
Mathematical Programming Computation

https://doi.org/10.1007/s12532-023-00237-5

FULL LENGTH PAPER

Parallel and distributed asynchronous adaptive stochastic
gradient methods

Yangyang Xu1 · Yibo Xu2 · Yonggui Yan1 · Colin Sutcher-Shepard1 ·

Leopold Grinberg3 · Jie Chen4

Received: 21 January 2021 / Accepted: 27 February 2023

© Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2023

Abstract

Stochastic gradient methods (SGMs) are the predominant approaches to train deep

learning models. The adaptive versions (e.g., Adam and AMSGrad) have been

extensively used in practice, partly because they achieve faster convergence than

the non-adaptive versions while incurring little overhead. On the other hand, asyn-

chronous (async) parallel computing has exhibited significantly higher speed-up over

its synchronous (sync) counterpart. Async-parallel non-adaptive SGMs have been

well studied in the literature from the perspectives of both theory and practical per-

formance. Adaptive SGMs can also be implemented without much difficulty in an

async-parallel way. However, to the best of our knowledge, no theoretical result of

async-parallel adaptive SGMs has been established. The difficulty for analyzing adap-

tive SGMs with async updates originates from the second moment term. In this paper,

we propose an async-parallel adaptive SGM based on AMSGrad. We show that the

proposed method inherits the convergence guarantee of AMSGrad for both convex

and non-convex problems, if the staleness (also called delay) caused by asynchrony is

bounded. Our convergence rate results indicate a nearly linear parallelization speed-up

if τ = o(K
1
4 ), where τ is the staleness and K is the number of iterations. The proposed

method is tested on both convex and non-convex machine learning problems, and the

numerical results demonstrate its clear advantages over the sync counterpart and the

async-parallel nonadaptive SGM. Our code has been released at https://github.com/

RPI-OPT/APAM.
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1 Introduction

In recent years, adaptive stochastic gradient methods (SGMs), such as AdaGrad [12],

Adam [19], and AMSGrad [36], have become very popular due to their great success

in training deep learning models. These adaptive SGMs can practically be significantly

faster than a classic non-adaptive SGM. We aim at speeding up adaptive SGMs on mas-

sively parallel computing resources. One way is to parallelize them in a synchronous

(sync) way by using a large batch size, in order to obtain high parallelization speed-

up. However, it has been observed [18, 29] that large-batch training in deep learning

can often lead to worse generalization than small-batch training. To simultaneously

gain fast convergence, high parallelization speed-up, and also good generalization, we

propose to develop asynchronous (async) parallel adaptive SGMs.

Async-parallel computing under either shared-memory or distributed setting has

been demonstrated to enjoy significantly higher speed-up than its sync counterpart,

e.g., [23, 25, 32, 35]. At each iteration of a sync-parallel method, the workers that finish

tasks earlier must wait for those that finish later. This can result in a lot of idle waiting

time. In addition, under a shared-memory setting, all workers access the memory

simultaneously, which can cause memory congestion [4], and under a distributed

setting, enforcing synchronization is often inefficient due to communication latency.

For these reasons, a sync-parallel method may have a very low parallelization speed-

up. On the contrary, an async-parallel method does not require all workers to keep

the same pace and can eliminate the waiting time and the memory congestion issue.

However, it may be difficult to guarantee the convergence of an async-parallel method,

because outdated information could be used in updating the variables.

Async-parallel methods have been developed for non-adaptive SGMs, e.g., in [1,

23, 35]. However, a parallel nonadaptive SGM may be slower than a non-parallel

adaptive SGM to reach the same accuracy. Hence, it is important to design a method

that can achieve the high speed-up of async-parallel implementation and also the fast

convergence of an adaptive SGM. How to guarantee a successful integration remains an

open question, although numerical experiments have been conducted to demonstrate

the performance of async-parallel adaptive SGMs, e.g., in [11, 16]. The non-triviality

lies in the integrated analysis of the second-moment term used in adaptive SGMs. In

this work, we give an affirmative answer to the question, by designing an async-parallel

adaptive SGM under both shared-memory and distributed settings.

1.1 Proposed algorithm

We consider the stochastic program

F∗ = minimize
x∈X

F(x) := Eξ

[
f (x; ξ)

]
, (1.1)
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where ξ ∈ � is a random variable, and X ⊆ R
n is a closed convex set. When ξ is

uniformly distributed on a finite set � = {ξ1, . . . , ξN }, (1.1) reduces to a finite-sum

structured problem, which includes as examples all machine learning problems with

pre-collected training data.

For solving (1.1), we propose an async-parallel adaptive SGM, named APAM,

which is based on AMSGrad in [36]. We adopt a master-worker set-up. The pseudocode

is shown in Algorithm 1, which is from the master’s view. The updates in (1.2) through

(1.5) are performed by the master, while the workers compute the stochastic gradients

{g(k)}. Due to the potential information delay caused by asynchrony, g(k) may not be

evaluated at x(k); see more discussions in Sect. 2.2. In (1.5), we define a weighted

norm as ‖x‖2
v := x�Diag(v)x, and if X = R

n , the update reduces to x(k+1) =
x(k) −αkm(k) �

√
v̂(k), where � denotes component-wise division. The weight vector

v̂(k) depends on all previous stochastic gradients, and thus the effective learning rate

αk1 �
√

v̂(k) adaptively depends on the gradients.

Algorithm 1: async-parallel adaptive stochastic gradient method (APAM) from

master’s view

1 Initialization: choose x(1) ∈ X and β1, β2 ∈ [0, 1); set m(0) = 0 and v(0) = v̂(0) = 0, .

2 for k = 1, 2, . . . do

3 Obtain a (possibly outdated) stochastic gradient g(k) from a worker, and update

m(k) = β1m(k−1) + (1 − β1)g(k), (1.2)

v(k) = β2v(k−1) + (1 − β2)
(
g(k)

)2
, (1.3)

v̂(k) = max
{
v̂(k−1), v(k)

}
, (1.4)

x(k+1) ∈ Arg min
x∈X

〈m(k), x〉 +
1

2αk
‖x − x(k)‖2√

v̂(k)
. (1.5)

We emphasize the importance of the proposed method in training very large-scale

deep learning models. It is well-known that adaptive SGMs converge significantly

faster than a non-adaptive SGM; see [12, 19] for example or our numerical results

in Sect. 5. In addition, an async-parallel method can achieve much higher speed-up

than its sync counterpart. Hence, it is paramount to design a method that can inherit

advantages from both adaptiveness and async-parallelization, in order to efficiently

train a very “big” deep learning model on multi-core or distributed-memory machines.

We make the exploration on async-parallel adaptive SGM based on AMSGrad,

because of its simplicity and nice numerical performance. Besides AMSGrad, there

are several other adaptive SGMs in the literature, such as AdaGrad [12], RMSProp

[40], Adam [19], Padam [46], and AdaFom [8]. While AdaGrad can have guaranteed

sublinear convergence, its numerical performance can be significantly worse than

AMSGrad, because the former simply uses g(k) instead of the exponential averaging

gradient m(k) and also its effective learning rate can decay very fast. Adam can perform

similarly or slightly better than AMSGrad, but its convergence is not guaranteed even

for convex problems, due to a possibly too large learning rate. Padam is a generalized
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version of AMSGrad, and the performance of AdaFom is somehow between AdaGrad

and AMSGrad. We believe that the convergence of AdaGrad, Padam and AdaFom can

be inherited by their async versions.

1.2 Related works

In the literature, there are many works on SGMs. We briefly review those on async-

parallel SGMs and adaptive SGMs, which are closely related to our work.

Async-parallel non-adaptive SGM The stochastic approximation method can date

back to 1950s [37] for solving a root-finding problem. The SGM, as a first-order

stochastic approximation method, has been analyzed for both convex and non-convex

problems; see [15, 31, 34] for example. In order to achieve high speed-up, async-

parallel SGM and/or distributed SGM with delayed gradient have been developed to

solve problems that involve huge amount of data, e.g., in [1, 14, 21, 23, 28, 35]. The

work [1] assumes a distributed setting with a central node and analyzes the SGM with

delayed stochastic gradients. [23] studies the async-parallel SGM for non-convex

optimization under both shared-memory and distributed settings. After obtaining a

sample gradient, the shared-memory async-parallel method in [23] needs to perform

randomized coordinate update to avoid overwriting, because all threads are allowed

to update the variables without coordination to each other. Recht et al. [35] also

studies shared-memory async-parallel SGM. It does not require randomized coor-

dinate update. However, its analysis relies on strong convexity of the objective and

the assumption that the data involved in every sample function is sparse. Leblond et

al. [21] further removes the sparsity requirement by providing an improved analysis for

async-parallel stochastic incremental methods. In [21], a novel “after read” approach

is introduced to order the iterate and address one independence issue between the

random sample and the iterate that is read. [3, 39] adapt the stepsize of the async SGM

to the staleness of stochastic gradient, and [24, 43] explore the async SGM under a

decentralized setting.

Adaptive SGM Adam [19] is probably the most popular adaptive SGM. It was pro-

posed for convex problems. However, the convergence of Adam is not guaranteed. To

address the convergence issue, Reddi et al. [36] makes a modification to the second-

moment term in Adam and proposes AMSGrad. It performs almost the same updates

as those in (1.2) through (1.5), with the only difference that AMSGrad uses non-fixed

weights in computing m(k), i.e., it lets m(k) = β1,km(k−1) + (1 − β1,k)g
(k) for all

k ≥ 1. In order to guarantee sublinear convergence, Reddi et al. [36] requires a dimin-

ishing sequence {β1,k}, and to have a rate of O(1/
√

k), {β1,k} needs to decay as fast

as 1/k. However, Reddi et al. [36] sets β1,k = β1 ∈ (0, 1), ∀ k ≥ 1 in all its numeri-

cal experiments, and it turned out that the algorithm with a constant weight β1 could

perform significantly better than that with decaying weights. By new analysis, we will

show, as a byproduct, that an O(1/
√

k) convergence rate can be achieved even with

a constant weight. Later, Tran and Phong [41] proposes AdamX, which is similar to

AMSGrad but addresses a flaw in the analysis of AMSGrad. AdamX embeds β1,k in
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updating v̂(k). However, it still requires a decaying β1,k to guarantee sublinear con-

vergence. To have nice generalization, Chen and Gu [6] proposes Padam that includes

AMSGrad as a special case. It uses −m(k) � (̂v(k))p as the search direction, where

p ∈ (0, 0.5]. When p = 1
2

, Padam reduces to AMSGrad. It was demonstrated that

p = 1
8

could yield the best numerical performance. To avoid extremely large or small

learning rates, Luo et al. [27] proposes variants of Adam and AMSGrad by keeping

the second-moment term in nonincreasing intervals. Asymptotically, they approach to

non-adaptive SGMs. For strongly-convex online optimization, Fang and Klabjan [13]

presents a variant of AMSGrad, and Wang et al. [42] proposes SAdam, as a variant

of Adam. For non-convex problems, Chen et al. [8] gives a general framework of

Adam-type SGMs and establishes convergence rate results. Padam is extended in [46]

and a later version [7] of the paper [6] to non-convex cases. Nazari et al. [30] presents

a variant of AMSGrad by introducing one more moving-average term in the update

of v̂, and the analysis is conducted for both convex and non-convex problems.

