Information and Inference: A Journal of the IMA (2023) 12, 969-1043
https://doi.org/10.1093/imaiai/iaac034
Advance Access publication on 17 December 2022

Breaking the sample complexity barrier to regret-optimal model-free
reinforcement learning

GEN L1
Department of Statistics and Data Science, The Wharton School, University of Pennsylvania,
Philadelphia, PA 19104, USA

LAIXI SHI
Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh,
PA 15213, USA

YuxiN CHEN
Department of Statistics and Data Science, The Wharton School, University of Pennsylvania,
Philadelphia, PA 19104, USA

AND

YUEJIE CHI
Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh,
PA 15213, USA
TCorresponding author. Email: yuejiechi @cmu.edu —This paper was presented in part at the 2021
Conference on Neural Information Processing Systems (NeurIPS).

[Received on 10 October 2021; revised on 22 August 2022; accepted on 16 October 2022]

Abstract

Achieving sample efficiency in online episodic reinforcement learning (RL) requires optimally balancing
exploration and exploitation. When it comes to a finite-horizon episodic Markov decision process with
S states, A actions and horizon length H, substantial progress has been achieved toward characterizing
the minimax-optimal regret, which scales on the order of v H2SAT (modulo log factors) with T the total
number of samples. While several competing solution paradigms have been proposed to minimize regret,
they are either memory-inefficient, or fall short of optimality unless the sample size exceeds an enormous
threshold (e.g. 5044 poly(H) for existing model-free methods).

To overcome such a large sample size barrier to efficient RL, we design a novel model-free algorithm,
with space complexity O(SAH), that achieves near-optimal regret as soon as the sample size exceeds the
order of SA poly(H). In terms of this sample size requirement (also referred to the initial burn-in cost),
our method improves—by at least a factor of S5A3—upon any prior memory-efficient algorithm that is
asymptotically regret-optimal. Leveraging the recently introduced variance reduction strategy (also called
reference-advantage decomposition), the proposed algorithm employs an early-settled reference update
rule, with the aid of two Q-learning sequences with upper and lower confidence bounds. The design
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principle of our early-settled variance reduction method might be of independent interest to other RL
settings that involve intricate exploration—exploitation trade-offs.
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1. Introduction

Contemporary reinforcement learning (RL) has to deal with unknown environments with unprece-
dentedly large dimensionality. How to make the best use of samples in the face of high-dimensional
state/action space lies at the core of modern RL practice. An ideal RL algorithm would learn to
act favorably even when the number of available data samples scales sub-linearly in the ambient
dimension of the model, i.e. the number of parameters needed to describe the transition dynamics of
the environment. The challenge is further compounded when this task needs to be accomplished with
limited memory.

Simultaneously achieving the desired sample and memory efficiency is particularly challenging
when it comes to online episodic RL scenarios. In contrast to the simulator setting that permits sampling
of any state—action pair, an agent in online episodic RL is only allowed to draw sample trajectories by
executing a policy in the unknown Markov decision process (MDP), where the initial states are pre-
assigned and might even be chosen by an adversary. Careful deliberation needs to be undertaken when
deciding what policies to use to allow for effective interaction with the unknown environment, how to
optimally balance exploitation and exploration and how to process and store the collected information
intelligently without causing redundancy.

1.1 Regret-optimal model-free RL? A sample size barrier

In order to evaluate and compare the effectiveness of RL algorithms in high dimension, a recent
body of works sought to develop a finite-sample theoretical framework to analyze the algorithms of
interest, with the aim of delineating the dependency of algorithm performance on all salient problem
parameters in a non-asymptotic fashion [14, 33]. Such finite-sample guarantees are brought to bear
toward understanding and tackling the challenges in the sample-starved regime commonly encountered
in practice. To facilitate discussion, let us take a moment to summarize the state-of-the-art theory for
episodic finite-horizon MDPs with non-stationary transition kernels, focusing on minimizing cumulative
regret—a metric that quantifies the performance difference between the learned policy and the true
optimal policy—with the fewest number of samples. Here and throughout, we denote by S, A and H the
size of the state space, the size of the action space and the horizon length of the MDP, respectively, and
let T represent the sample size. In addition, the immediate reward gained at each time step is assumed
to lie between O and 1.

Fundamental regret lower bound. Following the arguments in [3, 28], the recent works [15, 29]
developed a fundamental lower bound' on the expected total regret for this setting. Specifically, this
lower bound claims that no matter what algorithm to use, one can find an MDP such that the accumulated

! It is worth emphasizing that [15] adopts the notation T to represent the number of trajectories (with each trajectory containing
H samples), while this paper employs K to denote the number of sample trajectories and 7 = KH the total number of samples.
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regret incurred by the algorithm necessarily exceeds the order of

(Iower bound) V H2SAT, (1.1)

as long as T > H>SA.? This sublinear regret lower bound in turn imposes a sampling limit if one wants
to achieve ¢ average regret.

Model-based RL. Moving beyond the lower bound, let us examine the effectiveness of model-based
RL—an approach that can be decoupled into a model estimation stage (i.e. estimating the transition
kernel using available data) and a subsequent stage of planning using the learned model [2, 7, 20, 28, 48].
In order to ensure a sufficient degree of exploration, [7] came up with an algorithm called UCB-VI that
blends model-based learning and the optimism principle, which achieves a regret bound? 5(v HZSAT)
that nearly attains the lower bound (1.1) as T tends to infinity. Caution needs to be exercised, however,
that existing theory does not guarantee the near optimality of this algorithm unless the sample size T
surpasses

T > SPAHS,

a threshold that is significantly larger than the dimension of the underlying model. This threshold can
also be understood as the initial burn-in cost of the algorithm, namely, a sampling burden needed for
the algorithm to exhibit the desired performance. In addition, model-based algorithms typically require
storing the estimated probability transition kernel, resulting in a space complexity that could be as high
as O(S2AH) [7].

Model-free RL. Another competing solution paradigm is the model-free approach, which circum-
vents the model estimation stage and attempts to learn the optimal values directly [8, 29, 56, 70]. In
comparison with the model-based counterpart, the model-free approach holds the promise of low space
complexity, as it eliminates the need of storing a full description of the model. In fact, in a number of
previous works (e.g. [29, 56]), an algorithm is declared to be model-free only if its space complexity is
0(S2AH) regardless of the sample size 7.

o Memory-efficient model-free methods. [29] proposed the first memory-efficient model-free algo-
rithm—which is an optimistic variant of classical Q-learning—that achieves a regret bound
proportional to /T with a space complexity O(SAH). Compared with the lower bound (1.1),
however, the regret bound in [29] is off by a factor of ~/H and hence suboptimal for problems with
long horizon. This drawback has recently been overcome in [75] by leveraging the idea of variance
reduction (or the so-called ‘reference-advantage decomposition’) for large enough 7. While the
resulting regret matches the information-theoretic limit asymptotically, its optimality in the non-
asymptotic regime is not guaranteed unless the sample size T exceeds (see (75, Lemma 7))

T > SGA4H28,

Consequently, the lower bound developed in [15] for non-stationary finite-horizon MDPs reads £2 (v H3SAK), or equivalently,
2 (vH2SAT) using the notation adopted herein.

2 Given that a trivial upper bound on the regret is 7', one needs to impose a lower bound 7' > HZSA in order for (1.1) to be
meaningful.

3 Here and throughout, we use the standard notation f(n) = O(g(n)) to indicate that f(n)/g(n) is bounded above by a constant
as n grows. The notation O(-) resembles O(-) except that it hides any logarithmic scaling. The notation f(n) = o(g(n)) means that
limp— 00 f(n)/8(n) = 0.
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TABLE 1 Comparisons between prior art and our results for non-stationary episodic MDPs when
T > H?SA. The table includes the order of the regret bound, the range of sample sizes that achieve
the optimal regret O(~H2SAT), and the memory complexity, with all logarithmic factors omitted for
simplicity of presentation. The red text highlights the suboptimal part of the respective algorithms.

Algorithm Regret Range of sample sizes T’ Space
that attain optimal regret complexity

UCB-VI H2SAT + H*S?A [SPAH®, 00) SZAH

(7]

UCB-Q-Hoeffding v HASAT never SAH

[29]

UCB-Q-Bernstein VH3SAT + vV HOS3A3 never SAH

(29]

UCB2-Q-Bernstein VH3SAT + VHOS3A3 never SAH

(8]

UCB-Q-Advantage VHZSAT + H3S2A3 T4 [SCA*H?8 00) SAH

[75]

UCB-M-Q VH2SAT + H*SA [SAH®, 00) SZAH

(44]

Q-EarlySettled-Advantage

(this work) VH2SAT + HSSA [SAH'?, 00) SAH

Lower bound ~ H2SAT n/a n/a

[15]

a requirement that is even far more stringent than the burn-in cost imposed by [7].

A memory-inefficient ‘model-free’ variant. The recent work [44] put forward a novel sample-
efficient variant of Q-learning called UCB-M-Q, which relies on a carefully chosen momentum
term for bias reduction. This algorithm is guaranteed to yield near-optimal regret 5(v HQSAT) as
soon as the sample size exceeds 7" > SApoly(H), which is a remarkable improvement vis-a-vis
previous regret-optimal methods [7, 75]. Nevertheless, akin to the model-based approach, it comes
at a price in terms of the space and computation complexities, as the space required to store all
bias-value function is O(S2AH) and the computation required is O(ST), both of which are larger by
a factor of S than other model-free algorithms like [75]. In view of this memory inefficiency, UCB-
M-Q falls short of fulfilling the definition of model-free algorithms in [29, 56]. See (44, Section 3.3)
for more detailed discussions.

A more complete summary of prior results can be found in Table 1.

1.2 A glimpse of our contributions

In brief, while it is encouraging to see that both model-based and model-free approaches allow for near-
minimal regret as 7 tends to infinity, they are either memory-inefficient, or require the sample size to
exceed a threshold substantially larger than the model dimensionality. In fact, no prior algorithms have
been shown to be simultaneously regret-optimal and memory-efficient unless

T > S°A* poly(H),
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which constitutes a stringent sample size barrier constraining their utility in the sample-starved and
memory-limited regime. The presence of this sample complexity barrier motivates one to pose a natural
question:

Is it possible to design an algorithm that accommodates a significantly broader sample size
range without compromising regret optimality and memory efficiency?

In this paper, we answer this question affirmatively, by designing a new model-free algorithm,
dubbed as Q-EarlySettled-Advantage, that enjoys the following performance guarantee.

THEOREM 1.1. informalThe proposed Q-EarlySettled-Advantage algorithm, which has a space
complexity O(SAH), achieves near-optimal regret 0(«/ HZSAT) as soon as the sample size exceeds
T > SA poly(H).

As can be seen from Table 1, the space complexity of the proposed algorithm is O(SAH), which is far
more memory-efficient than both the model-based approach in [7] and the UCB-M-Q algorithm in [44]
(both of these prior algorithms require S’AH units of space). In addition, the sample size requirement
T > SApoly(H) of our algorithm improves—by a factor of at least S>A3—upon that of any prior
algorithm that is simultaneously regret-optimal and memory-efficient. In fact, this requirement is nearly
sharp in terms of the dependency on both S and A, and was previously achieved only by the UCB-M-Q
algorithm at a price of a much higher storage burden.

Let us also briefly highlight the key ideas of our algorithm. As an optimistic variant of variance-
reduced Q-learning, Q-EarlySettled-Advantage leverages the recently introduced reference-advantage
decompositions for variance reduction [75]. As a distinguishing feature from prior algorithms, we
employ an early-stopped reference update rule, with the assistance of two Q-learning sequences that
incorporate upper and lower confidence bounds (LCBs), respectively. The design of our early-stopped
variance reduction scheme, as well as its analysis framework, might be of independent interest to other
settings that involve managing intricate exploration—exploitation trade-offs.

1.3 Related works

We now take a moment to discuss a small sample of other related works. We limit our discussions
primarily to RL algorithms in the tabular setting with finite state and action spaces, which are the closest
to our work. The readers interested in those model-free variants with function approximation are referred
to [19, 22, 45] and the references therein.

Probably approximately correct (PAC) bounds for synchronous and asynchronous Q-learning.
Q-learning is arguably among the most famous model-free algorithms developed in the RL literature
[26, 57, 60, 65], which enjoys a space complexity O(SAH). Non-asymptotic sample analysis and PAC
bounds have seen extensive developments in the last several years, including but not limited to the
works of [10, 12, 21, 37, 62] for the synchronous setting (the case with access to a generative model or
a simulator), and the works of [10, 13, 21, 42, 50] for the asynchronous setting (where one observes a
single Markovian trajectory induced by a behavior policy). Finite-time guarantees of other variants of Q-
learning have also been developed; partial examples include speedy Q-learning [5], double Q-learning
[68], variance-reduced Q-learning [42, 63], momentum Q-learning [67], pessimistic Q-learning [53] and
Q-learning for linearly parameterized MDPs [64]. This line of works did not account for exploration,
and hence the success of Q-learning in these settings heavily relies on the access to a simulator or a
behavior policy with sufficient coverage over the state-action space.

Regret analysis for model-free RL with exploration. When it comes to online episodic RL (so that
a simulator is unavailable), regret analysis is the prevailing analysis paradigm employed to capture the
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trade-off between exploration and exploitation. A common theme is to augment the original model-free
update rule (e.g. the Q-learning update rule) by an exploration bonus, which typically takes the form
of, say, certain upper confidence bounds (UCBs) motivated by the bandit literature [4, 35]. In addition
to the ones in Table 1 for episodic finite-horizon settings, sample-efficient model-free algorithms have
been investigated for infinite-horizon MDPs as well [16, 27, 43, 70, 74, 76].

Variance reduction in RL. The seminal idea of variance reduction was originally proposed to
accelerate finite-sum stochastic optimization, e.g. [24, 32, 46]. Thereafter, the variance reduction
strategy has been imported to RL, which assists in improving the sample efficiency of RL algorithms in
multiple contexts, including but not limited to policy evaluation [17, 34, 61, 69], RL with a generative
model [54, 55, 63], asynchronous Q-learning [42] and offline RL [53, 71].

Model-based approach. Model-based RL is known to be minimax-optimal in the presence of a
simulator [1, 6, 41], beating the state-of-the-art model-free algorithms by achieving optimality for
the entire sample size range [41]. When it comes to online episodic RL, [7] was the first work that
managed to achieve near-optimal regret (at least for large T); in fact, this was also the first result (for
any algorithm) matching existing lower bounds for large 7. The sample efficiency of the model-based
approach has subsequently been established for other settings, including but not limited to discounted
infinite-horizon MDPs [25], MDPs with bounded total reward [72, 74], offline RL [40, 52] and Markov
games [39, 73].

Regret lower bound. Inspired by the classical lower bound argument developed for multi-armed
bandits [3], the work [28] established a regret lower bound for MDPs with finite diameters (so that for
an arbitrary pair of states, the expected time to transition between them is assumed to be finite as long
as a suitable policy is used), which has been reproduced in the note [47] with the purpose of facilitating
comparison with [9]. The way to construct hard MDPs in [28] has since been adapted by [29] to exhibit
a lower bound on episodic MDPs (with a sketched proof provided therein). It was recently revisited in
[15], which presented a detailed and rigorous proof argument with a different construction.

2. Problem formulation

In this section, we formally describe the problem setting. Here and throughout, we denote by A (%) the
probability simplex over a set ., and introduce the notation [M] := {1, - - - , M} for any integer M > 0.

Basics of finite-horizon MDPs. Let ./ = (.7, o, H,{P,}i__, {r,}}__)) represent a finite-horizon
MDP, where . := {1, --- S} is the state space of size S, o/ := {1,---,A} is the action space of size
A, H denotes the horizon length and P;, : .’ x &/ — A(Y) (resp. rj, 1 & x @/ — [0, 1]) represents
the probability transition kernel (resp. reward function) at the A-th time step, | < h < H, respectively.
More specifically, Py, (- |s,a) € A(S) stands for the transition probability vector from state s at time
step 2 when action a is taken, while r; (s, a) indicates the immediate reward received at time step A for a
state—action pair (s, a) (which is assumed to be deterministic and fall within the range [0, 1]). The MDP
is said to be non-stationary when the P,’s are not identical across 1 < 2 < H. A policy of an agent is
represented by 7 = {m,} | with , : ./ — < the action selection rule at time step &, so that 7, (s)
specifies which action to execute in state s at time step s. Throughout this paper, we concentrate on
deterministic policies.

Value functions, Q-functions and Bellman equations. The value function V7 (s) of a (determinis-
tic) policy 7 at step / is defined as the expected cumulative rewards received between time steps & and
H when executing this policy from an initial state s at time step 4, namely,

H
T
(s) := E r,(s,, 77,(s,) ‘s =s], 2.1
" Se1~Pr (|71 (50)), 1=h Z t(t ¢ ’) h

t=h
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where the expectation is taken over the randomness of the MDP trajectory {s, | # < t < H}. The action-
value function (a.k.a. the Q-function) Q} (s, a) of a policy 7 at step & can be defined analogously except
that the action at step 4 is fixed to be a, that is,

H

Q7 (s,a) :=ry(s,a) + E Z ri(s, 7, (sp) ‘sh =s,a,=al. (2.2)
Sh+1~Pi(-]s,a), )

st 1~PrClseare(s).1>h

In addition, we define V7 )= oy 4+1(s,a) = 0 for any policy 7 and any state—action pair (s,a) €
. x 4. By virtue of basic properties in dynamic programming [11], the value function and the Q-
function satisfy the following Bellman equation:

Or(s,a) =ry(s,)+ E  [Vi ()] (2.3)

§'~Pp(-|s,a)

A policy n* = {n}; }le is said to be an optimal policy if it maximizes the value function simultaneously
for all states among all policies. The resulting optimal value function V* = {V} }f:l and optimal Q-

functions Q* = {QZ}hH:] satisfy
Vi) = VI (s) =max VI (s) and  Q}(s,a) = OF (s,a) = max OF (s,q) (2.4)
T T

for any (s, a, h) € .¥x o/ x [H]. It is well known that the optimal policy always exists [49], and satisfies
the Bellman optimality equation:

Y(s,a,h) € . x o/ x [H] : Qi(s,a) =ry(s,a)+ E )[V,’;H(s/)]. (2.5)

s'~Pp(:|s,a

Online episodic RL. This paper investigates the online episodic RL setting, where the agent is
allowed to execute the MDP sequentially in a total number of K episodes each of length H. This amounts
to collecting

T = KH samples

in total. More specifically, in each episode k = 1,..., K, the agent is assigned an arbitrary initial state
s’f (possibly by an adversary), and selects a policy 7% = {n}’f}le learned based on the information
collected up to the (k — 1)-th episode. The k-th episode is then executed following the policy % and the
dynamic of the MDP ./, leading to a length-H sample trajectory.

Goal: regret minimization. In order to evaluate the quality of the learned policies {nk}1<k< K> 2
frequently used performance metric is the cumulative regret defined as follows: o

K
Regret(T) := > (Vi (s)) — VI (s§)). (2.6)
k=1

In words, the regret reflects the sub-optimality gaps between the values of the optimal policy and those
of the learned policies aggregated over K episodes. A natural objective is thus to design a sample-
optimal algorithm, namely, an algorithm whose resulting regret scales optimally in the sample size T
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Accomplishing this goal requires carefully managing the trade-off between exploration and exploitation,
which is particularly challenging in the sample-limited regime.

