Journal of Optimization Theory and Applications
https://doi.org/10.1007/s10957-022-02132-w

®

Check for
updates

Momentum-Based Variance-Reduced Proximal Stochastic
Gradient Method for Composite Nonconvex Stochastic
Optimization

Yangyang Xu'® - Yibo Xu?

Received: 25 April 2021 / Accepted: 27 October 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract

Stochastic gradient methods (SGMs) have been extensively used for solving stochas-
tic problems or large-scale machine learning problems. Recent works employ various
techniques to improve the convergence rate of SGMs for both convex and noncon-
vex cases. Most of them require a large number of samples in some or all iterations
of the improved SGMs. In this paper, we propose a new SGM, named PStorm, for
solving nonconvex nonsmooth stochastic problems. With a momentum-based vari-
ance reduction technique, PStorm can achieve the optimal complexity result O (¢3)
to produce a stochastic e-stationary solution, if a mean-squared smoothness condition
holds. Different from existing optimal methods, PStorm can achieve the O (¢ ~2) result
by using only one or O (1) samples in every update. With this property, PStorm can
be applied to online learning problems that favor real-time decisions based on one
or O(1) new observations. In addition, for large-scale machine learning problems,
PStorm can generalize better by small-batch training than other optimal methods that
require large-batch training and the vanilla SGM, as we demonstrate on training a
sparse fully-connected neural network and a sparse convolutional neural network.

Keywords Stochastic gradient method - Variance reduction - Momentum -
Small-batch training

Mathematics Subject Classification 90C15 - 65K05 - 68Q25

Communicated by Amir Beck.

B Yangyang Xu
xuy21@rpi.edu

Yibo Xu
yibox @clemson.edu

Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA

School of Mathematical and Statistical Sciences, Clemson University, Clemson, SC 29634, USA

Published online: 02 December 2022 @ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10957-022-02132-w&domain=pdf
http://orcid.org/0000-0002-4163-3723

Journal of Optimization Theory and Applications

1 Introduction

The stochastic approximation method first appears in [26] for solving a root-finding
problem. Nowadays, its first-order version, or the stochastic gradient method (SGM),
has been extensively used to solve machine learning problems that involve huge
amounts of given data and also to stochastic problems that involve uncertain streaming
data. Complexity results of SGMs have been well established for convex problems.
Many recent research papers on SGMs focus on nonconvex cases.

In this paper, we consider the regularized nonconvex stochastic programming

®* = Min ®(x) := [F(x) = Ee[f(x;)]} + r(x), (1.1)

xeR”

where f(-; &) is a smooth nonconvex function almost surely for £, and 7 is a closed
convex function on R”. Examples of (1.1) include the sparse online matrix factorization
[19], the online nonnegative matrix factorization [40], and the streaming PCA (by a
unit-ball constraint) [21]. In addition, as & follows a uniform distribution on a finite
set E = {&1,...,&n}, (1.1) recovers the so-called finite-sum structured problem.
It includes most regularized machine learning problems such as the sparse bilinear
logistic regression [28], the sparse convolutional neural network [18], and the group
sparse regularized deep neural networks [27].

1.1 Background

When r = 0, the recent work [3] gives an O (e73) lower complexity bound of SGMs to
produce a stochastic e-stationary solution of (1.1) (see Definition 1.2), by assuming the
so-called mean-squared smoothness condition (see Assumption 2). Several variance-
reduced SGM s [6, 9, 32, 33] have achieved an O (¢3) or O (¢73) complexity result.!
Among them, [6, 9] only consider smooth cases, i.e., r = 0 in (1.1), and [32, 33]
study nonsmooth problems in the form of (1.1). To reach an O(g~3) complexity
result, the Hybrid-SGD method in [32] needs o™ h samples at the initial step and
then at least two samples at each update, while [9, 33] require O (¢~2) samples after
every fixed number of updates. The STORM method in [6] requires one single sample
of & at each update, but it only applies to smooth problems. Practically on training
a (deep) machine learning model, small-batch training is often used to have better
generalization [14, 20]. In addition, for certain applications such as reinforcement
learning [30], one single sample can usually be obtained, depending on the stochastic
environment and the current decision. Furthermore, regularization terms can improve
generalization of a machine learning model, even for training a neural network [34].
We aim at designing a new SGM for solving the nonconvex nonsmooth problem (1.1)
and achieving a (near)-optimal®> complexity result by using O (1) (that can be one)
samples at each update.

1 Throughout the paper, we use O to suppress an additional polynomial term of | log ¢|.

2 By “optimal,” we mean that the complexity result can reach the lower bound result; a result is “near
optimal,” if it has an additional logarithmic term or a polynomial of logarithmic term than the lower bound.

@ Springer

Journal of Optimization Theory and Applications

1.2 Mirror-Prox Algorithm

Our algorithm is a mirror-prox SGM, and we adopt the momentum technique to reduce
variance of the stochastic gradient in order to achieve a (near)-optimal complexity
result.

Let w be a continuously differentiable and 1-strongly convex function on dom(r),
ie.,

1
w(y) 2w + (Vw®,y —x) + 5y - x|%, Vx,y € dom(r).

The Bregman divergence induced by w is defined as
V(x,z) = wXx) —w(z) — (Vw(z), X —z). (1.2)

At each iteration of our algorithm, we obtain one or a few samples of &, compute
stochastic gradients at the previous and current iterates using the same samples, and
then perform a mirror-prox momentum stochastic gradient update. The pseudocode is
shown in Algorithm 1. We name it as PStorm as it can be viewed as a proximal version
of the Storm method in [6]. Notice that when By = 1, Vk > 0, the algorithm reduces
to the non-accelerated stochastic proximal gradient method. However, our analysis
does not apply to this case, for which an innovative analysis can be found in [7].

Algorithm 1: Momentum-based variance-reduced proximal stochastic gradient
method for (1.1)

1 Input: max iteration numer K, minibatch size m, and positive sequences {8} < (0, 1) and {n}.
2 Initialization: choose x° € dom(r) and let d° = mio ZSEBO Vf(xo; &) with mg i.i.d. samples
By =1{£)..... &%)

fork=0,1,..., K —1do

4 Update x by

w

1
k] =argmin{(dk,x)Jer(X,Xk)Jrr(X)}- (1.3)
X Nk
5 Obtain m i.i.d. samples By = {&{(H é,lff]} and let
Vi = S, VAT), W =L vk). (1.4)

6 | Letd ™! =vil 41— @ —ukth,

7 Return x* with 7 selected from {0, 1, ..., K — 1} uniformly at random or by the distribution

Nk 2
4 (I=mg L)— (1=Bk)
Prob(z = k) = ! 5”‘”k+‘2 k=0,1,...,K—1. (1.5)
K ‘("’ U=nj D)= b1 ﬁ,)z)

@ Springer

Journal of Optimization Theory and Applications

1.3 Related Works

Many efforts have been made on analyzing the convergence and complexity of SGMs
for solving nonconvex stochastic problems, e.g., [1, 611, 32, 33, 37]. We list com-
parison results on the complexity in Table 1.

The work [10] appears to be the first one that conducts complexity analysis of SGM
for nonconvex stochastic problems. It introduces a randomized SGM. For a smooth
nonconvex problem, the randomized SGM can produce a stochastic e-stationary solu-
tion within O (¢~*) SG iterations. The same-order complexity result is then extended
in [11] to nonsmooth nonconvex stochastic problems in the form of (1.1). To achieve
an 0(5_4) complexity result, the accelerated prox-SGM in [11] needs to take ® (k)
samples at the k-th update for each k. Assuming a weak-convexity condition and using
the tool of Moreau envelope, [7] establishes an O (¢~*) complexity result of stochas-
tic subgradient method for solving more general nonsmooth nonconvex problems to
produce a near-¢ stochastic stationary solution (see [7] for the precise definition).

