr

{√
H2SAT log

SAT

δ
+ H4.5SA log2 SAT

δ

}
,

R2 ≤ Cr

{√
H2SAT log

SAT

δ
+ H4SA log2 SAT

δ

}
,

R3 ≤ Cr

{√
H2SAT log4 SAT

δ
+ H6SA log3 SAT

δ

}

for some universal constant Cr > 0.

In order to derive the above bounds, the main strategy is to apply the Bernstein-type concentration

inequalities carefully, and to upper bound the sum of variance in a careful manner. The proofs are

deferred to Appendix E.

Step 4: putting all this together. We now have everything in place to establish our main result.

Taking the preceding bounds in Lemma 6 together with (4.22), we see that with probability exceeding

1 − δ, one has

Regret(T) ≤ R1 + R2 + R3 �

√
H2SAT log4 SAT

δ
+ H6SA log3 SAT

δ

as claimed.

5. Discussion

In this paper, we have proposed a novel model-free RL algorithm—tailored to online episodic settings—

that attains near-optimal regret Õ(
√

H2SAT) and near-minimal memory complexity O(SAH) at once.

Remarkably, the near-optimality of the algorithm comes into effect as soon as the sample size rises

above O(SA poly(H)), which has significantly improved upon the sample size requirements (or burn-

in cost) for any prior regret-optimal model-free algorithm (based on the definition of the model-free

algorithm in [29]). Given that online data collection could be expensive, time-consuming or high-stakes

in a variety of contemporary applications (e.g. clinical trials, autonomous driving, online advertisement),

reducing burn-in sample sizes compromising sample optimality is crucial in enabling sample-efficient

solutions in these sample-constrained applications.

The results in this paper naturally suggest a number of possible extensions and directions for future

investigation. We close the paper by listing a few of them.

• While the proposed algorithm provably enables minimal burn-in cost in terms of the dependency

on S and A, our current theory falls short of delivering optimal horizon dependency of the burn-in

cost. More specifically, even though our burn-in cost improves upon the state-of-the-art theory for

sample-optimal model-free algorithms by a factor of at least S5A3H18 (see [75]), the way we cope

with the dependency on H remains inadequate. This calls for more refined analysis tools to optimize

the horizon dependency.

• This paper focuses primarily on MDPs with non-stationary probability transition kernels. Another

important scenario is concerned with MDPs with stationary transition kernels (i.e. the case where
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990 G. LI ET AL.

Ph is identical across different h). It is worth noting that the algorithm developed herein is incapable

of attaining optimal regret for the stationary case (i.e. the resulting regret might be off by a factor of√
H). While our analysis already contains multiple key ingredients that are useful for analyzing the

stationary case, how to complete the picture is non-trivial, which we leave for future work.

• Admittedly, even though we are now able to settle the sample size dependency on the state-

action space, the size of SA might remain prohibitively large in many modern RL applications.

As a result, parsimonious function representation/approximation of the underlying MDP is needed

in order to further reduce the sample complexity. Prominent examples of this kind include

linearly parameterized or realizable MDPs [18, 31, 38]. We hope that the method and analysis

framework developed herein might inspire further development of sample-efficient algorithms that

can effectively accommodate low-dimensional function approximation.

5. Data availability

No new data were generated or analyzed in support of this research.
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A. Freedman’s inequality

A.1 A user-friendly version of Freedman’s inequality

Due to the Markovian structure of the problem, our analysis relies heavily on the celebrated Freedman’s

inequality [23, 59], which extends the Bernstein’s inequality to accommodate martingales. For ease

of reference, we state below a user-friendly version of Freedman’s inequality as provided in (37,

Section C).

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
a
ia

i/a
rtic

le
/1

2
/2

/9
6
9
/6

9
2
7
2
5
5
 b

y
 U

n
iv

e
rs

ity
 o

f P
e
n
n
s
y
lv

a
n
ia

 u
s
e
r o

n
 1

5
 A

p
ril 2

0
2
3



994 G. LI ET AL.

Theorem A.1. Freedman’s inequality. Consider a filtration F0 ⊂ F1 ⊂ F2 ⊂ · · · , and let Ek stand

for the expectation conditioned on Fk. Suppose that Yn =
∑n

k=1 Xk ∈ R, where {Xk} is a real-valued

scalar sequence obeying

∣∣Xk

∣∣ ≤ R and Ek−1

[
Xk

]
= 0 for allk ≥ 1

for some quantity R < ∞. We also define

Wn :=
n∑

k=1

Ek−1

[
X2

k

]
.

In addition, suppose that Wn ≤ σ 2 holds deterministically for some given quantity σ 2 < ∞. Then for

any positive integer m ≥ 1, with probability at least 1 − δ one has

∣∣Yn

∣∣ ≤

√

8 max
{

Wn,
σ 2

2m

}
log

2m

δ
+

4

3
R log

2m

δ
. (A.1)

A.2 Application of Freedman’s inequality

We now develop several immediate consequences of Freedman’s inequality, which lend themseleves

well to our context. Before proceeding, we recall that Ni
h(s, a) denotes the number of times that the

state–action pair (s, a) has been visited at step h by the end of the i-th episode, and kn
h(s, a) stands for

the episode index when (s, a) is visited at step h for the n-th time (see Section 4.2).

Our first result is concerned with a martingale concentration bound as follows:

Lemma 7. Let
{
W i

h ∈ RS | 1 ≤ i ≤ K, 1 ≤ h ≤ H + 1
}

and
{
ui

h(s, a, N) ∈ R | 1 ≤ i ≤ K, 1 ≤ h ≤
H + 1

}
be the collections of vectors and scalars, respectively, and suppose that they obey the following

properties:

• W i
h is fully determined by the samples collected up to the end of the (h − 1)-th step of the i-th

episode;

• ‖W i
h‖∞ ≤ Cw;

• ui
h(s, a, N) is fully determined by the samples collected up to the end of the (h − 1)-th step of the

i-th episode, and a given positive integer N ∈ [K];

• 0 ≤ ui
h(s, a, N) ≤ Cu;

• 0 ≤
∑Nk

h(s,a)

n=1 u
kn

h(s,a)

h (s, a, N) ≤ 2.

In addition, consider the following sequence:

Xi(s, a, h, N) := ui
h(s, a, N)

(
Pi

h − Ph,s,a

)
W i

h+11
{
(si

h, ai
h) = (s, a)

}
, 1 ≤ i ≤ K, (A.2)
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with Pi
h defined in (4.5). Consider any δ ∈ (0, 1). Then with probability at least 1 − δ,

∣∣∣∣∣

k∑

i=1

Xi(s, a, h, N)

∣∣∣∣∣

�

√
Cu log2 SAT

δ

√√√√√
Nk

h(s,a)∑

n=1

u
kn

h(s,a)

h (s, a, N)Varh,s,a

(
W

kn
h(s,a)

h+1

)
+

(
CuCw +

√
Cu

N
Cw

)
log2 SAT

δ
(A.3)

holds simultaneously for all (k, h, s, a, N) ∈ [K] × [H] × S × A × [K].

Proof. For the sake of notational convenience, we shall abbreviate Xi(s, a, h, N) as Xi throughout the

proof of this lemma, as long as it is clear from the context. The plan is to apply Freedman’s inequality

(cf. Theorem A.1) to control the term
∑k

i=1 Xi of interest.

Consider any given (k, h, s, a, N) ∈ [K] × [H] × S × A × [K]. It can be easily verified that

Ei−1

[
Xi

]
= 0,

where Ei−1 denotes the expectation conditioned on everything happening up to the end of the (h − 1)-th

step of the i-th episode. Additionally, we make note of the following crude bound:

∣∣Xi

∣∣ ≤ ui
h(s, a, N)

∣∣∣
(
Pi

h − Ph,s,a

)
W i

h+1

∣∣∣

≤ ui
h(s, a, N)

(∥∥Pi
h

∥∥
1
+
∥∥Ph,s,a

∥∥
1

)∥∥W i
h+1

∥∥
∞ ≤ 2CwCu, (A.4)

which results from the assumptions ‖W i
h+1‖∞ ≤ Cw, 0 ≤ ui

h(s, a, N) ≤ Cu as well as the basic facts∥∥Pi
h

∥∥
1

=
∥∥Ph,s,a

∥∥
1

= 1. To continue, recalling the definition of the variance parameter in (4.6), we

obtain

k∑

i=1

Ei−1

[∣∣Xi

∣∣2
]

=
k∑

i=1

(
ui

h(s, a, N)
)2
1
{
(si

h, ai
h) = (s, a)

}
Ei−1

[∣∣(Pi
h − Ph,s,a)W

i
h+1

∣∣2
]

=
Nk

h(s,a)∑

n=1

(
u

kn
h(s,a)

h (s, a, N)
)2

Varh,s,a

(
W

kn
h(s,a)

h+1

)

≤ Cu

( Nk
h(s,a)∑

n=1

u
kn

h(s,a)

h (s, a, N)

)∥∥Wkn
h(s,a)

h+1

∥∥2

∞

≤ 2CuC2
w, (A.5)

where the inequalities hold true due to the assumptions ‖W i
h‖∞ ≤ Cw, 0 ≤ ui

h(s, a, N) ≤ Cu, and

0 ≤
∑Nk

h(s,a)

n=1 u
kn

h(s,a)

h (s, a, N) ≤ 1.
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With (A.4) and (A.5) in place, we can invoke Theorem A.1 (with m = �log2 N�) and take the

union bound over all (k, h, s, a, N) ∈ [K] × [H] × S × A × [K] to show that, with probability at

least 1 − δ,

∣∣∣∣∣

k∑

i=1

Xi

∣∣∣∣∣ �

√√√√√max

{
Cu

Nk
h(s,a)∑

n=1

u
kn

h(s,a)

h (s, a, N)Varh,s,a

(
W

kn
h(s,a)

h+1

)
,

CuC2
w

N

}
log

SAT2 log N

δ

+ CuCw log
SAT2 log Nk

h

δ

�

√
Cu log2 SAT

δ

√√√√√
Nk

h(s,a)∑

n=1

u
kn

h(s,a)

h (s, a, N)Varh,s,a

(
W

kn
h(s,a)

h+1

)
+

(
CuCw +

√
Cu

N
Cw

)
log2 SAT

δ

holds simultaneously for all (k, h, s, a, N) ∈ [K] × [H] × S × A × [K]. �

The next result is concerned with martingale concentration bounds for another type of sequences of

interest.

Lemma 8. Let
{
N(s, a, h) ∈ [K] | (s, a, h) ∈ S × A × [H]

}
be a collection of positive integers, and

let {ch : 0 ≤ ch ≤ e, h ∈ [H]} be a collection of fixed and bounded universal constants. Moreover,

let
{
W i

h ∈ RS | 1 ≤ i ≤ K, 1 ≤ h ≤ H + 1
}

and
{
ui

h(s
i
h, ai

h) ∈ R | 1 ≤ i ≤ K, 1 ≤ h ≤
H + 1

}
represent, respectively, the collections of random vectors and scalars, which obey the following

properties.

• W i
h is fully determined by the samples collected up to the end of the (h − 1)-th step of the i-th

episode;

• ‖W i
h‖∞ ≤ Cw and W i

h ≥ 0;

• ui
h(s

i
h, ai

h) is fully determined by the integer N(si
h, ai

h, h) and all samples collected up to the end of

the (h − 1)-th step of the i-th episode;

• 0 ≤ ui
h(s

i
h, ai

h) ≤ Cu.

Consider any δ ∈ (0, 1), and introduce the following sequences:

Xi,h := ui
h(s

i
h, ai

h)
(
Pi

h − Ph,si
h,ai

h

)
W i

h+1, 1 ≤ i ≤ K, 1 ≤ h ≤ H + 1, (A.6)

Yi,h := ch

(
Pi

h − Ph,si
h,ai

h

)
W i

h+1, 1 ≤ i ≤ K, 1 ≤ h ≤ H + 1. (A.7)
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Then with probability at least 1 − δ,

∣∣∣∣∣

H∑

h=1

K∑

i=1

Xi,h

∣∣∣∣∣ �

√√√√C2
u

H∑

h=1

K∑

i=1

Ei,h−1

[∣∣(Pi
h − Ph,si

h,ai
h
)W i

h+1

∣∣2
]

log
THSA

δ
+ CuCw log

THSA

δ

�

√√√√C2
uCw

H∑

h=1

K∑

i=1

Ei,h−1

[
Pi

hW i
h+1

]
log

THSA

δ
+ CuCw log

THSA

δ

∣∣∣∣∣

H∑

h=1

K∑

i=1

Yi,h

∣∣∣∣∣ �
√

TC2
w log

1

δ
+ Cw log

1

δ

holds simultaneously for all possible collections {N(s, a, h) ∈ [K] | (s, a, h) ∈ S × A × [H]}.

Proof. This lemma can be proved by Freedman’s inequality (cf. Theorem A.1).

• We start by controlling the first term of interest
∑H

h=1

∑K
i=1 Xi,h. As can be easily seen, ai

h =
arg max Qi

h(s
i
h, a) is fully determined by what happens before step h of the i-th episode. Consider

any given
{
N(s, a, h) ∈ [K] | (s, a, h) ∈ S × A × [H]

}
. It is readily seen that

Ei,h−1

[
Xi

]
= Ei,h−1

[
ui

h(s
i
h, ai

h)
(
Pi

h − Ph,si
h,ai

h

)
W i

h+1

]
= 0,

where Ei,h−1 denotes the expectation conditioned on everything happening before step h of the i-th

episode. In addition, we make note of the following crude bound:

∣∣Xi,h

∣∣ ≤ ui
h(s

i
h, ai

h)

∣∣∣
(
Pi

h − Ph,si
h,ai

h

)
W i

h+1

∣∣∣

≤ ui
h(s

i
h, ai

h)
(∥∥Pi

h

∥∥
1
+
∥∥Ph,si

h,ai
h

∥∥
1

)∥∥W i
h+1

∥∥
∞ ≤ 2CwCu, (A.8)

which arises from the assumptions ‖W i
h+1‖∞ ≤ Cw, 0 ≤ ui

h(s, a, N) ≤ Cu together with the basic

facts
∥∥Pi

h

∥∥
1

=
∥∥Ph,si

h,ai
h

∥∥
1

= 1. Additionally, we can calculate that

H∑

h=1

K∑

i=1

Ei,h−1

[∣∣Xi,h

∣∣2
]

=
H∑

h=1

K∑

i=1

(
ui

h(s
i
h, ai

h)
)2
Ei,h−1

[∣∣(Pi
h − Ph,si

h,ai
h
)W i

h+1

∣∣2
]

(i)
≤ C2

u

H∑

h=1

K∑

i=1

Ei,h−1

[∣∣(Pi
h − Ph,si

h,ai
h
)W i

h+1

∣∣2
]

(A.9)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
a
ia

i/a
rtic

le
/1

2
/2

/9
6
9
/6

9
2
7
2
5
5
 b

y
 U

n
iv

e
rs

ity
 o

f P
e
n
n
s
y
lv

a
n
ia

 u
s
e
r o

n
 1

5
 A

p
ril 2

0
2
3



998 G. LI ET AL.

≤ C2
u

H∑

h=1

K∑

i=1

Ei,h−1

[∣∣Pi
hW i

h+1

∣∣2
]

(ii)= C2
u

H∑

h=1

K∑

i=1

Ei,h−1

[
Pi

h

(
W i

h+1

)2]

(iii)
≤ C2

u

H∑

h=1

K∑

i=1

∥∥W i
h+1

∥∥
∞Ei,h−1

[
Pi

hW i
h+1

]

(iv)
≤ C2

uCw

H∑

h=1

K∑

i=1

Ei,h−1

[
Pi

hW i
h+1

]
(A.10)

≤ C2
uCw

H∑

h=1

K∑

i=1

∥∥W i
h+1

∥∥
∞

(v)
≤ HKC2

uC2
w = TC2

uC2
w. (A.11)

Here, (i) holds true due to the assumption 0 ≤ ui
h(s

i
h, ai

h) ≤ Cu, (ii) is valid since Pi
h only has one

non-zero entry (cf. (4.5)), (iii) relies on the assumptions that W i
h is non-negative, whereas (iv) and

(v) follow since ‖W i
h‖∞ ≤ Cw,

• With (A.8), (A.10) and (A.11) in mind, we can invoke Theorem A.1 (with m = �log2 T�) and take

the union bound over all possible collections
{
N(s, a, h) ∈ [K] | (s, a, h) ∈ S × A × [H]

}
—which

has at most KHSA possibilities—to show that, with probability at least 1 − δ,

∣∣∣∣
H∑

h=1

k∑

i=1

Xi,h

∣∣∣∣ �

√√√√max

{
C2

u

H∑

h=1

K∑

i=1

Ei,h−1

[∣∣(Pi
h − Ph,si

h,ai
h
)W i

h+1

∣∣2
]

,
TC2

uC2
w

2m

}
log

KHSA log T

δ

+ CuCw log
KHSA log T

δ

�

√√√√C2
u

H∑

h=1

K∑

i=1

Ei,h−1

[∣∣(Pi
h − Ph,si

h,ai
h
)W i

h+1

∣∣2
]

log
THSA

δ
+ CuCw log

THSA

δ

�

√√√√C2
uCw

H∑

h=1

K∑

i=1

Ei,h−1

[
Pi

hW i
h+1

]
log

THSA

δ
+ CuCw log

THSA

δ

holds simultaneously for all
{
N(s, a, h) ∈ [K] | (s, a, h) ∈ S × A × [H]

}
.

• Then we turn to control the second term

∣∣∣
∑H

h=1

∑K
i=1 Yi,h

∣∣∣ of interest. Similar to

∣∣∣
∑H

h=1

∑K
i=1 Xi,h

∣∣∣,
we have

|Yi,h| ≤ 2eCw,

H∑

h=1

K∑

i=1

Ei,h−1

[∣∣Yi,h

∣∣2
]

≤ e2TC2
w.
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REGRET-OPTIMAL MODEL-FREE REINFORCEMENT LEARNING 999

Invoke Theorem A.1 (with m = 1) to arrive at

∣∣∣∣
H∑

h=1

K∑

i=1

Yi,h

∣∣∣∣ �
√

TC2
w log

1

δ
+ Cw log

1

δ
(A.12)

with probability at least 1 − δ.
�

B. Proof of Lemma 1

First of all, the properties in (4.4b) follow directly from (29, Lemma 4.1). Therefore, it suffices to

establish the property in (4.4a), which forms the remainder of this subsection.

When N = 1, the statement holds trivially since

N∑

n=1

ηN
n

na
= η1

1 = 1 ∈ [1, 2].

