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FIRST-ORDER METHODS FOR PROBLEMS WITH O(1)
FUNCTIONAL CONSTRAINTS CAN HAVE ALMOST THE SAME
CONVERGENCE RATE AS FOR UNCONSTRAINED PROBLEMS*

YANGYANG XUfT

Abstract. First-order methods (FOMs) have recently been applied and analyzed for solving
problems with complicated functional constraints. Existing works show that FOMs for functional
constrained problems have lower-order convergence rates than those for unconstrained problems. In
particular, an FOM for a smooth strongly convex problem can have linear convergence, while it
can only converge sublinearly for a constrained problem if the projection onto the constraint set is
prohibited. In this paper, we point out that the slower convergence is caused by the large number of
functional constraints but not the constraints themselves. When there are only m = O(1) functional
constraints, we show that an FOM can have almost the same convergence rate as that for solving
an unconstrained problem, even without the projection onto the feasible set. In addition, given an
e > 0, we show that a complexity result that is better than a lower bound can be obtained if there

1
are only m = o(e™ 2) functional constraints. Our result is surprising but does not contradict the
existing lower complexity bound because we focus on a specific subclass of problems. Experimental
results on quadratically constrained quadratic programs demonstrate our theory.
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1. Introduction. In this paper, we consider the constrained convex program-
ming

(L.1) Iin F(x) := f(x) +A(x), s.t. g(x) = [01(x),..., gm(x)] 0,

where f is a differentiable strongly convex function with a Lipschitz continuous gra-
dient, h is a simple closed convex function, and each g; is convex differentiable and
has a Lipschitz continuous gradient.

For a smooth strongly convex linearly constrained problem miny{ f(x), s.t. Ax =
b}, the authors of [32] give a lower complexity bound O(%) of first-order methods

(FOMS) to produce an e-optimal solution if A can be inquired only by the matrix-
vector multiplication A(-) and AT(-). Notice {x : Ax =b} = {x: Ax < b,-Ax <
—b}. In addition, if Vf(x) + ATy = 0, then Vf(x) + ATyT — ATy~ = 0, where
y* >0 and y~ > 0 denote the positive and negative parts of y. Hence, if the linear-
equality constrained problem has a KKT point, then so does the equivalent linear-
inequality constrained problem. Therefore, the lower bound in [32] also applies to the
inequality constrained problem (1.1) if g can be accessed only through its function
value and derivative. However, for the special case of g = 0 or m = 0, an accelerated
proximal gradient method [22, 31] can achieve a complexity result O(v/k|logel) to
produce an e-optimal solution of (1.1) when f is strongly convex. Here, x denotes
the condition number.
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The worst-case instance constructed in [32] relies on the condition that m is in
the same or higher order of % For the case with m = o(ﬁ), the lower bound O(ﬁ)
may no longer hold. Examples of (1.1) with small m include the Neyman—Pearson
classification problem [33], the fairness-constrained classification [43], and the risk-
constrained portfolio optimization [10]. Therefore, we pose the following question
while solving a strongly convex problem in the form of (1.1):

Given ¢ > 0, can an FOM achieve a better complexity result than O(%)
to produce an e-optimal solution of (1.1) when m = o(%), or even achieve
O(y/k) when m = O(1)?

Here, an FOM for (1.1) only uses the function value and derivative information of

f and g and also the proximal mapping of & and its multiples, and O suppresses a
polynomial of |loge|. We will give an affirmative answer to the above question.

1.1. Algorithmic framework. The FOM that we will design and analyze is
based on the inexact augmented Lagrangian method (1IALM). The classic AL function
of (1.1)is

(12 Lotem) = P+ §[|lg60 + 514 - 128,

where z is the multiplier vector, and [a]+ takes the componentwise positive part of a
vector a. The pseudocode of a first-order iALM is shown in Algorithm 1. Notice that
L3 is strongly convex about x and concave about z. Hence, we can directly apply
the accelerated proximal gradients in [22, 31] to solve each x-subproblem. However,
that way can only give a complexity result of O(#) as shown in [40], regardless of
the value of m. To have a better overall complexity, we will design a new cutting-

plane based FOM to solve each x-subproblem by utilizing the condition m = O(1) or

mzo(%).

Algorithm 1: First-order inexact augmented Lagrangian method for (1.1).

1 Initialization: choose x°,z°, and 5y > 0

2 for k=0,1,... do

3 Apply a first-order method to find x**! as an approximate solution of
miny Lg, (x,2").

Update z by z°7" = [2" + Brg(x"™)]+.

Choose Br+1 > Bk.

if a stopping condition is satisfied then
L Output (x**!,2""1) and stop

EN < NS BTN

1.2. Related works. We briefly mention some existing works that also study
the complexity of FOMs for solving functional constrained problems.

By using the ordinary Lagrangian function, the authors of [27, 28] analyze a
dual subgradient method for general convex problems. The method needs O(s~?)
subgradient evaluations to produce an e-optimal solution (see the definition in (1.6)
below). For a smooth problem, the authors of [26] study the complexity of an inex-
act dual gradient (IDG) method. Suppose that an optimal FOM is applied to each
outer-subproblem of IDG. Then to produce an e-optimal solution, IDG needs 0(6*%)
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gradient evaluations when the problem is convex, and the result can be improved
to O(e’ﬂlog ¢|) when the problem is strongly convex. For convex problems, the
primal-dual FOM proposed in [42] achieves an O(¢~!) complexity result to produce
an e-optimal solution, and the same-order complexity result has also been established
in [39]. Based on a previous work [15] for affinely constrained problems, the authors
of [23] give a modified first-order iALM for solving convex cone programs. The over-
all complexity of the modified method is O(7!|loge|) to produce an e-KKT point
(see Definition 1.1 below). A similar result has also been shown in [3] for convex
conic programs. A proximal iALM is analyzed in [16]. By a linearly convergent first-
order subroutine for primal subproblems, the authors of [16] show that O(¢™!) calls
to the subroutine are needed for convex problems and 0(5_%) for strongly convex
problems to achieve either an e-optimal or an e-KKT point. In terms of function
value and derivative evaluations, the complexity result is O(e~!|loge|) for the convex
case and O(e_%|log e|) for the strongly convex case. Complexity results of FOMs
for nonconvex problems with functional constraints have also been established; see,
e.g., [6, 7,14, 17, 18, 19, 24, 35]. To produce an e-KKT point, the best-known result
is O(¢=2) when the constraints are convex [17, 19] and O(e~?) when the constraints
are nonconvex and satisfy a certain regularity condition [19].

On solving general nonlinear constrained problems, FOMs have also been pro-
posed under the framework of the level-set method [2, 20, 21]. For convex problems,
the level-set based FOMs can also achieve an O(e~!) complexity result to produce an
e-optimal solution. However, to obtain 0(5_%), they require strong convexity of both
the objective and the constraint functions. Nesterov gives a level-set-type FOM in [30]
for functional constrained problems. For strongly convex problems, the method can
produce an e-optimal solution by O(y/k|log¢|log k) first-order oracles [30, eq. 2.3.26],
where k is the condition number. This oracle complexity result differs from a lower-
bound result for unconstrained problems only by a factor of logx. However, the
book [30] requires strong convexity for the objective function and all the constraint
functions. In contrast, we will only need strong convexity for the objective, while the
constraint functions can be merely convex. In addition, the method in [30] assumes
exact solutions to a sequence of quadratically constrained quadratic programs.

Under the condition of strong duality, (1.1) can be equivalently formulated as a
nonbilinear saddle-point (SP) problem. In this case, one can apply any FOM that is
designed for solving nonbilinear SP problems. The work [12] generalizes the primal-
dual method proposed in [8] from the bilinear SP case to the nonbilinear case. If
the underlying SP problem is convex-concave, the work [12] establishes an O(s71)
complexity result to guarantee an e-duality gap. When the problem is strongly convex-
linear, the result can be improved to 0(5_%). Notice that both results apply to
the equivalent ordinary-Lagrangian-based SP problem of (1.1). By the smoothing
technique, the authors of [13] give an FOM (with both deterministic and stochastic
versions) for solving nonbilinear SP problems. To ensure an e-duality gap of a strongly
convex-concave problem, the method requires 0(5*%) primal first-order oracles and
0(6*1) dual first-order oracles. While applied to the functional constrained problem
(1.1), the method in [13] can obtain an e-optimal solution by O(¢~ % |log e|) evaluations
on f, Vf, g, and Jg. FOMs for solving the more general variational inequality (VI)
problem can also be applied to (1.1), such as the mirror-prox method in [29], the
hybrid extragradient method in [25], and the accelerated method in [9]. All of the
three methods can have an O(e~!) complexity result by assuming smoothness and/or
monotonicity of the involved operator.
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1.3. Contributions. On solving a functional constrained problem with a strongly
convex objective and convex constraint functions, none of the existing works about
FOMs (such as those we mentioned previously) could obtain a complexity result bet-
ter than 0(5’%). Without specifying the regime of m, the task is impossible. We
show that when m = O(1) in (1.1), an FOM can achieve almost the same-order com-
plexity result (with a difference of at most a polynomial of |loge|) as for solving an
unconstrained problem. When m = 0(5_%), we show that a complexity result better
than O(e’%) can be obtained. The key step in the design of our algorithm is to for-
mulate each primal subproblem into an equivalent SP problem. The SP formulation
is strongly concave about the dual variable, and the strong concavity enables the gen-
eration of a cutting plane while searching for an approximate dual solution of the SP
problem. Since there are m dual variables, we can apply a cutting-plane method to
efficiently find an approximate dual solution when m = O(1) or m = o(¢~2). In addi-
tion, we extend the idea of a cutting-plane based FOM to the convex and nonconvex
cases. For these two cases, we show that an FOM for problems with O(1) functional
constraints can also achieve almost the same-order complexity result as for solving
unconstrained problems.

1.4. Assumptions and notation. Throughout our analysis for strongly convex
problems, we make the following assumptions.

ASSUMPTION 1 (smoothness). f is L¢-smooth, i.e., V f is Ly-Lipschitz contin-
uous. In addition, each g; is smooth, and the Jacobian matriz Jg = [Vg{;...;Vgl]
is Lg-Lipschitz continuous.

ASSUMPTION 2 (bounded domain and convexity). The domain of h is bounded
with a diameter Dy, = maXx yedom(n) [|[X — ¥|| < 0o. The functions h and {g;} are all
convez.

The above two assumptions imply the boundedness of g and Jg on dom(h). We
use G and By, respectively, for their bounds, namely

(1.3) G = lg()ll, By = max [[Jg(x).

max
xedom(h) x€dom(h)

ASSUMPTION 3 (strong convexity). The smooth function f is p-strongly convex
with > 0.

ASSUMPTION 4 (strong duality). There is a primal-dual solution (x*,z*) satis-
fying the KKT conditions of (1.1), i.e., 0 € OF(x*) + Jg(x*) 2", z* > 0, g(x*) <
0, g(x*)Tz* = 0.

When Assumption 4 holds, it is easy to have (cf. [38, eq. 2.4])
(1.4) F(x) — F(x*) + (z",g(x)) > 0 Vx € dom(h).

Notation. For a real number a, we use [a] to denote the smallest integer that is
no less than a and [a]+ the smallest nonnegative integer that is no less than a. Bs(x)
denotes a ball with radius  and center x. If x = 0, we simply use Bs. We define B}'
as the intersection of Bs with the nonnegative orthant, so in the n-dimensional space,
Bf = BsNR". We use V,,(8) for the volume of B; in the m-dimensional space. [n]
denotes the set {1,...,n}. Given a closed convex set X C R™ and a point x € R", we
define dist(x, X)) = minyex ||y — x||. For any vector x, Diag(x) denotes a diagonal
matrix with x on the diagonal, and for any square matrix A, diag(A) is a vector
that takes the diagonal of A. We use O, O, and o with standard meanings, while
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in the complexity result statement, O has a similar meaning as O but suppresses a
polynomial of |loge| for a given error tolerance € > 0.