Async-parallel adaptive SGM The async-parallel implementation of AdaGrad is

explored in [11]. Experimental results on training deep neural networks are shown

to demonstrate the performance of the async-parallel AdaGrad. However, no conver-

gence analysis is given in [11], and in addition, AdaGrad often performs significantly

worse than AMSGrad. Guan et al. [16] proposes a delay-compensated asynchronous

Adam, which exhibits advantages over an asynchronous nonadaptive SGM for solv-

ing deep learning problems. However, the theoretical result in [16] does not guarantee

convergence to stationarity but simply implies that the expected value of gradient norm

can be bounded.

For the readers’ convenience, we compare, in Table 1 , APAM to several closely

related methods based on a few important ingredients about the algorithms and the

targeted problem.

1.3 Contributions

Our contributions are three-fold. First, we propose an async-parallel adaptive SGM,

named APAM, which is an asynchronous version of AMSGrad in [36]. APAM works

under both shared-memory and distributed settings. For both settings, we adopt a

master-worker architecture. Only the master updates model parameters, while the

workers compute stochastic gradients asynchronously. APAM is lock-free. The mas-

ter can perform updates while the workers are reading/receiving variables, and also

since only the master updates variables, there is no need to lock the writing process.

To the best of our knowledge, APAM is the first async-parallel adaptive SGM that

maintains the fast convergence of an adaptive SGM and also achieves a high paral-

lelization speed-up. Secondly, we analyze the convergence rate of APAM for both

convex and non-convex problems. For convex problems, we establish a sublinear con-

vergence result in terms of the objective error, and for non-convex problems, we show

a sublinear convergence result in terms of the violation of stationarity. The established

results indicate that the staleness τ has little impact on the convergence speed if it

is dominated by K
1
4 , where K is the maximum number of iterations. Therefore, if
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Table 1 A comparison of ingredients among several algorithms for solving problems in the form of (1.1)

Method F & Constr. X Adapt. Weights (β1,k , β2,k ) Async. Order of convergence rate

Mirror descent [1] cvx & Yes No – Yes (1 + τ̄2/
√

K )/
√

K

AMSGrad [36] cvx & Yes Yes β1,k = β1/k, β1 <
√

β2 No 1/
√

K

AdamX [41] cvx & Yes Yes β1,k = β1/k, β1 <
√

β2 No 1/
√

K

Padam† [7] ncvx & No Yes β1 < β
2p
2 , p ∈ [0, 1/2] No 1/K 3/4−s/2

AdaDelay [39] cvx & Yes No – Yes (
√

1 + τ̄ + τ̄4/
√

K )/
√

K

AsySG-con [23] noncvx & No No – Yes (1 + τ/
√

K )/
√

K

AMSGrad & AdaFom [8] noncvx & No Yes Constant or decreasing No (log K )/
√

K

APAM (this paper) cvx & Yes Yes Constant Yes (1 + τ2/
√

K )/
√

K

noncvx & No Yes Constant Yes (1 + τ/K 1/4 + τ2/
√

K )/
√

K

In the second column, “F & Constr. X” reflects the underlying assumption on F and feasibility constraint X : “cvx” for convexity, “noncvx” for non-convexity, “yes” for

closed convex constraint X , and “no” for unconstrained problems. In the third column, “Adapt.” reflects whether the algorithm implements adaptivity. In the fourth column,

“Weights” reflects the restriction on the momentum parameters in the adaptive algorithms: “constant” indicates a constant parameter choice (i.e., (β1,k , β2,k ) = (β1, β2), ∀ k),

and “decreasing” indicates a decreasing parameter choice. In the fifth column, “Async.” reflects whether the algorithm has a convergence guarantee for its asynchronous

implementation with delayed gradient information. In the last column, convergence rate results for both convex and non-convex models are listed: τ for the upper bound on

the delay and K for the total number of iterations; for convex models, the convergence is measured by the expected objective gap, while for non-convex models, it is measured

by the expected stationarity violation. Specifically, Mirror descent [1] assumes E[τk ] ≤ τ̄ ; AdaDelay [39] has the assumption that the delay has a bounded expectation

E[τk ] = τ̄ < ∞ and a bounded second moment E[τ2
k
] = �(τ̄2)

†For the convergence rate of Padam [7], the parameter s relates to the sparsity of stochastic gradients; in the worst case, s = 1
2 , and the rate reduces to O(1/

√
K )

1
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τ = o(K
1
4 ), a nearly-linear speed-up can be achieved, and this is demonstrated by

numerical experiments. Thirdly, over the course of analyzing APAM, we also conduct

new convergence analysis for AMSGrad. Our convergence rate results do not require a

diminishing sequence to weigh the gradients. In practice, constant weights are almost

always adopted. Hence, our results bring the theory closer to practice.

1.4 Notation and outline

We use lower-case bold letter x, y, . . . for vectors. The i-th component of a vector x

is denoted as xi . For any two vectors x and y of the same size, x � y denotes a vector

by component-wise multiplication, and x�y denotes a vector by the component-wise

division, with 0
0

= 0. For any v ≥ 0,
√

v or (v)
1
2 denotes a vector by the component-

wise square root. We add a superscript (k) to specify the iterate, i.e., x(k) denotes

the k-th iterate. Diag(v) denotes the diagonal matrix with v as the diagonal vector.

Given v ≥ 0, ‖x‖2
v := x�Diag(v)x, and ProjX ,v(x) := arg miny∈X ‖y − x‖2

v. We use

‖ · ‖ for the Euclidean norm of a vector and also the spectral norm of a matrix. [n]
denotes {1, . . . , n}, and for a subset A ⊆ [n], Ac denotes the complement set of A.

∇̃ f (x) denotes a subgradient of f at x, and it reduces to the gradient ∇ f (x) if f is

differentiable. We let Hk be the σ -algebra generated by {x(t)}t≤k .

Outline The rest of the paper is outlined as follows. In Sect. 2, we give details on

how to implement the proposed algorithm. Convergence analysis is given in Sect. 3

for convex problems and in Sect. 4 for non-convex problems, and numerical results

are shown in Sect. 5. Finally, we conclude the paper in Sect. 6.

2 Implementation of the proposedmethod

In this section, we give more details on how to implement Algorithm 1 and also how

the delay happens as the workers run asynchronously in parallel.

2.1 Organization of master and workers

We first explain how the master and workers communicate under a shared-memory or

distributed setting.

Shared-memory setting Suppose that there are multiple processors and all the data

and variables (or model parameters) are stored in a global memory. We assign one or a

few as the master(s). The updates to x, m, v and v̂ in Algorithm 1 are all performed by

the master(s), while the computation of g is done by other processors (called workers).

See the left of Fig. 1 for an illustration. Every worker reads x and data from the global

memory, computes a stochastic gradient g, and saves it in a pre-assigned memory. If

there is a g that has not been used, then the master acquires it. Otherwise, the master

computes one stochastic gradient by itself. We allow more than one processor to serve

as the master in case one is not fast enough to digest the g vectors fed by the workers. In
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Fig. 1 Shared memory setting (left) vs. distributed setting (right): a demonstration

the case of multiple master processors, we will partition the vectors into blocks and let

one master processor update one block, and we synchronize all the master processors

while performing the updates. However, we never synchronize the workers.

Our shared-memory set-up is fundamentally different from existing ones, e.g., in

[21, 23, 35], which allow all processors to update the variables. Without coordination

between the processors, overwriting issue will arise if all processors write to the

memory at the same time. To avoid the issue, these existing works need to perform

randomized coordinate updates [23], or require sparsity of the stochastic gradient [35],

or assume strong convexity of the objective [21]. However, in training a deep learning

model, neither the sparsity condition nor the strong convexity assumption will hold.

In addition, the coordinate update will be inefficient because the whole g is computed

but just one or a few coordinate gradients are used. In contrast, our method does not

have this issue due to the master-worker set-up. Furthermore, our set-up enables a

simpler analysis without sacrificing the high parallelization speed-up.

Distributed setting Suppose multiple processors do not share memory and hence

data need to be transmitted through inter-process communication. The master takes

charge of updating x, m, v and v̂. It sends x to workers, and the workers compute

and send stochastic gradients to the master for the update. See the right of Fig. 1for

an illustration. We assume that each worker has its own memory and can generate

samples by the same distribution.

2.2 Iteration counter and staleness

Notice that Algorithm 1 is viewed from the perspective of the master. We use k as the

iteration counter. It increases by one whenever the master performs an update to x.

Hence, x(k) denotes the iterate maintained by the master at the beginning of the k-th

update, and g(k) is the stochastic gradient used in the k-th update. Since the master

continuously updates x, after worker #i reads (or receives) the variable, the master

may have already changed x before it uses the stochastic gradient fed by worker #i .

Therefore, the stochastic gradient g(k) that is used to obtain x(k+1) may not be evaluated

at the current iterate x(k) but at an outdated one. See Fig. 2 for an illustration. More

precisely, we have

g(k) = 1
bk

∑bk

i=1 ∇̃ f (̂x(k); ξ
(k)
i ), (2.1)
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Fig. 2 A demonstration of consistent but outdated read in the distributed setting (left subfigure) and

inconsistent read in the shared memory setting (right subfigure)

where bk is the number of samples, and x̂(k) can be an outdated iterate or a mixture of

several iterates; see (2.2) below for its expression.

2.3 Consistent and inconsistent read

In the distributed setting, we have x̂(k) = xk−τk for some τk ≥ 0 due to communication

delay, i.e., the x received by a worker is a consistent but potentially outdated iterate.

Fig. 3 Running time, objective errors and testing accuracy by APAM with openMP for logistic regression

on rcv1 dataset
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In the shared-memory setting, since we do not lock x when a worker computes a

stochastic gradient, x̂(k) may not be any iterate that ever exists in the memory but

is a combination of a few iterates, i.e., the reading is inconsistent; see Fig. 2 for an

illustration.