In general, the O (s ~*) complexity result cannot be improved for smooth nonconvex
stochastic problems, as [3] shows that for the problem miny F (x) where F is smooth,
any SGM that can access unbiased SG with bounded variance needs 2 (¢~*) SGs to
produce a solution X such that IE[|| VF(Xx) ||] < e. However, with one additional mean-
squared smoothness condition on each unbiased SG, the complexity can be reduced
to O(¢~3), which has been reached by a few variance-reduced SGMs [6, 9, 23, 32,
33]. These methods are closely related to ours. Below we briefly review them.

Spider. To find a stochastic e-stationary solution of (1.1) with r = 0, [9] proposes the

Spider method with the update: xk+l — xk r;kvk for each k > 0. Here, v* is set to

Vo : i Seen, (V656 = VA5 0) + 4L ifmodk,) £0, |

ﬁ Yeecy V@ §), otherwise,

where |By| = @(q—iz)’ |Ckl = ©(¢72), and ¢ = O(¢7!) or ¢ = O(¢72). Under
the mean-squared smoothness condition (see Assumption 2), the Spider method can
produce a stochastic &-stationary solution with O (¢ ~3) sample gradients, by choosing
appropriate learning rate 7, (roughly in the order of M).

Storm. [6] focuses on a smooth nonconvex stochastic problem, i.e., (1.1) withr = 0. It
proposes the Storm method, which can be viewed as a special case of Algorithm 1 with
mo = m = 1 applied to the smooth problem. However, its analysis and also algorithm
design rely on the knowledge of a uniform bound on {||V f (x; £)||} or on the bound of
the variance of the stochastic gradient. In addition, because the learning rate of Storm
is set dependent on the sampled stochastic gradient, its analysis needs almost-sure
uniform smoothness of f(x; &). This assumption is significantly stronger than the
mean-squared smoothness condition, and also the uniform smoothness constant can
be much larger than an averaged one.

Spiderboost. [33] extends Spider into solving a nonsmooth nonconvex stochastic
problem in the form of (1.1) by proposing a so-called Spiderboost method. Spiderboost

@ Springer

Journal of Optimization Theory and Applications

€7 pue 77 SYyreway

ur udAI3 axe poypour pasodoid oy Jo synsar 9)o[dwod IO O -F1q A UT USPPIY Ik (10112 IANIA[QO [BNIUT AY) PUE 7 JUBISUOD SSAUYIOOWS Y} “°3'9) SHUBISUOD JAYIO [[Y *3 UO
douapuadap Yy MOYS AJUO S}[NSAI Y T, SIUSIPLIS(qNS) O1SLYI0)S Y} JO SSAUPIPUNO] IOULLIBA PUB SSIUPISLIqUN SWNSSE SPOYIatll paredwrod ay) [[& ‘SINSAI pI)SI[Ay} UTLIqO O,

UMOUY SIJUSIPRIF JNISBYI0IS) JO SOUBLIBA) UO O PUNOQ © JI PAYI[9q Ued [9] WLI0)§ AQ dpBW JUSIPRIF O1ISLYI0IS U0 Uonduwnsse ssaupapunoq Ay, :

ozrsdoys Jue)suod

(=30 [9q ues pue ()0

azisdoys Surkiea XJAUOD SI

Amlmvxb 1 9q ued pue ()0 4 ssauyjoowss parenbs-ueow {(X) 4 + [(%X) 137} Xun (13ded sy J,) wiolgq
0 < yJigises[ie XOAUOD ST

(=30 mq (Do 0=731(;_9)e 4 ssauyloows parenbs-ueaw ()4 4 [(3 %) /1 %) ¥unu [cel @os-pHafH
XOAUOD ST

Amlva fl&@ 10 @IS@ 4 ssauyjoowss parenbs-ueow ()4 + [(3x) f]39) Xunw [¢¢] 3so0qropids
« PRI3 o1Sseyo01s papunoq

(¢-90 I S8 qoouws st (3¢)/ {[(5 %) /17y Xunu [9] uuorg
7 uondwnssy 29s

Am\va (=)@ 10 (;_3)6 ssauyjoows parenbs-ueow {[(% x) £] 39} Xunw [6] 1op1ds
‘peISqns JNseyd0)s papunoq
XQAUOD ST L XOAUOI-A[[BOM

(,—30 Mo ST(3:%) /13T {04+ [(3 %) /] 37} ¥urw [L] yuerpei3qns onseyd0lg
XOAUOD ST A

(-0 e oows st [(2X) /193] ()4 4 [(5 %) /1 %) Xunu (111 WDS-xoxd pajeiajaoy

Kyxerdwo) uonera Y-y je sojdwes# suonduwnsse £oy[wa[qoid POUIIN

wopqoxd uoneziundo

JNSLYD0)S XIAUOJUOU B JO UONN[OS AIBUONRIS-3 dNSeyd0)s B 2onpoid 0} poyjow Ino 0} INJRII] AY) UI SPOYJRW [BIAAIS Jo synsar Ajrxapdwoo ayy jo uosuedwo) | ajqel

pringer

as

Journal of Optimization Theory and Applications

iteratively performs the update

X = argmin(vF, x) + £V (%, x5) + r (0, (@7
X

where V denotes the Bregman divergence induced by a strongly-convex function, and
vk is set by (1.6) with ¢ = |Bx| = ©(¢~!) and |Ci| = O(¢2). Under the mean-
squared smoothness condition, Spiderboost reaches a complexity result of O (¢~3) by
choosing n = ﬁ where L is the smoothness constant.

Hybrid-SGD. [32] considers a nonsmooth nonconvex stochastic problem in the form
of (1.1). It proposes a proximal stochastic method, called Hybrid-SGD, as a hybrid of
SARAH [22] and an unbiased SGD. The Hybrid-SGD performs the update x**! =
(1 — y)xk 4+ yxF*1 for each k > 0, where

%1 = arg min(v¥, x) + ﬁ”x —xk)1% + r(x).

X

Here, t.he sequence {vk} is set by W= |B—10‘ ZSEBO V£ (x%; &) with |By| = ©(e™ 1)
for a given ¢ > 0 and

vE = B vV 4 B (VAR &) — VAL 80) + (= B DV AR), (1.8)

where & and ¢ are two independent samples of £&. A mini-batch version of Hybrid-
SGD is also given in [32]. By choosing appropriate constant parameters {(Bx, ¥k, k) }
Hybrid-SGD can reach an O(s~3) complexity result. Although the update of v*
requires only two or O(1) samples, its initial setting needs O(e~') samples. As
explained in [32, Remark 3], if the initial minibatch size is |Bg| = O(1), then the
complexity result of Hybrid-SGD will be worsened to O (¢ ~#). It is possible to reduce
the O(e~*) complexity by using an adaptive f; as mentioned in [32, Remark 3] to
adopt the technique in [31]. This way, a near-optimal O (¢~>) result may be shown
for Hybrid-SGD without a large initial minibatch. Notice that with & = ¢, V k, the
stochastic gradient estimator by Hybrid-SGD will reduce to that by Storm, and further
with y, = 1, V£, the update of Hybrid-SGD will recover ours. However, the analysis
in [31, 32] relies on the independence of & and ¢ and the condition y; € (0, 1), and
thus it does not apply to our algorithm.

More. There are many other works analyzing complexity results of SGMs on solving
nonconvex finite-sum structured problems, e.g., [2, 13, 17, 24]. These results often
emphasize the dependence on the number of component functions and also the tar-
get error tolerance . In addition, several works have analyzed adaptive SGMs for
nonconvex finite-sum or stochastic problems, e.g., [5, 36, 41]. Moreover, along the
direction of accelerating SGMs, some works (e.g., [31, 35, 38, 39]) have considered
minimax structured or compositional optimization problems. An exhaustive review
of all these works is impossible and also beyond the scope of this paper. We refer
interested readers to those papers and the references therein.

