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Abstract

Stochastic gradient methods (SGMs) are the predominant approaches to train deep
learning models. The adaptive versions (e.g., Adam and AMSGrad) have been
extensively used in practice, partly because they achieve faster convergence than
the non-adaptive versions while incurring little overhead. On the other hand, asyn-
chronous (async) parallel computing has exhibited significantly higher speed-up over
its synchronous (sync) counterpart. Async-parallel non-adaptive SGMs have been
well studied in the literature from the perspectives of both theory and practical per-
formance. Adaptive SGMs can also be implemented without much difficulty in an
async-parallel way. However, to the best of our knowledge, no theoretical result of
async-parallel adaptive SGMs has been established. The difficulty for analyzing adap-
tive SGMs with async updates originates from the second moment term. In this paper,
we propose an async-parallel adaptive SGM based on AMSGrad. We show that the
proposed method inherits the convergence guarantee of AMSGrad for both convex
and non-convex problems, if the staleness (also called delay) caused by asynchrony is
bounded. Our convergence rate results indicate a nearly linear parallelization speed-up

ift =o(K 3 ), where t is the staleness and K is the number of iterations. The proposed
method is tested on both convex and non-convex machine learning problems, and the
numerical results demonstrate its clear advantages over the sync counterpart and the
async-parallel nonadaptive SGM. Our code has been released at https://github.com/
RPI-OPT/APAM.
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1 Introduction

In recent years, adaptive stochastic gradient methods (SGMs), such as AdaGrad [12],
Adam [19], and AMSGrad [36], have become very popular due to their great success
in training deep learning models. These adaptive SGMs can practically be significantly
faster than a classic non-adaptive SGM. We aim at speeding up adaptive SGMs on mas-
sively parallel computing resources. One way is to parallelize them in a synchronous
(sync) way by using a large batch size, in order to obtain high parallelization speed-
up. However, it has been observed [18, 29] that large-batch training in deep learning
can often lead to worse generalization than small-batch training. To simultaneously
gain fast convergence, high parallelization speed-up, and also good generalization, we
propose to develop asynchronous (async) parallel adaptive SGMs.

Async-parallel computing under either shared-memory or distributed setting has
been demonstrated to enjoy significantly higher speed-up than its sync counterpart,
e.g.,[23,25,32,35]. Ateach iteration of a sync-parallel method, the workers that finish
tasks earlier must wait for those that finish later. This can result in a lot of idle waiting
time. In addition, under a shared-memory setting, all workers access the memory
simultaneously, which can cause memory congestion [4], and under a distributed
setting, enforcing synchronization is often inefficient due to communication latency.
For these reasons, a sync-parallel method may have a very low parallelization speed-
up. On the contrary, an async-parallel method does not require all workers to keep
the same pace and can eliminate the waiting time and the memory congestion issue.
However, it may be difficult to guarantee the convergence of an async-parallel method,
because outdated information could be used in updating the variables.

Async-parallel methods have been developed for non-adaptive SGMs, e.g., in [1,
23, 35]. However, a parallel nonadaptive SGM may be slower than a non-parallel
adaptive SGM to reach the same accuracy. Hence, it is important to design a method
that can achieve the high speed-up of async-parallel implementation and also the fast
convergence of an adaptive SGM. How to guarantee a successful integration remains an
open question, although numerical experiments have been conducted to demonstrate
the performance of async-parallel adaptive SGMs, e.g., in [11, 16]. The non-triviality
lies in the integrated analysis of the second-moment term used in adaptive SGMs. In
this work, we give an affirmative answer to the question, by designing an async-parallel
adaptive SGM under both shared-memory and distributed settings.

1.1 Proposed algorithm

We consider the stochastic program
F* = minimize F(x) := Eg[f(x;é)], (1.1)
xeX
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where £ € E is a random variable, and X C R”" is a closed convex set. When £ is
uniformly distributed on a finite set E = {&1, ..., &ny}, (1.1) reduces to a finite-sum
structured problem, which includes as examples all machine learning problems with
pre-collected training data.

For solving (1.1), we propose an async-parallel adaptive SGM, named APAM,
which is based on AMSGrad in [36]. We adopt a master-worker set-up. The pseudocode
is shown in Algorithm 1, which is from the master’s view. The updates in (1.2) through
(1.5) are performed by the master, while the workers compute the stochastic gradients
{g®}. Due to the potential information delay caused by asynchrony, g may not be
evaluated at X(k); see more discussions in Sect. 2.2. In (1.5), we define a weighted
norm as ||x||%, = XTDiag(V)X, and if X = R", the update reduces to xk+D =
x® —m® @ 3K where @ denotes component-wise division. The weight vector
v® depends on all previous stochastic gradients, and thus the effective learning rate

ar1 @ VV® adaptively depends on the gradients.

Algorithm 1: async-parallel adaptive stochastic gradient method (APAM) from
master’s view

1 Initialization: choose x(1) € X and B, B2 €10, 1); set m©® = 0and v® =30 = 0,.
2fork=1,2,...do

3 Obtain a (possibly outdated) stochastic gradient g(k) from a worker, and update
m® = gm0 4 (1 - pg®), (1.2)
— 2
v = govED L (- g (e™)7 (1.3)
7% = max {?(k*]), v(k)}, (1.4)
1
(k+1) i (k) —x —x® 2
X € Al;‘ger}r(un (m' x) + 2 Ix — x ”«/%' (1.5)

We emphasize the importance of the proposed method in training very large-scale
deep learning models. It is well-known that adaptive SGMs converge significantly
faster than a non-adaptive SGM; see [12, 19] for example or our numerical results
in Sect. 5. In addition, an async-parallel method can achieve much higher speed-up
than its sync counterpart. Hence, it is paramount to design a method that can inherit
advantages from both adaptiveness and async-parallelization, in order to efficiently
train a very “big” deep learning model on multi-core or distributed-memory machines.

We make the exploration on async-parallel adaptive SGM based on AMSGrad,
because of its simplicity and nice numerical performance. Besides AMSGrad, there
are several other adaptive SGMs in the literature, such as AdaGrad [12], RMSProp
[40], Adam [19], Padam [46], and AdaFom [8]. While AdaGrad can have guaranteed
sublinear convergence, its numerical performance can be significantly worse than
AMSGrad, because the former simply uses g instead of the exponential averaging
gradientm® and also its effective learning rate can decay very fast. Adam can perform
similarly or slightly better than AMSGrad, but its convergence is not guaranteed even
for convex problems, due to a possibly too large learning rate. Padam is a generalized
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version of AMSGrad, and the performance of AdaFom is somehow between AdaGrad
and AMSGrad. We believe that the convergence of AdaGrad, Padam and AdaFom can
be inherited by their async versions.

1.2 Related works

In the literature, there are many works on SGMs. We briefly review those on async-
parallel SGMs and adaptive SGMs, which are closely related to our work.

Async-parallel non-adaptive SGM  The stochastic approximation method can date
back to 1950s [37] for solving a root-finding problem. The SGM, as a first-order
stochastic approximation method, has been analyzed for both convex and non-convex
problems; see [15, 31, 34] for example. In order to achieve high speed-up, async-
parallel SGM and/or distributed SGM with delayed gradient have been developed to
solve problems that involve huge amount of data, e.g., in [1, 14, 21, 23, 28, 35]. The
work [1] assumes a distributed setting with a central node and analyzes the SGM with
delayed stochastic gradients. [23] studies the async-parallel SGM for non-convex
optimization under both shared-memory and distributed settings. After obtaining a
sample gradient, the shared-memory async-parallel method in [23] needs to perform
randomized coordinate update to avoid overwriting, because all threads are allowed
to update the variables without coordination to each other. Recht et al. [35] also
studies shared-memory async-parallel SGM. It does not require randomized coor-
dinate update. However, its analysis relies on strong convexity of the objective and
the assumption that the data involved in every sample function is sparse. Leblond et
al. [21] further removes the sparsity requirement by providing an improved analysis for
async-parallel stochastic incremental methods. In [21], a novel “after read” approach
is introduced to order the iterate and address one independence issue between the
random sample and the iterate that is read. [3, 39] adapt the stepsize of the async SGM
to the staleness of stochastic gradient, and [24, 43] explore the async SGM under a
decentralized setting.

