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FIRST-ORDER METHODS FOR PROBLEMS WITH \bfitO (1)
FUNCTIONAL CONSTRAINTS CAN HAVE ALMOST THE SAME
CONVERGENCE RATE AS FOR UNCONSTRAINED PROBLEMS\ast 

YANGYANG XU\dagger 

Abstract. First-order methods (FOMs) have recently been applied and analyzed for solving
problems with complicated functional constraints. Existing works show that FOMs for functional
constrained problems have lower-order convergence rates than those for unconstrained problems. In
particular, an FOM for a smooth strongly convex problem can have linear convergence, while it
can only converge sublinearly for a constrained problem if the projection onto the constraint set is
prohibited. In this paper, we point out that the slower convergence is caused by the large number of
functional constraints but not the constraints themselves. When there are only m = O(1) functional
constraints, we show that an FOM can have almost the same convergence rate as that for solving
an unconstrained problem, even without the projection onto the feasible set. In addition, given an
\varepsilon > 0, we show that a complexity result that is better than a lower bound can be obtained if there

are only m = o(\varepsilon  - 
1
2 ) functional constraints. Our result is surprising but does not contradict the

existing lower complexity bound because we focus on a specific subclass of problems. Experimental
results on quadratically constrained quadratic programs demonstrate our theory.

Key words. first-order method, cutting-plane method, nonlinearly constrained problem, itera-
tion complexity

MSC codes. 65K05, 68Q25, 90C30, 90C60

DOI. 10.1137/20M1371579

1. Introduction. In this paper, we consider the constrained convex program-
ming

(1.1) min
\bfx \in \BbbR n

F (x) := f(x) + h(x), s.t. g(x) := [g1(x), . . . , gm(x)] \leq 0,

where f is a differentiable strongly convex function with a Lipschitz continuous gra-
dient, h is a simple closed convex function, and each gi is convex differentiable and
has a Lipschitz continuous gradient.

For a smooth strongly convex linearly constrained problem min\bfx \{ f(x), s.t. Ax =
b\} , the authors of [32] give a lower complexity bound O( 1\surd 

\varepsilon 
) of first-order methods

(FOMs) to produce an \varepsilon -optimal solution if A can be inquired only by the matrix-
vector multiplication A(\cdot ) and A\top (\cdot ). Notice \{ x : Ax = b\} = \{ x : Ax \leq b, - Ax \leq 
 - b\} . In addition, if \nabla f(x) + A\top y = 0, then \nabla f(x) + A\top y+  - A\top y - = 0, where
y+ \geq 0 and y - \geq 0 denote the positive and negative parts of y. Hence, if the linear-
equality constrained problem has a KKT point, then so does the equivalent linear-
inequality constrained problem. Therefore, the lower bound in [32] also applies to the
inequality constrained problem (1.1) if g can be accessed only through its function
value and derivative. However, for the special case of g \equiv 0 or m = 0, an accelerated
proximal gradient method [22, 31] can achieve a complexity result O(

\surd 
\kappa | log \varepsilon | ) to

produce an \varepsilon -optimal solution of (1.1) when f is strongly convex. Here, \kappa denotes
the condition number.
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The worst-case instance constructed in [32] relies on the condition that m is in
the same or higher order of 1\surd 

\varepsilon 
. For the case with m = o( 1\surd 

\varepsilon 
), the lower bound O( 1\surd 

\varepsilon 
)

may no longer hold. Examples of (1.1) with small m include the Neyman--Pearson
classification problem [33], the fairness-constrained classification [43], and the risk-
constrained portfolio optimization [10]. Therefore, we pose the following question
while solving a strongly convex problem in the form of (1.1):

Given \varepsilon > 0, can an FOM achieve a better complexity result than O( 1\surd 
\varepsilon 
)

to produce an \varepsilon -optimal solution of (1.1) when m = o( 1\surd 
\varepsilon 
), or even achieve

\~O(
\surd 
\kappa ) when m = O(1)?

Here, an FOM for (1.1) only uses the function value and derivative information of
f and g and also the proximal mapping of h and its multiples, and \~O suppresses a
polynomial of | log \varepsilon | . We will give an affirmative answer to the above question.

1.1. Algorithmic framework. The FOM that we will design and analyze is
based on the inexact augmented Lagrangian method (iALM). The classic AL function
of (1.1) is

(1.2) \scrL \beta (x, z) = F (x) + \beta 
2

\bigm\| \bigm\| \bigm\| [g(x) + \bfz 
\beta ]+

\bigm\| \bigm\| \bigm\| 2  - \| \bfz \| 2

2\beta ,

where z is the multiplier vector, and [a]+ takes the componentwise positive part of a
vector a. The pseudocode of a first-order iALM is shown in Algorithm 1. Notice that
\scrL \beta is strongly convex about x and concave about z. Hence, we can directly apply
the accelerated proximal gradients in [22, 31] to solve each x-subproblem. However,
that way can only give a complexity result of O( 1\surd 

\varepsilon 
) as shown in [40], regardless of

the value of m. To have a better overall complexity, we will design a new cutting-
plane based FOM to solve each x-subproblem by utilizing the condition m = O(1) or
m = o( 1\surd 

\varepsilon 
).

Algorithm 1: First-order inexact augmented Lagrangian method for (1.1).

\bfone Initialization: choose x0, z0, and \beta 0 > 0
\bftwo for k = 0, 1, . . . do

\bfthree Apply a first-order method to find xk+1 as an approximate solution of

min\bfx \scrL \beta k (x, z
k).

\bffour Update z by zk+1 = [zk + \beta kg(x
k+1)]+.

\bffive Choose \beta k+1 \geq \beta k.
\bfsix if a stopping condition is satisfied then

\bfseven Output (xk+1, zk+1) and stop

1.2. Related works. We briefly mention some existing works that also study
the complexity of FOMs for solving functional constrained problems.

By using the ordinary Lagrangian function, the authors of [27, 28] analyze a
dual subgradient method for general convex problems. The method needs O(\varepsilon  - 2)
subgradient evaluations to produce an \varepsilon -optimal solution (see the definition in (1.6)
below). For a smooth problem, the authors of [26] study the complexity of an inex-
act dual gradient (IDG) method. Suppose that an optimal FOM is applied to each

outer-subproblem of IDG. Then to produce an \varepsilon -optimal solution, IDG needs O(\varepsilon  - 
3
2 )
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gradient evaluations when the problem is convex, and the result can be improved
to O(\varepsilon  - 

1
2 | log \varepsilon | ) when the problem is strongly convex. For convex problems, the

primal-dual FOM proposed in [42] achieves an O(\varepsilon  - 1) complexity result to produce
an \varepsilon -optimal solution, and the same-order complexity result has also been established
in [39]. Based on a previous work [15] for affinely constrained problems, the authors
of [23] give a modified first-order iALM for solving convex cone programs. The over-
all complexity of the modified method is O(\varepsilon  - 1| log \varepsilon | ) to produce an \varepsilon -KKT point
(see Definition 1.1 below). A similar result has also been shown in [3] for convex
conic programs. A proximal iALM is analyzed in [16]. By a linearly convergent first-
order subroutine for primal subproblems, the authors of [16] show that O(\varepsilon  - 1) calls

to the subroutine are needed for convex problems and O(\varepsilon  - 
1
2 ) for strongly convex

problems to achieve either an \varepsilon -optimal or an \varepsilon -KKT point. In terms of function
value and derivative evaluations, the complexity result is O(\varepsilon  - 1| log \varepsilon | ) for the convex
case and O(\varepsilon  - 

1
2 | log \varepsilon | ) for the strongly convex case. Complexity results of FOMs

for nonconvex problems with functional constraints have also been established; see,
e.g., [6, 7, 14, 17, 18, 19, 24, 35]. To produce an \varepsilon -KKT point, the best-known result

is \~O(\varepsilon  - 
5
2 ) when the constraints are convex [17, 19] and \~O(\varepsilon  - 3) when the constraints

are nonconvex and satisfy a certain regularity condition [19].
On solving general nonlinear constrained problems, FOMs have also been pro-

posed under the framework of the level-set method [2, 20, 21]. For convex problems,
the level-set based FOMs can also achieve an O(\varepsilon  - 1) complexity result to produce an

\varepsilon -optimal solution. However, to obtain \~O(\varepsilon  - 
1
2 ), they require strong convexity of both

the objective and the constraint functions. Nesterov gives a level-set-type FOM in [30]
for functional constrained problems. For strongly convex problems, the method can
produce an \varepsilon -optimal solution by O(

\surd 
\kappa | log \varepsilon | log \kappa ) first-order oracles [30, eq. 2.3.26],

where \kappa is the condition number. This oracle complexity result differs from a lower-
bound result for unconstrained problems only by a factor of log \kappa . However, the
book [30] requires strong convexity for the objective function and all the constraint
functions. In contrast, we will only need strong convexity for the objective, while the
constraint functions can be merely convex. In addition, the method in [30] assumes
exact solutions to a sequence of quadratically constrained quadratic programs.

Under the condition of strong duality, (1.1) can be equivalently formulated as a
nonbilinear saddle-point (SP) problem. In this case, one can apply any FOM that is
designed for solving nonbilinear SP problems. The work [12] generalizes the primal-
dual method proposed in [8] from the bilinear SP case to the nonbilinear case. If
the underlying SP problem is convex-concave, the work [12] establishes an O(\varepsilon  - 1)
complexity result to guarantee an \varepsilon -duality gap. When the problem is strongly convex-
linear, the result can be improved to O(\varepsilon  - 

1
2 ). Notice that both results apply to

the equivalent ordinary-Lagrangian-based SP problem of (1.1). By the smoothing
technique, the authors of [13] give an FOM (with both deterministic and stochastic
versions) for solving nonbilinear SP problems. To ensure an \varepsilon -duality gap of a strongly

convex-concave problem, the method requires \~O(\varepsilon  - 
1
2 ) primal first-order oracles and

\~O(\varepsilon  - 1) dual first-order oracles. While applied to the functional constrained problem

(1.1), the method in [13] can obtain an \varepsilon -optimal solution by O(\varepsilon  - 
1
2 | log \varepsilon | ) evaluations

on f , \nabla f , g, and J\bfg . FOMs for solving the more general variational inequality (VI)
problem can also be applied to (1.1), such as the mirror-prox method in [29], the
hybrid extragradient method in [25], and the accelerated method in [9]. All of the
three methods can have an O(\varepsilon  - 1) complexity result by assuming smoothness and/or
monotonicity of the involved operator.
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1.3. Contributions. On solving a functional constrained problem with a strongly
convex objective and convex constraint functions, none of the existing works about
FOMs (such as those we mentioned previously) could obtain a complexity result bet-

ter than \~O(\varepsilon  - 
1
2 ). Without specifying the regime of m, the task is impossible. We

show that when m = O(1) in (1.1), an FOM can achieve almost the same-order com-
plexity result (with a difference of at most a polynomial of | log \varepsilon | ) as for solving an

unconstrained problem. When m = o(\varepsilon  - 
1
2 ), we show that a complexity result better

than \~O(\varepsilon  - 
1
2 ) can be obtained. The key step in the design of our algorithm is to for-

mulate each primal subproblem into an equivalent SP problem. The SP formulation
is strongly concave about the dual variable, and the strong concavity enables the gen-
eration of a cutting plane while searching for an approximate dual solution of the SP
problem. Since there are m dual variables, we can apply a cutting-plane method to
efficiently find an approximate dual solution when m = O(1) or m = o(\varepsilon  - 

1
2 ). In addi-

tion, we extend the idea of a cutting-plane based FOM to the convex and nonconvex
cases. For these two cases, we show that an FOM for problems with O(1) functional
constraints can also achieve almost the same-order complexity result as for solving
unconstrained problems.

1.4. Assumptions and notation. Throughout our analysis for strongly convex
problems, we make the following assumptions.

Assumption 1 (smoothness). f is Lf -smooth, i.e., \nabla f is Lf -Lipschitz contin-
uous. In addition, each gi is smooth, and the Jacobian matrix J\bfg = [\nabla g\top 1 ; . . . ;\nabla g\top m]
is Lg-Lipschitz continuous.

Assumption 2 (bounded domain and convexity). The domain of h is bounded
with a diameter Dh = max\bfx ,\bfy \in dom(h) \| x - y\| <\infty . The functions h and \{ gi\} are all
convex.

The above two assumptions imply the boundedness of g and J\bfg on dom(h). We
use G and Bg, respectively, for their bounds, namely

(1.3) G = max
\bfx \in dom(h)

\| g(x)\| , Bg = max
\bfx \in dom(h)

\| J\bfg (x)\| .

Assumption 3 (strong convexity). The smooth function f is \mu -strongly convex
with \mu > 0.

Assumption 4 (strong duality). There is a primal-dual solution (x\ast , z\ast ) satis-
fying the KKT conditions of (1.1), i.e., 0 \in \partial F (x\ast ) + J\bfg (x

\ast )\top z\ast , z\ast \geq 0, g(x\ast ) \leq 
0, g(x\ast )\top z\ast = 0.

When Assumption 4 holds, it is easy to have (cf. [38, eq. 2.4])

(1.4) F (x) - F (x\ast ) + \langle z\ast ,g(x)\rangle \geq 0 \forall x \in dom(h).

Notation. For a real number a, we use \lceil a\rceil to denote the smallest integer that is
no less than a and \lceil a\rceil + the smallest nonnegative integer that is no less than a. \scrB \delta (x)
denotes a ball with radius \delta and center x. If x = 0, we simply use \scrB \delta . We define \scrB +

\delta 

as the intersection of \scrB \delta with the nonnegative orthant, so in the n-dimensional space,
\scrB +
\delta = \scrB \delta \cap \BbbR n+. We use Vm(\delta ) for the volume of \scrB \delta in the m-dimensional space. [n]

denotes the set \{ 1, . . . , n\} . Given a closed convex set X \subseteq \BbbR n and a point x \in \BbbR n, we
define dist(x, X) = min\bfy \in X \| y  - x\| . For any vector x, Diag(x) denotes a diagonal
matrix with x on the diagonal, and for any square matrix A, diag(A) is a vector
that takes the diagonal of A. We use O, \Theta , and o with standard meanings, while
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in the complexity result statement, \~O has a similar meaning as O but suppresses a
polynomial of | log \varepsilon | for a given error tolerance \varepsilon > 0.

Definition 1.1 (\varepsilon -KKT point). Given \varepsilon > 0, a point \=x \in dom(h) is called an
\varepsilon -KKT point of (1.1) if there is \=z \geq 0 such that

(1.5) dist
\bigl( 
0, \partial \bfx \scrL 0(\=x, \=z)

\bigr) 
\leq \varepsilon , \| [g(\=x)]+\| \leq \varepsilon ,

m\sum 
i=1

| \=zigi(\=x)| \leq \varepsilon ,

where \scrL 0(x, z) = F (x) + z\top g(x) is the ordinary Lagrangian function of (1.1).

By the convexity of F and each gi, and also Assumption 4, one can easily show
that an \varepsilon -KKT point of (1.1) must be an O(\varepsilon )-optimal solution, where we call a point
\=x \in dom(h) an \varepsilon -optimal solution of (1.1) if

(1.6)
\bigm| \bigm| F (\=x) - F (x\ast )

\bigm| \bigm| \leq \varepsilon , \| [g(\=x)]+\| \leq \varepsilon .

1.5. Outline. The rest of the paper is organized as follows. In section 2, we
review an adaptive accelerated proximal gradient (APG) method and give the con-
vergence rate of the iALM. In section 3, we design new FOMs (that are better than
directly applying the APG method) for solving primal subproblems in the iALM.
Overall complexity results are shown in section 4. Extensions to convex and noncon-
vex cases are given in section 5. Numerical experiments are conducted in section 6 to
demonstrate our theory, and section 7 concludes the paper.

2. An optimal FOM and convergence rate of iALM. In this section, we
give an optimal FOM with line search that will be used as a subroutine in our algo-
rithm. Also, we establish the convergence rate of the iALM to produce an approximate
KKT point.

2.1. An optimal FOM for strongly convex composite problems. Con-
sider the problem

(2.1) minimize
\bfx \in \BbbR n

P (x) := \psi (x) + r(x),

where \psi is a differentiable \mu \psi -strongly convex function with an L\psi -Lipschitz contin-
uous gradient, and r is a closed convex function. Several optimal FOMs have been
given in the literature for solving (2.1), e.g., in [22, 31]. In this paper, we choose the
APG method with line search in [22], and we rewrite it in Algorithm 2 with a few
modified steps for our purpose to produce near-stationary points. One can also use
the APG method in [31].

The results in the next theorem are from Theorem 1 of [22].

Theorem 2.1. The generated sequence \{ xk\} k\geq 0 by Algorithm 2 satisfies
(2.2)

P (xk+1) - P (x\ast ) \leq 
\biggl( 
1 - 

\sqrt{} 
\mu \psi 
\gamma 1L\psi 

\biggr) k+1 \Bigl( 
P (x0) - P (x\ast ) +

\mu \psi 
2
\| x0  - x\ast \| 2

\Bigr) 
\forall k \geq 0,

where x\ast is the optimal solution of (2.1).