DEFINITION 1.1 (e-KKT point). Given € > 0, a point x € dom(h) is called an
e-KKT point of (1.1) if there is z > 0 such that

(1.5) dist(0,0xLo(%,2)) <&, g+ <e, Z |Zigi(X)] < e,

where Lo(x,z) = F(x) +z' g(x) is the ordinary Lagmngzan function of (1.1).

By the convexity of F' and each g;, and also Assumption 4, one can easily show
that an e-KKT point of (1.1) must be an O(¢)-optimal solution, where we call a point
x € dom(h) an e-optimal solution of (1.1) if

(L6) PE) - Fx)| <o [lg®)]] <.

1.5. Outline. The rest of the paper is organized as follows. In section 2, we
review an adaptive accelerated proximal gradient (APG) method and give the con-
vergence rate of the iALM. In section 3, we design new FOMs (that are better than
directly applying the APG method) for solving primal subproblems in the iALM.
Overall complexity results are shown in section 4. Extensions to convex and noncon-
vex cases are given in section 5. Numerical experiments are conducted in section 6 to
demonstrate our theory, and section 7 concludes the paper.

2. An optimal FOM and convergence rate of iALM. In this section, we
give an optimal FOM with line search that will be used as a subroutine in our algo-
rithm. Also, we establish the convergence rate of the iALM to produce an approximate
KKT point.

2.1. An optimal FOM for strongly convex composite problems. Con-
sider the problem
(2.1) minimize P(x) := ¥(x) + r(x),

x€ERn?

where 1 is a differentiable ji,-strongly convex function with an L.-Lipschitz contin-
uous gradient, and r is a closed convex function. Several optimal FOMs have been
given in the literature for solving (2.1), e.g., in [22, 31]. In this paper, we choose the
APG method with line search in [22], and we rewrite it in Algorithm 2 with a few
modified steps for our purpose to produce near-stationary points. One can also use
the APG method in [31].

The results in the next theorem are from Theorem 1 of [22].

THEOREM 2.1. The generated sequence {xk}kzo by Algorithm 2 satisfies
(2.2)

k41
P(xF1) — P(x*) < (1 e ) (P(XO) — P(x*) + B x0 - x*||2> vk >0,
Y1Ly 2
where x* is the optimal solution of (2.1).

By the above theorem, we can easily bound the distance of X* to stationarity for
each k.

THEOREM 2.2. The generated sequence {X*}i>o satisfies

dist (0, 9P(X*))

(m+

k+1

e ) VAP~ P sl P (1= ) T vizo

Y1Ly

mm
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Algorithm 2: An optimal FOM with line search for (2.1):
}/E = APG(¢7 T, /J/dh Lmina &:a Y1y ’72)

1 Input: minimum Lipschitz Lmyin > 0, increase rate 1 > 1, decrease rate 2 > 1,
and error tolerance & > 0.

2 Prestep: choose any y = y° € dom(r) and let L = Luin /71

3 repeat

4 | Ll and let X = argmin, (Vi (3), x) + Z[|x — y||> + r(x)

until (%) < Y(F) +(Vo(3), X - ¥) + 5% - ¥

5

6 Initialization: let x ' =x =%, Lo = max{ Lmin, Z/’Yz}, and a_1 =1
7 for k=0,1,... do

8 L+ Lk/’yl

9 repeat

10 L+ vL, ar < \/py/L, and?(—xk—i—%(xk—xk*l)
11 let X = arg min, (V/(¥),x) + £ x - F||* + r(x)
12 | until $(X) <PF) + (V). X - 3) + 5% - ¥
13 L+ L/;
14 repeat

15 increase L < v1L;

16 let X = arg min, (Vo)(X),x) + Z||x — X||* 4 r(x); > modified step to

guarantee near-stationarity at X ~

17| until Y(R) < (F) + (VHE), R — %) + L)% - 7|
18 set x* =% RFT =% and Ly = max{Lmin, [ /72 };
19 if dist(0,0P(X)) < £ then

20 L return X and stop.

Proof. First notice that if L > Ly, it must hold that 1(X) < ¢(X) + (Vi)(X), X —
X) + Z||x — x||?, and when this inequality holds, we have (cf. [41, Lem. 2.1]) P(xX) —
P(R) > L% — %% Since P(X) — P(X) < P(X) — P(x*), we have L||g — %] <

P(x) — P(x*), which together with the fact I > Ly, implies

(2.3) Dl -%° < L(PR) - P(x"), [R-%? < 122 (PR) - P(x")).

In addition, from the optimality condition of X, it follows that 0 € V(X) + E(§ -
X) + 0r(X), and thus

(24)  dist(0,0P(®)) < |[Ve(®) - VY& + L% - X| < (L, + D)% - ||

By (2.3) and (2.4), we have

dist(0, 0P (X)) < (Ly + L)% — % < V2(PR) - Px) (VI + 2).

Therefore, the desired result follows from (2.2), the fact that L < 1Ly, and the above
inequality with X = X¥*! and x = x*+1. O
From [4, Thm. 3.1], we have

*HQ

(2.5) P(x?) — P(x") < 2helyodlt
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Hence, we can obtain the following complexity result by Theorem 2.2 together with
(2.5).
COROLLARY 2.3. Assume that dom(r) is bounded with a diameter

D, = max ||x; —Xal.
x1,%x2€dom(r)

Given € > 0, v1 > 1, 79 > 1, and Ly, > 0, Algorithm 2 needs at most T eval-

uations on the objective value of 1 and the gradient Vi) to produce X such that
dist(0,0P (X)) < &, where

T:(1+“Og71 Ly ]_‘_) (14—2{2 %log<%( 1Ly + i«/z ) /271Lw+ﬂw)—‘ )
+

min min

Proof. Since dom(r) has a diameter D,., we have from Theorem 2.2 and (2.5) that

k+1

2
diSt(O, 8P(>’E"“+1)) <D, ( Y1Ly + %) V271 Ly + iy <1 - ’Y/jz}w) VEk>0.

Hence, if k + 1 > K, then dist(0, 0P(x**1)) < £, where

21og( 2z Tot—t ) /271 Lot
gl = Y1l m Y1l Ty

M _ )
log(l_\/wllew) 1
+

namely, after at most K iterations, the algorithm will produce a point X satisfying
dist(0,0P(X)) < &.

_ Notice that the conditions in lines 5, 12, and 17 of Algorithm 2 will hold if
L > Ly and L > Ly. Hence, every iteration will evaluate the objective value of 1
and the gradient V¢ at most 2(1 + [log., LL“’

log(1 —a)~! > a for all 0 < a < 1, we obtain the desired result by also counting the
objective and gradient evaluations to obtain x°. 0

1+) times. Now, using the fact that

min

2.2. Convergence rate of iALM. The next lemma is from [40, eq. 3.20] and
the proof of [40, Lem. 7].

LEMMA 2.4. Let {(x*,z*)} be generated from Algorithm 1 with z° = 0. Suppose
(2.6) Lp, (x*1 2%) <min L, (x,2°) + e, VE=0,1,...
for an error sequence {ey}. Then

k-1
27) 2P <4llz*| +4) Brer, and |2 < 2[|z* +
t=0

By this lemma and also the strong convexity of F', we can show the following
result.

LEMMA 2.5. Let {(x*,2*)} be generated from Algorithm 1 with z° = 0. If
dist(O,@xﬁgk (x’”l,zk)) <e,Vk>0
for a sequence {ey}, then

2
9
£, and 2" < 2l|2*| +

k—1
(28)  [2"P <4z IP +4)_ B,
t=0
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Proof. If x®*1 is the minimizer of L, (x,z") about x, then 0 € 9xLg, (x¥*1,2%).
Also, it follows from dist (0, xLg, (x"!,2¥)) < e, that there is v € 0xLg, (x",2¥)
and ||v|| < e. Since F is p-strongly convex, Lg, (x,2z") is also p-strongly convex
about x. Then we have (v,x*+1 —xF+1) > ||xk*+1 —xk+1||2 which together with the
Cauchy-Schwarz inequality gives ||x*+! — xk+1| < H:'T” < =t. Now, by the convexity
of Lg,(-,2"), it holds that Lg, (x**1,2%) — L, (xFT1 2F) < (v, xFF1 — xkF1) < %ﬁ’
and thus we have that (2.6) holds with e, = % . Hence, (2.8) follows from (2.7). O

THEOREM 2.6 (convergence rate of iALM). Let {(x*,2*)} be generated from Al-

gorithm 1 with z° = 0. Suppose B = Boo® for all k > 0 for some o > 1 and By > 0,
and dist (0, OxLg, (xk“,z’“)) < € for all k > 0 for a positive number €. Then

k+1 4lz7| | EVeHD oo

(2.9) ||[g(x )]+|| = Boo® + \/ﬁoak )
m . w12 5 )

(2.10) § :|2f+1gi(xk+1)‘ < 9l|z" | n £*(80 + ).

pt 2Bgok 2u(oc —1)

k+1_Z{c 3
Proof. From the update of z, it follows that g;(x**1) < ZZTZ for each i € [m],
and thus by (2.8) we have

— 52 22
llgGe* )4 || < =2l < 12l < swin/a i s d et on

k - k - Bk

Plugging into the above inequality ¢; = & for all t > 0 and £}, = Syc*, we obtain the
inequality in (2.9).

Furthermore, for each i € [m], we have |zFt1g;(x#1)| < ﬂ—lk|zf+1(zf+1 — 2.
Notice that zF and 2#™! are both nonnegative. If 2FH1 > 2k then it is obvious to
have |25 (2} B )| < (2FH2 and if 2P < 2F) it holds that 25T (2P — k)| =
— (212 g gkl < (G2 4 B ) by Young’s inequality. Hence, |25 g, (x"*1)| <

L2 4 (Z > ), and thus

Bk Zi
m 1 zk 2
Z ’zf“gi(xkﬂ)’ < Bi <||Zk:+1||2 + || 8” ) )
i=1 k

Now we obtain the result in (2.10) by plugging the first inequality in (2.8). 0

We make a few remarks here. Given ¢ > 0, choose & > 0 such that 82#5?;"'11)) <e€

in Theorem 2.6. Notice that 0xLgs, (x**1,2%) = 0, Lo(x**1,251). Hence, from (2.9)
and (2.10), it follows that to ensure that x*** is an e-KKT pomt we need Byo® @(%)
and to solve k = ©(log,, ﬁ) x-subproblems. Since the smooth part of Lg, (+,z*) has

a ©(B)-Lipschitz continuous gradient, it needs O(y/2x ) proximal gradient steps if we
directly apply Algorithm 2. This way, we can guarantee an e-KKT point with a total
complexity O(,/E|loge|), where « denotes the condition number in some sense. This
complexity result has been established in a few existing works, e.g., [16, 23]. It is worse
by an order of \/g than the complexity result in Corollary 2.3 for the unconstrained

case. Generally, we cannot improve it any more because the result matches with the
lower bound given in [32].
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In the rest of the paper, we show that in some special cases a better complexity
can be obtained. When m = O(1), we show that we can achieve a complexity result
O(v/k|logel?), which is in almost the same order as the optimal result for the uncon-
strained case. For a general m, we can achieve O (m/k|loge|?(logm+|logel)), which

is better than O(,/%|logel) in the regime of m = 0(\/5) by ignoring the logarithmic
terms.

3. Better first-order methods for x-subproblems. When m is small in
(1.1), we do not directly apply Algorithm 2 to solve the x-subproblem miny £g, (x, z*)
in Algorithm 1. Instead, we design new and better FOMs that use Algorithm 2 as a
subroutine in the framework of a cutting-plane method. Our key idea is to reformulate
the x-subproblem into a strongly convex—strongly concave SP problem, which has
a unique primal-dual solution. For the SP formulation, we first find a sufficiently
accurate dual solution by a cutting-plane based FOM. Then we find a sufficiently
accurate primal solution based on the obtained approximate dual solution.