Suppose that the read of every coordinate is atomic. Then for each i , it must hold

x̂
(k)
i = x

(k− j)
i for some integer j ≥ 0. Let I j :=

{
i : x

(k− j)
i = x̂

(k)
i

}
and I j := ∪ j

l=0 Il

for each j ≥ 0. Let τk = min
{

j : I j = [n]
}
. Then Iτk

= [n], and x̂(k) can be formed

from {x(k−τk ), . . . , x(k)}. By the definition of Il , we have Il−1 ⊆ Il , and thus

x̂(k) = x(k) � 1I0
+

τk∑

l=1

x(k−l) � (1Il
− 1Il−1

)

= x(k) − x(k) � 1I
c
0
+

τk∑

l=1

x(k−l) � (1I
c
l−1

− 1I
c
l
)

= x(k) −
τk−1∑

l=0

(x(k−l) − x(k−l−1)) � 1I
c
l
, (2.2)

where we have used Iτk
= [n], and 1A represents the vector with one at each coordinate

i ∈ A and zero elsewhere. The expression in (2.2) generalizes the relation for atomic

lock-free updates in [23, 32]. It follows from (2.2) that

‖̂x(k) − x(k)‖ ≤
τk−1∑

l=0

∥∥(x(k−l) − x(k−l−1)) � 1I
c
l

∥∥ ≤
τk−1∑

l=0

∥∥x(k−l) − x(k−l−1)
∥∥,

(2.3)

Fig. 4 Running time, training accuracy, and testing accuracy by APAM with openMP for learning a 2-layer

fully-connected neural network on MNIST dataset
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and

‖̂x(k) − x(k)‖2 ≤ τk

τk−1∑

l=0

‖x(k−l) − x(k−l−1)‖2. (2.4)

These relations are important in our analysis to handle asynchrony.

3 Convergence for convex problems

In this section, we analyze Algorithm 1 for convex problems. Throughout the analysis,

we make the following assumptions.

Assumption 1 (Convexity) F in (1.1) is convex, and X is convex and compact.

Under Assumption 1, we define

D∞ = max
x,y∈X

‖x − y‖∞.

Assumption 2 (Bounded gradient in expectation) There is a finite number G1 such

that Eξ‖∇̃ f (x, ξ)‖1 ≤ G1, ∀x ∈ X .

Assumption 3 (Bounded gradient almost surely) There is a finite number G∞ such

that ‖∇̃ f (x; ξ)‖∞ ≤ G∞, ∀x ∈ X , and almost surely for all ξ.

Assumption 4 (Unbiased gradient) g(k) is an unbiased estimate of a subgradient of F

at x̂(k) for each k, i.e., E
[
g(k) | Hk

]
∈ ∂ F (̂x(k)).

We make a few remarks about the assumptions. The boundedness assumption on

X is required to analyze an adaptive SGM for convex problems in existing works,

e.g., [12, 19, 36]. Assumption 4 is standard in the analysis of SGMs. It will hold in

the distributed setting if data on all workers follow the same distribution and {ξ (k)
i } in

(2.1) are sampled independently from the distribution. However, in the shared memory

setting, the condition can only hold under certain ideal cases when asynchronous

updates are performed. Roughly speaking, different realizations of {ξ (k)
i } in (2.1)

can incur different cost of computing g(k) and thus affect the iteration counter k,

i.e., x̂(k) can depend on {ξ (k)
i }. Hence, the unbiased assumption can hold only if the

cost of computing a stochastic subgradient is the same for any realization of ξ and in

addition the workers have the same computing power. Leblond et al. [21] addresses the

independence issue by an “after read” approach. However, it could be computationally

inefficient to first read the entire x̂(k) and then sample {ξ (k)
i } to compute g(k). This is

also noticed in [21], which implements a different version of its analyzed method.

The issue is also addressed in [28], which essentially assumes sparsity of each sample

gradient. Both of [21, 28] require strong convexity on the objective. It is unclear

whether the issue can be addressed for convex or non-convex cases.

We first establish a couple of lemmas that will be used to show the convergence

rate of Algorithm 1 either with delay or without delay. Their proofs are given in the

appendix.
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Lemma 1 Let {(x(k), m(k), v̂(k))} be the sequence from Algorithm 1 with step size

sequence {αk}. Under Assumption 1, it holds for any t ≥ 1 and any x ∈ X that

(1 − β1)
∑t

k=1

(∑t
j=k α jβ

j−k
1

) 〈
x(k) − x, g(k)

〉

≤
D2

∞
2

‖
√

v̂(t)‖1 +
1

2(1 − β1)2

t∑

k=1

α2
k ‖m(k)‖2

(̂v(k))
− 1

2

.
(3.1)

Lemma 2 Let {(x(k), m(k), v̂(k))} be the sequence from Algorithm 1. Under Assump-

tion 2, it holds

E‖m(k)‖2

(̂v(k))
− 1

2

≤
G1√

1 − β2

. (3.2)

3.1 Convergence rate result for the case without delay

In this subsection, we use the previous two lemmas to show the convergence rate for

the no-delay case, i.e., x̂(k) = x(k),∀ k ≥ 1 in (2.1). Although the no-delay case is not

our main focus, our results improve over existing ones about AMSGrad.

Theorem 1 (Convex case without delay) Let {x(k)} be the sequence from Algo-

rithm 1 with step size sequence {αk}. Given an integer K > 0, let x̄(K ) =
∑K

k=1

∑K
j=k α j β

j−k
1 x(k)

∑K
t=1

(∑K
j=t α j β

j−t
1

) . Then under Assumptions 1–4, we have the following results:

1. If αk = α√
K

, ∀k ≥ 1, for some α > 0, then

E
[
F(x̄(K )) − F∗] ≤

nD2
∞G∞ + α2

(1−β1)2
G1√
1−β2

2α
√

K (1 − β1)
. (3.3)

2. If αk = α√
k
, ∀k ≥ 1, for some α > 0, then

E
[
F(x̄(K )) − F∗] ≤

nD2
∞G∞ + α2(1+log K )

(1−β1)2
G1√
1−β2

4α(
√

K + 1 − 1)(1 − β1)
. (3.4)

Proof Taking expectation over both sides of (3.1) and using Lemma 2, we have

(1 − β1)

t∑

k=1

⎛
⎝

t∑

j=k

α jβ
j−k

1

⎞
⎠E

〈
x(k) − x, g(k)

〉

≤
D2

∞
2

E‖
√

v̂(t)‖1 +
G1

2(1 − β1)2
√

1 − β2

t∑

k=1

α2
k .

(3.5)
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From Assumption 4, we have

E
〈
x(k) − x, g(k)

〉
= E

〈
x(k) − x, ∇̃F (̂x(k))

〉
, (3.6)

where ∇̃F (̂x(k)) ∈ ∂ F (̂x(k)). Hence, by the convexity of F and x̂(k) = x(k), it holds

E
[
F(x(k)) − F(x)

]
≤ E

〈
x(k) − x, g(k)

〉
, and thus (3.5) indicates

(1 − β1)

t∑

k=1

⎛
⎝

t∑

j=k

α jβ
j−k

1

⎞
⎠E

[
F(x(k)) − F(x)

]

≤
D2

∞
2

E‖
√

v̂(t)‖1 +
G1

2(1 − β1)2
√

1 − β2

t∑

k=1

α2
k .

(3.7)

Notice that
∑K

j=k β
j−k

1 = 1−βK−k+1
1

1−β1
∈ [1, 1

1−β1
). Hence, when αk = α√

K
, it holds

∑K
k=1 α2

k = α2 and
∑K

k=1

(∑K
j=k α jβ

j−k
1

)
≥ α

√
K . By the convexity of F , we have

K∑

t=1

⎛
⎝

K∑

j=t

α jβ
j−t

1

⎞
⎠ F(x̄(K )) ≤

K∑

k=1

⎛
⎝

K∑

j=k

α jβ
j−k

1

⎞
⎠ F(x(k)). (3.8)

In addition, we have from (7.6) and Assumption 3 that E‖
√

v̂(t)‖1 ≤ nG∞. Now

divide both sides of (3.7) by
∑K

k=1

(∑K
j=k α jβ

j−k
1

)
, take x as an optimal solution x∗,

and let t = K . We obtain the desired result in (3.3).

When αk = α√
k

, it holds

K∑

k=1

α2
k =

K∑

k=1

α2

k
≤ α2 +

∫ K

1

α2

x
dx ≤ α2(1 + log K )

and

K∑

k=1

⎛
⎝

K∑

j=k

α jβ
j−k

1

⎞
⎠ ≥

K∑

k=1

α
√

k
≥ α

∫ K+1

1

α
√

x
dx ≥ 2α(

√
K + 1 − 1).

Now utilizing the above bounds and (3.8) and following the same arguments to show

(3.3), we obtain the desired result in (3.4) and completes the proof. ��

Remark 1 Our rate is in the same order as that in [36]. However, by new analysis, we

do not require an exponential or harmonic decaying sequence β1,k in computing m

vectors in (1.2). The decaying weight is required in [36] and also its follow-up works

such as [6, 27]. Numerically, a fixed weight β1 can give significantly better results,

and indeed [36] uses β1,k = β1,∀k in all its experiments. The recent works [8, 46]
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have also weakened the condition on decreasing β1,k for smooth non-convex cases.

However, none of these works has dropped the assumption β1 ≤
√

β2 that is required

by [36]. Our result does not need this condition.

3.2 Convergence rate result for the case with delay

In this subsection, we analyze the proposed algorithm when there is delay, i.e., τk > 0

in (2.2). The delay naturally happens for asynchronous computing. It causes one main

difficulty in bounding the expected objective error E
[
F(x(k)) − F(x)

]
from using

(3.6). That is because the difference ∇̃F (̂x(k)) − ∇̃F(x(k)) in general will not vanish

as x̂(k) �= x(k) caused by the delay. Nevertheless, an ergodic sublinear convergence

result can still be guaranteed under a few additional mild assumptions.

Assumption 5 (Smoothness) F is L-smooth, i.e., ‖∇F(x) − ∇F(y)‖ ≤ L‖x −
y‖, ∀ x, y ∈ R

n .

Assumption 6 (Bounded staleness) There is a finite integer τ such that τk ≤ τ for all

k ≥ 1.

With the master-worker set-up, we can measure the delay at the master, by counting

the number of updates that are performed between two stochastic gradients computed

by the same worker. Hence, by discarding too staled stochastic gradient, we can bound

the staleness. In practice, we usually do not need to track the staleness. As mentioned

in [26, 33], the staleness is usually roughly equal to the number of processors, if all

the processors have similar computing ability.

The next theorem gives a generic result for the case with delay.