Adaptive SGM  Adam [19] is probably the most popular adaptive SGM. It was pro-
posed for convex problems. However, the convergence of Adam is not guaranteed. To
address the convergence issue, Reddi et al. [36] makes a modification to the second-
moment term in Adam and proposes AMSGrad. It performs almost the same updates
as those in (1.2) through (1.5), with the only difference that AMSGrad uses non-fixed
weights in computing m®, i.e., it lets m® = g ;m* =D 4+ (1 — g1 ,)g® for all
k > 1. In order to guarantee sublinear convergence, Reddi et al. [36] requires a dimin-
ishing sequence {f1 x}, and to have a rate of 0(1/«/%), {B1.x} needs to decay as fast
as 1/k. However, Reddi et al. [36] sets 81 x = B1 € (0, 1), Yk > 1 in all its numeri-
cal experiments, and it turned out that the algorithm with a constant weight 81 could
perform significantly better than that with decaying weights. By new analysis, we will
show, as a byproduct, that an O(1/+/k) convergence rate can be achieved even with
a constant weight. Later, Tran and Phong [41] proposes AdamX, which is similar to
AMSGrad but addresses a flaw in the analysis of AMSGrad. AdamX embeds B x in
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updating V). However, it still requires a decaying B x to guarantee sublinear con-
vergence. To have nice generalization, Chen and Gu [6] proposes Padam that includes
AMSGrad as a special case. It uses —m® @ F®)P as the search direction, where
p € (0,0.5]. When p = %, Padam reduces to AMSGrad. It was demonstrated that

= é could yield the best numerical performance. To avoid extremely large or small
learning rates, Luo et al. [27] proposes variants of Adam and AMSGrad by keeping
the second-moment term in nonincreasing intervals. Asymptotically, they approach to
non-adaptive SGMs. For strongly-convex online optimization, Fang and Klabjan [13]
presents a variant of AMSGrad, and Wang et al. [42] proposes SAdam, as a variant
of Adam. For non-convex problems, Chen et al. [8] gives a general framework of
Adam-type SGMs and establishes convergence rate results. Padam is extended in [46]
and a later version [7] of the paper [6] to non-convex cases. Nazari et al. [30] presents
a variant of AMSGrad by introducing one more moving-average term in the update
of v, and the analysis is conducted for both convex and non-convex problems.

Async-parallel adaptive SGM The async-parallel implementation of AdaGrad is
explored in [11]. Experimental results on training deep neural networks are shown
to demonstrate the performance of the async-parallel AdaGrad. However, no conver-
gence analysis is given in [11], and in addition, AdaGrad often performs significantly
worse than AMSGrad. Guan et al. [16] proposes a delay-compensated asynchronous
Adam, which exhibits advantages over an asynchronous nonadaptive SGM for solv-
ing deep learning problems. However, the theoretical result in [16] does not guarantee
convergence to stationarity but simply implies that the expected value of gradient norm
can be bounded.

For the readers’ convenience, we compare, in Table 1, APAM to several closely
related methods based on a few important ingredients about the algorithms and the
targeted problem.

1.3 Contributions

Our contributions are three-fold. First, we propose an async-parallel adaptive SGM,
named APAM, which is an asynchronous version of AMSGrad in [36]. APAM works
under both shared-memory and distributed settings. For both settings, we adopt a
master-worker architecture. Only the master updates model parameters, while the
workers compute stochastic gradients asynchronously. APAM is lock-free. The mas-
ter can perform updates while the workers are reading/receiving variables, and also
since only the master updates variables, there is no need to lock the writing process.
To the best of our knowledge, APAM is the first async-parallel adaptive SGM that
maintains the fast convergence of an adaptive SGM and also achieves a high paral-
lelization speed-up. Secondly, we analyze the convergence rate of APAM for both
convex and non-convex problems. For convex problems, we establish a sublinear con-
vergence result in terms of the objective error, and for non-convex problems, we show
a sublinear convergence result in terms of the violation of stationarity. The established
results indicate that the staleness t has little impact on the convergence speed if it

1
is dominated by K #, where K is the maximum number of iterations. Therefore, if
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Table 1 A comparison of ingredients among several algorithms for solving problems in the form of (1.1)

Method F & Constr. X Adapt. Weights (81 k., B2.x) Async. Order of convergence rate
Mirror descent [1] cvx & Yes No - Yes 1+ fz/«/f)/ﬁ
AMSGrad [36] cvx & Yes Yes Bk = Bi/k, B1 < VB No 1/vVK
AdamX [41] cvx & Yes Yes Bk = Bi/k, B1 < VB2 No 1/VK
Padam’ [7] nevx & No Yes B < B3", pelo,1/2] No 1/K3/4=5/2
AdaDelay [39] cvx & Yes No - Yes WT+7+/VK)/VK
AsySG-con [23] noncvx & No No Yes 1+ r/«/f)/\/f
AMSGrad & AdaFom [8] noncvx & No Yes Constant or decreasing No (log K)/VK
APAM (this paper) cvx & Yes Yes Constant Yes (1472 INEK)/NK

noncvx & No Yes Constant Yes 1+ r/Kl/4 + rz/«/f)/\/f

In the second column, “F & Constr. X” reflects the underlying assumption on F and feasibility constraint X: “cvx” for convexity, “noncvx” for non-convexity, “yes” for
closed convex constraint X, and “no” for unconstrained problems. In the third column, “Adapt.” reflects whether the algorithm implements adaptivity. In the fourth column,
“Weights” reflects the restriction on the momentum parameters in the adaptive algorithms: “constant” indicates a constant parameter choice (i.e., (81 k. B2.x) = (B1, B2), Y k),
and “decreasing” indicates a decreasing parameter choice. In the fifth column, “Async.” reflects whether the algorithm has a convergence guarantee for its asynchronous
implementation with delayed gradient information. In the last column, convergence rate results for both convex and non-convex models are listed: T for the upper bound on
the delay and K for the total number of iterations; for convex models, the convergence is measured by the expected objective gap, while for non-convex models, it is measured
by the expected stationarity violation. Specifically, Mirror descent [1] assumes E[7x] < 7; AdaDelay [39] has the assumption that the delay has a bounded expectation
E[tx] = T < oo and a bounded second moment E[r,?] =Q (‘Ez)

TFor the convergence rate of Padam [7], the parameter s relates to the sparsity of stochastic gradients; in the worst case, s = %, and the rate reduces to O(1/v K)
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T =0o(K %), a nearly-linear speed-up can be achieved, and this is demonstrated by
numerical experiments. Thirdly, over the course of analyzing APAM, we also conduct
new convergence analysis for AMSGrad. Our convergence rate results do not require a
diminishing sequence to weigh the gradients. In practice, constant weights are almost
always adopted. Hence, our results bring the theory closer to practice.

1.4 Notation and outline

We use lower-case bold letter x, y, . .. for vectors. The i-th component of a vector x
is denoted as x;. For any two vectors x and y of the same size, x © y denotes a vector
by component-wise multiplication, and x @y denotes a vector by the component-wise
division, with 8 = 0.Forany v > 0, /v or (V)% denotes a vector by the component-
wise square root. We add a superscript ®) to specify the iterate, i.e., x©) denotes
the k-th iterate. Diag(v) denotes the diagonal matrix with v as the diagonal vector.
Givenv > 0, ||X||% := x ' Diag(v)x, and Projy y(X) := argminy y [ly — x||%. We use
|| - || for the Euclidean norm of a vector and also the spectral norm of a matrix. [r]
denotes {1, ..., n}, and for a subset A C [n], A° denotes the complement set of A.
V f(x) denotes a subgradient of f at x, and it reduces to the gradient V f(x) if f is
differentiable. We let H; be the o -algebra generated by {x*) i<k

Outline  The rest of the paper is outlined as follows. In Sect. 2, we give details on
how to implement the proposed algorithm. Convergence analysis is given in Sect. 3
for convex problems and in Sect. 4 for non-convex problems, and numerical results
are shown in Sect. 5. Finally, we conclude the paper in Sect. 6.

2 Implementation of the proposed method

In this section, we give more details on how to implement Algorithm 1 and also how
the delay happens as the workers run asynchronously in parallel.

2.1 Organization of master and workers

We first explain how the master and workers communicate under a shared-memory or
distributed setting.

Shared-memory setting ~ Suppose that there are multiple processors and all the data
and variables (or model parameters) are stored in a global memory. We assign one or a
few as the master(s). The updates to x, m, v and v in Algorithm 1 are all performed by
the master(s), while the computation of g is done by other processors (called workers).
See the left of Fig. 1 for an illustration. Every worker reads x and data from the global
memory, computes a stochastic gradient g, and saves it in a pre-assigned memory. If
there is a g that has not been used, then the master acquires it. Otherwise, the master
computes one stochastic gradient by itself. We allow more than one processor to serve
as the master in case one is not fast enough to digest the g vectors fed by the workers. In
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Fig.1 Shared memory setting (left) vs. distributed setting (right): a demonstration

the case of multiple master processors, we will partition the vectors into blocks and let
one master processor update one block, and we synchronize all the master processors
while performing the updates. However, we never synchronize the workers.

Our shared-memory set-up is fundamentally different from existing ones, e.g., in
[21, 23, 35], which allow all processors to update the variables. Without coordination
between the processors, overwriting issue will arise if all processors write to the
memory at the same time. To avoid the issue, these existing works need to perform
randomized coordinate updates [23], or require sparsity of the stochastic gradient [35],
or assume strong convexity of the objective [21]. However, in training a deep learning
model, neither the sparsity condition nor the strong convexity assumption will hold.
In addition, the coordinate update will be inefficient because the whole g is computed
but just one or a few coordinate gradients are used. In contrast, our method does not
have this issue due to the master-worker set-up. Furthermore, our set-up enables a
simpler analysis without sacrificing the high parallelization speed-up.