Below, we give more precise description of how to design better FOMs. Given
z > 0, let

0(x) = g(x) + 5

From (1.3) and the mean-value theorem, it follows that @ is B,-Lipschitz continuous,
namely,

(3.1) 16(x1) — 8(x2)[| < Byl[x1 — xa| Vx1,%2.
With 6, we can rewrite the problem miny £5(x,z) into

(3.2) minimize 6(x) := F(x) + 2][060] ]I

Notice that 1[|[0(x)]+ > = maxy>o {y "0(x) — 3|ly[|?} and y = [6(x)] reaches the
maximum. We rewrite (3.2) into

(3.3) min max $(x,y) = F(x) + 5 (y70(x) = zlly?).

Define

(3.4) d(y) = min ®(x,y) and y = argmaxd(y).
x€eR” y>0

Notice that d is S-strongly concave, so ¥ is the unique maximizer of d. Also, for a
given y > 0, define x(y) as the unique minimizer of ®(-,y), i.e.,

(3.5) x(y) = argmin ®(x,y).
X

In our algorithm design, we first find an approximate solution ¥ of maxy>o d(y)
and then find an approximate solution X of miny ®(x,¥y). By controlling the approx-
imation errors, we can guarantee X to be a near-stationary point of ¢. On finding y,
we use a cutting-plane method. Since d is strongly concave, a cutting plane can be
generated at a query point y > 0, though we can only have an estimate of Vd(y) by
approximately solving miny ®(x,y). It is unclear whether the same idea works if we
directly play with the augmented (or ordinary) Lagrangian dual function because it
is not strongly concave.
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3.1. Preparatory lemmas. We first establish a few lemmas. The next lemma
indicates that the complexity of solving min, ®(x,y) by the APG method can be
independent of f§ if ||y|| is in the same order of ||y||. This fact is the key for us to
design a better FOM for solving ALM subproblems.

LEMMA 3.1. Suppose X is the minimizer of ¢ in (3.2). Then y = [0(X)]+ is the
solution of maxy>o d(y), and (X,¥) is the saddle point of . In addition, let (x*,z*)
be the point in Assumption 4. Then

(3.6) 7] = 118G | < 2=l
Proof. It is easy to see that § = [0(X)]4+ is the solution of maxy>¢ d(y) and (X,¥)
is a saddle point of ®; cf. [34, Cor. 37.3.2]. We only need to show (3.6). Since X is

the minimizer of ¢, it holds that
2
F()+26(0)+ |12 < FO<) + 211106+ 12 = Fx) + 4 [[[etx) + 2], | < Foer)+ 122,

where the last inequality holds because g(x*) < 0 and z > 0. By the above inequality
and (1.4), we have

211641 < 12 4 (2%, g(x)) < 127 + (27, 0(%)) < L2+ 127 - [O(R)].

which implies the inequality in (3.6). d

Our cutting-plane based FOM for solving maxy > d(y) needs a sufficiently accu-
rate approximation of Vd(y) at any query point y. We first give the formula of Vd(y)
in Lemma 3.2 and then provide a way to approximate it with a desired accuracy in
Lemma 3.3.

LEMMA 3.2. For anyy > 0, it holds that

(3.7) Vd(y) = 8(0(x(y)) —¥).
where x(y) is defined in (3.5). In addition, the following two inequalities hold:

(3.8) B(y1 —y2,0(x(y1)) — 0(x(y2))) < —plx(y1) — x(y2)|I” Vy1,y2 > 0,

B
39 lx(y1) =x(y2)| < Z=ly1 = yal Yyi,y2 > 0.

Proof. The result in (3.7) follows from the Danskin theorem (cf. [5]). We only
need to show (3.8) and (3.9).

For ¢« = 1,2, denote x; = x(y;). From the definition of x(y) and the u-strong
convexity of F', it holds that

F(x1) + By] 0(x1)

x1) < F(x2) + By] 0(x2) — &lIx1 — x2|?,
F(x2) + By, 0(x2) <

F(x
F(x1) + By; 0(x1) — §llx1 — %2

Adding the above two inequalities gives the result in (3.8). Now, using the Bgy-
Lipschitz continuity of 6, we have (3.9) from (3.8) and complete the proof. 0

LEMMA 3.3 (approximate dual gradient). Given'y > 0 and § > 0, let X be an
approzimate minimizer of ®(-,y) such that dist(0,0xP(X,y)) < 6. Then

16(2) — 6(x(F)]l < B, 2, [|3(0®) —§) — VdE)|| < 8B, 2.

Hence, B(0(X) — ) is a good approzimation of Vd(y) when 6 is small.
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Proof. From the u-strong convexity of F', it follows that for each y > 0, ®(-,y) is
p-strongly convex, and thus u||x — x(9)|| < dist(0,x®(X,y)) < d, which gives [|x —
x(¥)| < %. Hence, by the B,-Lipschitz continuity of 8, we have [|0(X) — 8(x(¥))]|| <
By, and thus from (3.7), [|8(8(%) —¥) — Vd(F)|| = BI0X) — 0(xF))Il < 5B,%
This completes the proof.

In order to have a verifiable stopping condition, we will compute the violation
of first-order optimality conditions. The following two lemmas quantify the accuracy
levels of solving ¥ ~ argmaxysqd(y) and X ~ argmin, ®(x,y) in order to find a
desired-accurate stationary point of (3.2). These results will be used to estimate the
worst-case complexity result.

LEMMA 3.4. Given'y > 0, it holds that

dist (0, 06(%)) < dist (0, 0 B(%,5)) + BllJo(R)] - [[8R)]+ — 7| ¥ & dom(h).

Proof. Tt is easy to have 0¢(X) = 0x®(X,¥) + 8Jg (X)([0(X)]+ — ¥). The desired
result now follows from the triangle inequality and the Cauchy—Schwarz inequality. O

LEMMA 3.5. Given € > 0, if y > 0 is an approzimate solution of maxy>g d(y)
such that ||[[0(x(¥)]+ — ¥ < SBEB , and X is an approzimate minimizer of ®(-,y)

such that dist(0, 0x®(X,y)) < £ min{l, BB_E} then dist(0,0¢(X)) < &.

Proof. Since dist (0 0xP(X, ?)) < 35—%3, we use Lemma, 3.3 with § = 3532 to have
|0(x) — O(x(¥))] < 3/33 . In addition, from the nonexpansiveness of [-], it follows
that [[0(R)]+ — 0@+ | < 5 Because [[8(x(F))]: — ]| < 555 we have from
the triangle inequality that ||[0(X)]+ — ¥ < Sg—gg. The desired result now follows
from Lemma 3.4 and ||Jg(x)|| < By for all x € dom(h). |

3.2. The case with a single constraint. For simplicity and ease of under-
standing, we start with the case of m = 1, so the bold letters y,0 are actually
scalars in this subsection. We show the complexity to produce a point X satisfying
dist(0,0¢(x)) < £ for a specified error tolerance & > 0. By Lemma 3.5, we can
first find a y > 0 such that |[0(x(¥))]+ — ¥| < ﬁ and then approximately solve
min, ¢(x,¥) to obtain X.

Our idea of finding a desired approximate solution y is to first obtain an interval
that contains the solution y = arg max, - d(y) and then to apply a bisection method.
The following lemma shows that for a given y > 0, we can either check whether it is a
desired approximate solution or obtain the sign of Vd(y) so that we know the search
direction has a desired solution.

LEMMA 3.6. Given § > 0 and y > 0, let X € dom(h) be a point satisfying

Ast(0.0.0(%.5)) < 45 1 [0%))x — 3| < % then [0(x(5)) ~3] < 5. Ot

erwise, [[0(x(¥))]+ —¥| > 3, and Vd(¥)(0(X) — ) > 0.

Proof. From Lemma 3.3 and the condition on X, it follows that

(3.10) 0(%) - 6(x(¥))| < § and |6(6(%) —¥) - Vd(¥)| < 7.
Hence, by the nonexpansiveness of [];, it holds that |[B(X)]+ — [0(x(¥))]+] < 2.
Then, by the triangle inequality, we have |[@(x(¥))]+ — ¥| < 6 if |[0(X)]+ —¥| < %

and |[0(x(¥))]+ — ¥| > & otherwise.
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When [[0(X)]4—¥| > 22, it must hold that |8(X)—y| > 2 because y > 0, and thus
|1B(O0(X)-Y)| > #. Therefore, from the second inequality in (3.10), we conclude that
Vd(y) must have the same sign as 8(X) —y because otherwise |3(8(X)—y) —Vd(y)| >
|1B(O(X) —y)| > 3%‘;. This completes the proof. 0

By this lemma, we design an interval search algorithm that can either return a
point ¥ > 0 such that |[0(x(¥))]+ — ¥| < 6 or return an interval Y = [a, ] C [0, c0)
that contains the solution y. The pseudocode is shown in Algorithm 3.

Algorithm 3: Interval search: Y = IntV (8, 2, 6, Lin, 71, 72)-

1 Input: multiplier vector z > 0, penalty 8 > 0, target accuracy é > 0, Ly, > 0, and
Y1 >172 21
2 Overhead: define 8(x) = g(x) + %, ®(x,y) as in (3.3), and € = ﬁ.
s Initial step: call Alg. 2: X = APG(%, h, 4, Liyin, &, 71, v2) with ¢ = ®(-,0) — h. > SO
. = 1
dist (0, 0x®(%,0)) < 4“?9

a if [0(%)]+ < 2 then

| Return Y = {0} and stop. > otherwise, Vd(0) is positive
6 Leta=0,b= % and call Alg. 2: X = APG(¥, h, ity Lyin, &, 71, v2) with ¢ = ®(-,b) — h. >
set b= O(%)
7 while [|[0()]+ —b]| > 22 and 6(X) — b > 0 do
8 let a < b, and increase b <— 2b. > fine to multiply b by a constant o > 1
9 call Alg. 2: X = APG(%, h, tt, Linin, &,71,72) with ¢ = ®(-,b) — h.

10 if [|[[0(X)]4 — bl| < 2 then

11 | Return Y = {b} and stop. > found ¥ = b such that |[@(x(¥))]+ —¥| <6
12 else
13 L Return Y = [a, b] and stop. > found an interval containing y

Once the stopping condition in line 4 or 10 is satisfied, then by Lemma 3.6 we
immediately obtain a desired ¥ such that |[0(x(¥))]+ —¥| < 6. The next lemma shows
that the algorithm must exit the while loop within finitely many iterations.

LEMMA 3.7. Given 6 > 0, if b > w and dist(O,@xé(ﬁ, b)) < %, then
either [|[0(X)]+ —b]| < 2 or 8(X) — b < 0.

Proof. From Lemma 3.1, it follows that y = [0(x(¥))]+ < W The result
in (3.8) indicates the decreasing monotonicity of 8(x(y)) with respect to y. Hence,
if b > 2=IHEL then 0(x(b)) < O(x(y)) < 2=LHEL < b, and thus O(x(b)) — b < 0.
Now if [[8(X)]+ — b > 22, we know from Lemma 3.6 that Vd(b)(8(X) — b) > 0, and
thus 6(X) — b < 0 since Vd(b) = B(68(x(b)) — b) < 0. This completes the proof. 0

When Algorithm 3 exits the while loop, it can output a single point or an interval.
The lemma below shows that if an interval is returned, then it will contain the solution

y.
LEMMA 3.8. Given § > 0, let Y be the return from Algorithm 3. If Y contains
a single point y, then |[0(x(¥))]+ — ¥| < 6. Otherwise, Y is an interval [a,b], and it
holds that Vd(a) > 0,Vd(b) <0, and y € [a,b].
Proof. If Y contains a single point y, then the condition in either line 4 or 10 of Al-
gorithm 3 is satisfied, and we immediately have |[0(x(¥))]+ —¥| < 0 from Lemma 3.6.
Now suppose that Y is an interval [a,b]. From Lemma 3.6 and the setting in
line 8 of Algorithm 3, we always have Vd(a) > 0. When the algorithm exits the while
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loop and returns an interval, we have ||[0(X)];+ — b]| > 22 but 8(X) — b < 0. Then it
follows from Lemma 3.6 that Vd(b) < 0. Therefore, the umque solution ¥ must lie in
(a,b) by the mean-value theorem and the strong concavity of d. ]

Remark 3.1. Suppose Algorithm 3 returns an interval [a,b]. Then Lemma 3.7
indicates that b < %max{174||z*|| + 2||z||}, and in addition, at most T + 2 calls
are made to Algorithm 2, where T is the smallest nonnegative integer such that
27 > 2]z"|| + ||z

Suppose Algorithm 3 returns an interval [a,b]. We can then use the bisection
method to obtain a desired point ¥. The pseudocode is given in Algorithm 4.