Notation. Before presenting our main results, we take a moment to introduce some convenient
notation to be used throughout the remainder of this paper. For any vector x € RS that constitutes
certain quantities for all state—action pairs, we shall often use x(s, @) to denote the entry associated with
the state—action pair (s, a), as long as it is clear from the context. We shall also let

Ph,x,a = Ph(' | s,a) € RIXS 2.7

abbreviate the transition probability vector given the (s, a) pair at time step . Additionally, we denote
by e; the i-th standard basis vector, with the only non-zero element being in the i-th entry and
equal to 1.

3. Algorithm and theoretical guarantees

In this section, we present the proposed algorithm called Q-EarlySettled-Advantage, as well as the
accompanying theory confirming its sample and memory efficiency.

3.1 Review: Q-learning with UCB exploration and reference advantage

This subsection briefly reviews the Q-learning algorithm with UCB exploration proposed in [29], as well
as a variant that further exploits the idea of variance reduction [75]. These two model-free algorithms
inspire the algorithm design in this paper.

Q-learning with UCB exploration (UCB-Q or UCB-Q-Hoeffding). Recall that the classical Q-
learning algorithm has been proposed as a stochastic approximation scheme [51] to solve the Bellman
optimality equation (2.5), which consists of the following update rule [65, 66]:

0,,(s,a) < (1 —=n)Qy(s,a) + n{rh(s, a) + ’f\’h,s,th_H } 3.1
———

stochastic estimate of Py s Vi41

Here, Q,, (resp. V},) indicates the running estimate of Q} (resp. V}), n is the (possibly iteration-varying)
learning rate or stepsize and P, ; , V), is a stochastic estimate of Py, ( V)., (cf. (2.7)). For instance, if
one has available a sample (s, a, s) transitioning from state s at step & to s at step 4 + 1 under action a,
then a stochastic estimate of P;, ; ,V}, .| can be taken as V,,  (s'), which is unbiased in the sense that

E[Vh_H(S/)] = Ph,s,avh+l'

To further encourage exploration, the algorithm proposed in [29]—which shall be abbreviated as
UCB-Q or UCB-Q-Hoeffding hereafter—augments the Q-learning update rule (3.1) in each episode
via an additional exploration bonus:

0B (s,a) < (1 — mOYB(s,a) + n{ry(s,a) + Py Vi1 + by} (3.2)

The bonus term b;, > 0 is chosen to be a certain UCB for (ﬁh,s, .= Ph, M)Vh 41, an exploration-efficient
scheme that originated from the bandit literature [35, 36]. The algorithm then proceeds to the next
episode by executing/sampling the MDP using a greedy policy w.r.t. the updated Q-estimate. These
steps are repeated until the algorithm is terminated.
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Q-learning with UCB exploration and reference advantage (UCB-Q-Advantage). The regret
bounds derived for UCB-Q [29], however, fall short of being optimal, as they are at least a factor of
VH away from the fundamental lower bound. In order to further shave this ~/H factor, one strategy is
to leverage the idea of variance reduction to accelerate convergence [32, 42, 55, 63]. An instantiation
of this idea for the regret setting is a variant of UCB-Q based on reference-advantage decomposition,
which was put forward in [75] and shall be abbreviated as UCB-Q-Advantage throughout this paper.

To describe the key ideas of UCB-Q-Advantage, imagine that we are able to maintain a collection
of reference values VR = {V}f}f:], which form reasonable estimates of V* = {V;}hH=1 and become
increasingly more accurate as the algorithm progresses.

At each time step A, the algorithm adopts the following update rule:

OR(s,a) < (1 —n)OR(s,a) + n{rh(s, @)+ Py o(Vipr — VR + [Pﬁl](s, a) + bE}. (3.3)

stochastic estimate of Py 4 (Vh+1 —V}‘fﬂ)

Two ingredients of this update rule are worth noting:

e Akin to the UCB-Q case, we can take ﬁh,w(vhﬂ — V3,1) to be the stochastic estimate V;, | (s") —
V}f+l (s") if we observe a sample transition (s,a,s’) at time step . If V), 1 1is fairly close to the

reference VR

a1 then this stochastic term can be less volatile than the stochastic term ’f\’h’s’a Vi1 in
(3.2).

—

e Additionally, the term P, Vi]f+1 indicates an estimate of the one-step look-ahead value P, V}}H , which
shall be computed using a batch of samples.

e The variability of PhV}fJr | can be well controlled through the use of batch data, at the price of an
increased sample size.

Accordingly, the exploration bonus term bf is taken to be a UCB for the above-mentioned two
terms combined. Given that the uncertainty of (3.3) largely stems from these two terms (which can both
be much smaller than the variability in (3.2)), the incorporation of the reference term helps accelerate
convergence.

3.2 The proposed algorithm: Q-EarlySettled-Advantage

As alluded to previously, however, the sample size required for UCB-Q-Advantage to achieve optimal
regret needs to exceed a large polynomial S°A* in the size of the state/action space. To overcome this
sample complexity barrier, we come up with an improved variant called Q-EarlySettled-Advantage.

Motivation: early settlement of a reference value. An important insight obtained from previous
algorithm designs is that in order to achieve low regret, it is desirable to maintain an estimate of Q-
function that (i) provides an optimistic view (namely, an over-estimate) of the truth Q*, and (ii) mitigates
the bias Q — Q* as much as possible. With two additional optimistic Q-estimates in hand—Q}lJCB based
on UCB-Q, and a reference Qf—it is natural to combine them as follows to further reduce the bias
without violating the optimism principle:

0, (s ay) < min {Qﬁ(sh,ah), QY%B(s,.a,). Qh(sh,ah)}. (3.4)
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This is precisely what is conducted in UCB-Q-Advantage. However, while the estimate QR obtained
with the aid of reference-advantage decomposition provides great promise, fully realizing its potential
in the sample-limited regime relies on the ability to quickly settle on a desirable ‘reference’ during the
initial stage of the algorithm. This leads us to a dilemma that requires careful thinking. On the one hand,
the reference value VR needs to be updated in a timely manner in order to better control the stochastic
estimate of Py, ; , (Vh 11— V}fﬂ). On the other hand, updating VR too frequently incurs an overly large
sample size burden, as new samples need to be accumulated whenever VR is updated.

Built upon the above insights, it is advisable to prevent frequent updating of the reference value VX.
In fact, it would be desirable to stop updating the reference value once a point of sufficient quality—
denoted by VR, final—has been obtained. Locking on a reasonable reference value early on means that
(a) fewer samples will be wasted on estimating a drifting target P, V}}§+1’ and (b) all ensuing samples can
then be dedicated to estimating the key quantity of interest P, VR, final, ;.

REMARK 1. In [75], the algorithm UCB-Q-Advantage requires collecting O(SAH®) samples for each
state before settling on the reference value, which inevitably contributes to the large burn-in cost.

Algorithm 1 Q-EarlySettled-Advantage

1: Parameters: some universal constant ¢, > 0 and probability of failure & € (0,1);

2: Initialize Q) (s,a),0)B(s,a),0R(s,a) « H; Vi(s),VR(s) + H; 05B(s,a) + 0; VFB(s) « 0;
Niy(s,a) < 0; W (s,a), 0/ (s,a), u?% (s,a),07% (s,a), 5 (s,a),BR(s,a) < 0; and uyer(s) = True
for all (s,a,h) € ¥ x o x [H].

3: for Episode k = 1 to K do

4 Set initial state 5| < s’l‘.
5 for Step h=1to H do
6: Take action a; = n,’l‘(sh) = argmax, Oy (s, a), and draw sj, 1 ~ Py (- |sp,ap). // sampling
7 Ni(sp,ap) < Np(sp,an) +1; n < Ny(sp,ap). // update the counter
8 Ny < Zii // update the learning rate
9: Q#CB(Sh,ah) < update-ucb-qg().// run UCB-Q; see Algorithm 2
10: OB (sp,ay) < update—-lcb-q().// run LCB-Q; see Algorithm 2
11: OR(sp,ay) < update-ucb-g-advantage (). // estimate QOf; see Algorithm 2
/* update Q-estimates using all estimates in hand, and update
value estimates x/
12: O (sp,ap) < min {Qf(sh,ah), Q;lJCB(Sh,ah), Qh(sh,ah)}.
13: V/,(Sh) <— maxg, Qh(sh,a).
14: V/ECB(s;,) < max {max, Q5B (sy,a),V-B(s) }.
/* update reference values */
15: if Vh(sh) — VhLCB(Sh) > 1 then
16: VhR (Sh) — Vh(sh), uref(sh) = True,
17: else if u¢(s;) = True then
18: VhR (Sh) — Vh(Sh), Mref(Sh) = False.
19: end if

20:  end for
21: end for
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The proposed Q-EarlySettled-Advantage algorithm. We now propose a new model-free
algorithm that allows for early settlement of the reference value. A few key ingredients are as follows.

e An auxiliary sequence based on LCB. In addition to the two optimistic Q-estimates QE and Q,EJCB

described previously, we intend to maintain another pessimistic estimate Q,';CB < Qj using the
subroutine update-1lcb-g, based on LCBs. We will also maintain the corresponding value
function V,';CB, which lower bounds V;‘l.

e Termination rules for reference updates. With V};CB < Vj} in place, the updates of the references
(lines 15-18 of Algorithm 1) are designed to terminate when

Vy(s,) < VECB(s)) + 1 < Vi(sy) + 1. (3.5)

Note that V}f keeps tracking the value of V) before it stops being updated. In effect, when the
additional condition in lines 15 is violated and thus (3.5) is satisfied, we claim that it is unnecessary
to update the reference V}} afterwards, since it is of sufficient quality (being close enough to the
optimal value V;7) and further drifting the reference does not appear beneficial. As we will make it
rigorous shortly, this reference update rule is sufficient to ensure that |V, — V}f| < 2 throughout the
execution of the algorithm, which in turn suggests that the standard deviation of ’ﬁh’s,a(Vh 11— V}}H)
might be O(H) times smaller than that of ?h’w V)41 (i.e. the stochastic term used in (3.1) of UCB-
Q). This is a key observation that helps shave the addition factor H in the regret bound of UCB-Q.

e Update rules for Q}lIJCB and QE. The two optimistic Q-estimates Q,LZJCB and QE are updated using

the subroutine update-ucb-q (following the standard Q-learning with Hoeffding bonus [29])
and update-ucb-g-advantage, respectively. Note that QE continues to be updated even after
V}f is no longer updated.

Q-learning with reference-advantage decomposition. The rest of this subsection is devoted to
explaining the subroutine update-ucb-g-advantage, which produces a Q-estimate QR based on
the reference-advantage decomposition similar to [75]. To facilitate the implementation, let us introduce
the parameters associated with a reference value VR, which include six different components, i.e.

[1t (s, @), o1t (s, @), i (5, @), 07YY (5, @), 8 (5, @), BR (s, @) ], (3.6)

for all (s,a, h) € ¥ x o/ x [H]. Here, ,u;lef(s, a) and a,fef(s, a) estimate the running mean and the second
moment of the reference [Ph V}]fﬂ ] (s,a); ,u';‘ldv (s,a) and a;"l‘d" (s, a) estimate the running (weighted) mean
and the second moment of the advantage [Ph(Vh = VEH)](S, a); BE (s,a) aggregates the empirical
standard deviations of the reference and the advantage combined; and last but not least, 8}]3 (s,a) is the
temporal difference between Bg(s, a) and its previous value.

As alluded to previously, the Q-function estimation follows the strategy (3.3) at a high level. Upon
observing a sample transition (s, ay, s, ), we compute the following estimates to update QR (s, a;).

o Theterm P (V) — VR, ) issettobe V, 1 (s, 1) — VR, | (5,41), which is an unbiased stochastic

estimate of Py, (V| — V&, ).
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The term [PhV}}H](s, a) is estimated via ,u,r"'f, R;, (cf. line 11). Given that this is estimated using
all previous samples, we expect the variability of this term to be well-controlled as the sample size
increases (especially after VR is locked).

The exploration bonus bE (s, a) is updated using BE (s, ap,) and 8}? (sy,» ap,) (cf. lines 7-8 of Algorithm
2), which is a confidence bound accounting for both the reference and the advantage. Let us
also explain line 8 of Algorithm 2 a bit. If we augment the notation by letting bR’"+1(s a) and
BR ntl (s, a) denote, respectively, bR (s,a) and BR (s, a) after (s, a) is visited for the n-th time, then

th1s line is designed to ensure that

b " (s, @) + (1= 0, )BY"(s,a) ~ B " (s, a).

With the above updates implemented properly, QE provides the advantage-based update of the

Q-function at time step 4, according to the update rule (3.3).

Algorithm 2 Auxiliary functions

: function update-ucb-q() :

H31 L
0B (sn,an) < (1 —n,)0;)B (Shaah)+nn(rh(sh7ah)+vh+l Sha1) +cp = )

: function update-1lcb-q() :

LCB LCB H3 log SaT
0" (syan) < (1-m,)Q; (Shaah)‘f’nn(”h(sh,ah)+Vh+1 Shi1) = Cb\/ )

: function update—-ucb-g-advantage () :

/% update the moment statistics of VhR */
[,u;lef, O'I;ef,uﬁd",cﬁd"](sh,ah) + update-moments () ;

/+ update the accumulative bonus and bonus difference */
[8R,BR](sn,an) < update-bonus () ;

5R HzlogSA—T
B BR (siap) + (1 — 1) 00t 4o 2o

/+ update the Q-estimate based on reference-advantage decomposition */

OR (snyan) < (1= 1) OR (i an) + M (rin(sns an) + Vi1 (sna1) = ViR (snat) + 15 (s, an) + B35

. function update-moments () :

,u;lef(sh,ah) +— (11— %)‘u,;ef(sh,ah) + %Vhil(sh+1); // mean of the reference

Gzef(sh,ah) —(1- %)G,;ef(sh,ah) + % (V/EH(S;H]))% // 2" moment of the reference

PR (syan) < (1= ) 2% (sn,an) + Mn (Vi1 (sn1) — ViR (sh41))3 // weighted average
of the advantage

2 .
Gﬁd"(sh,ah) — (1 — nn)G;d"(sh,ah) + T[n(Vh+1 (Sh+1) — Vhrj_l(sh+1)) . // weighted 279
moment of the advantage

: function update-bonus () :

B (sp,ap) <

\/?(\/G}:ef Shvah (‘u}rlef(s/,”ah))z_"_\/E\/G}?dv(sh,ah) o (ﬂ;dv(sh’ah»z);

5hR(sh,ah) — B (sn,ap) —Bh (Spyan);
B (sp,an) < By (sp, an).
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3.3  Main results

Encouragingly, the proposed Q-EarlySettled-Advantage algorithm manages to achieve near-optimal
regret even in the sample-limited and memory-limited regime, as formalized by the following theorem.

THEOREM 3.1. Consider any § € (0, 1), and suppose that ¢, > 0 is chosen to be a sufficiently large
universal constant. Then there exists some absolute constant C;, > 0 such that Algorithm 1 achieves

LSAT ¢ 3 SAT
Regret(T) < Cy | \/H2SAT log* = + H°SAlog’ =~ (3.7)

with probability at least 1 — 4.

Theorem 3.1 delivers a non-asymptotic characterization of the performance of our algorithm Q-

EarlySettled-Advantage. Several appealing features of the algorithm are noteworthy.

Regret optimality. Our regret bound (3.7) simplifies to

Regret(T) < O(v H2SAT) (3.8)

as long as the sample size T exceeds

T > SApoly(H). (3.9)
This sublinear regret bound (3.8) is essentially optimal, as it coincides with the existing lower bound
(1.1) modulo some logarithmic factor.

Sample complexity and substantially reduced burn-in cost. As an interpretation of our theory (3.8),
our algorithm attains & average regret (i.e. %Regret(T) < ¢) with a sample complexity

o)

Crucially, the burn-in cost (3.9) is significantly lower than that of the state-of-the-art memory-
efficient model-free algorithm [75] (whose optimality is guaranteed only in the range 7 >
S®A% poly(H)).

Memory efficiency. Our algorithm, which is model-free in nature, achieves a low space complexity
O(SAH). This is basically un-improvable for the tabular case, since even storing the optimal Q-
values alone takes O(SAH) units of space. In comparison, while [44] also accommodates the sample
size range (3.9), the algorithm proposed therein incurs a space complexity of O(S?AH) that is §
times higher than ours.

Computational complexity. An additional intriguing feature of our algorithm is its low computational
complexity. The runtime of Q-EarlySettled-Advantage is no larger than O(T), which is propor-
tional to the time taken to read the samples. This matches the computational cost of the model-free
algorithm UCB-Q proposed in [29], and is considerably lower than that of the UCB-M-Q algorithm
in [44] (which has a computational cost of at least O(ST)).

4. Analysis

In this section, we outline the main steps needed to prove our main result in Theorem 3.1.
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4.1 Preliminaries: basic properties about learning rates

Before continuing, let us first state some basic facts regarding the learning rates. Akin to [29], the
proposed algorithm adopts the linearly rescaled learning rate
_H+1
T H4n

n, “.1n

for the n-th visit of a state—action pair at any time step 4. For notation convenience, we further introduce
two sequences of related quantities defined for any integer N > 0 and n > 1:

N .
M Hi:n+1(1 —-n;), if N>n, v .
N . N [T, d—n) =0, if N>0,
= ) f N=n, and = ] 4.0
L Lo o [1, itn=0 *?
0, if N<n
As can be easily verified, we have
N .
1, f N>0
N ’ s
= 4.3
2. io, if N =0, (+3)
n=1
The following properties play an important role in the analysis.
LeEMMA 1. For any integer N > 0, the following properties hold:
1 &y 1
7 = Z pry < -, for all 3 <a<l, (4.4a)
n=1
N o]
2 2H 1
N < = N2 o 220 N _
max o < S5 D) gE Do =1+ (4.4b)
n=1 N=n
Proof. See Appendix B. g

4.2 Additional notation used in the proof

In order to enable a more concise description of the algorithm, we have suppressed the dependency of
many quantities on the episode number & in Algorithms 1 and 2. This, however, becomes notationally
inconvenient when presenting the proof. As a consequence, we shall adopt, throughout the analysis, a
more complete set of notation, detailed below.

) (s’fl, a];l): the state—action pair encountered and chosen at time step 4 in the k-th episode.

o kj'(s,a): the index of the episode in which (s, a) is visited for the n-th time at time step &; for the
sake of conciseness, we shall sometimes use the shorthand k" = k;l’(s,a) whenever it is clear from
the context.

e Ky (s): the index of the episode in which state s is visited for the n-th time at time step /; we might
sometimes abuse the notation by abbreviating k" = k. (s).
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° P];l € {0, 1}1X|‘% : the empirical transition at time step / in the k-th episode, namely,
Pi(s) =1(s =s),). (4.5)

In addition, for several parameters of interest in Algorithm 1, we introduce the following set of
augmented notation.