Distributed setting  Suppose multiple processors do not share memory and hence
data need to be transmitted through inter-process communication. The master takes
charge of updating x, m, v and V. It sends x to workers, and the workers compute
and send stochastic gradients to the master for the update. See the right of Fig. 1for
an illustration. We assume that each worker has its own memory and can generate
samples by the same distribution.

2.2 Iteration counter and staleness

Notice that Algorithm 1 is viewed from the perspective of the master. We use k as the
iteration counter. It increases by one whenever the master performs an update to x.
Hence, x*) denotes the iterate maintained by the master at the beginning of the k-th
update, and g®) is the stochastic gradient used in the k-th update. Since the master
continuously updates x, after worker #i reads (or receives) the variable, the master
may have already changed x before it uses the stochastic gradient fed by worker #i.
Therefore, the stochastic gradient g® that is used to obtain x**1) may not be evaluated
at the current iterate x*) but at an outdated one. See Fig. 2 for an illustration. More
precisely, we have

T k
g = ﬁ >ty vFEW; Ei( ), 2.1
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x(k) x(E+1) y(k+2)
| |
I I
|

x(k=1)

I
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| |

Master e >

I I
| |
I I
| |
| |
I I

Worker 1 compnte gk+1)

l l
| |
I I
‘ =
|
|
| | |
|
Worker 2 | compute g(k—1)

|
[ compute ...

|
Worker 3 compute g(*)  —]

(a) Delayed gradient in a distributed
setting. Each worker uses the x vector it
receives from the master to compute one
g vector. Due to asynchrony, the g vector
that master uses for update may not be
calculated at the current x. For example,
g(*+t1) is computed by worker 1 at x(*—1)
but used by master to update x(*+1) to
x(k+2)  which causes a delay of 2.

Master s [
|
|
|
|
|
|
|

Worker 1 s |
|

Worker 2 compute g(h—1)

Worker 3 [ —

(b) Inconsistent reading in a shared
memory setting. Each worker reads x
from the shared memory and then com-
putes one g vector. Due to asynchrony and
without lock, the read can be inconsistent.
For example, while worker 1 reads x(*=1),
the x vector is updated by master to x(¥)
before worker 1 finishes its reading, and
thus worker 1 reads a mixture of x(F—1)
and x(*)

Fig. 2 A demonstration of consistent but outdated read in the distributed setting (left subfigure) and
inconsistent read in the shared memory setting (right subfigure)

where by, is the number of samples, and %® can be an outdated iterate or a mixture of
several iterates; see (2.2) below for its expression.

2.3 Consistent and inconsistent read

In the distributed setting, we have x® = xk=% for some 7 > 0 due to communication
delay, i.e., the x received by a worker is a consistent but potentially outdated iterate.

#thread 1 2 4 8 16 32
time (sec) | 321.0 168.1 88.3 48.3 27.6 19.7
10° 1 . .
o >
S ——non-parallel S 0.99 —+—non-parallel
g 10 —— APAM2 5 ——APAM2
o —— APAM4 3 0.98 —— APAM4
2 —=— APAMS © —=— APAMS
2,102 —— APAM16 2 —— APAM16
-8 § 0.97 ——APAM32
1073 0.96

epoch number

20 40 60 80 100
epoch number

Fig.3 Running time, objective errors and testing accuracy by APAM with openMP for logistic regression

on rcvl dataset
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In the shared-memory setting, since we do not lock x when a worker computes a
stochastic gradient, X¥) may not be any iterate that ever exists in the memory but
is a combination of a few iterates, i.e., the reading is inconsistent; see Fig. 2 for an
illustration.

Suppose that the read of every coordinate is atomic. Then for each i, it must hold
551.(]{) = xi(k_/) for some integer j > 0.Let /; := {i: xl.(k_/) = 551.(’() andZ; := Uljzoll
for each j > 0. Let x = min {j: Z; = [n]}. Then Z, = [n], and X*) can be formed
from {X(k_fk), e, x(k)}. By the definition of Z;, we have Z;_; C 7;, and thus

172
0 =x® o1+ x*Poag -1z )
=1

Tk
— X(k) _ X(k) 0 IZ(‘) + Zx(kfl) 0) (11—;71 — 11—;:)
=1
T —1

=x® = 3 xtD —xD) o 1, 2.2)
=0

where we have used Z;, = [n], and 14 represents the vector with one at each coordinate
i € A and zero elsewhere. The expression in (2.2) generalizes the relation for atomic
lock-free updates in [23, 32]. It follows from (2.2) that

7 —1 7 —1

”/i(k) _ X(k)” < Z ” (X(kfl) _ X(kflfl)) o} ll'/c < Z Hx(kfl) _ X(kflfl)”,
=0 =0

(2.3)

F#thread 1 2 4 8 16 32
time (sec) | 2396 1259 658 361 201 134
1 1
30.95 %0.95
© ——non-parallel © ——non-parallel
3 09 ——APAM2 § 09 ——APAM2
S ——APAM4 S ——APAM4
20.85 +2£//:m6 ©0.85 —— APAMS8
£ —— £ ——APAM16
G 08 ——APAM32 § 0.8 ——APAM32
0.75 ] 0.75
50 100 150 200 50 100 150 200
epoch number epoch number

Fig.4 Running time, training accuracy, and testing accuracy by APAM with openMP for learning a 2-layer
fully-connected neural network on MNIST dataset
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and
7 —1

KO —x®)2 < g Y D —x D)2 24)
1=0
These relations are important in our analysis to handle asynchrony.

3 Convergence for convex problems

In this section, we analyze Algorithm 1 for convex problems. Throughout the analysis,
we make the following assumptions.

Assumption 1 (Convexity) F in (1.1) is convex, and X is convex and compact.

Under Assumption 1, we define

Do = max [|X — ¥/ co-
x,yeX

Assumption 2 (Bounded gradient in expectation) There is a finite number G such
that E¢ |V f(x,8) 1 < G1,Vx € X.

Assumption 3 (Bounded gradient almost surely) There is a finite number Goo such
that ||[Vf(X; §)|loo < Goo, VX € X, and almost surely for all &.

Assumption 4 (Unbiased gradient) g*) is an unbiased estimate of a subgradient of F
atx® for each k, i.e., E[g(k) | ’Hk] € IFXW).

We make a few remarks about the assumptions. The boundedness assumption on
X is required to analyze an adaptive SGM for convex problems in existing works,
e.g., [12, 19, 36]. Assumption 4 is standard in the analysis of SGMs. It will hold in
the distributed setting if data on all workers follow the same distribution and {Si(k)} in
(2.1) are sampled independently from the distribution. However, in the shared memory
setting, the condition can only hold under certain ideal cases when asynchronous
updates are performed. Roughly speaking, different realizations of {’;‘i(k)} in (2.1)
can incur different cost of computing g) and thus affect the iteration counter k,
i.e., X% can depend on {Ei(k) }. Hence, the unbiased assumption can hold only if the
cost of computing a stochastic subgradient is the same for any realization of £ and in
addition the workers have the same computing power. Leblond et al. [21] addresses the
independence issue by an “after read” approach. However, it could be computationally
inefficient to first read the entire X*) and then sample {él.(k)} to compute g® _ This is
also noticed in [21], which implements a different version of its analyzed method.
The issue is also addressed in [28], which essentially assumes sparsity of each sample
gradient. Both of [21, 28] require strong convexity on the objective. It is unclear
whether the issue can be addressed for convex or non-convex cases.

We first establish a couple of lemmas that will be used to show the convergence
rate of Algorithm 1 either with delay or without delay. Their proofs are given in the
appendix.
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Lemma1 Let {(x®, m® 30} be the sequence from Algorithm 1 with step size
sequence {ay}. Under Assumption 1, it holds for any t > 1 and any x € X that

(1= B Y 1(2, Bl )(X(k)_"’ g®)

3.1
_°° 30! m®
< 2V + 5 ﬁ)ZE adim®IZ

Lemma2 Let {(x®, m® 30)) be the sequence from Algorithm 1. Under Assump-

tion 2, it holds G
Em® |2 <1 (3.2)
@0y 1—p2

3.1 Convergence rate result for the case without delay

In this subsection, we use the previous two lemmas to show the convergence rate for
the no-delay case, i.e.,%\(k) = x(k), Vk > 1in (2.1). Although the no-delay case is not
our main focus, our results improve over existing ones about AMSGrad.