Algorithm 4: Bisection method for maxy>o d(y):

(2, 3’\) = BiSec(ﬁ, Z, 5, Lmina Y1, ’)/2)

1 Input: multiplier vector z > 0, penalty 8 > 0, target accuracy é > 0, Lyin > 0, and
7 >Ly2>1

2 Overhead: define 6(x) = g(x) + %, ®(x,y) as in (3.3), and & = £

1B, "
s Call Alg. 3: Y = IntV(, 2,0, Lmin,V1,72) and denote it as [a, b]. > If Y is a singleton,
then a =0
. _ ud

4 while b—a > FBBT do

5 let ¢ = 2£P and call Alg. 2: X = APG(¥, b, t, Linin, &, 71,72) with ¢ = ®(-,¢) — h
6 if [[0(X)]+ — | < 32 then

7 L Let ¥ = ¢, return (X,¥), and stop

8 else if 6(X) — ¢ > 0 then

9 L let a < ¢
10 else

11 L let b+ c.

12 Let y = a—“’ and X = APG(%¢, h, t, Liyin, €, 71,v2) with ¢ = ®(-,y) — h, return (X,¥y), and
stop.

By Lemma 3.6 and the lemma below, it holds that the returned point y from
Algorithm 4 must satisfy |[0(x(¥))]+ — ¥| <.

LEMMA 3.9. LetY = [a,b] C (0,00). If Vd(a) >0, Vd(b) < 0, andb—a <
for a positive §, then |[0(x(¥))]+ — ¥| < 0 for any ¥ € [a, b].

+ﬁ32

Proof. Recall from Lemma 3.1 that y = [0(x(¥))]+. Hence, for any ¥ € [a, b], we
have

110G+ ~ 51| = 0] ~ 5 — [Ox(9)]+ + ]
< 1O — (5ol + 15 —51
< [0(x()) ~ Ox())I| + [F ~ ¥
< Byllx(3) — x(¥)l| + [F - 71

(3.11) < Pelg — 5l + 15 - 51l

where we have used the nonexpansiveness of [-]; in the second inequality, the third

inequality follows from (3.1), and the last inequality holds because of (3.9). Now,

since y € [a,b], we have ||y —y|| < b—a < ;H—Hi,(fB?’ and hence the desired result
9

follows. 0
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Remark 3.2. Since the bisection method halves the interval every time, it takes
(b—a)(p+BB2)
©o

length no larger than H+H;B§' Notice a > 0 and b < %max{1,4||z*|| + 2||z||} from

Remark 3.1. Hence, after Y is obtained, Algorithm 4 will call Algorithm 2 at most

max{1, 4||z*||+2||z]|} (p+BB3) .
’710g2 Bro MLt W+ + 1 times.

Below we establish the complexity result of Algorithm 4 to return y.

at most [log, 1+ halves to reduce an initial interval [a,b] to one with

THEOREM 3.10 (iteration complexity of BiSec). Under Assumptions 14, Algo-
rithm 4 needs at most T evaluations on f, 8, V[, and Jg to output X andy > 0 that

satisfy dist (0, 0x®(X,y)) < € and |[0(x(y ))]+ —¥| <0, where &€ = 45‘,5 , and

T:K(H[logmﬁh) <1+2[2 “ﬁlog(”e_(\/T+ﬁ)\/W)L>,

with Ly = Ly + Ly max{1,4|/z"[| + 2||z[|} and

* max | 1, 4||z*||+2|z|| ; (u+BB2)
(3.12) K =3+ [log,(2[|z*[| + [|z[)] . + {logz { TS } g -‘Jr.

Proof. By Remarks 3.1 and 3.2, Algorithm 4 calls Algorithm 2 at most K times,
where K is given in (3.12). Notice that the gradient of ) = ®(-,b) — h is Lipschitz con-
tinuous with constant Ly +8bL,. Since b < 4 max{1,4[|z*||+2|/z|} from Remark 3.1,
we apply Corollary 2.3 to obtain the desired result. 0

3.3. The case with multiple constraints. In this subsection, we consider
the case of m > 1. Similar to the case of m = 1, we use a cutting-plane method
to approximately solve maxy>od(y). The next lemma is the key. It provides the
foundation to generate a cutting plane if a query point is not sufficiently close to the
solution y = arg max,q d(y)-

LEMMA 3.11. Let b > 0, and suppose ||y|| < b. Given § > 0 and'y > 0, let
X € dom(h) be a point satisfying dist(O 05 P (X, 37)) < min{%,m} If
16X)]+ =¥l < %, then [[0(x(¥))]+ — ¥ < 8. Otherwise, [[[B(x(¥))]+ —¥| > 3.

and also (B(X) — y y—¥) >0 for any 'y € B,(§) N B, where n = min{b,n+}, and
14+ s the positive root of the equation

+3B? .
(3.13) uﬂi“’ (77 + 1/%) =%, with By= Maxy g+ Vd(y).

Proof. By the same arguments in the proof of Lemma 3.6, we can show that
16x@))]+ — ¥l < 0 if [0(X)]+ — ¥l < 5 and [|[0(x(5))]+ —5l > § otherwise.
Hence, we only need to show that (6(X) — y y—y) >0 for any y € B,(y) N B, in
the latter case, and we prove this by contradiction.

Suppose [|[0(X)]+ — ¥|| > 22 and the following condition holds:

(3.14) (0(%X) — ¥,y —¥) <0 for some y € B,(¥) N B} .

By the p-strong concavity of d, it holds that
(3.15) d(y) < dy)+(Vd(y),y - ¥) - Sy - vII*

From the mean-value theorem, it follows that there is y between y and y such that
d(y) —d(y) = (Vd(y),y — §) > —nBq, where the inequality holds because y € B,(¥)
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and ¥ must fall in B;". Since d(¥) > d(¥), we have d(y) — d(y) < d(¥) — d(y) < nBa.
Hence, (3.14) and (3.15) imply

(3.16) slly = II* < nBa+ (B(OX) —§) — Vd(F),y ~y).

From Lemma 3.3 and the condition dist (0, 0P (X, ?)) < WTBBQ), it follows that

IB0(X) = §) — Vd¥)|| < 555475, which together with (3.16) and the Cauchy-
n+BB3)

Schwarz inequality gives
~ 5 ~
glly =¥I” < nBa+ 555 15 — vl

Solving the above inequality, we have ||y —y|| < 277534 +4(uﬁ7233)’ and since |ly—y|| <

7, it holds that ||y —¥|| < n+ 4/ Q”ﬁBd + W/(;BQ)' Now, noting that (3.11) also holds

for the case of m > 1 as its proof does not rely on m = 1, we have
(3.17)

~ ~| . WtBB2 B s n+BB] 2B
[0+ =Yl < —— (77+ 7+ 4(Hf533)) == (77+ \/%) +§<4,

where the last inequality follows from the choice of 7.

However, we know that when ||[0(X)]+ —¥|| > 22, it holds that ||[0(x(¥))]+ —¥| >
¢, and (3.17) contradicts this fact. Therefore, the assumption in (3.14) cannot hold.
This completes the proof. 0

Suppose ||y]| < b for some b > 0. For a given ¥ > 0, let X satisfy the condition
required in Lemma 3.11. Then, if ||[0(X)]; — ¥|| > 32, we find a half-space containing
the set B,(¥) N B, whose volume is at least 4=™V,,(n) if n < b. Therefore, we
can apply a cutting-plane method to find a near-optimal y. In order to have a good
scalability to m, we choose the volumetric-center cutting-plane (VCCP) method [1,
37]. Below we first give the more efficient version of VCCP in [1] and then adapt it
to solve our problem.

Volumetric-center cutting-plane (VCCP) method. Let C be a convex set in
R™. Suppose that there is a separation oracle. Given a point y € R, the separation
oracle can either tell § € C or return one vector a such that a'y >a'y for ally € C.
By using the oracle, VCCP aims to solve the feasibility problem: find a point y € C
or show that the volume of C is less than a given positive number p.

Let P = {y € R™ : Ay > b} be a polytope with nonempty interior. For each
interior point y in P, i.e., Ay — b > 0, the volumetric barrier function is defined as
(3.18) V(y) = 3log (det (ATS(y)"2A)), with S(y) = Diag(Ay — b),

-2

where det(-) denotes the determinant. The minimizer of V(-) is called the volumetric
center (VC) of P. Let
(3.19)

Q(y) = ATS(y) *Diag(p(y))A, with p(y) = diag (S(y) ' A(ATS(y) *A)'ATS(y) ).

With these notations, the pseudocode of the VCCP is given in Algorithm 5, where

we define S = S(y*), Q" = Q(y"), V*(y*) = V(y*), p* = p(y*), and pj;, =
ming <;<, p¥ by using (3.18) and (3.19) for P = P*.
The lemma below is obtained from Lemma 3.1 in [1] and its proof.
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Algorithm 5: Volumetric-center cutting-plane (VCCP) method.

1 Initialization: choose a polytope P° = {y: Aly > bo} that has a VC y© in the interior
of PO, choose pmm €(0,1), 7>0,and 0 < ¢1 < cg;set k=0.

while V’“( kY < ViE, do

3 if pmm > Pmin then

a Call the separation oracle to check whether y* € C. If so, return y* and stop.

N

Otherwise, obtain a from the oracle such that 4’y > a'y* Vy € C. Let
AR = [A’“ aT] and b**+1 = [b*: ] with

e ~ _ —1.
(3.20) b=alTyk — L y/aT ((AR)T(SK)—2A%)
5 else
6 Suppose p? = pﬁ]in. Let [A*+1 b*+1] be obtained by removing the jth row from
L [A% bF);
7 Let PF+1 = {y : AFtly > b*+1}: start from y* and apply a sequence of pure Newton
steps to find y**1 as an approximate VC of P**1 such that
(3.21) HQF ) IV (yF 1) | gresr < min {e1, (24/PhL) — pEtDzer);
set k< k+ 1.

LEMMA 3.12. Suppose C € P° and ¢; < ¢ < 0.03. Let VE = log

mlog(ny) + 0.00135, where ny is the number of rows of A¥ and V,,(1 ) is the volume
of a unit ball in R™. If Algorithm 5 terminates because V*(y) > VE  for some k,
then the volume of C is smaller than p.

-t

max

Also we have the following theorem from [1].

THEOREM 3.13. Suppose that A° has 2m rows. Let pmin = 0.005,7 = 0.007, ¢, =
0.0001, ¢ = 0.00027, and V¥, = log (1) +mlog(ng) +0.00135 in Algorithm 5 with

€ (0,Vi(1)). Then at most five Newton steps are needed to ensure the condition in
(3.21). In addition, Algorithm 5 must terminate in

Vin(1)
p

{F <m logm + log + 6m — Vo(y0)> + 16m + 1-‘

calls to the separation oracle, where I' < 5406 is a universal constant.

Proof. From (3.8) to (3.9) in the proof of [1, Theorem 3.2], we have that V*(y*) >

k .
Vv occurs if

(3.22)
VO(y) + AV — Z(AVH + AV ™) > log Y2 4 mlog(1+ L) +mlogm +0.00135,

where AV'T = 0.00301, AV~ = 0.00264, and AV = AVT — AV~ = 0.00037 by
Theorems 6.4 and 6.5 and Corollary 6.6 in [1]. We complete the proof by solving
(3.22) for k and noting that log(1 + pm%) < 6. O

Remark 3.3. From the proof of Theorem 6.4 in [1], if each y* is the VC of P*,
then AV* = Llog(147) and AV~ = L log(1 —pmin). In this case, the constant I' can
be significantly reduced by increasing 7. For example, let 7 = 2 and ppi, = 0.005.
Then AV™T < 0.5494, AV~ < 0.0027, and AV > 0.5466. To have (3.22), it suffices

to let k > 3.66(mlogm + log V’”T(l) +6m — V°(y")) + 2m + 1. Notice that if 7 = oo
n (3.20), the generated cut (a, l;) will pass through y*. Roughly speaking, a larger
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7 gives a deeper cut and reduces the constant I' in Theorem 3.13, but more Newton
iterations will be needed to find a sufficiently accurate VC.