° N;l‘(s, a) denotes N, (s, a) by the end of the k-th episode; for the sake of conciseness, we shall often
abbreviate N¥ = N,’j (s,a) or Nk = N;l‘ (sﬁ, az) (depending on which result we are proving).

o Ok(s,a), VE(s) and QY°P*(s,a) denote, respectively, Q,(s,a), V,(s) and QY°B(s,a) ar the

beginning of the k-th episode.

° QhCB’k(s, a) and V,Il‘ CE;’k(s) denote, respectively, Q,';CB(S, a) and V,';CB(S) at the beginning of the k-th

episode.

o OR k(s,a), VR, k(s) and u’,;(s) denote, respectively, OR (s, a), VR (s) and u,;(s) at the beginning of
the k-th episode.

o [wreh ky, 0™ ky 1Y, Ky, 07V, K, 8%, k), BR k] denotes [uff,a,ief,uzdv,oﬁdv,tS}f,BE] at the
beginning of the k-th episode.

Further, for any matrix P = [Pi,j]lgigm,lgjgm we define ||P[|; := max;_;_,, 27:1 |PiJ|. For any
vector V = [V;];.;~,, we define its £, norm as ||V||, := max,_;-,|V;|. We often overload scalar
functions and expressions to take vector-valued arguments, with the understanding that they are applied
in an entrywise manner. For example, for a vector x = [x;], ;. we denote X =[x, <i<p- For any two
vectors x = [x;];.;<, and y = [y;]; <;<,,> the notation x < y (resp. x > y) means x; < y; (resp. x; > y;)
for all 1 < i < n. For any given vector V € RS, we define the variance parameter w.r.t. Py 4 (cf. (2.7))
as follows:

Varh,s,a(v) = E [(V(S/) - Ph,s,av)z] = Ph,s,a(v2) - (Ph,s,av)z'

§'~P h,s,a

(4.6)

Finally, let 2" := (S,A,H, T, %) The notation f(Z) < g(Z) (resp. f(Z) 2 g(Z)) means that there
exists a universal constant C;, > 0 such that f(Z) < Cyg(Z) (resp. f(Z) > Cyg(Z)); the notation
f(Z) < g(%£) means that f(Z) < g(Z) and f(Z) 2 g(%) hold simultaneously.

4.3 Key properties of Q-estimates and auxiliary sequences

In this subsection, we introduce several key properties of our Q-estimates and value estimates, which
play a crucial role in the proof of Theorem 3.1. The proofs for this subsection are deferred to
Appendix C.s

Properties of the Q-estimate Q’,;: monotonicity and optimism. We first make an important
observation regarding the monotonicity of the value estimates Qz and V,’j. To begin with, it is
straightforward to see that the update rule in Algorithm 3 (cf. line 12) ensures the following monotonicity

property:

0it(s,a) < Qk(s,a)  forall (s,a,k,h) € #x o x [K] x [H], (4.7a)
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Algorithm 3 Q-EarlySettled-Advantage (rewrite of Algorithm 1)

1: Parameters: some universal constant ¢, > 0 and probability of failure & € (0,1);

2: Initialize Q} (s,a), Q}?CB s 7a),QE’ (s,a) + H; QI};CB s,a) « 0; NY(s,a) «+ 0; V! (s)7VhR’1 (8) «
H; W (s,a), o/ (s,a), 02 (s,a),02%(s,a), 3,'?(s a),BR(s,a) « 0; and ul(s) = True, for all
(s,a,h) € & x of x [H].

3: for Episode k =1 to K do

4 Set initial state 51 < s’l‘.

5. forSteph=1to H do

6: Take action aj = 71} (s,) = argmax, Qf (s}, a), and draw s , | ~ Py (-|s},af). // sampling

7

8

9

Nk(sh,ah) Nk l(sh,ah)Jrl n%Nk(Sh,ah) // update the counter
Nn < H+; // update the learning rate

QUCBkH(sh,ah)%update ucb-g().// run UCB-Q;
10: QI‘CB k+1(sﬁ7alfl) +— update-1cb-g().// run LCB-Q;
11: QRkH(Sh,al,‘,)%update ucb-g-advantage ().// estimate QF;
/+ update Q-estimates using all estimates in hand, and update
value estimates */
et Rk+1 UCBA+1, k kY k(ck Ak
12: Q! (sh,ap) <~ min { Q" (s}, a}), Q, (shr ), Qp(sh- )
k 1 k+1
13: Vi (sk) <= max, O) T (55, a).
LCB k+1 LCBk+1/ & LCBk, &
14: v, (sk) <—max{max 0, (sy.a),V, (sh)}.
/* update reference values */
. co vkl kY _ LB
15: if Vth(fh) -V, (sp) > 1 then
k+1 0 k k+1/ k k+1/ ky\ .
16: v, (s5) <V, (sp)s uge (s,) = True;
17: else if u¥ (s}) = True then
R,k+1 k+1 k+1 kY _
18: Vo (sn) <=V (sn),s U (s;) = False.
19: end if
20:  end for
21: end for

which combined with line 13 of Algorithm 3 leads to monotonicity of V (s) as follows:
Vit s) = O (s 1 (9)) < Of (s, 7T () < VE(). (4.7b)

Moreover, by virtue of the update rule in line 12 of Algorithm 3, we can immediately obtain (via
induction) the following useful property:

Qg,k(s,a) > Q],j(s, a) for all(k, h,s,a) € [K] x [H] X .¥ x 4. 4.8)

In addition, Q];l and V;l‘ form an ‘optimistic view’ of Qj and V}, respectively, as asserted by the
following lemma.
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LeEmMMA 2. Consider any § € (0, 1). Suppose that ¢, > 0 is some sufficiently large constant. Then with
probability at least 1 — 4,

Ok (s,a) > O(s,a)  and  Vi(s) = V}(s) (4.9)

hold simultaneously for all (s, a,k, h) € . x o/ x [K] x [H].

Lemma 2 implies that Qﬁ (resp. V}]f) is a pointwise upper bound on Q5 (resp. V}). Taking this result
together with the non-increasing property (4.7), we see that Q’fl (resp. V;f) becomes an increasingly
tighter estimate of Qj (resp. V) as the number of episodes k increases. This important fact forms the
basis of the subsequent proof, allowing us to replace V; with V;,‘ when upper bounding the regret.
Combining Lemma 2 with (4.8), we can straightforwardly see that with probability at least 1 — §:

Qg,k(s, a) > Qj(s,a) for all(k, h,s,a) € [K] x [H] x . x 4. (4.10)

Properties of the Q-estimate Q}':CB’k: pessimism and proximity. In parallel, we formalize the fact

that QkCB’k and V,';CB’k provide a ‘pessimistic view’ of O and V}, respectively. Furthermore, it becomes

increasingly more likely for Q}I;CB’k and Q’;l to stay close to each other as k increases, which indicates that

the confidence interval that contains the optimal value O} becomes shorter and shorter. These properties
are summarized in the following lemma.

LemMA 3. Consider any § € (0, 1), and suppose that ¢;, > 0 is some sufficiently large constant. Then
with probability at least 1 — 4,

0B (s,a) < Oj(s,a)  and  VFOBH(s) < Vi) @.11)
hold for all (s,a, k, h) € ¥ x o/ x [K] x [H], and

H K 6 SAT

H°SAlog =5~
LCB

> D1 (QZ(S’;Z,a'E) — 0; sk af) > 8) S——

h=1 k=1

= 4.12)

holds for all ¢ € (0, H].

Interestingly, the upper bound (4.12) only scales logarithmically in the number K of episodes, thus

implying the closeness of QkCB’k and Q];l for a large fraction of episodes. Note that it is straightforward

to ensure the monotonicity property of V,Il‘ CBX from the update rule in Algorithm 3 (cf. line 14):

VECBRHL (5) > VECBR () forall(s, k, h) € .7 x [K] x [H], (4.13)

which in conjunction with (4.11), implies that V,';CB’k (s) gets closer to V/(s) as the number of episodes

k increases. Together with the monotonicity of V/IZ‘ (cf. (4.7b)), an important consequence is that the
reference value V}f will stop being updated shortly after the following condition is met for the first time
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(according to lines 15—18 of Algorithm 1)

LCB,k

Vi) < VIR () +1 < Vi) +1  foralls € .7 (4.14)

Properties of the reference VX, k. The above fact ensures that V}f, k will not be updated too many
times. In fact, its value stays reasonably close to V}]f even after being locked to a fixed value, which
ensures its fidelity as a reference signal. Moreover, the aggregate difference between VR,kh and the
final reference VR, k, over the entire trajectory can be bounded in a reasonably tight fashion (owing to
(4.12)), as formalized in the next lemma. These properties play a key role in reducing the burn-in cost
of the proposed algorithm.

LEmMA 4. Consider any § € (0, 1). Suppose that ¢, > 0 is some sufficiently large constant. Then with
probability exceeding 1 — §, one has

[VE(s) — VR, k()] < 2 (4.15)

for all (k, h,s) € [K] x [H] x ., and

H K
>y (VR,kh(s’,;) — VR,kh(s’,;))

h=1 k=1
H K
25+ 3" > (hishoah) — 0% hah) )1 (kb — P hah = 1) @)
h=1 k=1
SAT
< HSAlog - (4.17)

In words, Lemma 4 guarantees that (i) our value function estimate and the reference value are always
sufficiently close (cf. (4.15)), and (ii) the aggregate difference between VR, k and the final reference
value VR, k;, is nearly independent of the sample size T' (except for some logarithmic scaling).

4.4 Main steps of the proof

We are now ready to embark on the regret analysis for Q-EarlySettled-Advantage, which consists of
multiple steps as follows.
Step 1: regret decomposition. Lemma 2 allows one to upper bound the regret as follows:

>

K
Regret(T) := > (Vi(sh) — Vi (s5) < D (Vi) — v (). (4.18)
k=1

k=1
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To continue, it boils down to controlling V{‘(s’f) — Vf (s’l‘). Toward this end, we intend to examine

V;l‘ (sfl) — V;l’ ¢ (s];l) across all time steps 1 < & < H, which admits the following decomposition:

@) k
VEshy — vt (o5 £ ok sk, ab) — o7 (k. db)
k
= OK(sk,d) — O1(sh, a) + Q5 (sh, db) — OF (s, db)

(11) *  k k * k
= Q4(sj ap) — Qh(s) ap) + Pyt ot (Vi = Vi)

(iii) k * k ko k
= Q(sy. ) — Qh(sp, ay) + (Phs —Pp) (Vi = Vit) + Vi D) = Vi (h1)

k *
< Q% ky (sf ap) — Of(sf ap) + (Ph,s,k,,aﬁ = P (Vi = Vi) + Vi Gha) = Vil G-
(4.19)

Here, (i) holds since n{f is a greedy policy w.r.t. Qh and 1, (sh) = ah, (ii) comes from the Bellman

equatlons
k S 3 k * k *
O (s,a) = Qj(s,a) = (ry(s.@) + Py Viyy1) — (rp(s.@) + Py V1) = Prsa(Vices = Vi)

(iii) follows from Pk( Vi Vﬁl) =V, (s’;l )~ Vﬁl (sﬁ +1) (see the notation (4.5)), whereas the
last inequality comes from (4.8). Summing (4.19) over 1 < k < K and using Lemma 2, we obtain

K

S (Vitsh) — Vi) <

k=1

(VEGsH — Vi )

M =

~
Il

1

k

K
R, (kK ok
(O8 Ky (s ary) — Qi (sh- ) +Z hshak — P) (Vi = Vity)
k=1

=

M =

~
I

1

K
* k
+ Z (Vh+1(sl;1+l) - V}7f+1(slfz+1))~ (4.20)
k=1

This allows us to establish a connection between >, (Vi (sk)— V7T ¢ (sk)) forstep hand > (V;: o (s -
V,’il (s’;lﬂ)) for step h + 1.

Step 2: managing regret by recursion. The regret can be further manipulated by leveraging the
update rule of OR, k;, as well as recursing over the time steps & = 1,2, - - - , H with the terminal condition
Vk 1= Vg | = 0. This leads to a key decomposition as summarized in the lemma below, whose proof
is prov1ded in Appendix D.
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LEMMA 5. Fix é € (0, 1). Suppose that ¢, > 0 is some sufficiently large constant. Then with probability
at least 1 — §, one has

K
k

D (VIS = VI 6)) < By + %y + %3, 4.21)

k=1

where
H h—1 K
1 SAT K
=> (1 - ﬁ) (HSA + 8cy H?(SA)*/* K /* log 5+ > (Pugat = Ph) (Vi — v,’,’+1)),
h=1 k=1
(4.22a)
H 1 h—1 K
=> (1 + [—{) > BR ky(sh.ab), (4.22b)
h=1 k=1
H K
. k k * R
Ry =D D> A ((Ph =Pk o) Vir = V5 ki)
h=1 k=1
NE(sK by Rk AP AT )
2 Vigt " i ™) _Ph,s];,alflVR’kh+l)
+ — , (4.22¢)
Nh(sh,ah)
with

1 NE sk ab)

1\"
k .__ — n
A = (1 + H) Z TINE sk by

n=N],j (sﬁ,all‘l)

This lemma attempts to upper bound the target quantity Zszl (Vk(sl) Vi’k (s’f)) via three
terms (see (4.21)). Informally, these terms reflect (i) the influence of the initialization as well as
the finite-sample uncertainty of P’;I(V;: - V}ﬁkl), (ii) the influence of the size of the bonus terms
and (iii) the discrepancy term when the running value iterates are replaced by the reference values.
As we shall see in the analysis, the key to obtaining these terms lies in properly expanding the
component Z,’le (QR,kh(si,a’g) - Q;l(sl,i,aﬁ)) in (4.20), as well as applying induction across all
h=1,.--- H

Step 3: controlling the terms in (4.22) separately. As it turns out, each of the terms in (4.22) can
be well controlled. We provide the bounds for these terms in the following lemma.
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LEMMA 6. Consider any § € (0, 1). With probability at least 1 — §, we have the following upper bounds:

SAT SAT
F) = Cf \[HPSAT log 2= 4 H*3sA log? ~= ]

SAT SAT
#y = C{\[H2SAT log 2= + H'SA log® T]

SAT SAT
Ry < C.A[H2SAT log* —— + HSAlog’ T]

8

for some universal constant C. > 0.

In order to derive the above bounds, the main strategy is to apply the Bernstein-type concentration
inequalities carefully, and to upper bound the sum of variance in a careful manner. The proofs are
deferred to Appendix E.

Step 4: putting all this together. We now have everything in place to establish our main result.
Taking the preceding bounds in Lemma 6 together with (4.22), we see that with probability exceeding

1 — 6§, one has
SAT SAT
Regret(T) < %, + %, + %5 < | HXSAT log* 5 + H%SA log® 5

as claimed.

5. Discussion

In this paper, we have proposed a novel model-free RL algorithm—tailored to online episodic settings—
that attains near-optimal regret 5(v HZ2SAT) and near-minimal memory complexity O(SAH) at once.
Remarkably, the near-optimality of the algorithm comes into effect as soon as the sample size rises
above O(SA poly(H)), which has significantly improved upon the sample size requirements (or burn-
in cost) for any prior regret-optimal model-free algorithm (based on the definition of the model-free
algorithm in [29]). Given that online data collection could be expensive, time-consuming or high-stakes
in a variety of contemporary applications (e.g. clinical trials, autonomous driving, online advertisement),
reducing burn-in sample sizes compromising sample optimality is crucial in enabling sample-efficient
solutions in these sample-constrained applications.

The results in this paper naturally suggest a number of possible extensions and directions for future
investigation. We close the paper by listing a few of them.

e While the proposed algorithm provably enables minimal burn-in cost in terms of the dependency
on S and A, our current theory falls short of delivering optimal horizon dependency of the burn-in
cost. More specifically, even though our burn-in cost improves upon the state-of-the-art theory for
sample-optimal model-free algorithms by a factor of at least SSA3H!8 (see [75]), the way we cope
with the dependency on H remains inadequate. This calls for more refined analysis tools to optimize
the horizon dependency.

e This paper focuses primarily on MDPs with non-stationary probability transition kernels. Another
important scenario is concerned with MDPs with stationary transition kernels (i.e. the case where
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P, is identical across different /). It is worth noting that the algorithm developed herein is incapable
of attaining optimal regret for the stationary case (i.e. the resulting regret might be off by a factor of
VH). While our analysis already contains multiple key ingredients that are useful for analyzing the
stationary case, how to complete the picture is non-trivial, which we leave for future work.

e Admittedly, even though we are now able to settle the sample size dependency on the state-
action space, the size of SA might remain prohibitively large in many modern RL applications.
As a result, parsimonious function representation/approximation of the underlying MDP is needed
in order to further reduce the sample complexity. Prominent examples of this kind include
linearly parameterized or realizable MDPs [18, 31, 38]. We hope that the method and analysis
framework developed herein might inspire further development of sample-efficient algorithms that
can effectively accommodate low-dimensional function approximation.

5. Data availability

No new data were generated or analyzed in support of this research.
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A. Freedman’s inequality

Al

A user-friendly version of Freedman’s inequality

Due to the Markovian structure of the problem, our analysis relies heavily on the celebrated Freedman’s
inequality [23, 59], which extends the Bernstein’s inequality to accommodate martingales. For ease
of reference, we state below a user-friendly version of Freedman’s inequality as provided in (37,
Section C).
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THEOREM A.l. Freedman’s inequality. Consider a filtration .%, C #, C %, C ---, and let E, stand
for the expectation conditioned on .%;. Suppose that ¥, = >/_, X; € R, where {X,} is a real-valued
scalar sequence obeying

X,/ <R and E,_[X]=0 for allk > 1

for some quantity R < co. We also define

n
W, =D B I:XI%:I
k=1

In addition, suppose that W, < o2 holds deterministically for some given quantity o> < oo. Then for
any positive integer m > 1, with probability at least 1 — § one has

o2 2m 4 2m
|Y,| < /8 max [Wn,z—m]log?—i-gRlOg?- (A.1)

A.2  Application of Freedman’s inequality

We now develop several immediate consequences of Freedman’s inequality, which lend themseleves
well to our context. Before proceeding, we recall that N;; (s, a) denotes the number of times that the
state—action pair (s, a) has been visited at step & by the end of the i-th episode, and kj,(s, a) stands for
the episode index when (s, @) is visited at step 4 for the n-th time (see Section 4.2).

Our first result is concerned with a martingale concentration bound as follows:

LemMA 7. Let {W) e RS |1 <i < K,1 <h<H+1}and {u(s,a,N) e R|1 <i<K,1<h<
H+ 1} be the collections of vectors and scalars, respectively, and suppose that they obey the following
properties:

° W;; is fully determined by the samples collected up to the end of the (h — 1)-th step of the i-th
episode;

o Wil = Cys

° u;l (s,a,N) is fully determined by the samples collected up to the end of the (2 — 1)-th step of the
i-th episode, and a given positive integer N € [K];

e 0<ul(s,a,N) <Cy;

Nk(s,a) K (s,
e 0< Zni(lm) uh”(m)(s, a,N) <2.