Theorem 1 (Convex case without delay) Let {x®Y be the sequence from Algo-
rithm 1 with step size sequence {ay). Given an integer K > 0, let XK =

< ,Bjik (k
Z kaj
k= 12: 1(21 zO‘Jﬁ )

. Then under Assumptions 1-4, we have the following results:

1. If g = j‘—?, Vk > 1, for some o > 0, then

nD% Goo + —L e
E[F&EY — F*] < o0 (- ﬁ]) VI= 33
e T o

2. If o = , Yk > 1, for some a > 0, then

e

2 a?(1+logK) Gy
nD3Goo + =157 1op (3.4)

4oa(VK+1-1)1 - B1)

E[F&®) - F*] <

Proof Taking expectation over both sides of (3.1) and using Lemma 2, we have

t t
a-p> Zajﬂljfk E<X(k)_x’g(k)>

k=1 \j=k

D2
< “EENAO |+

(3.5)
2

— B Wl——za’“
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From Assumption 4, we have
Ex® — x, g®) = Bx® — x, VFEY)), (3.6)

where VFX®) € 9F&®). Hence, by the convexity of F and X®) = x® it holds
E[Fx®) — F(x)] < E(x® —x, g®), and thus (3.5) indicates

(1—/31)2 Za,ﬂ E[Fx®) — F(x)]
k=1 \j=k (3.7)

t

< °°E||Wf h+ 355, )2 Z

=1

Notice that ZK ,Bj_k _ € [1, —=2-). Hence, when o = -%, it holds
=k ~I-A PT=p ’ k=TK

> (o =a 2and YK 1(2K koz]ﬂ )201\/?. By the convexity of F, we have

K

K K K
S aipl | FGE) < ST D el | Fx®). (3.8)
t=1

=t k=1 \ j=k

In addition, we have from (7.6) and Assumption 3 that E[|[vV®|; < nGs. Now
divide both sides of (3.7) by Zf: ! (Zf:k o ﬂ{*k>, take x as an optimal solution x*,
and let # = K. We obtain the desired result in (3.3).

When o = f,lt holds
K K o K 2
Za,%:Z— §a2+/ —dx 5052(1 + log K)
k 1 X
k=1 k=1
and

K ik K o K+1 e
Z ;ajﬂl zz—>a/1 ﬁdxz%l( K+1-1).

Now utilizing the above bounds and (3.8) and following the same arguments to show
(3.3), we obtain the desired result in (3.4) and completes the proof. m]

Remark 1 Our rate is in the same order as that in [36]. However, by new analysis, we
do not require an exponential or harmonic decaying sequence B x in computing m
vectors in (1.2). The decaying weight is required in [36] and also its follow-up works
such as [6, 27]. Numerically, a fixed weight 81 can give significantly better results,
and indeed [36] uses B1 x = PB1, Vk in all its experiments. The recent works [8, 46]
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have also weakened the condition on decreasing S x for smooth non-convex cases.
However, none of these works has dropped the assumption 81 < /B> that is required
by [36]. Our result does not need this condition.

3.2 Convergence rate result for the case with delay

In this subsection, we analyze the proposed algorithm when there is delay, i.e., 7 > 0
in (2.2). The delay naturally happens for asynchronous computing. It causes one main
difficulty in bounding the expected objective error E[F x®y - F (x)] from using
(3.6). That is because the difference VF (X*)) — VF(x®) in general will not vanish
as X £ x® caused by the delay. Nevertheless, an ergodic sublinear convergence
result can still be guaranteed under a few additional mild assumptions.

Assumption 5 (Smoothness) F is L-smooth, i.e., |[VF(x) — VF(y)|| < L|x —
yll, Vx,y € R".

Assumption 6 (Bounded staleness) There is a finite integer t such that 7; < t for all
k> 1.

With the master-worker set-up, we can measure the delay at the master, by counting
the number of updates that are performed between two stochastic gradients computed
by the same worker. Hence, by discarding too staled stochastic gradient, we can bound
the staleness. In practice, we usually do not need to track the staleness. As mentioned
in [26, 33], the staleness is usually roughly equal to the number of processors, if all
the processors have similar computing ability.

The next theorem gives a generic result for the case with delay.

Theorem 2 Let {x®} be generated from Algorithm 1. Under Assumptions 1, 2, 4 and
5, we have that for any x € X,

u—ﬁn§: 2:%ﬂ E[Fx®) — F(x)]
k=1 \j=k
t

EIIVA(’ I+ 3 ﬁ ey Z 3.9)

=1

L(1 - B1) - d j—k k k)2
e | B | EIXY X9
k=1 \j=k
Proof 1t follows from the convexity of F that

&Y —x, vFE") = FGY) - F(x),

and in addition, the L-smoothness of F implies
L
(@ =3O, vFE)) = Fx®) - FRY) - Zx® =302,
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Plugging the above two inequalities into (3.6), we have
L
Ex® —x,g%) > E[Fx©) - Fo] - SEIx® -39,

which together with (3.5) gives the desired result in (3.9). m]

Note that if x®) = X® | V k, the inequality in (3.9) reduces to that in (3.7). However,
due to the asynchrony, we generally only have the relation in (2.2). Therefore, the term
about || x®) —x®|12 in (3.9) is not zero, and we need to bound it appropriately in order
to establish the sublinear convergence. From (2.4), it suffices to bound [x*+D _x®))2
for all k, which can be obtained by the following lemmas. The proofs of the lemmas
are given in the appendix.

Lemma 3 (Non-expansiveness) Suppose X = [ay, b1] X - - - X [ay, b,] for some finite
numbers {a;} and {b;}. Let {x®)} be generated from Algorithm 1, and for any i € [n],
we let x(kH) .(k), if’v\fk) = 0. Then for any k > 1, it holds

X&) —x® < o [m® o \/%” (3.10)

e
l

Remark 2 Notice that when v (k)

= 0, we must have m;”" = 0 and in this case, x;

does not affect the objective of (1.5). Hence, when X is separable and A.(k) =0,

xl.(kﬂ) (k) is one optimal choice for x;, and thus such a setting will not affect the

optimahty condltlon of (1.5).
Lemma4 Let {(g®, m® %)) be generated from Algorithm 1. It holds for any k > 1
that

=0 Vg

m ,Vj <k, (3.11a)
)

© o ST <31 - ViigDllo 11b

Im® o vv®| Z( BB m (3.11b)

Im® @ V702 < 101 Zﬂk gD o. (3.11¢)

Applying the results in the above two lemmas to the inequality in (3.9), we establish
the sublinear convergence result of Algorithm 1 as follows.

Theorem 3 (convex case with delay) Suppose Assumptions 1 through 6 hold. Assume
= [a1, b1] x - - - X [ayn, by] for finite numbers {a;} and {b;}. Let {X(k)} be generated

from Algorithm 1, and for any i € [n], we let x(k+l) (k), lfA(k)

positive integer K and a > 0, let oy = UK for all 1 <k <K.Then

= 0. Given a

E[FE%) — F*] <

(anoGoo+ thGl + OCSL‘L’ZH ), (312)

T 2o \/>(l —B1 (A-B0*V/1-B2 * JK(1-p2)
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where XK is drawn from {X(k)}le with

K J—k
Zj:k ojBi

ProbxK) = x®)) = —_==kT0
SE (2K a8l )

1<k<K.

n

2
Proof By (3.10) and (3.11c), we have E[x*—/+D — xk=D)12 < 103)3‘2’ Since 1; <
7,Vk > 1, it follows from (2.4) that

T
E”X(k) _’)Z(k)HZ <7t Z]E”X(kfl+l) _ X(k*l)HZ'
=1

In addition, notice that

K K ik T26(3
2 aif (Z ) (- pVE’

k=1 \j=k I=1

Therefore

LU= B) 5 [y, gk | gyt g2 < LT
— a;pl | Elx [
2 ,; Jzk ! REN/ TRy

Plugging the above inequality into (3.9) with t = K and using Zf: 1 oc,% = a? give

(1—ﬂ1)2 Za,ﬂ E[F(x") — F(x)]
k=1 \ j=k
2 3 2
< °°E||W< I+ Gr_, _olben

—BEVT—B  2JK(1 - Bo)

Now using the definition of X*X) and noting Zle (Zf:k otj,Blj_k) > av/K, we
obtain the result in (3.12) and complete the proof. O

Remark 3 (How delay affects convergence speed) Take « = O (1). Then (3.12) implies
that the effect by the delay decreases at the rate of K %, namely, we can achieve nearly-

1
linear speed-up if t = o(K #). Peng et al. [33] shows that the delay, in expectation,
equals the number of processors if all of them have the same computing power. Hence,
. . . . 1
in the ideal case, we can expect nearly-linear speed-up by using o(K #) processors.
However, notice that the convergence result of the asynchronous case requires stronger

assumptions than that of the synchronous counterpart. In addition, we set o = -

VK
foralll <k < K in Theorem 3 for simplicity. A sublinear convergence result can
also be established if oy = f’ V k by similar arguments as those in the proof of

Theorem 1.
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4 Convergence for non-convex problems

In this section, we analyze Algorithm 1 for non-convex problems under Assump-
tions 3-6. Due to the difficulty caused by nonconvexity, we assume X = R”. Then
the update in (1.5) becomes

xEHD = x® _ gm® @ VIO, (4.1)

When X = R”, the gradient boundedness condition in Assumption 3 may not hold
for deep learning problems. However, we are unable to relax this strong assumption.
It is also made in all existing works that analyze adaptive SGMs for non-convex
problems, e.g., [8, 46]. On analyzing nonadaptive SGMs for non-convex problems,
this assumption can be relaxed to a variance boundedness condition [15, 23], which
may not hold either for unconstrained deep learning problems but is weaker than the
gradient boundedness condition.