By the above theorem, we can easily bound the distance of \widehat xk to stationarity for
each k.

Theorem 2.2. The generated sequence \{ \widehat xk\} k\geq 0 satisfies

dist
\bigl( 
0, \partial P (\widehat xk+1)

\bigr) 
\leq 
\biggl( \sqrt{} 

\gamma 1L\psi +
L\psi \surd 
Lmin

\biggr) \sqrt{} 
2(P (x0) - P (x\ast )) + \mu \psi \| x0  - x\ast \| 2

\biggl( 
1 - 

\sqrt{} 
\mu \psi 
\gamma 1L\psi 

\biggr) k+1
2

\forall k \geq 0.
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Algorithm 2: An optimal FOM with line search for (2.1):\widehat x = APG(\psi , r, \mu \psi , Lmin, \=\varepsilon , \gamma 1, \gamma 2).

\bfone Input: minimum Lipschitz Lmin > 0, increase rate \gamma 1 > 1, decrease rate \gamma 2 \geq 1,
and error tolerance \=\varepsilon > 0.

\bftwo Prestep: choose any \widetilde y = y0 \in dom(r) and let \widetilde L = Lmin/\gamma 1
\bfthree repeat

\bffour \widetilde L\leftarrow \gamma 1\widetilde L and let \widetilde x = argmin\bfx \langle \nabla \psi (\widetilde y),x\rangle + \widetilde L
2
\| x - \widetilde y\| 2 + r(x)

\bffive until \psi (\widetilde x) \leq \psi (\widetilde y) + \langle \nabla \psi (\widetilde y), \widetilde x - \widetilde y\rangle + \widetilde L
2
\| \widetilde x - \widetilde y\| 2

\bfsix Initialization: let x - 1 = x0 = \widetilde x, L0 = max\{ Lmin, \widetilde L/\gamma 2\} , and \alpha  - 1 = 1
\bfseven for k = 0, 1, . . . do

\bfeight \widetilde L\leftarrow Lk/\gamma 1
\bfnine repeat

\bfone \bfzero \widetilde L\leftarrow \gamma 1\widetilde L, \alpha k \leftarrow \sqrt{} 
\mu \psi /\widetilde L, and \widetilde y\leftarrow xk +

\alpha k(1 - \alpha k - 1)

\alpha k - 1(1+\alpha k)
(xk  - xk - 1)

\bfone \bfone let \widetilde x = argmin\bfx \langle \nabla \psi (\widetilde y),x\rangle + \widetilde L
2
\| x - \widetilde y\| 2 + r(x)

\bfone \bftwo until \psi (\widetilde x) \leq \psi (\widetilde y) + \langle \nabla \psi (\widetilde y), \widetilde x - \widetilde y\rangle + \widetilde L
2
\| \widetilde x - \widetilde y\| 2

\bfone \bfthree \widehat L\leftarrow \widetilde L/\gamma 1;
\bfone \bffour repeat

\bfone \bffive increase \widehat L\leftarrow \gamma 1\widehat L;
\bfone \bfsix let \widehat x = argmin\bfx \langle \nabla \psi (\widetilde x),x\rangle + \widehat L

2
\| x - \widetilde x\| 2 + r(x);  \triangleleft modified step to

guarantee near-stationarity at \widehat x
\bfone \bfseven until \psi (\widehat x) \leq \psi (\widetilde x) + \langle \nabla \psi (\widetilde x), \widehat x - \widetilde x\rangle + \widehat L

2
\| \widehat x - \widetilde x\| 2

\bfone \bfeight set xk+1 = \widetilde x, \widehat xk+1 = \widehat x, and Lk+1 = max\{ Lmin, \widetilde L/\gamma 2\} ;
\bfone \bfnine if dist

\bigl( 
0, \partial P (\widehat x)\bigr) \leq \=\varepsilon then

\bftwo \bfzero return \widehat x and stop.

Proof. First notice that if \widehat L \geq L\psi , it must hold that \psi (\widehat x) \leq \psi (\widetilde x) + \langle \nabla \psi (\widetilde x), \widehat x - \widetilde x\rangle + \widehat L
2 \| \widehat x - \widetilde x\| 2, and when this inequality holds, we have (cf. [41, Lem. 2.1]) P (\widetilde x) - 

P (\widehat x) \geq \widehat L
2 \| \widehat x  - \widetilde x\| 2. Since P (\widetilde x)  - P (\widehat x) \leq P (\widetilde x)  - P (x\ast ), we have

\widehat L
2 \| \widehat x  - \widetilde x\| 2 \leq 

P (\widetilde x) - P (x\ast ), which together with the fact \widehat L \geq Lmin implies

(2.3)
\widehat L2

2 \| \widehat x - \widetilde x\| 2 \leq \widehat L\bigl( P (\widetilde x) - P (x\ast )
\bigr) 
, \| \widehat x - \widetilde x\| 2 \leq 2

Lmin

\bigl( 
P (\widetilde x) - P (x\ast )

\bigr) 
.

In addition, from the optimality condition of \widehat x, it follows that 0 \in \nabla \psi (\widetilde x) + \widehat L(\widehat x  - \widetilde x) + \partial r(\widehat x), and thus

(2.4) dist(0, \partial P (\widehat x)) \leq \| \nabla \psi (\widehat x) - \nabla \psi (\widetilde x)\| + \widehat L\| \widehat x - \widetilde x\| \leq (L\psi + \widehat L)\| \widehat x - \widetilde x\| .
By (2.3) and (2.4), we have

dist(0, \partial P (\widehat x)) \leq (L\psi + \widehat L)\| \widehat x - \widetilde x\| \leq 
\sqrt{} 
2(P (\widetilde x) - P (x\ast ))

\Bigl( \sqrt{} \widehat L+
L\psi \surd 
Lmin

\Bigr) 
.

Therefore, the desired result follows from (2.2), the fact that \widehat L \leq \gamma 1L\psi , and the above
inequality with \widehat x = \widehat xk+1 and \widetilde x = xk+1.

From [4, Thm. 3.1], we have

(2.5) P (x0) - P (x\ast ) \leq \gamma 1L\psi \| \bfy 0 - \bfx \ast \| 2

2 .
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Hence, we can obtain the following complexity result by Theorem 2.2 together with
(2.5).

Corollary 2.3. Assume that dom(r) is bounded with a diameter

Dr = max
\bfx 1,\bfx 2\in dom(r)

\| x1  - x2\| .

Given \=\varepsilon > 0, \gamma 1 > 1, \gamma 2 \geq 1, and Lmin > 0, Algorithm 2 needs at most T eval-
uations on the objective value of \psi and the gradient \nabla \psi to produce \widehat x such that
dist(0, \partial P (\widehat x)) \leq \=\varepsilon , where

T =
\Bigl( 
1 + \lceil log\gamma 1

L\psi 
Lmin
\rceil +
\Bigr) \Biggl( 

1 + 2

\biggl\lceil 
2
\sqrt{} 

\gamma 1L\psi 
\mu \psi 

log

\biggl( 
Dr
\=\varepsilon 

\bigl( \sqrt{} 
\gamma 1L\psi +

L\psi \surd 
Lmin

\bigr) \sqrt{} 
2\gamma 1L\psi + \mu \psi 

\biggr) \biggr\rceil 
+

\Biggr) 
.

Proof. Since dom(r) has a diameter Dr, we have from Theorem 2.2 and (2.5) that

dist
\bigl( 
0, \partial P (\widehat xk+1)

\bigr) 
\leq Dr

\Bigl( \sqrt{} 
\gamma 1L\psi +

L\psi \surd 
Lmin

\Bigr) \sqrt{} 
2\gamma 1L\psi + \mu \psi 

\biggl( 
1 - 

\sqrt{} 
\mu \psi 
\gamma 1L\psi 

\biggr) k+1
2

\forall k \geq 0.

Hence, if k + 1 \geq K, then dist
\bigl( 
0, \partial P (\widehat xk+1)

\bigr) 
\leq \=\varepsilon , where

K =

\left[    
2 log

\biggl( 
Dr
\=\varepsilon 

\bigl( \surd 
\gamma 1L\psi +

L\psi \surd 
Lmin

\bigr) \surd 
2\gamma 1L\psi +\mu \psi 

\biggr) 
log(1 - 

\sqrt{} 
\mu \psi 
\gamma 1L\psi 

) - 1

\right]    
+

;

namely, after at most K iterations, the algorithm will produce a point \widehat x satisfying
dist(0, \partial P (\widehat x)) \leq \=\varepsilon .

Notice that the conditions in lines 5, 12, and 17 of Algorithm 2 will hold if\widetilde L \geq L\psi and \widehat L \geq L\psi . Hence, every iteration will evaluate the objective value of \psi 

and the gradient \nabla \psi at most 2(1 + \lceil log\gamma 1
L\psi 
Lmin

\rceil +) times. Now, using the fact that

log(1 - a) - 1 \geq a for all 0 < a < 1, we obtain the desired result by also counting the
objective and gradient evaluations to obtain x0.

2.2. Convergence rate of iALM. The next lemma is from [40, eq. 3.20] and
the proof of [40, Lem. 7].

Lemma 2.4. Let \{ (xk, zk)\} be generated from Algorithm 1 with z0 = 0. Suppose

(2.6) \scrL \beta k(xk+1, zk) \leq min
\bfx 

\scrL \beta k(x, zk) + ek \forall k = 0, 1, . . .

for an error sequence \{ ek\} . Then

(2.7) \| zk\| 2 \leq 4\| z\ast \| 2 + 4

k - 1\sum 
t=0

\beta tet, and \| zk\| \leq 2\| z\ast \| +

\sqrt{}    2

k - 1\sum 
t=0

\beta tet \forall k \geq 1.

By this lemma and also the strong convexity of F , we can show the following
result.

Lemma 2.5. Let \{ (xk, zk)\} be generated from Algorithm 1 with z0 = 0. If

dist
\bigl( 
0, \partial \bfx \scrL \beta k(xk+1, zk)

\bigr) 
\leq \varepsilon k \forall k \geq 0

for a sequence \{ \varepsilon k\} , then

(2.8) \| zk\| 2 \leq 4\| z\ast \| 2 + 4

k - 1\sum 
t=0

\beta t
\varepsilon 2t
\mu 
, and \| zk\| \leq 2\| z\ast \| +

\sqrt{}    2

k - 1\sum 
t=0

\beta t
\varepsilon 2t
\mu 

\forall k \geq 1.
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Proof. If xk+1
\ast is the minimizer of \scrL \beta k(x, zk) about x, then 0 \in \partial \bfx \scrL \beta k(xk+1

\ast , zk).
Also, it follows from dist

\bigl( 
0, \partial \bfx \scrL \beta k(xk+1, zk)

\bigr) 
\leq \varepsilon k that there is v \in \partial \bfx \scrL \beta k(xk+1, zk)

and \| v\| \leq \varepsilon k. Since F is \mu -strongly convex, \scrL \beta k(x, zk) is also \mu -strongly convex
about x. Then we have \langle v,xk+1 - xk+1

\ast \rangle \geq \mu \| xk+1 - xk+1
\ast \| 2, which together with the

Cauchy--Schwarz inequality gives \| xk+1  - xk+1
\ast \| \leq \| \bfv \| 

\mu \leq \varepsilon k
\mu . Now, by the convexity

of \scrL \beta k(\cdot , zk), it holds that \scrL \beta k(xk+1, zk)  - \scrL \beta k(xk+1
\ast , zk) \leq \langle v,xk+1  - xk+1

\ast \rangle \leq \varepsilon 2k
\mu ,

and thus we have that (2.6) holds with et =
\varepsilon 2t
\mu . Hence, (2.8) follows from (2.7).

Theorem 2.6 (convergence rate of iALM). Let \{ (xk, zk)\} be generated from Al-
gorithm 1 with z0 = 0. Suppose \beta k = \beta 0\sigma 

k for all k \geq 0 for some \sigma > 1 and \beta 0 > 0,
and dist

\bigl( 
0, \partial \bfx \scrL \beta k(xk+1, zk)

\bigr) 
\leq \=\varepsilon for all k \geq 0 for a positive number \=\varepsilon . Then\bigm\| \bigm\| [g(xk+1)]+

\bigm\| \bigm\| \leq 4\| \bfz \ast \| 
\beta 0\sigma k

+
\=\varepsilon (
\surd 
\sigma +1)

\sqrt{} 
2

\mu (\sigma  - 1)\surd 
\beta 0\sigma k

,(2.9)

m\sum 
i=1

\bigm| \bigm| zk+1
i gi(x

k+1)
\bigm| \bigm| \leq 9\| z\ast \| 2

2\beta 0\sigma k
+

\=\varepsilon 2(8\sigma + 1)

2\mu (\sigma  - 1)
.(2.10)

Proof. From the update of z, it follows that gi(x
k+1) \leq zk+1

i  - zki
\beta k

for each i \in [m],

and thus by (2.8) we have

\bigm\| \bigm\| [g(xk+1)]+
\bigm\| \bigm\| \leq \| \bfz k+1 - \bfz k\| 

\beta k
\leq \| \bfz k+1\| +\| \bfz k\| 

\beta k
\leq 

4\| \bfz \ast \| +
\sqrt{} 

2
\sum k - 1
t=0 \beta t

\varepsilon 2t
\mu +

\sqrt{} 
2
\sum k
t=0 \beta t

\varepsilon 2t
\mu 

\beta k
.

Plugging into the above inequality \varepsilon t = \=\varepsilon for all t \geq 0 and \beta k = \beta 0\sigma 
k, we obtain the

inequality in (2.9).
Furthermore, for each i \in [m], we have | zk+1

i gi(x
k+1)| \leq 1

\beta k
| zk+1
i (zk+1

i  - zki )| .
Notice that zki and zk+1

i are both nonnegative. If zk+1
i \geq zki , then it is obvious to

have | zk+1
i (zk+1

i  - zki )| \leq (zk+1
i )2, and if zk+1

i < zki , it holds that | z
k+1
i (zk+1

i  - zki )| =
 - (zk+1

i )2 + zki z
k+1
i \leq (zk+1

i )2 +
(zki )

2

8 by Young's inequality. Hence, | zk+1
i gi(x

k+1)| \leq 
1
\beta k

((zk+1
i )2 +

(zki )
2

8 ), and thus

m\sum 
i=1

\bigm| \bigm| zk+1
i gi(x

k+1)
\bigm| \bigm| \leq 1

\beta k

\biggl( 
\| zk+1\| 2 + \| zk\| 2

8

\biggr) 
.

Now we obtain the result in (2.10) by plugging the first inequality in (2.8).

We make a few remarks here. Given \varepsilon > 0, choose \=\varepsilon > 0 such that \=\varepsilon 2(8\sigma +1)
2\mu (\sigma  - 1) < \varepsilon 

in Theorem 2.6. Notice that \partial \bfx \scrL \beta k(xk+1, zk) = \partial \bfx \scrL 0(x
k+1, zk+1). Hence, from (2.9)

and (2.10), it follows that to ensure that xk+1 is an \varepsilon -KKT point, we need \beta 0\sigma 
k = \Theta ( 1\varepsilon )

and to solve k = \Theta 
\bigl( 
log\sigma 

1
\beta 0\varepsilon 

\bigr) 
x-subproblems. Since the smooth part of \scrL \beta k(\cdot , zk) has

a \Theta (\beta k)-Lipschitz continuous gradient, it needs O(
\sqrt{} 

\beta k
\mu ) proximal gradient steps if we

directly apply Algorithm 2. This way, we can guarantee an \varepsilon -KKT point with a total
complexity O(

\sqrt{} 
\kappa 
\varepsilon | log \varepsilon | ), where \kappa denotes the condition number in some sense. This

complexity result has been established in a few existing works, e.g., [16, 23]. It is worse

by an order of
\sqrt{} 

1
\varepsilon than the complexity result in Corollary 2.3 for the unconstrained

case. Generally, we cannot improve it any more because the result matches with the
lower bound given in [32].
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In the rest of the paper, we show that in some special cases a better complexity
can be obtained. When m = O(1), we show that we can achieve a complexity result
O(

\surd 
\kappa | log \varepsilon | 3), which is in almost the same order as the optimal result for the uncon-

strained case. For a general m, we can achieve O
\bigl( 
m
\surd 
\kappa | log \varepsilon | 2(logm+ | log \varepsilon | )

\bigr) 
, which

is better than O(
\sqrt{} 

\kappa 
\varepsilon | log \varepsilon | ) in the regime of m = o(

\sqrt{} 
1
\varepsilon ) by ignoring the logarithmic

terms.

3. Better first-order methods for x-subproblems. When m is small in
(1.1), we do not directly apply Algorithm 2 to solve the x-subproblem min\bfx \scrL \beta k(x, zk)
in Algorithm 1. Instead, we design new and better FOMs that use Algorithm 2 as a
subroutine in the framework of a cutting-plane method. Our key idea is to reformulate
the x-subproblem into a strongly convex--strongly concave SP problem, which has
a unique primal-dual solution. For the SP formulation, we first find a sufficiently
accurate dual solution by a cutting-plane based FOM. Then we find a sufficiently
accurate primal solution based on the obtained approximate dual solution.