Now suppose that N ≥ 2. Using the basic relation ηN
n = (1 − ηN)ηN−1

n for all n = 1, · · · , N − 1, we

observe the following identity:

N∑

n=1

ηN
n

na
=

ηN

Na
+ (1 − ηN)

N−1∑

n=1

ηN−1
n

na
. (B.1)

We now prove the property in (4.4a) by induction. Suppose for the moment that the property holds for

N − 1, namely,

1

(N − 1)a
≤

N−1∑

n=1

ηN−1
n

na
≤

2

(N − 1)a
. (B.2)

Then it is readily seen from (B.1) that

N∑

n=1

ηN
n

na
=

ηN

Na
+ (1 − ηN)

N−1∑

n=1

ηN−1
n

na
≥

ηN

Na
+

1 − ηN

(N − 1)a
≥

ηN

Na
+

1 − ηN

Na
=

1

Na
, (B.3)

where the first inequality comes from (B.2). Similarly, one can upper bound

N∑

n=1

ηN
n

na
=

ηN

Na
+ (1 − ηN)

N−1∑

n=1

ηN−1
n

na

(i)
≤

ηN

Na
+

2(1 − ηN)

(N − 1)a

(ii)=
H + 1

Na(H + N)
+

2(N − 1)1−a

H + N

(iii)
≤

H + 1

Na(H + N)
+

2N1−a

H + N
=

1

Na

(
H + 1

H + N
+

2N

H + N

)
(iv)
≤

2

Na
,

where (i) arises from (B.2), (ii) follows from the choice ηN = H+1
H+N

, (iii) holds since a ≤ 1 and (iv)

follows since H ≥ 1. Consequently, we can immediately establish the advertised property (4.4a) by

induction.
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1000 G. LI ET AL.

C. Proof of key lemmas in Section 4.3

C.1 Proof of Lemma 2

To begin with, suppose that we can prove

Qk
h(s, a) ≥ Q�

h(s, a) for all(k, h, s, a) ∈ [K] × [H] × S × A. (C.1)

Then this property would immediately lead to the claim w.r.t. Vk
h , namely,

Vk
h(s) ≥ Qk

h

(
s, π�

h (s)
)

≥ Q�
h

(
s, π�

h (s)
)

= V�
h(s) for all(k, h, s) ∈ [K] × [H] × S. (C.2)

As a result, it suffices to focus on justifying the claim (C.1), which we shall accomplish by induction.

• Base case. Given that the initialization obeys Q1
h(s, a) = H ≥ Q�

h(s, a) for all (h, s, a) ∈ [H]×S×A,

the claim (C.1) holds trivially when k = 1.

• Induction. Suppose that the claim (C.1) holds all the way up to the k-th episode, and we wish to

establish it for the (k + 1)-th episode as well. To complete the induction argument, it suffices to

justify

min
{

Q
UCB,k+1
h (s, a), Q

R,k+1
h (s, a)

}
≥ Q�

h(s, a)

according to line 12 of Algorithm 3. Recognizing that Q
UCB,k+1
h is computed via the standard UCB-

Q update rule (see line 2 of Algorithm 2), we can readily invoke the argument in (29, Lemma 4.3)

to show that with probability at least 1 − δ,

Q
UCB,k+1
h (s, a) ≥ Q�

h(s, a)

holds simultaneously for all (k, h, s, a) ∈ [K] × [H] ×S×A. Therefore, it is sufficient to prove that

Q
R,k+1
h (s, a) ≥ Q�

h(s, a). (C.3)

The remainder of the proof is thus devoted to justifying (C.3), assuming that the claim (C.1) holds

all the way up to k.

Since QR
h , k(sk

h, ak
h) is updated in the k-th episode while other entries of QR

h , k remain fixed, it suffices

to verify

Q
R,k+1
h (sk

h, ak
h) ≥ Q�

h(s
k
h, ak

h).

We remind the readers of two important short-hand notation that shall be used when it is clear from the

context:

• Nk
h = Nk

h(s
k
h, ak

h) denotes the number of times that the state–action pair (sk
h, ak

h) has been visited at

step h by the end of the k-th episode;

• kn = kn
h(s

k
h, ak

h) denotes the index of the episode in which the state–action pair (sk
h, ak

h) is visited for

the n-th time at step h.
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REGRET-OPTIMAL MODEL-FREE REINFORCEMENT LEARNING 1001

Step 1: decomposing Q
R,k+1
h (sk

h, ak
h) − Q�

h(s
k
h, ak

h).

To begin with, the above definition of Nk
h and kn allows us to write

Q
R,k+1
h (sk

h, ak
h) = Q

R,k
Nk

h +1
h (sk

h, ak
h), (C.4)

since kNk
h = kNk

h(sk
h,ak

h) = k. According to the update rule (i.e. line 11 in Algorithm 3 and line 9 in

Algorithm 2), we obtain

Q
R,k+1
h (sk

h, ak
h) = Q

R,k
Nk

h +1
h (sk

h, ak
h) = (1 − ηNk

h
)Q

R,k
Nk

h

h (sk
h, ak

h)

+ ηNk
h

{
rh(s

k
h, ak

h) + Vk
Nk

h

h+1(s
k

Nk
h

h+1) − V
R,k

Nk
h

h+1 (sk
Nk

h

h+1) + μ
ref,k

Nk
h +1

h (sk
h, ak

h) + b
R,k

Nk
h +1

h

}

= (1 − ηNk
h
)Q

R,k
Nk

h
−1+1

h (sk
h, ak

h)

+ ηNk
h

{
rh(s

k
h, ak

h) + Vk
Nk

h

h+1(s
k

Nk
h

h+1) − V
R,k

Nk
h

h+1 (sk
Nk

h

h+1) + μ
ref,k

Nk
h +1

h (sk
h, ak

h) + b
R,k

Nk
h +1

h

}
,

where the last identity again follows from our argument for justifying (C.4). Applying this relation

recursively and invoking the definitions of ηN
0 and ηN

n in (4.2), we are left with

Q
R,k+1
h (sk

h, ak
h) = η

Nk
h

0 Q
R,1
h (sk

h, ak
h)

+
Nk

h∑

n=1

η
Nk

h
n

{
rh(s

k
h, ak

h) + Vkn

h+1(s
kn

h+1) − V
R,kn

h+1 (skn

h+1) + μ
ref,kn+1
h (sk

h, ak
h) + b

R,kn+1
h

}
.

(C.5)

Additionally, the basic relation η
Nk

h

0 +
∑Nk

h

n=1 η
Nk

h
n = 1 (see (4.2) and (4.3)) tells us that

Q�
h(s

k
h, ak

h) = η
Nk

h

0 Q�
h(s

k
h, ak

h) +
Nk

h∑

n=1

η
Nk

h
n Q�

h(s
k
h, ak

h), (C.6)

which combined with (C.5) leads to

Q
R,k+1
h (sk

h, ak
h) − Q�

h(s
k
h, ak

h) = η
Nk

h

0

(
Q

R,1
h (sk

h, ak
h) − Q�

h(s
k
h, ak

h)
)

+
Nk

h∑

n=1

η
Nk

h
n

{
rh(s

k
h, ak

h) + Vkn

h+1(s
kn

h+1) − V
R,kn

h+1 (skn

h+1) + μ
ref,kn+1
h (sk

h, ak
h) + b

R,kn+1
h − Q�

h(s
k
h, ak

h)

}
.

(C.7)

To continue, invoking the Bellman optimality equation

Q�
h(s

k
h, ak

h) = rh(s
k
h, ak

h) + Ph,sk
h,ak

h
V�

h+1 (C.8)
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1002 G. LI ET AL.

and using the construction of μref
h in line 11 of Algorithm 2 (which is the running mean of VR

h+1), we

reach

rh(s
k
h, ak

h) + Vkn

h+1(s
kn

h+1) − V
R,kn

h+1 (skn

h+1) + μ
ref,kn+1
h (sk

h, ak
h) + b

R,kn+1
h − Q�

h(s
k
h, ak

h)

= Vkn

h+1(s
kn

h+1) − V
R,kn

h+1 (skn

h+1) +
∑n

i=1 V
R,ki

h+1(s
ki

h+1)

n
− Ph,sk

h,ak
h
V�

h+1 + b
R,kn+1
h (C.9)

= Ph,sk
h,ak

h

{
Vkn

h+1 − V
R,kn

h+1

}
+

∑n
i=1 Ph,sk

h,ak
h

(
V

R,ki

h+1

)

n
− Ph,sk

h,ak
h
V�

h+1 + b
R,kn+1
h + ξ kn

h ,

= Ph,sk
h,ak

h

{
Vkn

h+1 − V�
h+1 +

∑n
i=1

(
V

R,ki

h+1 − V
R,kn

h+1

)

n

}
+ b

R,kn+1
h + ξ kn

h . (C.10)

Here, we have introduced the following quantity:

ξ kn

h :=
(
Pkn

h − Ph,sk
h,ak

h

)(
Vkn

h+1 − V
R,kn

h+1

)
+

1

n

n∑

i=1

(
Pki

h − Ph,sk
h,ak

h

)
V

R,ki

h+1, (C.11)

with the notation Pk
h defined in (4.5). Putting (C.10) and (C.7) together leads to the following

decomposition:

Q
R,k+1
h (sk

h, ak
h) − Q�

h(s
k
h, ak

h) = η
Nk

h

0

(
Q

R,1
h (sk

h, ak
h) − Q�

h(s
k
h, ak

h)
)

+
Nk

h∑

n=1

η
Nk

h
n

{
Ph,sk

h,ak
h

(
Vkn

h+1 − V�
h+1 +

∑n
i=1

(
V

R,ki

h+1 − V
R,kn

h+1

)

n

)
+ b

R,kn+1
h + ξ kn

h

}
.

(C.12)

Step 2: two key quantities for lower bounding Q
R,k+1
h (sk

h, ak
h) − Q�

h(s
k
h, ak

h).

In order to develop a lower bound on Q
R,k+1
h (sk

h, ak
h)−Q�

h(s
k
h, ak

h) based on the decomposition (C.12),

we make note of several simple facts as follows:

(i) The initialization satisfies Q
R,1
h (sk

h, ak
h) − Q�

h(s
k
h, ak

h) ≥ 0.

(ii) For any 1 ≤ kn ≤ k, one has

Vkn

h+1 ≥ V�
h+1, (C.13)

owing to the induction hypotheses (C.1) and (C.2) that hold up to k.

(iii) For all 0 ≤ i ≤ n and any s ∈ S, one has

V
R,ki

h+1(s) − V
R,kn

h+1 (s) ≥ 0, (C.14)

which holds since the reference value VR
h (s) is monotonically non-increasing in view of the

monotonicity of Vh(s) in (4.7b) and the update rule in line 16 of Algorithm 3.
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REGRET-OPTIMAL MODEL-FREE REINFORCEMENT LEARNING 1003

The above three facts taken collectively with (C.12) allow one to drop several terms and yield

Q
R,k+1
h (sk

h, ak
h) − Q�

h(s
k
h, ak

h) ≥
Nk

h∑

n=1

η
Nk

h
n

(
b

R,kn+1
h + ξ kn

h

)
. (C.15)

In the sequel, we aim to establish Q
R,k+1
h (sk

h, ak
h) ≥ Q�

h(s
k
h, ak

h) based on this inequality (C.15).

As it turns out, if one could show that
∣∣∣∣∣∣

Nk
h∑

n=1

η
Nk

h
n ξ kn

h

∣∣∣∣∣∣
≤

Nk
h∑

n=1

η
Nk

h
n b

R,kn+1
h , (C.16)

then taking this together with (C.15) and the triangle inequality would immediately lead to the desired

result

Q
R,k+1
h (sk

h, ak
h) − Q�

h(s
k
h, ak

h) ≥
Nk

h∑

n=1

η
Nk

h
n b

R,kn+1
h −

∣∣∣∣
Nk

h∑

n=1

η
Nk

h
n ξ kn

h

∣∣∣∣ ≥ 0. (C.17)

As a result, the remaining steps come down to justifying the claim (C.16). In order to do so, we need to

control the following two quantities (in view of (C.11)):

I1 :=
Nk

h∑

n=1

η
Nk

h
n

(
Pkn

h − Ph,sk
h,ak

h

)(
Vkn

h+1 − V
R,kn

h+1

)
, (C.18a)

I2 :=
Nk

h∑

n=1

1

n
η

Nk
h

n

n∑

i=1

(
Pki

h − Ph,sk
h,ak

h

)
V

R,ki

h+1 (C.18b)

separately, which constitutes the next two steps. As will be seen momentarily, these two terms can be

controlled in a similar fashion using Freedman’s inequality.

Step 3: controlling I1. In the following text, we intend to invoke Lemma 7 to control the term I1

defined in (C18a). To begin with, consider any (N, h) ∈ [K] × [H], and introduce

W i
h+1 := V i

h+1 − V
R,i
h+1 and ui

h(s, a, N) := ηN

Ni
h(s,a)

≥ 0. (C.19)

Accordingly, we can derive and define

‖W i
h+1‖∞ ≤ ‖V

R,i
h+1‖∞ + ‖V i

h+1‖∞ ≤ 2H =: Cw, (C.20)

and

max
N,h,s,a∈[K]×[H]×S×A

ηN

Ni
h(s,a)

≤
2H

N
=: Cu, (C.21)

where the last inequality follows since (according to Lemma 1 and the definition in (4.2))

ηN

Ni
h(s,a)

≤
2H

N
, if1 ≤ Ni

h(s, a) ≤ N;

ηN

Ni
h(s,a)

= 0, ifNi
h(s, a) > N.
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1004 G. LI ET AL.

Moreover, observed from (4.3), we have

0 ≤
N∑

n=1

u
kn

h(s,a)

h (s, a, N) =
N∑

n=1

ηN
n ≤ 1 (C.22)

holds for all (N, s, a) ∈ [K]×S×A. Therefore, choosing (N, s, a) = (Nk
h , sk

h, ak
h) and applying Lemma 7

with the quantities (C.19) implies that, with probability at least 1 − δ,

|I1| =

∣∣∣∣∣∣

Nk
h∑

n=1

η
Nk

h
n

(
Pkn

h − Ph,sk
h,ak

h

)(
Vkn

h+1 − V
R,kn

h+1

)
∣∣∣∣∣∣
=

∣∣∣∣∣

k∑

i=1

Xi(s
k
h, ak

h, h, Nk
h)

∣∣∣∣∣

�

√
Cu log2 SAT

δ

√√√√√
Nk

h∑

n=1

ukn

h (sk
h, ak

h, Nk
h)Varh,sk

h,ak
h

(
Wkn

h+1

)
+

(
CuCw +

√
Cu

N
Cw

)
log2 SAT

δ

�
√

H

Nk
h

log2 SAT

δ

√√√√√
Nk

h∑

n=1

η
Nk

h
n Varh,sk

h,ak
h

(
Vkn

h+1 − V
R,kn

h+1

)
+

H2 log2 SAT
δ

Nk
h

(C.23)

�

√
H

Nk
h

log2 SAT

δ

√
σ

adv,k
Nk

h +1
h (sk

h, ak
h) −
(
μ

adv,k
Nk

h +1
h (sk

h, ak
h)
)2 +

H2 log2 SAT
δ

(Nk
h)

3/4
, (C.24)

where the proof of the last inequality (C.24) needs additional explanation and is postponed to

Appendix C.1.1 to streamline the presentation.

Step 4: controlling I2. Next, we turn attention to the quantity I2 defined in (C18b). Rearranging

terms in the definition (C18b), we are left with

I2 =
Nk

h∑

n=1

η
Nk

h
n

∑n
i=1

(
Pki

h − Ph,sk
h,ak

h

)
V

R,ki

h+1

n
=

Nk
h∑

i=1

⎛
⎝

Nk
h∑

n=i

η
Nk

h
n

n

⎞
⎠(Pki

h − Ph,sk
h,ak

h

)
V

R,ki

h+1,

which can again be controlled by invoking Lemma 7. To do so, we abuse the notation by taking

W i
h+1 := V

R,i
h+1 and ui

h(s, a, N) :=
N∑

n=Ni
h(s,a)

ηN
n

n
≥ 0. (C.25)

These quantities satisfy

∥∥W i
h+1

∥∥
∞ ≤

∥∥VR,i
h+1

∥∥
∞ ≤ H =: Cw (C.26)

and, according to Lemma 1,

max
N,h,s,a∈[K]×[H]×S×A

N∑

n=Ni
h(s,a)

ηN
n

n
≤

N∑

n=1

ηN
n

n
≤

2

N
=: Cu. (C.27)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
a
ia

i/a
rtic

le
/1

2
/2

/9
6
9
/6

9
2
7
2
5
5
 b

y
 U

n
iv

e
rs

ity
 o

f P
e
n
n
s
y
lv

a
n
ia

 u
s
e
r o

n
 1

5
 A

p
ril 2

0
2
3



REGRET-OPTIMAL MODEL-FREE REINFORCEMENT LEARNING 1005

Then it is readily seen from (C.27) that

0 ≤
N∑

n=1

u
kn

h(s,a)

h (s, a, N) ≤
N∑

n=1

2

N
≤ 2 (C.28)

holds for all (N, s, a) ∈ [K] × S × A.

With the above relations in mind, Taking (N, s, a) = (Nk
h , sk

h, ak
h) and applying Lemma 7 w.r.t. the

quantities (C.25) reveals that

|I2| =
∣∣∣∣

Nk
h∑

i=1

Nk
h∑

n=i

η
Nk

h
n

n

(
Pki

h − Ph,sk
h,ak

h

)
V

R,ki

h+1

∣∣∣∣ =
∣∣∣∣

k∑

i=1

Xi(s
k
h, ak

h, h, Nk
h)

∣∣∣∣ (C.29)

�

√
Cu log2 SAT

δ

√√√√√
Nk

h∑

n=1

ukn

h (sk
h, ak

h, Nk
h)Varh,sk

h,ak
h

(
Wkn

h+1

)
+

(
CuCw +

√
Cu

N
Cw

)
log2 SAT

δ

�

√
1

Nk
h

log2 SAT

δ

√√√√√ 1

Nk
h

Nk
h∑

n=1

Varh,sk
h,ak

h

(
V

R,kn

h+1

)
+

H

Nk
h

log2 SAT

δ
(C.30)

�

√
1

Nk
h

log2 SAT

δ

√
σ

ref,k
Nk

h +1
h (sk

h, ak
h) −
(
μ

ref,k
Nk

h +1
h (sk

h, ak
h)
)2 +

H

(Nk
h)

3/4
log2 SAT

δ
(C.31)

with probability exceeding 1 − δ, where the proof of the last inequality (C.31) is deferred to

Appendix C.1.2 in order to streamline presentation.