Given a maximum number K of iterations, we will assume, without loss of gen-
erality, T)\l.(K) > O for all i € [n]. Note that if T)\;K) = O for some i, then gi(k) = 0 for
all k < K, and in this case, x; never changes and can be simply viewed as a constant
instead of a variable. We define an auxiliary sequence {V} ,le and gradient bounds
as follows. These are only used in our analysis but not in the computation.

Definition 1 Given a positive integer K, let {v¥) },le be computed from Algorithm 1.
For any i € [n], suppose k; < K is the smallest number such that 'v\;k" ) > 0. Define
FOIK as 5 = max(m®, 5%} for all i € [n] and all k € [K]. Denote V® =
Diag(¥®) for all k € [K].

Definition 2 Given a positive integer K, let {g®)y ,le and {x®)} ,le be computed as
in Algorithm 1. We define (I'(K), ®(K)) as:

T(K) = max |g¥], and ®;(K) = max |V; F&®)|, Vi € [n]. 4.2)
1<k<k ! 1<k<K

We abbreviate the pair as (I', ®) to hide the dependence on K, when it is clear from
the context.

Remark 4 We make a few remarks on {V}K_, . (I) Assume 'ﬁfK) > 0foralli € [n].
Then each V% is a positive vector, and V¥ > ¥*=1 still holds component-wisely;

I m® @ V¥® = m® @ v¥® and g® @ VO = g® @ /¥® forall k < K;
and (II1) V&) = ¥5) under the assumption V() > 0.

4.1 Preparatory lemmas

In this subsection, we establish several lemmas. Their proofs are given in the appendix.
The next lemma gives bounds on I'; and ®; under Assumption 3.

Lemma5 Given a positive integer K, let {"7(“},5:1 and {m®)} ,le be generated from
Algorithm 1, and let (T, ®) be given in Definition 2. We have for all i € [n], |m§k)| <
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I';, and 'v\l.(k) < Fiz. Moreover, if Assumption 3 holds, then I'; < G almost surely,
and ©; < G foralli € [n].

To analyze Algorithm 1 for non-convex problems, we follow the analytical

framework of [44]. Let x© = x(M, and we define an auxiliary sequence z¥) as
follows:
20 —x® 4 P (x<k> x*&=Dy = Lo P e s, (4.3)
1- 1— B 1—pi

The following lemma is from Lemma A.3 of [46]. It shows that z&+D _ 70 can
be represented in two different ways. However, due to typos in the original proof, we
provide a complete proof in the appendix for the convenience of the readers.

Lemma 6 Let 2% be defined as in (4.3) and V& in Definition 1. We have
2@ — 20 = g (VID)=2gD), (4.4)

andfork =2,..., K

LD _ 40

B Sh—1)\—1 S\ 1 . S (k-1
= o [ VT - @) mE D T B, @)

= ﬁlﬁ [ — (V) =3t (V- 1))2] x*=D _ x®)y _ g (VK =30
— Pl
(4.6)
Lemma7 Let {x®} be from Algorithm 1, {2} defined as in (4.3), and {¥®} in

Definition 1. Also, let {a} be a non-increasing positive sequence. Fork =2, ..., K,
we have

VF(X(k))T(Z(k-i-l) (k)) < VF(X(k)) o 1(V(k 1)) (k)

Zrcb o1 G 73 — i) 3]
4.7

1—,31

The next two lemmas are directly from [46]. Although the original results are for
k > 2, they trivially hold when k = 1.

Lemma 8 (Lemma A.4 of [46]) Let {z ¥} be defined as in (4.3), and let {ay }i>1 be a
non-increasing positive sequence. For k > 1, we have

12540 =29 < —— Pl t=D ) 4 VO) g ). @s)
1
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Lemma9 (LemmaA.5of [46]) Let {z®} be defined as in (4.3) and V® in Definition 1.
Under Assumption 5, we have

L
IVF@®) - VEx®)| < i||x“‘—” —x®vE > 1. (4.9)

-5

We still need the following lemma to show our main convergence result for the
NON-convex case.

Lemma 10 Let {zX)} be defined as in (4.3) and V® n Definition 1. Also, let {a} be
a non-increasing positive sequence. Under Assumption 5, we have that for all k > 1,

(VF@®) - VF(x(k))>T @*+D — 20y

(4.10)
LAY k-1 _ 2, L OIS
< - —_ — V() 2 (k) 27
= 2(1—ﬂ1)2”X XU+ Sl (V) 2 g
and
47 _ 4 1L
2570 =287 < G XY —x O 4 Sl (VE) T2 @

4.2 Convergence rate results

By the lemmas established in the previous subsection, we are ready to show the
convergence result of Algorithm 1 for non-convex problems. The next theorem gives
the convergence rate without specifying the learning rate {cy}.

Theorem 4 Given an integer K > 2, let {X(k)},f:1 and {’v\(k)},f:1 be generated from
Algorithm 1 with a non-increasing positive sequence {ak}le. Suppose VK > 0.
Suppose that there is a constant C g such that |F(x)| < Cp, VX. Let2 < ko < K and
x*0-K) be drawn from {X(k)}f:kO with probability

Prob(x%0-K) = 0y = %=1 vk =k, ..., K. (4.12)

j=ko ¥i—1
Then under Assumptions 3 through 6, it holds

E|IVF (x%0-K)) 12

G3 E|F*%—D -3 Oty —
< GEIV )21 ko—1 2CrGoo
= — K K
1=A Do @h—1 Dkmky U1
K 2 K 2
+ TnLG Zk:koak 7"LG00/312 Zk:ko -1

0U=P2) oy 20=B(—BD? . Yt k-1

K T ~ 1
ViLGoo 3 ak—i ZOtk—_/\/EII(V(’{‘”Y7 VF(x®))|2

k=kq j=1
. 4.13
+ V1=-p2 Zthko o1 @13
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Proof By the L-smoothness of F, it follows that

FE*D) < F@®) + VF@®)T @* D — z20) 4 Ljjzk+h — g0
= Fz®) + VF(x®) T gkt — 7k

+ (VFE®) = VFx®)) T @®+D — 200 4 Lzt 502,
4.14)

For 2 < k < K, we substitute (4.7), (4.10) and (4.11) into (4.14) and rearrange
terms to have

r;o 2 Fk-D)=%
,ak(v )~ 1 Di®io—1(v;" ) 2
1-pi 1-Bi

< — VM) Togy (V=)= <k>+—||x<k D —x®2

F(z(k+1)) + iz

F(z(k))

+ 2L o (V) =3 g0 2
= —VF(x(“)Tak,](V<’<—1>)—%g(k>+2(1 o m&D o FED |12

~ 1
+ Loy (VR) =2 g®))2, (4.15)

From Assumption 4, we have E[g(k) |Hk] = VF&XW), and thus taking the
expectation on both sides of (4.15) gives

_1 a1
]E|:F(z(k+1)) + (ﬂmq(_”;g)znl — Fa®) — chak—l\{(f;‘l D)2 |1]

< E| Fz®+Dy 4 Zi=l L 02 Fz®) — iz Moy 1 ()2
= -8 1-p1

~ 1 ~ 1
< E[%||ak(v<k>)zg<k>||2 = VFx") oy (VED) T2V FED)

)2 llog—1m*=D @ V/yk= 1||2}

2(1 ,s
S — L 7LB* _
= E[%||ak(v<k>> 12 4 5 o ymD @\/’v%k—nuz]
+E [VF(x<k>)Tak_1(\~f<’<—1>)—% (VFx®) — VF(SE“‘)))]
-E [VF(x“))Tak,] (\~7<’<—1>)—%VF(X(’<>)] , (4.16)
. : ~(k)\— L ~(k—1)\ 1
where the first inequality follows from ax(v;"")™2 — o1 (v; )72 < 0 for all

i € [n] and Lemma 5. By the Cauchy—Schwarz inequality, the smoothness of F,
Assumption 6, and Eqgs. (2.3) and (4.1), we have

Vx0T (VE-1y=3 (vnx(")) — VFGZ("))>
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IVED) 2V FE®)| - [VFE®) - VEED))
LIVED) IV F®) | (7, o m*=7) @ VRET).

IA

IA

In addition, by Definition 1 and Lemma 5, it follows

E [VF(X(k))T(V(k—l))—% VF(x(k))]

> E[nv(k D2 IVE®)? ] > GLEIVFx®))2.