Below, we give more precise description of how to design better FOMs. Given
z \geq 0, let

\bfittheta (x) = g(x) + \bfz 
\beta .

From (1.3) and the mean-value theorem, it follows that \bfittheta is Bg-Lipschitz continuous,
namely,

(3.1) \| \bfittheta (x1) - \bfittheta (x2)\| \leq Bg\| x1  - x2\| \forall x1,x2.

With \bfittheta , we can rewrite the problem min\bfx \scrL \beta (x, z) into

(3.2) minimize
\bfx \in \BbbR n

\phi (x) := F (x) + \beta 
2 \| [\bfittheta (x)]+\| 

2.

Notice that 1
2\| [\bfittheta (x)]+\| 

2 = max\bfy \geq \bfzero 

\bigl\{ 
y\top \bfittheta (x) - 1

2\| y\| 
2
\bigr\} 
and y = [\bfittheta (x)]+ reaches the

maximum. We rewrite (3.2) into

(3.3) min
\bfx \in \BbbR n

max
\bfy \geq \bfzero 

\Phi (x,y) := F (x) + \beta 
\bigl( 
y\top \bfittheta (x) - 1

2\| y\| 
2
\bigr) 
.

Define

(3.4) d(y) = min
\bfx \in \BbbR n

\Phi (x,y) and \=y = argmax
\bfy \geq \bfzero 

d(y).

Notice that d is \beta -strongly concave, so \=y is the unique maximizer of d. Also, for a
given y \geq 0, define x(y) as the unique minimizer of \Phi (\cdot ,y), i.e.,

(3.5) x(y) = argmin
\bfx 

\Phi (x,y).

In our algorithm design, we first find an approximate solution \widehat y of max\bfy \geq \bfzero d(y)
and then find an approximate solution \widehat x of min\bfx \Phi (x, \widehat y). By controlling the approx-
imation errors, we can guarantee \widehat x to be a near-stationary point of \phi . On finding \widehat y,
we use a cutting-plane method. Since d is strongly concave, a cutting plane can be
generated at a query point y \geq 0, though we can only have an estimate of \nabla d(y) by
approximately solving min\bfx \Phi (x,y). It is unclear whether the same idea works if we
directly play with the augmented (or ordinary) Lagrangian dual function because it
is not strongly concave.
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3.1. Preparatory lemmas. We first establish a few lemmas. The next lemma
indicates that the complexity of solving min\bfx \Phi (x,y) by the APG method can be
independent of \beta if \| y\| is in the same order of \| \=y\| . This fact is the key for us to
design a better FOM for solving ALM subproblems.

Lemma 3.1. Suppose \=x is the minimizer of \phi in (3.2). Then \=y = [\bfittheta (\=x)]+ is the
solution of max\bfy \geq \bfzero d(y), and (\=x, \=y) is the saddle point of \Phi . In addition, let (x\ast , z\ast )
be the point in Assumption 4. Then

(3.6) \| \=y\| = \| [\bfittheta (\=x)]+\| \leq 2\| \bfz \ast \| +\| \bfz \| 
\beta .

Proof. It is easy to see that \=y = [\bfittheta (\=x)]+ is the solution of max\bfy \geq \bfzero d(y) and (\=x, \=y)
is a saddle point of \Phi ; cf. [34, Cor. 37.3.2]. We only need to show (3.6). Since \=x is
the minimizer of \phi , it holds that

F (\=x)+ \beta 
2
\| [\bfittheta (\=x)]+\| 2 \leq F (x\ast )+ \beta 

2
\| [\bfittheta (x\ast )]+\| 2 = F (x\ast )+ \beta 

2

\bigm\| \bigm\| \bigm\| \bigl[ g(x\ast ) + \bfz 
\beta 

\bigr] 
+

\bigm\| \bigm\| \bigm\| 2 \leq F (x\ast )+ \| \bfz \| 2
2\beta 

,

where the last inequality holds because g(x\ast ) \leq 0 and z \geq 0. By the above inequality
and (1.4), we have

\beta 
2 \| [\bfittheta (\=x)]+\| 

2 \leq \| \bfz \| 2

2\beta + \langle z\ast ,g(\=x)\rangle \leq \| \bfz \| 2

2\beta + \langle z\ast ,\bfittheta (\=x)\rangle \leq \| \bfz \| 2

2\beta + \| z\ast \| \cdot \| [\bfittheta (\=x)]+\| ,

which implies the inequality in (3.6).

Our cutting-plane based FOM for solving max\bfy \geq \bfzero d(y) needs a sufficiently accu-
rate approximation of \nabla d(y) at any query point y. We first give the formula of \nabla d(y)
in Lemma 3.2 and then provide a way to approximate it with a desired accuracy in
Lemma 3.3.

Lemma 3.2. For any y \geq 0, it holds that

(3.7) \nabla d(y) = \beta 
\bigl( 
\bfittheta (x(y)) - y

\bigr) 
,

where x(y) is defined in (3.5). In addition, the following two inequalities hold:

\beta 
\bigl\langle 
y1  - y2,\bfittheta (x(y1)) - \bfittheta (x(y2))

\bigr\rangle 
\leq  - \mu \| x(y1) - x(y2)\| 2 \forall y1,y2 \geq 0,(3.8)

\| x(y1) - x(y2)\| \leq \beta Bg
\mu \| y1  - y2\| \forall y1,y2 \geq 0.(3.9)

Proof. The result in (3.7) follows from the Danskin theorem (cf. [5]). We only
need to show (3.8) and (3.9).

For i = 1, 2, denote xi = x(yi). From the definition of x(y) and the \mu -strong
convexity of F , it holds that

F (x1) + \beta y\top 
1 \bfittheta (x1) \leq F (x2) + \beta y\top 

1 \bfittheta (x2) - \mu 
2 \| x1  - x2\| 2,

F (x2) + \beta y\top 
2 \bfittheta (x2) \leq F (x1) + \beta y\top 

2 \bfittheta (x1) - \mu 
2 \| x1  - x2\| 2.

Adding the above two inequalities gives the result in (3.8). Now, using the Bg-
Lipschitz continuity of \bfittheta , we have (3.9) from (3.8) and complete the proof.

Lemma 3.3 (approximate dual gradient). Given \widehat y \geq 0 and \delta \geq 0, let \widehat x be an
approximate minimizer of \Phi (\cdot , \widehat y) such that dist

\bigl( 
0, \partial \bfx \Phi (\widehat x, \widehat y)\bigr) \leq \delta . Then

\| \bfittheta (\widehat x) - \bfittheta (x(\widehat y))\| \leq Bg
\delta 
\mu ,

\bigm\| \bigm\| \beta \bigl( \bfittheta (\widehat x) - \widehat y\bigr)  - \nabla d(\widehat y)\bigm\| \bigm\| \leq \beta Bg
\delta 
\mu .

Hence, \beta 
\bigl( 
\bfittheta (\widehat x) - \widehat y\bigr) is a good approximation of \nabla d(\widehat y) when \delta is small.
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Proof. From the \mu -strong convexity of F , it follows that for each y \geq 0, \Phi (\cdot ,y) is
\mu -strongly convex, and thus \mu \| \widehat x - x(\widehat y)\| \leq dist

\bigl( 
0, \partial \bfx \Phi (\widehat x, \widehat y)\bigr) \leq \delta , which gives \| \widehat x - 

x(\widehat y)\| \leq \delta 
\mu . Hence, by the Bg-Lipschitz continuity of \bfittheta , we have \| \bfittheta (\widehat x) - \bfittheta (x(\widehat y))\| \leq 

Bg
\delta 
\mu , and thus from (3.7),

\bigm\| \bigm\| \beta \bigl( \bfittheta (\widehat x) - \widehat y\bigr)  - \nabla d(\widehat y)\bigm\| \bigm\| = \beta \| \bfittheta (\widehat x)  - \bfittheta (x(\widehat y))\| \leq \beta Bg
\delta 
\mu .

This completes the proof.

In order to have a verifiable stopping condition, we will compute the violation
of first-order optimality conditions. The following two lemmas quantify the accuracy
levels of solving \widehat y \approx argmax\bfy \geq \bfzero d(y) and \widehat x \approx argmin\bfx \Phi (x, \widehat y) in order to find a
desired-accurate stationary point of (3.2). These results will be used to estimate the
worst-case complexity result.

Lemma 3.4. Given \widehat y \geq 0, it holds that

dist
\bigl( 
0, \partial \phi (\widehat x)\bigr) \leq dist

\bigl( 
0, \partial \bfx \Phi (\widehat x, \widehat y)\bigr) + \beta \| J\bfittheta (\widehat x)\| \cdot \| [\bfittheta (\widehat x)]+  - \widehat y\| \forall \widehat x \in dom(h).

Proof. It is easy to have \partial \phi (\widehat x) = \partial \bfx \Phi (\widehat x, \widehat y) + \beta J\top 
\bfittheta (\widehat x)([\bfittheta (\widehat x)]+  - \widehat y). The desired

result now follows from the triangle inequality and the Cauchy--Schwarz inequality.

Lemma 3.5. Given \=\varepsilon > 0, if \widehat y \geq 0 is an approximate solution of max\bfy \geq \bfzero d(y)
such that \| [\bfittheta (x(\widehat y))]+  - \widehat y\| \leq \=\varepsilon 

3\beta Bg
, and \widehat x is an approximate minimizer of \Phi (\cdot , \widehat y)

such that dist
\bigl( 
0, \partial \bfx \Phi (\widehat x, \widehat y)\bigr) \leq \=\varepsilon 

3 min\{ 1, \mu 
\beta B2

g
\} , then dist

\bigl( 
0, \partial \phi (\widehat x)\bigr) \leq \=\varepsilon .

Proof. Since dist
\bigl( 
0, \partial \bfx \Phi (\widehat x, \widehat y)\bigr) \leq \=\varepsilon \mu 

3\beta B2
g
, we use Lemma 3.3 with \delta = \=\varepsilon \mu 

3\beta B2
g
to have

\| \bfittheta (\widehat x)  - \bfittheta (x(\widehat y))\| \leq \=\varepsilon 
3\beta Bg

. In addition, from the nonexpansiveness of [\cdot ]+, it follows

that \| [\bfittheta (\widehat x)]+ - [\bfittheta (x(\widehat y))]+\| \leq \=\varepsilon 
3\beta Bg

. Because \| [\bfittheta (x(\widehat y))]+ - \widehat y\| \leq \=\varepsilon 
3\beta Bg

, we have from

the triangle inequality that \| [\bfittheta (\widehat x)]+  - \widehat y\| \leq 2\=\varepsilon 
3\beta Bg

. The desired result now follows

from Lemma 3.4 and \| J\bfg (x)\| \leq Bg for all x \in dom(h).

3.2. The case with a single constraint. For simplicity and ease of under-
standing, we start with the case of m = 1, so the bold letters y,\bfittheta are actually
scalars in this subsection. We show the complexity to produce a point \widehat x satisfying
dist

\bigl( 
0, \partial \phi (\widehat x)\bigr) \leq \=\varepsilon for a specified error tolerance \=\varepsilon > 0. By Lemma 3.5, we can

first find a \widehat y \geq 0 such that | [\bfittheta (x(\widehat y))]+  - \widehat y| \leq \=\varepsilon 
3\beta Bg

and then approximately solve

min\bfx \Phi (x, \widehat y) to obtain \widehat x.
Our idea of finding a desired approximate solution \widehat y is to first obtain an interval

that contains the solution \=y = argmax\bfy \geq 0 d(y) and then to apply a bisection method.
The following lemma shows that for a given \widehat y \geq 0, we can either check whether it is a
desired approximate solution or obtain the sign of \nabla d(\widehat y) so that we know the search
direction has a desired solution.

Lemma 3.6. Given \delta > 0 and \widehat y \geq 0, let \widehat x \in dom(h) be a point satisfying
dist

\bigl( 
0, \partial \bfx \Phi (\widehat x, \widehat y)\bigr) \leq \mu \delta 

4Bg
. If

\bigm| \bigm| [\bfittheta (\widehat x)]+  - \widehat y\bigm| \bigm| \leq 3\delta 
4 , then | [\bfittheta (x(\widehat y))]+  - \widehat y| \leq \delta . Oth-

erwise, | [\bfittheta (x(\widehat y))]+  - \widehat y| > \delta 
2 , and \nabla d(\widehat y)(\bfittheta (\widehat x) - \widehat y) > 0.

Proof. From Lemma 3.3 and the condition on \widehat x, it follows that
(3.10)

\bigm| \bigm| \bfittheta (\widehat x) - \bfittheta (x(\widehat y))\bigm| \bigm| \leq \delta 
4 and

\bigm| \bigm| \beta \bigl( \bfittheta (\widehat x) - \widehat y\bigr)  - \nabla d(\widehat y)\bigm| \bigm| \leq \beta \delta 
4 .

Hence, by the nonexpansiveness of [\cdot ]+, it holds that | [\bfittheta (\widehat x)]+  - [\bfittheta (x(\widehat y))]+| \leq \delta 
4 .

Then, by the triangle inequality, we have | [\bfittheta (x(\widehat y))]+  - \widehat y| \leq \delta if | [\bfittheta (\widehat x)]+  - \widehat y| \leq 3\delta 
4

and | [\bfittheta (x(\widehat y))]+  - \widehat y| > \delta 
2 otherwise.
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When | [\bfittheta (\widehat x)]+ - \widehat y| > 3\delta 
4 , it must hold that | \bfittheta (\widehat x) - \widehat y| > 3\delta 

4 because \widehat y \geq 0, and thus

| \beta (\bfittheta (\widehat x) - \widehat y)| > 3\beta \delta 
4 . Therefore, from the second inequality in (3.10), we conclude that

\nabla d(\widehat y) must have the same sign as \bfittheta (\widehat x) - \widehat y because otherwise
\bigm| \bigm| \beta \bigl( \bfittheta (\widehat x) - \widehat y\bigr)  - \nabla d(\widehat y)\bigm| \bigm| \geq 

| \beta (\bfittheta (\widehat x) - \widehat y)| > 3\beta \delta 
4 . This completes the proof.

By this lemma, we design an interval search algorithm that can either return a
point \widehat y \geq 0 such that | [\bfittheta (x(\widehat y))]+  - \widehat y| \leq \delta or return an interval Y = [a, b] \subseteq [0,\infty )
that contains the solution \=y. The pseudocode is shown in Algorithm 3.

Algorithm 3: Interval search: Y = IntV(\beta , z, \delta , Lmin, \gamma 1, \gamma 2).

\bfone Input: multiplier vector z \geq 0, penalty \beta > 0, target accuracy \delta > 0, Lmin > 0, and
\gamma 1 > 1, \gamma 2 \geq 1

\bftwo Overhead: define \bfittheta (x) = g(x) + \bfz 
\beta 
, \Phi (x,y) as in (3.3), and \=\varepsilon = \mu \delta 

4Bg
.

\bfthree Initial step: call Alg. 2: \widehat x = APG(\psi , h, \mu , Lmin, \=\varepsilon , \gamma 1, \gamma 2) with \psi = \Phi (\cdot , 0) - h.  \triangleleft so

dist
\bigl( 
0, \partial \bfx \Phi (\widehat x, 0)\bigr) \leq \mu \delta 

4Bg

\bffour if [\bfittheta (\widehat x)]+ \leq 3\delta 
4

then
\bffive Return Y = \{ 0\} and stop.  \triangleleft otherwise, \nabla d(0) is positive

\bfsix Let a = 0, b = 1
\beta 

and call Alg. 2: \widehat x = APG(\psi , h, \mu , Lmin, \=\varepsilon , \gamma 1, \gamma 2) with \psi = \Phi (\cdot , b) - h.  \triangleleft 

set b = O( 1
\beta 
)

\bfseven while \| [\bfittheta (\widehat x)]+  - b\| > 3\delta 
4

and \bfittheta (\widehat x) - b > 0 do
\bfeight let a\leftarrow b, and increase b\leftarrow 2b.  \triangleleft fine to multiply b by a constant \sigma > 1
\bfnine call Alg. 2: \widehat x = APG(\psi , h, \mu , Lmin, \=\varepsilon , \gamma 1, \gamma 2) with \psi = \Phi (\cdot , b) - h.

\bfone \bfzero if \| [\bfittheta (\widehat x)]+  - b\| \leq 3\delta 
4

then
\bfone \bfone Return Y = \{ b\} and stop.  \triangleleft found \widehat y = b such that | [\bfittheta (x(\widehat y))]+  - \widehat y| \leq \delta 
\bfone \bftwo else
\bfone \bfthree Return Y = [a, b] and stop.  \triangleleft found an interval containing \=y

Once the stopping condition in line 4 or 10 is satisfied, then by Lemma 3.6 we
immediately obtain a desired \widehat y such that | [\bfittheta (x(\widehat y))]+ - \widehat y| \leq \delta . The next lemma shows
that the algorithm must exit the while loop within finitely many iterations.