Step 5: combining the above bounds. Summing up the results in (C.24) and (C.31), we arrive at

an upper bound on
∣∣∑Nk

h

n=1 η
Nk

h
n ξ kn

h

∣∣ as follows:

∣∣∣∣
Nk

h∑

n=1

η
Nk

h
n ξ kn

h

∣∣∣∣ ≤ |I1| + |I2|

�

√
H

Nk
h

log2 SAT

δ

√
σ

adv,k
Nk

h +1
h (sk

h, ak
h) −
(
μ

adv,k
Nk

h +1
h (sk

h, ak
h)
)2

+
√

1

Nk
h

log2 SAT

δ

√
σ

ref,k
Nk

h +1
h (sk

h, ak
h) −
(
μ

ref,k
Nk

h +1
h (sk

h, ak
h)
)2 +

H2 log2 SAT
δ

(Nk
h)

3/4

≤ B
R,k

Nk
h +1

h (sk
h, ak

h) + cb

H2 log2 SAT
δ

(Nk
h)

3/4
(C.32)

for some sufficiently large constant cb > 0, where the last line follows from the definition of

B
R,k

Nk
h +1

h (sk
h, ak

h) in line 17 of Algorithm 2.
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1006 G. LI ET AL.

In order to establish the desired bound (C.16), we still need to control the sum
∑Nk

h

n=1 η
Nk

h
n b

R,kn+1
h .

Toward this end, the definition of b
R,kn+1
h (resp. δR

h ) in line 8 (resp. line 18) of Algorithm 2 yields

b
R,kn+1
h =

(
1 −

1

ηn

)
B

R,kn

h (sk
h, ak

h) +
1

ηn

B
R,kn+1
h (sk

h, ak
h) +

cb

n3/4
H2 log2 SAT

δ
. (C.33)

This taken collectively with the definition (4.2) of ηN
n allows us to expand

Nk
h∑

n=1

η
Nk

h
n b

R,kn+1
h

=
Nk

h∑

n=1

ηn

Nk
h∏

i=n+1

(1 − ηi)

((
1 −

1

ηn

)
B

R,kn

h (sk
h, ak

h) +
1

ηn

B
R,kn+1
h (sk

h, ak
h)

)
+ cb

Nk
h∑

n=1

η
Nk

h
n

n3/4
H2 log2 SAT

δ

=
Nk

h∑

n=1

Nk
h∏

i=n+1

(1 − ηi)
(
−
(
1 − ηn

)
B

R,kn

h (sk
h, ak

h) + B
R,kn+1
h (sk

h, ak
h)
)

+ cb

Nk
h∑

n=1

η
Nk

h
n

n3/4
H2 log2 SAT

δ

=
Nk

h∑

n=1

⎛
⎝

Nk
h∏

i=n+1

(1 − ηi)B
R,kn+1
h (sk

h, ak
h) −

Nk
h∏

i=n

(1 − ηi)B
R,kn

h (sk
h, ak

h)

⎞
⎠+ cb

Nk
h∑

n=1

η
Nk

h
n

n3/4
H2 log2 SAT

δ

(i)=
Nk

h∑

n=1

Nk
h∏

i=n+1

(1 − ηi)B
R,kn+1
h (sk

h, ak
h) −

Nk
h∑

n=2

Nk
h∏

i=n

(1 − ηi)B
R,kn

h (sk
h, ak

h) + cb

Nk
h∑

n=1

η
Nk

h
n

n3/4
H2 log2 SAT

δ

(ii)=
Nk

h∑

n=1

Nk
h∏

i=n+1

(1 − ηi)B
R,kn+1
h (sk

h, ak
h) −

Nk
h−1∑

n=1

Nk
h∏

i=n+1

(1 − ηi)B
R,kn+1
h (sk

h, ak
h) + cb

Nk
h∑

n=1

η
Nk

h
n

n3/4
H2 log2 SAT

δ

= B
R,k

Nk
h +1

h (sk
h, ak

h) + cb

Nk
h∑

n=1

η
Nk

h
n

n3/4
H2 log2 SAT

δ
. (C.34)

Here, (i) is valid due to the fact that B
R,k1

h (sk
h, ak

h) = 0; (ii) follows from the fact that

Nk
h∑

n=2

Nk
h∏

i=n

(1 − ηi)B
R,kn

h (sk
h, ak

h) =
Nk

h−1∑

n=1

Nk
h∏

i=n+1

(1 − ηi)B
R,kn+1

h (sk
h, ak

h)

=
Nk

h−1∑

n=1

Nk
h∏

i=n+1

(1 − ηi)B
R,kn+1
h (sk

h, ak
h),

where the first relation can be seen by replacing n with n + 1, and the last relation holds true since

the state–action pair (sk
h, ak

h) has not been visited at step h between the (kn + 1)-th episode and the

(kn+1 − 1)-th episode. Combining the above identity (C.34) with the following property (see Lemma 1)
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1

(Nk
h)

3/4
≤

Nk
h∑

n=1

η
Nk

h
n

n3/4
≤

2

(Nk
h)

3/4
,

we can immediately demonstrate that

B
R,k

Nk
h +1

h (sk
h, ak

h) + cb

H2 log2 SAT
δ

(Nk
h)

3/4
≤

Nk
h∑

n=1

η
Nk

h
n b

R,kn+1
h ≤ B

R,k
Nk

h +1
h (sk

h, ak
h) + 2cb

H2 log2 SAT
δ

(Nk
h)

3/4
. (C.35)

Taking (C.32) and (C.35) collectively demonstrates that

∣∣∣∣
Nk

h∑

n=1

η
Nk

h
n ξ kn

h

∣∣∣∣ ≤ B
R,k

Nk
h +1

h (sk
h, ak

h) + cb

H2 log2 SAT
δ

(Nk
h)

3/4
≤

Nk
h∑

n=1

η
Nk

h
n b

R,kn+1
h (C.36)

as claimed in (C.16). We have thus concluded the proof of Lemma 2 based on the argument in Step 2.

C.1.1 Proof of the inequality (C24). In order to establish the inequality (C.24), it suffices to look at

the following term:

I3 :=
Nk

h∑

n=1

η
Nk

h
n Varh,sk

h,ak
h

(
Vkn

h+1 − V
R,kn

h+1

)
− σ

adv,k
Nk

h +1
h (sk

h, ak
h) +
(
μ

adv,k
Nk

h +1
h (sk

h, ak
h)
)2

, (C.37)

which forms the main content of this subsection.

First of all, the update rules of μ
adv,kn+1

h and σ
adv,kn+1

h in lines 13-14 of Algorithm 2 tell us that

μ
adv,kn+1

h (sk
h, ak

h) = μ
adv,kn+1
h (sk

h, ak
h) = (1 − ηn)μ

adv,kn

h (sk
h, ak

h) + ηn

(
Vkn

h+1(s
kn

h+1) − V
R,kn

h+1 (skn

h+1)
)
,

σ
adv,kn+1

h (sk
h, ak

h) = σ
adv,kn+1
h (sk

h, ak
h) = (1 − ηn)σ

adv,kn

h (sk
h, ak

h) + ηn

(
Vkn

h+1(s
kn

h+1) − V
R,kn

h+1 (skn

h+1)
)2

.

Applying this relation recursively and invoking the definitions of ηN
n (resp. Pk

h) in (4.2) (resp. (4.5)) give

μ
adv,k

Nk
h +1

h (sk
h, ak

h)
(i)=

Nk
h∑

n=1

η
Nk

h
n

(
Vkn

h+1(s
kn

h+1) − V
R,kn

h+1 (skn

h+1)
)

=
Nk

h∑

n=1

η
Nk

h
n Pkn

h

(
Vkn

h+1 − V
R,kn

h+1

)
, (C.38a)

σ
adv,k

Nk
h +1

h (sk
h, ak

h)
(ii)=

Nk
h∑

n=1

η
Nk

h
n

(
Vkn

h+1(s
kn

h+1) − V
R,kn

h+1 (skn

h+1)
)2 =

Nk
h∑

n=1

η
Nk

h
n Pkn

h

(
Vkn

h+1 − V
R,kn

h+1

)2
. (C.38b)

Recognizing that
∑Nk

h

n=1 η
Nk

h
n = 1 (see (4.3)), we can immediately apply Jensen’s inequality to the

expressions (i) and (ii) to yield

σ
adv,k

Nk
h +1

h (sk
h, ak

h) ≥
(
μ

adv,k
Nk

h +1
h (sk

h, ak
h)
)2

. (C.39)
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1008 G. LI ET AL.

Further, in view of the definition (4.6), we have

Varh,sk
h,ak

h

(
Vkn

h+1 − V
R,kn

h+1

)
= Ph,sk

h,ak
h

(
Vkn

h+1 − V
R,kn

h+1

)2 −
(

Ph,sk
h,ak

h

(
Vkn

h+1 − V
R,kn

h+1

))2
,

which allows one to decompose and bound I3 as follows:

I3 =
Nk

h∑

n=1

η
Nk

h
n Ph,sk

h,ak
h

(
Vkn

h+1 − V
R,kn

h+1

)2 −
Nk

h∑

n=1

η
Nk

h
n Pkn

h

(
Vkn

h+1 − V
R,kn

h+1

)2

+
( Nk

h∑

n=1

η
Nk

h
n Pkn

h

(
Vkn

h+1 − V
R,kn

h+1

))2

−
Nk

h∑

n=1

η
Nk

h
n

(
Ph,sk

h,ak
h

(
Vkn

h+1 − V
R,kn

h+1

))2

≤
∣∣∣∣

Nk
h∑

n=1

η
Nk

h
n

(
Pkn

h − Ph,sk
h,ak

h

)(
Vkn

h+1 − V
R,kn

h+1

)2
∣∣∣∣

︸ ︷︷ ︸
=:I3,1

+
( Nk

h∑

n=1

η
Nk

h
n Pkn

h

(
Vkn

h+1 − V
R,kn

h+1

))2

−
Nk

h∑

n=1

η
Nk

h
n

(
Ph,sk

h,ak
h

(
Vkn

h+1 − V
R,kn

h+1

))2

︸ ︷︷ ︸
=:I3,2

. (C.40)

It then boils down to controlling the above two terms in (C.40) separately.

Step 1: bounding I3,1. To upper bound the term I3,1 in (C.40), we resort to Lemma 7 by setting

W i
h+1 :=

(
V i

h+1 − V
R,i
h+1

)2
and ui

h(s, a, N) := ηN

Ni
h(s,a)

. (C.41)

It is easily seen that

‖W i
h+1‖∞ ≤

(∥∥VR,i
h+1

∥∥
∞ +
∥∥V i

h+1

∥∥
∞

)2
≤ 4H2 =: Cw, (C.42)

and it follows from (C.21) that

max
N,h,s,a∈[K]×[H]×S×A

ηN

Ni
h(s,a)

≤
2H

N
=: Cu. (C.43)

Armed with the properties (C.42) and (C.43) and recalling (C.28), we can invoke Lemma 7 w.r.t. (C.41)

and set (N, s, a) = (Nk
h , sk

h, ak
h) to yield

I3,1 =
∣∣∣∣

Nk
h∑

n=1

η
Nk

h
n

(
Pkn

h − Ph,sk
h,ak

h

)(
Vkn

h+1 − V
R,kn

h+1

)2
∣∣∣∣ =
∣∣∣∣∣

k∑

i=1

Xi(s
k
h, ak

h, h, Nk
h)

∣∣∣∣∣

�

√
Cu log2 SAT

δ

√√√√√
Nk

h∑

n=1

ukn

h (sk
h, ak

h, Nk
h)Varh,sk

h,ak
h

(
Wkn

h+1

)
+

(
CuCw +

√
Cu

N
Cw

)
log2 SAT

δ
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�

√
H

Nk
h

log2 SAT

δ

√√√√√
Nk

h∑

n=1

η
Nk

h
n Varh,sk

h,ak
h

((
Vkn

h+1 − V
R,kn

h+1

)2)+
H3 log2 SAT

δ

Nk
h

�

√
H5

Nk
h

log2 SAT

δ
+

H3

Nk
h

log2 SAT

δ
(C.44)

with probability at least 1 − δ. Here, the last inequality results from the fact
∑Nk

h

n=1 η
Nk

h
n ≤ 1 (see (4.3))

and the following trivial result:

Varh,sk
h,ak

h

((
Vkn

h+1 − V
R,kn

h+1

)2) ≤
∥∥(Vkn

h+1 − V
R,kn

h+1

)4∥∥
∞ ≤ 16H4. (C.45)

Step 2: bounding I3,2. Jensen’s inequality tells us that

( Nk
h∑

n=1

η
Nk

h
n Ph,sk

h,ak
h

(
Vkn

h+1 − V
R,kn

h+1

))2

=
( Nk

h∑

n=1

(
η

Nk
h

n

)1/2 ·
(
η

Nk
h

n

)1/2
Ph,sk

h,ak
h

(
Vkn

h+1 − V
R,kn

h+1

))2

≤

⎧
⎨
⎩

Nk
h∑

n=1

η
Nk

h
n

⎫
⎬
⎭

⎧
⎨
⎩

Nk
h∑

n=1

η
Nk

h
n

(
Ph,sk

h,ak
h

(
Vkn

h+1 − V
R,kn

h+1

))2

⎫
⎬
⎭

≤
Nk

h∑

n=1

η
Nk

h
n

(
Ph,sk

h,ak
h

(
Vkn

h+1 − V
R,kn

h+1

))2
,

where the last line arises from (4.3). Substitution into I3,2 (cf. (C.40)) gives

I3,2 ≤
( Nk

h∑

n=1

η
Nk

h
n Pkn

h

(
Vkn

h+1 − V
R,kn

h+1

))2

−
( Nk

h∑

n=1

η
Nk

h
n Ph,sk

h,ak
h

(
Vkn

h+1 − V
R,kn

h+1

))2

=
{ Nk

h∑

n=1

η
Nk

h
n

(
Pkn

h − Ph,sk
h,ak

h

)(
Vkn

h+1 − V
R,kn

h+1

)}{ Nk
h∑

n=1

η
Nk

h
n

(
Pkn

h + Ph,sk
h,ak

h

)(
Vkn

h+1 − V
R,kn

h+1

)}
. (C.46)

In what follows, we would like to use this relation to show that

I3,2 ≤ C32

{√
H5

Nk
h

log2 SAT

δ
+

H3

Nk
h

log2 SAT

δ

}
(C.47)

for some universal constant C32 > 0.

If I3,2 ≤ 0, then (C.47) holds true trivially. Consequently, it is sufficient to study the case where

I3,2 > 0. To this end, we first note that the term in the first pair of curly brakets of (C.46) is exactly I1
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1010 G. LI ET AL.

(see (C18a)), which can be bounded by recalling (C.23):

|I1| �
√

H

Nk
h

log2 SAT

δ

√√√√√
Nk

h∑

n=1

η
Nk

h
n Varh,sk

h,ak
h

(
Vkn

h+1 − V
R,kn

h+1

)
+

H2 log2 SAT
δ

Nk
h

�

√
H3

Nk
h

log2 SAT

δ

√√√√√
Nk

h∑

n=1

η
Nk

h
n +

H2 log2 SAT
δ

Nk
h

�

√
H3

Nk
h

log2 SAT

δ
+

H2

Nk
h

log2 SAT

δ
, (C.48)

with probability at least 1 − δ. Here, the second inequality arises from the following property:

Varh,sk
h,ak

h

(
Vkn

h+1 − V
R,kn

h+1

)
≤
∥∥(Vkn

h+1 − V
R,kn

h+1

)2∥∥
∞ ≤ 4H2, (C.49)

whereas the last inequality (C.48) holds as a result of the fact
∑Nk

h

n=1 η
Nk

h
n ≤ 1 (see (4.3)).

Moreover, the term in the second pair of curly brakets of (C.46) can be bounded straightforwardly

as follows:

∣∣∣∣
Nk

h∑

n=1

η
Nk

h
n

(
Pkn

h + Ph,sk
h,ak

h

)(
Vkn

h+1 − V
R,kn

h+1

)∣∣∣∣

≤
Nk

h∑

n=1

η
Nk

h
n

(∥∥Pkn

h

∥∥
1
+
∥∥Ph,sk

h,ak
h

∥∥
1

)∥∥Vkn

h+1 − V
R,kn

h+1

∥∥
∞ ≤ 2H, (C.50)

where we have used the property (4.3), as well as the elementary facts
∥∥Vkn

h+1 − V
R,kn

h+1

∥∥
∞ ≤ H and∥∥Pkn

h

∥∥
1

=
∥∥Ph,sk

h,ak
h

∥∥
1

= 1. Substituting the above two results (C.48) and (C.50) back into (C.46), we

arrive at the bound (C.47) as long as I3,2 > 0. Putting all cases together, we have established the claim

(C.47).

Step 3: putting all this together. To finish up, plugging the bounds (C.44) and (C.47) into (C.40),

we can conclude that

I3 ≤ I3,1 + I3,2 ≤ C3

{√
H5

Nk
h

log2 SAT

δ
+

H3

Nk
h

log2 SAT

δ

}

for some constant C3 > 0. This together with the definition (C.37) of I3 results in

Nk
h∑

n=1

η
Nk

h
n Varh,sk

h,ak
h

(
Vkn

h+1 − V
R,kn

h+1

)

≤
{
σ

adv,k
Nk

h +1
h (sk

h, ak
h) −
(
μ

adv,k
Nk

h +1
h (sk

h, ak
h)
)2}+ C3

(√
H5

Nk
h

log2 SAT

δ
+

H3

Nk
h

log2 SAT

δ

)
,
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REGRET-OPTIMAL MODEL-FREE REINFORCEMENT LEARNING 1011

which combined with the elementary inequality
√

u + v ≤
√

u +
√

v for any u, v ≥ 0 and (C.39) yields

{ Nk
h∑

n=1

η
Nk

h
n Varh,sk

h,ak
h

(
Vkn

h+1 − V
R,kn

h+1

)}1/2

�
{
σ

adv,k
Nk

h +1
h (sk

h, ak
h) −
(
μ

adv,k
Nk

h +1
h (sk

h, ak
h)
)2}1/2

+
H5/4

(
Nk

h

)1/4
log1/2 SAT

δ
+

H3/2

(
Nk

h

)1/2
log

SAT

δ
.

Substitution into (C.23) establishes the desired result (C.24).