In addition, consider the following sequence:

X;(s,a,h,N) = ujy(s,a,N) (P}, — Py o) Wiy 1{(s). @) = (s, 0)}, 1<i<K, (A.2)
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with Pﬁl defined in (4.5). Consider any § € (0, 1). Then with probability at least 1 — §,

k
ZX['(S, a, hsN)

i=1

Nk(s,a)
SAT | & K (5,) K (5,a) C SAT
< culog2T > w (s,a.N)Var, (W) +( C,Cy + ~ Cw long (A3)
n=1

holds simultaneously for all (k, i, s,a,N) € [K] x [H] x ¥ x & X [K].

Proof. For the sake of notational convenience, we shall abbreviate X;(s,a, h, N) as X; throughout the
proof of this lemma, as long as it is clear from the context. The plan is to apply Freedman’s inequality
(cf. Theorem A.1) to control the term Zf‘z 1 X; of interest.

Consider any given (k, h,s,a,N) € [K] x [H] x % &/ x [K]. It can be easily verified that

where [E;_; denotes the expectation conditioned on everything happening up to the end of the (& — 1)-th
step of the i-th episode. Additionally, we make note of the following crude bound:

1X;| < (s, aJV))(PZ —Ppsa) W}iz+1‘

< i a M (I, + 1Pl Wi | = 26,6, (A

which results from the assumptions ||W,’; 41 loo < Cy,0 < u;, (s,a,N) < C, as well as the basic facts

||P;l ||1 = ||Ph’m ||1 = 1. To continue, recalling the definition of the variance parameter in (4.6), we
obtain

k

Z]Ei—l [|Xi|2] =

i=1 i

||'M»

(1.0, 0) " 1{ 5} ) = (5. @YE_y | [P = Py ) Wi ]
1

3
2

OO s

7 (s.a

(”h
1

(5., N))*Van . (W)

n

N}’f (s,a)

a X eam) Wi,

n=1

<2C,C2, (A.5)

IA

where the inequalities hold true due to the assumptions ||W,"l|| w < Cy, 0 =< u;'l(s, a,N) < C,, and

k K
0 < NGO 0D 0Ny < 1.
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With (A.4) and (A.5) in place, we can invoke Theorem A.l1 (with m = [log, N1) and take the
union bound over all (k,h,s,a,N) € [K] x [H] x . x &/ x [K] to show that, with probability at
least 1 — 6,

a Meo vsay, C,C2) . SAT2logN
in < | max [Cu Z uh"(b’u)(S,a,N)Varh’s,a(Wh’jr(i’a)), l}vw } log 3 g
i=1 n=1
SAT? log N¥
+C,C,, log —
f ST | Moo [C SAT
2 kj, (s,a) Kl (s,a) )
<4/C,log 5 nz]: w,"" (s,a,N)Var, (W 7) + (CuCW + ﬁucw)log 5
holds simultaneously for all (k, i, s,a,N) € [K] x [H] x . x o/ x [K]. O

The next result is concerned with martingale concentration bounds for another type of sequences of
interest.

LemMA 8. Let {N(s,a,h) € [K] | (s,a,h) € ¥ x o/ x [H]} be a collection of positive integers, and
let {c;, : 0 < ¢, < e,h € [H]} be a collection of fixed and bounded universal constants. Moreover,
let {W) e R | 1 <i <K, <h<H+1}and {u(s.a})) e R|1<i=<K1=<h-=<
H+ 1} represent, respectively, the collections of random vectors and scalars, which obey the following
properties.

) W;; is fully determined by the samples collected up to the end of the (2 — 1)-th step of the i-th
episode;

e W, <C,andW, >0;

. u;l (SZ’ aﬁl) is fully determined by the integer N (52’ aﬁl, h) and all samples collected up to the end of
the (h — 1)-th step of the i-th episode;

e 0< u;l(s};,aﬁl) <C,.

Consider any 6 € (0, 1), and introduce the following sequences:

1

X,y = uj, (s, ap) (P, — Physz’a;;) R 1<i<K1<h<H+]1, (A.6)

Yin 1= cu(Ph = P o ) Wit 1<i<KI1<h<H+]l. (A7)

i
1 Sy
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Then with probability at least 1 — 8,

. THSA THSA
S C%ZZEi,hfl |:|(Plh hs a‘)Wh+l| ]log S +Cucwlog
N =l i=l

o THSA THSA
S \ CiCy Z ZEi,hfl [P}, W),1]log 5 + C,Cy log 5
h=1 i=1

1 1
A §,/TC%vlogg+Cwlogg

holds simultaneously for all possible collections {N(s,a, h) € [K] | (s,a,h) € ¥ x o/ x [H]}.

Proof. This lemma can be proved by Freedman’s inequality (cf. Theorem A.1).

e We start by controlling the first term of interest Zle lezl X; ;- As can be easily seen, a, =

arg max Q;I(s;l, a) is fully determined by what happens before step & of the i-th episode. Consider
any given {N(s,a,h) € [K] | (s,a,h) € /' x o x [H]}. It is readily seen that

Eip [Xi] =By [u};<sﬁ;,a§;>(PZ - Ph,s;’,,a;‘l)W/iH] =0,

where [E; ;| denotes the expectation conditioned on everything happening before step £ of the i-th
episode. In addition, we make note of the following crude bound:

|Xl',h| = MZ(SZ, j (P;’t - Ph,sﬁl,ag)wzl+l’

= ”h(sh’ah)(”Ph I+ 1Pl )” Wisi o = 264Co (A-8)

which arises from the assumptions ||W;,
facts || P} ||, = ||P

Jrl||Oo <C,, 0= u;l(s a,N) < C, together with the basic

hsh Hl = 1. Additionally, we can calculate that

H K 5 H K ) ) 5
ZZ]Ei,h—l [|Xi,h| ] = ZZ uh(sh’ah E;p [|(Plh - Ph,s;,a;,)W;,+1| ]

h=1 i=l1 h=1 i=1
H

< ZZZH% 1P = Prg Wi ] (A9)

h=1 i=1
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H K
<C; ZZ]Ei,h—l |:|P2Wliz+l|2]

h=1 i=1

@ CZZZEM 1[Pl (Whi1) ]

h=1 i=1

H K
(iii) . .
< C Zz Wit | o Bt I:P;zwilz+l:|

h=1 i=1
W 5 e o
= CuCWZZEi,h—l I:P;lW;Hrl] (A.lO)
h=1 i=1
H K
< CIC D D Wil = HKCIC, = TCIC,. (A.11)

h=1 i=1

Here, (i) holds true due to the assumption 0 < "‘2 (sﬁl, a;'l) < C,, (ii) is valid since Pﬁl only has one
non-zero entry (cf. (4.5)), (iii) relies on the assumptions that W} is non-negative, whereas (iv) and
(v) follow since [|W} ||, < Cy.

e With (A.8), (A.10) and (A.11) in mind, we can invoke Theorem A.l (with m = [log, T]) and take
the union bound over all possible collections {N(s,a, k) € [K] | (s,a,h) € . x o x [H]}—which
has at most K4 possibilities—to show that, with probability at least 1 — §,

H K
, TC2(CZ KHSAlog T
S maX[C%ZZEi,h—I [|(PZ P i) Wil ] S W]I‘)g 5
7=l i=1

KA log T
+ C,C,, log ———

S ) 7 THSA THSA
G z in,h—l [|(ch - Ph,xz,a;)W;ﬁd ]log + C,C,, log
h=1 i=1

A

HSA

H X o THSA
S/ CECW Z ZEi,h—l [P;lW;t+l] 10g S + Cqu 10g
h=1 i=1

holds simultaneously for all {N(s,a,h) € [K]| (s,a,h) € ¥ x o/ x [H]}.

e Then we turn to control the second term ‘ SIS, Yi’h‘ of interest. Similar to ‘ S K X,
we have

1Y; 5l < 2eCy,,

iZElh [ [Yil?] = e,

h=1 i=1
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Invoke Theorem A.1 (with m = 1) to arrive at

1 1
<,/TC? log 5 + C, log 5 (A.12)

with probability at least 1 — 4.

B. Proof of Lemma 1

First of all, the properties in (4.4b) follow directly from (29, Lemma 4.1). Therefore, it suffices to
establish the property in (4.4a), which forms the remainder of this subsection.
When N = 1, the statement holds trivially since

N N
Z”—"= =1e[l.2]
= nd

Now suppose that N > 2. Using the basic relation Y = (1 — ny)p¥ = foralln = 1,--- ,N — 1, we
observe the following identity:

N—-1

N
S n" IN (1= ) Z '7" (B.1)
n=1

We now prove the property in (4.4a) by induction. Suppose for the moment that the property holds for
N — 1, namely,

< < _ (B.2)

Then it is readily seen from (B.1) that

N N N—1
M 1 '7n N 1—ny ny 1=y 1
Zﬁ_ +(—N)Z _N“ miﬁﬁ-v—ﬁ, (B.3)

n=1

where the first inequality comes from (B.2). Similarly, one can upper bound

N J—
Zﬂ +(1_ )zﬂan(l)nN 20 —ny) 6y H+1 +2(N—1)1“
n W SN N—DT T NYH+N) | HAN

Gin  H4+1 2N1‘” 1 (H+1 2N O\ (v 2
< + = — —+— < —_—
~ N H+N) H+N Ne\H+N H+N) — N«

where (i) arises from (B.2), (ii) follows from the choice n, = 1%17’ (iii) holds since @ < 1 and (iv)
follows since H > 1. Consequently, we can immediately establish the advertised property (4.4a) by

induction.
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C. Proof of key lemmas in Section 4.3

C.1  Proof of Lemma 2
To begin with, suppose that we can prove
Q’,‘l(s, a) > Q;(s,a) for all(k, h,s,a) € [K] x [H] X . X 4. (C.D
Then this property would immediately lead to the claim w.r.t. V,’f, namely,
VE(s) = Ok (s, 71 (9) = Q) (s, () = Vi(s)  forall(k, h,s) € [K] x [H] x .. (C.2)
As a result, it suffices to focus on justifying the claim (C.1), which we shall accomplish by induction.

e Base case. Given that the initialization obeys Q,ll (s,a) = H > 0} (s,a) forall (h,s,a) € [H]x."x =,
the claim (C.1) holds trivially when k = 1.

e Induction. Suppose that the claim (C.1) holds all the way up to the k-th episode, and we wish to
establish it for the (k 4 1)-th episode as well. To complete the induction argument, it suffices to
justify

min {Q;ﬂJ CBAHL (s, @), O (s, a)} > Qj(s,a)
according to line 12 of Algorithm 3. Recognizing that Q}LIJCB’]{Jrl is computed via the standard UCB-

Q update rule (see line 2 of Algorithm 2), we can readily invoke the argument in (29, Lemma 4.3)
to show that with probability at least 1 — §,

0JBHM L (5,a) = O (s, a)

holds simultaneously for all (k, &, s, a) € [K] x [H] x .’ x <. Therefore, it is sufficient to prove that

o (s,a) = 0} (s, @). (C3)

The remainder of the proof is thus devoted to justifying (C.3), assuming that the claim (C.1) holds
all the way up to k.

Since QE, k(sﬁ, az) is updated in the k-th episode while other entries of QE, k remain fixed, it suffices
to verify

RA+1, kK Kk
0, (s ap) = Oj sy ap).

We remind the readers of two important short-hand notation that shall be used when it is clear from the
context:

. N;l‘ = N’,j (s’,‘l, a’;l) denotes the number of times that the state—action pair (s’;, a’fl) has been visited at
step & by the end of the k-th episode;

o k'= kz (s];l, az) denotes the index of the episode in which the state—action pair (s];l, aﬁ) is visited for
the n-th time at step A.
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Step 1: decomposing QE’H] (s';L, a’,‘l) - 05 (s’;l, a’h‘).
To begin with, the above definition of Nﬁ and k" allows us to write

k
Rk+1, k& RA+1, &k
o, (sp.ap) =0, (sp>ap), (C4

since kKVi = KNG = k. According to the update rule (i.e. line 11 in Algorithm 3 and line 9 in
Algorithm 2), we obtain

k k
R&Vh 41 Rk

n T shal) = 0 k) = (=m0 0 (sh a)

o
Nk Nk Nk Nk Nk Nk
k _k k'h  k'h R.kh , k'h refkh+1, k k Rk +1
+ nNﬁ[rh(Sh’ah) T Vi1 Gh) = Vi (i) + 1y (sh» ay) + by, ]
RV, k&
=(1- nN,’j)Qh (sp,»ap,)

kK k & RV M ref V41 &k RV 41
+ TNk Sy ap) + Vi ) — Vit Ghae) 14y, (sp-ap,) + by” )

where the last identity again follows from our argument for justifying (C.4). Applying this relation
recursively and invoking the definitions of nf)v and r;nN in (4.2), we are left with

k
R+, k k Ny AR,k k
Qh (sh,ah)=770th (sp,»ap,)

k

h
Ny koK Kk RAT refK+1, &k k RA"+1
+ Z " [rh(sh’ ap) + Vi1 Gpge) = Vi i) + 1y (Sp-ap) + by, .

n=1
(C.5)
- . . Nt NE o NK
Additionally, the basic relation n," + Zn: 1" = 1 (see (4.2) and (4.3)) tells us that
k
wok k Nk*kthNk*kk
Qi (shap) = ng" Oh (s ) + D nn" O} () df) (C.6)
n=1
which combined with (C.5) leads to
* Nk *
0" (shoal) — Q5 (sh @) = mg" (O3 (s af) — Qi (s} )
Nk .
N; n n n n n n "
+ D " [rh(s’,;,a’,i) F VLR D) = VRN YD)+ i k) o - Qh(s’,;,a’,;)].
n=1
(C.7

To continue, invoking the Bellman optimality equation

Qh(Shs ) = 13 (o) + Pkt Vi (C.8)
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and using the construction of uzef in line 11 of Algorithm 2 (which is the running mean of V}}H), we
reach

Kok Kk RAT o refk"+1, k k R +1 Kk
"a(She @) + Vi1 (1) = Vil ) + 1y, (Sp» ap) + by, = O} (sp- ap)
n R, ki
Kk R, 1 2imt Vit Sy t) * Rk"+1
= Vi1 G ) = Vi Ghp) + = = P g 4 Vi T by, (€9

n Rk
n Rk Zi=1 Ph,,\‘]}‘l,aﬁ (Vh—H) . RK"+1 n
= Ph,sﬁ,afl {Vh-i-l - Vh+l } n - Ph,s]h‘,alhc Vh+l + bh + gh >

n R k! Rk"
k" Z'=1 (Vh+1 — Vh+1) RA"+1 n
= Pk [ Vit = Vi + = " + b, +&°. (C.10)

Here, we have introduced the following quantity:

n n 1 - i i
& = (Plfzn - Ph,s’;,aﬁ)(vlﬁ—l - Vlilkl) + n Z (Pﬁ - Ph,s’,;,aﬁ)vllffv (C.1D)
i=1

with the notation Pﬁ defined in (4.5). Putting (C.10) and (C.7) together leads to the following
decomposition:

k
Rk+1, k k ko k Ni( R (kK k Kk
O Gfoaf) — Qitshoab) = my' (O (5. ) — 03} )

Nk n Rk R K"
Nk o 2t (Vi = Vi) RAHL | ok
+ Z ' [Ph,sf,al;l (Vh+1 - Vl:+1 + n + bh + éh :
n=1

(C.12)

Step 2: two key quantities for lower bounding O * ' (s, a¥) — 0% (5K, ab).

In order to develop a lower bound on QE’H] (s’,‘l, a’,‘l) -0; (s'fl, a',‘l) based on the decomposition (C.12),

we make note of several simple facts as follows:
(i) The initialization satisfies Q) (%, ak) — Qf (sk, ak) > 0.
(i) Forany 1 < k" <k, one has
Vi = Vi, (C.13)
owing to the induction hypotheses (C.1) and (C.2) that hold up to k.
(iii) Forall 0 <i < nand any s € ., one has
VR () = VRS () = 0, (C.14)

which holds since the reference value VE(S) is monotonically non-increasing in view of the
monotonicity of V), (s) in (4.7b) and the update rule in line 16 of Algorithm 3.
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The above three facts taken collectively with (C.12) allow one to drop several terms and yield

Ot (shaf) — Qh<sh,ah>>2nn (B &), (C.15)

Rk+1 (s

In the sequel, we aim to establish O, e a];l) > 03 (s];l, a];l) based on this inequality (C.15).

As it turns out, if one could show that

Z k| < Z N”bR K (C.16)

then taking this together with (C.15) and the triangle inequality would immediately lead to the desired
result
k

Nh Nk
h ek
Z’?n TSh

n=1

Oy sk, af) — Qj(sh.af) = Z Rt — = (C.17)

As a result, the remaining steps come down to justifying the claim (C.16). In order to do so, we need to
control the following two quantities (in view of (C.11)):

I —Z" (P =Py ) (Vi = Vi) (C.182)
Nk

I '_Zhll ”’ﬁ P — Py ) VR C.18b

9 = r_tnn ( h h’skak) il (C. )

n=1 i=1
separately, which constitutes the next two steps. As will be seen momentarily, these two terms can be
controlled in a similar fashion using Freedman’s inequality.
Step 3: controlling /. In the following text, we intend to invoke Lemma 7 to control the term I,
defined in (C18a). To begin with, consider any (N, h) € [K] x [H], and introduce

- . R ) N
Wit = Vi — Vil and uy,(s,a,N) := i (.0 >0 (C.19)
Accordingly, we can derive and define
. R .
IWhiilloo < 1Vt lloo + 1Vigilloo < 2H =: Cy,, (C.20)
and
N 2H
max i) = 7 = Cy» (C21)
Nhs,aelK)x[H] x> o W@ = N
where the last inequality follows since (according to Lemma 1 and the definition in (4.2))
v 2 ifl < N! <N;
anl(s’a) = W, 1 = h(s,a) = s
— SEATE
nN;.l(S’a) =0, ifN, (s,a) > N.
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Moreover, observed from (4.3), we have
N M N
0> u saN) =S 0¥ <1 (C.22)

holds for all (N, s, a) € [K] X .¥x . Therefore, choosing (N, s,a) = (Nk s s’,i, aﬁ) and applying Lemma 7
with the quantities (C.19) implies that, with probability at least 1 — &,

k
= ZXi(sf,, ak,h,N¥

i=1

1| = Z"" (Pl — Pp gk gt ) (Vi — VEJ}kf)

Nk
SAT | <N o ) G AT
C, log? - > ub (sh s N Var, ¢ i (Wi 1) +(Cqu+ /ﬁ"cw)l ng

n=1

Nk

H SAT |~ N .. H?log? 34T
- 2 k" R,k )
= ﬁ log 5 nn”Varh,s;;,a’; (Vh+1 — h+1) —Nk (C.23)

h n=1 h
SAT N Nk H?log? $4T
2 adv,k"h+1, k  k adv,k h+1, &k ky)\2 5
Nk 1 0g s \/Uh ! (Sh’ah) - (/Lh Y (Sh’ah)) + s (C.249)

(Nj)3/4

where the proof of the last inequality (C.24) needs additional explanation and is postponed to
Appendix C.1.1 to streamline the presentation.