Lemma 3.7. Given \delta > 0, if b \geq 2\| \bfz \ast \| +\| \bfz \| 
\beta and dist

\bigl( 
0, \partial \bfx \Phi (\widehat x, b)\bigr) \leq \mu \delta 

4Bg
, then

either \| [\bfittheta (\widehat x)]+  - b\| \leq 3\delta 
4 or \bfittheta (\widehat x) - b < 0.

Proof. From Lemma 3.1, it follows that \=y = [\bfittheta (x(\=y))]+ \leq 2\| \bfz \ast \| +\| \bfz \| 
\beta . The result

in (3.8) indicates the decreasing monotonicity of \bfittheta (x(y)) with respect to y. Hence,

if b \geq 2\| \bfz \ast \| +\| \bfz \| 
\beta , then \bfittheta (x(b)) \leq \bfittheta (x(\=y)) \leq 2\| \bfz \ast \| +\| \bfz \| 

\beta \leq b, and thus \bfittheta (x(b))  - b \leq 0.

Now if | [\bfittheta (\widehat x)]+  - b| > 3\delta 
4 , we know from Lemma 3.6 that \nabla d(b)

\bigl( 
\bfittheta (\widehat x)  - b

\bigr) 
> 0, and

thus \bfittheta (\widehat x) - b < 0 since \nabla d(b) = \beta (\bfittheta (x(b)) - b) \leq 0. This completes the proof.

When Algorithm 3 exits the while loop, it can output a single point or an interval.
The lemma below shows that if an interval is returned, then it will contain the solution
\=y.

Lemma 3.8. Given \delta > 0, let Y be the return from Algorithm 3. If Y contains
a single point \widehat y, then | [\bfittheta (x(\widehat y))]+  - \widehat y| \leq \delta . Otherwise, Y is an interval [a, b], and it
holds that \nabla d(a) > 0,\nabla d(b) < 0, and \=y \in [a, b].

Proof. If Y contains a single point \widehat y, then the condition in either line 4 or 10 of Al-
gorithm 3 is satisfied, and we immediately have | [\bfittheta (x(\widehat y))]+ - \widehat y| \leq \delta from Lemma 3.6.

Now suppose that Y is an interval [a, b]. From Lemma 3.6 and the setting in
line 8 of Algorithm 3, we always have \nabla d(a) > 0. When the algorithm exits the while
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loop and returns an interval, we have \| [\bfittheta (\widehat x)]+  - b\| > 3\delta 
4 but \bfittheta (\widehat x)  - b \leq 0. Then it

follows from Lemma 3.6 that \nabla d(b) < 0. Therefore, the unique solution \=y must lie in
(a, b) by the mean-value theorem and the strong concavity of d.

Remark 3.1. Suppose Algorithm 3 returns an interval [a, b]. Then Lemma 3.7
indicates that b \leq 1

\beta max\{ 1, 4\| z\ast \| + 2\| z\| \} , and in addition, at most T + 2 calls
are made to Algorithm 2, where T is the smallest nonnegative integer such that
2T \geq 2\| z\ast \| + \| z\| .

Suppose Algorithm 3 returns an interval [a, b]. We can then use the bisection
method to obtain a desired point \widehat y. The pseudocode is given in Algorithm 4.

Algorithm 4: Bisection method for max\bfy \geq 0 d(y):
(\widehat x, \widehat y) = BiSec(\beta , z, \delta , Lmin, \gamma 1, \gamma 2).

\bfone Input: multiplier vector z \geq 0, penalty \beta > 0, target accuracy \delta > 0, Lmin > 0, and
\gamma 1 > 1, \gamma 2 \geq 1

\bftwo Overhead: define \bfittheta (x) = g(x) + \bfz 
\beta 
, \Phi (x,y) as in (3.3), and \=\varepsilon = \mu \delta 

4Bg
.

\bfthree Call Alg. 3: Y = IntV(\beta , z, \delta , Lmin, \gamma 1, \gamma 2) and denote it as [a, b].  \triangleleft If Y is a singleton,
then a = b

\bffour while b - a > \mu \delta 
\mu +\beta B2

g
do

\bffive let c = a+b
2

and call Alg. 2: \widehat x = APG(\psi , h, \mu , Lmin, \=\varepsilon , \gamma 1, \gamma 2) with \psi = \Phi (\cdot , c) - h
\bfsix if | [\bfittheta (\widehat x)]+  - c| \leq 3\delta 

4
then

\bfseven Let \widehat y = c, return (\widehat x, \widehat y), and stop

\bfeight else if \bfittheta (\widehat x) - c > 0 then
\bfnine let a\leftarrow c

\bfone \bfzero else
\bfone \bfone let b\leftarrow c.

\bfone \bftwo Let \widehat y = a+b
2

and \widehat x = APG(\psi , h, \mu , Lmin, \=\varepsilon , \gamma 1, \gamma 2) with \psi = \Phi (\cdot , \widehat y) - h, return (\widehat x, \widehat y), and
stop.

By Lemma 3.6 and the lemma below, it holds that the returned point \widehat y from
Algorithm 4 must satisfy | [\bfittheta (x(\widehat y))]+  - \widehat y| \leq \delta .

Lemma 3.9. Let Y = [a, b] \subseteq (0,\infty ). If \nabla d(a) > 0, \nabla d(b) < 0, and b - a \leq \mu \delta 
\mu +\beta B2

g

for a positive \delta , then | [\bfittheta (x(\widehat y))]+  - \widehat y| \leq \delta for any \widehat y \in [a, b].

Proof. Recall from Lemma 3.1 that \=y = [\bfittheta (x(\=y))]+. Hence, for any \widehat y \in [a, b], we
have

\| [\bfittheta (x(\widehat y))]+  - \widehat y\| = \| [\bfittheta (x(\widehat y))]+  - \widehat y  - [\bfittheta (x(\=y))]+ + \=y\| 
\leq \| [\bfittheta (x(\widehat y))]+  - [\bfittheta (x(\=y))]+\| + \| \widehat y  - \=y\| 
\leq \| \bfittheta (x(\widehat y)) - \bfittheta (x(\=y))\| + \| \widehat y  - \=y\| 
\leq Bg\| x(\widehat y) - x(\=y)\| + \| \widehat y  - \=y\| 

\leq \beta B2
g

\mu \| \widehat y  - \=y\| + \| \widehat y  - \=y\| ,(3.11)

where we have used the nonexpansiveness of [\cdot ]+ in the second inequality, the third
inequality follows from (3.1), and the last inequality holds because of (3.9). Now,
since \=y \in [a, b], we have \| \widehat y  - \=y\| \leq b  - a \leq \mu \delta 

\mu +\beta B2
g
, and hence the desired result

follows.
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Remark 3.2. Since the bisection method halves the interval every time, it takes

at most \lceil log2
(b - a)(\mu +\beta B2

g)

\mu \delta \rceil + halves to reduce an initial interval [a, b] to one with

length no larger than \mu \delta 
\mu +\beta B2

g
. Notice a \geq 0 and b \leq 1

\beta max\{ 1, 4\| z\ast \| + 2\| z\| \} from

Remark 3.1. Hence, after Y is obtained, Algorithm 4 will call Algorithm 2 at most\bigl\lceil 
log2

max\{ 1, 4\| \bfz \ast \| +2\| \bfz \| \} (\mu +\beta B2
g)

\beta \mu \delta 

\bigr\rceil 
+
+ 1 times.

Below we establish the complexity result of Algorithm 4 to return \widehat y.
Theorem 3.10 (iteration complexity of BiSec). Under Assumptions 1--4, Algo-

rithm 4 needs at most T evaluations on f , \bfittheta , \nabla f , and J\bfittheta to output \widehat x and \widehat y \geq 0 that
satisfy dist

\bigl( 
0, \partial \bfx \Phi (\widehat x, \widehat y)\bigr) \leq \=\varepsilon and | [\bfittheta (x(\widehat y))]+  - \widehat y| \leq \delta , where \=\varepsilon = \mu \delta 

4Bg
, and

T = K
\Bigl( 
1 + \lceil log\gamma 1

L\bfz 
Lmin
\rceil +
\Bigr) \Biggl( 

1 + 2

\biggl\lceil 
2
\sqrt{} 

\gamma 1L\bfz 
\mu 

log

\biggl( 
Dh
\=\varepsilon 

\biggl( \surd 
\gamma 1L\bfz +

L\bfz \surd 
Lmin

\biggr) \surd 
2\gamma 1L\bfz + \mu 

\biggr) \biggr\rceil 
+

\Biggr) 
,

with L\bfz = Lf + Lgmax\{ 1, 4\| z\ast \| + 2\| z\| \} and

(3.12) K = 3 + \lceil log2(2\| z\ast \| + \| z\| )\rceil + +

\biggl\lceil 
log2

max
\bigl\{ 
1, 4\| \bfz \ast \| +2\| \bfz \| 

\bigr\} 
(\mu +\beta B2

g)

\beta \mu \delta 

\biggr\rceil 
+

.

Proof. By Remarks 3.1 and 3.2, Algorithm 4 calls Algorithm 2 at most K times,
where K is given in (3.12). Notice that the gradient of \psi = \Phi (\cdot , b) - h is Lipschitz con-
tinuous with constant Lf+\beta bLg. Since b \leq 1

\beta max\{ 1, 4\| z\ast \| +2\| z\| \} from Remark 3.1,
we apply Corollary 2.3 to obtain the desired result.

3.3. The case with multiple constraints. In this subsection, we consider
the case of m > 1. Similar to the case of m = 1, we use a cutting-plane method
to approximately solve max\bfy \geq \bfzero d(y). The next lemma is the key. It provides the
foundation to generate a cutting plane if a query point is not sufficiently close to the
solution \=y = argmax\bfy \geq \bfzero d(y).

Lemma 3.11. Let b > 0, and suppose \| \=y\| \leq b. Given \delta > 0 and \widehat y \geq 0, let\widehat x \in dom(h) be a point satisfying dist
\bigl( 
0, \partial \bfx \Phi (\widehat x, \widehat y)\bigr) \leq min\{ \mu \delta 

4Bg
, \mu 2\delta 
8Bg(\mu +\beta B2

g)
\} . If

\| [\bfittheta (\widehat x)]+  - \widehat y\| \leq 3\delta 
4 , then \| [\bfittheta (x(\widehat y))]+  - \widehat y\| \leq \delta . Otherwise,

\bigm\| \bigm\| [\bfittheta (x(\widehat y))]+  - \widehat y\bigm\| \bigm\| > \delta 
2 ,

and also \langle \bfittheta (\widehat x)  - \widehat y,y  - \widehat y\rangle > 0 for any y \in \scrB \eta (\=y) \cap \scrB +
b , where \eta = min\{ b, \eta +\} , and

\eta + is the positive root of the equation

(3.13)
\mu +\beta B2

g

\mu 

\Bigl( 
\eta +

\sqrt{} 
2\eta Bd
\beta 

\Bigr) 
= \delta 

4 , with Bd = max\bfy \in \scrB +
b
\nabla d(y).

Proof. By the same arguments in the proof of Lemma 3.6, we can show that
\| [\bfittheta (x(\widehat y))]+  - \widehat y\| \leq \delta if \| [\bfittheta (\widehat x)]+  - \widehat y\| \leq 3\delta 

4 and \| [\bfittheta (x(\widehat y))]+  - \widehat y\| > \delta 
2 otherwise.

Hence, we only need to show that \langle \bfittheta (\widehat x)  - \widehat y,y  - \widehat y\rangle > 0 for any y \in \scrB \eta (\=y) \cap \scrB +
b in

the latter case, and we prove this by contradiction.
Suppose \| [\bfittheta (\widehat x)]+  - \widehat y\| > 3\delta 

4 and the following condition holds:

(3.14) \langle \bfittheta (\widehat x) - \widehat y,y  - \widehat y\rangle \leq 0 for some y \in \scrB \eta (\=y) \cap \scrB +
b .

By the \beta -strong concavity of d, it holds that

(3.15) d(y) \leq d(\widehat y) + \langle \nabla d(\widehat y),y  - \widehat y\rangle  - \beta 
2 \| y  - \widehat y\| 2.

From the mean-value theorem, it follows that there is \widetilde y between y and \=y such that
d(y) - d(\=y) = \langle \nabla d(\widetilde y),y - \=y\rangle \geq  - \eta Bd, where the inequality holds because y \in \scrB \eta (\=y)
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and \widetilde y must fall in \scrB +
b . Since d(\=y) \geq d(\widehat y), we have d(\widehat y) - d(y) \leq d(\=y) - d(y) \leq \eta Bd.

Hence, (3.14) and (3.15) imply

(3.16) \beta 
2 \| y  - \widehat y\| 2 \leq \eta Bd + \langle \beta (\bfittheta (\widehat x) - \widehat y) - \nabla d(\widehat y), \widehat y  - y\rangle .

From Lemma 3.3 and the condition dist
\bigl( 
0, \partial \bfx \Phi (\widehat x, \widehat y)\bigr) \leq \mu 2\delta 

8Bg(\mu +\beta B2
g)
, it follows that

\| \beta (\bfittheta (\widehat x)  - \widehat y)  - \nabla d(\widehat y)\| \leq \beta \mu \delta 
8(\mu +\beta B2

g)
, which together with (3.16) and the Cauchy--

Schwarz inequality gives

\beta 
2 \| y  - \widehat y\| 2 \leq \eta Bd +

\beta \mu \delta 
8(\mu +\beta B2

g)
\| \widehat y  - y\| .

Solving the above inequality, we have \| y - \widehat y\| \leq 
\sqrt{} 

2\eta Bd
\beta + \mu \delta 

4(\mu +\beta B2
g)
, and since \| y - \=y\| \leq 

\eta , it holds that \| \=y - \widehat y\| \leq \eta +
\sqrt{} 

2\eta Bd
\beta + \mu \delta 

4(\mu +\beta B2
g)
. Now, noting that (3.11) also holds

for the case of m > 1 as its proof does not rely on m = 1, we have
(3.17)

\| [\bfittheta (x(\widehat y))]+ - \widehat y\| \leq \mu +\beta B2
g

\mu 

\Bigl( 
\eta +

\sqrt{} 
2\eta Bd
\beta + \mu \delta 

4(\mu +\beta B2
g)

\Bigr) 
=

\mu +\beta B2
g

\mu 

\Bigl( 
\eta +

\sqrt{} 
2\eta Bd
\beta 

\Bigr) 
+ \delta 

4 \leq \delta 
2 ,

where the last inequality follows from the choice of \eta .
However, we know that when \| [\bfittheta (\widehat x)]+ - \widehat y\| > 3\delta 

4 , it holds that \| [\bfittheta (x(\widehat y))]+ - \widehat y\| >
\delta 
2 , and (3.17) contradicts this fact. Therefore, the assumption in (3.14) cannot hold.
This completes the proof.

Suppose \| \=y\| \leq b for some b > 0. For a given \widehat y \geq 0, let \widehat x satisfy the condition
required in Lemma 3.11. Then, if \| [\bfittheta (\widehat x)]+ - \widehat y\| > 3\delta 

4 , we find a half-space containing

the set \scrB \eta (\=y) \cap \scrB +
b , whose volume is at least 4 - mVm(\eta ) if \eta \leq b. Therefore, we

can apply a cutting-plane method to find a near-optimal \widehat y. In order to have a good
scalability to m, we choose the volumetric-center cutting-plane (VCCP) method [1,
37]. Below we first give the more efficient version of VCCP in [1] and then adapt it
to solve our problem.

Volumetric-center cutting-plane (VCCP) method. Let \scrC be a convex set in
\BbbR m. Suppose that there is a separation oracle. Given a point \~y \in \BbbR m, the separation
oracle can either tell \~y \in \scrC or return one vector a such that a\top y > a\top \~y for all y \in \scrC .
By using the oracle, VCCP aims to solve the feasibility problem: find a point y \in \scrC 
or show that the volume of \scrC is less than a given positive number \rho .

Let \scrP = \{ y \in \BbbR m : Ay \geq b\} be a polytope with nonempty interior. For each
interior point y in \scrP , i.e., Ay  - b > 0, the volumetric barrier function is defined as

(3.18) V (y) = 1
2 log

\bigl( 
det

\bigl( 
A\top S(y) - 2A

\bigr) \bigr) 
, with S(y) = Diag(Ay  - b),

where det(\cdot ) denotes the determinant. The minimizer of V (\cdot ) is called the volumetric
center (VC) of \scrP . Let
(3.19)

Q(y) = A\top S(y) - 2Diag(p(y))A, with p(y) = diag
\Bigl( 
S(y) - 1A(A\top S(y) - 2A) - 1A\top S(y) - 1

\Bigr) 
.

With these notations, the pseudocode of the VCCP is given in Algorithm 5, where
we define Sk = S(yk), Qk = Q(yk), V k(yk) = V (yk), pk = p(yk), and pkmin =
min1\leq i\leq m p

k
i by using (3.18) and (3.19) for \scrP = \scrP k.