Theorem 2 Let {x(k)} be generated from Algorithm 1. Under Assumptions 1, 2, 4 and

5, we have that for any x ∈ X,

(1 − β1)

t∑

k=1

⎛
⎝

t∑

j=k

α jβ
j−k

1

⎞
⎠E

[
F(x(k)) − F(x)

]

≤
D2

∞
2

E‖
√

v̂(t)‖1 +
1

2(1 − β1)2

G1√
1 − β2

t∑

k=1

α2
k

+
L(1 − β1)

2

t∑

k=1

⎛
⎝

t∑

j=k

α jβ
j−k

1

⎞
⎠E‖x(k) − x̂(k)‖2.

(3.9)

Proof It follows from the convexity of F that

〈
x̂(k) − x,∇F (̂x(k))

〉
≥ F (̂x(k)) − F(x),

and in addition, the L-smoothness of F implies

〈
x(k) − x̂(k),∇F (̂x(k))

〉
≥ F(x(k)) − F (̂x(k)) −

L

2
‖x(k) − x̂(k)‖2.
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Plugging the above two inequalities into (3.6), we have

E
〈
x(k) − x, g(k)

〉
≥ E

[
F(x(k)) − F(x)

]
−

L

2
E‖x(k) − x̂(k)‖2,

which together with (3.5) gives the desired result in (3.9). ��

Note that if x(k) = x̂(k),∀ k, the inequality in (3.9) reduces to that in (3.7). However,

due to the asynchrony, we generally only have the relation in (2.2). Therefore, the term

about ‖x(k) − x̂(k)‖2 in (3.9) is not zero, and we need to bound it appropriately in order

to establish the sublinear convergence. From (2.4), it suffices to bound ‖x(k+1)−x(k)‖2

for all k, which can be obtained by the following lemmas. The proofs of the lemmas

are given in the appendix.

Lemma 3 (Non-expansiveness) Suppose X = [a1, b1]× · · · × [an, bn] for some finite

numbers {ai } and {bi }. Let {x(k)} be generated from Algorithm 1, and for any i ∈ [n],
we let x

(k+1)
i = x

(k)
i , if v̂

(k)
i = 0. Then for any k ≥ 1, it holds

‖x(k+1) − x(k)‖ ≤ αk

∥∥m(k) �
√

v̂(k)
∥∥. (3.10)

Remark 2 Notice that when v̂
(k)
i = 0, we must have m

(k)
i = 0 and in this case, xi

does not affect the objective of (1.5). Hence, when X is separable and v̂
(k)
i = 0,

x
(k+1)
i = x

(k)
i is one optimal choice for xi , and thus such a setting will not affect the

optimality condition of (1.5).

Lemma 4 Let {(g(k), m(k), v̂(k))} be generated from Algorithm 1. It holds for any k ≥ 1

that

‖g( j) �
√

v̂(k)‖ ≤
√

‖g( j)‖0√
1 − β2

,∀ j ≤ k, (3.11a)

‖m(k) �
√

v̂(k)‖ ≤
k∑

j=1

(1 − β1)β
k− j
1

√
‖g( j)‖0√
1 − β2

, (3.11b)

‖m(k) �
√

v̂(k)‖2 ≤
1 − β1

1 − β2

k∑

j=1

β
k− j
1 ‖g( j)‖0. (3.11c)

Applying the results in the above two lemmas to the inequality in (3.9), we establish

the sublinear convergence result of Algorithm 1 as follows.

Theorem 3 (convex case with delay) Suppose Assumptions 1 through 6 hold. Assume

X = [a1, b1] × · · · × [an, bn] for finite numbers {ai } and {bi }. Let {x(k)} be generated

from Algorithm 1, and for any i ∈ [n], we let x
(k+1)
i = x

(k)
i , if v̂

(k)
i = 0. Given a

positive integer K and α > 0, let αk = α√
K

for all 1 ≤ k ≤ K . Then

E
[
F(x̄(K )) − F∗] ≤ 1

2α
√

K (1−β1)

(
nD2

∞G∞ + α2G1

(1−β1)2
√

1−β2
+ α3 Lτ 2n√

K (1−β2)

)
, (3.12)
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where x̄(K ) is drawn from {x(k)}K
k=1 with

Prob(x̄(K ) = x(k)) =
∑K

j=k α j β
j−k

1∑K
t=1

(∑K
j=t α j β

j−t
1

) ,∀ 1 ≤ k ≤ K .

Proof By (3.10) and (3.11c), we have E‖x(k−l+1) − x(k−l)‖2 ≤ nα2
k−l

1−β2
. Since τk ≤

τ,∀ k ≥ 1, it follows from (2.4) that

E‖x(k) − x̂(k)‖2 ≤ τ

τ∑

l=1

E‖x(k−l+1) − x(k−l)‖2.

In addition, notice that

K∑

k=1

⎛
⎝

K∑

j=k

α jβ
j−k

1

⎞
⎠
(

τ

τ∑

l=1

α2
k−l

)
≤

τ 2α3

(1 − β1)
√

K
.

Therefore

L(1 − β1)

2

K∑

k=1

⎛
⎝

K∑

j=k

α jβ
j−k

1

⎞
⎠E‖x(k) − x̂(k)‖2 ≤

α3Lτ 2n

2
√

K (1 − β2)
.

Plugging the above inequality into (3.9) with t = K and using
∑K

k=1 α2
k = α2 give

(1 − β1)

K∑

k=1

⎛
⎝

K∑

j=k

α jβ
j−k

1

⎞
⎠E

[
F(x(k)) − F(x)

]

≤
D2

∞
2

E‖
√

v̂(t)‖1 +
α2

2(1 − β1)2

G1√
1 − β2

+
α3Lτ 2n

2
√

K (1 − β2)
.

Now using the definition of x̄(K ) and noting
∑K

k=1

(∑K
j=k α jβ

j−k
1

)
≥ α

√
K , we

obtain the result in (3.12) and complete the proof. ��

Remark 3 (How delay affects convergence speed) Take α = O(1). Then (3.12) implies

that the effect by the delay decreases at the rate of K
1
4 , namely, we can achieve nearly-

linear speed-up if τ = o(K
1
4 ). Peng et al. [33] shows that the delay, in expectation,

equals the number of processors if all of them have the same computing power. Hence,

in the ideal case, we can expect nearly-linear speed-up by using o(K
1
4 ) processors.

However, notice that the convergence result of the asynchronous case requires stronger

assumptions than that of the synchronous counterpart. In addition, we set αk = α√
K

for all 1 ≤ k ≤ K in Theorem 3 for simplicity. A sublinear convergence result can

also be established if αk = α√
k
,∀ k by similar arguments as those in the proof of

Theorem 1.
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4 Convergence for non-convex problems

In this section, we analyze Algorithm 1 for non-convex problems under Assump-

tions 3–6. Due to the difficulty caused by nonconvexity, we assume X = R
n . Then

the update in (1.5) becomes

x(k+1) = x(k) − αkm(k) �
√

v̂(k). (4.1)

When X = R
n , the gradient boundedness condition in Assumption 3 may not hold

for deep learning problems. However, we are unable to relax this strong assumption.

It is also made in all existing works that analyze adaptive SGMs for non-convex

problems, e.g., [8, 46]. On analyzing nonadaptive SGMs for non-convex problems,

this assumption can be relaxed to a variance boundedness condition [15, 23], which

may not hold either for unconstrained deep learning problems but is weaker than the

gradient boundedness condition.

Given a maximum number K of iterations, we will assume, without loss of gen-

erality, v̂
(K )
i > 0 for all i ∈ [n]. Note that if v̂

(K )
i = 0 for some i , then g

(k)
i = 0 for

all k ≤ K , and in this case, xi never changes and can be simply viewed as a constant

instead of a variable. We define an auxiliary sequence {̃v(k)}K
k=1 and gradient bounds

as follows. These are only used in our analysis but not in the computation.

Definition 1 Given a positive integer K , let {̂v(k)}K
k=1 be computed from Algorithm 1.

For any i ∈ [n], suppose ki ≤ K is the smallest number such that v̂
(ki )
i > 0. Define

{̃v(k)}K
k=1 as ṽ

(k)
i = max{̂v(k)

i , v̂
(ki )
i } for all i ∈ [n] and all k ∈ [K ]. Denote Ṽ(k) =

Diag(̃v(k)) for all k ∈ [K ].

Definition 2 Given a positive integer K , let {g(k)}K
k=1 and {x(k)}K

k=1 be computed as

in Algorithm 1. We define (�(K ),�(K )) as:


i (K ) = max
1≤k≤K

|g(k)
i |, and �i (K ) = max

1≤k≤K
|∇i F(x(k))|, ∀ i ∈ [n]. (4.2)

We abbreviate the pair as (�,�) to hide the dependence on K , when it is clear from

the context.

Remark 4 We make a few remarks on {̃v(k)}K
k=1. (I) Assume v̂

(K )
i > 0 for all i ∈ [n].

Then each ṽ(k) is a positive vector, and ṽ(k) ≥ ṽ(k−1) still holds component-wisely;

(II) m(k) �
√

ṽ(k) = m(k) �
√

v̂(k) and g(k) �
√

ṽ(k) = g(k) �
√

v̂(k) for all k ≤ K ;

and (III) ṽ(K ) = v̂(K ) under the assumption v̂(K ) > 0.

4.1 Preparatory lemmas

In this subsection, we establish several lemmas. Their proofs are given in the appendix.

The next lemma gives bounds on 
i and �i under Assumption 3.

Lemma 5 Given a positive integer K , let {̂v(k)}K
k=1 and {m(k)}K

k=1 be generated from

Algorithm 1, and let (�,�) be given in Definition 2. We have for all i ∈ [n], |m(k)
i | ≤
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i , and v̂
(k)
i ≤ 
2

i . Moreover, if Assumption 3 holds, then 
i ≤ G∞ almost surely,

and �i ≤ G∞ for all i ∈ [n].

To analyze Algorithm 1 for non-convex problems, we follow the analytical

framework of [44]. Let x(0) = x(1), and we define an auxiliary sequence z(k) as

follows:

z(k) = x(k) +
β1

1 − β1
(x(k) − x(k−1)) =

1

1 − β1
x(k) −

β1

1 − β1
x(k−1), ∀ k ≥ 1. (4.3)

The following lemma is from Lemma A.3 of [46]. It shows that z(k+1) − z(k) can

be represented in two different ways. However, due to typos in the original proof, we

provide a complete proof in the appendix for the convenience of the readers.

Lemma 6 Let z(k) be defined as in (4.3) and Ṽ(k) in Definition 1. We have

z(2) − z(1) = −α1(Ṽ
(1))−

1
2 g(1), (4.4)

and for k = 2, . . . , K ,

z(k+1) − z(k)

=
β1

1 − β1

[
αk−1(Ṽ

(k−1))−
1
2 − αk(Ṽ

(k))−
1
2

]
m(k−1) − αk(Ṽ

(k))−
1
2 g(k), (4.5)

=
β1

1 − β1

[
I − αk(Ṽ

(k))−
1
2 α−1

k−1(Ṽ
(k−1))

1
2

]
(x(k−1) − x(k)) − αk(Ṽ

(k))−
1
2 g(k).