Step 4: controlling /,. Next, we turn attention to the quantity /, defined in (C18b). Rearranging
terms in the definition (C18b), we are left with

K R.k! Ny [Ni N
Nk Z: 1 (P Vh+1 Nn K R
]2— M " _Z Z_ P _Phskak)vh+l’
n=1 n=i

which can again be controlled by invoking Lemma 7. To do so, we abuse the notation by taking

N N
M

Wi =V, and  dh(saN)= D >0 (C.25)
n
n=N;'1(s,a)
These quantities satisfy
i R,
Wil = VR < H =, 26)
and, according to Lemma 1,
N N N N
nn nn 2
max — < — < —-—=0C,. (C.27)
N, hs,ac[Kx [H]x.Fx 2 Z n Z n N "

n=N} (s.a) n=1
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Then it is readily seen from (C.27) that

N
0<Z k(sa) s.a,N 521% (C.28)

holds for all (N, s,a) € [K] x . x &.
With the above relations in mind, Taking (N, s,a) = ( sh, ah) and applying Lemma 7 w.r.t. the
quantities (C.25) reveals that

Nk NE k

NE
n i
L] = ZZ (P~ Sy )Vh+1 ZX(sh,ah,h NF (C.29)
i=1 n=i i=1
SAT l C SAT
<,/ C,log? —~ >l (sf. af Nf)Var, at (W;’fil) + (Cqu + 4/ W”Cw)log2 -
n=1
1 SAT 1 n H SAT
g2 Rk 2
~ loe ZVarhs y Vh+1)+ﬁlog ~ (C.30)
h Ny =1 h
1 SAT Nk Nk 2 H SAT
1 2 \/ ref,k 'h+1 k, ky ref,k " h+1 k’ k 1 2 C31
NE 08" =V %, (shs @) — (14 (5ho )" + (NKy3/4 8 75 3D

with probability exceeding 1 — §, where the proof of the last inequality (C.31) is deferred to
Appendix C.1.2 in order to streamline presentation.
Step 5: combining the above bounds. Summing up the results in (C.24) and (C.31), we arrive at

Nk ONE g
an upper bound on | 3", ", n,"&X"| as follows:

hfh < I|L|+ L]

1 ) SAT \/ adv.KMh+1

k
ok adv,iVh 41
Nk 0g s ) (Sh’ah)_(

2
My (Slﬁ’alf,))

) SAT £Vh 41 kK k ref ki 41 k k2 H? 10g2 SgT
+ log? /G,fe’ (sprap) — (g, $pap)) + ———=—
N’,j ( ) (NKY3/4

2 1no2 SAT
H IOg e

< BR,kNllf (5
N (N34

p o @) + ¢ (C.32)
for some sufficiently large constant ¢, > 0, where the last line follows from the definition of

BRk h'H(sh, ah) in line 17 of Algorithm 2.
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. . . N;‘ Nf R.k"+1
In order to establish the desired bound (C.16), we still need to control the sum > ", n,"b," *.

Toward this end, the definition of bR kil (resp. 5}}) in line 8 (resp. line 18) of Algorithm 2 yields

n 1 n 1 n SAT
b = (1- n—)Bﬁ”‘ (shoah) + — B (shdf) + b H log? == (C33)
n n
This taken collectively with the definition (4.2) of nnN allows us to expand
Nk .
Njy RA1
2 byt
n=1
Nk Nk
n 1 n SAT
BRE RA" 41
_Z”n H (1_’7)(( ) 3 (heap) + —By T (s’;i,a’;i)) + ¢ %/4 lo ng
n=1 i=n+1 I n=1
Nk Nk Nk
SAT
R 41
—Z H(l—n)( (1 = 1) BRY" (s, ) + BR"+ h,ah))-i-cbz g 10g ==
n=1 i=n+1
N[N N N SAT
R+ 1 R
=> | [] a=mBy* shap) =[] = 0By (). ab) +cb2 S log? =
n=1 \i=n+1 i=n
Nk Nk Nk Nk Nk Nk
0~ T4 RAM+1 RA" k n" 2 SAT
=> [T a-ms* e, Z]‘[a By (shap) + ¢y 3/4 log® ——
n=1 i=n+1 n=2 i=n n=1
Nf  NE Nf—1 Nf Nf Nk
(ii) R, kK R+ 1 2 SAT
=2 [l a-ms " ha) - 2 H (' =n)B, (Sh"‘h”cbz At logt ——
n=1 i=n+1 n=1 i=n+1
Nk NE
Nk h SAT
A n
= BRI (K dby 4 ¢ e H*log? — (C.34)

n=1

Here, (i) is valid due to the fact that Bg’kl (sﬁ, aﬁ) = 0; (ii) follows from the fact that

NE NK NE-1 NE
Rk R,k"+l k k
Z]‘[(l By (shoaf)y = > [ (= 0By (shhap)
n=2 i=n n=1 i=n+1
Nk—1 NK .
R 1,k &
= > [] a—-ms s ap,
n=1 i=n+1

where the first relation can be seen by replacing n with n + 1, and the last relation holds true since
the state—action pair (s’,‘l,a’;l) has not been visited at step & between the (kK" + 1)-th episode and the
(k"1 — 1)-th episode. Combining the above identity (C.34) with the following property (see Lemma 1)
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Nk NE
1 L 2

- < _
(NO¥A = il = h

we can immediately demonstrate that

Nk

H? log? AT [N H? log? $AT
Rk h+1 8 h 3 RA"+1 k h+1
B, (sk,aby + ¢y ———2 < b <By (%, k) +2¢, ———2—.  (C.35)
h h b (N/];)3/4 ;nn h h h b (N£)3/4
Taking (C.32) and (C.35) collectively demonstrates that
i 22 8AT N
Ny ok Rk Mt H” log” >5~ Ni R +1
Zl &, ( Shs h) + %W < Zlnn bh (C.36)
n= n=

as claimed in (C.16). We have thus concluded the proof of Lemma 2 based on the argument in Step 2.

C.1.1  Proof of the inequality (C24). In order to establish the inequality (C.24), it suffices to look at
the following term:
Nk .
n n N, 2
o= g (V) o G+ (T P e

n=1

which forms the main content of this subsection.

adv, k"1 adv,k"* . .
First of all, the update rules of and o, 1n lines 13-14 of Algorithm 2 tell us that

d ,k” dv,k"+1 dv,k" n
i (s = i T (s ap) = (1= )y (s @) 4, ( h+1(sh+l) h+1 (S]ZH))’
dv k"1 dv, k" +1 dv k"
oK (s d) = Pk ) = (1= )0t (s ) (VL b ) — VR L)

Applying this relation recursively and invoking the definitions of 1" (resp. Pﬁ) in (4.2) (resp. (4.5)) give

Nk
k h k
d ,th 1 (1) n Nz n n R k"
' " (s ) E ,’7 f]f+1 h+1) (Sh-H)) 2 ,Un’P’;z (Vh+1 - Vh+1)’ (C.38a)

n=1

Nk
k h k
adv, kM +1 (i) R 2 Ny g RA™ 2
o (s ) = 2,’7 (Vie1 ) = Vit Ghp)” = D" Py (Vi = V1)~ (C.38b)
n=1

k
Recognizing that Zn lny = 1 (see (4.3)), we can immediately apply Jensen’s inequality to the

expressions (i) and (ii) to yield

k k 2
adv ™41, &k adv™h+1, &k k
oy, (sp-ap) = \ 1y (sp-ap) ) - (C.39)
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Further, in view of the definition (4.6), we have

2
K R _ " R k™2 k" Rk
Vth,sﬁ,a’,; (Vi1 — Vh+1) = Ph,sﬁ,aﬁ (Vi1 — Vh+1) - (Ph,s,ﬁ,aﬁ (Va1 — Vit )) ’
which allows one to decompose and bound /5 as follows:

k
Nh

2”” hosk Vh+1 Vh-H) _Z thn(Vthl Vfik:)

n=1

)l n n 2
(Znnhpk Vh+1 h+1 ) Znn ( /]§+1 V;},{Jﬁ))

NE K2
277 : Pk _Phs a)(Vh+1 Vl1}+kl)

=3
Ni
NK Ve n RA”
+(ZW’P,, (VE = VR ) Znn ( skt (Vier = vh+1)) . (CA40)
n=1

=)

It then boils down to controlling the above two terms in (C.40) separately.
Step 1: bounding /5 ;. To upper bound the term /73 ; in (C.40), we resort to Lemma 7 by setting

. . ] 2 .
te = (Vi = V) and  ul,(s,a,N) := ’7%;@,(1)- (C.41)
It is easily seen that
i R.i i 2 2 __.
Wisiloo = (VR L+ Vi)~ = 402 =5 € (C42)
and it follows from (C.21) that
.y 2H
max N (5.0 < —=C,. (C.43)
N hs,ac[KIx[H]x.Pxaf h'> N

Armed with the properties (C.42) and (C.43) and recalling (C.28), we can invoke Lemma 7 w.r.t. (C.41)
and set (N, s,a) = (Nf, sk, a¥) to yield

2 0 k
P = Pygt ) (Vi1 — Vi) s s B Np)

Nk
SAT | 4 . C , SAT
<./ C,log? —~ D uj (shoaf N Var, g (Wh, ) +(cucw +,/N“CW) log* =~

n=1

131_
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Nk
H SAT |~ N . H? log? 4L
2 kn R,k 2 5
S NE log” — Zln"hvarh,s’,;,aﬁ ((Vh+1 — V1) ) + TN
n—=

H’ SAT H3 SAT
< log? log? =— C.44
SYNEE TS TNEE (449

k k
with probability at least 1 — §. Here, the last inequality results from the fact Zi,vi | 775’7 < 1 (see (4.3))

and the following trivial result:

Varh,sﬁ,tlﬁ((vhil Viit) ) < | (VK = Vi) o = 168, (C45)

Step 2: bounding /5 ,. Jensen’s inequality tells us that

k

2 h 2
" n Nk N¥ n
(Z”n hosk, ak ;]f+1 V;l}fl)) = (Z(”nh)l/z’(”nh)l/z hosk ak(Vh+1 Vfi-kl))

n=1

Ny

NK "
S znn( sV — VY
n=1

n=1

IA

2
RA"
<Z’7n ( skl (Visr = Vh+l)) .

where the last line arises from (4.3). Substitution into I, (cf. (C.40)) gives

2
Ny kn Rk” R.K"
(ZU’P (Vipr — Vh+1) (Z’?n sk, Vh+1 Vh+1))
k

Nﬁ Nh
Nk n n Nk n n n
e = Py 0 - D e e 0 -V | a0

n=1

In what follows, we would like to use this relation to show that

L,<C { i 1gZSAT+H ogZSAT] (C.A4T)
32 = V¥32 Nk S k o .
\ N 5N 5

for some universal constant C3, > 0.
If I;, < 0, then (C.47) holds true trivially. Consequently, it is sufficient to study the case where
I3, > 0. To this end, we first note that the term in the first pair of curly brakets of (C.46) is exactly I,
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1010 G.LIETAL.

(see (C18a)), which can be bounded by recalling (C.23):

H? log2 SAT
Rk 3
LB ‘/—log Z’?n Vary, o g Vit = Vi) + NE
h
Ny 21002 SAT
Nt H7log
/_log Znn” —S
n:l Nh
, SAT H2 » SAT
o log S log (C.48)

with probability at least 1 — §. Here, the second inequality arises from the following property:
R K" R,k 2 2
Vary, (Vh+1 Vh—H) < | (Vi Vh—H) oo =487, (C.49)

whereas the last inequality (C.48) holds as a result of the fact Z 24 77,," < 1 (see (4.3)).
Moreover, the term in the second pair of curly brakets of (C.46) can be bounded straightforwardly
as follows:

Nk

h Nk n n
D (P + Ph,sﬁ,uﬁ)(vhﬂ Viti)

n=1

|PE

= Zn" ( + thsk alfl “ )“ h+1 h+1 H = 2H’ (C'SO)
where we have used the property (4.3), as well as the elementary facts || h L1 V};_kln < H and
||P’,§n | = ”Ph,s, & ||] = 1. Substituting the above two results (C.48) and (C.50) back into (C.46), we

arrive at the bound (C.47) as long as I3, > 0. Putting all cases together, we have established the claim
(C.47).
Step 3: putting all this together. To finish up, plugging the bounds (C.44) and (C.47) into (C.40),

we can conclude that
L<ILj+1 <c[ — 1o SAT+H31 2SAT]
0
3=131 32 =03 Nh g s N,’f g 5

for some constant C; > 0. This together with the definition (C.37) of /5 results in

Nk
Z Mn Varh sf (Vier = V;ﬁln )

n=1
Nk 5 H SAT H3 SAT
< [y - ] (v 5T v 2T,
Nk ) Nh )
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REGRET-OPTIMAL MODEL-FREE REINFORCEMENT LEARNING 1011

which combined with the elementary inequality /u + v < \/u + /v for any u,v > 0 and (C.39) yields

12
R,K"
HZTM Vary, g (Vi — Vh+1)]

adv iV 2 g SAT — H3/? SAT
< {o_ddv,k h+1(s )_ (1 adv,k h+1( k))2} + log!/? + 2 log
~ 1% o 1/4 0 1/2
(N3) ) ’

Substitution into (C.23) establishes the desired result (C.24).

C.1.2  Proof of the inequality (C31) In order to prove the inequality (C.31), it suffices to look at the
following term:

ZVarhskak( 1)—( ‘e“‘h“(s Jak) — (u ref"’””(s ))2). (C.51)

hnl

ref k' ref k"1
and

In view of the update rules of o, " inlines 11-12 of Algorithm 2, we have

ref K"+ refk +1, k ky _ 1 ref k" RK" k”
My, h’ah) (Sh,ah) = (1 - ;) (Sh, h) + th-H( h+1)’
refk™ Kk refk'+1, k k L\ vetrr ko gy, L 2
o, (sp-ap) = 0y, poap) =\ 1=~ Jo " (s dp) + n( ki)’

Through simple recursion, these identities together with the definition (4.5) of P];l lead to

tkh 1 O] R, k" n R
i (s a) = 7 thH (o0 = ZP" VRE, (C.52a)
h n=1 h n=1
ref,kN£+] k (11) Pkn V C.52b
%h (sh k Z h+1 k Z h+1 > ( . )
Ny n=1 Ny =l

The expressions (i) and (ii) combined with Jensen’s inequality give
Nk Nk 2
IRk gy > (Mﬁff”‘ h“(s’,j,a,’;)) : (C.53)

Taking these together with the definition

R R R 2
Varh,sﬁ,aﬁ (Vh—i-l )= h s, ,ah (Vh+1 ) - (Ph,sﬁ,aﬁ Vh+1 ) ’

€20z 11dy G| uo Jasn elueAjAsuuad Jo Ansianun Aq §52/269/696/2/2 L/ 101e/Ierewl/woo  dnooiwapese//:sdny woJj papeojumoq



1012 G.LIETAL.

we obtain
1 Ny 2
R.K"\2 Rk” k” Rk” K RN

S (P — (P ) 3RO 7+ (g i)

h n=1 h n=1 h n=1

Nk Nk

1 kn R,ki‘l 2 1 kn Rkll

Nk z Phsk af Py )(Vh+1) + _kZP h+1 k Z(Phsk ath+1) - (G5
Nh n=1 Nh n=1 e

=l =:lsp

In what follows, we shall bound the terms 1, | and /, , in (C.54) separately.
Step 1: bounding /, ;. The first term 7, ; in (C.54) can be bounded by means of Lemma 7 in an
almost identical fashion as /5 ; in (C.44). Specifically, let us set

i 1
Wi o= (V)P and  dl(s.a.N) = v

which clearly obey

. 1 .
|ul (s, a,N)| = 5 =G and W), |l < H* = C,.

It is easily verified that

N N

Zu];ln(s’a)(s, a,N) = z]l\f =1

n=1 n=1

holds for all (N, s,a) € [K] x . x /. Hence we can take (N, s,a) = (N’h‘,sﬁ, aﬁ) and apply Lemma 7 to
yield
Ny

1 n
|I4,1| = ’]F Z (Pk Ph S, ah)(vill{-i-kl
h n=1

ZX (sh,ah,h Nk)

i=1

Nk
SAT | <& . C SAT
<4/ Gy log? — > uf (Shs @y N Vary ¢ o (Wi ) + (cucw + ,/ﬁ“cw)logz =

n=1

H*log? % N H?log? %

C.55
N N (C.55)

with probability at least 1 — 8, where the last inequality results from the fact that

Varh,sﬁ,a’h‘(wflf:—l) W +1|| cy=H"
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Step 2: bounding /, ,. We now turn to the other term /, ; defined in (C.54). Toward this, we first make
the observation that

2
( théh ath-i-l) k Z( hAh ath—i-l) ’ (C.56)

hnl hnl

which follows from Jensen’s inequality. Equipped with this relation, we can upper bound /, , as follows:

2
R R K"
]4,25( ZP h+1) _( ZPhs’;aﬁvhH)

h n=1 h n=1
TR P
e R % R
= { NF Z (Ph = Prgk ) Vi1 ”ﬁ D (P + Py ) Vit I (C.57)
= h n=1

In the following text, we would like to apply this relation to prove

I, <C H41 2SAT+Hzl 2 A1 (C.58)
—lo 0 .

42 =Ly h g s N;z( g s

for some constant Cy, > 0.

When I, < 0, the claim (C.58) holds trivially. As a result, we shall focus on the case where
I, > 0. Let us begin with the term in the first pair of curly brackets of (C.57). Toward this, let us abuse
the notation and set

. . . 1
Wi o= YR and u (s,a,N) = —,
ht1 ht1 n( )=
which satisfy
. 1 .
|uy, (s, a,N)| = N =:C, and Wil < H=:C,,.
Akin to our argument for bounding /, ;, invoking Lemma 7 and setting (N, s,a) = (NF, s’fl, a];l) imply
that

Nk
Nhnl

with probability at least 1 — §. In addition, the term in the second pair of curly brackets of (C.57) can be
bounded straightforwardly by

Nk
1 U n n n n
ﬁZ(Pk +Phs,ah Vllz:-kl kZ ’Pk +||Phsh ”1)” Rk ’
h p=1 h n=1
where we have used H V}lffl || < H and ||P’,§n Hl = ”Ph,sﬁ,a’;l ||1 = 1. Substituting the preceding facts

into (C.57) validates the bound (C.58) as long as I, , > 0. We have thus finished the proof of the claim
(C.58).
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Step 3: putting all pieces together. Combining the results (C.55) and (C.58) with (C.54) yields

I <|l,,|+1,,<C 1 2SATJFH21 2 SAT
4 = Hgplmigp =0y Nh 08— NE g —5

for some constant C, > 0. This bound taken together with the definition (C.51) of I, gives

Nk
1 )
Zvarhsk ak(Vh+l) < {O.refk /+1( by — (et hH(Sh’ ) }

hnl
H4 SAT H? SAT
+Cy{, [z log? =—+ —1Io 2—].
4!\/1\/’,; S TN TS

Invoke the elementary inequality «/u +v < /u + /v for any u,v > 0 and use the property (C.53) to
obtain

12
( ZVarhvk k( h+1))

hnl

N Nf 1/2 H SAT H SAT
< {Ghref,k h+1(szh¢,a1;l) _ (Mzef,k h+1(s1;l,a1;))2} + log!/2

og/F—+ ———log—
G IR el

8

Substitution into (C.30) directly establishes the desired result (C.31).