The lemma below is obtained from Lemma 3.1 in [1] and its proof.
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Algorithm 5: Volumetric-center cutting-plane (VCCP) method.

\bfone Initialization: choose a polytope \scrP 0 = \{ y : A0y \geq b0\} that has a VC y0 in the interior

of \scrP 0, choose pmin \in (0, 1), \tau > 0, and 0 < c1 \leq c2; set k = 0.

\bftwo while V k(yk) < V kmax do
\bfthree if pkmin \geq pmin then
\bffour Call the separation oracle to check whether yk \in \scrC . If so, return yk and stop.

Otherwise, obtain \~a from the oracle such that \~a\top y > \~a\top yk \forall y \in \scrC . Let
Ak+1 = [Ak; \~a\top ] and bk+1 = [bk; \~b] with

(3.20) \~b = \~a\top yk  - 1\surd 
\tau 

\sqrt{} 
\~a\top 
\bigl( 
(Ak)\top (Sk) - 2Ak

\bigr)  - 1
\~a;

\bffive else
\bfsix Suppose pkj = pkmin. Let [Ak+1,bk+1] be obtained by removing the jth row from

[Ak,bk];

\bfseven Let \scrP k+1 = \{ y : Ak+1y \geq bk+1\} ; start from yk and apply a sequence of pure Newton

steps to find yk+1 as an approximate VC of \scrP k+1 such that

(3.21) \| (Qk+1) - 1\nabla V k+1(yk+1)\| \bfQ k+1 \leq min
\bigl\{ 
c1, (2

\sqrt{} 
pk+1
min  - p

k+1
min )

1
2 c2
\bigr\} 
;

set k \leftarrow k + 1.

Lemma 3.12. Suppose \scrC \subseteq \scrP 0 and c1 \leq c2 \leq 0.03. Let V kmax = log Vm(1)
\rho +

m log(nk) + 0.00135, where nk is the number of rows of Ak and Vm(1) is the volume
of a unit ball in \BbbR m. If Algorithm 5 terminates because V k(y) \geq V kmax for some k,
then the volume of \scrC is smaller than \rho .

Also we have the following theorem from [1].

Theorem 3.13. Suppose that A0 has 2m rows. Let pmin = 0.005, \tau = 0.007, c1 =

0.0001, c2 = 0.00027, and V kmax = log Vm(1)
\rho +m log(nk)+0.00135 in Algorithm 5 with

\rho \in (0, Vm(1)). Then at most five Newton steps are needed to ensure the condition in
(3.21). In addition, Algorithm 5 must terminate in\biggl\lceil 

\Gamma 

\biggl( 
m logm+ log

Vm(1)

\rho 
+ 6m - V 0(y0)

\biggr) 
+ 16m+ 1

\biggr\rceil 
calls to the separation oracle, where \Gamma \leq 5406 is a universal constant.

Proof. From (3.8) to (3.9) in the proof of [1, Theorem 3.2], we have that V k(yk) \geq 
V kmax occurs if
(3.22)

V 0(y0)+ k
2\Delta V  - m

2 (\Delta V
++\Delta V  - ) \geq log Vm(1)

\rho +m log(1+ 1
pmin

)+m logm+0.00135,

where \Delta V + = 0.00301, \Delta V  - = 0.00264, and \Delta V = \Delta V +  - \Delta V  - = 0.00037 by
Theorems 6.4 and 6.5 and Corollary 6.6 in [1]. We complete the proof by solving
(3.22) for k and noting that log(1 + 1

pmin
) \leq 6.

Remark 3.3. From the proof of Theorem 6.4 in [1], if each yk is the VC of \scrP k,
then \Delta V + = 1

2 log(1+\tau ) and \Delta V  - = 1
2 log(1 - pmin). In this case, the constant \Gamma can

be significantly reduced by increasing \tau . For example, let \tau = 2 and pmin = 0.005.
Then \Delta V + < 0.5494, \Delta V  - < 0.0027, and \Delta V > 0.5466. To have (3.22), it suffices

to let k \geq 3.66
\bigl( 
m logm+ log Vm(1)

\rho + 6m - V 0(y0)
\bigr) 
+ 2m+ 1. Notice that if \tau = \infty 

in (3.20), the generated cut (\~a,\~b) will pass through yk. Roughly speaking, a larger
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\tau gives a deeper cut and reduces the constant \Gamma in Theorem 3.13, but more Newton
iterations will be needed to find a sufficiently accurate VC.

From Lemma 3.12 and Theorem 3.13, we conclude that if \scrC \subseteq \scrP 0 and the volume
of \scrC is no smaller than \rho , then Algorithm 5 must be able to find a point \~y \in \scrC .
The proof of the above theorem is essentially by the logic that V k(yk) \geq V kmax will
eventually occur if a point in \scrC is never found. Below we exploit this idea and
adapt the VCCP method to solve our problem in Algorithm 6, where nk denotes
the number of rows of Ak for each k \geq 0. Notice that from Lemma 3.11, if \| \=y\| \leq b
and \scrC := \scrB \eta (\=y)\cap \scrB +

b \subseteq \scrP 0, then the cut (\~a,\~b) generated from line 18 satisfies \~a\top y > \~b
for all y \in \scrC and thus \scrC \subseteq \scrP k for all k \geq 0. The checking in lines 7 and 9 ensures
that the subproblem solved in line 12 will be strongly convex and have a bounded
smoothness constant. Also notice that different from what we do in Algorithm 5,
we fix pmin = 0.005, c1 = 0.0001, c2 = 0.00027 but only leave \tau to be tuned in
Algorithm 6.

Algorithm 6: VCCP method for max\bfy \geq \bfzero d(y):
(\widehat x, \widehat y,FLAG) = VCCP(\beta , z, \delta , b, Lmin, \gamma 1, \gamma 2).

\bfone Input: multiplier vector z \geq 0, penalty \beta > 0, target accuracy \delta > 0, b > 0, Lmin > 0,
and \gamma 1 > 1, \gamma 2 \geq 1

\bftwo Overhead: define \bfittheta (x) = g(x) + \bfz 
\beta 
, \Phi (x,y) as in (3.3), \=\varepsilon = min\{ \mu \delta 

4Bg
, \mu 2\delta 
8Bg(\mu +\beta B2

g)
\} , and

FLAG = 0.

\bfthree Let \eta + be the positive root of (3.13), \eta \leftarrow min\{ b, \eta +\} , and \rho = 4 - mVm(\eta ); set k = 0.

\bffour Set A0 = [I; - I],b0 = [0m; - b1n]; let \scrP 0 = \{ y \in \BbbR m : A0y \geq b0\} , y0 = b
2
1; choose

\tau \geq 0.007

\bffive while V k(yk) < V kmax := log
Vm(1)
\rho 

+m log(nk) + 0.00135 do

\bfsix if pkmin \geq 0.005 then
\bfseven if yk \not \geq 0 then
\bfeight Let \~a = ei0 , where i0 = argmini\in [m] y

k
i  \triangleleft to ensure a check point in \BbbR m+

\bfnine else if \| yk\| > b then
\bfone \bfzero Let \~a =  - yk  \triangleleft to ensure a check point in \scrB b
\bfone \bfone else
\bfone \bftwo Call Alg. 2: xk = APG(\psi , h, \mu , Lmin, \=\varepsilon , \gamma 1, \gamma 2) with \psi = \Phi (\cdot ,yk) - h
\bfone \bfthree if \| [\bfittheta (xk)]+  - yk\| \leq 3\delta 

4
then

\bfone \bffour Let (\widehat x, \widehat y) = (xk,yk) and FLAG = 1;
\bfone \bffive Return (\widehat x, \widehat y,FLAG), and stop  \triangleleft found \widehat y such that | [\bfittheta (x(\widehat y))]+  - \widehat y| \leq \delta 
\bfone \bfsix else
\bfone \bfseven Let \~a = \bfittheta (xk) - yk

\bfone \bfeight Let Ak+1 = [Ak; \~a\top ] and bk+1 = [bk; \~b] with \~b given by (3.20)

\bfone \bfnine else
\bftwo \bfzero Suppose pkj = pkmin. Let [Ak+1,bk+1] be obtained by removing the jth row from

[Ak,bk]

\bftwo \bfone Let \scrP k+1 = \{ y : Ak+1y \geq bk+1\} ; start from yk and apply a sequence of pure Newton

steps to find yk+1 as an approximate VC of \scrP k+1 such that (3.21) holds with
c1 = 0.0001 and c2 = 0.00027.

\bftwo \bftwo Increase k \leftarrow k + 1.

\bftwo \bfthree Let (\widehat x, \widehat y) = (xk,yk) and return (\widehat x, \widehat y,FLAG)

Similar to Theorem 3.13, we are able to show the finite convergence of Algo-
rithm 6.
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Theorem 3.14. Under Assumptions 1--4, Algorithm 6 with \tau = 0.007 will stop

within N iterations, where N =
\bigl\lceil 
\Gamma 
\bigl( 
m logm + m log

\surd 
2b
\eta + 6m

\bigr) 
+ 16m + 1

\bigr\rceil 
, \eta is

defined in line 3 of the algorithm, and \Gamma \leq 5406 is a universal constant. In addition,
if \| \=y\| \leq b, Algorithm 6 must return FLAG = 1 and a vector \widehat y \geq 0 satisfying
\| [\bfittheta (x(\widehat y))]+  - \widehat y\| \leq \delta with at most T evaluations of f , \nabla f , \bfittheta , and J\bfittheta , where
(3.23)

T = N
\Bigl( 
1 + \lceil log\gamma 1

L\psi 
Lmin

\rceil +
\Bigr) \Biggl( 

1 + 2

\biggl\lceil 
2
\sqrt{} 
\gamma 1L\psi 
\mu 

log

\biggl( 
Dh
\=\varepsilon 

\biggl( \sqrt{} 
\gamma 1L\psi +

L\psi \surd 
Lmin

\biggr) \sqrt{} 
2\gamma 1L\psi + \mu 

\biggr) \biggr\rceil 
+

\Biggr) 
,

with L\psi := Lf + \beta bLg, and \=\varepsilon = min\{ \mu \delta 
4Bg

, \mu 2\delta 
8(\mu Bg+\beta B3

g)
\} .

Proof. First, notice that y0 is the VC of \scrP 0. Second, it is straightforward to

compute V 0(y0) = m log 2
\surd 
2
b and log Vm(1)

\rho = m log 4
\eta . Hence, from the proof of

Theorem 3.13, V k(yk) \geq V kmax must occur if k \geq 
\bigl\lceil 
\Gamma 
\bigl( 
m logm + m log

\surd 
2b
\eta + 6m

\bigr) 
+

16m+ 1
\bigr\rceil 
, where \Gamma \leq 5406 is a universal constant.

It is obvious that \scrC := \scrB \eta (\=y) \cap \scrB +
b \subseteq \scrP 0 by the choice of \scrP 0. Below we argue

that \scrC \subseteq \scrP k for all k \geq 0 before the algorithm stops. First, if \scrP k+1 is obtained by
deleting one row from the system of \scrP k, then \scrP k \subseteq \scrP k+1; second, if \~a is obtained
from line 8 or line 10 of Algorithm 6, the generated cut (\~a,\~b) will not cut any point
from \scrC ; third, if \~a is obtained from line 17, by Lemma 3.11, the generated cut (\~a,\~b)
will not cut any point from \scrC either. Therefore, if \scrC \subseteq \scrP k, then \scrC \subseteq \scrP k+1, and thus
by induction \scrC \subseteq \scrP k for all k \geq 0. Now, since the volume of \scrC is no smaller than \rho ,
we conclude that there must be a point xk from line 12 of Algorithm 6 such that the
condition in line 13 is satisfied. Hence, the algorithm will return FLAG = 1 and a
vector \widehat y \geq 0 satisfying \| [\bfittheta (x(\widehat y))]+  - \widehat y\| \leq \delta by Lemma 3.11.

Finally, notice that when Algorithm 2 is called in line 12, \| yk\| \leq b, and thus the
smooth function \psi has an (Lf + \beta Lgb)-Lipschitz continuous gradient. Since Algo-
rithm 2 is called at most N times, we have from Corollary 2.3 that the total number
of function and gradient evaluations is T given in (3.23).

As discussed in Remark 3.3, the constant \Gamma can be reduced to 3.66 if \tau = 2 is
used, like in our numerical experiments. By Theorem 3.14, we can guarantee finding
a desired approximate solution \widehat y by gradually increasing the search radius b. The
algorithm is shown below.

Algorithm 7: Search by the VCCP method for max\bfy \geq \bfzero d(y):
(\widehat x, \widehat y) = SVCCP(\beta , z, \delta , Lmin, \gamma 1, \gamma 2).

\bfone Input: multiplier vector z \geq 0, penalty \beta > 0, target accuracy \delta > 0, Lmin > 0, and
\gamma 1 > 1, \gamma 2 \geq 1

\bftwo Overhead: define \bfittheta (x) = g(x) + \bfz 
\beta 
, \Phi (x,y) as in (3.3), and set k = 0, b0 = 1

\beta 
and

FLAG = 0.
\bfthree while FLAG = 0 do
\bffour Call Alg. 6: (\widehat x, \widehat y,FLAG) = VCCP(\beta , z, \delta , bk, Lmin, \gamma 1, \gamma 2).
\bffive Let bk+1 \leftarrow 2bk and increase k \leftarrow k + 1.

\bfsix Output (\widehat x, \widehat y).

Theorem 3.15. Under Assumptions 1--4, if \delta \leq 8(\mu +\beta B2
g)

\beta \mu , then the output (\widehat x, \widehat y)
of Algorithm 7 must satisfy dist

\bigl( 
0, \partial \bfx \Phi (\widehat x, \widehat y)\bigr) \leq \=\varepsilon , \widehat y \geq 0, and \| [\bfittheta (x(\widehat y))]+  - \widehat y\| \leq \delta ,

where \=\varepsilon = min\{ \mu \delta 
4Bg

, \mu 2\delta 
8Bg(\mu +\beta B2

g)
\} . In addition, it needs at most T evaluations of f ,
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\nabla f , \bfittheta , and J\bfittheta to give the output, where
(3.24)

T \leq 3CK + 4C
\surd 
\gamma 1 log

\biggl( 
Dh
\=\varepsilon 

\biggl( \sqrt{} 
\gamma 1Lmax +

Lmax\sqrt{} 
Lmin

\biggr) \sqrt{} 
2\gamma 1Lmax + \mu 

\biggr) \left(    K
\sqrt{} 
Lf
\mu 

+

\sqrt{} 
Lg max

\biggl\{ 
1,

2
\sqrt{} 

2\| \bfz \ast \| +\| \bfz \| \surd 
2 - 1

\biggr\} 
\surd 
\mu 

\right)    ,

with the constants defined as

Lmax = Lf + Lg(4\| \bfz \ast \| + 2\| \bfz \| ),

C =
\bigl\lceil 
\Gamma 
\bigl( 
m logm+m logR + 6m

\bigr) 
+ 16m+ 1

\bigr\rceil 
\cdot 
\Bigl( 
1 + \lceil log\gamma 1

Lmax
Lmin

\rceil +
\Bigr) 
,

R =
8
\surd 
2(max\{ 1, 4\| \bfz \ast \| + 2\| \bfz \| \} )

\beta 

\Biggl( 
4(\beta G+ \| \bfz \| + max\{ 1, 4\| \bfz \ast \| + 2\| \bfz \| \} )(\mu + \beta B2

g)
2

\beta (\mu \delta )2
+
\mu + \beta B2

g

\mu \delta 

\Biggr) 
,

K =
\bigl\lceil 
log2(2\| \bfz 

\ast \| + \| \bfz \| )
\bigr\rceil 
+

+ 1,

and \Gamma \leq 5406 is a universal constant.

Proof. By the quadratic formula, we can easily have the positive root of (3.13)
to be

\eta + =

\biggl( 
\mu \delta 

\mu +\beta B2
g

\biggr) 2

4

\biggl( \sqrt{} 
2Bd
\beta +

\sqrt{} 
2Bd
\beta + \mu \delta 

\mu +\beta B2
g

\biggr) 2 \geq 

\biggl( 
\mu \delta 

\mu +\beta B2
g

\biggr) 2

8

\biggl( 
4Bd
\beta + \mu \delta 

\mu +\beta B2
g

\biggr) .
Hence, it holds that

b
\eta +

\leq 
8b

\biggl( 
4Bd
\beta + \mu \delta 

\mu +\beta B2
g

\biggr) 
\biggl( 

\mu \delta 

\mu +\beta B2
g

\biggr) 2 = 8b
\Bigl( 

4Bd(\mu +\beta B
2
g)

2

\beta (\mu \delta )2 +
\mu +\beta B2

g

\mu \delta 

\Bigr) 
.