From Lemma 3.12 and Theorem 3.13, we conclude that if C C P° and the volume
of C is no smaller than p, then Algorithm 5 must be able to find a point y € C.
The proof of the above theorem is essentially by the logic that V*(y*) > Vn’fax will
eventually occur if a point in C is never found. Below we exploit this idea and
adapt the VCCP method to solve our problem in Algorithm 6, where nj denotes
the number of rows of A¥ for each k > 0. Notice that from Lemma 3.11, if ||yH <b
and C := B, (y)NB;" C PP, then the cut (&,b) generated from line 18 Satlsﬁes a'y>b
for all y € C and thus C C P for all k > 0. The checking in lines 7 and 9 ensures
that the subproblem solved in line 12 will be strongly convex and have a bounded
smoothness constant. Also notice that different from what we do in Algorithm 5,
we fix pmin = 0.005, ¢; = 0.0001, ¢ = 0.00027 but only leave 7 to be tuned in
Algorithm 6.

Algorithm 6: VCCP method for maxy>o d(y):
(X,¥, FLAG) = VCCP(8, 2,0, b, Liin, 71,72)-

1 Input: multiplier vector z > 0, penalty 8 > 0, target accuracy é > 0, b > 0, Lyin > 0,
andy1 > 1,72 > 1

z

2 Overhead: define 0(x) = g(x) + %, ®(x,y) as in (3.3),e= min{%, W} and
FLAG = 0.

3 Let 4 be the positive root of (3.13), n <— min{b,n+}, and p = 47"V, (n); set k = 0.

4 Set A? = [I; -1}, b0 = [0,,; —b1,]; let PO = {y € R™: A0y > b0}, y0 = gl; choose
T > 0.007

s while vk( F) < Vil 1= log Y2 4 mlog(ny,) +0.00135 do

6 if pmm 2 0.005 then
if y* # 0 then

L Let a = e;,, where ig = arg min;¢(,, yk > to ensure a check point in R
9 else if ||y*| > b then
10 L Let &4 = —yk > to ensure a check point in
11 else
12 Call Alg. 2: x* = APG(th, h, 1, Lnin, 5,71, 72) with ¢ = B(,y*) — h
s if [[0(x*)]+ — y*I| < 2 then
14 Let (%X,¥) = (x*,¥*) and FLAG = 1;
15 Return (X,¥,FLAG), and stop > found ¥ such that |[0(x(¥))]+ —¥| <6
16 else
17 L Let & = 0(x*) — y*
18 | Let AR+TL = [AF;aT] and bF+! = [b*; b] with b given by (3.20)
19 else
20 Suppose p;? = pﬁ]m. Let [A*+1 b*+1] be obtained by removing the jth row from

(A%, b¥]
21 Let Pl = {y : ARt+ly > b*+1}: start from y* and apply a sequence of pure Newton

steps to find y**1! as an approximate VC of P**1 such that (3.21) holds with
c1 = 0.0001 and co = 0.00027.

22 | Increase b+ k+ 1.

23 Let (%X,¥) = (xF,y*) and return (%,3,FLAG)

Similar to Theorem 3.13, we are able to show the finite convergence of Algo-
rithm 6.
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THEOREM 3.14. Under Assumptions 1-4, Algorithm 6 with 7 = 0.007 will stop
within N iterations, where N = {F(m logm + mlog fb + 6m) + 16m + ﬂ, n s
defined in line 3 of the algorithm, and I' < 5406 is a unwersal constant. In addition,
if lyll < b, Algorithm 6 must return FLAG = 1 and a vector y > 0 satisfying

le(x(y ))]Jr — ¥l <6 with at most T evaluations of f, Vf, 8, and Jg, where
(3.23)

T=N(1+log,, 72 ]+)(1+2’72W10g( <\/71T+ n)m)h)

u3s
with Ly := Ly + BbLy, and € = mm{4B ) 8#37#”33)}

Proof. First, notice that y° is the VC of PO. Second, it is straightforward to

2V/2 (

compute VO(y?) = mlog %Y L = mlog . Hence, from the proof of

Theorem 3.13, V*(y*) > Vk

max

and log

must occur if & > {F (m logm + mlog % + 6m) +
16m + 11 where I' < 5406 is a universal constant.

It is obvious that C := B, (y) N B C PY by the choice of P°. Below we argue
that C C P* for all k > 0 before the algorlthm stops. First, if P**1 is obtained by
deleting one row from the system of P*, then P¥ C PF*+1: second, if a is obtained
from line 8 or line 10 of Algorithm 6, the generated cut (a, 5) will not cut any point
from Cj; third, if & is obtained from line 17, by Lemma 3.11, the generated cut (a, l;)
will not cut any point from C either. Therefore, if C C P¥, then C C P**!, and thus
by induction C C P* for all k > 0. Now, since the volume of C is no smaller than 0,
we conclude that there must be a point x* from line 12 of Algorithm 6 such that the
condition in line 13 is satisfied. Hence, the algorithm will return FLAG = 1 and a
vector § > 0 satistying |[0(x(3))] — | < by Lemma 3.11.

Finally, notice that when Algorithm 2 is called in line 12, |ly*|| < b, and thus the
smooth function ¢ has an (Ly + SL,b)-Lipschitz continuous gradient. Since Algo-
rithm 2 is called at most N times, we have from Corollary 2.3 that the total number
of function and gradient evaluations is T given in (3.23). d

As discussed in Remark 3.3, the constant ' can be reduced to 3.66 if 7 = 2 is
used, like in our numerical experiments. By Theorem 3.14, we can guarantee finding
a desired approximate solution y by gradually increasing the search radius b. The
algorithm is shown below.

Algorithm 7: Search by the VCCP method for maxy > d(y):
(ﬁa 3’\) = SVCCP(ﬁa z, 67 Lmin7 71, 72)

1 Input: multiplier vector z > 0, penalty 8 > 0, target accuracy é > 0, Ly, > 0, and
7>y 2>1
2 Overhead: define 6(x) = g(x) + %, ®(x,y) as in (3.3), and set k =0, by =
FLAG = 0.
while FLAG = 0 do
a Call Alg. 6: (X,y,FLAG) = VCCP(8,z, 8, b, Limin, Y1,72)-
L Let bg41 < 2b; and increase k <— k + 1.

L and

m\

w

Output (X,y).

=]

2
THEOREM 3.15. Under Assumptions 14, if § < M then the output (X,y)
of Algorithm 7 must satisfy dist(0,0x®(X,y)) <&,y >0, and Nex(¥))]+ -yl <6,

2
where € = min{%, Wfﬁ%}' In addition, it needs at most T evaluations of f,
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Vf, 8, and Jg to give the output, where

(3.24)

L I \/Lglnax{l,w}
T < 3CK + 4C /A7 log ( ( 71 Lmax + \/ini> 71 Lmax F u,) Ky L+ = 1
min

with the constants defined as

Linax = Ly + Lg(4]12" || + 2]1z)),

C = [F(mlogm+mlogR+6m) + 16m + 1} (1 + Ungl Lm'lx'|+)

min

8v2(max{1, 4]z" | + 2||z[l}) (4(66‘ + llzll + max{1, 4]lz" || + 2||z]|})(r + 8B)* ks ,8133)

R=
B B(ud)? ud

= [logy (2]12" || + [[zID] . + 1
and I' < 5406 is a universal constant.

Proof. By the quadratic formula, we can easily have the positive root of (3.13)
to be

no 2 no ?
u+/33§ > ;HrBBg

2
2Bd ZBd 4By nd
4( + +M+532) 8( s +;L+/3B§

N+ =

Hence, it holds that

8b<4Bd+72> 242 2
b < u+BB — 8 4Bd(;1,+,8Bg) + M+BBg
ny = s\ B(no)? ) )
(;HrBBg)

When b > +, the right-hand side of the above inequality is greater than one by the

assumption 5 < %, and since n = min{n,b} in Algorithm 6, we have

(3.25)
b b 4B4(p+BB2)® | p+BB 4(BG+||z||+Bb)(u+BB2)* | p+BB2
,_max{ 1}_8b( 50702 + = ><8b( 5 =5t )

where we have used Vd(y) = B(g(x(y)) + 5 —y) in (3.7), and thus the bound of
Vd(y) over B satisfies By < 8G + ||z| + 8b with G defined in (1.3).

Furthermore, by Lemma 3.1 and Theorem 3.14, Algorithm 6 must return FLAG =
1 and a vector ¥ satisfying [|[0(x(¥))]+ — ¥|| < 6 when b > 2=z"IHzl - gince by =
and bg1 = 2by, Algorithm 7 must stop after making at most K calls to Algorithm 6
where K is the smallest positive integer such that 21 > 2||z*|| + ||z||, i.e., K
[logy(2]|z*|| + [|z[])] + 1. In addition, from byy1 = 2bg, it holds that

Ol

(3.26) by = 4 < medL A IR2e) for cach 0 < k< K — 1.

In the kth call to Algorithm 6, let 7, denote the 7 used in line 3 of Algorithm 6,
Ly, = Ly + BLgby the gradient Lipschitz constant of the smooth function v, and
T} the total number of gradient and function evaluations. Then, by (3.26) and the
definition of Lyyax, we have Ly, < Lyax. Also, from (3.25), (3.26), and the definition

of R, it follows that % < R for each 0 < k < K — 1. Moreover, we have from (3.23)

that
T, <C <1+2 [2\/“%1% (D—' ( YLy, +

<3C + 40\/W1 og (Dh <\/ Y1 Lmax + \;ﬁ) V271 Limax + N) .

o) vt )

min
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Notice that /Ly, < /Ly + /BLgby and thus
K-1 K-1 K_
o Vu < KLy + 5000 /BLb = K/Ly + /T2

gKfo+ngmax{1,2W}.

Therefore, T must satisfy the condition in (3.24) since T' < Zkl,(;()l Tk d

4. Overall iteration complexity of the first-order augmented Lagrangian
method. In this section, we specify the implementation details in Algorithm 1. We
use the method derived in section 3 as the subroutine to find each x**!. In addition,
we choose a geometrically increasing sequence {f8x} and stop the algorithm once an
e-KKT point is obtained. The pseudocode is given in Algorithm 8. Notice that for
each k we aim to find x*! such that dist(0, ¢y, (x*1)) < e, where ¢, is defined in
(4.3) as the objective of the kth ALM subproblem. In line 10, in case u is big or S
is small, we call the APG in order to ensure this by Lemma 3.5.

Algorithm 8: Cutting-plane first-order iALM for problems in the form of
1) with m = O(1).

(1

1 Input: Sop > 0, 0 > 1, tolerance € > 0, Lmin > 0, 7y1 > 1, and v2 > 1
2 Initialization: choose x° € dom(h), and set z° = 0

3 for k=0,1,... do

4 24Bg (u+Bi B2)
5
6
7
8

Choose £ < min {57
w

} and set J;, = 3[327"%.
if m =1 then
L Call Alg. 4: (xk“,ka) = BiSec(ﬂk,zk,(Sk,Lmim’yl,’yz)

else
| Call Alg. 7: (x**',y*") = SVCCP(B, 2", 6k, Lunin, 71,72)

. . 2
9 ifm=1 and ﬁ >1, orm>1 and mm{‘lﬁng’ 8ﬁkB§(i+ﬁkB§)} > 1 then
10 Call Alg. 2: x**' = APG(¥, h, it, Lmin, €/3, 71, 72) with
b(x) = f(x) + By g(x)).
11 Update z by 2" = [2" + Brg(x* )]+

12 Let Br+1 + oBk.
13 if (x**1,2FTY) is an e-KKT point of (1.1) then
14 L Output (%,z) = (x"1,2""!) and stop

The next theorem gives a bound on the number of calls to the subroutine.