C.1.2 Proof of the inequality (C31) In order to prove the inequality (C.31), it suffices to look at the

following term:

I4 :=
1

Nk
h

Nk
h∑

n=1

Varh,sk
h,ak

h
(V

R,kn

h+1 ) −
(
σ

ref,k
Nk

h +1
h (sk

h, ak
h) −
(
μ

ref,k
Nk

h +1
h (sk

h, ak
h)
)2)

. (C.51)

In view of the update rules of μ
ref,kn+1

h and σ
ref,kn+1

h in lines 11–12 of Algorithm 2, we have

μ
ref,kn+1

h (sk
h, ak

h) = μ
ref,kn+1
h (sk

h, ak
h) =

(
1 −

1

n

)
μ

ref,kn

h (sk
h, ak

h) +
1

n
V

R,kn

h+1 (skn

h+1),

σ
ref,kn+1

h (sk
h, ak

h) = σ
ref,kn+1
h (sk

h, ak
h) =

(
1 −

1

n

)
σ

ref,kn

h (sk
h, ak

h) +
1

n

(
V

R,kn

h+1 (skn

h+1)
)2

,

Through simple recursion, these identities together with the definition (4.5) of Pk
h lead to

μ
ref,k

Nk
h +1

h (sk
h, ak

h)
(i)=

1

Nk
h

Nk
h∑

n=1

V
R,kn

h+1 (skn

h+1) =
1

Nk
h

Nk
h∑

n=1

Pkn

h V
R,kn

h+1 , (C.52a)

σ
ref,k

Nk
h +1

h (sk
h, ak

h)
(ii)=

1

Nk
h

Nk
h∑

n=1

(
V

R,kn

h+1 (skn

h+1)
)2 =

1

Nk
h

Nk
h∑

n=1

Pkn

h

(
V

R,kn

h+1

)2
, (C.52b)

The expressions (i) and (ii) combined with Jensen’s inequality give

σ
ref,k

Nk
h +1

h (sk
h, ak

h) ≥
(
μ

ref,k
Nk

h +1
h (sk

h, ak
h)
)2

. (C.53)

Taking these together with the definition

Varh,sk
h,ak

h
(V

R,kn

h+1 ) = Ph,sk
h,ak

h

(
V

R,kn

h+1

)2 −
(
Ph,sk

h,ak
h
V

R,kn

h+1

)2
,

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
a
ia

i/a
rtic

le
/1

2
/2

/9
6
9
/6

9
2
7
2
5
5
 b

y
 U

n
iv

e
rs

ity
 o

f P
e
n
n
s
y
lv

a
n
ia

 u
s
e
r o

n
 1

5
 A

p
ril 2

0
2
3



1012 G. LI ET AL.

we obtain

I4 =
1

Nk
h

Nk
h∑

n=1

(
Ph,sk

h,ak
h
(V

R,kn

h+1 )2 −
(
Ph,sk

h,ak
h
V

R,kn

h+1

)2)−
1

Nk
h

Nk
h∑

n=1

Pkn

h

(
V

R,kn

h+1

)2 +
(

1

Nk
h

Nk
h∑

n=1

Pkn

h V
R,kn

h+1

)2

=
1

Nk
h

Nk
h∑

n=1

(
Ph,sk

h,ak
h
− Pkn

h

)(
V

R,kn

h+1

)2

︸ ︷︷ ︸
=: I4,1

+
(

1

Nk
h

Nk
h∑

n=1

Pkn

h V
R,kn

h+1

)2

−
1

Nk
h

Nk
h∑

n=1

(
Ph,sk

h,ak
h
V

R,kn

h+1

)2

︸ ︷︷ ︸
=: I4,2

. (C.54)

In what follows, we shall bound the terms I4,1 and I4,2 in (C.54) separately.

Step 1: bounding I4,1. The first term I4,1 in (C.54) can be bounded by means of Lemma 7 in an

almost identical fashion as I3,1 in (C.44). Specifically, let us set

W i
h+1 := (V

R,i
h+1)

2 and ui
h(s, a, N) :=

1

N
,

which clearly obey

|ui
h(s, a, N)| =

1

N
=: Cu and ‖W i

h+1‖∞ ≤ H2 =: Cw.

It is easily verified that

N∑

n=1

u
kn(s,a)
h (s, a, N) =

N∑

n=1

1

N
= 1

holds for all (N, s, a) ∈ [K] × S × A. Hence we can take (N, s, a) = (Nk
h , sk

h, ak
h) and apply Lemma 7 to

yield

|I4,1| =
∣∣∣∣

1

Nk
h

Nk
h∑

n=1

(
Pkn

h − Ph,sk
h,ak

h

)(
V

R,kn

h+1

)2
∣∣∣∣ =
∣∣∣∣∣

k∑

i=1

Xi(s
k
h, ak

h, h, Nk
h)

∣∣∣∣∣

�

√
Cu log2 SAT

δ

√√√√√
Nk

h∑

n=1

ukn

h (sk
h, ak

h, Nk
h)Varh,sk

h,ak
h

(
Wkn

h+1

)
+

(
CuCw +

√
Cu

N
Cw

)
log2 SAT

δ

�

√√√√H4 log2 SAT
δ

Nk
h

+
H2 log2 SAT

δ

Nk
h

(C.55)

with probability at least 1 − δ, where the last inequality results from the fact that

Varh,sk
h,ak

h

(
Wkn

h+1

)
≤
∥∥Wkn

h+1

∥∥2

∞ ≤ C2
w = H4.
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REGRET-OPTIMAL MODEL-FREE REINFORCEMENT LEARNING 1013

Step 2: bounding I4,2. We now turn to the other term I4,2 defined in (C.54). Toward this, we first make

the observation that

(
1

Nk
h

Nk
h∑

n=1

Ph,sk
h,ak

h
V

R,kn

h+1

)2

≤
1

Nk
h

Nk
h∑

n=1

(
Ph,sk

h,ak
h
V

R,kn

h+1

)2
, (C.56)

which follows from Jensen’s inequality. Equipped with this relation, we can upper bound I4,2 as follows:

I4,2 ≤
(

1

Nk
h

Nk
h∑

n=1

Pkn

h V
R,kn

h+1

)2

−
(

1

Nk
h

Nk
h∑

n=1

Ph,sk
h,ak

h
V

R,kn

h+1

)2

=
{

1

Nk
h

Nk
h∑

n=1

(
Pkn

h − Ph,sk
h,ak

h

)
V

R,kn

h+1

}{
1

Nk
h

Nk
h∑

n=1

(
Pkn

h + Ph,sk
h,ak

h

)
V

R,kn

h+1

}
. (C.57)

In the following text, we would like to apply this relation to prove

I4,2 ≤ C42

(√
H4

Nk
h

log2 SAT

δ
+

H2

Nk
h

log2 SAT

δ

)
(C.58)

for some constant C42 > 0.

When I4,2 ≤ 0, the claim (C.58) holds trivially. As a result, we shall focus on the case where

I4,2 > 0. Let us begin with the term in the first pair of curly brackets of (C.57). Toward this, let us abuse

the notation and set

W i
h+1 := V

R,i
h+1 and ui

h(s, a, N) :=
1

N
,

which satisfy

|ui
h(s, a, N)| =

1

N
=: Cu and ‖W i

h+1‖∞ ≤ H =: Cw.

Akin to our argument for bounding I4,1, invoking Lemma 7 and setting (N, s, a) = (Nk
h , sk

h, ak
h) imply

that

∣∣∣∣
1

Nk
h

Nk
h∑

n=1

(Pkn

h − Ph,sk
h,ak

h
)V

R,kn

h+1

∣∣∣∣ �

√√√√H2 log2 SAT
δ

Nk
h

+
H log2 SAT

δ

Nk
h

with probability at least 1 − δ. In addition, the term in the second pair of curly brackets of (C.57) can be

bounded straightforwardly by

∣∣∣∣
1

Nk
h

Nk
h∑

n=1

(
Pkn

h + Ph,sk
h,ak

h

)
V

R,kn

h+1

∣∣∣∣ ≤
1

Nk
h

Nk
h∑

n=1

(∥∥Pkn

h

∥∥
1
+
∥∥Ph,sk

h,ak
h

∥∥
1

)∥∥VR,kn

h+1

∥∥
∞ ≤ 2H,

where we have used
∥∥VR,kn

h+1

∥∥
∞ ≤ H and

∥∥Pkn

h

∥∥
1

=
∥∥Ph,sk

h,ak
h

∥∥
1

= 1. Substituting the preceding facts

into (C.57) validates the bound (C.58) as long as I4,2 > 0. We have thus finished the proof of the claim

(C.58).
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1014 G. LI ET AL.

Step 3: putting all pieces together. Combining the results (C.55) and (C.58) with (C.54) yields

I4 ≤ |I4,1| + I4,2 ≤ C4

{√
H4

Nk
h

log2 SAT

δ
+

H2

Nk
h

log2 SAT

δ

}

for some constant C4 > 0. This bound taken together with the definition (C.51) of I4 gives

1

Nk
h

Nk
h∑

n=1

Varh,sk
h,ak

h
(V

R,kn

h+1 ) ≤
{
σ

ref,k
Nk

h +1
h (sk

h, ak
h) −
(
μ

ref,k
Nk

h +1
h (sk

h, ak
h)
)2}

+ C4

{√
H4

Nk
h

log2 SAT

δ
+

H2

Nk
h

log2 SAT

δ

}
.

Invoke the elementary inequality
√

u + v ≤
√

u +
√

v for any u, v ≥ 0 and use the property (C.53) to

obtain

(
1

Nk
h

Nk
h∑

n=1

Varh,sk
h,ak

h
(V

R,kn

h+1 )

)1/2

�
{
σ

ref,k
Nk

h +1
h (sk

h, ak
h) −
(
μ

ref,k
Nk

h +1
h (sk

h, ak
h)
)2}1/2

+
H

(Nk
h)

1/4
log1/2 SAT

δ
+

H

(Nk
h)

1/2
log

SAT

δ
.

Substitution into (C.30) directly establishes the desired result (C.31).

C.2 Proof of Lemma 3

C.2.1 Proof of the inequalities (4.11) Suppose that we can verify the following inequality:

Q
LCB,k
h (s, a) ≤ Q�

h(s, a) for all(s, a, k, h) ∈ S × A × [K] × [H], (C.59)

which in turn yields

max
a

Q
LCB,k
h (s, a) ≤ max

a
Q�

h(s, a) = V�
h(s) for all(k, h, s) ∈ [K] × [H] × S. (C.60)

In addition, the construction of V
LCB,k
h (see line 14 of Algorithm 3) allows us to show that

V
LCB,k+1
h (s) ≤ max

{
max

j:j≤k+1
max

a
Q
LCB,j
h (s, a), max

j:j≤k
V
LCB,j
h (s)

}
.

This taken together with the initialization V
LCB,1
h = 0 and a simple induction argument yields

V
LCB,k
h (s) ≤ V�

h(s) for all(k, h, s) ∈ [K] × [H] × S. (C.61)

As a consequence, everything comes down to proving the claim (C.59), which we shall accomplish by

induction.

Base case. Given our initialization, we have

Q
LCB,1
h (s, a) − Q�

h(s, a) = 0 − Q�
h(s, a) ≤ 0,

and hence the claim (C.59) holds trivially when k = 1.
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REGRET-OPTIMAL MODEL-FREE REINFORCEMENT LEARNING 1015

Induction step. Suppose now that the claim (C.59) holds all the way up to k for all (s, a, h), and we

would like to validate it for the (k + 1)-th episode as well. Toward this end, recall that the state–action

pair (sk
h, ak

h) is visited in the k-th episode at time step h; this means that QLCB
h (sk

h, ak
h) is updated once we

collect samples in the k-th episode, with all other entries QLCB
h frozen. It thus suffices to verify that

Q
LCB,k+1
h (sk

h, ak
h) ≤ Q�

h(s
k
h, ak

h).

In what follows, we shall adopt the short-hand notation (see also Section 4.2)

Nk
h = Nk

h(s
k
h, ak

h) and kn = kn
h(s

k
h, ak

h)

which will be used throughout this subsection as long as it is clear from the context.

The update rule of Q
LCB,k
h (cf. line 4 of Algorithm 2) and the Bellman optimality equation in (C.8)

tell us the following identities:

Q
LCB,k+1
h (sk

h, ak
h) = Q

LCB,k
Nk

h +1
h (sk

h, ak
h)

= (1 − ηNk
h
)Q

LCB,k
Nk

h

h (sk
h, ak

h) + ηNk
h

(
rh(s

k
h, ak

h) + V
LCB,k

Nk
h

h+1 (sk
Nk

h

h+1) − bk
Nk

h

h

)
,

Q�
h(s

k
h, ak

h) = (1 − ηNk
h
)Q�

h(s
k
h, ak

h) + ηNk
h
Q�

h(s
k
h, ak

h)

= (1 − ηNk
h
)Q�

h(s
k
h, ak

h) + ηNk
h

(
r(sk

h, ak
h) + Ph,sk

h,ak
h
V�

h+1

)
,

which taken collectively lead to the following identity

Q
LCB,k+1
h (sk

h, ak
h) − Q�

h(s
k
h, ak

h) = Q
LCB,k

Nk
h +1

h (sk
h, ak

h) − Q�
h(s

k
h, ak

h)

= (1 − ηNk
h
)
(

Q
LCB,k

Nk
h

h (sk
h, ak

h) − Q�
h(s

k
h, ak

h)
)

+ ηNk
h

(
V
LCB,k

Nk
h

h+1 (sk
Nk

h

h+1) − Ph,sk
h,ak

h
V�

h+1 − bk
Nk

h

h

)

= (1 − ηNk
h
)
(

Q
LCB,k

Nk
h
−1+1

h (sk
h, ak

h) − Q�
h(s

k
h, ak

h)
)

+ ηNk
h

(
V
LCB,k

Nk
h

h+1 (sk
Nk

h

h+1) − Ph,sk
h,ak

h
V�

h+1 − bk
Nk

h

h

)
.

Recall the definitions of ηN
0 and ηN

n in (4.2). Applying the above relation recursively and using the

decomposition of Q�
h(s

k
h, ak

h) in (C.6) result in

Q
LCB,k+1
h (sk

h, ak
h) − Q�

h(s
k
h, ak

h)

= η
Nk

h

0

(
Q
LCB,1
h (sk

h, ak
h) − Q�

h(s
k
h, ak

h)
)

+
Nk

h∑

n=1

η
Nk

h
n

(
V
LCB,kn

h+1 (skn

h+1) − Ph,sk
h,ak

h
V�

h+1 − bkn

h

)

≤
Nk

h∑

n=1

η
Nk

h
n

(
V
LCB,kn

h+1 (skn

h+1) − V�
h+1(s

kn

h+1) +
(
Pkn

h − Ph,sk
h,ak

h

)
V�

h+1 − bkn

h

)
, (C.62)

where the inequality follows from the initialization Q
LCB,1
h (sk

h, ak
h) = 0 ≤ Q�

h(s
k
h, ak

h) and the definition

of Pk
h in (4.5). To continue, we invoke a result established in (29, proof of Lemma 4.3), which guarantees
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1016 G. LI ET AL.

that with probability at least 1 − δ,

Nk
h∑

n=1

η
Nk

h
n

(
Pkn

h − Ph,sk
h,ak

h

)
V�

h+1 �

√√√√H3 log( SAT
δ

)

Nk
h

≤
Nk

h∑

n=1

η
Nk

h
n bkn

h ,

provided that cb is some sufficiently large constant. Substituting the above relation into (C.62) implies

that

Q
LCB,k+1
h (sk

h, ak
h) − Q�

h(s
k
h, ak

h) ≤
Nk

h∑

n=1

η
Nk

h
n

(
V
LCB,kn

h+1 (skn

h+1) − V�
h+1(s

kn

h+1)
)

≤ 0, (C.63)

where the last inequality follows from the induction hypothesis

V
LCB,j
h+1 (s) ≤ V�

h+1(s) for all s ∈ S and j ≤ k.

The proof is thus completed by induction.

C.2.2 Proof of the inequality (4.12) The proof of (4.12) essentially follows the same arguments of

(70, Lemma 4.2) (see also (30, Lemma C.7)), an algebraic result leveraging certain relations w.r.t. the Q-

value estimates. Accounting for the difference between our algorithm and the one in [70], we paraphrase

(70, Lemma 4.2) into the following form that is convenient for our purpose.

Lemma 9. paraphrased from Lemma 4.2 in [70]Assume that there exists a constant cb > 0 such that for

all (s, a, k, h) ∈ S × A × [K] × [H], it holds that

0 ≤ Qk+1
h (s, a) − Q

LCB,k+1
h (s, a)

≤ η
Nk

h(s,a)

0 H +
Nk

h(s,a)∑

n=1

η
Nk

h(s,a)
n

(
Vkn

h+1(s
kn

h+1) − V
LCB,kn

h+1 (skn

h+1)
)

+ 4cb

√√√√H3 log SAT
δ

Nk
h(s, a)

. (C.64)

Consider any ε ∈ (0, H]. Then for all β = 1, . . . ,
⌈

log2
H
ε

⌉
, one has

∣∣∣∣
H∑

h=1

K∑

k=1

1

(
Qk

h(s
k
h, ak

h) − Q
LCB,k
h (sk

h, ak
h) ∈
[
2β−1ε, 2βε

)) ∣∣∣∣ �
H6SA log SAT

δ

4βε2
. (C.65)

We first show how to justify (4.12) if the inequality (C.65) holds. As can be seen, the fact (C.65)

immediately leads to

H∑

h=1

K∑

k=1

1

(
Qk

h(s
k
h, ak

h) − Q
LCB,k
h (sk

h, ak
h) > ε

)
�

⌈
log2

H
ε

⌉

∑

β=1

H6SA log SAT
δ

4βε2
≤

H6SA log SAT
δ

2ε2
(C.66)

as desired.

We now return to justify the claim (C.65), toward which it suffices to demonstrate that (C.64) holds.

Lemma 2 and Lemma 3 directly verify the left-hand side of (C.64) since

Qk
h(s, a) ≥ Q�

h(s, a) ≥ Q
LCB,k
h (s, a) for all(s, a, k, h) ∈ S × A × [K] × [H]. (C.67)
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REGRET-OPTIMAL MODEL-FREE REINFORCEMENT LEARNING 1017

The remainder of the proof is thus devoted to justifying the upper bound on Qk+1
h (s, a)− Q

LCB,k+1
h (s, a)

in (C.64). In view of the update rule in line 12 of Algorithm 3, we have the following basic fact:

Qk+1
h (s, a) ≤ Q

UCB,k+1
h (s, a).

This enables us to obtain

Qk+1
h (s, a) − Q

LCB,k+1
h (s, a) ≤ Q

UCB,k+1
h (s, a) − Q

LCB,k+1
h (s, a) = Q

UCB,k
Nk

h +1
h (s, a) − Q

LCB,k
Nk

h +1
h (s, a),

(C.68)

where we abbreviate

Nk
h = Nk

h(s, a)

throughout this subsection as long as it is clear from the context. Using the update rules of Q
UCB,k
h and

Q
LCB,k
h in line 2 and line 4 of Algorithm 2, we reach

Q
UCB,k

Nk
h +1

h (s, a) − Q
LCB,k

Nk
h +1

h (s, a)

= (1 − ηNk
h
)Q

UCB,k
Nk

h

h (s, a) + ηNk
h

(
rh(s, a) + Vk

Nk
h

h+1(s
k

Nk
h

h+1) + cb

√√√√H3 log SAT
δ

Nk
h

)

− (1 − ηNk
h
)Q

LCB,k
Nk

h

h (s, a) − ηNk
h

(
rh(s, a) + V

LCB,k
Nk

h

h+1 (sk
Nk

h

h+1) − cb

√√√√H3 log SAT
δ

Nk
h

)

= (1 − ηNk
h
)
(

Q
UCB,k

Nk
h

h (s, a) − Q
LCB,k

Nk
h

h (s, a)
)

+ ηNk
h

(
Vk

Nk
h

h+1(s
k

Nk
h

h+1) − V
LCB,k

Nk
h

h+1 (sk
Nk

h

h+1) + 2cb

√√√√H3 log SAT
δ

Nk
h

)

= (1 − ηNk
h
)
(

Q
UCB,k

Nk
h
−1+1

h (s, a) − Q
LCB,k

Nk
h

h (s, a)
)

+ ηNk
h

(
Vk

Nk
h

h+1(s
k

Nk
h

h+1) − V
LCB,k

Nk
h

h+1 (sk
Nk

h

h+1) + 2cb

√√√√H3 log SAT
δ

Nk
h

)
.
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1018 G. LI ET AL.