@ Springer

Journal of Optimization Theory and Applications

1.4 Contributions

Our main contributions are about the algorithm design and analysis.

— We design a momentum-based variance-reduced mirror-prox stochastic gradient
method for solving nonconvex nonsmooth stochastic problems. The proposed
method generalizes Storm in [6] from smooth cases to nonsmooth cases. In addi-
tion, with one single data sample per iteration, it achieves, by taking varying
stepsizes, the same near-optimal complexity result O (¢) under a mean-squared
smooth condition, which is weaker than the almost-sure uniform smoothness con-
dition assumed in [6].

— When constant stepsizes are adopted, the proposed method can achieve the optimal
0 (¢73) complexity result, by using one single or O (1) data samples per iteration.
While Spiderboost [33] can also achieve the optimal O (¢~3) complexity result for
stochastic nonconvex nonsmooth problems, it needs ® (¢~2) data samples every
O (e 1) iterations and O (e~ 1) samples for every other iteration. To achieve the
optimal O (¢~3) complexity result, Hybrid-SGD [32] needs @ (¢~!) data samples
for the first iteration and at least two samples for all other iterations. However, if
only O(1) samples can be obtained initially, the worst-case complexity result of
Hybrid-SGD with constant stepsize will increase to O (¢ ~#). Our proposed method
is the first one that uses only one or O (1) samples per iteration and can still reach the
optimal complexity result, and thus it can be applied to online learning problems
that need real-time decision based on possibly one or several new data samples.

— Furthermore, the proposed method only needs an estimate of the smoothness
parameter and is easy to tune to have good performance. Empirically, we observe
that it converges faster than a vanilla SGD and can give higher testing accuracy
than Spiderboost and Hybrid-SGD on training sparse neural networks.

1.5 Notation, Definitions, and Outline

We use bold lowercase letters x,y, g, ... for vectors. Ep, denotes the expectation
about a mini-batch set By conditionally on the all previous history, and [E denotes the
full expectation. |By| counts the number of elements in the set By. We use || - || for
the Euclidean norm. A differentiable function F is called L-smooth, if |VF(x) —
VF(y)|l < L|x —y|l forall x and y.

Definition 1.1 (proximal gradient mapping) Given d, x € dom(r), and n > 0, we
define P(x,d, n) = %(x — xT), where x* = arg min {(d, y) + %V(y, X) + r(y)})
y

By the proximal gradient mapping, if a point X € dom(r) is an optimal solution
of (1.1), then it must satisfy P(x, VF(x),n) = 0 for any n > 0. Based on this
observation, we define a near-stationary solution as follows. This definition is standard
and has been adopted in other papers, e.g., [33].

Definition 1.2 (stochastic e-stationary solution) Given ¢ > 0, a random vector X €
dom(r) is called a stochastic e-stationary solution of (1.1) if for some 1 > 0, it holds
E[I|P(x, VF(x), n)|*] < 2.

@ Springer

Journal of Optimization Theory and Applications

From [12, Lemma 1], it holds
1
(d. P(x.d,) = [Px.d. 0+ & = re). (1.9)

In addition, the proximal gradient mapping is nonexpansive from [12, Proposition 1],
ie.,

|P(x,dy,n) — P(x,dp,n)|| < |d; —da|, Vdi,d3, VX € dom(r), Vi > 0. (1.10)
For each k > 0, we denote
gt =Pt d no. g =P VFEY m). (1.11)

Notice that ||g¥|| measures the violation of stationarity of x¥. The gradient error is
represented by

e =d* — VF(xh). (1.12)

Outline. The rest of the paper is organized as follows. In Sect. 2, we establish com-
plexity results of Algorithm 1. Numerical experiments are conducted in Sect. 3, and
we conclude the paper in Sect. 4.

2 Convergence Analysis

In this section, we analyze the complexity result of Algorithm 1. Part of our analysis is
inspired from that in [6] and [33]. In addition, we give a novel analysis that enables us
to obtain the optimal O (¢~3) complexity result by using O (1) samples every iteration.
Throughout our analysis, we make the following assumptions.

Assumption 1 (finite optimal objective) The optimal objective value ®* of (1.1) is
finite.

Assumption 2 (mean-squared smoothness) The function f(-; &) satisfies the mean-
squared smoothness condition: E¢ [||V f(x; §) =V f (y; £)|I*] < L*Ix—y|?, Vx,y €

dom(r).

Assumption 3 (unbiasedness and variance boundedness) There is o > 0 such that
EelVf(x:6)]=VF(x), E[IVf(x&) — VF®|*] <o? Vxedom(r). (2.1)
Itis easy to show that under Assumptions 2 and 3, the function F(x) = E¢[f(x; §)]
is L-smooth; see the arguments at the end of Section 2.2 of [32]. We first show a few

lemmas. The lemma below estimates one-iteration progress. Its proof follows from
[33].

@ Springer

Journal of Optimization Theory and Applications

Lemma 2.1 (one-iteration progress) Let {x*} be generated from Algorithm 1. If F is
L-smooth, then

Nk Nk _
O — o (xk) < 5= L) ek — S - L8112, Yk > 1,

where g is defined in (1.11).

Proof By the L-smoothness of F and the definition of gk in (1.11), we have

L

IA

L
—m(VF), g) + =gt I, 2.2)
Using the definition of e in (1.12) and the inequality in (1.9), we have
1
—(VF(x), g") = (e, g") — (@, ¢") < (e, &) — 1°1% + %(’(Xk) —r(xth).
Plugging the above inequality into (2.2) and rearranging terms give
neL
S — o) < mefe’,) —mllg 1P + eI

By the Cauchy—Schwartz inequality, it holds ni (e*, g*) < % |le* > + % ||g* |12, which
together with the above inequality implies

Nk Nk
O — o) < Eneku2 -5 = mL) gk 2. (2.3)

From (1.10) and the definitions of g€ and g in (1.11), it follows

1 B 1 _
—Igh”* < — <1k * + 1g* — 117 < —Engkn2 +1d* — VF(x5)|?

-2
I _
= — S IE°I + llef. 2.4)
Now plug the above inequality into (2.3) to give the desired result. O

The next lemma gives a recursive bound on the gradient error vector sequence {e*}.
Its proof follows that of [6, Lemma 2].

@ Springer

Journal of Optimization Theory and Applications

Lemma 2.2 (recursive bound on gradient error) Under Assumptions 2 and 3, it holds

2207 41— BO*nIL? .
E[[le"!?] < ,’; + p E[1g4)17

272
+(1 = Bo)? (1 + #) E[lle]1?]. Yk > 0,

where g% and e* are defined in (1.11) and (1.12).