Substituting the above two inequalities into (4.16), we have

1 1
2 7y~ 2 2 k=15
E [F(z(k+1)) + Gooakll(_vm) 2 _ Fz®) — Gooozk,”l\(_v;31 ) 2||1:|

o 1
sE[%uak(V(“) g2 4 5 ,3)2|

|loae—1m*—D @ k= l||2}

~ 1 R .
+E ot LIVED) VGO | (25 om0 VFET ) |
+E[- %2 V&) 2], 4.17)

For any 2 < k9 < K, summing (4.17) over k = ko, ..., K and using the condition
|F(x)| < CFr, VX, we have

Gl Y8 a1 E[VF(x®)2

1
G2 L EIE%0-Dy"2
< 20y + 5t IV ) 21 +E21§=k0]}3||05kg(k)® /_»v\(k)nz

1-p
_ILBT Z E| k=1 @ yk=1 2
2(1 ﬁ1)2 k=ko Of—11m ”
+L Zak ﬂE[II(V(k “)‘zVF(x(k))n(Znak jm&D @ yyk=p ”ﬂ
k=kg

(4.18)
Now use (3.11b) of Lemma 4 in the above inequality to have

God Y a1 EIIVF (x®))2

1
G2 o, 1 E|FR0~D) 2,

< 2Cfr + =5,

ML K 2 LB} K 2
T 6(1n B2) Zk=k0 @+ 2(17,32)(117,31)2 Zk:ko k-1
K
+ T ety U1 Doy U Y- s
E IV =V EO)) /10T |

k—j—l
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_1
G2 a1 E|FR0-D) "2
-8

ML K2 InLp} K 2
+ S k=ko % T TA By (T p? 2k=ko %k—1

< 2Cfr +

+ ozk_l\/]E [||(V<’<—1>)‘5VF(X<">)||2] Yjmta—j, (419

where the last inequality is by Cauchy—Schwarz inequality. We obtain the desired
result in (4.13) by dividing G;OI Zf:ko ak—1 on both sides of (4.19) and using the
definition of x%0-X). O

Below we specify the choices of {a} and show the sublinear convergence.

Theorem 5 Given an integer K > 2, let {X(k)}le and {¥0 }]f:] be generated from
Algorithm 1 with a non-increasing positive sequence {o} f: |- For some 2 < ko < K,
let X%0-K) pe drawn from {X(k)},{(:kO according to (4.12). Suppose Assumptions 3
through 6 hold. In addition, assume V\K) > 0. Moreover, suppose that there are
positive constants Cp and ¢ such that |F(X)| < Cfr, VX, and Fl.(ko_l) > 2 Vi e [n]
hold almost surely. The following results hold:

1 Ifoy = \/ﬁ for all k and some constant o > 0, then

E|VF&EK)2 < ¢ + & («/Cl + %) , (4.20)

_ aty/nLlGy
where Cy = NiET W/ enent and

TMLGs(1-281+483) 4

Cr = GREIGD D) 21 | 204G
! S0P (—P? TRl

(1=BD)(K—ko+1) a/K—ko+1

+

2
C, = 24201 /nLG oo
2= JEST=B

2. Let kg = K >t +2 Ifop = % for all k > 1, then (4.20) holds, where
and

) = _OXEIGY 031 acpGa
Q—V2)1-BOVKVE2Z-1 = (2—/2)avK
4 InLGs _alogd TnLGsof?  a(l+log3)
6(1-82) 2—v2)vVK ' 20-B)(1-BD? 2—V2)VK

Proof Setting 1: When o =
have

«/%0“, V1 < k < K, we plug oy into (4.13) and

E||VF&*6)|2 < €1 + %51 Ties, \/IE [||(\7<k—1>)—%VF(x<k>)||2]_ (4.21)
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~(ko—1)

Since 7; > ¢2,Vi € [n] almost surely and V&™) > ¥® vk > 1, it holds

~ 1
K—110+1 Zlf:ko \/]E [ll(V("_l))_7 VF(x®) ||2]

< ket Lheke VEIVEFG®)|2 < L/EVF (x%0-K))|2,

where the last inequality follows from Jensen’s inequality. Hence, plugging the above

inequality into (4.21) yields

E||VF &%) < € + L VE|IVF &% 5)|12,

(4.22)

which implies /E||V F (x%0-K))||2 < /Ci + % Therefore, we have the desired result

from (4.22).
Setting2  When o = \/i]; V1 <k < K, we have
K K o
Z Xk—1 = Z % 1
k=kg k=kg o

ko—1 X
and
K K o? K 2
Za,%: 275/ —dx = o log —azlog] < o?log4.
k=ko k=ko ko—1 X - 27K
Similarly,
K K 2 2 K—1 2
2 (07 o (07
Yo=Y e [ S
k—ko k=kok 1 k() 1 ko—1 X
K—-1
< o?+a’log < a?(1 +log3),
ko —1
and forall k > kg > 7 + 2,
T T T a
2o = 2 i = 0 =
j= Jj= j=
ko—1
< Ll Sedx =20(Vko—1— vk —T—1) < %
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Therefore, plugging o = %, V1l < k < K into (4.13) and using the above
inequalities, we have

EIVFEOO))?

K
C ~ 4.23)
< Cit 2 ak_l\/E [IVED) =27 Px®) 2 ]. (
k=ko Fk—1 =k,
Notice T)'i(ko_l) > 2 Vi e [r] almost surely, and also use the definition of xko0.K) ipn

(4.12). We have, by Jensen’s inequality,

K
—_— ak_l\/E [1F6D) =3V P P ]

K
ko %1 =g

1
< —E|VF kK|,
C

Now by the same arguments as those in the proof of Setting 1, we obtain the desired
result. O

Remark5 We make a few remarks here about Theorem 5. (i) Note that

1
E|Fko—Dy=z2); < % Hence, we have the ergodic sublinear convergence
O(ﬁ); (i) The existence of ¢ > 0 such that T)'i(ko_l) > ¢2,Vi € [n] almost

surely is a mild assumption. If kg is large, then it is likely that ’Jfko*l) > 31,(1(071) Z

a1 - ﬁg)Giz,Oo, where G; « is an almost-sure bound on |V; f(x; §)|; (iii) Suppose

K >2andko = [§].Ifa = O(1)and 7 = o(K %), then & (JCi +2) « €y when
K islarge. Hence, we observe from (4.20) that in this case, the delay will just slightly
affect the convergence speed, and we can achieve nearly-linear speed-up.

5 Numerical experiments

In this section, we conduct numerical experiments on the proposed algorithm APAM
under both shared-memory and distributed settings. We compare APAM to the
non-parallel and sync-parallel versions of AMSGrad, and also to the async-parallel
nonadaptive SGM. Notice that AMSGrad has been shown in the literature to converge
significantly faster than a non-adaptive SGM or a momentum SGM, and in addition,
it performs similarly well as Adam, another popularly used adaptive SGM not guar-
anteed to converge. Both async- and sync-parallel methods are implemented in C++,
using openMP for shared-memory parallelization and using MPI for distributed com-
munication. They are also implemented in Python for tests with large-scale datasets,
using MPI4PY for distributed communication. Tests in Sects. 5.1-5.3 are run with
the C++ implementation on a Dell workstation with 32 CPU cores, 64 GB memory,
and two Quadro RTX 5000 GPUs. Tests in Sects. 5.4-5.5 are run with the Python
implementation on the same workstation.

@ Springer



Parallel and distributed asynchronous adaptive stochastic...

Table 2 Characteristics of the tested datasets

Name Train samples Test samples Features Classes
rcvl 20,242 677,399 47,236 2
MNIST 60,000 10,000 28 x 28 10
Cifar10 50,000 10,000 32x32x%x3 10
CINIC10 180,000 90,000 32x32x3 10
Imagenet32x32 1,281,167 50,000 32x32x3 1000

In our tests, we use five datasets: rcvl from LIBSVM [5], MNIST [22], Cifarl0
[20], CINIC10 [10], and Imagenet32 x 32 [9]. Their characteristics are listed in
Table 2.

5.1 Performance of APAM

In this subsection, we demonstrate the convergence behavior and parallelization speed-
up of APAM on solving both convex and non-convex problems. We apply APAM to
solve the logistic regression (LR) problem and to train a 2-layer fully-connected neural
network (NN). The LR problem is convex while the neural network training is non-
convex. For the LR problem, we use the rcv1 data, and for the 2-layer NN, we use the
MNIST data. We set the number of neurons in the hidden layer to 50 in the 2-layer
NN, and we use the hyperbolic tangent function as the activation. The initial iterates
for both problems are set as the standard Gaussian. While computing a stochastic
gradient, the mini-batch size is set to 64 and 32 respectively for the two problems. We
set the learning rate to oy = 102, V k for the LR problem and oy = 5 X 10~4, V k for
the 2-layer NN training. The weight parameters are set to 81 = 0.9 and 8, = 0.999
in this test and also all the other tests.