Applying this relation recursively leads to the desired result

Q
UCB,k

Nk
h +1

h (s, a) − Q
LCB,k

Nk
h +1

h (s, a)

= η
Nk

h

0

(
Q
UCB,1
h (s, a) − Q

LCB,1
h (s, a)

)
+

Nk
h∑

n=1

η
Nk

h
n

(
Vkn

h+1(s
kn

h+1) − V
LCB,kn

h+1 (skn

h+1) + 2cb

√
H3 log SAT

δ

n

)

≤ η
Nk

h

0 H +
Nk

h∑

n=1

η
Nk

h
n

(
Vkn

h+1(s
kn

h+1) − V
LCB,kn

h+1 (skn

h+1)
)

+ 4cb

√√√√H3 log SAT
δ

Nk
h

.

Here, the last line is valid due to the property 0 ≤ Q
LCB,1
h (s, a) ≤ Q

UCB,1
h (s, a) ≤ H and the following

fact:

Nk
h∑

n=1

η
Nk

h
n cb

√√√√H3 log SAT
δ

Nk
h

≤ 2cb

√√√√H3 log SAT
δ

Nk
h

,

which is an immediate consequence of the elementary property
∑N

n=1
ηN

n√
n

≤ 2√
N

(see Lemma 1). This

combined with (C.68) establishes the condition (C.64), thus concluding the proof of the inequality

(4.12).

C.3 Proof of Lemma 4

C.3.1 Proof of the inequality (4.15). Consider any state s that has been visited at least once during

the K episodes. Throughout this proof, we shall adopt the shorthand notation

ki = ki
h(s),

which denotes the index of the episode in which state s is visited for the i-th time at step h. Given that

Vh(s) and VR
h (s) are only updated during the episodes with indices coming from {i | 1 ≤ ki ≤ K}, it

suffices to show that for any s and the corresponding 1 ≤ ki ≤ K, the claim (4.15) holds in the sense

that
∣∣Vki+1

h (s) − V
R,ki+1
h (s)

∣∣ ≤ 2. (C.69)

Toward this end, we look at three scenarios separately.

Case 1. Suppose that ki obeys

Vki+1
h (s) − V

LCB,ki+1
h (s) > 1 (C.70)

or

Vki+1
h (s) − V

LCB,ki+1
h (s) ≤ 1 and uki

ref(s) = True (C.71)

The above conditions correspond to the ones in line 15 and line 17 of Algorithm 3 (meaning that VR
h is

updated during the ki-th episode), thus resulting in

Vki+1
h (s) = V

R,ki+1
h (s).

This clearly satisfies (C.69).
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REGRET-OPTIMAL MODEL-FREE REINFORCEMENT LEARNING 1019

Case 2. Suppose that ki0 is the first time such that (C.70) and (C.71) are violated, namely,

i0 := min
{

j | Vkj+1
h (s) − V

LCB,kj+1
h (s) ≤ 1 and ukj

ref(s) = False
}

. (C.72)

We make three observations.

• The definition (C.72) taken together with the update rules (lines 15–18 of Algorithm 3) reveals that

VR
h has been updated in the ki0−1-th episode, thus indicating that

V
R,ki0

h (s) = V
R,ki0−1+1
h (s) = Vki0−1+1

h (s) = Vki0

h (s). (C.73)

• Additionally, note that under the definition (C.72), VR
h (s) is not updated during the ki0 -th episode,

namely,

V
R,ki0+1
h (s) = V

R,ki0

h (s). (C.74)

• The definition of ki0 indicates that either (C.70) or (C.71) is satisfied in the previous episode ki =
ki0−1 in which s was visited. If (C.70) is satisfied, then lines 15–16 in Algorithm 3 tell us that

True = uki0−1+1
ref (s) = uki0

ref (s), (C.75)

which, however, contradicts the assumption uki0

ref (s) = False in (C.72). Therefore, in the ki0−1-th

episode, (C.71) is satisfied, thus leading to

Vki0

h (s) − V
LCB,ki0

h (s) = Vki0−1+1
h (s) − V

LCB,ki0−1+1
h (s) ≤ 1. (C.76)

We see from (C.73), (C.74) and (C.76) that

V
R,ki0+1
h (s) − Vki0+1

h (s) = V
R,ki0

h (s) − Vki0+1
h (s) = Vki0

h (s) − Vki0+1
h (s) (C.77)

(i)
≤ Vki0

h (s) − V
LCB,ki0

h (s)
(ii)
≤ 1, (C.78)

where (i) holds since Vki0+1
h (s) ≥ V�

h(s) ≥ V
LCB,ki0

h (s), and (ii) follows from (C.76). In addition, we

make note of the fact that

V
R,ki0+1
h (s) − Vki0+1

h (s) = Vki0

h (s) − Vki0+1
h (s) ≥ 0, (C.79)

which follows from (C.77) and the monotonicity of Vk
h(s) in k. With the above results in place, we arrive

at the advertised bound (C.69) when i = i0.

Case 3. Consider any i > i0. It is easily verified that

Vki+1
h (s) − V

LCB,ki+1
h (s) ≤ 1 and uki

ref(s) = False. (C.80)
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1020 G. LI ET AL.

It then follows that

V
R,ki+1
h (s)

(i)
≤ V

R,ki0+1
h (s)

(ii)
≤ Vki0+1

h (s) + 1
(iii)
≤ V

LCB,ki0+1
h (s) + 2

(iv)
≤ V�

h(s) + 2
(v)
≤ Vki+1

h (s) + 2. (C.81)

Here, (i) holds due to the monotonicity of VR
h and Vk

h (see line 14 of Algorithm 3), (ii) is a consequence

of (C.78), (iii) comes from the definition (C.72) of i0, (iv) arises since VLCB
h is a lower bound on V�

h

(see Lemma 3) and (v) is valid since Vki+1
h (s) ≥ V�

h(s) (see Lemma 2). In addition, in view of the

monotonicity of Vk
h (see line 14 of Algorithm 3) and the update rule in line 16 of Algorithm 3, we know

that

V
R,ki+1
h (s) ≥ Vki+1

h (s).

The preceding two bounds taken collectively demonstrate that

0 ≤ V
R,ki+1
h (s) − Vki+1

h (s) ≤ 2,

thus justifying (C.69) for this case.

Therefore, we have established (C.69)—and hence (4.15)—for all cases.

C.3.2 Proof of the inequality (4.16) Suppose that

VR, kh(s
k
h) − VR, kh(s

k
h) �= 0 (C.82)

holds for some k < K. Then there are two possible scenarios to look at:

(a) Case 1: the condition in line 15 and line 17 of Algorithm 3 are violated at step h of the k-th

episode. This means that we have

Vk+1
h (sk

h) − V
LCB,k+1
h (sk

h) ≤ 1 and uk
ref(s

k
h) = False (C.83)

in this case. Then for any k′ > k, one necessarily has
{

Vk′
h (sk

h) − V
LCB,k′

h (sk
h) ≤ Vk+1

h (sk
h) − V

LCB,k+1
h (sk

h) ≤ 1,

uk′
ref(s

k
h) = uk

ref(s
k
h) = False,

(C.84)

where the first property uses the monotonicity of Vk
h and V

LCB,k
h (see (4.7b) and line 14 of

Algorithm 3). In turn, Condition (C.84) implies that VR
h will no longer be updated after the k-th

episode (see line 15 of Algorithm 3), thus indicating that

VR, kh(s
k
h) = V

R,k+1
h (sk

h) = · · · = VR, kh(s
k
h). (C.85)

This, however, contradicts the assumption (C.82).

(b) Case 2: the condition in either line 15 or line 17 of Algorithm 3 is satisfied at step h of the k-th

episode. If this occurs, then the update rule in line 15 of Algorithm 3 implies that

Vk+1
h (sk

h) − V
LCB,k+1
h (sk

h) > 1, (C.86)

or

Vk+1
h (sk

h) − V
LCB,k+1
h (sk

h) ≤ 1 and uk
ref(s

k
h) = True. (C.87)
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REGRET-OPTIMAL MODEL-FREE REINFORCEMENT LEARNING 1021

To summarize, the above argument demonstrates that (C.82) can only occur if either (C.86) or (C.87)

holds.

With the above observation in place, we can proceed with the following decomposition:

H∑

h=1

K∑

k=1

(
V

R,k
h (sk

h) − V
R,K
h (sk

h)
)

=
H∑

h=1

K∑

k=1

(
V

R,k
h (sk

h) − V
R,K
h (sk

h)
)
1

(
V

R,k
h (sk

h) − V
R,K
h (sk

h) �= 0
)

≤
H∑

h=1

K∑

k=1

(
V

R,k
h (sk

h) − V
R,K
h (sk

h)
)
1

(
Vk+1

h (sk
h) − V

LCB,k+1
h (sk

h) ≤ 1 anduk
ref(s

k
h) = True

)

+
H∑

h=1

K∑

k=1

(
Vk

h(sk
h) − V

LCB,k
h (sk

h)
)
1

(
Vk

h(sk
h) − V

LCB,k
h (sk

h) > 1
)

︸ ︷︷ ︸
=:ω

. (C.88)

Regarding the first term in (C.88), it is readily seen that for all s ∈ S,

K∑

k=1

1

(
Vk+1

h (s) − V
LCB,k+1
h (s) ≤ 1 and uk

ref(s) = True
)

≤ 1, (C.89)

which arises since, for each s ∈ S, the above condition is satisfied in at most one episode, owing to the

monotonicity property of Vh, VLCB
h and the update rule for uref in (17). As a result, one has

H∑

h=1

K∑

k=1

(
V

R,k
h (sk

h) − V
R,K
h (sk

h)
)
1

(
Vk+1

h (sk
h) − V

LCB,k+1
h (sk

h) ≤ 1 anduk
ref(s

k
h) = True

)

≤ H

H∑

h=1

K∑

k=1

1

(
Vk+1

h (sk
h) − V

LCB,k+1
h (sk

h) ≤ 1 anduk
ref(s

k
h) = True

)

= H

H∑

h=1

∑

s∈S

K∑

k=1

1

(
Vk+1

h (s) − V
LCB,k+1
h (s) ≤ 1 anduk

ref(s) = True
)

≤ H

H∑

h=1

∑

s∈S

1 = H2S,

where the first inequality holds since ‖VR
h , k − VR

h , k‖∞ ≤ H. Substitution into (C.88) yields

H∑

h=1

K∑

k=1

(
V

R,k
h (sk

h) − V
R,K
h (sk

h)
)

≤ H2S + ω. (C.90)

To complete the proof, it boils down to bounding the term ω defined in (C.88). To begin with, note

that

VR, kh(s
k
h) ≥ V�

h(sk
h) ≥ V

LCB,k
h (sk

h),
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1022 G. LI ET AL.

where we use the optimism of VR
h , k(sk

h) stated in Lemma 2 (cf. (4.9)) and the pessimism of VLCB
h in

Lemma 3 (see (4.11)). As a result, we can obtain

ω =
H∑

h=1

K∑

k=1

(
Vk

h(sk
h) − V

LCB,k
h (sk

h)
)
1

(
Vk

h(sk
h) − V

LCB,k
h (sk

h) > 1
)

≤
H∑

h=1

K∑

k=1

(
Qk

h(s
k
h, ak

h) − Q
LCB,k
h (sk

h, ak
h)
)
1

(
Qk

h(s
k
h, ak

h) − Q
LCB,k
h (sk

h, ak
h) > 1

)
, (C.91)

where the second line arises from the properties Vk
h(sk

h) = Qk
h(s

k
h, ak

h) (given that ak
h =

arg maxa Qk
h(s

k
h, a)) as well as the following fact (see line 14 of Algorithm 3)

V
LCB,k
h (sk

h) ≥ max
a

Q
LCB,k
h (sk

h, a) ≥ Q
LCB,k
h (sk

h, ak
h).

Further, let us make note of the following elementary identity:

Qk
h(s

k
h, ak

h) − Q
LCB,k
h (sk

h, ak
h) =

∫ ∞

0

1

(
Qk

h(s
k
h, ak

h) − Q
LCB,k
h (sk

h, ak
h) > t

)
dt.

This allows us to obtain

ω ≤
H∑

h=1

K∑

k=1

{∫ ∞

0

1
(
Qk

h(s
k
h, ak

h) − Q
LCB,k
h (sk

h, ak
h) > t

)
dt

}
1

(
Qk

h(s
k
h, ak

h) − Q
LCB,k
h (sk

h, ak
h) > 1

)

=
∫ H

1

H∑

h=1

K∑

k=1

1

(
Qk

h(s
k
h, ak

h) − Q
LCB,k
h (sk

h, ak
h) > t

)
dt

�

∫ H

1

H6SA log SAT
δ

t2
dt � H6SA log

SAT

δ
, (C.92)

where the last line follows from the property (4.12) in Lemma 3. Combining the above bounds (C.91)

and (C.92) with (C.90) establishes

H∑

h=1

K∑

k=1

(
VR, kh(s

k
h) − VR, kh(s

k
h)
)

≤ H2S +
H∑

h=1

K∑

k=1

(
Qk

h(s
k
h, ak

h) − Q
LCB,k
h (sk

h, ak
h)
)
1

(
Qk

h(s
k
h, ak

h) − Q
LCB,k
h (sk

h, ak
h) > 1

)

≤ H6SA log
SAT

δ

as claimed.

D. Proof of Lemma 5

For notational simplicity, we shall adopt the short-hand notation

kn = kn
h(s

k
h, ak

h)
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REGRET-OPTIMAL MODEL-FREE REINFORCEMENT LEARNING 1023

throughout this section. A starting point for proving this lemma is the upper bound already derived in

(4.20), and we intend to further bound the first term on the right-hand side of (4.20). Recalling the

expression of Q
R,k+1
h (sk

h, ak
h) in (C.7) and (C.9), we can derive

Q
R,k
h (sk

h, ak
h) − Q�

h(s
k
h, ak

h) = Q
R,k

N
k−1
h

(sk
h

,ak
h
)+1

h (sk
h, ak

h) − Q�
h(s

k
h, ak

h) (D.1)

= η
Nk−1

h (sk
h,ak

h)

0

(
Q

R,1
h (sk

h, ak
h) − Q�

h(s
k
h, ak

h)
)

+
Nk−1

h (sk
h,ak

h)∑

n=1

η
Nk−1

h (sk
h,ak

h)
n b

R,kn+1
h

+
Nk−1

h (sk
h,ak

h)∑

n=1

η
Nk−1

h (sk
h,ak

h)
n

(
Vkn

h+1(s
kn

h+1) − V
R,kn

h+1 (skn

h+1) +
1

n

n∑

i=1

V
R,ki

h+1(s
ki

h+1) − Ph,sk
h,ak

h
V�

h+1

)

≤ η
Nk−1

h (sk
h,ak

h)

0 H + B
R,k
h (sk

h, ak
h) +

2cbH2

(
Nk−1

h (sk
h, ak

h)
)3/4

log
SAT

δ

+
Nk−1

h (sk
h,ak

h)∑

n=1

η
Nk−1

h (sk
h,ak

h)
n

(
Vkn

h+1(s
kn

h+1) − V
R,kn

h+1 (skn

h+1) +
1

n

n∑

i=1

V
R,ki

h+1(s
ki

h+1) − Ph,sk
h,ak

h
V�

h+1

)
,

where the last line follows from (C.35) with B
R,k

N
k−1
h +1

h = BR, kh and the initialization Q
R,1
h (sk

h, ak
h) = H.

Summing over all 1 ≤ k ≤ K gives

K∑

k=1

(
QR, kh(s

k
h, ak

h) − Q�
h(s

k
h, ak

h)
)

≤
K∑

k=1

(
Hη

Nk−1
h (sk

h,ak
h)

0 + BR, kh(s
k
h, ak

h) +
2cbH2

(
Nk−1

h (sk
h, ak

h)
)3/4

log
SAT

δ

)

+
K∑

k=1

Nk−1
h (sk

h,ak
h)∑

n=1

η
Nk−1

h (sk
h,ak

h)
n

(
Vkn

h+1(s
kn

h+1) − V
R,kn

h+1 (skn

h+1) +
∑n

i=1 V
R,ki

h+1(s
ki

h+1)

n
− Ph,sk

h,ak
h
V�

h+1

)

≤
K∑

k=1

(
Hη

Nk−1
h (sk

h,ak
h)

0 + BR, kh(s
k
h, ak

h) +
2cbH2

(
Nk−1

h (sk
h, ak

h)
)3/4

log
SAT

δ

)

+
K∑

k=1

Nk−1
h (sk

h,ak
h)∑

n=1

η
Nk−1

h (sk
h,ak

h)
n

(
Vkn

h+1(s
kn

h+1) − V�
h+1(s

kn

h+1)
)

+
K∑

k=1

Nk−1
h (sk

h,ak
h)∑

n=1

η
Nk−1

h (sk
h,ak

h)
n

(
V�

h+1(s
kn

h+1) − V
R,kn

h+1 (skn

h+1) +
1

n

n∑

i=1

V
R,ki

h+1(s
ki

h+1) − Ph,sk
h,ak

h
V�

h+1

)
.

(D.2)

Next, we control each term in (D.2) separately.
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1024 G. LI ET AL.

• Regarding the first term of (D.2), we make two observations. To begin with,

K∑

k=1

η
Nk−1

h (sk
h,ak

h)

0 ≤
∑

(s,a)∈S×A

NK−1
h (s,a)∑

n=0

ηn
0 ≤ SA, (D.3)

where the last inequality follows since ηn
0 = 0 for all n > 0 (see (4.2)). Next, it is also observed that

K∑

k=1

1
(
Nk−1

h (sk
h, ak

h)
)3/4

=
∑

(s,a)∈S×A

NK−1
h (s,a)∑

n=1

1

n3/4

≤
∑

(s,a)∈S×A

4
(
NK−1

h (s, a)
)1/4 ≤ 4(SA)3/4K1/4, (D.4)

where the last inequality comes from Holder’s inequality

∑

(s,a)∈S×A

(
NK−1

h (s, a)
)1/4 ≤

[ ∑

(s,a)∈S×A

1

]3/4[ ∑

(s,a)∈S×A

NK−1
h (s, a)

]1/4

≤ (SA)3/4K1/4.