C.2  Proof of Lemma 3
C.2.1 Proof of the inequalities (4.11) Suppose that we can verify the following inequality:

0-CB¥(s,a) < Qj(s,a)  forall(s,a,k, h) € & x o x [K] x [H], (C.59)
which in turn yields
max 0-CBH(5,a) < max Q}(s,a) = Vi(s)  forall(k, h,s) € [K] x [H] X .7. (C.60)

LCB,k

In addition, the construction of V;, (see line 14 of Algorithm 3) allows us to show that

V}I;CB’kH(s) < max{ max max Qh ‘](s a), max VLCB‘/(S)}
Ji=

Jy<k+1 a

LCB.,1

This taken together with the initialization V;, = 0 and a simple induction argument yields

VECBE(s) < Vi(s)  forall(k, h,s) € [K] x [H] x .. (C.61)

As a consequence, everything comes down to proving the claim (C.59), which we shall accomplish by
induction.
Base case. Given our initialization, we have

0;%%! (s.a) — Oj(s.0) = 0 — Qj(s.a) <0,
and hence the claim (C.59) holds trivially when k = 1.
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Induction step. Suppose now that the claim (C.59) holds all the way up to k for all (s, a, h), and we
would like to validate it for the (k + 1)-th episode as well. Toward this end, recall that the state—action
pair (sh, ah) is visited in the k-th episode at time step /; this means that QhCB(s aﬁ) is updated once we

collect samples in the k-th episode, with all other entries QhCB frozen. It thus suffices to verify that

LCB,k+1
0, (Sh,ah) =< Qh(Sh,ah)

In what follows, we shall adopt the short-hand notation (see also Section 4.2)
NF=NEGKE Gy and KT =K GsE,ab)

which will be used throughout this subsection as long as it is clear from the context.

The update rule of QLCB ok (cf. line 4 of Algorithm 2) and the Bellman optimality equation in (C.8)
tell us the following identities:

LCBk+1, k k LCBk h+1 k _k
Q (h,ah) Q (s ,a)

LCBk"h L B,
= (1= 0% 5y e (b + VAP T — ),
Qh(shraj) = (1= ny0) Q5 (s5 ap) + kO (5. a7)
= NNEIELR Sy Ap) T N\ PS> dj hoskak Vsl )

which taken collectively lead to the following identity
QLCB k+1( l}cl,al}cl) B QZ(S ) _ QLCBk h+1( I;l’a];l) . QZ(S;(,,@];,)
= 1=y (5 oy — s b)) g (VAP ) — g g Vi — 14
= (1 (G by — 105 ) + g (VAR ) — P Vi )

Recall the definitions of né’ and 7 in (4.2). Applying the above relation recursively and using the
decomposition of O (s’;l, a];l) in (C.6) result in

LCBk+1, k k k _k
Q (s h7ah) - QZ(Sh’ah)

LCB, LCBk" * t
(Qh 1( ) Qh(sh,ah)) +Z7l ( (e (Sﬁn_H) _Ph,sﬁ,aﬁvh+l —b,hc,)

n=1
N;
Ny (LCBA" . k7 n .
<D m" (Vh+1 (Shat) = Viet Gha) + (Ph = Pyt ) Vi1 — bIZn) ; (C.62)
n=1

where the inequality follows from the initialization QI‘CB 1( ﬁ, aﬁ) =0< QZ(SI;V a’fl) and the definition

of Pk in (4.5). To continue, we invoke a result established in (29, proof of Lemma 4.3), which guarantees
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that with probability at least 1 — §,

N'l
2’7’( hva)V;Jrlg

provided that ¢, is some sufficiently large constant. Substituting the above relation into (C.62) implies
that

OFCBHRHI sk aby — Op sk, db) < Znn (fo?k (She1) = Vﬁ+1(slﬁll)) =0, (C.63)

n=1
where the last inequality follows from the induction hypothesis

iI:-E?J(S) < V() foralls € Sandj < k.

The proof is thus completed by induction.

C.2.2  Proof of the inequality (4.12) The proof of (4.12) essentially follows the same arguments of
(70, Lemma 4.2) (see also (30, Lemma C.7)), an algebraic result leveraging certain relations w.r.t. the Q-
value estimates. Accounting for the difference between our algorithm and the one in [70], we paraphrase
(70, Lemma 4.2) into the following form that is convenient for our purpose.

LEMMA 9. paraphrased from Lemma 4.2 in [70]Assume that there exists a constant ¢, > 0 such that for
all (s,a,k,h) € ./ x o x [K] x [H], it holds that

0 < 0K (s,a) — Q-°B* (5, 0)

Nh(sa)
N( ) N( ) n n
=g H+ D Y (VG = VTP ) + e (C.64)
n=1
Consider any ¢ € (0,H]. Thenforall B =1,..., {logz g-l, one has
H K 6 SAT
H°SA log 24~
LCB, — 4
S>> (Qh(sh,ah) — QLB gy e [2F ‘s,zﬂs)) ‘ S (C6)
h=1 k=1

We first show how to justify (4.12) if the inequality (C.65) holds. As can be seen, the fact (C.65)
immediately leads to

H
H K Pogz ﬂ 6 SAT 6 SAT

H°SAlog =5~  H°SAlog =%~
ZZH( ksk gy — QLOBk (kK )< Z 5 - 5 C.66
Oy, Gy ay) Qh (Spoay) > €) S 4B2 = 262 ( )

h=1 k=1 p=1

as desired.
We now return to justify the claim (C.65), toward which it suffices to demonstrate that (C.64) holds.
Lemma 2 and Lemma 3 directly verify the left-hand side of (C.64) since

0k(s,a) = Qf(s,a) = OB (s,a)  forall(s,a,k,h) € . x o x [K] x [H]. (C.67)
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The remainder of the proof is thus devoted to justifying the upper bound on Q]‘Jrl (s,a) — QI‘CB ket (s,a)
in (C.64). In view of the update rule in line 12 of Algorithm 3, we have the following basic fact:

Qk+1 (s, ) < QUCB k+1( a)‘
This enables us to obtain

Qk+1 (S, ) QLCB k+1( (1) < Q;LLJCBJ(-H( ) QLCB k+1( ) QUCB k h+1( ) QLCB k h+1 (s,a),
(C.68)

where we abbreviate
NK = Nk(s,a)

throughout this subsection as long as it is clear from the context. Using the update rules of QUCB * and

QLCB *'in line 2 and line 4 of Algorithm 2, we reach

QUCBk h+1( a) — QLCBk h+1(s a)

UCB, k

H3 log 34T
= (1 =y, 2 )

(s,a) + nNk (rh(s a) + Vh+1(sh+1) + ¢y T
h

H3log S’g—T)

— (1= ny0kCBY s - o (rh<s a) + VEOBK" o - v
h

= 1=y (09 . - 0 5. 0)

H3 log 34T
LCB Y 5
+ nNg( h+1(Sh+1) Vigr (s h+1) + 2¢, NE )
h

= =y (@O ) — 059 )

k 310 SAT
n i LCBk h g5
T (Vh+l(sh+l) Vikr - (s h+1) + 26 NE )
h
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1018 G.LIETAL.

Applying this relation recursively leads to the desired result

QUCBk h—H( a) — QLCBk h+l(s,a)

UCB I LCB,1 i Nf LCBA" ( kr H?log 4L
my QY% . — 0 <s,a>)+Znnh( VR b = VSR ) + 20y —— 2= )
n=1

Ny 3 SAT
NE NE LCBA" (" H>log >3~
< ng"H + Z"ﬂh ( Vi (i) — Vi (Sh+1)) +4¢y, N
n=1 h
LCB,1 UCB,1 .
Here, the last line is valid due to the property 0 < Q, (s,a) < Oy (s,a) < H and the following
fact:
H3 log SAT H3 log 25~ SAT
T]ﬂ Cb Nk s
which is an immediate consequence of the elementary property Zn_ 1 f < \/ZN (see Lemma 1). This

combined with (C.68) establishes the condition (C.64), thus concluding the proof of the inequality
(4.12).
C.3  Proof of Lemma 4

C.3.1 Proof of the inequality (4.15). Consider any state s that has been visited at least once during
the K episodes. Throughout this proof, we shall adopt the shorthand notation

K = ki(s),
which denotes the index of the episode in which state s is visited for the i-th time at step h. Given that
V,(s) and V}}(s) are only updated during the episodes with indices coming from {i | 1 < &' < K}, it
suffices to show that for any s and the corresponding 1 < k' < K, the claim (4.15) holds in the sense
that

[VEH () — VREH (5] < 2. (C.69)

Toward this end, we look at three scenarios separately.
Case 1. Suppose that k' obeys

VEHL () — VEOBKH () 5 (C.70)
or
VAL () — VECBEH () <1 and  hiy(s) = True (C.71)

The above conditions correspond to the ones in line 15 and line 17 of Algorithm 3 (meaning that V}f is
updated during the k’-th episode), thus resulting in

VI () = VREH ).
This clearly satisfies (C.69).
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Case 2. Suppose that k0 is the first time such that (C.70) and (C.71) are violated, namely,
i = min {j | VEHL (5) — VECBRHT () < 1 and ¥ (s) = False} . (C.72)

We make three observations.
e The definition (C.72) taken tqgether with the update rules (lines 1518 of Algorithm 3) reveals that
V}f has been updated in the k0~ !-th episode, thus indicating that

VRO ) = VR G = v ) = V), €73

e Additionally, note that under the definition (C.72), V}}(s) is not updated during the k-th episode,
namely,

VREOH (g = YRIO (), (C.74)

° The definition of k% indicates that either (C.70) or (C.71) is satisfied in the previous episode kK =
k=1 in which s was visited. If (C.70) is satisfied, then lines 15-16 in Algorithm 3 tell us that

(s) = ul2(s), (C75)

_ ko=lql
True =u ref

ref

which, however, contradicts the assumption u’r‘;% (s) = False in (C.72). Therefore, in the kio—1_th
episode, (C.71) is satisfied, thus leading to

Vi@ = ViR = v ) - OB g < 1, (76)

We see from (C.73), (C.74) and (C.76) that

VRIOH () yROHI () = YRAD (g) RO (g) = YO (5) — yKOH1 () (C.77)
W o (i)
< VE (5) — VIR (9 21, (C.78)
where (i) holds since VE**1(s) > Vi(s) > VECB4"(5) and (ii) follows from (C.76). In addition, we

make note of the fact that
VRIOH () yROHI () — VKO (g) — VA0 (5) > 0, (C.79)

which follows from (C.77) and the monotonicity of V}’f(s) in k. With the above results in place, we arrive
at the advertised bound (C.69) when i = i,.
Case 3. Consider any i > ij. It is easily verified that

V;]fiﬂ(s) - V;I,'CB’kiH(s) =1 and ”f;f(s) = False. (€.80)
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1020 G.LIETAL.

It then follows that
i @) i (ii) i (iii) i
V}lf’k 'H(s) < V}lf’ko"'l(s) < V}]l‘OH(s) +1 < VPIL‘CB’]‘OH(S) +2

(iv) ~) i
SV 42 < V(9 +2. (C.81)

Here, (i) holds due to the monotonicity of V}} and V}]f (see line 14 of Algorithm 3), (ii) is a consequence

LCB
Vi

of (C.78), (iii) comes from the definition (C.72) of iy, (iv) arises since is a lower bound on V}

(see Lemma 3) and (v) is valid since V;fiH(s) > Vi (s) (see Lemma 2). In addition, in view of the
monotonicity of V,’j (see line 14 of Algorithm 3) and the update rule in line 16 of Algorithm 3, we know
that

VREFL () > yR (),
The preceding two bounds taken collectively demonstrate that
0 < VR () — Vi) <2,

thus justifying (C.69) for this case.
Therefore, we have established (C.69)—and hence (4.15)—for all cases.

C.3.2  Proof of the inequality (4.16) Suppose that
VR Ky (56 — VR Ky (55) # 0 (C.82)
holds for some k < K. Then there are two possible scenarios to look at:

(a) Case I: the condition in line 15 and line 17 of Algorithm 3 are violated at step h of the k-th
episode. This means that we have

VAR (sky — VECBAFL (kY <1 and  ufy(sf) = False (C.83)

in this case. Then for any k" > k, one necessarily has

HV,’;’ () = Vi sk = Vi s — i G = 1, s

U (sK) = uk ((s) = False,
where the first property uses the monotonicity of V;l‘ and V}Il‘ CBx (see (4.7b) and line 14 of

Algorithm 3). In turn, Condition (C.84) implies that V,lf will no longer be updated after the k-th
episode (see line 15 of Algorithm 3), thus indicating that

VR ko, (s5) = VALK = - = VR kg, (5. (C.85)
This, however, contradicts the assumption (C.82).

(b) Case 2: the condition in either line 15 or line 17 of Algorithm 3 is satisfied at step h of the k-th
episode. If this occurs, then the update rule in line 15 of Algorithm 3 implies that

ViF sh) = Vi ) > 1, (C:86)
or

V}]:—H(Sﬁ) _ V}II'CB’kH(S];l) <1 and ulrcef(sﬁ) = True. (C.87)
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To summarize, the above argument demonstrates that (C.82) can only occur if either (C.86) or (C.87)
holds.
With the above observation in place, we can proceed with the following decomposition:

K H K
> (vieh = viEeh) = 2020 (ViKeh = Vi eh) 1 (vieh = vieFeh #0)

1 k=1 h=1 k=1

>

M=

=
Il

EM»

(Vikeshy = VidK s ) 1 (Vi b = Vi () < 1 andud(sf) = True)

M=

+ 2> (Vieh = vi®ah) 1 (Vish - vi®eh > 1), (C.88)

h=1 k=1

=0

Regarding the first term in (C.88), it is readily seen that for all s € .,

K
S (Vi@ = VP @) < 1and uly(s) = True) < 1, (C.89)
k=1

which arises since, for each s € .7, the above condition is satisfied in at most one episode, owing to the

monotonicity property of V,,, V,';CB and the update rule for u . in (17). As a result, one has

H K
>3 (ViFkehy = VidKeh) 1 (Vi s = ViR k) < 1 anduf(sh) = True)

h=1 k=1

=
M=
M=

1 (Vi) = VO o) < 1 andidy(sh) = True)
1

=
Il
_
=
Il

K
> (Vi = VO o) < 1andudy(s) = True)
e k=1

Il
T

M= M=

1 = H%S,

IA

H

0
X

1 se
where the first inequality holds since || VR, k — V,lf,kHOQ < H. Substitution into (C.88) yields

H K

> (Videh - v eh) = s 4o (C.90)
h=1 k=1

To complete the proof, it boils down to bounding the term w defined in (C.88). To begin with, note
that

* LCB.k
VR &, (sF) = ViGshy = v 2Bk,
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1022 G.LIETAL.

where we use the optimism of VR,k(sﬁ) stated in Lemma 2 (cf. (4.9)) and the pessimism of V,I;CB in

Lemma 3 (see (4.11)). As a result, we can obtain

H K
LCB LCB
0 =23 (Vheh = vi® ) 1 (Vieh - vi®heh = 1)

h=1 k=1
H K

= > (Oheshah) — A% shoap)) 1 (heshoah) — G ¥ el = 1), (o)
h=1 k=1

where the second line arises from the properties Vﬁ(s’,j) = Qlfl(s’,‘l,a’,‘l) (given that a’;l =

arg max,, Q],‘l (s];l, a)) as well as the following fact (see line 14 of Algorithm 3)

LCB,k

LCB.k
Vi

LCBk

(k) > max Q; (sk,a) > OF

ah)
Further, let us make note of the following elementary identity:
0} (s ) — 0% s = /0 1(Qheshedh) — Q%P4 shodf) > 1)t

This allows us to obtain

Z [ / (0 sk, ab) — O-CB* sk, by > t)dt] n(Q’;,(s’;,a’;l) — QLOBR(sk gk > 1)

h=1 k=1

H K
:/ ZZ (Qh(sh’ af) — 0, (sf. af) > t)dt
h=1 k=1

6 SAT
SAlo SAT
< / t—zgdt<H6SAlog— (C.92)
1

where the last line follows from the property (4.12) in Lemma 3. Combining the above bounds (C.91)
and (C.92) with (C.90) establishes

Z (VR,kh(s’,;) - VR,kh(s’,;))

H
S+

M =

(Oheshaf) — 0% (shoab)) 1 (Qheshoa) — OF°B*sfaf) > 1)

h=1 k=1
6 SAT
< H’SAlog —
as claimed.
D. Proof of Lemma 5

For notational simplicity, we shall adopt the short-hand notation

k' = kZ(s’g, al,‘l)
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throughout this section. A starting point for proving this lemma is the upper bound already derived in
(4.20), and we intend to further bound the first term on the right-hand side of (4.20). Recalling the

expression of QR ket (S];w a';l) in (C.7) and (C.9), we can derive
Rk, k k x RV b g g w kK
Qh’ (Sh,ah) - Qh(s ah) = Qh (Sh»ah) - Qh(shsah) (D.1)
NE (K ab)

Ny~ (sheaf) Ny (shal) R
e (O R R CR?) Ea S )
n=1

Nﬁ_l(sl’("aﬁ) NE=1 (5 by RE, ki
ho Spdy s !
+ D m ( VR GR) = VRE G + = E ,Vh+1(sh+1) — Pk at Vh+1)

2c,H? SAT

_ 3/4
A CN) 8

N (s by
h h™h

H + Bg’k(s];l, a];l) +

k—1
Nyl (sk by

Nli_l (sk,ak) k"
+ D mt VR G — h+1 (Shy1) + = Z (Shy1) = Pt Vi )

k
where the last line follows from (C.35) with BR K +1

Summing over all 1 < k < K gives

= BR, k, and the initialization Qh (sh,ah)

K
> (0% ktshoah) — Ojcsh )

k=1

K 2
, 2e, H SAT
Z ( (Sh llh) + BR’ kh(Sﬁ, ai) + ﬁ IOg T)
k=1 (N, (s @)

K NNk

Ny~ (sfoah) no kK 21 h+1(h+1)
+z Z M " Vi (i) — h+1(h+l)+T P;“,aV;fH

K 2
NE(sk by 2c¢,H SAT
2 ‘ ( b b BR,kh(s];,a’Z) + m log T)
(Nh (Sh’ah))

k=1
l
K sh,ah) VT
sy
+Z Z ’7nh " ( h+1(sh+1) Vh+1(sh+1))
k=1 n=1
k—1,k k
K N, (sp.a5) Nﬁ_l(sﬁ aﬁ) o
. N .
+2 2L (Vh+l(sh+l)_ (Shy) +— Z (Sha1) Ph,s’,;,aj;VhH)-
k=1 n=1
(D.2)

Next, we control each term in (D.2) separately.
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e Regarding the first term of (D.2), we make two observations. To begin with,

Nf’l (s,a)

K NE (s b
St W< S ST g < SA, (D.3)

k=1 (s,a)eyxﬂ n=0

where the last inequality follows since ny = 0 for all n > 0 (see (4.2)). Next, it is also observed that

K N (s,a)

P D I M

1,k _k\\3/4
k=1 (Nh (sh’ah)) (sayeSxe n=l

< > 4T s a)t < aayiKA (D.4)
(s,a)eyx.Q/
where the last inequality comes from Holder’s inequality
3/4 1/4
> W)t < S > Nl a)j| < (SA)KA.
(s,a)e&ﬂxézf (s,a)eyxﬁf (s,a)enyZ/

Combining the above bounds yields

K - 2
NE=L (K aky k 2c,H SAT
E (Hnoh S 4 BE’ (s’hc,al;l) + T oA t]’{ 3/ log 5

k=1 (Nh (Sh’ah))

K
SAT
< HSA+ " By (s}, af) + 8¢, (SA)*K'*H? log = (D.5)

k=1

e We now turn to the second term of (D.2). A little algebra gives

k—1
N1 (s by

q MGk e g e
> Mn (Vi1 Gha) = Vip1 pn)
=1

n=1
K Ni ' Gshah)

N I !
= Z Z "IN (5Ll (Vh+1(5h+1) - VZ+1(Sh+1))

I=1 N=NI (s}.a})

K

1
< (1 + I_-I) Z (V}{l+1(s§1+l) - Vi7+1(s§z+1))

=1
1 o k k 7k ok S * k 7k ok
Z(H‘ﬁ) Z(Vh+1(sh+1)—vh+1(5h+1))_Z(Vh+1(sh+1)—Vh+1(5h+1)) - (D.6)
k=1 k=1

Here, the second line replaces k” (resp. n) with [ (resp. N ,ll (sil, aﬁl)), the third line is due to the property
> Nen nY <1+ 1/H (see Lemma 1), while the last relation replaces / with k again.
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e When it comes to the last term of (D.2), we can derive

K Ny Ghah)

Nkil(sk,ak) " R,ki i
Z Z m Vh+1(sh+l) h+l (Sh+1) + - th+l(sh+l) _Ph,s’hf,aﬁvﬁﬂ
e

k=1 n=1
K N (Sh “h) n
NEL(sk aly Rim 1 R
= M (P} — P, &at) Vigr = Vi) + . 2 h+1(5h+1) — Py ot V1)
=1  n=1 =1
K Nf ! »‘h,dh)

- ”x;@;,ab ((Pi B Ph,s’,‘,,aﬁ)(vﬁﬂ - VR’th)

- N ()

kok k
Ny, (sp.a)

R
n 2t ( h+1( h+1) — PV ’kh+1))
Nji (s} ay) '

Here, the first equality holds since V}, (s’,‘l';l) Vh T (s sy Jrl) =P (v} o V}}J’ka) (in view of the
definition of Pl;; in (4.5)), the second equality can be seen via simple rearrangement of the terms,
while in the last line we replace k" (resp. n) with k (resp. Nl}f (s’fl, a];l)).