When b \geq 1
\beta , the right-hand side of the above inequality is greater than one by the

assumption \delta \leq 8(\mu +\beta B2
g)

\beta \mu , and since \eta = min\{ \eta +, b\} in Algorithm 6, we have

(3.25)

b
\eta 
= max\{ b

\eta +
, 1\} \leq 8b

\biggl( 
4Bd(\mu +\beta B

2
g)

2

\beta (\mu \delta )2
+

\mu +\beta B2
g

\mu \delta 

\biggr) 
\leq 8b

\biggl( 
4(\beta G+\| \bfz \| +\beta b)(\mu +\beta B2

g)
2

\beta (\mu \delta )2
+

\mu +\beta B2
g

\mu \delta 

\biggr) 
,

where we have used \nabla d(y) = \beta (g(x(y)) + \bfz 
\beta  - y) in (3.7), and thus the bound of

\nabla d(y) over \scrB +
b satisfies Bd \leq \beta G+ \| z\| + \beta b with G defined in (1.3).

Furthermore, by Lemma 3.1 and Theorem 3.14, Algorithm 6 must return FLAG =

1 and a vector \widehat y satisfying \| [\bfittheta (x(\widehat y))]+  - \widehat y\| \leq \delta when b \geq 2\| \bfz \ast \| +\| \bfz \| 
\beta . Since b0 = 1

\beta 
and bk+1 = 2bk, Algorithm 7 must stop after making at most K calls to Algorithm 6,
where K is the smallest positive integer such that 2K - 1 \geq 2\| z\ast \| + \| z\| , i.e., K =
\lceil log2(2\| z\ast \| + \| z\| )\rceil + + 1. In addition, from bk+1 = 2bk, it holds that

(3.26) bk = 2k

\beta \leq max\{ 1, 4\| \bfz \ast \| +2\| \bfz \| \} 
\beta for each 0 \leq k \leq K  - 1.

In the kth call to Algorithm 6, let \eta k denote the \eta used in line 3 of Algorithm 6,
L\psi k = Lf + \beta Lgbk the gradient Lipschitz constant of the smooth function \psi , and
Tk the total number of gradient and function evaluations. Then, by (3.26) and the
definition of Lmax, we have L\psi k \leq Lmax. Also, from (3.25), (3.26), and the definition

of R, it follows that
\surd 
2bk
\eta k

\leq R for each 0 \leq k \leq K - 1. Moreover, we have from (3.23)

that

Tk \leq C

\Biggl( 
1 + 2

\biggl\lceil 
2
\sqrt{} 

\gamma 1L\psi k
\mu 

log

\biggl( 
Dh
\=\varepsilon 

\biggl( \sqrt{} 
\gamma 1L\psi k +

L\psi k\surd 
Lmin

\biggr) \sqrt{} 
2\gamma 1L\psi k + \mu 

\biggr) \biggr\rceil 
+

\Biggr) 

\leq 3C + 4C
\sqrt{} 

\gamma 1L\psi k
\mu 

log

\biggl( 
Dh
\=\varepsilon 

\biggl( \surd 
\gamma 1Lmax + Lmax\surd 

Lmin

\biggr) \surd 
2\gamma 1Lmax + \mu 

\biggr) 
.
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Notice that
\sqrt{} 
L\psi k \leq 

\sqrt{} 
Lf +

\sqrt{} 
\beta Lgbk and thus\sum K - 1

k=0

\sqrt{} 
L\psi k \leq K

\sqrt{} 
Lf +

\sum K - 1
k=0

\sqrt{} 
\beta Lgbk = K

\sqrt{} 
Lf +

\sqrt{} 
Lg

\surd 
2K - 1\surd 
2 - 1

\leq K
\sqrt{} 
Lf +

\sqrt{} 
Lgmax

\biggl\{ 
1,

2
\surd 

2\| \bfz \ast \| +\| \bfz \| \surd 
2 - 1

\biggr\} 
.

Therefore, T must satisfy the condition in (3.24) since T \leq 
\sum K - 1
k=0 Tk.

4. Overall iteration complexity of the first-order augmented Lagrangian
method. In this section, we specify the implementation details in Algorithm 1. We
use the method derived in section 3 as the subroutine to find each xk+1. In addition,
we choose a geometrically increasing sequence \{ \beta k\} and stop the algorithm once an
\varepsilon -KKT point is obtained. The pseudocode is given in Algorithm 8. Notice that for
each k we aim to find xk+1 such that dist

\bigl( 
0, \partial \phi k(x

k+1)
\bigr) 
\leq \varepsilon k, where \phi k is defined in

(4.3) as the objective of the kth ALM subproblem. In line 10, in case \mu is big or \beta k
is small, we call the APG in order to ensure this by Lemma 3.5.

Algorithm 8: Cutting-plane first-order iALM for problems in the form of
(1.1) with m = O(1).

\bfone Input: \beta 0 > 0, \sigma > 1, tolerance \varepsilon > 0, Lmin > 0, \gamma 1 > 1, and \gamma 2 \geq 1
\bftwo Initialization: choose x0 \in dom(h), and set z0 = 0
\bfthree for k = 0, 1, . . . do

\bffour Choose \varepsilon k \leq min
\bigl\{ 
\varepsilon ,

24Bg(\mu +\beta kB
2
g)

\mu 

\bigr\} 
and set \delta k = \varepsilon k

3\beta kBg
.

\bffive if m = 1 then

\bfsix Call Alg. 4: (xk+1,yk+1) = BiSec(\beta k, z
k, \delta k, Lmin, \gamma 1, \gamma 2)

\bfseven else

\bfeight Call Alg. 7: (xk+1,yk+1) = SVCCP(\beta k, z
k, \delta k, Lmin, \gamma 1, \gamma 2)

\bfnine if m = 1 and \mu 
4\beta kB

2
g
> 1, or m > 1 and min

\Bigl\{ 
\mu 

4\beta kB
2
g
, \mu 2

8\beta kB
2
g(\mu +\beta kB

2
g)

\Bigr\} 
> 1 then

\bfone \bfzero Call Alg. 2: xk+1 = APG(\psi , h, \mu , Lmin, \varepsilon k/3, \gamma 1, \gamma 2) with

\psi (x) = f(x) + \beta k
\bigl\langle 
yk+1,g(x)

\bigr\rangle 
.

\bfone \bfone Update z by zk+1 = [zk + \beta kg(x
k+1)]+.

\bfone \bftwo Let \beta k+1 \leftarrow \sigma \beta k.

\bfone \bfthree if (xk+1, zk+1) is an \varepsilon -KKT point of (1.1) then

\bfone \bffour Output (\=x, \=z) = (xk+1, zk+1) and stop

The next theorem gives a bound on the number of calls to the subroutine.

Theorem 4.1. Let Assumptions 1--4 hold, (\beta 0, \sigma , \varepsilon , \gamma 1, \gamma 2) be the input of Algo-
rithm 8, and \{ (xk,yk, zk)\} k\geq 0 be the generated sequence. Then dist(0, \partial \scrL \beta k(xk+1, zk))

\leq \varepsilon k for each k \geq 0. Suppose \=\varepsilon = min\{ \varepsilon ,
\sqrt{} 

\varepsilon \mu (\sigma  - 1)
8\sigma +1 \} \leq 

\bigl\{ 
\varepsilon ,

24Bg(\mu +\beta kB
2
g)

\mu 

\bigr\} 
for all

k \geq 0. Let \varepsilon k = \=\varepsilon for all k \geq 0. Then, after at most K  - 1 iterations, Algorithm 8
will produce an \varepsilon -KKT point of (1.1), where

(4.1) K = max

\biggl\{ \Bigl\lceil 
log\sigma 

9\| \bfz \ast \| 2

\beta 0\varepsilon 

\Bigr\rceil 
+
,
\Bigl\lceil 
log\sigma 

8\| \bfz \ast \| 
\beta 0\varepsilon 

\Bigr\rceil 
+
,
\Bigl\lceil 
log\sigma 

4
\beta 0\varepsilon 

\Bigr\rceil 
+

\biggr\} 
+ 1.

In addition, the output multiplier vector \=z satisfies

(4.2) \| \=z\| \leq 2\| z\ast \| +
\sqrt{} 

2\sigma 2

8\sigma +1 max
\bigl\{ 
3\| z\ast \| , 2

\sqrt{} 
2\| z\ast \| , 2

\bigr\} 
.
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Proof. For each k \geq 0, define

\bfittheta k(x) = g(x) +
zk

\beta k
, \phi k(x) = F (x) +

\beta k
2

\| [\bfittheta k(x)]+\| ,

\Phi k(x,y) = F (x) + \beta k

\biggl( 
y\top \bfittheta k(x) - 

1

2
\| y\| 2

\biggr) 
.(4.3)

When m = 1, if (xk+1,yk+1) is obtained in line 6 of Algorithm 8, then we have from
Theorem 3.10 that

dist
\bigl( 
0, \partial \bfx \Phi k(x

k+1,yk+1)
\bigr) 
\leq \mu \delta k

4Bg
and

\bigm| \bigm| [\bfittheta k(x(yk+1))]+  - yk+1
\bigm| \bigm| \leq \delta k,

where x(yk+1) = argmin\bfx \Phi k(x,y
k+1). Furthermore, note that if \mu 

4\beta kB2
g
> 1, we will

do line 10 in Algorithm 8 to get a new xk+1 satisfying dist
\bigl( 
0, \partial \bfx \Phi k(x

k+1,yk+1)
\bigr) 
\leq \varepsilon k

3 .

Now, by Lemma 3.5 and the choice of \delta k = \varepsilon k
3\beta kBg

, we get dist
\bigl( 
0, \partial \bfx \scrL \beta k(xk+1, zk)

\bigr) 
=

dist
\bigl( 
0, \partial \phi k(x

k+1)
\bigr) 
\leq \varepsilon k.

When m > 1, by the choice of \varepsilon k and \delta k, it holds that \delta k \leq 8(\mu +\beta kB
2
g)

\beta k\mu 
for

each k. Hence, we can use Theorem 3.15 and Lemma 3.5 in order to show that
dist

\bigl( 
0, \partial \bfx \scrL \beta k(xk+1, zk)

\bigr) 
\leq \varepsilon k by the same arguments as in the case of m = 1.

Therefore, for m \geq 1, if \varepsilon k = \=\varepsilon for all k, we have from Theorem 2.6 that the

inequalities in (2.9) and (2.10) hold. By the choice of \=\varepsilon , it holds that \=\varepsilon 2(8\sigma +1)
2\mu (\sigma  - 1) \leq \varepsilon 

2 .

Since K  - 1 \geq log\sigma 
9\| \bfz \ast \| 2

\beta 0\varepsilon 
, then 9\| \bfz \ast \| 2

2\beta 0\sigma K - 1 \leq \varepsilon 
2 , and thus we have from (2.10) that\sum m

i=1 | zKi gi(xK)| \leq \varepsilon . In addition, noticing
\surd 
2(

\surd 
\sigma +1))\surd 

8\sigma +1
\leq 1 and \=\varepsilon \leq 

\sqrt{} 
\varepsilon \mu (\sigma  - 1)
8\sigma +1 , we

have \=\varepsilon (
\surd 
\sigma + 1)

\sqrt{} 
2

\mu (\sigma  - 1) \leq 
\surd 
\varepsilon , and thus (2.9) implies

\bigm\| \bigm\| [g(xK)]+
\bigm\| \bigm\| \leq 4\| \bfz \ast \| 

\beta 0\sigma K - 1 +
\surd 
\varepsilon \surd 

\beta 0\sigma K - 1
.

Now, by the setting of K in (4.1), we have that both terms on the right-hand side of
the above inequality are no greater than \varepsilon /2. Hence, \| [g(xK)]+\| \leq \varepsilon , and thus xK

must be an \varepsilon -KKT point of (1.1).
To show (4.2), we have from the second inequality in (2.8) and the fact that

\varepsilon k = \=\varepsilon \leq 
\sqrt{} 

\varepsilon \mu (\sigma  - 1)
8\sigma +1 for all k that

\| zk\| \leq 2\| z\ast \| +
\sqrt{} 

2\beta 0\=\varepsilon 2

\mu 
\sigma k - 1
\sigma  - 1 \leq 2\| z\ast \| +

\sqrt{} 
2\beta 0\varepsilon \sigma k

8\sigma +1 \forall k \geq 1.

Hence, for each 1 \leq k \leq K with the K given in (4.1), it holds that

\| zk\| \leq 2\| z\ast \| +
\sqrt{} 

2\beta 0\varepsilon \sigma K

8\sigma +1 \leq 2\| z\ast \| +
\sqrt{} 

2\sigma 2

8\sigma +1 max
\bigl\{ 
3\| z\ast \| , 2

\sqrt{} 
2\| z\ast \| , 2

\bigr\} 
.

Since the output \=z must be one of \{ zk\} Kk=1, we complete the proof.

By Theorem 4.1, we establish the overall iteration complexity of Algorithm 8 to
produce an \varepsilon -KKT point of (1.1). Notice that if m = 1, the complexity result in
Theorem 3.15 is in the same order as that in Theorem 3.10. Hence, we state the
complexity result of Algorithm 8 for m = 1 and m > 1 together.
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1780 YANGYANG XU

Theorem 4.2 (oracle complexity). Suppose that Assumptions 1--4 hold. Let
(\beta 0, \sigma , \varepsilon , \gamma 1, \gamma 2) be the input of Algorithm 8 and \{ (xk,yk, zk)\} k\geq 0 be the generated

sequence. Suppose \=\varepsilon = min
\bigl\{ 
\varepsilon ,

\sqrt{} 
\varepsilon \mu (\sigma  - 1)
8\sigma +1

\bigr\} 
\leq 

\bigl\{ 
\varepsilon ,

24Bg(\mu +\beta kB
2
g)

\mu 

\bigr\} 
for all k \geq 0. Let

\varepsilon k = \=\varepsilon for all k \geq 0. Then, to produce an \varepsilon -KKT point of (1.1), Algorithm 8 needs

at most Ttotal = O
\bigl( 
m
\sqrt{} 

Lf+Lg(1+\| \bfz \ast \| )
\mu | log \varepsilon | 2(logm+ | log \varepsilon | )

\bigr) 
evaluations on f , \nabla f ,

g, and J\bfg .

Proof. Let K be the integer given in (4.1), and let L\bfz k = Lf +Lgmax\{ 1, 4\| z\ast \| +
2\| zk\| \} for 0 \leq k \leq K  - 1. Also, let Tk be the number of evaluations on f , \nabla f ,
g, and J\bfg during the kth iteration of Algorithm 8. From Theorem 3.10 and the
setting \delta k = \varepsilon k

3\beta kBg
, we have that the complexity incurred by line 6 of Algorithm 8

is O(
\sqrt{} 

L
\bfz k

\mu | log \varepsilon | 2). Also, from Theorem 3.15, the complexity incurred by line 8 is

O
\bigl( 
m
\sqrt{} 

L
\bfz k

\mu | log \varepsilon | (logm+ | log \varepsilon | )
\bigr) 
by noting that logR = O(| log \varepsilon | ). In addition, the

complexity incurred by line 10 is O
\bigl( \sqrt{} L

\bfz k

\mu | log \varepsilon | 
\bigr) 
. From (2.8) with \varepsilon t = \=\varepsilon for all t, it

follows that \| zk\| = O(\| z\ast \| ), and thus L\bfz k = O(Lf +Lg(1+\| z\ast \| )) for 0 \leq k \leq K - 1.

Therefore, Tk = O
\bigl( 
m
\sqrt{} 

Lf+Lg(1+\| \bfz \ast \| )
\mu | log \varepsilon | (logm + | log \varepsilon | )

\bigr) 
. Since K = O(| log \varepsilon | )

in (4.1), the total complexity is
\sum K - 1
k=0 Tk = O

\bigl( 
m
\sqrt{} 

Lf+Lg(1+\| \bfz \ast \| )
\mu | log \varepsilon | 2(logm +

| log \varepsilon | )
\bigr) 
, which completes the proof.

Remark 4.1. If \beta 0 is taken in the order of 1
\varepsilon , then K = O(1) in (4.1). In this

case, the total oracle complexity of Algorithm 8 is O
\bigl( 
m
\sqrt{} 

Lf+Lg(1+\| \bfz \ast \| )
\mu | log \varepsilon | (logm+

| log \varepsilon | )
\bigr) 
to produce an \varepsilon -KKT point. The complexity result is in a lower order than

the best one O(\varepsilon  - 
1
2 ) in the literature if m = O(\varepsilon  - q) with q < 1

2 . This affirmatively
answers the question we posed in the beginning. Notice that finding an approximate
VC of a polytope in Algorithm 6 takes \Theta (m3) operations by Newton's method, as the
number of constraints defining each polytope is \Theta (m), as shown in [1]. This cost can
be negligible for a high-dimensional problem, i.e., when n is very big, for which case
the cost of querying an oracle can be much higher. Take the quadratically constrained
quadratic program in (6.1) as an example. Computing the gradients of the objective
and constraint functions needs \Theta (mn2) operations, far more than \Theta (m3) if n\gg m.

5. Extensions to convex or nonconvex problems. In this section, we extend
the idea of the cutting-plane based FOM to constrained problems with a convex or
nonconvex objective. Similar to the strongly convex case, we show that FOMs for
solving problems with O(1) nonlinear functional constraints can achieve a complexity
result of almost the same order as for solving unconstrained problems.