For both problems, we report the wall-clock time and prediction accuracy on the
testing data. In addition, we report the objective error, i.e., the distance of the objective
value to the optimal value, for the convex LR problem and the training accuracy for
the non-convex 2-layer NN problem. The results for the LR problem are shown in
Fig. 3 and those for the 2-layer NN training in Fig. 4. From the results, we see that the
convergence speed of APAM, measured by the objective error or prediction accuracy
versus epoch number, keeps almost the same when the number of threads used for
the shared-memory parallel computing changes. This observation indicates that the
convergence speed of APAM is just slightly affected by the information delay. For
both problems, over 16x speed-up is achieved in terms of the running time while 32
threads are used.

5.2 Comparison to the nonadaptive SGM
In this subsection, we compare APAM to the async-parallel nonadaptive SGM. The

latter method is implemented in a way similar to how we implement APAM but with
a nonadaptive update. We test the two methods on training the 2-layer neural network
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in the previous subsection and the LeNet5 network [22] by using the MNIST dataset.
LeNet5 has 2 convolutional, 2 max-pooling, and 3 fully-connected layers. For the
2-layer network, we use openMP shared-memory parallelism on the two methods.
The mini-batch size in computing a stochastic gradient is set to 32 for both methods.
The parameters of APAM are set the same as those in the previous subsection, and
the learning rate of the nonadaptive SGM is tuned to 103 for the highest testing
accuracy. For the LeNet5 network, we conduct distributed computing with MPI. The
mini-batch size is set to 40 for both methods, and the learning rate is tuned to 1074
and 1073 respectively for APAM and the async-parallel nonadaptive SGM, for the
highest testing accuracy.

For the openMP implementation, we compare the performance of the two methods
by running them with 1, 8, or 32 threads. For the MPI implementation, we compare
their performance with one master process and 1, 5, or 20 worker processes. When
one thread or one worker is used, the methods become nonparallel. Both methods are
run to 200 epochs. The results are shown in Fig.5 for the openMP implementation
and in Fig. 6 for the MPI implementation. Because the nonadaptive SGM update is
cheaper than the APAM update, we plot the accuracy versus the running time. From the
convergence curves, we see that the convergence speed of both APAM and the async-
parallel nonadaptive SGM is slightly affected by the information delay. In addition,
we see that APAM gives significantly higher training and testing accuracy than the
nonadaptive SGM within the same amount of running time.

5.3 Comparison to sync-parallel method

In this subsection, we compare APAM to its sync-parallel counterpart. We test them on
training the 2-layer neural network used in the previous two subsections and on training
the AIICNN network in [38] without data augmentation. The MNIST data is used for
the 2-layer network and Cifar10 for the AICNN network. AIICNN has 9 convolutional
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Fig.5 Training and testing accuracy by APAM and the async-parallel nonadaptive SGM with openMP for
a 2-layer fully-connected neural network on MNIST
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Fig.6 Training and testing accuracy by APAM and the async-parallel nonadaptive SGM with MPI for the
LeNet5 neural network on MNIST dataset

layers. The parameters of APAM and its sync-parallel counterpart are set to the same
values. On training the 2-layer network, we adopt the same parameter settings as those
in the previous two subsection. On the AIICNN, we conduct distributed computing
with MPI. We set the mini-batch size to 40 and tune the learning rate to oy = 1074, Vk
based on testing accuracy.

The running time for the 2-layer network is shown in Fig. 7and the results for the
AlICNN in Fig. 8. Figure 4 shows that on the 2-layer network, APAM gives almost
the same accuracy curves while the number of threads used in the training changes.
Hence, the results in Figs. 4 and 7 indicate that APAM can achieve significantly
higher parallelization speed-up than its sync-parallel counterpart to reach the same
training/testing accuracy, especially when 16 or 32 threads are used. The sync-parallel
method achieves lower paralleization speed-up by using 32 threads than that by using
8 or 16 threads. This is possibly because of memory congestion. For the AIICNN, we
see that in the beginning, APAM produces lower accuracy as more worker processes
are used, and this should be because the delay slows down the convergence speed.
However, to reach the final highest accuracy, APAM with different number of worker
processes takes almost the same number of epochs. Therefore, the results indicate that
APAM again has significantly higher speed-up than its sync-parallel counterpart to
reach the highest training/testing accuracy, especially when 10 or 20 worker processes
are used.
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training/testing accuracy results

are shown in Fig. 4 1 2 :th rea dSS 16 32
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Fig. 8 Running time (h) and prediction accuracy by APAM and the sync-parallel AMSGrad with MPI
implementation for training the AIICNN network without data augmentation on Cifar10 dataset
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Fig. 9 Predication accuracy by APAM for training the AIICNN network on Cifar10 dataset with Python
implementation and artificial delay

5.4 Results with artificial delay

In this subsection, we test the effect of the delay in our algorithm APAM, by
artificially injecting different delays like [2]. For a given maximum delay 7, we
artificially select the delay i in iteration k£ from {0, 1, ..., min{z, k}} uniformly at
random, i.e., the stochastic gradient g(k) is evaluated at an iterate that is selected from
{x(k), xk=D x(k_mi“{"k})} uniformly at random. We test APAM on training the
AIICNN network on Cifar10 with different maximum delays and the same parameter
settings as those in the previous subsection.

Figure 9 plots the curves for different values of t. In all cases, APAM can converge
to almost the same final highest accuracy. When t < 20, APAM takes almost the
same number of epochs to reach the final highest accuracy as the no-delay case. When
T > 50, the negative effect of delay on the convergence becomes obvious. APAM
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with a larger maximum delay converges slower and needs more epochs to achieve the
final highest accuracy. APAM with the maximum delay of 200 converges the slowest
but it can still achieve the final highest accuracy after about 300 epochs.

5.5 Tests on larger datasets

In this subsection, we test APAM and its sync-parallel counterpart on larger neural
networks and larger datasets. We train two networks: Resnet18 [17] that is a deep resid-
ual network with 18 convolutional layers, and WRN-28-5 [45] that is a wide residual
network with 28 convolutional layers and whose widening factor is 5. Resnet18 is used
for classifying the CINIC10 data, with the mini-batch size set to 80 and the learning
rate tuned to 10~*. WRN-28-5 is used for classifying the Imagenet32 x 32 data, with
the mini-batch size set to 100 and the learning rate tuned to 1073,

The training is first run on CPUs to compare the time of APAM and its sync
counterpart. Because of the problem size, it takes very long time for one update, and
we only run the training to one epoch. Figure 10shows the running time. From the
figure, we see again that APAM has significantly higher speed-up than its sync-parallel
counterpart. In more details, the running time for both trainings by APAM decreases
as the number of workers increases, and it is reduced almost by a half as the workers
increase from 5 to 10 and from 10 to 20. However, for the sync-parallel counterpart,
the speed-up is only observed when the number of workers increases from 1 to 5, and
as the number of workers further increases, it takes longer time for training Resnet18
on the CINIC10 data.

Then we run APAM with two GPUs to see how the delay affects the convergence.
As there are only two GPUs, we assign [%1 workers on one GPU and L%J workers
on the other one, if p workers are employed. Due to the memory limitation, p is set
up to 10. Figures 11and 12 show the prediction accuracy of the training on Resnet18
and WRN-28-5 respectively. From the figures, we see that APAM produces lower
accuracy for the beginning epochs as more workers are used. This indicates that the
delay slows down the convergence speed. Nevertheless, APAM achieves almost the
same final highest accuracy with different numbers of workers. It is worth to mention
that to train the models on the large datasets for many epochs takes a long time, even
on GPUs. The number of epochs is selected such that the training takes about one day

HEEE APAM
HEl sync method

HEEE APAM
HE sync method

times (hour)

5 10 20 5 10 20
#worker process #worker process

Fig. 10 Running time (h) on CPU by APAM and the sync-parallel AMSGrad with Python and MPI4PY
implementation, for training the Resnetl8 network on CINIC10 dataset (Left) and WRN-28-5 on
Imagenet32 x 32 dataset (Right); both for one epoch
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Fig. 11 Prediction accuracy by APAM and the sync-parallel AMSGrad with Python and MPI4PY
implementation for training the Resnet18 network on CINIC10 dataset
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Fig. 12 Prediction accuracy by APAM and the sync-parallel AMSGrad with Python and MPI4PY imple-
mentation for training the WRN-28-5 network on Imagenet32 x 32 dataset. The first row is about the
conventional accuracy that measures the proportion of images for which the predicted class (the one with
the highest probability) matches the true class. The second row is about the top 5 accuracy that measures
the proportion of images for which one of the five classes with top 5 highest probability matches the true
class

by using both GPUs. This way, we could run to 200 epochs for training Resnet18 on
CINIC10 and only 40 epochs for training WRN-28-5 on Imagenet32 x 32.