Proof First, notice Eg,,, [(vVi1, e)] = (VF(x**1), ek) and Eg,, [(uft!, k)] =
(VF(x%), k), and thus

Ep (VT —VF&h, =0, Ep, [—VFEH, =0 25

Hence, by writing e¥*! = vE+1 — v F(x*T1) 4+ (1 — B) (VF (x*) —u¥ 1) 4+ (1 — Br)eX,
we have

Eg. [1€717] = Eg,,, [IVV = VFEMH 4+ (1 = BO(VF) —u*t))?]
+(1 = B llek)2 2.6)

By the Young’s inequality, it holds

IV = VR 4 (1 -) (VF () — w2

— ||/3k(vk+l _ VF(Xk-‘rl)) + (1 _ ﬂk)(vk+1 _ VF(Xk+l) + VF(Xk) _ uk-‘rl) ||2
< 2BFIVTT = VETH 12 +2(1 = B IvVFT! — VR
+ VF(xF) —uf 2. .7

From the definition of vA*! and u**! in (1.4), we have

]EBk_H [||Vk+1 _ VF(Xk+1) + VF(X]() _ uk+l ”2]
2

1
= —Es, | Y (VA - Viedie) - VF) + VE(Y)

E€Bit1

VA) -V pk) - RO v

1 m
= 2B
j=1
1 m
w2 2B
j:

L? k+1 k2
— X, 28

Ve e v et [

IA

IA

where the second equality holds because of the i.i.d. samples in By and the zero
mean of the random vector V f (x¥*1; 55?*‘) —V f(xk; gf“) — VFxM + VF b

@ Springer

Journal of Optimization Theory and Applications

resulted from unbiasedness in Assumption 3, the first inequality is due to the fact that
the variance of a random vector is upper bounded by its second moment, and the last
inequality follows from Assumption 2.

Now, take conditional expectation on both sides of (2.7), use (2.8), and substitute
it into (2.6). We have

Eg, [I€°T 7] < (1 = B2l I* + 2BLE s, [IVVT — VE 2]

2(1 — Br)2L?
+—Ep,,, [—x412].

Taking a full expectation over the above inequality and using Assumption 3, we have

28702 N 2(1 — Br)?L?
m

E[lle 1] < (1 — BOE[lle*|1*] + E[|Ix*+! —x¥|1?]

= (1 - B’E[lIe")?

2 2.2 21 — 2 2L2
14 2 2 ii) T~ R[], 2.9)

k+1 k

where we have used x¥*! — x¥ = —p;g in the equality.
By similar arguments as those in (2.4), it holds

lghI* < 20181 + 218" — 117 < 2018"11% + 211>,
Plugging the above inequality into (2.9), we obtain the desired result. O

2.1 Results with Varying Stepsize

In this subsection, we show the convergence results of Algorithm 1 by taking varying
stepsizes. Using Lemmas 2.1 and 2.2, we first show a convergence rate result by
choosing the parameters that satisfy a general condition. Then we specify the choice
of the parameters.

Theorem 2.1 Under Assumptions 1 through 3, let {x*} be the iterate sequence from
Algorithm 1, with the parameters {n} and {By} satisfying the condition:

1 Nk 2
—(1 —mL) — (I —Bk)” >0, and
4 Smn+1
47],%L2
M 1 (1— B>+ =)
Ko —mL) — <0,Yk>0. (210
o G mb) = o T 2071 L2 = 20 210

Let (g%} be defined in (1.11). Then

@ Springer

Journal of Optimization Theory and Applications

= [n
| G = ml) = =1 = po? | ElIg"]
k=0 MNk+1
2 K-1)
o Bio
<o) - — —k 2.11
= ¢ + 20monoL? + kZO 10m17k+1L2 ()
Proof From Lemmas 2.1 and 2.2, it follows that
PRI Lol SO S [
E{m TR T
Nk k2 Mk k2 llek)1
<E[5 @ meDllen " — - = meLIgT 20 L2
26202 40 — B2 L? 4n?L?
- 1 2]E|: Bi.o N (= B ni; 185112 + (1 = B2 <1+ up)leklz]- 2.12)
Mk+1L m m o
We have from the condition of {8} that the coefficient of the term ||e||> on the
right-hand side of (2.12) is nonpositive, and thus we obtain from (2.12) that
k+12 k2
e e
E| okt + e 11~ o (k) — lle”]]
20mk11L2 20m; L2
Bio? Mk U 2 k2
<——— | —0 —mL) - 1 - E .
= Tomnozr 307D = 5= (1= A0 | ELE)
Summing up the above inequality from k = 0 through K — 1 gives
K2 02
e e
o P S ol PN S]
20k L2 20m0L2
K—1 2.2 K—1 2
Bio Mk Mk 2 k2
< —_— — (1 —nL) — 1- E ,
= Tom ~ 2 (7 mb) = 50— = B0 | EE 1)
k=0 k=0
which implies the inequality in (2.11) by E[||e[|*] < o2 O

— mp”’

Below we specify the choice of parameters and establish complexity results of
Algorithm 1.

Theorem 2.2 (convergence rate with varying stepsizes) Under Assumptions 1 through
3, let {x*} be the iterate sequence from Algorithm 1, with moy = m and the parameters
{ni} and {Bi} set 1o

1 +24n7L? — st
d - k Wk =0, (2.13)

m=—- s Bk=
Lk +4)3 1440712

@ Springer

Journal of Optimization Theory and Applications

R

where n < 5= is a positive number. If T is selected according to (1.5), then

2(L(<1>(x0)— O*) + %ann o (15207 3)3 (log(K +3) — log3) + %))

E[lg" %] < 5
3(F - L)k +4)5 —43)

(2.14)

1 .
i Also, notice 77Zk < (%)§ or equivalently

"’;7:‘ > ()3 for all £ > 0. Hence, it is straightforward to have B; € (0, 1) and thus

(1—B)? < 1—py foreachk > 0. Now notice 5"}(7%(1—;7,@) > gcg)%g >1> (-
Bi)?, so the first inequality in (2.10) holds. In addition to ensure the second inequality
in (2.10), it suffices to have (1 — Bi)(1 + 4”") < "”‘ — 10mnis1 L322 — i L).
Because 2017kL2 > 10memis1 L2(2 — i L), thlS 1nequa11ty is implied by (1 — Bx)(1 +

4'7kL) < ”;:' 2017,%L2 which is further implied by the choice of B; in (2.13).

Therefore both conditions in (2.10) hold, and thus we have (2. 11)

Next we bound the coefficients in (2.11). First, from 1 —n L > ¢ T and
for all k, we have

Proof Since 1 < L2 it holds 1 <

5.1
2)3
'7k+1 - (4)

M”
|
-
NS
=
|
=
=
|
(8]
~~
=
A
~——
IV

X_: k>—f (x+4)~ 3dx

3 3en
- ((K+4)3 —43), @19)
where ¢ = % — %(f—t)l > 0. Second,
K—1 ,2 K—1 2
L
3 A P <—Z(k+5)3(1~|—24 272 _ ”"“)
ko Tk+1 n = Nk
K—1 1\ 2
L k+4)3
= 23k +5)3 (1 +24n7L% - #) (2.16)
T =0 (k+5)3
Note that
K—1 o K-1 n k-l
Z(k+5)3nk_L4Z(k+5)3(k+4)_§ ﬁ(g) Y ok+4!
k=0 k=0
N
= 737 (log(K +3) —log3). (2.17)

@ Springer

Journal of Optimization Theory and Applications

Furthermore, by a’ — b® = (a — b)(a® + ab + b?) for any a, b € R, we have

1
k443
I LSS (+5)} = k+47)
(k+5)3
B (k+5)73
k+55 +(h+53Gh+D+ k+435
and thus
K—1 K—1 1
3k +5)3 (1 _ (k+4)%>2 _ (k+35)"3
1 - 2
pars C S (k9T + G+ HIE A+ + k47
< 1K_l(/<+4)—% <! (2.18)
g T 65 '

Now applying the inequality (a + b)> < 2a® + 2b* to (2.16) and then using (2.17)
and (2.18), we obtain

K—1 2

i 3750 _ L
Z < 11527’ L(3)3 (log(K +3) —log3) + ——. (2.19)
= Mt 339

Therefore, plugging (2.15) and (2.19) into (2.11) and by the selection of 7 in (1.5),
we obtain the desired result. O

Remark 2.1 The result in Theorem 2.2 does not include the noiseless case, i.e., o0 = 0.
Nevertheless, if in that case, we can simply choose n; = ®(%) and B = 1 for all
k > 0. This way, Algorithm 1 reduces to the deterministic mirror-prox method, and
we can easily obtain ming< g [|g¥||> = 0(%) from (2.11).