THEOREM 4.1. Let Assumptions 1-4 hold, (Bo,0,e,71,72) be the input of Algo-
rithm 8, and {(x*,y*,2")} x>0 be the generated sequence. Then dist(0,0Lp, (x**1,2%))

2
< & for each k > 0. Suppose & = min{e, 1/%@”} < {e, W} for all

k> 0. Let e, =€ for all k > 0. Then, after at most K — 1 iterations, Algorithm 8
will produce an e-KKT point of (1.1), where

(4.1) K = max {log M—‘ {log 8HZ*H—‘ {log i—‘ +1
’ o Poe |47 o Poe |7 7 Poe | | ’

In addition, the output multiplier vector z satisfies

(4.2) Izl < 2[lz*[| + /557 max {3ll=", 2v/2]z"], 2}.
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Proof. For each k > 0, define

k

0:0) = g(x) + 2. 6k(x) = F) + 2 10601,

Br
(43) Balx,y) = Fx)+ e (¥70:60) = 517

When m = 1, if (x**1,y**1) is obtained in line 6 of Algorithm 8, then we have from
Theorem 3.10 that

dist (0, Ox Py (x" 1, y* 1)) < % and |[0x(x(y" ™))+ — ¥y < bk,

where x(y**1) = arg min, @, (x, y**!). Furthermore, note that if 45:%% > 1, we will

do line 10 in Algorithm 8 to get a new x*+1 satisfying dist (0, Ox®p (x* 1, y* 1)) < 2.

Now, by Lemma 3.5 and the choice of 0 = we get dist (0, xLg, (x" 1, zk_)) =
dist (0, gy, (x" 1)) < &.

When m > 1, by the choice of ¢, and d, it holds that dp <
each k. Hence, we can use Theorem 3.15 and Lemma 3.5 in order to show that
dlst(O, Ox L, (x k+1, zk)) < ¢i, by the same arguments as in the case of m = 1.

Therefore, for m > 1, if ¢ = & for all k, we have from Theorem 2.6 that the

inequalities in (2.9) and (2.10) hold. By the choice of &, it holds that 2 (8§+11)) <5
9HZ H2

2u(
Since K — 1 > log, , then QEHZ*KH: < £, and thus we have from (2.10) that

Y 12K gi(x)| < e. In addition, noticing f\(/g%)) <landé< ,/%@1), we
have (y/o + 1),/ (U 7 < V&, and thus (2.9) implies

et < AL + e

Now, by the setting of K in (4.1), we have that both terms on the right-hand side of
the above inequality are no greater than ¢/2. Hence, ||[g(x®)].|| < ¢, and thus x¥
must be an e-KKT point of (1.1).

To show (4.2), we have from the second inequality in (2.8) and the fact that

er =& <4/ E’g(UHD for all k that
20 < 2z + /2 2L < 2% + 225 vk > 1.

Hence, for each 1 < k < K with the K given in (4.1), it holds that

3537

8(N+ﬂkB2) for

2 K 2
12*|| < 2l|z*[| + \/ 28257 < 2l|z"|| + |/ 2% max {3]|z"|, 21/2]z"[], 2}

Since the output z must be one of {zk}ff:17 we complete the proof. ]

By Theorem 4.1, we establish the overall iteration complexity of Algorithm 8 to
produce an e-KKT point of (1.1). Notice that if m = 1, the complexity result in
Theorem 3.15 is in the same order as that in Theorem 3.10. Hence, we state the
complexity result of Algorithm 8 for m =1 and m > 1 together.
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THEOREM 4.2 (oracle complexity).  Suppose that Assumptions 1-4 hold. Let
(Bo,o,6,71,72) be the input of Algorithm 8 and {(x*,y*,z*)}r>0 be the generated

sequence. Suppose & = min {e, / E*é(:ﬂl)} g, 248, (M:’BkB )} for all k > 0. Let
exr =€ for all k > 0. Then, to produce an e- KKT point of (1.1), Algorithm 8 needs

at most Ttotal = O(m w

g, and Jg.

Proof. Let K be the integer given in (4.1), and let L, = Ly + Ly max{1,4||z*|| +
2||z*||} for 0 < k < K — 1. Also, let T}, be the number of evaluations on f, Vf,
g, and Jg during the kth iteration of Algorithm 8. From Theorem 3.10 and the
setting d, = we have that the complexity incurred by line 6 of Algorithm 8

|loge[*(logm + |logel)) evaluations on f, Vf,

€k
3Bk Bg’
is O(y/ Lfk| loge|?). Also, from Theorem 3.15, the complexity incurred by line 8 is

O(m L;k |loge|(logm + |logel)) by noting that log R = O(|logel). In addition, the

complexity incurred by line 10 is O( L;’“ |loge]). From (2.8) with ¢, = £ for all ¢, it
follows that ||z*|| = O(||z*||), and thus L« = O(L¢+ Ly(1+||z*||)) for 0 < k < K —1.

Therefore, T}, = O(m«/%\ loge|(logm + |logel)). Since K = O(|logel)

n (4.1), the total complexity is fo:_ol T, = O(m WHOtgeF(logm +
| log €|)), which completes the proof. d

Remark 4.1. If By is taken in the order of 1, then K = O(1) in (4.1). In this

Li+Ly(+]z*[D)
“w

case, the total oracle complexity of Algorithm 8 is O (m | log | (log m+

|log 5|)) to produce an e-KKT point. The complexity result is in a lower order than
the best one O(e~2) in the literature if m = O(e~9) with ¢ < 1. This affirmatively
answers the question we posed in the beginning. Notice that finding an approximate
VC of a polytope in Algorithm 6 takes ©(m?) operations by Newton’s method, as the
number of constraints defining each polytope is ©(m), as shown in [1]. This cost can
be negligible for a high-dimensional problem, i.e., when n is very big, for which case
the cost of querying an oracle can be much higher. Take the quadratically constrained
quadratic program in (6.1) as an example. Computing the gradients of the objective
and constraint functions needs ©(mn?) operations, far more than ©(m?) if n > m.

5. Extensions to convex or nonconvex problems. In this section, we extend
the idea of the cutting-plane based FOM to constrained problems with a convex or
nonconvex objective. Similar to the strongly convex case, we show that FOMs for
solving problems with O(1) nonlinear functional constraints can achieve a complexity
result of almost the same order as for solving unconstrained problems.

5.1. Extension to the convex case. We still consider the problem in (1.1).
Suppose that the conditions in Assumptions 1 and 2 hold. Instead of the strong
convexity in Assumption 3, we assume the convexity of f in this subsection.

Given a target accuracy € > 0, to find an e-KKT point of (1.1), we follow [15]
and solve a perturbed strongly convex problem:

(1) win () = L) + 00, st 800 1= 9100, gm(x)] S0,
where
(5.2) £o(x) = f(x) + ﬁ”x x°||2 with x° € dom(h).
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Let x € dom(h) be an 5-KKT point of (5.1); i.e., there is z > 0 such that

dist (0,0L0(%,2) + 55 (X~ x)) < 5, @< 5, Y Jag®)] <
=1

where Lo is the Lagrange function of (1.1). Since [55-(X — x| < £, (%,2) must
satisfy the conditions in (1.5), and thus X is an e-KKT point of (1.1). Based on
this observation, we can apply Algorithm 8 to the perturbed problem (5.1). By
Theorem 4.2 and noticing that f. in (5.2) -strongly convex, we obtain the
following complexity result.

is 2D

THEOREM 5.1 (complexity result for convex cases). Assume that the conditions
in Assumptions 1 and 2 hold and that f is convex. Given € > 0, suppose that (5.1)
has a KKT point x} with a corresponding multiplier z%. Apply Algorithm 8 to find an
$-KKT point X of (5.1). Then X is an e-KKT point of (1.1), and the total number of

Dy (Ly+Ly(1+]|=2]))
£

evaluations on f, Vf, g, and Jg is O(m\/ |loge|*(logm+|logel)).

5.2. Extension to the nonconvex case. In this subsection, we assume As-
sumptions 1 and 2 but do not assume the convexity of f. For the nonconvex case, we
follow [19] and design an FOM within the framework of the proximal-point method;
namely, we solve a sequence of problems in the form of
(:1532 . o _k |2 —

X A arg min {Fk(x) = f(x) + Ls||lx = X"||" + h(x), s.t. g(x) :=[g1(x),...,gm(x)] < O}.

xER™
Under Assumptions 1 and 2, the above problem is convex, and its objective is L -
strongly convex. Hence, we can apply Algorithm 8 to ﬁnd xF1 Let xF*1 be the
unique optimal solution to (5.3). To ensure the existence of a corresponding multiplier
for each k and also a uniform bound, we assume Slater’s condition on the original
problem (1.1).

ASSUMPTION 5 (Slater’s condition). There is Xfeas € relint(h) such that g;(Xfeas)
<0 foralli=1,....,m

With Slater’s condition, the solution x*** to (5.3) must be a KKT point (cf. [34]).
Let zF*1 > 0 be a corresponding multiplier. We give a uniform bound of z**! below.

LEMMA 5.2 (uniform bound of multipliers).  Assume Assumptions 1, 2, and
5. Let x* be a minimizer of (1.1), and let x**1 be the KKT point of (5.3) with a
corresponding Lagrangian multiplier zFT1. Then

(5.4) 25+ < B, = F(Xf%as)—F(,E*)"r[;fDi vk >0,
ming \ —gi(Xfeas
Proof. From the KKT system, we have that

(5:5) =Y (Ve ) € 0B (), (g =0vi=1,... m.
=1

Then we have

m
Z(Zk+ gz xfeas Z kol (gz k+1 +<xfeas_ Rl v.gz( k+1)>>

i=1

= \ Xfeas — X * i( k+1) ng( k+1)>

i=1
(56) Z k+1 Fk(xfeas)
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where the first inequality is from the convexity of each g; and the nonnegativity of
z"*1 the equality holds because of the second equation in (5.5), and the last inequality
follows from the convexity of Fj and the first equation in (5.5).

Since the diameter of dom(h) is Dy, it holds that

_Fk(xlj-i_l) + Fk:(xfeas) = F(Xfeas) + Lf”Xfeas - )_(k||2 - F(Xf-‘rl) - LfHX]:Jrl - )_(k||2
(5.7)
< F(Xfens) — F(x*T) 4 L;D3.

Notice that F(x¥*1) > F(x*). Hence, F(Xfeas) — F(x* 1) < F(Xfeas) — F(x*), and
from (5.7), it follows that —Fj(x**1) + Fj(Xteas) < F(Xfeas) — F(x*) + L¢D3. Now
we have from (5.6) that

sz+1”1 < —F D)+ Fi (Xgeas) < F (Xfeas)—F(x*)+Ls D}
* T ming (—gi (xfeas)) T ming (_gi (xfeas))

)

and we complete the proof by [zF+1 ||y < ||zF+!|;. 0

Similar to our discussion in section 5.1, we notice that if x**! is an 5-KKT point
of (5.3) and also 2L¢||x** — x*|| < £, then x**! is an e-KKT point of (1.1). Below
we show that the sum of [|x*+! —%¥||2 can be controlled if each x**! is obtained with
sufficient accuracy, and thus a near-KKT point of (1.1) can be produced.

THEOREM 5.3 (complexity result for nonconvex cases). Assume Assumptions 1,
2, and 5. Let x* be a minimizer of (1.1). Let € > 0 be given, and let X° € dom(h).
Generate the sequence {(X*,2")}r>1 by applying Algorithm 8 to (5.3) with the target

~_ . € 3e2 _
accuracy € = min { 20 128L;(Dni2B,) }, where

(5.8) By 1= 2B, + \/ £%7 max {3B,, 2v/2B,, 2},

with B, defined in (5.4). Then, after solving at most K prozimal point subproblems
as that in (5.3), we can find an e-KKT point of (1.1), where

}—(0 _ x* 2 72 io
(5.9) K = [HSLf(F( J=F G )Ly D 4B s >J+|\>W.