(4.6)

Lemma 7 Let {x(k)} be from Algorithm 1, {z(k)} defined as in (4.3), and {̃v(k)} in

Definition 1. Also, let {αk} be a non-increasing positive sequence. For k = 2, . . . , K ,

we have

∇F(x(k))�(z(k+1) − z(k)) ≤ −∇F(x(k))�αk−1(Ṽ
(k−1))−

1
2 g(k)

+
1

1 − β1

n∑

i=1


i�i

[
αk−1(̃v

(k−1)
i )−

1
2 − αk (̃v

(k)
i )−

1
2

]
.

(4.7)

The next two lemmas are directly from [46]. Although the original results are for

k ≥ 2, they trivially hold when k = 1.

Lemma 8 (Lemma A.4 of [46]) Let {z(k)} be defined as in (4.3), and let {αk}k≥1 be a

non-increasing positive sequence. For k ≥ 1, we have

‖z(k+1) − z(k)‖ ≤
β1

1 − β1
‖x(k−1) − x(k)‖ + ‖αk(Ṽ

(k))−
1
2 g(k)‖. (4.8)
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Lemma 9 (Lemma A.5 of [46]) Let {z(k)} be defined as in (4.3) and Ṽ(k) in Definition 1.

Under Assumption 5, we have

‖∇F(z(k)) − ∇F(x(k))‖ ≤
Lβ1

1 − β1
‖x(k−1) − x(k)‖,∀ k ≥ 1. (4.9)

We still need the following lemma to show our main convergence result for the

non-convex case.

Lemma 10 Let {z(k)} be defined as in (4.3) and Ṽ(k) in Definition 1. Also, let {αk} be

a non-increasing positive sequence. Under Assumption 5, we have that for all k ≥ 1,

(
∇F(z(k)) − ∇F(x(k))

)�
(z(k+1) − z(k))

≤
3Lβ2

1

2(1 − β1)2
‖x(k−1) − x(k)‖2 +

L

2
‖αk(Ṽ

(k))−
1
2 g(k)‖2,

(4.10)

and

‖z(k+1) − z(k)‖2 ≤
4β2

1

(1 − β1)2
‖x(k−1) − x(k)‖2 +

4

3
‖αk(Ṽ

(k))−
1
2 g(k)‖2. (4.11)

4.2 Convergence rate results

By the lemmas established in the previous subsection, we are ready to show the

convergence result of Algorithm 1 for non-convex problems. The next theorem gives

the convergence rate without specifying the learning rate {αk}.

Theorem 4 Given an integer K ≥ 2, let {x(k)}K
k=1 and {̂v(k)}K

k=1 be generated from

Algorithm 1 with a non-increasing positive sequence {αk}K
k=1. Suppose v̂(K ) > 0.

Suppose that there is a constant CF such that |F(x)| ≤ CF , ∀ x. Let 2 ≤ k0 ≤ K and

x̄(k0,K ) be drawn from {x(k)}K
k=k0

with probability

Prob(x̄(k0,K ) = x(k)) = αk−1∑K
j=k0

α j−1

, ∀ k = k0, . . . , K . (4.12)

Then under Assumptions 3 through 6, it holds

E‖∇F(x̄(k0,K ))‖2

≤ G3
∞E‖(̃v(k0−1))

− 1
2 ‖1

1−β1

αk0−1∑K
k=k0

αk−1

+ 2CF G∞∑K
k=k0

αk−1

+ 7nLG∞
6(1−β2)

∑K
k=k0

α2
k∑K

k=k0
αk−1

+ 7nLG∞β2
1

2(1−β2)(1−β1)2 ·
∑K

k=k0
α2

k−1∑K
k=k0

αk−1

+

√
nLG∞

K∑
k=k0

αk−1

τ∑
j=1

αk− j

√
E‖(Ṽ(k−1))

− 1
2 ∇F(x(k))‖2

√
1−β2

∑K
t=k0

αt−1
. (4.13)
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Proof By the L-smoothness of F, it follows that

F(z(k+1)) ≤ F(z(k)) + ∇F(z(k))�(z(k+1) − z(k)) + L
2
‖z(k+1) − z(k)‖2

= F(z(k)) + ∇F(x(k))�(z(k+1) − z(k))

+
(
∇F(z(k)) − ∇F(x(k))

)�
(z(k+1) − z(k)) + L

2
‖z(k+1) − z(k)‖2.

(4.14)

For 2 ≤ k ≤ K , we substitute (4.7), (4.10) and (4.11) into (4.14) and rearrange

terms to have

F(z(k+1)) +
∑n

i=1 
i �i αk (̃v
(k)
i )

− 1
2

1−β1
− F(z(k)) −

∑n
i=1 
i �i αk−1 (̃v

(k−1)
i )

− 1
2

1−β1

≤ − ∇F(x(k))�αk−1(Ṽ
(k−1))−

1
2 g(k) + 7Lβ2

1

2(1−β1)2 ‖x(k−1) − x(k)‖2

+ 7L
6

‖αk(Ṽ
(k))−

1
2 g(k)‖2

= − ∇F(x(k))�αk−1(Ṽ
(k−1))−

1
2 g(k) + 7Lβ2

1

2(1−β1)2 ‖αk−1m(k−1) �
√

v̂(k−1)‖2

+ 7L
6

‖αk(Ṽ
(k))−

1
2 g(k)‖2. (4.15)

From Assumption 4, we have E
[
g(k) | Hk

]
= ∇F (̂x(k)), and thus taking the

expectation on both sides of (4.15) gives

E

[
F(z(k+1)) + G2

∞αk‖(̃v(k))
− 1

2 ‖1

1−β1
− F(z(k)) − G2

∞αk−1‖(̃v(k−1))
− 1

2 ‖1

1−β1

]

≤ E

[
F(z(k+1)) +

∑n
i=1 
i �i αk (̃v

(k)
i )

− 1
2

1−β1
− F(z(k)) −

∑n
i=1 
i �i αk−1 (̃v

(k−1)
i )

− 1
2

1−β1

]

≤ E

[
7L
6

‖αk(Ṽ
(k))−

1
2 g(k)‖2 − ∇F(x(k))�αk−1(Ṽ

(k−1))−
1
2 ∇F (̂x(k))

+ 7Lβ2
1

2(1−β1)2 ‖αk−1m(k−1) �
√

v̂(k−1)‖2

]

= E

[
7L
6

‖αk(Ṽ
(k))−

1
2 g(k)‖2 + 7Lβ2

1

2(1−β1)2 ‖αk−1m(k−1) �
√

v̂(k−1)‖2

]

+ E

[
∇F(x(k))�αk−1(Ṽ

(k−1))−
1
2

(
∇F(x(k)) − ∇F (̂x(k))

)]

− E

[
∇F(x(k))�αk−1(Ṽ

(k−1))−
1
2 ∇F(x(k))

]
, (4.16)

where the first inequality follows from αk (̃v
(k)
i )−

1
2 − αk−1(̃v

(k−1)
i )−

1
2 ≤ 0 for all

i ∈ [n] and Lemma 5. By the Cauchy–Schwarz inequality, the smoothness of F ,

Assumption 6, and Eqs. (2.3) and (4.1), we have

∇F(x(k))�(Ṽ(k−1))−
1
2

(
∇F(x(k)) − ∇F (̂x(k))

)
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≤ ‖(Ṽ(k−1))−
1
2 ∇F(x(k))‖ · ‖∇F(x(k)) − ∇F (̂x(k))‖

≤ L‖(Ṽ(k−1))−
1
2 ∇F(x(k))‖

(∑τ
j=1 ‖αk− j m

(k− j) �
√

v̂(k− j)‖
)

.

In addition, by Definition 1 and Lemma 5, it follows

E

[
∇F(x(k))�(Ṽ(k−1))−

1
2 ∇F(x(k))

]

≥ E

[
‖̃v(k−1)‖− 1

2
∞ ‖∇F(x(k))‖2

]
≥ G−1

∞ E‖∇F(x(k))‖2.

Substituting the above two inequalities into (4.16), we have

E

[
F(z(k+1)) + G2

∞αk‖(̃v(k))
− 1

2 ‖1

1−β1
− F(z(k)) − G2

∞αk−1‖(̃v(k−1)
i )

− 1
2 ‖1

1−β1

]

≤ E

[
7L
6

‖αk(Ṽ
(k))−

1
2 g(k)‖2 + 7Lβ2

1

2(1−β1)2 ‖αk−1m(k−1) �
√

v̂(k−1)‖2

]

+ E

[
αk−1L‖(Ṽ(k−1))−

1
2 ∇F(x(k))‖

(∑τ
j=1 ‖αk− j m

(k− j) �
√

v̂(k− j)‖
)]

+ E

[
−αk−1

G∞
‖∇F(x(k))‖2

]
. (4.17)

For any 2 ≤ k0 ≤ K , summing (4.17) over k = k0, . . . , K and using the condition

|F(x)| ≤ CF , ∀ x, we have

G−1
∞

∑K
k=k0

αk−1E‖∇F(x(k))‖2

≤ 2CF + G2
∞αk0−1E‖(̃v(k0−1))

− 1
2 ‖1

1−β1
+ 7L

6

∑K
k=k0

E‖αkg(k) �
√

v̂(k)‖2

+ 7Lβ2
1

2(1−β1)2

∑K
k=k0

E‖αk−1m(k−1) �
√

v̂(k−1)‖2

+ L

K∑

k=k0

αk−1E

[
‖(Ṽ(k−1))−

1
2 ∇F(x(k))‖

( τ∑

j=1

‖αk− j m
(k− j) �

√
v̂(k− j)‖

)]
.

(4.18)

Now use (3.11b) of Lemma 4 in the above inequality to have

G−1
∞

∑K
k=k0

αk−1E‖∇F(x(k))‖2

≤ 2CF + G2
∞αk0−1E‖(̃v(k0−1))

− 1
2 ‖1

1−β1

+ 7nL
6(1−β2)

∑K
k=k0

α2
k + 7nLβ2

1

2(1−β2)(1−β1)
2

∑K
k=k0

α2
k−1

+ L√
1−β2

∑K
k=k0

αk−1

∑τ
j=1 αk− j

∑k− j

l=1 (1 − β1)β
k− j−l
1

E

[
‖(Ṽ(k−1))−

1
2 ∇F(x(k))‖

√
‖g(l)‖0

]
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≤ 2CF + G2
∞αk0−1E‖(̃v(k0−1))

− 1
2 ‖1

1−β1

+ 7nL
6(1−β2)

∑K
k=k0

α2
k + 7nLβ2

1

2(1−β2)(1−β1)2

∑K
k=k0

α2
k−1

+
√

nL√
1−β2

∑K
k=k0

αk−1

√
E

[
‖(Ṽ(k−1))−

1
2 ∇F(x(k))‖2

]∑τ
j=1 αk− j , (4.19)

where the last inequality is by Cauchy–Schwarz inequality. We obtain the desired

result in (4.13) by dividing G−1
∞

∑K
k=k0

αk−1 on both sides of (4.19) and using the

definition of x̄(k0,K ). ��

Below we specify the choices of {αk} and show the sublinear convergence.