By Theorem 2.2, we below estimate the complexity result of Algorithm 1 to produce
a stochastic e-stationary solution.

Corollary 2.1 (complexity result with varying stepsizes) Let ¢ > 0 be given and sup-
pose o > 0. Then under the same conditions of Theorem 2.2, Algorithm 1 can produce
a stochastic e-stationary solution of (1.1) with a total complexity

Tiots = mK = O (max {ms_3(L(d>(X0) - @*))3, e 3(|loge| + |10go|)%a—3}) .
Jm
- 4
Proof By Theorem 2.2 with n = %5, we have
B[%] = O (K—%(L(cp(xo) — %) 4+ “”%K)) . (2.20)

@ Springer

Journal of Optimization Theory and Applications

3
Hence, it suffices to let K = @(max [8*3(L(<D(x0) — ®%)2, e3(|loge| +

|logo |)% "—i }), to have E[||g7||?] < 2. This completes the proof. O
m?2

Remark 2.2 1f m = 1 or m = O(1) independent of o, then the total complexity will
be

3 0 3 3.3 3
Tiotal = O (max {a_ (L(@(x") — %)%, e 0 (|loge| + |loga|)2}>.

If o > 11isbig and can be estimated, we can take m = © (02). This way, we obtain the
total complexity O (8’302((| log ¢| + log o) + (L(@x0) — (I)*))%)>. This result
is near-optimal in the sense that its dependence on ¢ has the additional logarithmic
term | log 8|% compared to the lower bound result in [3]. In the remaining part of this

section, we show that with constant stepsizes, Algorithm 1 can achieve the optimal
complexity result O (s73).

2.2 Results with Constant Stepsize

In this subsection, we show convergence results of Algorithm 1 by taking constant
stepsizes, i.e., nx = 1o, Yk > 1. In order to consider the dependence on the quantities
L, CID(XO) — ®* and 02, we give two settings that yield two different results, but each
result has the same dependence on the target accuracy ¢. The first result is obtained
from Theorem 2.1 by taking constant stepsizes.

Theorem 2.3 (convergence rate I with constant stepsizes) Under Assumptions 1
through 3, let {x*} be the iterate sequence from Algorithm 1, with the parameters
{nk} and {Bi} set to

2 2 i
n 4n”/m +10n~(2 —n/K3)
=-—=, B=B8= 5 , Vk >0, (2.21)
LVK K3 +4n%/m
3
where n < ‘/Tf is a positive number. If T is selected from {0, 1, ..., K — 1} uniformly
at random, then
_ 1 L(®(x%) — o* LYK 242022
ELE) s ——~ ((Xn) 2omor? * ~ Tom) (2.22)
K3 (10— - g) 0
JK

Proof First note Q/Lf < % and thus 8 € (0, 1). Now it is easy to verify by using
(1 —B)? < 1 — B that the conditions in (2.10) are satisfied. Hence, the result in (2.11)
holds.

@ Springer

Journal of Optimization Theory and Applications

Second, by the choice of n; and S, we have

K—1 K—1
2

Nk _ _ M _ 2 n n _ n

kE_O: (T(l ML) = sy (1= Bo)) = 2 (- - %)

2/(1 1
and

Ki B2o? KZ an? +2on) Wor o
= 10mny1 L* ~ = 10an K3 ~ 10mL '

Plugging (2.23) and (2.24) into (2.11), we obtain the desired result by the selection of
T in (1.5). O

2
From (2.22), we see that in order to have the O (K ~3) convergence rate, we need to
set mg = O(~v/K). Next we set my in this way and estimate the complexity result of
Algorithm 1 with the constant stepsize.

Corollary 2.2 (complexity result I with constant stepsizes) Let ¢ > 0 be given. Under
Assumptions 1 through 3, let {xX} be the iterate sequence from Algorithm 1 with

my > C()\/? and the parameters {nk} and { By} set to those in (2.21) where n < ‘F
Let t be selected from {0, 1, — 1} uniformly at random. Then X" is a stochasnc
e-stationary solution of (1.1) if

3

103 <L(d>(x0)—<b*) L 24202,72)2

n 20co ;72 10m

K = (2.25)

&3

3
Proof When n < YK itholds 1 (1—+L)—1 > L Hence, (2.22) with mg > co/K

10 ° VK
implies
) 40 [L(®x°) — @* o2 24262p?
B < 2 (£)4 .),
K3 n 20con 10m

which together with the condition of K in (2.25) gives E[||g7 ||?] < &2. This completes
the proof. O

Remark 2.3 Suppose that 0 > 1 and can be estimated. Also, assume L = (1)
and ®(x%) — ®* = Q(1). In this case, we let n = @(a—%(L(cb(xO) - c1>*))%),

co = @(ag), and m = O(1) independent of ¢. Then from (2.25), we have K =

@ Springer

Journal of Optimization Theory and Applications

0] (8’30L(<I> (x%) — <I>*)). With this choice, the total number of sample gradients will
be

Tiotal = mo +m(K — 1)
1
=0 (5103(L(d>(x0) —)3 +e 0 L(@(x") — cp*)) . (2.26)
The dependence on the pair (g, o) matches with the result in [32].

The complexity result given in (2.26) has a low dependence on (¢, o, L(®(x°) —
®*)) in the sense that ¢ > only multiplies with o L(®(x") — ®*) but not a higher
order. However, the drawback is that the initial batch m must be in the order of &~!
to obtain the complexity result O (¢~3). Our second result with constant stepsizes will
relax the requirement. We utilize the momentum accumulation in the parameter of
(2.9) and give our novel convergence analysis, by introducing the following quantity

a2, itk > 1,

I'y =
1, if k =0.

(2.27)
We first give a generic result below under certain conditions on the parameters.
Then, we will specify the choice of parameters to satisfy the conditions.

Theorem 2.4 Under Assumptions 1 through 3, let {x*} be the iterate sequence from
Algorithm 1. Suppose there are constants A and B such that the parameters {ny} and
{Br} satisfying the conditions:

4172 Nk K-l
2L+ — > Ty, Vk=0,....K—1, (2.28)
Jj=k+1
K-1 2
T'v <A, and Iy —- <B, 2.29
k:177k k= an kZFj-H_ (2.29)

where K is the maximum number of iterations in Algorithm 1. Let {8} be defined in
(1.11). Then

K—

._.

0'2 02
mE[IE°17] < 12[@ () — &*] + (BA +6m0)— + 16B—. (2.30)
0
k=0

Proof We begin by taking the total expectation and telescoping the inequality in (2.3)
overk =0, ..., K — 1 to obtain

@ Springer

Journal of Optimization Theory and Applications

K—1 K—1
Eloa®)] - o) = Y TE[I1?] - Y- (1 - mL)E[Ig"’]
k=0 k=0

n o Mk

E[lle*)1?]

K—1

- Y T - mDE[Ig],

k=0

where we have used E[€] < ,‘;—z by Assumption 3. Since ®(xX) > ®* from
Assumption 1, the above inequality implies

K—1 2 K—1
Nk o k2 0y _ x4 M0 07 Nk k2
kg 5 (= mDE[Ig'] < 0% — @* + 7 m0+k§ 5 E[le1%].