6 Concluding remarks

We have presented an asynchronous parallel adaptive stochastic gradient method,

named APAM, based on AMSGrad. Convergence rate results are established for both
constrained convex and unconstrained non-convex cases. The results show that the
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delay has little effect on the convergence speed, if it is upper bounded by t = o(K 7 ),
where K is the maximum number of iterations. Numerical experiments on both convex
and non-convex machine learning problems demonstrate significant advantages of the
proposed method over its synchronous counterpart and also an asynchronous parallel
nonadaptive method, in both shared-memory and distributed environment.
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Proofs of lemmas in Sect. 3

Proof of Lemma 1 From the update of x in (1.5), we have the optimality condition
0 € Nyx(x*HD) 4+ VA0 xEHD - x®) 4 gm®),
where Ny (x) denotes the normal cone of X at x. Hence, it follows
<x(k+]) —x, VIR x*D _x®) 4 akm(k)> <0, Vx € X. 1.1)
By the update of m in (1.2), it holds

<X<k+1> —x, m(k))
(X(k+1> —x® m(k)> + <x<k> _x, m(k))

— <X<k+1> —x®, m(k>> +(—8) <X<k> _x, g(k)> s <x(k) _x, m(k_l)>.

@ Springer


https://github.com/RPI-OPT/APAM
https://github.com/RPI-OPT/APAM

Y. Xuetal.

Recursively using the above relation, we have

k
<X<k+1) _x, m<k>> - Zﬁff—f ((x(j'H) —xD m9y + (1 = B —x, g(j))> _
j=1

(7.2)
In addition, it holds

<X(k+1) —x, VAR (xk+D _ x(k))>

1
= 3 (XD = X1 = X = X1 + XD = x 2.

Substituting the above two equations into (7.1) gives
k . . . .
o Zﬂ{w <(X(1+1) —xD mDy + (1 = B x¥) —x, gu)))
j=1

1
_ - k+1) _ 412 _ k) _ w2 (k+1) _ (k)2
= =5 (XD = X1y = IO = x1 g+ XD —x2 ) 2.3)

By the Young’s inequality, we have

k
S ap 3 AU — x) )
k=1 j=1
=y Zakﬂ]f_1<x(j+l) —x, m0)
Jj=lk=j

[xG+D — x() 2

t t 1 t k—j
—j Nz Dkej P ‘
> Y Ywsl || - w0
i=1 \k=/ 23 ke j kB FD)72
Since Z/Z: j ozk,Bf_j < 1331 , the above inequality implies
! k .
i i . )
Zak Zﬂl J<X(J+ ) x), m(]))
k=1 =1
; [xC+D — X(j)”?ﬂm)% o2
> — AR LR / m? : (7.4)
= -2 2 2(1 — B1)? | ”(vm)—%

j=1

In addition, noting & > 5*=D for all k, we have

t

_ (k+1) _ 2 _ (k) _ 2
> (I X2 = 1Y = X1 )
k=1
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- _ ||x(f+1) —

t
2 k 2 1 2
X2+ D IO =X e + I =)
k=2

t
D3, (Z VI — VRE=D]|; WﬂDnl) = DLINFOI. (15
k=2

IA

Now summing (7.3) over k = 1 to ¢, and using (7.4) and (7.5), we obtain the desired
result. O

Proof of Lemma 2 For each i € [n], let G(k) = max; <k |g(j )| and G% be the vector

with the i-th componentG( ) Note that for each k > landeachi € [n], we haveA( ) —
max{’\fk 1), l.(k)} = max;<x v( , and in addition, v(]) ]=1(1—/32)ﬂ2 ](gi(]))z.
Hence,
7 = maxZ(l — BB () (7.6)
and thus ’v\fk) >(1- ﬂz)(GEk))z. Therefore, noticing
k i
m® =>"(1-pnp gV, (1.7)
j=1
we have
1 1
@)y =Im® o @)F ) s=———m® 0 VGW)|
o2 (1= )3
k—
< Z(l — BB gV @ VGW |,
(1- B3 j=1

and thus by the Cauchy—Schwarz inequality, it holds

) _(=p? ST AN VG |?
Im®)2 > B Y B g o V6|
j=1 j=1

oot S0 gyl

k
<P ST g0 0 VG0
(1-422 5

Now note that

|e¥ @ VG®|* = Z} |gc’;€k) < Z g1 =191
l l
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Together from the above two inequalities and Assumption 2, it follows that

k

1-— ke 1—pBi k—j

Elm®P < ——— Zﬂ ElgV I = —— Y8 G,
@73 (1 ﬂz>z,- 1 (1= p2)2

which implies the result in (3.2). O

Proof of Lemma 3 Since X is separable andx(k+1) (k) ifA(k) =0, wehavex*+D =

Projy (x(k) axm® @ v/ ) In addition, notice that x®) = Projy (x¥), and thus

the desired result follows from the non-expansiveness of the projection onto a convex
set. O

Proof of Lemma 4 For each i € [n], let G(k) = max;<k Ig(j)| and G® be the vector

with the i-th component G( ) Then it follows from (7.6) thatA(k) > (1— ,32)(Gl(.k))2.
Hence, for j <k,

U2 gDl

, 1 (g
g @ v¥®|? <
8 - f Z

el (GO ER

which gives (3.11a). Furthermore, by (7.7), it holds

k
gl
VAT = 0~ ot @ V] = T - ot SELE

which proves (3.11b). The above inequality together with the Cauchy—Schwarz
inequality implies (3.11c). Hence, we complete the proof. O

Proofs of lemmas in Sect. 4

Proofof Lemma 5 From (7.7), we have mgk) = ,431)2] 1ﬁk J (’) , and thus
applying triangle inequality and using the definition of I' in (4.2) lead to |m(k)| <
(1 - /31)1", < I';. A similar argument gives v Al( ) < Fl.z. When Assumption 3 holds,
we know that |g® |0 < Goo almost surely, and that IVFx®) oo < Goo, for all
k € [K], which leads to the second part of this lemma. O

Proof of Lemma 6 From (4.3), we have that for k > 1,
(k+1) (k) — ! (k+1) (k) A (k) (k—1)
z -z = —(X —-x") - —x" =X )
1 -8 1 —Bi

1 ~ | B1
—_ Oy~ m® YD)y =t =1
1—,31ak( ) +1 ﬂak 1( )2
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where in the second equation, we have used (4.1) and Remark 4. With k = 1, the
above equation gives (4.4) by utilizing the update of m‘"). Furthermore, it gives, by
plugging the update of m®)

Z5+D _ 40

Bi

-1 S — L _
_ﬂl“k(V(k)) 2(pm Y+ (= pg®) + Top - [ (FED) "Ik

~ 1 ~
= 1_51/31 [“kfl(v(k_l)rj *“k(V(k))77:|m(k_l) — o (V)2 g®

Bi
1-pi

[I—ak(v(kh 2ot (VS ”)2]ak (FED) I mED g G103,

The second equation of the above is exactly (4.5), and the last equation gives (4.6). O
Proofof Lemma 7 Inner producting V F (x®) with both sides of (4.5) gives
VFxO)T @+ — 20y = %VF(x(k))T [ak,l Fh-D)=7 g, (V"O)—%] m*=D
—VFx®) T (V(k))_%g(k). 8.1)

We bound the first term on the right-hand-side of (8.1) by Definition 2 and Lemma 5
as follows:

VEEO)T [ (D) 72 — o (F0) 73 | m=D

n
> o ViFx®) [akﬂ(ﬁi(k*l))_% _ ak@‘i(k))—%:l D

i=1

ZCD

Sre o1 G 73 — a5 73] (8.2)

i=1

A

k— = ~k) — L
a1 %) — g @) 2|

where the last equation follows because a_i (V(k_l))_% > o (V(k))_% > 0
component-wisely. Similarly, we can bound the second term on the right-hand-side of
(8.1) as follows:
— vFx®) T (V0 =140
_vEE®) g (VE=D)=3 g0
+VFEEHT [Olk—l (V(k_l))_% - ak(v(k))_%] g®
= —VFx®) Tay_y (VD)= 3g®

n
~k—1) L1 ~ _1
+ 3 VP [ G T2 - i) 72 g
i=1
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< T FG®) o T3 1+ 3 0 e 65 — @)
i=1
= —vF®) g (VE-D)=2 (k)—f-ZF(D [ @72 — @) 2.
i=1
(8.3)
Now substituting (8.2) and (8.3) into (8.1) yields (4.7). ]

Proof of Lemma 10 From (4.8) and the fact (a + b)? < 4a? + %bz, VYa,b € R, the
inequality in (4.11) immediately follows. By the Cauchy—Schwarz inequality, and also
(4.9) and(4.8), it holds
T
(VF(Z(k)) _ VF(X(k))> (Z(k+1) _ z(k))
IVF@®) = VEEO)| - 25D — 2]

LB _ B _ ~y. 1
< = x%D — <">||< 5 Ix® =D — x® ) 4 [l (VE) 20

T 1-5
LB} - BiL - <1
= s IxETD = x O g e xETD —xO e (VEO) 20
I —=4Av 1 =B
Now using the Young’s inequality, we have (4.10) from the above inequality. O
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