Theorem 5 Given an integer K ≥ 2, let {x(k)}K
k=1 and {̂v(k)}K

k=1 be generated from

Algorithm 1 with a non-increasing positive sequence {αk}K
k=1. For some 2 ≤ k0 ≤ K ,

let x̄(k0,K ) be drawn from {x(k)}K
k=k0

according to (4.12). Suppose Assumptions 3

through 6 hold. In addition, assume v̂(K ) > 0. Moreover, suppose that there are

positive constants CF and c such that |F(x)| ≤ CF , ∀ x, and ṽ
(k0−1)
i ≥ c2,∀i ∈ [n]

hold almost surely. The following results hold:

1. If αk = α√
K−k0+1

for all k and some constant α > 0, then

E‖∇F(x̄(k0,K ))‖2 ≤ C1 + C2
c

(√
C1 + C2

c

)
, (4.20)

where C2 = ατ
√

nLG∞√
1−β2

√
K−k0+1

, and

C1 = G3
∞E‖(̃v(k0−1))

− 1
2 ‖1

(1−β1)(K−k0+1)
+ 2CF G∞

α
√

K−k0+1
+ 7nLG∞(1−2β1+4β2

1 )

6(1−β2)(1−β1)2
α√

K−k0+1
.

2. Let k0 = K
2

≥ τ + 2. If αk = α√
k

for all k ≥ 1, then (4.20) holds, where

C2 = 2
√

2ατ
√

nLG∞√
K

√
1−β2

, and

C1 = G3
∞E‖(̃v(k0−1))

− 1
2 ‖1

(2−
√

2)(1−β1)
√

K
√

K/2−1
+ 2CF G∞

(2−
√

2)α
√

K

+ 7nLG∞
6(1−β2)

α log 4

(2−
√

2)
√

K
+ 7nLG∞β2

1

2(1−β2)(1−β1)2

α(1+log 3)

(2−
√

2)
√

K
.

Proof Setting 1: When αk = α√
K−k0+1

, ∀1 ≤ k ≤ K , we plug αk into (4.13) and

have

E‖∇F(x̄(k0,K ))‖2 ≤ C1 + C2
K−k0+1

∑K
k=k0

√
E

[
‖(Ṽ(k−1))−

1
2 ∇F(x(k))‖2

]
. (4.21)
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Since ṽ
(k0−1)
i ≥ c2,∀i ∈ [n] almost surely and ṽ(k+1) ≥ ṽ(k),∀k ≥ 1, it holds

1
K−k0+1

∑K
k=k0

√
E

[
‖(Ṽ(k−1))−

1
2 ∇F(x(k))‖2

]

≤ 1
c(K−k0+1)

∑K
k=k0

√
E‖∇F(x(k))‖2 ≤ 1

c

√
E‖∇F(x̄(k0,K ))‖2,

where the last inequality follows from Jensen’s inequality. Hence, plugging the above

inequality into (4.21) yields

E‖∇F(x̄(k0,K ))‖2 ≤ C1 + C2
c

√
E‖∇F(x̄(k0,K ))‖2, (4.22)

which implies
√

E‖∇F(x̄(k0,K ))‖2 ≤
√

C1+ C2
c

. Therefore, we have the desired result

from (4.22).

Setting 2 When αk = α√
k
, ∀1 ≤ k ≤ K , we have

K∑

k=k0

αk−1 =
K∑

k=k0

α
√

k − 1

≥
∫ K

k0−1

α
√

x
dx = 2α(

√
K −

√
k0 − 1) ≥ (2 −

√
2)α

√
K ,

and

K∑

k=k0

α2
k =

K∑

k=k0

α2

k
≤
∫ K

k0−1

α2

x
dx = α2 log

K

k0 − 1
= α2 log

1
1
2

− 1
K

≤ α2 log 4.

Similarly,

K∑

k=k0

α2
k−1 =

K∑

k=k0

α2

k − 1
≤

α2

k0 − 1
+
∫ K−1

k0−1

α2

x
dx

≤ α2 + α2 log
K − 1

k0 − 1
≤ α2(1 + log 3),

and for all k ≥ k0 ≥ τ + 2,

τ∑

j=1

αk− j ≤
τ∑

j=1

αk0− j =
τ∑

j=1

α
√

k0 − j

≤
∫ k0−1

k0−τ−1
α√
x

dx = 2α(
√

k0 − 1 −
√

k0 − τ − 1) ≤ 2ατ√
k0

.
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Therefore, plugging αk = α√
k
, ∀1 ≤ k ≤ K into (4.13) and using the above

inequalities, we have

E‖∇F(x̄(k0,K ))‖2

≤ C1 +
C2∑K

k=k0
αk−1

K∑

k=k0

αk−1

√
E

[
‖(Ṽ(k−1))−

1
2 ∇F(x(k))‖2

]
.

(4.23)

Notice ṽ
(k0−1)
i ≥ c2,∀i ∈ [n] almost surely, and also use the definition of x̄(k0,K ) in

(4.12). We have, by Jensen’s inequality,

1
∑K

k=k0
αk−1

K∑

k=k0

αk−1

√
E

[
‖(Ṽ(k−1))−

1
2 ∇F(x(k))‖2

]

≤
1

c

√
E‖∇F(x̄(k0,K ))‖2.

Now by the same arguments as those in the proof of Setting 1, we obtain the desired

result. ��

Remark 5 We make a few remarks here about Theorem 5. (i) Note that

E‖(̃v(k0−1))−
1
2 ‖1 ≤ n

c
. Hence, we have the ergodic sublinear convergence

O( 1√
K−k0+1

); (ii) The existence of c > 0 such that ṽ
(k0−1)
i ≥ c2,∀i ∈ [n] almost

surely is a mild assumption. If k0 is large, then it is likely that ṽ
(k0−1)
i ≥ v̂

(k0−1)
i �

(1 − β2)G
2
i,∞, where Gi,∞ is an almost-sure bound on |∇i f (x; ξ)|; (iii) Suppose

K ≥ 2 and k0 = � K
2
�. If α = O(1) and τ = o(K

1
4 ), then C2

c
(
√

C1 + C2
c

) � C1 when

K is large. Hence, we observe from (4.20) that in this case, the delay will just slightly

affect the convergence speed, and we can achieve nearly-linear speed-up.

5 Numerical experiments

In this section, we conduct numerical experiments on the proposed algorithm APAM

under both shared-memory and distributed settings. We compare APAM to the

non-parallel and sync-parallel versions of AMSGrad, and also to the async-parallel

nonadaptive SGM. Notice that AMSGrad has been shown in the literature to converge

significantly faster than a non-adaptive SGM or a momentum SGM, and in addition,

it performs similarly well as Adam, another popularly used adaptive SGM not guar-

anteed to converge. Both async- and sync-parallel methods are implemented in C++,

using openMP for shared-memory parallelization and using MPI for distributed com-

munication. They are also implemented in Python for tests with large-scale datasets,

using MPI4PY for distributed communication. Tests in Sects. 5.1–5.3 are run with

the C++ implementation on a Dell workstation with 32 CPU cores, 64 GB memory,

and two Quadro RTX 5000 GPUs. Tests in Sects. 5.4–5.5 are run with the Python

implementation on the same workstation.
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Table 2 Characteristics of the tested datasets

Name Train samples Test samples Features Classes

rcv1 20,242 677,399 47,236 2

MNIST 60,000 10,000 28 × 28 10

Cifar10 50,000 10,000 32 × 32 × 3 10

CINIC10 180,000 90,000 32 × 32 × 3 10

Imagenet32×32 1,281,167 50,000 32 × 32 × 3 1000

In our tests, we use five datasets: rcv1 from LIBSVM [5], MNIST [22], Cifar10

[20], CINIC10 [10], and Imagenet32 × 32 [9]. Their characteristics are listed in

Table 2.

5.1 Performance of APAM

In this subsection, we demonstrate the convergence behavior and parallelization speed-

up of APAM on solving both convex and non-convex problems. We apply APAM to

solve the logistic regression (LR) problem and to train a 2-layer fully-connected neural

network (NN). The LR problem is convex while the neural network training is non-

convex. For the LR problem, we use the rcv1 data, and for the 2-layer NN, we use the

MNIST data. We set the number of neurons in the hidden layer to 50 in the 2-layer

NN, and we use the hyperbolic tangent function as the activation. The initial iterates

for both problems are set as the standard Gaussian. While computing a stochastic

gradient, the mini-batch size is set to 64 and 32 respectively for the two problems. We

set the learning rate to αk = 10−2,∀ k for the LR problem and αk = 5 × 10−4,∀ k for

the 2-layer NN training. The weight parameters are set to β1 = 0.9 and β2 = 0.999

in this test and also all the other tests.

For both problems, we report the wall-clock time and prediction accuracy on the

testing data. In addition, we report the objective error, i.e., the distance of the objective

value to the optimal value, for the convex LR problem and the training accuracy for

the non-convex 2-layer NN problem. The results for the LR problem are shown in

Fig. 3 and those for the 2-layer NN training in Fig. 4. From the results, we see that the

convergence speed of APAM, measured by the objective error or prediction accuracy

versus epoch number, keeps almost the same when the number of threads used for

the shared-memory parallel computing changes. This observation indicates that the

convergence speed of APAM is just slightly affected by the information delay. For

both problems, over 16x speed-up is achieved in terms of the running time while 32

threads are used.

5.2 Comparison to the nonadaptive SGM

In this subsection, we compare APAM to the async-parallel nonadaptive SGM. The

latter method is implemented in a way similar to how we implement APAM but with

a nonadaptive update. We test the two methods on training the 2-layer neural network
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in the previous subsection and the LeNet5 network [22] by using the MNIST dataset.

LeNet5 has 2 convolutional, 2 max-pooling, and 3 fully-connected layers. For the

2-layer network, we use openMP shared-memory parallelism on the two methods.

The mini-batch size in computing a stochastic gradient is set to 32 for both methods.