(2.31)

In addition, we divide both sides of (2.9) by 't and obtain from the definition of
1 in (2.27) that

1 2870 L 2n7L?
m

1
E[lef 2] < F—kE[IIekIIZ] + E[llg]], V& > 0.

| Cit1 m Ty
Let j =0,...,k — 1 be another index on which the above inequality is telescoped.
We obtain

k—1 ,322 k—1

1 293L
1 Bl 1] < Ef1e")” +ZF— Z—J— [Ig’I1”], Yk = 1.
J

Jj=

Multiplying 'y to both sides of the above inequality and rearranging it gives

2 2 k—1 2 2 k—1

o 20 5 2L Iy .
E[]ek <Tpl —+ — —_— — En2EN1g/ 1], Yk > 1,
[le"11%] k(0+ - ;:o F/+1) m Fj’?J (g’ 11°] >

where we have used E[Heo ||2] < Zl—z again. Now multiply 7, to the above inequality

and sumitupoverk =1,..., K — 1 to have
K—1
> mE[lle*I’]
k=1
1

<0'2KZ_177krk L+£]§ /3]2 2K lkzﬂk k ZE ”]”]
- P my m = U1 m I'j

k=1 j=0

@ Springer

Journal of Optimization Theory and Applications

) 82 yp2 K22 K-l
_ozznkrk(—+ 3 L) 22 IS e)sle)
mj OFJJrl AL B A S
) hp2 K-l ’71% K—1 .
=0 anrk<—+ Z i) —Z—(njrj)lE[||g 1],
"y = Tt m = T j=k+1

(2.32)

where the first equality follows by swapping summation, and the second equality is
obtained by swapping indices and realizing that the coefficient for E[||gX (2] is null.
Now we have by substituting (2.32) into (2.31) and rearranging terms that

K-1

212
Z%(ml= =k Z 7T) 12°1%]
k=0 j=k+1
2 K—1

2
S<I>(x0)—<l>*+— —+—anrk<—+ Z)
Ljg
which together with the conditions in (2.28) and (2.29) gives the bound for gk:
2 o2

Z wE[lgh1?] < 4[ex°) — @*] +2(A +) + 4. (2.33)
mo m

Use (2.28) again and substitute (2.33) into (2.32). We obtain the bound for ek

>~
L

2 K—1
Nk
nE[lle*)?] < +zB— +>° 7H«: gk 11?]
k=0

~
Il
=}

2 2
b)) — &+ QA+ 10) — +4B. (2.34)
mo m

Finally, we have from (2.4) that ||g*||> < 2(lg*||> + 2|/e¥|%. Sum up this inequality
overk =0, ..., K — 1 and substitute (2.33) and (2.34) into the summation. We obtain
the result in (2.30). O

Below we specify the choice of parameters and establish complexity results of
Algorithm 1. The following lemma will be used to show the conditions in (2.28) and
(2.29).

Lemma 2.3 Let
B =3[k +3)"° -k +2)'7], k=0 (2.35)

@ Springer

Journal of Optimization Theory and Applications

Then we have

K—1

1
> F_Z —(k+2)*3+ = (k +2)'3 + % (2.36)
j=k+1

.1
—_

\S)

Proof By the fact a® — b> = (a — b)(a® + ab + b?), we have

3
(k +3)%3 + (k+ 313k + 213 + (k +2)2/3
(2.37)

B =3[k +3'" =k +2'°] =

Hence, f; € [(k +3)723 (k+ 2)_2/3] for all k > 0, and it is a decreasing sequence.
In addition, by the definition of 'y and B, it holds for all j > k > 0 that

i1 j—1
L — M — 1_[(1 —B)l<e 2y —e [(j+2)1/37(k+2)1/3]
Fk H;cz_()l(l - ,31)2 1=k
(2.38)

where the inequality holds because 0 < 1 + x < e*,Vx > —1. Therefore, we have
that for any £ > 0,

_ _ k-1

1/3_ 1/3 1/3 —6(j+2)173
Z Z o[+ P—k+2)'3] _ SE+2)Y Z 0G5 39)
—k+1 j=k+ J=k+1

. _6x1/3 —6x1/3
Since e~ " is a decreasing function and has an anti-derivative — 36 0 (18x2/3 +

6x1/3 + 1), we have

k-1 K+1

Z e~0U+D - / e 4y
i k+2
1
< %e*“"“)”}(mk +2)23 L6k +2)13 +1). (2.40)
Substituting (2.40) into (2.39) gives (2.36) and completes the proof. O

Now we are ready to show the second convergence rate result with constant step-
sizes.

Theorem 2.5 (convergence rate II with constant stepsizes) Under Assumptions 1

through 3, let {x*} be the iterate sequence from Algorithm 1 with n; = . 3'7/? and
3

{Br} set by (2.35), where n < min{‘/Tf, \/%} is a positive number. If T is selected

from {0, 1, ..., K — 1} uniformly at random, then

@ Springer

Journal of Optimization Theory and Applications

1 [/12L 1 7\ 8 o2
ENa" 121 < — [22T x%) — o* =173 4 1513 1 L 9
[ngn]_K%(n[(m J+ (274 +9)Wm0
32 o?
+—(1_2_2/3)2;) (2.41)

Proof We show the desired result by verifying the conditions in Theorem 2.4. First,
with nx = #E’ the condition in (2.28) becomes

K—1
2 4 rj
- 4 —— —+ <1, k=0,...,K—1.
3 2/3 ’ ’

JK mK ot |y

Notice that when k = K — 1 the summation above is null. Hence, by (2.36), it suffices
to require

2n 4 9* (1, 1 1
20 (kB yk'Bp—_) <1,
3/_K+m1<2/3 2 *5 t36) =

3
which is guaranteed when n < min{‘/T?, \/g }and K > 1. Therefore, the condition
in (2.28) holds.
Secondly, by letting k = 0 in (2.36) and recalling Fo = 1 we have Z,f_ll Nk Fk <
1~2/3 1~1/3 1
(322 + 2! + 36)Lf
213 4 21 /34]
()

notice

36

K-1
anFkZ
K-2 ’32

K—1
Z(l—ﬁj)z Z 77k—

j—H

2.

0 K-2 ’3
= IV & TR\

1 2/3 13 4 1)
(G+2)7" + = (]+2) 36

IA

n 1. o3, Lo I —4/3)
——— > (G+D PG+ (G +2
(1 po?LIK Z (2(1) 6(]) 36(1)

n 3
EW(K =D +g logKJr_(l 1/3)>
< 2.42
< T (2.42)

where the first inequality follows from (2.36), the decreasing monotonicity of S,
and the setting of 7y, the second inequality holds by 8; < (j + 2)7%/3, and the last

@ Springer

Journal of Optimization Theory and Applications

inequality is obtained by By < 272/3 and using the fact 3x!3 > logx,Vx > 0. Thus,
the second condition in (2.29) holds with B = W Therefore, (2.41) follows

from (2.30) and the choice of t by uniformly random selection. O

From Theorem 2.5, we can immediately obtain the next complexity result of Algo-
rithm 1 with the constant stepsize.

Corollary 2.3 (complexity result IT with constant stepsizes) Let ¢ > 0 be given. Under
Assumpnons 1 through 3, let {x*} be the iterate sec]uence from Algorithm 1 with
Nk = f and {Byi} set by (2. 35) where 1 < min{-~7~ VK \/%} is a positive number.

Let T be selected from {0, 1, . — 1} uniformly at mndom. Then X* is a stochastic
e-stationary solution of (1.1) if

(%[q,(xo)_q,*] (1/3+ 1o1/3 4 +

3

o2\
7) mg (1—272/3)2 W)

K =

(2.43)

&

3
Remark 2.4 We need n < min{*/—E \/Z} which is true as long as n = \/% andm <

K2” . Then we have from (2.43) that K = 0 (e 73 (L7 [@(x0) — &*] + & + 2°)3/2)
by ignoring the dependence on absolute constants the total sample complexity is
mo+m(K —1) = 0(e3(L[P (") — &*Im!/® ;%)3/2) if we let mg = m. Let
mo = m = O(1), the total sample complexity mo + m(K — 1) = O (¢~3) matches
with the lower bound in [3]. However, the dependence on (L(®(x°) — ®*))3/2 will

be not as good as the result in (2.26). Let mg = m = @(%), total sample

L2(a(
complexity is mg +m(K — 1) = O(e 3o L(®(x") — &*)).