In addition, the total number of evaluations on f, Vf, g, and Jg is O(Z%|loge|?(log m-+
|logel)).
Proof. Since each (x**1 zFt1) is an output from Algorithm 8 applied to (5.3)

and with a target accuracy €, then xF*1is an &KKT point of the problem in (5.3),
and thus there is a subgradient VF(x*1) € 9F,(x**1) such that

(5.10) [VE (&M + g7 (x"thz" | <&, |lgx")| <& Vk>0.

From the first inequality in (5.10) and recalling that the diameter of dom(h) is Dp,
we have

<>—<’f+1 — %P VF, (XM + J;(ik+1)ik+1> < Dyé.
Hence, by the Ls-strong convexity of Fj, and convexity of each g;, we have
Dpé > <>‘<’“+1 — %P V(M + Jg(i’“+1)zk+1>
> Fp(xM1) = Fi (&%) + M - =8P+ @ g ) - g(=)

g
_ - 3L = - — — _
(5.11) = FEM) = F(x") + S5 [x" = xF|2 + (2 g (3 — g(x1)).
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By (4.2) and (5.4), we have ||zFT!|| < B, for all k > 0, where B, is given in (5 8).
Hence, it follows from the second inequality in (5.10) that (z"+!, g(x"1) — g(x¥)) >
—2€B, for all k > 1. Now summing up (5.11) gives

K-1
3L _ _ - _ _ -5 | B _
(5.12) Z55 D IR < KDyt F(=7)~F () +(2K 1B+ Ba [g(x°) 4.
k=0

where we have used (z', g(x")) < ||z']| - [g(x")]+]] < Ball[g(x)]+ .
Because xX is a KKT point of (5.3) with a corresponding multiplier z*
from (1.4) that

K , we have

FK_l(iK)fFK_l(X§)+< *,g >>0

Plugging Fx—1(-) = F(-) + Lys| - —x%~1||? into the above equation gives
F(x") + Ly|x® = 2572 = P(x) = Ly|lxf = <571 + (25, g(%")) > 0.

Now, using (5.4), [|g(x¥)| < &, [|x¥ — xK-1]2 < D}ZL, and the fact that F(xX) >
F(x*), we have from the above inequality that —F(x¥) < —F(x*) + L;D? + eB
This inequality together with (5.12) gives

(5.13)

3L - -5 = _
LY IRH = RHP < KDyE + FR) = F(x") + LD} +2KEB, + Bl [g(x0) |
k=0

Multiplying L to both sides of the above inequality and taking the square root, we
have
(5.14)

z B & Ly (F(x0)—F(x*)+L; Dji+B,||[g(x%)]+ |
o L [xH x| < \/§Lf<Dhs+2Bza)+\/§ A e ).

Therefore, by the setting of £ and K, we have ming<y<x L¢||XFT1—x*| < <. Suppose

Ly||xFot1 — xko|| < £ Then, by our discussion above Theorem 5.3, x**! is an
e-KKT point of (1.1). From Theorem 4.2, the complexity of solving one problem
as that in (5.3) is O(m|loge|*(logm + |logel)), and thus the total complexity is
O(Km|logel*(logm + |logel)) = O(%|loge|?(logm + |loge])). This completes the
proof. 0

6. Experimental results. In this section, we demonstrate the established the-
ory by performing numerical experiments on solving the following quadratically con-
strained quadratic program (QCQP):

(6.1)

rrel]kn X TQox+x"co, s.t. %XTQjX-’—XTC]'-’—d]' <0,j=1,....m; z; € [li,us],i=1,...,n
In the experiment, Qg is generated to be positive definite, Q; is positive semidefinite
but rank-deficient for each j =1,...,m, and l; = —10 and u; = 10 for each . All d;
are negative, so Slater’s condition holds. In addition, we conduct tests on solving the
elastic-net regularized Neyman—Pearson classification problem

(6.2)
1 A 1
zin 5 >~ log(1 +exp(—a’x)) + A1[x[[ + ;\\XHQ, st > log(l+exp(a’™)) <a,

acNy T aeEN_
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where N, and N_ respectively denote the sets of positive and negative samples, and
Ny and N_ are their cardinality. The tests in sections 6.1 and 6.2 are conducted on
a quad-core iMAC with 8GB memory, and those in section 6.3 are conducted on a
Windows PC with 10 CPU cores and 128GB memory.

6.1. Comparison of different first-order iALMs. We first compare two im-
plementations of the iALM in Algorithm 1 to solve (6.1). One directly applies the
APG method in Algorithm 2 to solve each ALM subproblem, and we call it the
“APG-based iALM.” The other uses the proposed cutting-plane based FOM to solve
subproblems; namely, we implement Algorithm 8 , and we call it the “cutting-plane
iALM.” For both implementations, we set S5 = 10~ for each outer iteration k > 1
and run the iALM to five outer iterations. The target accuracy for a near-KKT point
is set to € = 1074, In the implementation of the APG-based iALM, due to the qua-
dratic penalty term, we apply Algorithm 2 with line search for a local smoothness
constant and set the parameters to 3 = 1.5, = 2, Ly = 1. In the implementation
of the cutting-plane iALM, we use Algorithm 2 to solve problems in the form of (3.5),
for which we can explicitly compute the global smoothness constant, and thus we
simply set Ly, to the global smoothness constant. In addition, we set 7 = 2 in Algo-
rithm 6 when it is called. Notice that Algorithm 6 works for any 7 > 0.007. However,
empirically we find that a small 7 will result in more calls to the separation oracle,
while a too-big 7 will cause trouble for finding a sufficiently accurate VC. 7 = 2 gives
a good tradeoff.

We test three groups of QCQP instances, each of which has n = 1000. The
first group has m = 1 constraint, the second has m = 2, and the third has m = 5.
For each group, we conduct three independent trials. For each instance, we report
the number of gradient and function evaluations, the primal residual, dual residual,
and complementarity violation, which are denoted as #grad, #func, pres, dres, and
compl, for solving each ALM subproblem. In order to demonstrate the worst-case
theoretical result, we use a randomly generated initial point while solving each ALM
subproblem. The performance of the iALM can be much better if the warm-start
technique is adopted. The results are shown in Tables 1-3. For the cutting-plane
iALM, its #func is zero and not shown in the tables because we feed the APG an
explicitly computed smoothness constant and no line search is performed.

From the results, we see that as the penalty parameter increases, the APG-based
iALM needs significantly more iterations to solve the subproblems, while the cutting-
plane iALM does not suffer from the big penalty parameter. However, the cutting-
plane iALM has worse scalability to m, and this matches with our theory.

6.2. Comparison to a primal-dual method with line search. In this sub-
section, we compare the proposed cutting-plane based iALM with the primal-dual
method with line search in [12] on solving (6.1) and on solving (6.2). The latter is
called APDB. It is a single-loop first-order method and can achieve the optimal com-
plexity result O(E_%) for solving strongly convex problems with nonlinear functional
constraints.

In the experiment for solving (6.1), we generate three groups of QCQP instances
in the same way as that in the previous test, and in each group we conduct 10 inde-
pendent trials. The setting of the proposed iALM is the same as in the previous test.
For APDB, we set 79 = 1, n = 0.7 and select the best 79 from {0.1,0.01,0.001}; see
Algorithm 2.3 in [12] for the specific meaning of these parameters. In order to have
a fair comparison, we terminate APDB once it produces a 10~8-KKT point. The
results are plotted in Figure 1. From the figure, we see that when m =1 or m = 2,
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TABLE 1
Results by the APG-based first-order iALM and the proposed cutting-plane based first-order
tALM for solving QCQP (6.1) with m =1 and n = 1000.

i APG-based IALM ] Proposed cutting-plane {ALM
Out. iter. | B _|| #grad _ #func pres dres compl | #grad pres dres compl

Trial 1 Total running time — 774.2 sec. Total running time = 124 sec,
T T 5056 9120 5.13¢-02  0.65c-05  2.63c-03 | 2136 5.13¢-02  6.40c-11  2.64e-03
2 10 || 16802 31298  1.65¢-06  9.46¢-05 8.46e-08 | 1434  4.23¢-07  9.20e-11  2.17¢-08
3 10? 55359 103112 5.40e-08 9.77e-05  2.77e-09 1068 4.22e-10 . 2.17e-11
4 103 || 179877 335030  6.51e-09  9.96¢-05 3.3de-10 | 1080  0.00e+00 . 4.84e-11
5 101 || 584145 1087988  0.00e+00  9.95¢-05 4.57e-11 | 1104  2.20e-11  9.23¢-09  1.17e-12
Trial : Total running time — 760.0 sec. Total running time — 12.1 sec.
1 T 4969 9258 5.78¢-02  9.78-05  3.34e-03 | 1926  5.78¢-02  4.94e-09 3.34e-03
2 10 || 16466 30672  2.10e-06  9.99¢-05 1.21e-07 | 1440  5.85e-07 3.41e-10  3.38¢-08
3 102 || 54617 101730  4.57e-08  9.85¢-05 2.64¢-09 | 1050  0.00e+00  7.90¢-09  4.03¢-10
4 103 || 177171 329990  6.44e-09  9.93¢-05 3.72¢-10 | 1074  0.00e+00 2.18¢-07  1.42¢-10
5 10* 580377 1080970  0.00e4-00 1.00e-04  4.06e-11 1104 2.75e-10 1.84e-09 1.59e-11
Trial 3 Total running time = 780.9 sec. Total running time = 124 sec,
T T 5100 9502 4.37c-02  0.66c-05 1.01c-03 | 2088  4.37e-02  2.536-00 1.01e-03
2 10 || 17035 31732 0.00e+00 9.33¢-05 8.08¢-08 | 1428  4.34e-07  7.52¢-09  1.90e-08
3 10? 56348 104954 1.43e-07 9.79e-05  6.25e-09 1092 0.00e+00 2.75e-13 2.36e-10
4 103 || 182583 340070  0.00e+00 9.63¢-05 5.12e-10 | 1122 4.33e-:09  4.76e-07 1.89e-10
5 104 || 595012 1108228  1.81e-10  9.99¢-05  7.92e-12 | 1164  0.00e+00 1.88¢-09  2.0le-11

TABLE 2
Results by the APG-based first-order tALM and the proposed cutting-plane based first-order
tALM for solving QCQP (6.1) with m = 2 and n = 1000.

I APG-based IALM [ Proposed cutting-plane iALM
Out. iter. [ B || #grad  #func pres dres compl [ #grad pres dres compl
trial 1 total running time = 1348.0 sec. total running time = 51.0 sec.
1 1 5551 10342 4.45e-02 8.71e-05  1.40e-03 3342 4.45e-02 1.06e-09  1.40e-03
2 10 || 18330 34144 0.00e+00 9.62¢-05 6.47¢-08 | 3384  3.19e-07  9.17¢-09  9.98¢-09
3 102 || 59680 111160  8.81e-08  9.77e-05 2.71e-09 | 3522  6.01e09  9.15e-10  2.44e-10
4 103 || 194236 361774  0.00e+00  9.94e-05 ~ 9.15e-11 | 3582  1.36e-10  3.84e-09  6.17¢-12
5 10* 629359 1172200  0.00e4+00  9.99e-05  7.65e-12 3678 2.66e-11 1.60e-09  8.13e-13
Trial Total running time = 1299.4 sec. Total running time = 49.5 sec.
T 1 5362 9990 6.60e-02  9.05e-05 3.10e-03 | 3180  6.60e-02 8.27e-09 3.10e-03
2 10 || 17646 32870  2.74e:06  9.26c-05 1.34e-07 | 3282  6.17e07  2.67e-10 2.91e-08
3 10% 57832 107718 1.41e-08 9.82e-05  2.79e-09 3372 5.91e-10 9.05e-11  2.61e-11
1 10° || 187544 349310  0.00e+00 9.88¢-05  2.70e-10 | 3450  4.97e-10  6.76e-09  2.3de-11
5 10* || 606432 1129498  9.88e-11  9.97e-05 7.38e-12 | 3528  1.82e-11  5.23e-09 1.95e-12
Trial ; Total running time = 1337.1 scc. Total running time = 49.2 sec.
1 1 5464 10180 5.50e-02 9.51e-05  2.25e-03 3156 5.50e-02 6.27¢-09  2.25e-03
2 10 || 18039 33602  1.78¢-06  9.90e-05 8.15¢-08 | 3324  5.16e-07 1.76e-10  2.07e-08
3 102 || 59505 110834  2.88¢-08  9.95¢-05 1.86e-09 | 3384  5.93e09  8.30e-09 2.49e-10
4 10° || 192301 358170  3.78¢-09  9.99e-05 1.45¢-10 | 3504  0.00e+00 1.02e-09  3.00e-11
5 10* 627235 1168244 6.81e-11 1.00e-04  9.17e-12 3528 5.23e-11 2.78e-09  1.70e-12

the proposed iALM needs fewer gradient evaluations than APDB to give a solution of
similar or higher accuracy, and when m = 5, APDB needs fewer gradient evaluations.
In addition, different from the proposed iALM, APDB needs fewer gradient evalua-
tions as m increases. Hence, APDB may be even more efficient than the proposed
iALM as m further increases.