Combining the above bounds yields

K∑

k=1

(
Hη

Nk−1
h (sk

h,ak
h)

0 + B
R,k
h (sk

h, ak
h) +

2cbH2

(
Nk−1

h (sk
h, ak

h)
)3/4

log
SAT

δ

)

≤ HSA +
K∑

k=1

B
R,k
h (sk

h, ak
h) + 8cb(SA)3/4K1/4H2 log

SAT

δ
. (D.5)

• We now turn to the second term of (D.2). A little algebra gives

K∑

k=1

Nk−1
h (sk

h,ak
h)∑

n=1

η
Nk−1

h (sk
h,ak

h)
n

(
Vkn

h+1(s
kn

h+1) − V�
h+1(s

kn

h+1)
)

=
K∑

l=1

NK−1
h (sl

h,al
h)∑

N=Nl
h(s

l
h,al

h)

ηN

Nl
h(s

l
h,al

h)

(
V l

h+1(s
l
h+1) − V�

h+1(s
l
h+1)
)

≤
(

1 +
1

H

) K∑

l=1

(
V l

h+1(s
l
h+1) − V�

h+1(s
l
h+1)
)

=
(

1 +
1

H

)[ K∑

k=1

(
Vk

h+1(s
k
h+1) − Vπk

h+1(s
k
h+1)
)
−

K∑

k=1

(
V�

h+1(s
k
h+1) − Vπk

h+1(s
k
h+1)
)
]

. (D.6)

Here, the second line replaces kn (resp. n) with l (resp. Nl
h(s

l
h, al

h)), the third line is due to the property∑∞
N=n ηN

n ≤ 1 + 1/H (see Lemma 1), while the last relation replaces l with k again.
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• When it comes to the last term of (D.2), we can derive

K∑

k=1

Nk−1
h (sk

h,ak
h)∑

n=1

η
Nk−1

h (sk
h,ak

h)
n

(
V�

h+1(s
kn

h+1) − V
R,kn

h+1 (skn

h+1) +
1

n

n∑

i=1

V
R,ki

h+1(s
ki

h+1) − Ph,sk
h,ak

h
V�

h+1

)

=
K∑

k=1

Nk−1
h (sk

h,ak
h)∑

n=1

η
Nk−1

h (sk
h,ak

h)
n

((
Pkn

h − Ph,sk
h,ak

h

)(
V�

h+1 − V
R,kn

h+1

)
+

1

n

n∑

i=1

(
V

R,ki

h+1(s
ki

h+1) − Ph,sk
h,ak

h
V

R,kn

h+1

))

=
K∑

k=1

NK−1
h (sk

h,ak
h)∑

N=Nk
h(sk

h,ak
h)

ηN

Nk
h(sk

h,ak
h)

((
Pk

h − Ph,sk
h,ak

h

)(
V�

h+1 − VR, kh+1

)

+

∑Nk
h(sk

h,ak
h)

i=1

(
V

R,ki

h+1(s
ki

h+1) − Ph,sk
h,ak

h
VR, kh+1

)

Nk
h(s

k
h, ak

h)

)
.

Here, the first equality holds since V�
h+1(s

kn

h+1) − V
R,kn

h+1 (skn

h+1) = Pkn

h

(
V�

h+1 − V
R,kn

h+1

)
(in view of the

definition of Pk
h in (4.5)), the second equality can be seen via simple rearrangement of the terms,

while in the last line we replace kn (resp. n) with k (resp. Nk
h(s

k
h, ak

h)).

Taking the above bounds together with (D.2) and (4.20), we can rearrange terms to reach

K∑

k=1

(
Vk

h(sk
h) − Vπk

h (sk
h)
)

≤
(

1 +
1

H

) K∑

k=1

(
Vk

h+1(s
k
h+1) − Vπk

h+1(s
k
h+1)
)
+

K∑

k=1

BR, kh(s
k
h, ak

h)

+ HSA + 8cbH2(SA)3/4K1/4 log
SAT

δ
+

K∑

k=1

(
Ph,sk

h,ak
h
− Pk

h

)(
V�

h+1 − Vπk

h+1

)

+
K∑

k=1

NK−1
h (sk

h,ak
h)∑

N=Nk
h(sk

h,ak
h)

ηN

Nk
h(sk

h,ak
h)

[(
Pk

h − Ph,sk
h,ak

h

)(
V�

h+1 − VR, kh+1

)

+

∑Nk
h(sk

h,ak
h)

i=1

(
V

R,ki

h+1(s
ki

h+1) − Ph,sk
h,ak

h
VR, kh+1

)

Nk
h(s

k
h, ak

h)

]
, (D.7)

where we have dropped the term − 1
H

∑
k

(
V�

h+1(s
k
h+1)−Vπk

h+1(s
k
h+1)
)

owing to the fact that V�
h+1 ≥ Vπk

h+1.

Thus far, we have established a crucial connection between
∑K

k=1

(
Vk

h(sk
h) − Vπk

h (sk
h)
)

at step h and∑K
k=1

(
Vk

h+1(s
k
h+1)−Vπk

h+1(s
k
h+1)
)

at step h+1. Clearly, the term Vk
h+1(s

k
h+1)−Vπk

h+1(s
k
h+1) can be further

bounded in the same manner. As a result, by recursively applying the above relation (D.7) over the time

steps h = 1, 2, · · · , H and using the terminal condition Vk
H+1 = Vπk

H+1 = 0, we can immediately arrive

at the advertised bound in Lemma 5.
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1026 G. LI ET AL.

E. Proof of Lemma 6

E.1 Bounding the term R1

First of all, let us look at the first two terms of R1 in (4.22a). Recognizing the following elementary

inequality:

(
1 +

1

H

)h−1

≤
(

1 +
1

H

)H

≤ e for allh = 1, 2, · · · , H + 1, (E.1)

we are allowed to upper bound the first two terms in (4.22a) as follows:

H∑

h=1

(
1 +

1

H

)h−1 {
HSA + 8cbH2(SA)3/4K1/4 log

SAT

δ

}
� H2SA + H3(SA)3/4K1/4 log

SAT

δ

� H4.5SA log2 SAT

δ
+
√

H3SAK = H4.5SA log2 SAT

δ
+
√

H2SAT , (E.2)

where the last inequality can be shown using the AM–GM inequality as follows:

H3(SA)3/4K1/4 log
SAT

δ
=
(

H9/4
√

SA log
SAT

δ

)
· (H3SAK)1/4 ≤ H4.5SA log2 SAT

δ
+
√

H3SAK.

We are now left with the last term of R1 in (4.22a). Toward this, we resort to Lemma 8 by setting

W i
h+1 := V�

h+1 − Vπk

h+1 and ch :=
(

1 +
1

H

)h−1

.

In view of (E.1) and the property H ≥ V�(s) ≥ Vπ (s) ≥ 0, we see that

0 ≤ ch ≤ e, W i
h+1 ≥ 0, and ‖W i

h+1‖∞ ≤ H =: Cw.

Therefore, applying Lemma 8 yields

∣∣∣∣∣

H∑

h=1

(
1 +

1

H

)h−1 K∑

k=1

(
Ph,sk

h,ak
h
− Pk

h

)(
V�

h+1 − Vπk

h+1

)
∣∣∣∣∣ =
∣∣∣∣∣

H∑

h=1

K∑

k=1

Yk,h

∣∣∣∣∣

�

√
TC2

w log
1

δ
+ Cw log

1

δ
=
√

H2T log
1

δ
+ H log

1

δ
(E.3)

with probability exceeding 1 − δ.
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REGRET-OPTIMAL MODEL-FREE REINFORCEMENT LEARNING 1027

Combining (E.2) and (E.3) with the definition (4.22a) of R1 immediately leads to the claimed bound.

E.2 Bounding the term R2

In view of the definition of BR, kh(s
k
h, ak

h) in line ?? of Algorithm 2, we can decompose R2 (cf. (4.22b))

as follows:

R2 =
H∑

h=1

(
1 +

1

H

)h−1

cb

√
H log

SAT

δ

K∑

k=1

√√√√σ
adv,k
h (sk

h, ak
h) −
(
μ

adv,k
h (sk

h, ak
h)
)2

Nk
h(s

k
h, ak

h)

+
H∑

h=1

(
1 +

1

H

)h−1

cb

√
log

SAT

δ

K∑

k=1

√√√√σ
ref,k
h (sk

h, ak
h) −
(
μ

ref,k
h (sk

h, ak
h)
)2

Nk
h(s

k
h, ak

h)

�

√
H log

SAT

δ

H∑

h=1

K∑

k=1

√√√√σ
adv,k
h (sk

h, ak
h) −
(
μ

adv,k
h (sk

h, ak
h)
)2

Nk
h(s

k
h, ak

h)

+
√

log
SAT

δ

H∑

h=1

K∑

k=1

√√√√σ
ref,k
h (sk

h, ak
h) −
(
μ

ref,k
h (sk

h, ak
h)
)2

Nk
h(s

k
h, ak

h)
, (E.4)

where the last relation holds due to (E.1). In what follows, we intend to bound these two terms separately.

Step 1: upper bounding the first term in (E.4). Toward this, we make the observation that

K∑

k=1

√√√√σ
adv,k
h (sk

h, ak
h) −
(
μ

adv,k
h (sk

h, ak
h)
)2

Nk
h(s

k
h, ak

h)
≤

K∑

k=1

√√√√σ
adv,k
h (sk

h, ak
h)

Nk
h(s

k
h, ak

h)

=
K∑

k=1

√√√√
∑Nk

h(sk
h,ak

h)

n=1 η
Nk

h(sk
h,ak

h)
n

(
Vkn

h+1(s
kn

h+1) − V
R,kn

h+1 (skn

h+1)
)2

Nk
h(s

k
h, ak

h)
,

(E.5)

where the second line follows from the update rule of σ adv
h , k in (C38). Combining the relation

|Vk
h+1(s

k
h) − VR, kh+1(s

k
h)| ≤ 2 (cf. (4.15)) and the property

∑Nk
h(sk

h,ak
h)

n=1 η
Nk

h(sk
h,ak

h)
n ≤ 1 (cf. (4.3)) with

(E.5) yields

K∑

k=1

√√√√σ
adv,k
h (sk

h, ak
h) −
(
μ

adv,k
h (sk

h, ak
h)
)2

Nk
h(s

k
h, ak

h)
≤

K∑

k=1

√
4

Nk
h(s

k
h, ak

h)
≤ 2

√
SAK. (E.6)
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1028 G. LI ET AL.

Here, the last inequality holds due to the following fact:

K∑

k=1

√
1

Nk
h(s

k
h, ak

h)
=

∑

(s,a)∈S×A

NK
h (s,a)∑

n=1

√
1

n
≤ 2

∑

(s,a)∈S×A

√
NK

h (s, a)

≤ 2

√ ∑

(s,a)∈S×A

1 ·
√ ∑

(s,a)∈S×A

NK
h (s, a) = 2

√
SAK, (E.7)

where the last line arises from Cauchy–Schwarz and the basic fact that
∑

(s,a) NK
h (s, a) = K.

Step 2: upper bounding the second term in (E.4). Recalling the update rules of μ
ref,k
h and σ

ref,k
h in

(C52), we have

K∑

k=1

√√√√σ
ref,k
h (sk

h, ak
h) −
(
μ

ref,k
h (sk

h, ak
h)
)2

Nk
h(s

k
h, ak

h)

=
K∑

k=1

√
1

Nk
h(s

k
h, ak

h)

√√√√
∑Nk

h(sk
h,ak

h)

n=1

(
V

R,kn

h+1 (skn

h+1)
)2

Nk
h(s

k
h, ak

h)
−
(∑Nk

h(sk
h,ak

h)

n=1 V
R,kn

h+1 (skn

h+1)

Nk
h(s

k
h, ak

h)

)2

︸ ︷︷ ︸
=:Jk

h

. (E.8)

Additionally, the quantity Jk
h defined in (E.8) obeys

(Jk
h)

2 ≤
∑Nk

h(sk
h,ak

h)

n=1

(
V

R,kn

h+1 (skn

h+1)
)2 −
(
V�

h+1(s
kn

h+1)
)2

Nk
h(s

k
h, ak

h)

+
∑Nk

h(sk
h,ak

h)

n=1

(
V�

h+1(s
kn

h+1)
)2

Nk
h(s

k
h, ak

h)
−
(∑Nk

h(sk
h,ak

h)

n=1 V�
h+1(s

kn

h+1)

Nk
h(s

k
h, ak

h)

)2

≤
∑Nk

h(sk
h,ak

h)

n=1 2H
(
V

R,kn

h+1 (skn

h+1) − V�
h+1(s

kn

h+1)
)

Nk
h(s

k
h, ak

h)︸ ︷︷ ︸
=:J1

+
∑Nk

h(sk
h,ak

h)

n=1

(
V�

h+1(s
kn

h+1)
)2

Nk
h(s

k
h, ak

h)
−
(∑Nk

h(sk
h,ak

h)

n=1 V�
h+1(s

kn

h+1)

Nk
h(s

k
h, ak

h)

)2

︸ ︷︷ ︸
=:J2

, (E.9)

which arises from the fact that H ≥ V
R,kn

h+1 ≥ V�
h+1 ≥ 0 for all kn ≤ K and hence

(
V

R,kn

h+1 (skn

h+1)
)2 −
(
V�

h+1(s
kn

h+1)
)2 =

(
V

R,kn

h+1 (skn

h+1) + V�
h+1(s

kn

h+1)
)(

V
R,kn

h+1 (skn

h+1) − V�
h+1(s

kn

h+1)
)

≤ 2H
(
V

R,kn

h+1 (skn

h+1) − V�
h+1(s

kn

h+1)
)
.

With (E.9) in mind, we shall proceed to bound each term in (E.9) separately.
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REGRET-OPTIMAL MODEL-FREE REINFORCEMENT LEARNING 1029

• The first term J1 can be straightforwardly bounded as follows:

J1 =
2H

Nk
h(s

k
h, ak

h)

( Nk
h(sk

h,ak
h)∑

n=1

(
V

R,kn

h+1 (skn

h+1) − V�
h+1(s

kn

h+1)
)

1

(
V

R,kn

h+1 (skn

h+1) − V�
h+1(s

kn

h+1) ≤ 3
)

+ Φk
h(sk

h, ak
h)

)

≤ 6H +
2H

Nk
h(s

k
h, ak

h)
Φk

h(sk
h, ak

h), (E.10)

where Φk
h(sk

h, ak
h) is defined as

Φk
h(sk

h, ak
h) :=

Nk
h(sk

h,ak
h)∑

n=1

(
V

R,kn

h+1 (skn

h+1) − V�
h+1(s

kn

h+1)
)
1

(
V

R,kn

h+1 (skn

h+1) − V�
h+1(s

kn

h+1) > 3
)

. (E.11)

• When it comes to the second term J2, we claim that

J2 � Varh,sk
h,ak

h
(V�

h+1) + H2

√√√√ log SAT
δ

Nk
h(s

k
h, ak

h)
, (E.12)

which will be justified in Appendix E.2.1.

Plugging (E.10) and (E.12) into (E.9) and (E.8) allows one to demonstrate that

K∑

k=1

√√√√σ
ref,k
h (sk

h, ak
h) −
(
μ

ref,k
h (sk

h, ak
h)
)2

Nk
h(s

k
h, ak

h)

�

K∑

k=1

√
1

Nk
h(s

k
h, ak

h)

√√√√√H +
HΦk

h(sk
h, ak

h)

Nk
h(s

k
h, ak

h)
+ Varh,sk

h,ak
h
(V�

h+1) + H2

√√√√ log SAT
δ

Nk
h(s

k
h, ak

h)

≤
K∑

k=1

(√
H

Nk
h(s

k
h, ak

h)
+

√
HΦk

h(sk
h, ak

h)

Nk
h(s

k
h, ak

h)
+

√√√√Varh,sk
h,ak

h
(V�

h+1)

Nk
h(s

k
h, ak

h)
+

H log1/4 SAT
δ(

Nk
h(s

k
h, ak

h)
)3/4

)

�
√

HSAK +
K∑

k=1

√
HΦk

h(sk
h, ak

h)

Nk
h(s

k
h, ak

h)
+

K∑

k=1

√√√√Varh,sk
h,ak

h
(V�

h+1)

Nk
h(s

k
h, ak

h)
+ H(SA)3/4

(
K log

SAT

δ

)1/4

, (E.13)

where the last line follows from (E.7) and (D.4).

Step 3: putting together the preceding results.
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1030 G. LI ET AL.

Finally, the above results in (E.6) and (E.13) taken collectively with (E.4) lead to

R2 �

√
H3SAK log

SAT

δ
+

H∑

h=1

√
log

SAT

δ

K∑

k=1

√√√√σ
ref,k
h (sk

h, ak
h) −
(
μ

ref,k
h (sk

h, ak
h)
)2

Nk
h(s

k
h, ak

h)

�

√
H3SAK log

SAT

δ
+ H2(SA)3/4K1/4 log5/4 SAT

δ
+
√

log
SAT

δ

H∑

h=1

K∑

k=1

√√√√Varh,sk
h,ak

h
(V�

h+1)

Nk
h(s

k
h, ak

h)

+
√

H log
SAT

δ

H∑

h=1

K∑

k=1

√
Φk

h(sk
h, ak

h)

Nk
h(s

k
h, ak

h)

(i)

�

√
H3SAK log

SAT

δ
+ H2(SA)3/4K1/4 log5/4 SAT

δ
+ H4SA log2 SAT

δ

(ii)

�

√
H3SAK log

SAT

δ
+ H4SA log2 SAT

δ
=
√

H2SAT log
SAT

δ
+ H4SA log2 SAT

δ
.

Here, (i) holds due to the following two claimed inequalities:

H∑

h=1

K∑

k=1

√√√√Varh,sk
h,ak

h
(V�

h+1)

Nk
h(s

k
h, ak

h)
�

√
H2SAT log

SAT

δ
+ H4SA log

SAT

δ
, (E.14)

H∑

h=1

K∑

k=1

√
Φk

h(sk
h, ak

h)

Nk
h(s

k
h, ak

h)
� H7/2SA log3/2 SAT

δ
, (E.15)

whose proofs are postponed to Appendix E.2.2 and Appendix E.2.3, respectively. Additionally, the

inequality (ii) above is valid since

H2(SA)3/4K1/4 log5/4 SAT

δ
=
(

H5/4(SA)1/2 log
SAT

δ

)
·
(

H3SAK log
SAT

δ

)1/4

� H2.5SA log2 SAT

δ
+
√

H3SAK log
SAT

δ
= H2.5SA log2 SAT

δ
+
√

H2SAT log
SAT

δ

due to the Cauchy–Schwarz inequality. This concludes the proof of the advertised upper bound on R2.