3 Numerical Experiments

In this section, we test Algorithm 1, named as PStorm, on solving three problems.
The first problem is the nonnegative principal component analysis (NPCA) [25], and
the other two are on training neural networks. We compare PStorm to the vanilla
proximal SGD, Spiderboost [33], and Hybrid-SGD [32]. Spiderboost and Hybrid-SGD
both achieve optimal complexity results, and the vanilla proximal SGD is used as a
baseline for the comparison. For NPCA, all methods were implemented in MATLAB
2021a on a quad-core iMAC with 40 GB memory, and for training neural networks,
all methods were implemented by using PyTorch on a Dell workstation with 32 CPU
cores, 2 GPUs, and 64 GB memory.

3.1 Nonnegative Principal Component Analysis (NPCA)

In this subsection, we compare the four methods on solving the NPCA problem:
1 Ty T
Max —E,[x"' (zz)x], s.t. |x|| < 1,x >0, 3.1
xeR" 2

@ Springer

Journal of Optimization Theory and Applications

Fig.1 Objective error and the 10°
S . . ——PStorm 2107 —r—PStorm
violation of stationarity by _ o= vanilla SGD £ -5 vanilla SGD
PStorm, the vanilla SGD 802 T Spiderboost 5 Y s
! 5 - 510 Hybrid-SGD 5 Hybrid-SGD
Spiderboost, and Hybrid-SGD ° 502
on solving (3.1) with randomly 31 o g
Qo =
generated dataset ° Jm 3 %
. 100
10 0 5 10 0 5 10
number of samples , 10% number of samples , 10°

where z € R” represents a random data point following a certain distribution, and
[E, takes expectation about z. The problem (3.1) can be formulated into the form of
(1.1), by negating the objective and adding an indicator function of the constraint. Two
datasets were used in this test. The first one takes z = HTWH where w ~ A'(1,1), and
we solved a stochastic problem; for the second one, we used the normalized training
and testing datasets of realsim from LIBSVM [4], and we solved a deterministic
finite-sum problem. For both datasets, each sample function in the objective of (3.1)
is 1-smooth, and thus we used the Lipschitz constant L = 1 for all methods.

Random dataset: For the randomly generated dataset, we set the dimension n = 100
and the minibatch size to m = 10 for PStorm, the vanilla proximal SGD, and the
Hybrid-SGD. For the Spiderboost, we set ¢ = 5 X 1073, and for each iteration k, it
accessed ¢ = ¢! data samples if mod(k, ¢) # 0 and £~2 data samples otherwise.
Each method could access at most 10° data samples. The stepsize of PStorm was
set according to (2.13) with 5 tuned from {0.1, 0.2, 0.5, 1}, out of which n = 0.1
turned out the best. The stepsize of the vanilla proximal SGD was set to \/kn+71 for
each iteration k > 0 with 5 tuned from {0.1, 0.2, 0.5, 1}, out of which n = 0.5 turned
out the best. The stepsize of Spiderboost was set to = 0.5. The Hybrid-SGD has a
few more parameters to tune. As suggested by [32, Theorem 4] and also its numerical

experiments, we set vk, Bk, Nk, and the initial batch size to

3com% 5 B=1 Jm 2
Yk =Y = , Pk=EPp =1— TNk =EN= ——,
V13mo(K + 1)3 moK L3 +y)
2
‘
mo = —4 (3.2)
[m(K +1)3]

where K is the maximum number of iterations. We tuned cg to 10 and ¢ to 5.

To evaluate the performance of the tested methods, we randomly generated 107 data
samples following the same distribution as we described above, and at the iterates of
the methods, we computed their violation of stationarity of the sample-approximation
problem. Since the compared methods have different learning rate, to make a fair
comparison, we measured the violation of stationarity at X by || P(x, VF, 1)||, where
P is the proximal mapping defined in Definition 1.1, and F is the sample-approximated
objective. Also, to obtain the “optimal” objective value, we ran the projected gradient
method to 1,000 iterations on the deterministic sample-approximation problem. The
results in terms of the number of samples are plotted in Fig. 1, which clearly shows
the superiority of PStorm over all the other three methods.

@ Springer

Journal of Optimization Theory and Applications

3

0 2
—v—PStorm 10 | —— Spiderboost 10 |—— Spiderboost
- o vanilla SGD

Hybrid-SGD

10710

objective error
objective error

1010

[——Pstorm 4

- = vanilla SGD

2 104 Hybrid-SGD

0 50 100 0 50 100 0 50 100 0 50 100
epoch number epoch number epoch number epoch number

violation of stationarity
3 .
violation of stationarity

Fig. 2 Objective error and the violation of stationarity by PStorm, the vanilla SGD, Spiderboost, and
Hybrid-SGD on solving (3.1) with realsim dataset

realsim dataset: The realsimdatasethas N = 72, 309 samples in total. We set the
minibatch size to m = 64 for PStorm, the vanilla proximal SGD, and the Hybrid-SGD.
For each iteration k of the Spiderboost, we set |Bx| = g = [v/N] =269 in (1.6), as
suggested by [33, Theorem 3]. The stepsizes of PStorm and the vanilla proximal SGD
were tuned in the same way as above, and the best 1 was 0.2 for the former and 0.5 for
the latter. The stepsize for Spiderboost was still set to 0.5 as the smoothness constant
is L = 1. For Hybrid-SGD, we set its parameters to

S 2

=y =095 fr=B=1— == —
Vi =Y B =B NIV nk=n LG+

" o)
mp = max N,—lI)
(K + D3]

where K is the maximum number of iterations and ¢; was tuned to 15. Notice that
different from (3.2), here we simply fix y = 0.95. This choice of y was also adopted in
[32], and it turned out that this setting resulted in the best performance of Hybrid-SGD
for this test.

We ran each method to 100 epochs, where one epoch is equivalent to one pass of
all data samples. The results in terms of epoch number are shown in Fig. 2, where
the violation of stationary was again measured by || P(x, VF, 1)|| and the “optimal”
objective value was given by running the projected gradient method to 1,000 iterations.
For this test, we found that Spiderboost converges extremely fast and gave much
smaller errors than those by other methods, and thus we plot the results by Spiderboost
in separate figures. PStorm performed better than the vanilla proximal SGD and the
Hybrid-SGD. We also tested the methods on the datasets w8a and gisette from
LIBSVM. Their comparison performance was similar to that on realsim.

3.2 Regularized Feedforward Fully-connected Neural Network

In this subsection, we compare different methods on solving an ¢;-regularized 3-layer
feedforward fully-connected neural network, formulated as

N
o1
min — 3 €(softmax (W30 (Wao (W1x0))). 30) + A(IWi 11 + [Wall1 + [Wsll).
i=1

(3.3)

@ Springer

Journal of Optimization Theory and Applications

Here {(x;, y,)} L, is a c-class training data set with y; € {1,...,c} foreachi, 6 :=
(W1, W5, W3) contains the parameters of the neural network o(~) is an activation
function, £ denotes a loss function, softmax(z) := = 1 g [e?t;...;e*] e R, Vz e

j=1
R€, and A > 0 is a regularization parameter to trade off the loss and sparsity.