In the experiment for solving (6.2), we use arcene and spambase datasets, both of
which are from the UCI repository,! and we set o = 0.5. Each sample is normalized.
In order to achieve at least 90% prediction accuracy for the positive dataset, we tune
the regularization parameters to A\; = Ay = 1073 for the arcene dataset and to
A1 = Ay = 107 for the spambase dataset. The APDB is applied to an SP problem
formulated by using the ordinary Lagrangian function of (6.2). As the logistic loss
function has bounded gradient and Hessian, we explicitly compute the global Lipschitz
constants and adopt constant stepsize for both APDB and the proposed iALM. We
set B = 10F~! for iALM and run it to five outer iterations. The target accuracy for
a near-KKT point is ¢ = 10~°. For APDB, we set the maximum number of iterations
to 10° and terminate it if an e-KKT solution is produced. In the SP formulation
solved by APDB, we set an upper bound of its dual variable to twice of the value of
the dual variable returned by the iALM. This known upper bound benefits APDB.

IThe data can be downloaded from https://archive.ics.uci.edu/ml/datasets.php.
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TABLE 3
Results by the APG-based first-order iALM and the proposed cutting-plane based first-order
tALM for solving QCQP (6.1) with m =5 and n = 1000.

I I APG-based IALM I Proposed cutting-plane IALM ]
[Out. iter. | 5 || #erad _ #func pres dres compl | #grad __pres dres compl_|
Trial 1 Total running time = 2833.1 sec. Total running time = 156.8 sec.

1 1 5537 10316 7.93e-02 9.91e05 2.90e-03 | 6714  7.93e02 2.91e-09 2.90e-03
2 10 || 18417 34306 112006 9.83e05 4.28¢-08 | 6984  8.93e-07 432009 3.27¢-08
3 10% || 60058 111864  5.83e-08 9.62e05 2.25e-09 | 7158  4.64e-09 1.50e-09 2.02e-10
4 10° || 195804 364862  3.14e-09 9.88¢-05 1.64e-10 | 7314  4.37e-10 4.28¢-09 1.6de-11
5 10* || 640357 1192684 9.40e-10  9.97e05  3.5le-ll | 7614 27911  8.77e-09 1.74e-12
Trial Total running time = 2786.0 sec. Total running time = 160.7 sec.

1 1 5537 10316 6.77e-02 8.21e05 242e-03 | 6900  6.77e:02 6.16e-09 24203
2 10 || 18170 33846 6.24e-07 9.21e05 243e-08 | 7110  7.39e-07 2.64e09 2.75¢-08
3 10% || 59607 111024 2.66e-08 9.73e05 1.71e-09 | 7224  281e09 9.46e-09 1.90e-10
4 10° || 194483 362234 1.21e-08  9.99e-05 3.19e-10 | 7512  6.61e-10 4.34e-09  253e-11
5 104 || 636109 1184772 7.58e-11  9.94e05 1.76e-11 | 7698  3.9de-11  7.84e-09 1.73e-12
Trial : Total running time = 2820.0 sec. Total running time = 155.3 sec.

1 1 5595 10424  8.47e-02 85le05 3.26e-03 | 6594  8.47e02 9.82¢-09 3.26e-03
2 10 || 18461 34388  T.78¢-07 9.55e-05 3.07e-08 | 6882  8.64e-07 552009 3.33e-08
3 10% || 60422 112542 3.78¢-09 9.93e05 4.10e-09 | 7116  3.42e09 15210 18310
4 10% || 196869 366678  7.70e-09 9.87e-05 3.05e-10 | 7260  7.35e-11  5.28e-09 1.9le-11
5 10* || 640997 1193876  3.63e-10 9.95e-05 1.37e-11 | 7488  6.86e-11  6.05e-09 2.72e-12
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APDB

—%— proposed iALM
——APDB

log 0(dres)

-15
2 4 6 2 4 6 2 4 6
number of gradients ,10* number of gradients 1% number of gradients 1%
0 5
—— proposed iALM roposed iALM
- ——APDB - 2 0 ——APDB
o 5 L s i< £
= kel Q
= ] g,o 5
g8 g 2 10
-15 15 -15
1 2 3 4 1 2 3 4 1 2 3 4
number of gradients 10 number of gradients 0% number of gradients . 10*
5 5 5
—%— proposed iALM —9— proposed iALM —%— proposed iALM
% 0 ——APDB & ——APDB 2 0 ——APDB
IS e 0 E
Q o Q
= ® % S 5
& 10 g s 8"_ -10
= 4
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number of gradients 1% number of gradients 1% number of gradients 1%

Fic. 1. Results by the proposed cutting-plane based iALM and the APDB method in [12] on
solving QCQP instances of size n = 1000 and m € {1,2,5}. The solid curve in each figure plots
the mean of 10 independent trials. First row: m = 1; second row: m = 2; third row: m = 5. First
column: primal residual; second column: dual residual; third column: complementarity violation.

The results are reported in Figure 2, from which we see that the proposed iALM takes
significantly fewer gradient evaluations than APDB to produce a similarly accurate
KKT solution. Moreover, we achieve 91.67% accuracy for the positive samples and
83.33% for the negative samples in the arcene dataset, and the final obtained solution
has only 427 nonzeros out of 10,000. For the spambase dataset, we achieve 90.89%
accuracy for the positive samples and 74.44% for the negative samples, and the final
solution has 51 nonzeros out of 57 because a small regularization parameter is used.

6.3. Comparison to the interior-point method. In this subsection, we com-
pare the proposed cutting-plane iALM to SDPT3 [36] on solving (6.1). SDPT3 is a
primal-dual infeasible interior-point method. Interior-point methods can give high-
accurate solutions to convex problems but do not often have a good scalability to
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FI1G. 2. Results by the proposed cutting-plane based tALM and the APDB method in [12] on
solving instances of Neyman—Pearson problem (6.2) with arcene dataset (first row) and spambase
dataset (second row). First column: primal residual; second column: dual residual; third column:
complementarity violation. T Missing parts on the curves by APDB correspond to zero residuals, and
for spambase, the primal residual by the proposed tALM at the last outer iteration is zero.

the problem dimension. In this test, we generate instances of (6.1) with m = 2 and
n € {1000, 5000, 10000}. For each (m,n), we generate five QCQP instances indepen-
dently in the same way as that in previous tests. The parameters of the proposed
iALM are set the same as previously, except how we choose the global smoothness
constant of (3.5). Notice that for the QCQP (6.1) the corresponding subproblem (3.5)
has the Hessian matrix H = Qo + > -, :Q,. A tight smoothness constant is ||H]|.
For a small n, computing the spectral norm is not so expensive. However, it can be
very expensive when n is big. Hence, we set the global smoothness constant to ||H||
for n = 1000 and to [|Qol| + >_i%; vil|Q:ll for n € {5000,10000}. Since y changes
during the proposed iALM, the former setting needs to compute the spectral norm of
a sequence of n x n matrices, while the latter one only needs to compute {||Q;l }o<i<m
once at the beginning of the algorithm. This way, we can save the time of computing
the spectral norm but will obtain larger smoothness constants that lead to smaller
stepsize and eventually result in more gradient evaluations. We call SDPT3 by using
CVX [11] and set the precision to “high.”

To compare the performance of the cutting-plane iALM and SDPT3, we report
their running time and violation to the KKT system at the output solution. For
the former method, we also report its number of gradient evaluations. The results
are shown in Table 4. From the table, we see that the cutting-plane iALM can
yield similar or more accurate solutions than SDPT3. When n = 1000, SDPT3
is significantly faster, but for n € {5000, 10000} the cutting-plane first-order iALM
takes much shorter time than SDPT3.

7. Concluding remarks. We have proposed a cutting-plane based first-order
method (FOM) for solving strongly convex problems with m functional constraints. If
m = O(1), our method can achieve a complexity result of O(y/k), where s denotes the
condition number of the underlying problem in some sense. In general, a complexity
result of O(m+/k) has been established. To give an e-KKT point, our result is better
than an existing lower bound if m = 0(5_%). We have also extended the idea of
the cutting-plane based FOM to convex and nonconvex cases. Similarly, when m =
O(1), we obtained almost the same-order complexity results (with a difference of a
polynomial of |loge|) as for solving an unconstrained problem.
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Results by the proposed cutting-plane based first-order tALM and the interior-point method

SDPT3 on solving instances of (6.1). “NaN” means that SDPT3 could not solve that instance

successfully.

YANGYANG XU

TABLE 4

I Proposed cutting-plane IALM [ SDPT3
Trial H Time(h:m:s)  #grad pres dres compl ‘ Time(h:m:s) pres dres compl

Problem size: m = 2,n = 1000

1 0:0:35 16776 0.00e+00  1.13e-10  3.42e-12 0:0:11 3.30e-10 1.03e-09  4.12e-11

2 0:0:36 16812  0.00e+00  1.89e-09  8.75e-13 0:0:16 2.14e-10 4.40e-10  9.25e-12

3 0:0:35 17004 4.09e-11 1.19¢-09  1.91e-12 0:0:11 0.00e4-00  2.04e-09  8.3le-11

4 0:0:36 16698 3.53e-11 2.69¢-09  2.27e-12 0:0:11 0.00e+00  8.00e-09  1.61e-08

5 0:0:35 16578 2.32e-11 3.19e-09  2.77e-12 0:0:17 1.58¢-09 8.16e-10  9.10e-11
Problem size: m = 2,n = 5000

1 0:11:9 21630 2.58e-11 5.85e-10  1.24e-12 0:40:44 0.00e4+00  8.26e-09  5.71le-10

2 0:11:11 21642 3.58e-11 9.17e-10  1.63e-12 0:52:23 6.55e-08 1.18e-09  2.84e-09

3 0:11:6 21504 1.95e-11 6.10e-10  7.19e-13 0:50:39 5.45e-08 NaN NaN

4 0:11:12 21678 3.13e-11 4.67e-09  1.04e-12 0:40:38 0.00e+00  1.12e-08  1.59e-09

5 0:11:7 21516 1.99e-11 8.59e-09  9.04e-13 0:36:17 2.71e-08 1.10e-08  1.28e-09
Problem size: m = 2,n = 10000

1 1:16:1 22332 0.00e+00  6.32e-10 .3Te-1: 5:55:22 2.41e-07 3.10e-08  1.33e-08

2 1:8:33 22296 4.99e-12 6.36e-09 .30e- 6:20:3 0.00e+00  4.60e-10  3.19e-09

3 0:58:16 22296 1.73e-11 2.54e-09  7.43e-13 0.00e+00  3.44e-08  8.17e-09

4 0:58:9 22368 2.05e-11 1.14e-08  9.17e-13 0.00e4+00  2.16e-08  7.70e-09

5 1:15:19 22182 7.95e-12 1.04e-08  1.30e-12 0.00e4+00  3.70e-08  1.48e-09
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