The parameters of APAM are set the same as those in the previous subsection, and

the learning rate of the nonadaptive SGM is tuned to 10−3 for the highest testing

accuracy. For the LeNet5 network, we conduct distributed computing with MPI. The

mini-batch size is set to 40 for both methods, and the learning rate is tuned to 10−4

and 10−3 respectively for APAM and the async-parallel nonadaptive SGM, for the

highest testing accuracy.

For the openMP implementation, we compare the performance of the two methods

by running them with 1, 8, or 32 threads. For the MPI implementation, we compare

their performance with one master process and 1, 5, or 20 worker processes. When

one thread or one worker is used, the methods become nonparallel. Both methods are

run to 200 epochs. The results are shown in Fig. 5 for the openMP implementation

and in Fig. 6 for the MPI implementation. Because the nonadaptive SGM update is

cheaper than the APAM update, we plot the accuracy versus the running time. From the

convergence curves, we see that the convergence speed of both APAM and the async-

parallel nonadaptive SGM is slightly affected by the information delay. In addition,

we see that APAM gives significantly higher training and testing accuracy than the

nonadaptive SGM within the same amount of running time.

5.3 Comparison to sync-parallel method

In this subsection, we compare APAM to its sync-parallel counterpart. We test them on

training the 2-layer neural network used in the previous two subsections and on training

the AllCNN network in [38] without data augmentation. The MNIST data is used for

the 2-layer network and Cifar10 for the AllCNN network. AllCNN has 9 convolutional

Fig. 5 Training and testing accuracy by APAM and the async-parallel nonadaptive SGM with openMP for

a 2-layer fully-connected neural network on MNIST
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Fig. 6 Training and testing accuracy by APAM and the async-parallel nonadaptive SGM with MPI for the

LeNet5 neural network on MNIST dataset

layers. The parameters of APAM and its sync-parallel counterpart are set to the same

values. On training the 2-layer network, we adopt the same parameter settings as those

in the previous two subsection. On the AllCNN, we conduct distributed computing

with MPI. We set the mini-batch size to 40 and tune the learning rate to αk = 10−4,∀ k

based on testing accuracy.

The running time for the 2-layer network is shown in Fig. 7and the results for the

AllCNN in Fig. 8. Figure 4 shows that on the 2-layer network, APAM gives almost

the same accuracy curves while the number of threads used in the training changes.

Hence, the results in Figs. 4 and 7 indicate that APAM can achieve significantly

higher parallelization speed-up than its sync-parallel counterpart to reach the same

training/testing accuracy, especially when 16 or 32 threads are used. The sync-parallel

method achieves lower paralleization speed-up by using 32 threads than that by using

8 or 16 threads. This is possibly because of memory congestion. For the AllCNN, we

see that in the beginning, APAM produces lower accuracy as more worker processes

are used, and this should be because the delay slows down the convergence speed.

However, to reach the final highest accuracy, APAM with different number of worker

processes takes almost the same number of epochs. Therefore, the results indicate that

APAM again has significantly higher speed-up than its sync-parallel counterpart to

reach the highest training/testing accuracy, especially when 10 or 20 worker processes

are used.

Fig. 7 Running time (h) of

APAM and the sync-parallel

AMSGrad with openMP by

different number of threads for

training a 2-layer

fully-connected network on

MNIST dataset. The

training/testing accuracy results

are shown in Fig. 4
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Fig. 8 Running time (h) and prediction accuracy by APAM and the sync-parallel AMSGrad with MPI

implementation for training the AllCNN network without data augmentation on Cifar10 dataset

Fig. 9 Predication accuracy by APAM for training the AllCNN network on Cifar10 dataset with Python

implementation and artificial delay

5.4 Results with artificial delay

In this subsection, we test the effect of the delay in our algorithm APAM, by

artificially injecting different delays like [2]. For a given maximum delay τ , we

artificially select the delay τk in iteration k from {0, 1, ..., min{τ, k}} uniformly at

random, i.e., the stochastic gradient g(k) is evaluated at an iterate that is selected from

{x(k), x(k−1), . . . , x(k−min{τ,k})} uniformly at random. We test APAM on training the

AllCNN network on Cifar10 with different maximum delays and the same parameter

settings as those in the previous subsection.

Figure 9 plots the curves for different values of τ . In all cases, APAM can converge

to almost the same final highest accuracy. When τ ≤ 20, APAM takes almost the

same number of epochs to reach the final highest accuracy as the no-delay case. When

τ ≥ 50, the negative effect of delay on the convergence becomes obvious. APAM
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with a larger maximum delay converges slower and needs more epochs to achieve the

final highest accuracy. APAM with the maximum delay of 200 converges the slowest

but it can still achieve the final highest accuracy after about 300 epochs.

5.5 Tests on larger datasets

In this subsection, we test APAM and its sync-parallel counterpart on larger neural

networks and larger datasets. We train two networks: Resnet18 [17] that is a deep resid-

ual network with 18 convolutional layers, and WRN-28-5 [45] that is a wide residual

network with 28 convolutional layers and whose widening factor is 5. Resnet18 is used

for classifying the CINIC10 data, with the mini-batch size set to 80 and the learning

rate tuned to 10−4. WRN-28-5 is used for classifying the Imagenet32 × 32 data, with

the mini-batch size set to 100 and the learning rate tuned to 10−3.

The training is first run on CPUs to compare the time of APAM and its sync

counterpart. Because of the problem size, it takes very long time for one update, and

we only run the training to one epoch. Figure 10shows the running time. From the

figure, we see again that APAM has significantly higher speed-up than its sync-parallel

counterpart. In more details, the running time for both trainings by APAM decreases

as the number of workers increases, and it is reduced almost by a half as the workers

increase from 5 to 10 and from 10 to 20. However, for the sync-parallel counterpart,

the speed-up is only observed when the number of workers increases from 1 to 5, and

as the number of workers further increases, it takes longer time for training Resnet18

on the CINIC10 data.

Then we run APAM with two GPUs to see how the delay affects the convergence.

As there are only two GPUs, we assign � p
2
� workers on one GPU and � p

2
� workers

on the other one, if p workers are employed. Due to the memory limitation, p is set

up to 10. Figures 11and 12 show the prediction accuracy of the training on Resnet18

and WRN-28-5 respectively. From the figures, we see that APAM produces lower

accuracy for the beginning epochs as more workers are used. This indicates that the

delay slows down the convergence speed. Nevertheless, APAM achieves almost the

same final highest accuracy with different numbers of workers. It is worth to mention

that to train the models on the large datasets for many epochs takes a long time, even

on GPUs. The number of epochs is selected such that the training takes about one day

Fig. 10 Running time (h) on CPU by APAM and the sync-parallel AMSGrad with Python and MPI4PY

implementation, for training the Resnet18 network on CINIC10 dataset (Left) and WRN-28-5 on

Imagenet32 × 32 dataset (Right); both for one epoch
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Fig. 11 Prediction accuracy by APAM and the sync-parallel AMSGrad with Python and MPI4PY

implementation for training the Resnet18 network on CINIC10 dataset

Fig. 12 Prediction accuracy by APAM and the sync-parallel AMSGrad with Python and MPI4PY imple-

mentation for training the WRN-28-5 network on Imagenet32 × 32 dataset. The first row is about the

conventional accuracy that measures the proportion of images for which the predicted class (the one with

the highest probability) matches the true class. The second row is about the top 5 accuracy that measures

the proportion of images for which one of the five classes with top 5 highest probability matches the true

class

by using both GPUs. This way, we could run to 200 epochs for training Resnet18 on

CINIC10 and only 40 epochs for training WRN-28-5 on Imagenet32 × 32.

6 Concluding remarks

We have presented an asynchronous parallel adaptive stochastic gradient method,

named APAM, based on AMSGrad. Convergence rate results are established for both

constrained convex and unconstrained non-convex cases. The results show that the
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delay has little effect on the convergence speed, if it is upper bounded by τ = o(K
1
4 ),

where K is the maximum number of iterations. Numerical experiments on both convex

and non-convex machine learning problems demonstrate significant advantages of the

proposed method over its synchronous counterpart and also an asynchronous parallel

nonadaptive method, in both shared-memory and distributed environment.
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Proofs of lemmas in Sect. 3

Proof of Lemma 1 From the update of x in (1.5), we have the optimality condition

0 ∈ NX (x(k+1)) +
√

v̂(k)(x(k+1) − x(k)) + αkm(k),

where NX (x) denotes the normal cone of X at x. Hence, it follows

〈
x(k+1) − x,

√
v̂(k)(x(k+1) − x(k)) + αkm(k)

〉
≤ 0, ∀ x ∈ X . (7.1)

By the update of m in (1.2), it holds

〈
x(k+1) − x, m(k)

〉

=
〈
x(k+1) − x(k), m(k)

〉
+
〈
x(k) − x, m(k)

〉

=
〈
x(k+1) − x(k), m(k)

〉
+ (1 − β1)

〈
x(k) − x, g(k)

〉
+ β1

〈
x(k) − x, m(k−1)

〉
.
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Recursively using the above relation, we have

〈
x(k+1) − x, m(k)

〉
=

k∑

j=1

β
k− j
1

(
〈x( j+1) − x( j), m( j)〉 + (1 − β1)〈x( j) − x, g( j)〉

)
.

(7.2)

In addition, it holds

〈
x(k+1) − x,

√
v̂(k)(x(k+1) − x(k))

〉

=
1

2

(
‖x(k+1) − x‖2√

v̂(k)
− ‖x(k) − x‖2√

v̂(k)
+ ‖x(k+1) − x(k)‖2√

v̂(k)

)
.

Substituting the above two equations into (7.1) gives

αk

k∑

j=1

β
k− j
1

(
〈x( j+1) − x( j), m( j)〉 + (1 − β1)〈x( j) − x, g( j)〉

)

≤ −
1

2

(
‖x(k+1) − x‖2√

v̂(k)
− ‖x(k) − x‖2√

v̂(k)
+ ‖x(k+1) − x(k)‖2√

v̂(k)

)
. (7.3)

By the Young’s inequality, we have

t∑

k=1

αk

k∑

j=1

β
k− j
1

〈
x( j+1) − x( j), m( j)

〉

=
t∑

j=1

t∑

k= j

αkβ
k− j
1

〈
x( j+1) − x( j), m( j)

〉

≥
t∑

j=1

⎛
⎝

t∑

k= j

αkβ
k− j
1

⎞
⎠

⎛
⎜⎝−

‖x( j+1) − x( j)‖2

(̂v( j))
1
2

2
∑t

k= j αkβ
k− j
1

−
∑t

k= j αkβ
k− j
1

2
‖m( j)‖2

(̂v( j))
− 1

2

⎞
⎟⎠ .