E.2.1 Proof of the inequality (E12). Akin to the proof of I1
4 in (C.55), let

W i
h+1 := (V�

h+1)
2 and ui

h(s, a, N) :=
1

N
.

By observing and setting

Cu :=
1

N
, ‖W i

h+1‖∞ ≤ H2 =: Cw,
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REGRET-OPTIMAL MODEL-FREE REINFORCEMENT LEARNING 1031

we can apply Lemma 7 to yield

∣∣∣∣
1

Nk
h

Nk
h∑

n=1

(
V�

h+1(s
kn

h+1)
)2 − Ph,sk

h,ak
h
(V�

h+1)
2

∣∣∣∣ =
∣∣∣∣

1

Nk
h

Nk
h∑

n=1

(
Pkn

h − Ph,sk
h,ak

h

)(
V�

h+1

)2
∣∣∣∣ � H2

√√√√ log2 SAT
δ

Nk
h

with probability at least 1 − δ. Similarly, by applying the trivial bound ‖V�
h+1‖∞ ≤ H and Lemma 7,

we can obtain

∣∣∣∣
1

Nk
h

Nk
h∑

n=1

V�
h+1(s

kn

h+1) − Ph,sk
h,ak

h
V�

h+1

∣∣∣∣ =
∣∣∣∣

1

Nk
h

Nk
h∑

n=1

(
Pkn

h − Ph,sk
h,ak

h

)
V�

h+1

∣∣∣∣ � H

√√√√ log SAT
δ

Nk
h

with probability at least 1 − δ.

Recalling from (4.6) the definition

Varh,sk
h,ak

h
(V�

h+1) = Ph,sk
h,ak

h
(V�

h+1)
2 −
(
Ph,sk

h,ak
h
V�

h+1

)2
,

we can use the preceding two bounds and the triangle inequality to show that

∣∣∣∣
1

Nk
h

Nk
h∑

n=1

V�
h+1(s

kn

h+1)
2 −
(

1

Nk
h

Nk
h∑

n=1

V�
h+1(s

kn

h+1)

)2

− Varh,sk
h,ak

h
(V�

h+1)

∣∣∣∣

≤
∣∣∣∣

1

Nk
h

Nk
h∑

n=1

V�
h+1(s

kn

h+1)
2 − Ph,sk

h,ak
h
(V�

h+1)
2

∣∣∣∣+
∣∣∣∣
(

1

Nk
h

Nk
h∑

n=1

V�
h+1(s

kn

h+1)

)2

− (Ph,sk
h,ak

h
V�

h+1)
2

∣∣∣∣

� H2

√√√√ log SAT
δ

Nk
h

+
∣∣∣∣

1

Nk
h

Nk
h∑

n=1

V�
h+1(s

kn

h+1) − Ph,sk
h,ak

h
V�

h+1

∣∣∣∣ ·
∣∣∣∣

1

Nk
h

Nk
h∑

n=1

V�
h+1(s

kn

h+1) + Ph,sk
h,ak

h
V�

h+1

∣∣∣∣

� H2

√√√√ log SAT
δ

Nk
h

with probability at least 1 − δ, where the last line also uses the fact that ‖V�
h+1‖∞ ≤ H.

E.2.2 Proof of the inequality (E14) To begin with, we make the observation that

K∑

k=1

√√√√Varh,sk
h,ak

h
(V�

h+1)

Nk
h(s

k
h, ak

h)
=

∑

(s,a)∈S×A

NK
h (s,a)∑

n=1

√
Varh,s,a(V

�
h+1)

n
≤ 2

∑

(s,a)∈S×A

√
NK

h (s, a)Varh,s,a(V
�
h+1),
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1032 G. LI ET AL.

which relies on the fact that
∑N

n=1 1/
√

n ≤ 2
√

N. It then follows that

H∑

h=1

K∑

k=1

√√√√Varh,sk
h,ak

h
(V�

h+1)

Nk
h(s

k
h, ak

h)
≤ 2

H∑

h=1

∑

(s,a)∈S×A

√
NK

h (s, a)Varh,s,a(V
�
h+1)

≤ 2

√√√√√
H∑

h=1

∑

(s,a)∈S×A

1 ·

√√√√√
H∑

h=1

∑

(s,a)∈S×A

NK
h (s, a)Varh,s,a(V

�
h+1)

= 2
√

HSA

√√√√
H∑

h=1

K∑

k=1

Varh,sk
h,ak

h
(V�

h+1) , (E.16)

where the second inequality invokes the Cauchy–Schwarz inequality.

The rest of the proof is then dedicated to bounding (E.16). Toward this end, we first decompose

H∑

h=1

K∑

k=1

Varh,sk
h,ak

h
(V�

h+1) ≤
H∑

h=1

K∑

k=1

Varh,sk
h,ak

h

(
Vπk

h+1

)
+

H∑

h=1

K∑

k=1

∣∣∣Varh,sk
h,ak

h
(V�

h+1) − Varh,sk
h,ak

h
(Vπk

h+1)

∣∣∣

(ii)

� HT + H3 log
SAT

δ
+

H∑

h=1

K∑

k=1

∣∣∣Varh,sk
h,ak

h
(V�

h+1) − Varh,sk
h,ak

h
(Vπk

h+1)

∣∣∣ , (E.17)

where (ii) follows directly from (30, Lemma C.5). The second term on the right-hand side of (E.17) can

be bounded as follows:

H∑

h=1

K∑

k=1

∣∣∣Varh,sk
h,ak

h
(V�

h+1) − Varh,sk
h,ak

h
(Vπk

h+1)

∣∣∣

=
H∑

h=1

K∑

k=1

∣∣∣Ph,sk
h,ak

h
(V�

h+1)
2 −
(
Ph,sk

h,ak
h
V�

h+1

)2 − Ph,sk
h,ak

h
(Vπk

h+1)
2 +
(
Ph,sk

h,ak
h
Vπk

h+1

)2∣∣∣

≤
H∑

h=1

K∑

k=1

{ ∣∣∣Ph,sk
h,ak

h

((
V�

h+1 − Vπk

h+1

)(
V�

h+1 + Vπk

h+1

))∣∣∣+
∣∣∣
(
Ph,sk

h,ak
h
V�

h+1

)2 −
(
Ph,sk

h,ak
h
Vπk

h+1

)2∣∣∣
}

(i)
≤ 4H

H∑

h=1

K∑

k=1

Ph,sk
h,ak

h

(
V�

h+1 − Vπk

h+1

)

= 4H

H∑

h=1

K∑

k=1

{
V�

h+1(s
k
h+1) − Vπk

h+1(s
k
h+1) +

(
Ph,sk

h,ak
h
− Pk

h

)(
V�

h+1 − Vπk

h+1

)}
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(ii)
≤ 4H

H∑

h=1

K∑

k=1

(
φk

h+1 + δk
h+1

) (iii)

� H2

√
T log

SAT

δ
+ H4

√
SAT log

SAT

δ
+ H4SA

� H4

√
SAT log

SAT

δ
+ H4SA, (E.18)

where we define

δk
h+1 := V

UCB,k
h+1 (sk

h+1) − Vπk

h+1(s
k
h+1), φk

h+1 :=
(
Ph,sk

h,ak
h
− Pk

h

)(
V�

h+1 − Vπk

h+1

)
. (E.19)

We shall take a moment to explain how we derive (E.18). The inequality (i) holds by observing that

V�
h+1 − Vπk

h+1 ≥ 0 and
∣∣∣Ph,sk

h,ak
h

((
V�

h+1 − Vπk

h+1

)(
V�

h+1 + Vπk

h+1

))∣∣∣ ≤ Ph,sk
h,ak

h

(
V�

h+1 − Vπk

h+1

)(∥∥V�
h+1

∥∥
∞ +
∥∥Vπk

h+1

∥∥
∞
)

≤ 2HPh,sk
h,ak

h

(
V�

h+1 − Vπk

h+1

)
,

∣∣∣∣
(
Ph,sk

h,ak
h
V�

h+1

)2 −
(
Ph,sk

h,ak
h
Vπk

h+1

)2
∣∣∣∣ ≤
∣∣∣Ph,sk

h,ak
h

(
V�

h+1 − Vπk

h+1

)∣∣∣ ·
∣∣∣Ph,sk

h,ak
h

(
V�

h+1 + Vπk

h+1

)∣∣∣

≤ 2HPh,sk
h,ak

h

(
V�

h+1 − Vπk

h+1

)
;

(ii) is valid since VUCB
h+1 ≥ V�

h+1; and (iii) results from the following two bounds:

H∑

h=1

K∑

k=1

δk
h+1 � H3

√
SAT log

SAT

δ
+ H3SA, (E.20a)

H∑

h=1

K∑

k=1

φk
h+1 � H

√
T log

SAT

δ
, (E.20b)

which come, respectively, from (30, Eqn. (C.13)) and the argument for (30, Eqn. (C.12)).4

As a consequence, substituting (E.17) and (E.18) into (E.16), we reach

H∑

h=1

K∑

k=1

√√√√Varh,sk
h,ak

h
(V�

h+1)

Nk
h(s

k
h, ak

h)
�

√
HSA

√

HT + H4

√
SAT log

SAT

δ
+ H4SA

�
√

H2SAT + H5/2(SA)3/4
(

T log
SAT

δ

)1/4
+ H2.5SA

=
√

H2SAT +
(

H2SAT log
SAT

δ

)1/4(
H4SA

)1/2 + H2.5SA

�

√
H2SAT log

SAT

δ
+ H4SA log

SAT

δ
,

4 Note that the notation δk
h

used in ([30], Section C.2) and the one in the proof of ([30], Theorem 1) are different; here, we need

to adopt the notation used in the proof of ([30], Theorem 1).
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1034 G. LI ET AL.

where we have applied the basic inequality 2ab ≤ a2 + b2 for any a, b ≥ 0.

E.2.3 Proof of the inequality (E15) First, it is observed that

K∑

k=1

√
Φk

h(sk
h, ak

h)

Nk
h(s

k
h, ak

h)
=

∑

(s,a)∈S×A

NK
h (s,a)∑

n=1

√
Φ

kn(s,a)
h (s, a)

n

≤
∑

(s,a)∈S×A

√
Φ

NK
h (s,a)

h (s, a) log T ≤
√√√√SA

∑

(s,a)∈S×A

Φ
NK

h (s,a)

h (s, a) log T . (E.21)

Here, the first inequality holds by the monotonicity property of Φk
h(sh, ah) with respect to k (see its

definition in (E.11)) due to the same property of VR
h+1, k, while the second inequality comes from

Cauchy–Schwarz.

To continue, note that

H∑

h=1

√√√√
∑

(s,a)∈S×A

Φ
NK

h (s,a)

h (s, a)

=
H∑

h=1

√√√√
K∑

k=1

(
V

R,k
h+1(s

k
h+1) − V�

h+1(s
k
h+1)
)
1

(
V

R,k
h+1(s

k
h+1) − V�

h+1(s
k
h+1) > 3

)

≤
H∑

h=1

√√√√
K∑

k=1

(
Vk

h+1(s
k
h+1) + 2 − V

LCB,k
h+1 (sk

h+1)
)
1

(
Vk

h+1(s
k
h+1) + 2 − V

LCB,k
h+1 (sk

h+1) > 3
)

=
H∑

h=1

√√√√
K∑

k=1

(
Vk

h+1(s
k
h+1) + 2 − V

LCB,k
h+1 (sk

h+1)
)
1

(
Vk

h+1(s
k
h+1) − V

LCB,k
h+1 (sk

h+1) > 1
)

≤
H∑

h=1

√√√√
K∑

k=1

3
(

Vk
h+1(s

k
h+1) − V

LCB,k
h+1 (sk

h+1)
)
1

(
Vk

h+1(s
k
h+1) − V

LCB,k
h+1 (sk

h+1) > 1
)

≤
√

H

√√√√
H∑

h=1

K∑

k=1

3
(

Vk
h+1(s

k
h+1) − V

LCB,k
h+1 (sk

h+1)
)
1

(
Vk

h+1(s
k
h+1) − V

LCB,k
h+1 (sk

h+1) > 1
)

, (E.22)

where the first inequality follows from Lemma 4 (cf. (4.15)) and Lemma 3 (so that VR
h+1, k(sk

h+1) −
V�

h+1(s
k
h+1) ≤ Vk

h+1(s
k
h+1)+2−V

LCB,k
h+1 (sk

h+1)), the penultimate inequality holds since 1 ≤ Vk
h+1(s

k
h+1)−

V
LCB,k
h+1 (sk

h+1) when �

(
Vk

h+1(s
k
h+1) − V

LCB,k
h+1 (sk

h+1) > 1
)

�= 0, and the last inequality is a consequence

of the Cauchy–Schwarz inequality.
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REGRET-OPTIMAL MODEL-FREE REINFORCEMENT LEARNING 1035

Combining the above relation with (C.91) and applying the triangle inequality, we can demonstrate

that

H∑

h=1

√√√√
∑

(s,a)∈S×A

Φ
NK

h (s,a)

h (s, a)

�
√

H

√√√√
H∑

h=1

K∑

k=1

(
Qk

h+1(s
k
h+1, ak

h+1) − Q
LCB,k
h+1 (sk

h+1, ak
h+1)
)
1

(
Qk

h+1(s
k
h+1, ak

h+1) − Q
LCB,k
h+1 (sk

h+1, ak
h+1) > 1

)

�

√
H7SA log

SAT

δ
,

where the second inequality follows directly from (4.16), and the first inequality is valid since

Vk
h+1(s

k
h+1) − V

LCB,k
h+1 (sk

h+1) ≤ Qk
h+1(s

k
h+1, ak

h+1) − Q
LCB,k
h+1 (sk

h+1, ak
h+1).

Substitution into (E.21) gives

H∑

h=1

K∑

k=1

√
Φk

h(sk
h, ak

h)

Nk
h(s

k
h, ak

h)
�
(√

SA log T
)

·
√

H7SA log
SAT

δ
� H7/2SA log3/2 SAT

δ
,

thus concluding the proof.

E.3 Bounding the term R3

For notational convenience, we shall use the short-hand notation

ki := ki
h(s

k
h, ak

h)

whenever it is clear from the context. This allows us to decompose the expression of R3 in (4.22c) as

follows:

R3 :=
H∑

h=1

K∑

k=1

λk
h

(
Pk

h − Ph,sk
h,ak

h

)(
V�

h+1 − VR, kh+1

)

︸ ︷︷ ︸
=:R

1
3

+
H∑

h=1

K∑

k=1

λk
h

∑
i≤Nk

h(sk
h,ak

h)

(
V

R,ki

h+1(s
ki

h+1) − Ph,sk
h,ak

h
VR, kh+1

)

Nk
h(s

k
h, ak

h)︸ ︷︷ ︸
=:R

2
3

with

λk
h :=
(

1 +
1

H

)h−1 NK−1
h (sk

h,ak
h)∑

n=Nk
h(sk

h,ak
h)

ηn

Nk
h(sk

h,ak
h)

≤
(

1 +
1

H

)h

≤
(

1 +
1

H

)H

≤ e. (E.23)
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1036 G. LI ET AL.

Here, the first inequality in (E.23) follows from the property
∑∞

N=n ηN
n ≤ 1 + 1/H in Lemma 1, while

the last inequality in (E.23) results from (E.1). In the sequel, we shall control each of these two terms

separately.

Step 1: upper bounding R
1
3. We plan to control this term by means of Lemma 8. For notational

simplicity, let us define

N(s, a, h) := NK−1
h (s, a)

and set

W i
h+1 := VR, kh+1 − V�

h+1 and ui
h(s

i
h, ai

h) := λi
h =
(

1 +
1

H

)h−1 N(si
h,ai

h,h)∑

n=Ni
h(s

i
h,ai

h)

ηn

Ni
h(s

i
h,ai

h)
.

Given the fact that VR, kh+1(s), V�
h+1(s) ∈ [0, H] and the condition (E.23), it is readily seen that

∣∣ui
h(s

i
h, ai

h)
∣∣ ≤ e =: Cu and

∥∥W i
h+1

∥∥
∞ ≤ H =: Cw.

Apply Lemma 8 to yield

∣∣∣∣∣

H∑

h=1

K∑

k=1

λk
h

(
Pk

h − Ph,sk
h,ak

h

)(
V�

h+1 − V
R,k
h+1

)
∣∣∣∣∣ =
∣∣∣∣∣

H∑

h=1

K∑

k=1

Xk,h

∣∣∣∣∣

�

√√√√C2
uCwHSA

H∑

h=1

K∑

i=1

Ei,h−1

[
Pi

hW i
h+1

]
log

K

δ
+ CuCwHSA log

K

δ

�

√√√√H2SA

H∑

h=1

K∑

k=1

Ei,h−1

[
Pk

h

(
V

R,k
h+1 − V�

h+1

)]
log

T

δ
+ H2SA log

T

δ

�

√√√√H2SA

{ H∑

h=1

K∑

k=1

Ph,sk
h,ak

h

(
V

R,k
h+1 − V�

h+1

)}
log

T

δ
+ H2SA log

T

δ
(E.24)

with probability at least 1 − δ/2.