5.1. Extension to the convex case. We still consider the problem in (1.1).
Suppose that the conditions in Assumptions 1 and 2 hold. Instead of the strong
convexity in Assumption 3, we assume the convexity of f in this subsection.

Given a target accuracy \varepsilon > 0, to find an \varepsilon -KKT point of (1.1), we follow [15]
and solve a perturbed strongly convex problem:

(5.1) min
\bfx \in \BbbR n

F\varepsilon (x) := f\varepsilon (x) + h(x), s.t. g(x) := [g1(x), . . . , gm(x)] \leq 0,

where

(5.2) f\varepsilon (x) = f(x) +
\varepsilon 

4Dh
\| x - x0\| 2 with x0 \in dom(h).
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Let \=x \in dom(h) be an \varepsilon 
2 -KKT point of (5.1); i.e., there is \=z \geq 0 such that

dist
\Bigl( 
0, \partial \bfx \scrL 0(\=x, \=z) +

\varepsilon 
2Dh

(\=x - x0)
\Bigr) 
\leq \varepsilon 

2 , \| [g(\=x)]+\| \leq \varepsilon 
2 ,

m\sum 
i=1

| \=zigi(\=x)| \leq 
\varepsilon 

2
,

where \scrL 0 is the Lagrange function of (1.1). Since \| \varepsilon 
2Dh

(\=x  - x0)\| \leq \varepsilon 
2 , (\=x, \=z) must

satisfy the conditions in (1.5), and thus \=x is an \varepsilon -KKT point of (1.1). Based on
this observation, we can apply Algorithm 8 to the perturbed problem (5.1). By
Theorem 4.2 and noticing that f\varepsilon in (5.2) is \varepsilon 

2Dh
-strongly convex, we obtain the

following complexity result.

Theorem 5.1 (complexity result for convex cases). Assume that the conditions
in Assumptions 1 and 2 hold and that f is convex. Given \varepsilon > 0, suppose that (5.1)
has a KKT point x\ast 

\varepsilon with a corresponding multiplier z\ast \varepsilon . Apply Algorithm 8 to find an
\varepsilon 
2 -KKT point \=x of (5.1). Then \=x is an \varepsilon -KKT point of (1.1), and the total number of

evaluations on f , \nabla f , g, and J\bfg is O
\bigl( 
m

\sqrt{} 
Dh

\bigl( 
Lf+Lg(1+\| \bfz \ast 

\varepsilon \| )
\bigr) 

\varepsilon | log \varepsilon | 2(logm+| log \varepsilon | )
\bigr) 
.

5.2. Extension to the nonconvex case. In this subsection, we assume As-
sumptions 1 and 2 but do not assume the convexity of f . For the nonconvex case, we
follow [19] and design an FOM within the framework of the proximal-point method;
namely, we solve a sequence of problems in the form of
(5.3)
\=xk+1 \approx argmin

\bfx \in \BbbR n

\bigl\{ 
Fk(x) := f(x) +Lf\| x - \=xk\| 2 + h(x), s.t. g(x) := [g1(x), . . . , gm(x)] \leq 0

\bigr\} 
.

Under Assumptions 1 and 2, the above problem is convex, and its objective is Lf -
strongly convex. Hence, we can apply Algorithm 8 to find \=xk+1. Let xk+1

\ast be the
unique optimal solution to (5.3). To ensure the existence of a corresponding multiplier
for each k and also a uniform bound, we assume Slater's condition on the original
problem (1.1).

Assumption 5 (Slater's condition). There is xfeas \in relint(h) such that gi(xfeas)
< 0 for all i = 1, . . . ,m.

With Slater's condition, the solution xk+1
\ast to (5.3) must be a KKT point (cf. [34]).

Let zk+1
\ast \geq 0 be a corresponding multiplier. We give a uniform bound of zk+1

\ast below.

Lemma 5.2 (uniform bound of multipliers). Assume Assumptions 1, 2, and
5. Let x\ast be a minimizer of (1.1), and let xk+1

\ast be the KKT point of (5.3) with a
corresponding Lagrangian multiplier zk+1

\ast . Then

(5.4) \| zk+1
\ast \| \leq B\bfz :=

F (\bfx feas) - F (\bfx \ast )+LfD
2
h

mini

\bigl( 
 - gi(\bfx feas)

\bigr) \forall k \geq 0.

Proof. From the KKT system, we have that

(5.5)  - 
m\sum 
i=1

(zk+1
\ast )i\nabla gi(xk+1

\ast ) \in \partial Fk(x
k+1
\ast ), (zk+1

\ast )igi(x
k+1
\ast ) = 0 \forall i = 1, . . . ,m.

Then we have
m\sum 
i=1

(zk+1
\ast )igi(xfeas) \geq 

m\sum 
i=1

(zk+1
\ast )i

\Bigl( 
gi(x

k+1
\ast ) +

\bigl\langle 
xfeas  - xk+1

\ast ,\nabla gi(xk+1
\ast )

\bigr\rangle \Bigr) 
=

\Biggl\langle 
xfeas  - xk+1

\ast ,

m\sum 
i=1

(zk+1
\ast )i\nabla gi(xk+1

\ast )

\Biggr\rangle 
\geq Fk(x

k+1
\ast ) - Fk(xfeas),(5.6)
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where the first inequality is from the convexity of each gi and the nonnegativity of
zk+1
\ast , the equality holds because of the second equation in (5.5), and the last inequality

follows from the convexity of Fk and the first equation in (5.5).
Since the diameter of dom(h) is Dh, it holds that

 - Fk(xk+1
\ast ) + Fk(xfeas) = F (xfeas) + Lf\| xfeas  - \=xk\| 2  - F (xk+1

\ast ) - Lf\| xk+1
\ast  - \=xk\| 2

\leq F (xfeas) - F (xk+1
\ast ) + LfD

2
h.

(5.7)

Notice that F (xk+1
\ast ) \geq F (x\ast ). Hence, F (xfeas)  - F (xk+1

\ast ) \leq F (xfeas)  - F (x\ast ), and
from (5.7), it follows that  - Fk(xk+1

\ast ) + Fk(xfeas) \leq F (xfeas)  - F (x\ast ) + LfD
2
h. Now

we have from (5.6) that

\| zk+1
\ast \| 1 \leq  - Fk(\bfx k+1

\ast )+Fk(\bfx feas)

mini

\bigl( 
 - gi(\bfx feas)

\bigr) \leq F (\bfx feas) - F (\bfx \ast )+LfD
2
h

mini

\bigl( 
 - gi(\bfx feas)

\bigr) ,

and we complete the proof by \| zk+1
\ast \| 2 \leq \| zk+1

\ast \| 1.
Similar to our discussion in section 5.1, we notice that if \=xk+1 is an \varepsilon 

2 -KKT point
of (5.3) and also 2Lf\| \=xk+1  - \=xk\| \leq \varepsilon 

2 , then \=xk+1 is an \varepsilon -KKT point of (1.1). Below

we show that the sum of \| \=xk+1 - \=xk\| 2 can be controlled if each \=xk+1 is obtained with
sufficient accuracy, and thus a near-KKT point of (1.1) can be produced.

Theorem 5.3 (complexity result for nonconvex cases). Assume Assumptions 1,
2, and 5. Let x\ast be a minimizer of (1.1). Let \varepsilon > 0 be given, and let \=x0 \in dom(h).
Generate the sequence \{ (\=xk, \=zk)\} k\geq 1 by applying Algorithm 8 to (5.3) with the target

accuracy \~\varepsilon = min
\bigl\{ 
\varepsilon 
2 ,

3\varepsilon 2

128Lf (Dh+2 \=B\bfz )

\bigr\} 
, where

(5.8) \=B\bfz := 2B\bfz +
\sqrt{} 

2\sigma 2

8\sigma +1 max
\bigl\{ 
3B\bfz , 2

\surd 
2B\bfz , 2

\bigr\} 
,

with B\bfz defined in (5.4). Then, after solving at most K proximal point subproblems
as that in (5.3), we can find an \varepsilon -KKT point of (1.1), where

(5.9) K =
\Bigl\lceil 
128Lf (F (\=\bfx 0) - F (\bfx \ast )+LfD

2
h+

\=B\bfz \| [\bfg (\=\bfx 0)]+\| )
3\varepsilon 2

\Bigr\rceil 
.

In addition, the total number of evaluations on f , \nabla f , g, and J\bfg is O
\bigl( 
m
\varepsilon 2 | log \varepsilon | 

2(logm+

| log \varepsilon | )
\bigr) 
.

Proof. Since each (\=xk+1, \=zk+1) is an output from Algorithm 8 applied to (5.3)
and with a target accuracy \~\varepsilon , then \=xk+1 is an \~\varepsilon -KKT point of the problem in (5.3),
and thus there is a subgradient \~\nabla Fk(xk+1) \in \partial Fk(\=x

k+1) such that

(5.10) \| \~\nabla Fk(\=xk+1) + J\top 
\bfg (\=xk+1)\=zk+1\| \leq \~\varepsilon , \| g(\=xk+1)\| \leq \~\varepsilon \forall k \geq 0.

From the first inequality in (5.10) and recalling that the diameter of dom(h) is Dh,
we have \Bigl\langle 

\=xk+1  - \=xk, \~\nabla Fk(\=xk+1) + J\top 
\bfg (\=xk+1)\=zk+1

\Bigr\rangle 
\leq Dh\~\varepsilon .

Hence, by the Lf -strong convexity of Fk and convexity of each gi, we have

Dh\~\varepsilon \geq 
\Bigl\langle 
\=xk+1  - \=xk, \~\nabla Fk(\=xk+1) + J\top 

\bfg (\=xk+1)\=zk+1
\Bigr\rangle 

\geq Fk(\=x
k+1) - Fk(\=x

k) +
Lf
2 \| \=xk+1  - \=xk\| 2 + \langle \=zk+1,g(\=xk+1) - g(\=xk)\rangle 

= F (\=xk+1) - F (\=xk) +
3Lf
2 \| \=xk+1  - \=xk\| 2 + \langle \=zk+1,g(\=xk+1) - g(\=xk)\rangle .(5.11)
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By (4.2) and (5.4), we have \| \=zk+1\| \leq \=B\bfz for all k \geq 0, where \=B\bfz is given in (5.8).
Hence, it follows from the second inequality in (5.10) that \langle \=zk+1,g(\=xk+1) - g(\=xk)\rangle \geq 
 - 2\~\varepsilon \=B\bfz for all k \geq 1. Now summing up (5.11) gives

(5.12)
3Lf
2

K - 1\sum 
k=0

\| \=xk+1 - \=xk\| 2 \leq KDh\~\varepsilon +F (\=x
0) - F (\=xK)+(2K - 1)\~\varepsilon \=B\bfz + \=B\bfz \| [g(\=x0)]+\| ,

where we have used \langle \=z1,g(\=x0)\rangle \leq \| \=z1\| \cdot \| [g(\=x0)]+\| \leq \=B\bfz \| [g(\=x0)]+\| .
Because xK\ast is a KKT point of (5.3) with a corresponding multiplier zK\ast , we have

from (1.4) that
FK - 1(\=x

K) - FK - 1(x
K
\ast ) +

\bigl\langle 
zK\ast ,g(\=x

K)
\bigr\rangle 
\geq 0.

Plugging FK - 1(\cdot ) = F (\cdot ) + Lf\| \cdot  - \=xK - 1\| 2 into the above equation gives

F (\=xK) + Lf\| \=xK  - \=xK - 1\| 2  - F (xK\ast ) - Lf\| xK\ast  - \=xK - 1\| 2 +
\bigl\langle 
zK\ast ,g(\=x

K)
\bigr\rangle 
\geq 0.

Now, using (5.4), \| g(\=xK)\| \leq \~\varepsilon , \| \=xK  - \=xK - 1\| 2 \leq D2
h, and the fact that F (xK\ast ) \geq 

F (x\ast ), we have from the above inequality that  - F (\=xK) \leq  - F (x\ast ) + LfD
2
h + \~\varepsilon B\bfz .

This inequality together with (5.12) gives
(5.13)

3Lf
2

K - 1\sum 
k=0

\| \=xk+1  - \=xk\| 2 \leq KDh\~\varepsilon + F (\=x0) - F (x\ast ) + LfD
2
h + 2K\~\varepsilon \=B\bfz + \=B\bfz \| [g(\=x0)]+\| .

Multiplying Lf to both sides of the above inequality and taking the square root, we
have
(5.14)

min
0\leq k<K

Lf\| \=xk+1 - \=xk\| \leq 
\sqrt{} 

2
3Lf (Dh\~\varepsilon + 2 \=B\bfz \~\varepsilon )+

\sqrt{} 
2
3

Lf

\bigl( 
F (\=\bfx 0) - F (\bfx \ast )+LfD2

h+
\=B\bfz \| [\bfg (\=\bfx 0)]+\| 

\bigr) 
K .

Therefore, by the setting of \~\varepsilon and K, we have min0\leq k<K Lf\| \=xk+1 - \=xk\| \leq \varepsilon 
4 . Suppose

Lf\| \=xk0+1  - \=xk0\| \leq \varepsilon 
4 . Then, by our discussion above Theorem 5.3, \=xk0+1 is an

\varepsilon -KKT point of (1.1). From Theorem 4.2, the complexity of solving one problem
as that in (5.3) is O

\bigl( 
m| log \varepsilon | 2(logm + | log \varepsilon | )

\bigr) 
, and thus the total complexity is

O(Km| log \varepsilon | 2(logm + | log \varepsilon | )) = O
\bigl( 
m
\varepsilon 2 | log \varepsilon | 

2(logm + | log \varepsilon | )
\bigr) 
. This completes the

proof.

6. Experimental results. In this section, we demonstrate the established the-
ory by performing numerical experiments on solving the following quadratically con-
strained quadratic program (QCQP):

(6.1)
min
\bfx \in \BbbR n

1
2
x\top Q0x+x\top c0, s.t. 1

2
x\top Qjx+x\top cj+dj \leq 0, j = 1, . . . ,m; xi \in [li, ui], i = 1, . . . , n.

In the experiment, Q0 is generated to be positive definite, Qj is positive semidefinite
but rank-deficient for each j = 1, . . . ,m, and li =  - 10 and ui = 10 for each i. All dj
are negative, so Slater's condition holds. In addition, we conduct tests on solving the
elastic-net regularized Neyman--Pearson classification problem

(6.2)

min
\bfx \in \BbbR n

1

N+

\sum 
\bfa \in \scrN +

log(1 + exp( - a\top x)) + \lambda 1\| x\| 1 +
\lambda 2

2
\| x\| 2, s.t.

1

N - 

\sum 
\bfa \in \scrN  - 

log(1 + exp(a\top x)) \leq \alpha ,
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where \scrN + and \scrN  - respectively denote the sets of positive and negative samples, and
N+ and N - are their cardinality. The tests in sections 6.1 and 6.2 are conducted on
a quad-core iMAC with 8GB memory, and those in section 6.3 are conducted on a
Windows PC with 10 CPU cores and 128GB memory.

6.1. Comparison of different first-order iALMs. We first compare two im-
plementations of the iALM in Algorithm 1 to solve (6.1). One directly applies the
APG method in Algorithm 2 to solve each ALM subproblem, and we call it the
``APG-based iALM."" The other uses the proposed cutting-plane based FOM to solve
subproblems; namely, we implement Algorithm 8 , and we call it the ``cutting-plane
iALM."" For both implementations, we set \beta k = 10k - 1 for each outer iteration k \geq 1
and run the iALM to five outer iterations. The target accuracy for a near-KKT point
is set to \varepsilon = 10 - 4. In the implementation of the APG-based iALM, due to the qua-
dratic penalty term, we apply Algorithm 2 with line search for a local smoothness
constant and set the parameters to \gamma 1 = 1.5, \gamma 2 = 2, Lmin = 1. In the implementation
of the cutting-plane iALM, we use Algorithm 2 to solve problems in the form of (3.5),
for which we can explicitly compute the global smoothness constant, and thus we
simply set Lmin to the global smoothness constant. In addition, we set \tau = 2 in Algo-
rithm 6 when it is called. Notice that Algorithm 6 works for any \tau \geq 0.007. However,
empirically we find that a small \tau will result in more calls to the separation oracle,
while a too-big \tau will cause trouble for finding a sufficiently accurate VC. \tau = 2 gives
a good tradeoff.

We test three groups of QCQP instances, each of which has n = 1000. The
first group has m = 1 constraint, the second has m = 2, and the third has m = 5.
For each group, we conduct three independent trials. For each instance, we report
the number of gradient and function evaluations, the primal residual, dual residual,
and complementarity violation, which are denoted as \#grad, \#func, pres, dres, and
compl, for solving each ALM subproblem. In order to demonstrate the worst-case
theoretical result, we use a randomly generated initial point while solving each ALM
subproblem. The performance of the iALM can be much better if the warm-start
technique is adopted. The results are shown in Tables 1--3. For the cutting-plane
iALM, its \#func is zero and not shown in the tables because we feed the APG an
explicitly computed smoothness constant and no line search is performed.