Taking the above bounds together with (D.2) and (4.20), we can rearrange terms to reach

K
k
(Vi (s = Vir (b))
k=1
I\ K
R
= (1 + ﬁ) > Vi) — Vi () +ZB YACHA)
k=1 k=1

K
SAT
+ HSA + 8 H(SAP /K log == + 37 (P = P1) (Viar = Vi)
k=1

' Ghap)

+Z Z ”x;;(s;;,aﬁ)[(f’ = Py o) Vigs = Vokipn)

k=1 N= Nk(shah)

Nk(sk,al
pI ( (Sh—H) - Ph,s’,;,a’;lVR’kh+l)
+ , (D.7)

N]h‘(sh,aﬁ)

where we have dropped the term — % >, (V7 i) (sh+1) il (sﬁﬂ)) owing to the fact that V| > V;zT+1
Thus far, we have established a crucial connection between Zszl (V}]f (slfl) -V ¢ (sh)) at step h and
k k
>, (V,’fJrl (Sl;;+1) -V, (sl;;+1)) at step i+ 1. Clearly, the term Vilf+1 (s’le) -V, (s’[lH) can be further
bounded in the same manner. As a result, by recursively applying the above relation (D.7) over the time
steps h = 1,2, - - -, H and using the terminal condition V[k{ Vg:_ | = 0, we can immediately arrive
at the advertised bound in Lemma 5.

+1 =
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E. Proof of Lemma 6

E.1 Bounding the term %,

First of all, let us look at the first two terms of %, in (4.22a). Recognizing the following elementary
inequality:

NG I\H
(1+ﬁ) S(1+ﬁ) <e forallh=1,2,--- ,H+1, (E.I)

we are allowed to upper bound the first two terms in (4.22a) as follows:

H h—1
1 SAT SAT
Z (1 + E) [HSA + 8¢, H(SA)Y/*K/* 1og T] < H*SA + H3(SA)*/4 K4 log =——
h=1
45 3 45 ) SAT )
< H* SAlog?> — + VH3SAK = H*>SA log —— + VHSAT, (E.2)

where the last inequality can be shown using the AM—GM inequality as follows:

SAT

SAT SAT
H3(SA /4K /4 10g 200 — (H9/4JSA log T) (H3SAK)'* < H*5SA log? — + VHSAK.

We are now left with the last term of %, in (4.22a). Toward this, we resort to Lemma 8 by setting

h—1
. k 1
1= Vigr = Vi and 0= (1 + ﬁ) :
In view of (E.1) and the property H > V*(s) > V" (s) > 0, we see that
0<c,<e, Wi,y =0, and Wyl <H=:C

w*

Therefore, applying Lemma 8 yields

" | he1 K H K
Z (1 + [_1) Z(Phsk &= PR (Vi = Vi) ZZY""
=1 k=1

<L/ TCE, log +C, log - ,/HZTlog + Hlog - (E.3)

with probability exceeding 1 — §.
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Combining (E.2) and (E.3) with the definition (4.22a) of %, immediately leads to the claimed bound.

E.2 Bounding the term %,

In view of the definition of BR, kh(sﬁ, a’fl) in line ?? of Algorithm 2, we can decompose %, (cf. (4.22b))
as follows:

H K advk adv,k ky) 2
SAT ,a;) — @
%’2=Z(1+—) coy/Hlog == > h)k (i (5 )
h=1 g k=1 Nh(sh’ah)
H h—1 K refk ref .k
1 SAT (shoa) = (1" s h’ah))
+ Z (1 + —) Cpy/ log — Z s
= H 1) p— NK(sk ah)
H K advk adv.k
SAT s, d sy, d
< HIOg_ZZ (h h)k ( (h h))
v Ny (s} )
H K refk ref k ky) 2
SAT (sk,af) — (uy (s, ab)
+ log—zz h hk ( h h h) , (E.4)
8 i N’ (sh,ah)

where the last relation holds due to (E.1). In what follows, we intend to bound these two terms separately.
Step 1: upper bounding the first term in (E.4). Toward this, we make the observation that

K dv,k dv.k K
Z 0, (s ap) = (w " (s h’ah) Z adv k(s aj,)
NK(sk, ab) N;f(sh,ah)

k=1 k=1 \

IA

Ny (sf)

K hah)  NEGshah) g 2
= S I (VI (5K ) = Vi (D)
=1 \ Njs(sy» ap)

(E.5)

where the second line follows from the update rule of o) adv pin (C38). Combining the relation

k
IV, (55) — VR Ky (55)] < 2 (cf. (4.15)) and the property 30" "“h G N 1 (of, (4.3)) with
(E.5) yields

K advk adv,k 2 K
(sh’ah) - (/’Lh (sh’ah)) 4
——— < 24/SAK E.6
> T o e o S L

P Nh(s ah)
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Here, the last inequality holds due to the following fact:

N (s,a)
Sin- T i T s
h (sa)eSxef n=1 (sa)eSx ol
<2 \/ 1. > Nf(s.a) = 2VSAK, (E.7)
(sa)eyx% (s,a)eyxﬂ

where the last line arises from Cauchy—Schwarz and the basic fact that 3, ) NK(s,a) =

Step 2: upper bounding the second term in (E.4). Recalling the update rules of ,u;ffk and a}fefk in
(C52), we have
K £, £,
Z re k(sh’ah) ( re k(sh’ah))
k=1 N}Ii(sh’ah)
K Nf(shaf) o Rgn 2 N§(sh.af) PRA" 2
=> ! 2" (Vi (i) B (Zni1h "V G h+1)) (E.8)
Py Nﬁ(sl;l,ai) Nﬁ(sh,ah) Nﬁ(sh,ah)
::Jﬁ
Additionally, the quantity Jﬁ defined in (E.8) obeys
NE(skak) 2 . K 2
T2 < 2l h+1(h+1)) - (Vh+l(sh+l))
W= NK (s, a)
1S dp
N’;(s",ak) Nk(sl ajy) 2
n 2 h+l(sh+1)) (Zn—ll ! h+1(sh+1))
NE(sK, ab) NK(sh,ab)
Nk(sk,a )
- S 2H (VRN (5 ) = Vi b))
- Nk(sh,ah)
=Jq
NYGRa) (ow ok )2 Ny (s) 2
2l (Vi e0) > Vi1 Gy )
+ YN - . , (E9)
Ny, (sp,, ap) Nh(sh,ah)

=:Jn

which arises from the fact that H > V;},il f >V, , > 0forall X" < K and hence

1 =
2 * KT\\2 RK" K" RK" K" * k"
(Ve 6F0)™ = (Vi b)) = (VIS 6D + Vi G 0) (Vi 6k = Vi b))

R .
< 2H (Vi (sF) = Vi (shy)).-

With (E.9) in mind, we shall proceed to bound each term in (E.9) separately.
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e The first term J; can be straightforwardly bounded as follows:

kok k
Ny, (sy.ap)

2H Rkn n k’l
e 2 S R Vi)
1 N,’:(sﬁ,a’;,)( Z 1 Onp1) = Vi1 8541)

n=1

]l(V}}ff(s’;;l) — Vi1 (Shyp) < 3) + (pllz((sﬁ’az))

2H

<6H+ ——F—F — T i
N( )

‘ph (sh,ah) (E.10)

where cb}’f (sﬁ, aﬁ) is defined as

kok k
Ny (sp.a3)

kn n n n * n
ok = > (V,‘f;l(sﬁH)—V,;H(s’,‘,ﬂ))]l(v,ffl(s’,gil)—V,M(sfﬂ)>3). (E.11)

n=1

e When it comes to the second term J,, we claim that

IOg SAT

* 2
Ty S Vat, g (Vi) +H m

(E.12)

which will be justified in Appendix E.2.1.
Plugging (E.10) and (E.12) into (E.9) and (E.8) allows one to demonstrate that

K retk ref,k
Z (Sh’ah) ( (sh’ah))
%
k=1 Ny (s} aj)
K ch (s%, ak) log $4T
S22 tr s Van g (Vi) + B2 | et
=1 Nh(sh’ah) Nh(sh’ah) T Ny, (sp,» ap)

K JHOLShab) | Van, g (Vi) Hlogh SAT

Z Nk(s a ) + Nk(S a) + Nk(sk ak) + ko k ky\3/4

=1 O h\Sh> Ay h Sp> @y (N sy ap))
JH®K sk adb) K

K
SVHSAK + ) ———— NG db) +>

k=1 k=1

*
Varh,sz ,a’;L (Vh+ 1 )

SAT\'/*
—hh T 4 H(SA)4 (K log —) , (E.13)
N;l‘(s’,j, aﬁ) )

where the last line follows from (E.7) and (D.4).
Step 3: putting together the preceding results.
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Finally, the above results in (E.6) and (E.13) taken collectively with (E.4) lead to

H K refk, k k ref.k, k  ky\2
/ SAT [ SAT oy (shoah) — (uy " (sk. ah))
Ry < | H3SAK log — + log — E h !
S E, Kk K
8 h=1 8 k=1 Ny (sp» @)
/ SAT saT [ saT L&
3 SAT 2 ax\3/4r1/4 574 OAL oAl
< /H’SAK log 5 + H*(SA)*"K /" log 5 + 4/log 5 E E

h=1 k=1

*
Varh,s’h‘,aﬁ (Vh+ 1 )

N,’;(sﬁ, alfl)

0 | SAT SAT SAT
< ./H3SAK log = H2(SA)Y /4K /*10g >/ = H*SA log? ~
(i) | SAT SAT [ SAT SAT
< /H3SAK log -+ H*SAlog? - = H2SAT log -+ H*SAlog? -

Here, (i) holds due to the following two claimed inequalities:

Vary, g (Vi) SAT SAT
et M < JH2SAT log == + H*SAlog =, (E.14)
Ny (s, ap) ) d

H K
SAT
S5 VIR rga e AT, (E.15)
Ny, (s}, ap) )

whose proofs are postponed to Appendix E.2.2 and Appendix E.2.3, respectively. Additionally, the
inequality (ii) above is valid since

SAT SAT SAT\'/*
H?(SA) 4K/ *10g7/4 - = (H5/4(SA)1/2 log T) : (H3SAK log T)

SAT SAT SAT SAT
S H*3SAlog? == +[H3SAK log =— = H**SAlog> = + | H2SAT log =

due to the Cauchy—Schwarz inequality. This concludes the proof of the advertised upper bound on %,.

E.2.1 Proof of the inequality (E12).  Akin to the proof of IA]1 in (C.55), let

. . 1
Wi = (Vi ? and u;,(s,a,N):N.

By observing and setting

1 .
G=x Wil = H* = C,,
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we can apply Lemma 7 to yield

1 Nlli n N;: n 2 10g2 SAT
‘Nk Z (VZ+1(S];I+1)) Ph vk ak(Vh+1) ‘ Nk Z (Ph - Ph,sﬁ,aﬁ) (V}:—H) 5 H2 TB
h n=1 h n=1 h

*

with probability at least 1 — 4. Similarly, by applying the trivial bound [V}l
we can obtain

< H and Lemma 7,

i 1 Nj y og Sf;T
* *
‘Nk D Vit Gy ) = Prgt Vi | = ‘ﬁ D (P =Py Vit | SH N
h n=1 h n=1 h

with probability at least 1 — §.
Recalling from (4.6) the definition

* _ * 2 * 2
Varh,sfl,aﬁ(thLl) - Ph,sfl,ai(vh+l) - (Ph,s’;l,a’;l Vh+1) ’

we can use the preceding two bounds and the triangle inequality to show that

Nk
‘N" z Vi1 (s ) — (Nk Z Vit (Sh+1)) — Vary, & & (Vi)
h n=1 h p=1
k k
* 2 2
‘ Z Vi1 (shy )’ = Pt (Vip)™| + ‘( Z Vh+1(5h+1)) = Pyt Vir)
h n=1 h n=1
log SAT 1 N o 1 N
2 3 o
SH N N + ‘]7;5 zl Vi1 Ght) = Prt ot Vi |- ‘]7;: Z;. Viert Ghet) + Pt ot Vi
n= n—=
SAT
<P |logts
NE
N N

*

with probability at least 1 — §, where the last line also uses the fact that ||V}, <H.

E.2.2 Proof of the inequality (EI4) To begin with, we make the observation that

N (s,a)

Var V
z Z M <2 \/Nh (s, @)Vary,, (Vi ),
(s, a)eyx = (s,a)eyx

*
Varh,s’;l,a’,; (Vh+1 )
kok k =
Ny, (sp, ap)
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which relies on the fact that er:]:l 1/4/n < 2+/N. It then follows that

H K

2.2

h=1 k=1

ar, .k k(V* ) K

\% sk ak\Y 1 N \Y/ %

Nk]Thak) =2 E E \/ n (S OVan, (Vi)
SR h=1 (s,0)e.Sx .

H H
Z Z 1 Z Z N,f(s, a)Vary, o (Vi)

h=1 (s,a)eyx&f h=1 (s,a)eyx&{

K
D Var, gk (Vi) (E.16)
1 k=1

M =

= 2V HSA

>
Il

where the second inequality invokes the Cauchy—Schwarz inequality.
The rest of the proof is then dedicated to bounding (E.16). Toward this end, we first decompose

H K

H K H K
* * k
Z z Varh,sﬁ,aﬁ (Vh+l) = Z Z Varh,s a Vh+l + Z Z ‘Varh,s’;;,aﬁ (Vh+l) - Varh,sﬁ,a’fl (V;Z-i-l)‘

h=1 k=1 h=1 k=1 1 k=1

h=

(i) sar LK i

< HT + H3 log 5 + Z Z ‘Varh,sz’ai(V;H) - Varh’xz’ai (V¢
h=1 k=1

, (E.17)

where (ii) follows directly from (30, Lemma C.5). The second term on the right-hand side of (E.17) can
be bounded as follows:

M=
M =

* 7k
)Varh,xfl,al,‘; (Vh+1) - Varh,sﬁ,afl (Vh+1 ) ‘

=
I
—-
~
Il

M= M= 1
M= uMm M TM-

2 2
‘Ph,s;‘l,aﬁ(vlz+l) - (Ph,sfl,a;‘l V;L(+1) h Sh ak (Vh+l) + (Ph vk ak Vh+1) ‘

IA

k 2 kN2
I‘Phs a ((Vh+l h+1)(Vh+1 + P]LTJrl))‘ +‘ hs ath-H) - (Ph,sz,aﬁ ;L.[Jrl) H

K k
7T
Z h, Y a V/’H—l Vh+1)

A=
\./

1 k=1
K k
> [Vh+1(sh+1) TGk + (P nstat = Pi) (Vipr = ;f+1)}
k=1

=4H

=
Il

1
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(i) @ SAT SAT
< 4HZZ Ohe1 +0hi) S H\[Tlog == + H* [SAT log == + H*sA

h=1 k=1

. SAT
= H\SAT log = + H*SA, (E.18)

where we define

UCB.k koo k koo kY (1 k
5h+1 =Vi1 (Sh+1) = Vg1 1) D1 = (Ph,s;;,aﬁ = P3) (Viie1 = Vi)- (E.19)
We shall take a moment to explain how we derive (E.18). The inequality (i) holds by observing that
Viiiy = Vifzy = O and

k * k -
’Phs ak ((Vh+1 ) Vi + Z+1))‘ NP\ }7+1)(“Vh+l oo + 17111 00)
k
= 2HPh,s§,a’,;(VZ+1 = Vi)

2

Kk \2 k k
* T * T T
’(Ph,xlfl,a];l Vi) = Prgeat Vi) | < ‘Ph,sﬁ,a;; (Vi1 = Vh+1)‘ ‘ ‘Ph,s’,;,a’,; (Vi + Vh+1)‘
k
* T .
= ZHPh,s’,j,a’h‘ (Vh+1 - Vh+1)’

(ii) is valid since VYSB > v ;

H K
SAT
2D i SH\[SATlog =— + H'SA, (E.20a)
h=1 k=1
K
SAT
D iyt SHyTlog — (E.20b)

1 k=1

and (iii) results from the following two bounds:

M=

=
Il

which come, respectively, from (30, Eqn. (C.13)) and the argument for (30, Eqn. (C.12)).4
As a consequence, substituting (E.17) and (E.18) into (E.16), we reach

H K Var, « « (Vi ) SAT
SIS | o M < JHSA HT + H*\[SAT log 2~ + H*SA
5
N (sp, ap)

h=1 k=1

SAT 1/4
< VH2SAT + HY2(5A)3/4 (T log T) + H>SSA

SAT 1/4

= VH2SAT + (H?SAT10g == ) (H*54)"* + H> 54
/ SAT SAT

< ./H2SAT log -+ H*SAlog —

4 Note that the notation 8;; used in ([30], Section C.2) and the one in the proof of ([30], Theorem 1) are different; here, we need
to adopt the notation used in the proof of ([30], Theorem 1).
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where we have applied the basic inequality 2ab < a? + b® for any a,b > 0.
E.2.3  Proof of the inequality (E15) First, it is observed that

K ‘/CDk(s,a) N"(M),/@k (”)(s a)
2 = Y X Y

(s, a)eyx&{ n=1

< > e oM V(s aylog T < | SA S oM (s aylog T. (E.21)

(sa)eSx (sa)e S«

Here, the first inequality holds by the monotonicity property of <D,If (sy,»a;,) with respect to k (see its
definition in (E.11)) due to the same property of V};l,k, while the second inequality comes from
Cauchy—Schwarz.