Since
∑t

k= j αkβ
k− j
1 ≤ α j

1−β1
, the above inequality implies

t∑

k=1

αk

k∑

j=1

β
k− j
1

〈
x( j+1) − x( j), m( j)

〉

≥ −
t∑

j=1

⎛
⎜⎝

‖x( j+1) − x( j)‖2

(̂v( j))
1
2

2
+

α2
j

2(1 − β1)2
‖m( j)‖2

(̂v( j))
− 1

2

⎞
⎟⎠ . (7.4)

In addition, noting v̂(k) ≥ v̂(k−1) for all k, we have

−
t∑

k=1

(
‖x(k+1) − x‖2√

v̂(k)
− ‖x(k) − x‖2√

v̂(k)

)
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= − ‖x(t+1) − x‖2√
v̂(t)

+
t∑

k=2

‖x(k) − x‖2√
v̂(k)−

√
v̂(k−1)

+ ‖x(1) − x‖2√
v̂(1)

≤ D2
∞

(
t∑

k=2

‖
√

v̂(k) −
√

v̂(k−1)‖1 + ‖
√

v̂(1)‖1

)
= D2

∞‖
√

v̂(t)‖1. (7.5)

Now summing (7.3) over k = 1 to t , and using (7.4) and (7.5), we obtain the desired

result. ��

Proof of Lemma 2 For each i ∈ [n], let G
(k)
i = max j≤k |g( j)

i |, and G(k) be the vector

with the i-th component G
(k)
i . Note that for each k ≥ 1 and each i ∈ [n], we have v̂

(k)
i =

max{̂v(k−1)
i , v

(k)
i } = max j≤k v

( j)
i , and in addition, v

( j)
i =

∑ j
j=1(1−β2)β

j−j
2 (g

(j)

i )2.

Hence,

v̂
(k)
i = max

j≤k

j∑

j=1

(1 − β2)β
j−j

2 (g
(j)

i )2, (7.6)

and thus v̂
(k)
i ≥ (1 − β2)(G

(k)
i )2. Therefore, noticing

m(k) =
k∑

j=1

(1 − β1)β
k− j
1 g( j), (7.7)

we have

‖m(k)‖
(̂v(k))

− 1
2

= ‖m(k) � (̂v(k))
1
4 ‖ ≤

1

(1 − β2)
1
4

‖m(k) �
√

G(k)‖

≤
1

(1 − β2)
1
4

k∑

j=1

(1 − β1)β
k− j
1

∥∥g( j) �
√

G(k)
∥∥,

and thus by the Cauchy–Schwarz inequality, it holds

‖m(k)‖2

(̂v(k))
− 1

2

≤
(1 − β1)

2

(1 − β2)
1
2

⎛
⎝

k∑

j=1

β
k− j
1

⎞
⎠
⎛
⎝

k∑

j=1

β
k− j
1

∥∥g( j) �
√

G(k)
∥∥2

⎞
⎠

≤
1 − β1

(1 − β2)
1
2

k∑

j=1

β
k− j
1

∥∥g( j) �
√

G(k)
∥∥2

.

Now note that

∥∥g( j) �
√

G(k)
∥∥2 =

n∑

i=1

|g( j)
i |2

G
(k)
i

≤
n∑

i=1

|g( j)

i | = ‖g( j)‖1.
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Together from the above two inequalities and Assumption 2, it follows that

E‖m(k)‖2

(̂v(k))
− 1

2

≤
1 − β1

(1 − β2)
1
2

k∑

j=1

β
k− j
1 E‖g( j)‖1 ≤

1 − β1

(1 − β2)
1
2

k∑

j=1

β
k− j
1 G1,

which implies the result in (3.2). ��

Proof of Lemma 3 Since X is separable and x
(k+1)
i = x

(k)
i if v̂

(k)
i = 0, we have x(k+1) =

ProjX

(
x(k) − αkm(k) �

√
v̂(k)

)
. In addition, notice that x(k) = ProjX

(
x(k)

)
, and thus

the desired result follows from the non-expansiveness of the projection onto a convex

set. ��

Proof of Lemma 4 For each i ∈ [n], let G
(k)
i = max j≤k |g( j)

i |, and G(k) be the vector

with the i-th component G
(k)
i . Then it follows from (7.6) that v̂

(k)
i ≥ (1 − β2)(G

(k)
i )2.

Hence, for j ≤ k,

‖g( j) �
√

v̂(k)‖2 ≤
1

1 − β2

n∑

i=1

(g
( j)
i )2

(G
(k)
i )2

≤
‖g( j)‖0

1 − β2
,

which gives (3.11a). Furthermore, by (7.7), it holds

∥∥m(k) �
√

v̂(k)
∥∥ ≤

k∑

j=1

(1 − β1)β
k− j
1

∥∥g( j) �
√

v̂(k)
∥∥ ≤

k∑

j=1

(1 − β1)β
k− j
1

√
‖g( j)‖0√
1 − β2

,

which proves (3.11b). The above inequality together with the Cauchy–Schwarz

inequality implies (3.11c). Hence, we complete the proof. ��

Proofs of lemmas in Sect. 4

Proof of Lemma 5 From (7.7), we have m
(k)
i = (1 − β1)

∑k
j=1 β

k− j
1 g

( j)
i , and thus

applying triangle inequality and using the definition of � in (4.2) lead to |m(k)
i | ≤

(1 − βk
1 )
i ≤ 
i . A similar argument gives v̂

(k)
i ≤ 
2

i . When Assumption 3 holds,

we know that ‖g(k)‖∞ ≤ G∞ almost surely, and that ‖∇F(x(k))‖∞ ≤ G∞, for all

k ∈ [K ], which leads to the second part of this lemma. ��

Proof of Lemma 6 From (4.3), we have that for k ≥ 1,

z(k+1) − z(k) =
1

1 − β1
(x(k+1) − x(k)) −

β1

1 − β1
(x(k) − x(k−1))

= −
1

1 − β1
αk(Ṽ

(k))−
1
2 m(k) +

β1

1 − β1
αk−1(Ṽ

(k−1))−
1
2 m(k−1),
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where in the second equation, we have used (4.1) and Remark 4. With k = 1, the

above equation gives (4.4) by utilizing the update of m(1). Furthermore, it gives, by

plugging the update of m(k),

z(k+1) − z(k)

=
−1

1 − β1
αk (Ṽ(k))

− 1
2 (β1m(k−1) + (1 − β1)g(k)) +

β1

1 − β1
αk−1(Ṽ(k−1))

− 1
2 m(k−1)

=
β1

1 − β1

[
αk−1(Ṽ(k−1))

− 1
2 − αk (Ṽ(k))

− 1
2

]
m(k−1) − αk (Ṽ(k))

− 1
2 g(k)

=
β1

1 − β1

[
I − αk (Ṽ(k))

− 1
2 α−1

k−1
(Ṽ(k−1))

1
2

]
αk−1(Ṽ(k−1))

− 1
2 m(k−1) − αk (Ṽ(k))

− 1
2 g(k).

The second equation of the above is exactly (4.5), and the last equation gives (4.6). ��

Proof of Lemma 7 Inner producting ∇F(x(k)) with both sides of (4.5) gives

∇F(x(k))�(z(k+1) − z(k)) = β1
1−β1

∇F(x(k))�
[
αk−1(Ṽ(k−1))

− 1
2 − αk (Ṽ(k))

− 1
2

]
m(k−1)

− ∇F(x(k))�αk (Ṽ(k))
− 1

2 g(k). (8.1)

We bound the first term on the right-hand-side of (8.1) by Definition 2 and Lemma 5

as follows:

∇F(x(k))�
[
αk−1(Ṽ

(k−1))−
1
2 − αk(Ṽ

(k))−
1
2

]
m(k−1)

=
n∑

i=1

∇i F(x(k))
[
αk−1(̃v

(k−1)
i )−

1
2 − αk (̃v

(k)
i )−

1
2

]
m

(k−1)
i

≤
n∑

i=1

�i

∣∣∣αk−1(̃v
(k−1)
i )−

1
2 − αk (̃v

(k)
i )−

1
2

∣∣∣
i

=
n∑

i=1


i�i

[
αk−1(̃v

(k−1)
i )−

1
2 − αk (̃v

(k)
i )−

1
2

]
, (8.2)

where the last equation follows because αk−1(̃v
(k−1))−

1
2 ≥ αk (̃v

(k))−
1
2 > 0

component-wisely. Similarly, we can bound the second term on the right-hand-side of

(8.1) as follows:

− ∇F(x(k))�αk(Ṽ(k))−
1
2 g(k)

= −∇F(x(k))�αk−1(Ṽ(k−1))−
1
2 g(k)

+ ∇F(x(k))�
[
αk−1(Ṽ(k−1))−

1
2 − αk(Ṽ(k))−

1
2

]
g(k)

= −∇F(x(k))�αk−1(Ṽ(k−1))−
1
2 g(k)

+
n∑

i=1

∇i F(x(k))
[
αk−1(̃v

(k−1)
i

)−
1
2 − αk (̃v

(k)
i

)−
1
2

]
g
(k)
i
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≤ −∇F(x(k))�αk−1(Ṽ(k−1))−
1
2 g(k) +

n∑

i=1

�i

∣∣∣αk−1(̃v
(k−1)
i

)−
1
2 − αk (̃v

(k)
i

)−
1
2

∣∣∣
i

= −∇F(x(k))�αk−1(Ṽ(k−1))−
1
2 g(k) +

n∑

i=1


i �i

[
αk−1(̃v

(k−1)
i

)−
1
2 − αk (̃v

(k)
i

)−
1
2

]
.

(8.3)

Now substituting (8.2) and (8.3) into (8.1) yields (4.7). ��

Proof of Lemma 10 From (4.8) and the fact (a + b)2 ≤ 4a2 + 4
3

b2, ∀ a, b ∈ R, the

inequality in (4.11) immediately follows. By the Cauchy–Schwarz inequality, and also

(4.9) and(4.8), it holds

(
∇F(z(k)) − ∇F(x(k))

)�
(z(k+1) − z(k))

≤ ‖∇F(z(k)) − ∇F(x(k))‖ · ‖z(k+1) − z(k)‖

≤
Lβ1

1 − β1
‖x(k−1) − x(k)‖

(
β1

1 − β1
‖x(k−1) − x(k)‖ + ‖αk(Ṽ

(k))−
1
2 g(k)‖

)

=
Lβ2

1

(1 − β1)2
‖x(k−1) − x(k)‖2 +

β1L

1 − β1
‖x(k−1) − x(k)‖ · ‖αk(Ṽ

(k))−
1
2 g(k)‖.

Now using the Young’s inequality, we have (4.10) from the above inequality. ��
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