From the results, we see that as the penalty parameter increases, the APG-based
iALM needs significantly more iterations to solve the subproblems, while the cutting-
plane iALM does not suffer from the big penalty parameter. However, the cutting-
plane iALM has worse scalability to m, and this matches with our theory.

6.2. Comparison to a primal-dual method with line search. In this sub-
section, we compare the proposed cutting-plane based iALM with the primal-dual
method with line search in [12] on solving (6.1) and on solving (6.2). The latter is
called APDB. It is a single-loop first-order method and can achieve the optimal com-
plexity result O(\varepsilon  - 

1
2 ) for solving strongly convex problems with nonlinear functional

constraints.
In the experiment for solving (6.1), we generate three groups of QCQP instances

in the same way as that in the previous test, and in each group we conduct 10 inde-
pendent trials. The setting of the proposed iALM is the same as in the previous test.
For APDB, we set \gamma 0 = 1, \eta = 0.7 and select the best \tau 0 from \{ 0.1, 0.01, 0.001\} ; see
Algorithm 2.3 in [12] for the specific meaning of these parameters. In order to have
a fair comparison, we terminate APDB once it produces a 10 - 8-KKT point. The
results are plotted in Figure 1. From the figure, we see that when m = 1 or m = 2,
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Table 1
Results by the APG-based first-order iALM and the proposed cutting-plane based first-order

iALM for solving QCQP (6.1) with m = 1 and n = 1000.

APG-based iALM Proposed cutting-plane iALM

Out. iter. \beta \#grad \#func pres dres compl \#grad pres dres compl

Trial 1 Total running time = 774.2 sec. Total running time = 12.4 sec.
1 1 5056 9420 5.13e-02 9.65e-05 2.63e-03 2136 5.13e-02 6.40e-11 2.64e-03
2 10 16802 31298 1.65e-06 9.46e-05 8.46e-08 1434 4.23e-07 9.20e-11 2.17e-08
3 102 55359 103112 5.40e-08 9.77e-05 2.77e-09 1068 4.22e-10 2.63e-10 2.17e-11
4 103 179877 335030 6.51e-09 9.96e-05 3.34e-10 1080 0.00e+00 1.74e-08 4.84e-11
5 104 584145 1087988 0.00e+00 9.95e-05 4.57e-11 1104 2.29e-11 9.23e-09 1.17e-12

Trial 2 Total running time = 760.0 sec. Total running time = 12.1 sec.
1 1 4969 9258 5.78e-02 9.78e-05 3.34e-03 1926 5.78e-02 4.94e-09 3.34e-03
2 10 16466 30672 2.10e-06 9.99e-05 1.21e-07 1440 5.85e-07 3.41e-10 3.38e-08
3 102 54617 101730 4.57e-08 9.85e-05 2.64e-09 1050 0.00e+00 7.90e-09 4.03e-10
4 103 177171 329990 6.44e-09 9.93e-05 3.72e-10 1074 0.00e+00 2.18e-07 1.42e-10
5 104 580377 1080970 0.00e+00 1.00e-04 4.06e-11 1104 2.75e-10 1.84e-09 1.59e-11

Trial 3 Total running time = 780.9 sec. Total running time = 12.4 sec.
1 1 5100 9502 4.37e-02 9.66e-05 1.91e-03 2088 4.37e-02 2.53e-09 1.91e-03
2 10 17035 31732 0.00e+00 9.33e-05 8.08e-08 1428 4.34e-07 7.52e-09 1.90e-08
3 102 56348 104954 1.43e-07 9.79e-05 6.25e-09 1092 0.00e+00 2.75e-13 2.36e-10
4 103 182583 340070 0.00e+00 9.63e-05 5.12e-10 1122 4.33e-09 4.76e-07 1.89e-10
5 104 595012 1108228 1.81e-10 9.99e-05 7.92e-12 1164 0.00e+00 1.88e-09 2.01e-11

Table 2
Results by the APG-based first-order iALM and the proposed cutting-plane based first-order

iALM for solving QCQP (6.1) with m = 2 and n = 1000.

APG-based iALM Proposed cutting-plane iALM

Out. iter. \beta \#grad \#func pres dres compl \#grad pres dres compl

trial 1 total running time = 1348.0 sec. total running time = 51.0 sec.
1 1 5551 10342 4.45e-02 8.71e-05 1.40e-03 3342 4.45e-02 1.06e-09 1.40e-03
2 10 18330 34144 0.00e+00 9.62e-05 6.47e-08 3384 3.19e-07 9.17e-09 9.98e-09
3 102 59680 111160 8.81e-08 9.77e-05 2.71e-09 3522 6.01e-09 9.15e-10 2.44e-10
4 103 194236 361774 0.00e+00 9.94e-05 9.15e-11 3582 1.36e-10 3.84e-09 6.17e-12
5 104 629359 1172200 0.00e+00 9.99e-05 7.65e-12 3678 2.66e-11 1.60e-09 8.13e-13

Trial 2 Total running time = 1299.4 sec. Total running time = 49.5 sec.
1 1 5362 9990 6.60e-02 9.05e-05 3.10e-03 3180 6.60e-02 8.27e-09 3.10e-03
2 10 17646 32870 2.74e-06 9.26e-05 1.34e-07 3282 6.17e-07 2.67e-10 2.91e-08
3 102 57832 107718 1.41e-08 9.82e-05 2.79e-09 3372 5.91e-10 9.05e-11 2.61e-11
4 103 187544 349310 0.00e+00 9.88e-05 2.70e-10 3450 4.97e-10 6.76e-09 2.34e-11
5 104 606432 1129498 9.88e-11 9.97e-05 7.38e-12 3528 1.82e-11 5.23e-09 1.95e-12

Trial 3 Total running time = 1337.1 sec. Total running time = 49.2 sec.
1 1 5464 10180 5.50e-02 9.51e-05 2.25e-03 3156 5.50e-02 6.27e-09 2.25e-03
2 10 18039 33602 1.78e-06 9.90e-05 8.15e-08 3324 5.16e-07 1.76e-10 2.07e-08
3 102 59505 110834 2.88e-08 9.95e-05 1.86e-09 3384 5.93e-09 8.30e-09 2.49e-10
4 103 192301 358170 3.78e-09 9.99e-05 1.45e-10 3504 0.00e+00 1.02e-09 3.00e-11
5 104 627235 1168244 6.81e-11 1.00e-04 9.17e-12 3528 5.23e-11 2.78e-09 1.70e-12

the proposed iALM needs fewer gradient evaluations than APDB to give a solution of
similar or higher accuracy, and when m = 5, APDB needs fewer gradient evaluations.
In addition, different from the proposed iALM, APDB needs fewer gradient evalua-
tions as m increases. Hence, APDB may be even more efficient than the proposed
iALM as m further increases.

In the experiment for solving (6.2), we use arcene and spambase datasets, both of
which are from the UCI repository,1 and we set \alpha = 0.5. Each sample is normalized.
In order to achieve at least 90\% prediction accuracy for the positive dataset, we tune
the regularization parameters to \lambda 1 = \lambda 2 = 10 - 3 for the arcene dataset and to
\lambda 1 = \lambda 2 = 10 - 4 for the spambase dataset. The APDB is applied to an SP problem
formulated by using the ordinary Lagrangian function of (6.2). As the logistic loss
function has bounded gradient and Hessian, we explicitly compute the global Lipschitz
constants and adopt constant stepsize for both APDB and the proposed iALM. We
set \beta k = 10k - 1 for iALM and run it to five outer iterations. The target accuracy for
a near-KKT point is \varepsilon = 10 - 5. For APDB, we set the maximum number of iterations
to 105 and terminate it if an \varepsilon -KKT solution is produced. In the SP formulation
solved by APDB, we set an upper bound of its dual variable to twice of the value of
the dual variable returned by the iALM. This known upper bound benefits APDB.

1The data can be downloaded from https://archive.ics.uci.edu/ml/datasets.php.
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Table 3
Results by the APG-based first-order iALM and the proposed cutting-plane based first-order

iALM for solving QCQP (6.1) with m = 5 and n = 1000.

APG-based iALM Proposed cutting-plane iALM

Out. iter. \beta \#grad \#func pres dres compl \#grad pres dres compl

Trial 1 Total running time = 2833.1 sec. Total running time = 156.8 sec.
1 1 5537 10316 7.93e-02 9.91e-05 2.90e-03 6714 7.93e-02 2.91e-09 2.90e-03
2 10 18417 34306 1.12e-06 9.83e-05 4.28e-08 6984 8.93e-07 4.32e-09 3.27e-08
3 102 60058 111864 5.83e-08 9.62e-05 2.25e-09 7158 4.64e-09 1.50e-09 2.02e-10
4 103 195894 364862 3.14e-09 9.88e-05 1.64e-10 7314 4.37e-10 4.28e-09 1.64e-11
5 104 640357 1192684 9.40e-10 9.97e-05 3.51e-11 7614 2.79e-11 8.77e-09 1.74e-12

Trial 2 Total running time = 2786.0 sec. Total running time = 160.7 sec.
1 1 5537 10316 6.77e-02 8.21e-05 2.42e-03 6900 6.77e-02 6.16e-09 2.42e-03
2 10 18170 33846 6.24e-07 9.21e-05 2.43e-08 7110 7.39e-07 2.64e-09 2.75e-08
3 102 59607 111024 2.66e-08 9.73e-05 1.71e-09 7224 2.81e-09 9.46e-09 1.90e-10
4 103 194483 362234 1.21e-08 9.99e-05 3.19e-10 7512 6.61e-10 4.34e-09 2.53e-11
5 104 636109 1184772 7.58e-11 9.94e-05 1.76e-11 7698 3.94e-11 7.84e-09 1.73e-12

Trial 3 Total running time = 2820.0 sec. Total running time = 155.3 sec.
1 1 5595 10424 8.47e-02 8.51e-05 3.26e-03 6594 8.47e-02 9.82e-09 3.26e-03
2 10 18461 34388 7.78e-07 9.55e-05 3.07e-08 6882 8.64e-07 5.52e-09 3.33e-08
3 102 60422 112542 3.78e-09 9.93e-05 4.10e-09 7116 3.42e-09 1.52e-10 1.83e-10
4 103 196869 366678 7.70e-09 9.87e-05 3.05e-10 7260 7.35e-11 5.28e-09 1.91e-11
5 104 640997 1193876 3.63e-10 9.95e-05 1.37e-11 7488 6.86e-11 6.05e-09 2.72e-12
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Fig. 1. Results by the proposed cutting-plane based iALM and the APDB method in [12] on
solving QCQP instances of size n = 1000 and m \in \{ 1, 2, 5\} . The solid curve in each figure plots
the mean of 10 independent trials. First row: m = 1; second row: m = 2; third row: m = 5. First
column: primal residual; second column: dual residual; third column: complementarity violation.

The results are reported in Figure 2, from which we see that the proposed iALM takes
significantly fewer gradient evaluations than APDB to produce a similarly accurate
KKT solution. Moreover, we achieve 91.67\% accuracy for the positive samples and
83.33\% for the negative samples in the arcene dataset, and the final obtained solution
has only 427 nonzeros out of 10,000. For the spambase dataset, we achieve 90.89\%
accuracy for the positive samples and 74.44\% for the negative samples, and the final
solution has 51 nonzeros out of 57 because a small regularization parameter is used.

6.3. Comparison to the interior-point method. In this subsection, we com-
pare the proposed cutting-plane iALM to SDPT3 [36] on solving (6.1). SDPT3 is a
primal-dual infeasible interior-point method. Interior-point methods can give high-
accurate solutions to convex problems but do not often have a good scalability to
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Fig. 2. Results by the proposed cutting-plane based iALM and the APDB method in [12] on
solving instances of Neyman--Pearson problem (6.2) with arcene dataset (first row) and spambase
dataset (second row). First column: primal residual; second column: dual residual; third column:
complementarity violation. \dagger Missing parts on the curves by APDB correspond to zero residuals, and
for spambase, the primal residual by the proposed iALM at the last outer iteration is zero.

the problem dimension. In this test, we generate instances of (6.1) with m = 2 and
n \in \{ 1000, 5000, 10000\} . For each (m,n), we generate five QCQP instances indepen-
dently in the same way as that in previous tests. The parameters of the proposed
iALM are set the same as previously, except how we choose the global smoothness
constant of (3.5). Notice that for the QCQP (6.1) the corresponding subproblem (3.5)
has the Hessian matrix H = Q0 +

\sum m
i=1 yiQi. A tight smoothness constant is \| H\| .

For a small n, computing the spectral norm is not so expensive. However, it can be
very expensive when n is big. Hence, we set the global smoothness constant to \| H\| 
for n = 1000 and to \| Q0\| +

\sum m
i=1 yi\| Qi\| for n \in \{ 5000, 10000\} . Since y changes

during the proposed iALM, the former setting needs to compute the spectral norm of
a sequence of n\times n matrices, while the latter one only needs to compute \{ \| Qi\| \} 0\leq i\leq m
once at the beginning of the algorithm. This way, we can save the time of computing
the spectral norm but will obtain larger smoothness constants that lead to smaller
stepsize and eventually result in more gradient evaluations. We call SDPT3 by using
CVX [11] and set the precision to ``high.""

To compare the performance of the cutting-plane iALM and SDPT3, we report
their running time and violation to the KKT system at the output solution. For
the former method, we also report its number of gradient evaluations. The results
are shown in Table 4. From the table, we see that the cutting-plane iALM can
yield similar or more accurate solutions than SDPT3. When n = 1000, SDPT3
is significantly faster, but for n \in \{ 5000, 10000\} the cutting-plane first-order iALM
takes much shorter time than SDPT3.

7. Concluding remarks. We have proposed a cutting-plane based first-order
method (FOM) for solving strongly convex problems with m functional constraints. If
m = O(1), our method can achieve a complexity result of \~O(

\surd 
\kappa ), where \kappa denotes the

condition number of the underlying problem in some sense. In general, a complexity
result of \~O(m

\surd 
\kappa ) has been established. To give an \varepsilon -KKT point, our result is better

than an existing lower bound if m = o(\varepsilon  - 
1
2 ). We have also extended the idea of

the cutting-plane based FOM to convex and nonconvex cases. Similarly, when m =
O(1), we obtained almost the same-order complexity results (with a difference of a
polynomial of | log \varepsilon | ) as for solving an unconstrained problem.
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Table 4
Results by the proposed cutting-plane based first-order iALM and the interior-point method

SDPT3 on solving instances of (6.1). ``NaN"" means that SDPT3 could not solve that instance
successfully.

Proposed cutting-plane iALM SDPT3

Trial Time(h:m:s) \#grad pres dres compl Time(h:m:s) pres dres compl

Problem size: m = 2, n = 1000
1 0:0:35 16776 0.00e+00 1.13e-10 3.42e-12 0:0:11 3.30e-10 1.03e-09 4.12e-11
2 0:0:36 16812 0.00e+00 1.89e-09 8.75e-13 0:0:16 2.14e-10 4.40e-10 9.25e-12
3 0:0:35 17004 4.09e-11 1.19e-09 1.91e-12 0:0:11 0.00e+00 2.04e-09 8.31e-11
4 0:0:36 16698 3.53e-11 2.69e-09 2.27e-12 0:0:11 0.00e+00 8.00e-09 1.61e-08
5 0:0:35 16578 2.32e-11 3.19e-09 2.77e-12 0:0:17 1.58e-09 8.16e-10 9.10e-11

Problem size: m = 2, n = 5000
1 0:11:9 21630 2.58e-11 5.85e-10 1.24e-12 0:40:44 0.00e+00 8.26e-09 5.71e-10
2 0:11:11 21642 3.58e-11 9.17e-10 1.63e-12 0:52:23 6.55e-08 1.18e-09 2.84e-09
3 0:11:6 21504 1.95e-11 6.10e-10 7.19e-13 0:50:39 5.45e-08 NaN NaN
4 0:11:12 21678 3.13e-11 4.67e-09 1.04e-12 0:40:38 0.00e+00 1.12e-08 1.59e-09
5 0:11:7 21516 1.99e-11 8.59e-09 9.04e-13 0:36:17 2.71e-08 1.10e-08 1.28e-09

Problem size: m = 2, n = 10000
1 1:16:1 22332 0.00e+00 6.32e-10 2.37e-13 5:55:22 2.41e-07 3.10e-08 1.33e-08
2 1:8:33 22296 4.99e-12 6.36e-09 1.30e-12 6:20:3 0.00e+00 4.60e-10 3.19e-09
3 0:58:16 22296 1.73e-11 2.54e-09 7.43e-13 6:13:5 0.00e+00 3.44e-08 8.17e-09
4 0:58:9 22368 2.05e-11 1.14e-08 9.17e-13 7:3:39 0.00e+00 2.16e-08 7.70e-09
5 1:15:19 22182 7.95e-12 1.04e-08 1.30e-12 8:31:16 0.00e+00 3.70e-08 1.48e-09
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