To continue, note that

H
Z Z ‘I’Nh (sa)( ,a)

h=1 (s,a)eyx%

Il
M =

M=| TM=| TM~] 1147 T

Rk k * k Rk ( k * k
(Vh+1(sh+1) - Vh+1(sh+1))]l(vh+l(sh+1) = Vip1Ghyr) > 3)

=
’l
s

k(o LCB.k VE sk LCB
(Vh+l(sh+l)+2 Vi1 (Sh+1)) (h+1(sh+l)+2 Vi1 (sh+l)>3)

IA

M= EMm

LCB,k k k LCB,k
(Vh+1(sh+1)+2 Vit (Sh+l)) (Vh+1(sh+1) Vifr (sh+1)>1)

h:l\
< c c
k k LCB.k k k LCB.k
fz\ 3(Vh+l(sh+l) Vit (Sh+1)) (Vh+1(sh+1) Vit (Sh+1)>1)
h=1
K
= VH | 237 3(Via ) = Vi ek )1 (Vi G0 — VisP 0 > 1), B22)
\ h=1 k=1

where the first mequahty follows from Lemma 4 (cf. (4.15)) and Lemma 3 (so that V, h . l,k(sh +1)

thl(shﬂ) < h+1 (sh+1)+2 VL‘EF’ k(sh+1)) the penultimate inequality holds since 1 < Vthl (sh+1)

V,Il‘f?k(shﬂ) when H‘(Vh+1( Sha1) — ,Il‘f? k(sh+1) > 1) # 0, and the last inequality is a consequence

of the Cauchy—Schwarz inequality.
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Combining the above relation with (C.91) and applying the triangle inequality, we can demonstrate
that

H

> Y a6

h=1 (s,a)eyx o

M:c

<VH
h

/ SAT

where the second inequality follows directly from (4.16), and the first inequality is valid since

1 k=1

ko k LCBk Kk k LCBk , k k
Vi1 Ghe) = Vit Gg) = Ont S 15 @) — Qpfy " s @)

Substitution into (E.21) gives
H K ‘/<Dk(s a¥) [ SAT SAT
Z z ;l (v SAlog T) -y/H'SAlog —~ < H'?SA10g>/? 5

,dk
h=1 k=1 h

thus concluding the proof.

E.3 Bounding the term %,
For notational convenience, we shall use the short-hand notation
i . ik k
kl = k;,l(sh, ah)

whenever it is clear from the context. This allows us to decompose the expression of %5 in (4.22¢c) as
follows:

h=1 k=1
— %,
H K _ R
+szk z<Nk(shah)( h+1(sh+l) Ph,s’,;,a’;,v K1)
" NE(sk, db)
h=1 k=1 h\Sh> Ay
=9

with

—1,k k
Ny (sap)

xk-—llhil n 11h11H E.23

n=Nk(sk ak

K
k k k LCB.k k k k LCB,k
> (Qh+l(sh+l’ah+1) Oni1 (Sh+1’ah+1)) 1 (Qh+1(sh+l’ah+l) Opit” Shyps @) > 1
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Here, the first inequality in (E.23) follows from the property > y_, nY < 1+ 1/H in Lemma 1, while
the last inequality in (E.23) results from (E.1). In the sequel, we shall control each of these two terms
separately.
Step 1: upper bounding %’; We plan to control this term by means of Lemma 8. For notational
simplicity, let us define
N(s,a,h) = N{fil(s, a)
and set
INERCTY
= Vi = Vi and u(sjea)) = A = (1 + H) 2 vy
n:N;’ (sél,ag)
Given the fact that VR, k1), Vy +1(s) € [0, H] and the condition (E.23), it is readily seen that

|u (sj-af)| < e =: C, and | Wiiz+1 |, <H=:C,.

Apply Lemma 8 to yield

H K
Rk
ZZ)‘ h sk a/‘)(V}:—H - Vh+1) =

h=1 k=1 h=1 k=1
H K K
< C2CWHSA;;EM [P, hH]log + C,C, HSAlog
< HZSAZZE,h PO - h+1)]10g +H25Alog—
\ h=1 k=1
) H K . T ) T
x\HSA[h;k;P skt (Vi Vh+1)]log3+H SAlog = (E.24)

with probability at least 1 — §/2.

It then comes down to controlling the sum 3 7°_ | % | P sk o K (V) +1,k Vi

#.1). Toward this end,

we first single out the following useful fact:

H K () K
DD P (VR kg — Vi) < ZZP (Vi +2—= Vi)
=1

h=1 h=1 k=1

H K (i) AT
< 2HK + Z Z (V}]f+1 (S§+l) Vh+1(sh+l)) S /H'SAK log 5 + H3SA+HK  (E25)

h=1 k=1
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with probability at least 1 — §/4, where (i) holds according to (4.15), and (ii) is valid since

H K H K
k k * k UCBk, k ko k
Z (Vh+1(sh+1) - Vh+1(sh+1)) = ZZ (Vh+1 (1) — Z+1(Sh+1))

h=1 k=1 h=1 k=1

/ SAT
< ./H7SAK log 5+ H>SA,
VUCB,k

_— . . k . .
where the first inequality follows since V™" > V;f 4 and Vi > Vi, and the second inequality

comes from (E20a). Additionally, invoking Freedman’s inequality (see Lemma 8) with ¢, = 1 and
W, = VR k- Vi1 (sothat 0 < W, (s) < H) directly leads to

h+1°
1 1 1
< THzlogg—i-Hloggx H3K10g5

H K
k R,k *
> > (P- Pyt o) (Vi1 = Visr)
with probability at least 1 — §/4, which taken collectively with (E.25) reveals that

h=1 k=1

H K

H K
Zzpsﬁ,a’;,,h(vil}—fl = Vi) < P]Z(Vfl}ﬁ = Vi) + (P’Z - Psﬁ,aﬁ,h) (Vflf-;-kl — Vi)
h=1 k=1 h=1 k=1 h=1 k=1

/ SAT
< /H7SAK log 5+ H’SA + HK (E.26)

with probability at least 1 — §/2. Substitution into (E.24) then gives

H K

H K
R,
)‘];l(Pﬁ - Ph,s’,‘l,az) (V;l-‘rl - Vh—i-kl)

H K
T T
Rk . ’
\ H2SA hz; ;Ph,sﬁ,aﬁ (Vh+1 - Vh+1) log 3 + H-SAlog 3

SAT T ) T
H2SA\ ,/H7SAK log 5 + H3SA + HK |log 3 + H*SAlog 3

SAT T T
= [H2SA | H%SA log 5 + H3SA + HK ) log 3 + H"SAlog 3

/ SAT SAT
< /H3SAK log -+ H*SAlog ~
/ SAT SAT
= /H2SAT log -+ H*SAlog = (E.27)

with probability exceeding 1 — &, where the third line holds since (due to Cauchy—Schwarz)

A

A

SAT SAT SAT
\/ H'SAK log —~ = \/H(’SA log T«/HK < H%SAlog 5 + HK.
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Step 2: upper bounding %% We start by making the following observation:

H K k
A i
2 h R, ki R
ZEDIY NEGE D) D (ViiGhe) = Prg ot VEihy)
h=1 k=1 ’

i<NK(sk.ak)

K—1,k k
Ny Ga)

H K
h R k R k k R
=>> > 7(‘/ 1 ) = VS kg () + (P = Prge )V ’kh-'rl)

h=1 k=1 n=N,’,‘ (slfl,al,;)

K Ny 'skah) N

H K H
Z Z R k R k z z h (pk -

< (6 IOg T) (V ’kh+1(sh+l) -V 9kh+1(sh+1)) + F(Ph - Ph,sﬁ,alh{)vh+l
h=1 k=1 h=1 k=1 p=NFK(sk k)

H K k
+2.2 2 PPy ) (Vi = Vi), (E.28)

h=1 k=1 n=N£l‘(sﬁ ,a;;)

- VR,k+ 1

R
= Vh+1 2"'ZV skh_l’_ls

where the first inequality comes from the monotonicity property VR, k, 11

K—1,k _k

and the last line follows from the facts that Zi,vi Nk((zﬁzﬁ)) % < logT and A% < e (cf. (E.23)). In what
T h\h"h

follows, we shall control the three terms in (E.28) separately.

e The first term in (E.28) can be controlled by Lemma 4 (cf. (4.16)) as follows:

& SAT
> (VR kg k4 1) — VR Ky (554 1)) S HOSATog = (E.29)
h=1 k=1

with probability at least 1 — §/3.
e To control the second term in (E.28), we abuse the notation by setting
N(s,a,h) :== NE~'(s,a)
and
N(sz,a};,h) )»i
Wit = Vi, and uy, (s, ay,) 1= Z Zh

n=Nj (s},.a;,)

which clearly satisfy
N(si,.ai.h)

’uﬁl(sz,a;,)’ <e Z

n=Nj (s},,a;,)

<elogT =:C, and ||Wfl+1||005H=:C

w*

S| =
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(V;; “)1) 1

=Nj(sh.al) 1 = < logT and 1§ < e (cf. (E.23)). With these in

Here, we have used the properties Z i

place, applying Lemma 8 reveals that

K—1, k
Nh (sh’ah) )\.k

H K
ZZ Z n(Pk Phskak Vh+1 =

h=1 k=1 ’l:Nﬁ(Sﬁ’ah)

H K
Z Zxk,h

h=1 k=1

H K

. T

S | CHSAS > By [| (P = Py Wi ]log + C,C HSAlog
h=1 i=1

H K
G T T
= \ DD Van g & (Vi) - HSAlog? S+ H*SAlog? 5
h=1 k=1

(i) SAT T
< \/ HSA(HT + H*/SAT) log* == + H?SAlog? S

SAT T
< \/HSA(HT + H7SA) log* 5+ H*SAlog? —

B
(iii) SAT 2 SAT
< H2SAT log* —— + H*SA log? (E.30)

with probability at least 1 — §/3. Here, (i) comes from the definition in (4.6), (ii) holds due to (E.17)
and (E.18) and (iii) is valid since

HT + H*/SAT = HT + VHSA - V/HT < HT + H'SA

due to the Cauchy—Schwarz inequality.

Turning attention the third term of (E.28), we need to properly cope with the dependency between
P',; and VEJF 1»k. Toward this, we shall resort to the standard epsilon-net argument (see, €.g. [58]),
which will be presented in Appendix E.3.1. The final bound reads like

H K NYGhah) g

e . . , SAT L SAT
ZZ Z F(Ph_Phb a)(vh+l Vh+1) S H*SAlog 5 + \ H?SAK log® 5
h k=1

h=1 k= n:N,llc(sﬁ,aﬁ)
(E.31)

Combining (E.29), (E.30) and (E.31) with (E.28), we can use the union bound to demonstrate that

SAT | SAT
B < C3’2[H6SA log® -+ H2SAT log* T] (E.32)

with probability at least 1 — §, where C5 , > 0 is some constant.
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Step 3: final bound of %;. Putting the above results (E.27) and (E.32) together, we immediately

arrive at
SAT | SAT
Ry < | By + 5 < C, 3| HOSAlog® 5+ H2SAT log* T} (E.33)

with probability at least 1 — 24, where C, 5 > 0 is some constant. This immediately concludes the proof.

E.3.1 Proofof (E31). Step 1: concentration bounds for a fixed group of vectors. Consider a fixed
group of vectors {Vg 411 € RS | 1 < h < H} obeying the following properties:
Vi <ViL,<H  forl <h<H. (E.34)

We intend to control the following sum:

H K
h (pk d *
Z Z Z F(Ph - Ph,sﬁ,a’}‘l) (V/’H-l - Vh+l)'
h=1 k=1 n=N;§(s’,j,aﬁ)
To do so, we shall resort to Lemma 8. For the moment, let us take N(s,a, h) := N}If_l (s,a) and

N(sl,.ai.h)
i . yd * Ped 0y o
Wii1 = Vi1 = Vg uy (S, @) = Z

n=N, (s;,,a;,)

!

It is easily seen that

N(sl,.ai.h)

|u§l(s}'l,a;l)| <e Z

n=Nj, (s},,a;)

and W), lle < H=:C,,

| VE G
which hold due to the facts > " “h
n=N (s},,a),

Vg 110, Vi, (s) € [0, H]. Thus, invoking Lemma 8 yields

rll < log T and kﬁ < e (cf. (E.23)) as well as the property that

H K
Z ZXk,h

h=1 k=1

H K k
A’ *
ZZ Z 7}1(1_)1;! - Ph,sﬁ,alfl)(vg—}—l - Vh+l) =

" K o KHSA HSA
5 CI%CW Z Z IEi,h—l [PZW;H-]] IOg T + Cqu log 80
h=1 i=1
q K HSA KHSA
S HD. D Puga (Vi) — Vi) (log? T) log + H(logT) log (E.35)
N h=li=1 0 0

with probability at least 1 — §;, where the choice of §, will be revealed momentarily.
Step 2: constructing and controlling an epsilon net. Our argument in Step 1 is only applicable to
a fixed group of vectors. The next step is then to construct an epsilon net that allows one to cover the set
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of interest. Specifically, let us construct an epsilon net .4}, | , (the value of « will be specified shortly)
for each h € [H] such that:

a) forany V., € [0,H]%, one can find a point Vit € My o Obeying

0=V, —Vi$i(s) < for alls € .7

b) its cardinality obeys

Aol = (5) (£.36)

o

Clearly, this also means that

H - SH
|'/V2,otX'/V3,ozX"'><'/‘§'I-‘rl,ot|S (_) .

o

Set §y = %8 / (g)SH. Taking (E.35) together the union bound implies that: with probability at least
1= 8o(2)* = 1 - 5/6, one has

K—1,k k
Ny (syap)

H K k
A
ZZ Z 7h(P1;l - Ph,sﬁ,aﬁ)(vflﬁtl ~ Vi)

h=1k=1 n:Nﬁ (sfl,al}‘;)

H K ) KHSA HSA
< szph,s’,‘,,aﬂ‘, (Vi = Viy) (log” T) log + H(log T) log
N\ h=1i=1 0 0
H K
SAT SAT
* 2 2 2
< \ H2SA D" D Py o (Vish = Vi) (log? T) log g T+ H SAlog® — (E.37)
h=1 i=1

simultaneously for all {V;:_e:] | 1 < h < H} obeying V;‘l‘ 11 € Nyi1a (h € [H]).
Step 3: obtaining uniform bounds. We are now positioned to establish a uniform bound over the
entire set of interest. Consider an arbitrary group of vectors {V,_ | € RS | 1 < h < H} obeying (E.34).

By construction, one can find a group of points {Vfr:itl €EMi1alhe [H]} such that

0 <V (s)— V,rl’fl ) <« for all(h, s) € . x [H]. (E.38)
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It is readily seen that

K—1
K NE1(skab) xk

z z n (Ph Ph,s’,‘l,a'h‘)(vil:—i-l Vlrzl-e&-tl)

k=1 n=Nfl'(sﬁ,ah)

K NETUsEab)

<3S (IR 1) IV - VL

k=1 n—Nk(vh ah)

<2eKalogT, (E.39)

where the last inequality follows from z N ((i" Z"; % < logT and Ak < e (cf. (E.23)). Consequently,
— h°

by taking o« = 1/(SAT), we can deduce that

-1,k k
Ny (i) ];l .
u *
F(Ph = Pugt o) (Vi = Vi)

H K
h=1 k=1 =Nk (Ah “h)

NK—I(Sk’a )
h nh )\k

H K
= ZZ Z n(Pk P a,a’fl)(v;llitl_vi:-ﬁ—l)

h=1 k=1 n:N;l‘(sﬁ,ah)

K—1,k
K Ny (Sh’ah) Ak

+2 1> 2 n(Pk Py o) (Vier = Vi)

h=1 |k=1 nzNﬁ (s’,‘l,ah)

K—1
N, (s;;,a];,)

H K A k
Ay
< § 2 2 n(Ph Pk gt )(v,‘;_e;1 Vi )|+ HKalogT
=1k=1, _Nﬁ(sl}‘l,ah)
SAT , SAT
< 2 * 2 oAl
N\HSA;“EIP,” & Vs — Vi) (log? T) log — sg T SAlog” —— + HKalogT
SAT SAT
- 2 * 2 oAl 2 2 AL
A\HSA;]IEIP,” d (Vier = Vi) (log? T) log ; + H*SAlog 5 (E.40)

where the last line holds due to the condition (E.38) and our choice of «. To summarize, with probability
exceeding 1 — §/6, the property (E.40) holds simultaneously for all {V}, , € RS | 1 < h < H} obeying
(E.34).
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Step 4: controlling the original term of interest. With the above union bound in hand, we are
ready to control the original term of interest

k R
- (P — Ph,sﬁ’aﬁ)(v Ky = Vi) (E.41)
h=1 k=1 n:N,lj(sﬁ,alh‘)

To begin with, it can be easily verified using (4.10) that
Vi < VR K <H foralll <h <H. (E42)

=

H
(
ZZP}” ) Vh+1 Vis1) EZZP h.sh Vh+1 Vi)

h=1 k=1 h=1 k=1

) SAT
H7SAK log —— + H>SA + HK (E.43)

with probability exceeding 1 — §/6, where (i) holds because Vh -1 1s monotonically non-increasing (in
view of the monotonicity of V,(s) in (4.7b) and the update rule in line 16 of Algorithm 3), and (ii)
follows from (E.26). Substitution into (E.40) yields

Moreover, we make the observation that
K

K—1, &
Ny~ (sha) )»k

S>3 B r ) v

h=1 k=1 n:N;l‘(s’P‘;,ah)

H K
SAT SAT
R, * 2 2 2
< | HSAY D P (Vi = Vi) (1og>7) log S HHSAlog? =
\ h=1 i=1
/ SAT SAT SAT
< |H2SA { HSAK log —~ 7t H3SA + HK] (log® T) log 5t H*SAlog? -
\

SAT 3 SAT 5 5 SAT
< |H2SA H6SAlog—+H3SA+HK log® =—— + H?SAlog> —

SAT SAT
< H*SAlog? - | H3SAK log? — (E.44)

where the penultimate line holds since

SAT SAT SAT
/ H7SAK log —~ = \/H6SA log T«/HK < H%SAlog — +HK.

€20z 11dy G| uo Jasn elueAjAsuuad Jo Ansianun Aq §52/269/696/2/2 L/ 101e/Ierewl/woo  dnooiwapese//:sdny woJj papeojumoq



	 Breaking the sample complexity barrier to regret-optimal model-free reinforcement learning
	1. Introduction
	2. Problem formulation
	3. Algorithm and theoretical guarantees
	4. Analysis
	5. Discussion
	5. Data availability