It then comes down to controlling the sum
∑H

h=1

∑K
k=1 Ph,sk

h,ak
h

(
VR

h+1, k − V�
h+1

)
. Toward this end,

we first single out the following useful fact:

H∑

h=1

K∑

k=1

Pk
h

(
VR, kh+1 − V�

h+1

) (i)
≤

H∑

h=1

K∑

k=1

Pk
h

(
Vk

h+1 + 2 − V�
h+1

)

≤ 2HK +
H∑

h=1

K∑

k=1

(
Vk

h+1(s
k
h+1) − V�

h+1(s
k
h+1)
) (ii)

�

√
H7SAK log

SAT

δ
+ H3SA + HK (E.25)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
a
ia

i/a
rtic

le
/1

2
/2

/9
6
9
/6

9
2
7
2
5
5
 b

y
 U

n
iv

e
rs

ity
 o

f P
e
n
n
s
y
lv

a
n
ia

 u
s
e
r o

n
 1

5
 A

p
ril 2

0
2
3



REGRET-OPTIMAL MODEL-FREE REINFORCEMENT LEARNING 1037

with probability at least 1 − δ/4, where (i) holds according to (4.15), and (ii) is valid since

H∑

h=1

K∑

k=1

(
Vk

h+1(s
k
h+1) − V�

h+1(s
k
h+1)
)

≤
H∑

h=1

K∑

k=1

(
V
UCB,k
h+1 (sk

h+1) − Vπk

h+1(s
k
h+1)
)

�

√
H7SAK log

SAT

δ
+ H3SA,

where the first inequality follows since V
UCB,k
h+1 ≥ Vk

h+1 and V�
h+1 ≥ Vπk

h+1, and the second inequality

comes from (E20a). Additionally, invoking Freedman’s inequality (see Lemma 8) with ch = 1 and

W̃ i
h = VR

h+1, k − V�
h+1 (so that 0 ≤ W̃ i

h(s) ≤ H) directly leads to

∣∣∣∣∣

H∑

h=1

K∑

k=1

(
Pk

h − Ph,sk
h,ak

h

)(
V

R,k
h+1 − V�

h+1

)
∣∣∣∣∣ �
√

TH2 log
1

δ
+ H log

1

δ
�
√

H3K log
1

δ

with probability at least 1 − δ/4, which taken collectively with (E.25) reveals that

H∑

h=1

K∑

k=1

Psk
h,ak

h,h

(
V

R,k
h+1 − V�

h+1

)
≤

H∑

h=1

K∑

k=1

Pk
h

(
V

R,k
h+1 − V�

h+1

)
+

∣∣∣∣∣

H∑

h=1

K∑

k=1

(
Pk

h − Psk
h,ak

h,h

)(
V

R,k
h+1 − V�

h+1

)
∣∣∣∣∣

�

√
H7SAK log

SAT

δ
+ H3SA + HK (E.26)

with probability at least 1 − δ/2. Substitution into (E.24) then gives

∣∣∣∣
H∑

h=1

K∑

k=1

λk
h

(
Pk

h − Ph,sk
h,ak

h

)(
V�

h+1 − V
R,k
h+1

)∣∣∣∣

�

√√√√H2SA

H∑

h=1

K∑

k=1

Ph,sk
h,ak

h

(
V

R,k
h+1 − V�

h+1

)
log

T

δ
+ H2SA log

T

δ

�

√√√√H2SA

(√
H7SAK log

SAT

δ
+ H3SA + HK

)
log

T

δ
+ H2SA log

T

δ

�

√
H2SA

(
H6SA log

SAT

δ
+ H3SA + HK

)
log

T

δ
+ H2SA log

T

δ

�

√
H3SAK log

SAT

δ
+ H4SA log

SAT

δ

=
√

H2SAT log
SAT

δ
+ H4SA log

SAT

δ
(E.27)

with probability exceeding 1 − δ, where the third line holds since (due to Cauchy–Schwarz)
√

H7SAK log
SAT

δ
=
√

H6SA log
SAT

δ

√
HK � H6SA log

SAT

δ
+ HK.
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1038 G. LI ET AL.

Step 2: upper bounding R
2
3. We start by making the following observation:

R
2
3 ≤

H∑

h=1

K∑

k=1

λk
h

Nk
h(s

k
h, ak

h)

∑

i≤Nk
h(sk

h,ak
h)

(
V

R,ki

h+1(s
ki

h+1) − Ph,sk
h,ak

h
VR, kh+1

)

=
H∑

h=1

K∑

k=1

NK−1
h (sk

h,ak
h)∑

n=Nk
h(sk

h,ak
h)

λk
h

n

(
VR, kh+1(s

k
h+1) − VR, kh+1(s

k
h+1) +

(
Pk

h − Ph,sk
h,ak

h

)
VR, kh+1

)

≤ (e log T)

H∑

h=1

K∑

k=1

(
VR, kh+1(s

k
h+1) − VR, kh+1(s

k
h+1)
)
+

H∑

h=1

K∑

k=1

NK−1
h (sk

h,ak
h)∑

n=Nk
h(sk

h,ak
h)

λk
h

n

(
Pk

h − Ph,sk
h,ak

h

)
V�

h+1

+
H∑

h=1

K∑

k=1

NK−1
h (sk

h,ak
h)∑

n=Nk
h(sk

h,ak
h)

λk
h

n

(
Pk

h − Ph,sk
h,ak

h

)(
VR, kh+1 − V�

h+1

)
, (E.28)

where the first inequality comes from the monotonicity property VR, kh+1 ≥ V
R,k+1
h+1 ≥ · · · ≥ VR, kh+1,

and the last line follows from the facts that
∑NK−1

h (sk
h,ak

h)

n=Nk
h(sk

h,ak
h)

1
n

≤ log T and λk
h ≤ e (cf. (E.23)). In what

follows, we shall control the three terms in (E.28) separately.

• The first term in (E.28) can be controlled by Lemma 4 (cf. (4.16)) as follows:

H∑

h=1

K∑

k=1

(
VR, kh+1(s

k
h+1) − VR, kh+1(s

k
h+1)
)
� H6SA log

SAT

δ
(E.29)

with probability at least 1 − δ/3.

• To control the second term in (E.28), we abuse the notation by setting

N(s, a, h) := NK−1
h (s, a)

and

W i
h+1 := V�

h+1, and ui
h(s

i
h, ai

h) :=
N(si

h,ai
h,h)∑

n=Ni
h(s

i
h,ai

h)

λi
h

n
,

which clearly satisfy

∣∣ui
h(s

i
h, ai

h)
∣∣ ≤ e

N(si
h,ai

h,h)∑

n=Ni
h(s

i
h,ai

h)

1

n
≤ e log T =: Cu and ‖W i

h+1‖∞ ≤ H =: Cw.
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REGRET-OPTIMAL MODEL-FREE REINFORCEMENT LEARNING 1039

Here, we have used the properties
∑NK−1

h (si
h,ai

h)

n=Ni
h(s

i
h,ai

h)

1
n

≤ log T and λk
h ≤ e (cf. (E.23)). With these in

place, applying Lemma 8 reveals that

∣∣∣∣∣∣∣

H∑

h=1

K∑

k=1

NK−1
h (sk

h,ak
h)∑

n=Nk
h(sk

h,ak
h)

λk
h

n

(
Pk

h − Ph,sk
h,ak

h

)
V�

h+1

∣∣∣∣∣∣∣
=

∣∣∣∣∣

H∑

h=1

K∑

k=1

Xk,h

∣∣∣∣∣

�

√√√√C2
uHSA

H∑

h=1

K∑

i=1

Ei,h−1

[∣∣(Pi
h − Ph,si

h,ai
h
)W i

h+1

∣∣2
]

log
T

δ
+ CuCwHSA log

T

δ

(i)
�

√√√√
H∑

h=1

K∑

k=1

Varh,sk
h,ak

h
(V�

h+1) · HSA log3 T

δ
+ H2SA log2 T

δ

(ii)

�

√
HSA
(
HT + H4

√
SAT
)

log4 SAT

δ
+ H2SA log2 T

δ

�

√
HSA
(
HT + H7SA

)
log4 SAT

δ
+ H2SA log2 T

δ

(iii)

�

√
H2SAT log4 SAT

δ
+ H4SA log2 SAT

δ
(E.30)

with probability at least 1 − δ/3. Here, (i) comes from the definition in (4.6), (ii) holds due to (E.17)

and (E.18) and (iii) is valid since

HT + H4
√

SAT = HT +
√

H7SA ·
√

HT � HT + H7SA

due to the Cauchy–Schwarz inequality.

• Turning attention the third term of (E.28), we need to properly cope with the dependency between

Pk
h and VR

h+1, k. Toward this, we shall resort to the standard epsilon-net argument (see, e.g. [58]),

which will be presented in Appendix E.3.1. The final bound reads like

∣∣∣∣∣∣∣

H∑

h=1

K∑

k=1

NK−1
h (sk

h,ak
h)∑

n=Nk
h(sk

h,ak
h)

λk
h

n

(
Pk

h − Ph,sk
h,ak

h

)(
V

R,K
h+1 − V�

h+1

)
∣∣∣∣∣∣∣
� H4SA log2 SAT

δ
+
√

H3SAK log3 SAT

δ
.

(E.31)

• Combining (E.29), (E.30) and (E.31) with (E.28), we can use the union bound to demonstrate that

R
2
3 ≤ C3,2

{
H6SA log3 SAT

δ
+
√

H2SAT log4 SAT

δ

}
(E.32)

with probability at least 1 − δ, where C3,2 > 0 is some constant.
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1040 G. LI ET AL.

Step 3: final bound of R3. Putting the above results (E.27) and (E.32) together, we immediately

arrive at

R3 ≤
∣∣R1

3

∣∣+ R
2
3 ≤ Cr,3

{
H6SA log3 SAT

δ
+
√

H2SAT log4 SAT

δ

}
(E.33)

with probability at least 1−2δ, where Cr,3 > 0 is some constant. This immediately concludes the proof.

E.3.1 Proof of (E31). Step 1: concentration bounds for a fixed group of vectors. Consider a fixed

group of vectors {Vd
h+1 ∈ RS | 1 ≤ h ≤ H} obeying the following properties:

V�
h+1 ≤ Vd

h+1 ≤ H for1 ≤ h ≤ H. (E.34)

We intend to control the following sum:

H∑

h=1

K∑

k=1

NK−1
h (sk

h,ak
h)∑

n=Nk
h(sk

h,ak
h)

λk
h

n

(
Pk

h − Ph,sk
h,ak

h

)(
Vd

h+1 − V�
h+1

)
.

To do so, we shall resort to Lemma 8. For the moment, let us take N(s, a, h) := NK−1
h (s, a) and

W i
h+1 := Vd

h+1 − V�
h+1, ui

h(s
i
h, ai

h) :=
N(si

h,ai
h,h)∑

n=Ni
h(s

i
h,ai

h)

λi
h

n
.

It is easily seen that

∣∣ui
h(s

i
h, ai

h)
∣∣ ≤ e

N(si
h,ai

h,h)∑

n=Ni
h(s

i
h,ai

h)

1

n
≤ e log T =: Cu and ‖W i

h+1‖∞ ≤ H =: Cw,

which hold due to the facts
∑NK

h (si
h,ai

h)

n=Ni
h(s

i
h,ai

h)

1
n

≤ log T and λk
h ≤ e (cf. (E.23)) as well as the property that

Vd
h+1(s), V�

h+1(s) ∈ [0, H]. Thus, invoking Lemma 8 yields

∣∣∣∣∣∣∣

H∑

h=1

K∑

k=1

NK−1
h (sk

h,ak
h)∑

n=Nk
h(sk

h,ak
h)

λk
h

n

(
Pk

h − Ph,sk
h,ak

h

)(
Vd

h+1 − V�
h+1

)
∣∣∣∣∣∣∣
=

∣∣∣∣∣

H∑

h=1

K∑

k=1

Xk,h

∣∣∣∣∣

�

√√√√C2
uCw

H∑

h=1

K∑

i=1

Ei,h−1

[
Pi

hW i
h+1

]
log

KHSA

δ0

+ CuCw log
KHSA

δ0

�

√√√√H

H∑

h=1

K∑

i=1

Ph,sk
h,ak

h

(
Vd

h+1 − V�
h+1

) (
log2 T

)
log

KHSA

δ0

+ H
(

log T
)

log
KHSA

δ0

(E.35)

with probability at least 1 − δ0, where the choice of δ0 will be revealed momentarily.

Step 2: constructing and controlling an epsilon net. Our argument in Step 1 is only applicable to

a fixed group of vectors. The next step is then to construct an epsilon net that allows one to cover the set
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of interest. Specifically, let us construct an epsilon net Nh+1,α (the value of α will be specified shortly)

for each h ∈ [H] such that:

a) for any Vh+1 ∈ [0, H]S, one can find a point Vnet
h+1 ∈ Nh+1,α obeying

0 ≤ Vh+1(s) − Vnet
h+1(s) ≤ α for alls ∈ S;

b) its cardinality obeys

∣∣Nh+1,α

∣∣ ≤
(H

α

)S

. (E.36)

Clearly, this also means that

∣∣N2,α × N3,α × · · · × NH+1,α

∣∣ ≤
(H

α

)SH

.

Set δ0 = 1
6
δ/
(

H
α

)SH
. Taking (E.35) together the union bound implies that: with probability at least

1 − δ0

(
H
α

)SH = 1 − δ/6, one has

∣∣∣∣∣∣∣

H∑

h=1

K∑

k=1

NK−1
h (sk

h,ak
h)∑

n=Nk
h(sk

h,ak
h)

λk
h

n

(
Pk

h − Ph,sk
h,ak

h

)(
Vnet

h+1 − V�
h+1

)
∣∣∣∣∣∣∣

�

√√√√H

H∑

h=1

K∑

i=1

Ph,sk
h,ak

h

(
Vnet

h+1 − V�
h+1

) (
log2 T

)
log

KHSA

δ0

+ H(log T) log
KHSA

δ0

�

√√√√H2SA

H∑

h=1

K∑

i=1

Ph,sk
h,ak

h

(
Vnet

h+1 − V�
h+1

) (
log2 T

)
log

SAT

δα
+ H2SA log2 SAT

δα
(E.37)

simultaneously for all {Vnet
h+1 | 1 ≤ h ≤ H} obeying Vd

h+1 ∈ Nh+1,α (h ∈ [H]).

Step 3: obtaining uniform bounds. We are now positioned to establish a uniform bound over the

entire set of interest. Consider an arbitrary group of vectors {Vu
h+1 ∈ RS | 1 ≤ h ≤ H} obeying (E.34).

By construction, one can find a group of points
{
Vnet

h+1 ∈ Nh+1,α | h ∈ [H]
}

such that

0 ≤ Vu
h+1(s) − Vnet

h+1(s) ≤ α for all(h, s) ∈ S × [H]. (E.38)
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1042 G. LI ET AL.

It is readily seen that

∣∣∣∣∣∣∣

K∑

k=1

NK−1
h (sk

h,ak
h)∑

n=Nk
h(sk

h,ak
h)

λk
h

n

(
Pk

h − Ph,sk
h,ak

h

)(
Vu

h+1 − Vnet
h+1

)
∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣

K∑

k=1

NK−1
h (sk

h,ak
h)∑

n=Nk
h(sk

h,ak
h)

λk
h

n

(∥∥Pk
h

∥∥
1
+
∥∥Ph,sk

h,ak
h

∥∥
1

)∥∥Vu
h+1 − Vnet

h+1

∥∥
∞

∣∣∣∣∣∣∣

≤ 2eKα log T , (E.39)

where the last inequality follows from
∑NK−1

h (si
h,ai

h)

n=Ni
h(s

i
h,ai

h)

1
n

≤ log T and λk
h ≤ e (cf. (E.23)). Consequently,

by taking α = 1/(SAT), we can deduce that

∣∣∣∣∣∣∣

H∑

h=1

K∑

k=1

NK−1
h (sk

h,ak
h)∑

n=Nk
h(sk

h,ak
h)

λk
h

n

(
Pk

h − Ph,sk
h,ak

h

)(
Vu

h+1 − V�
h+1

)
∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣

H∑

h=1

K∑

k=1

NK−1
h (sk

h,ak
h)∑

n=Nk
h(sk

h,ak
h)

λk
h

n

(
Pk

h − Ph,sk
h,ak

h

)(
Vnet

h+1 − V�
h+1

)
∣∣∣∣∣∣∣

+
H∑

h=1

∣∣∣∣∣∣∣

K∑

k=1

NK−1
h (sk

h,ak
h)∑

n=Nk
h(sk

h,ak
h)

λk
h

n

(
Pk

h − Ph,sk
h,ak

h

)(
Vu

h+1 − Vnet
h+1

)
∣∣∣∣∣∣∣

�

∣∣∣∣∣∣∣

H∑

h=1

K∑

k=1

NK−1
h (sk

h,ak
h)∑

n=Nk
h(sk

h,ak
h)

λk
h

n

(
Pk

h − Ph,sk
h,ak

h

)(
Vnet

h+1 − V�
h+1

)
∣∣∣∣∣∣∣
+ HKα log T

�

√√√√H2SA

H∑

h=1

K∑

i=1

Ph,sk
h,ak

h

(
Vnet

h+1 − V�
h+1

) (
log2 T

)
log

SAT

δα
+ H2SA log2 SAT

δα
+ HKα log T

�

√√√√H2SA

H∑

h=1

K∑

i=1

Ph,sk
h,ak

h

(
Vu

h+1 − V�
h+1

) (
log2 T

)
log

SAT

δ
+ H2SA log2 SAT

δ
, (E.40)

where the last line holds due to the condition (E.38) and our choice of α. To summarize, with probability

exceeding 1 − δ/6, the property (E.40) holds simultaneously for all {Vu
h+1 ∈ RS | 1 ≤ h ≤ H} obeying

(E.34).
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REGRET-OPTIMAL MODEL-FREE REINFORCEMENT LEARNING 1043

Step 4: controlling the original term of interest. With the above union bound in hand, we are

ready to control the original term of interest

H∑

h=1

K∑

k=1

NK−1
h (sk

h,ak
h)∑

n=Nk
h(sk

h,ak
h)

λk
h

n

(
Pk

h − Ph,sk
h,ak

h

)(
VR, kh+1 − V�

h+1

)
. (E.41)

To begin with, it can be easily verified using (4.10) that

V�
h+1 ≤ VR, kh+1 ≤ H for all1 ≤ h ≤ H. (E.42)

Moreover, we make the observation that

H∑

h=1

K∑

k=1

Ph,sk
h,ak

h

(
V

R,K
h+1 − V�

h+1

) (i)
≤

H∑

h=1

K∑

k=1

Ph,sk
h,ak

h

(
V

R,k
h+1 − V�

h+1

)

(ii)
≤
√

H7SAK log
SAT

δ
+ H3SA + HK (E.43)

with probability exceeding 1 − δ/6, where (i) holds because VR
h+1 is monotonically non-increasing (in

view of the monotonicity of Vh(s) in (4.7b) and the update rule in line 16 of Algorithm 3), and (ii)

follows from (E.26). Substitution into (E.40) yields
∣∣∣∣∣∣∣

H∑

h=1

K∑

k=1

NK−1
h (sk

h,ak
h)∑

n=Nk
h(sk

h,ak
h)

λk
h

n

(
Pk

h − Ph,sk
h,ak

h

)(
V

R,K
h+1 − V�

h+1

)
∣∣∣∣∣∣∣

�

√√√√H2SA

H∑

h=1

K∑

i=1

Ph,sk
h,ak

h

(
V

R,K
h+1 − V�

h+1

) (
log2 T

)
log

SAT

δ
+ H2SA log2 SAT

δ

�

√√√√H2SA

{√
H7SAK log

SAT

δ
+ H3SA + HK

}
(

log2 T
)

log
SAT

δ
+ H2SA log2 SAT

δ

�

√
H2SA

{
H6SA log

SAT

δ
+ H3SA + HK

}
log3 SAT

δ
+ H2SA log2 SAT

δ

� H4SA log2 SAT

δ
+
√

H3SAK log3 SAT

δ
, (E.44)

where the penultimate line holds since
√

H7SAK log
SAT

δ
=
√

H6SA log
SAT

δ

√
HK � H6SA log

SAT

δ
+ HK.
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