In the test, we used the MNIST dataset [16] of hand-written-digit images. The
training set has 60,000 images, and the testing set has 10,000 images. Each image
was originally 28 x 28 and vectorized into a vector of dimension 784. We set W €
R784x120 'y, ¢ RI20x84 and Wi e R3**10 whose initial values were set to the
default ones in 1ibtorch, a C++ distribution of PyTorch. We used the hyperbolic

. . . X
tangent activation function o (x) = ix +§ ~

for any distribution q € R€.

and the cross-entropy £(q, y;) = —log gy,

The parameters of PStorm were set according to (2.13) with L = 1 and n = E/TZ ~
0.198. Notice that the gradient of the loss function in (3.3) is not uniformly Lipschitz
continuous, and its Lipschitz constant depends on 6. More specifically, the gradient
is Lipschitz continuous over any bounded set of #. Nevertheless, PStorm with this
parameter setting performed well. The learning rate of the vanilla SGD was set to

3
Nk = \/kL?, Vk >0 withn = */TZ. We also tried n = 0.5, and it turned out that the

performance of the vanilla SGD was not as well as that with n = %Z when A > 0
in (3.3). For Spiderboost, we set ¢ = [+/600007 = 245 in (1.6) as specified by [33,
Theorem 2] and its learning rate n = 0.021in (1.7). We also tried n = 0.1 and n = 0.01.
It turned out that Spiderboost could diverge with = 0.1 and converged too slowly
with n = 0.01. For Hybrid-SGD, we fixed its parameter y = 0.95 as suggested in
the numerical experiments of [32], and weset By =B =1 — \/% Vk > 01in (1.8),

where K is the maximum number of iterations. Its learning rate was setto n = ﬁ
Then we chose the initial mini-batch size mg from {256, 2560, 30000, 60000} and L
from {5, 10, 50, 100}. The best results were reported.

We ran each method to 100 epochs. Mini-batch size was set to 32 for PStorm,
the vanilla SGD, and Hybrid-SGD. Again, to make a fair comparison, we measured
the violation of stationarity at @ by | P(8, VF, 1)||, where P is the proximal mapping
defined in Definition 1.1, and F is the smooth term in the objective of (3.3). Table 2 and
Fig. 3 show the results by the compared methods. Each result in the table is the average
of those at the last five epochs. For Hybrid-SGD, the best results were obtained with
(mg, L) = (60000, 50) when A = 0 and with (mg, L) = (60000, 100) when A > 0.
From the results, we see that PStorm and Hybrid-SGD give similar training loss and
testing accuracies while the vanilla SGD and Spiderboost yield higher loss and lower
accuracies. The lower accuracies by Spiderboost may be caused by its larger batch
size that is required in [33], and the lower accuracies by the vanilla SGD are because
of its slower convergence. In addition, PStorm produced sparser solutions than those
by other methods in all regularized cases. In terms of the violation of stationarity, the
solutions by PStorm have better quality than those by other methods. Furthermore, we
notice that the model (3.3) trained by PStorm with A = 5 x 10~* is much sparser than
that without the £; regularizer, but the sparse model gives just slightly lower testing

@ Springer

Journal of Optimization Theory and Applications

PIoq ur payySIySIy o1 Aisuep,, pue peis

,» 1891, 10J S)[NSAI 1S9q Y, "UONINJOS A} UT so1azuou Jo aSejusdred ay) 10§ st Asuap,, ‘KjLreuonels

JO uone[oIA 2y} 10y ST, peid,, ‘Aoeinodoe Junsa) 1oy S1 Js9),, ‘sso[Jururen) 10y St urer),, 'sydods)] 0} SUNI POYIAW OB ‘7€ = M/ YO)Bq-TUIW SN SPOYIAUW 1Y) ISIY Y],

69Cl [=PII'l TI'L6 TPE8 C9°0l T28I'CT 9196 IVl 98°C6 T296'S ¥SS6 172691 919 T36'T TI'L6 T—98'8 —=o¢
6C8C C9¢S6 8L'L6 T80 LU'LC TOL8T ¥TL6 T0L'S LY'66 CTOLLS T996 179801 90PL TO09T 09°L6 T98EY =C
001 €=¥9°¢ II'L6 €90S'T 001 CTRLS'T I¥'L6 T™vlY 001 ¢==Tt¥re 60°L6 TI169 001 €9sp'€ 1086 ¢°I9¢ 000
Ansuaq pein 1591, urel], AusuaQq pein 1591, ure1], Ausudq pein 1S9, urel], AusudQq pein 1S9, urely, Y
ans-prgiH 1s00q109p1dg ans e[IrueA wio)Sd POYRIN

(¢°¢) [opow 9y Sururen uo 3s00qiapidg pue ‘qOS-PLUGAH ‘dOS Bl[TUBA oY) ‘uLI0)Sq poypowr pasodoid ay) Aq ISy g djqel

pringer

As

Journal of Optimization Theory and Applications

A=0
0.6
—v—PStorm
-8 vanilla SGD
2 0.4 —— Spiderboost
o Hybrid-SGD
o
c
€
©0.2
N
0 e -
0 50 100
epoch number
>
%)
e
3
Q
s}
@
2 92 o ——PStorm
a2 -5 vanilla SGD
2 90 —— Spiderboost
Hybrid-SGD
88
0 50 100
epoch number
=
g,
g 10 .
=) .M,-V\ o Tt
T "'\-
3 \“\W]
“
210'2 —v—PStorm
o -0 vanilla SGD M
© —— Spiderboost
L Hybrid-SGD
> 103
10
0 50 100
epoch number
» 101
g ——PStorm
N -5 vanilla SGD
S 100.5 —— Spiderboost
E Hybrid-SGD
s}
o 100
=}
ol
S 995
e
g
99
0 50 100

epoch number

A=2x10"4%
0.6
—v—PStorm
-8 vanilla SGD
2 04 —— Spiderboost
2o. Hybrid-SGD
=)
c
£
go02
. ""”’N_...._m o
o 50 100
epoch number
o ——PStorm
= 90 -5 vanilla SGD
3 a8 —— Spiderboost
Hybrid-SGD
86
o 50 100
epoch number
2
8
S0 A i
5 M] l| R o
2 \ \ ue, e, :; \ '
g ——PStorm
o = o= vanilla SGD
® —— Spiderboost
o° Hybrid-SGD
> o2
10
o 50 100
epoch number
» 100
<] —v—PStorm
@ 80 - -8 vanilla SGD
(:) f —— Spiderboost
.E 601t Hybrid-SGD
5 /'
S 40
8 .
g —
@ 20 Y
g
0
o 50 100

epoch number

A=5x10"%
0.6
—v—PStorm
-5 vanilla SGD
2 04 —— Spiderboost
o Hybrid-SGD
2
£
g 02 \'\'5_—*
0
0 50 100

epoch number

2 0 —v—PStorm
£9 —&- vanilla SGD
Qo 88 —— Spiderboost
Hybrid-SGD
86
0 50 100
epoch number
2
E R
S 10 N @ [
k] Iy rdq '\ e
o \ u Y o 751”'} gh\n‘:
2 —v—PStorm
S -5 vanilla SGD \
© —— Spiderboost W
K] Hybrid-SGD
> 2
10
0 50 100
epoch number
» 100
2 —v—PStorm
2 80 -5 vanilla SGD
5 —— Spiderboost
£ 60 Hybrid-SGD
s}
S 40
T
c
g 20 .
5 s
S oo
0 50 100

epoch number

Fig. 3 Results in terms of epoch by the proposed method PStorm, the vanilla SGD, Hybrid-SGD, and
Spiderboost on training the model (3.3). The first three methods use mini-batch m = 32

accuracy than the dense one. This is important because a sparser model would reduce
the inference time when the model is deployed to predict new data.

3.3 Regularized Convolutional Neural Network

In this subsection, we compare different methods on solving an ¢{-regularized convo-
lutional neural network, formulated as

0

!
min —
N

N

3 E(softmax(cbg x)). yi> YT

i=

34)

@ Springer

Journal of Optimization Theory and Applications

pIoq ur payySIysty o1e Aisuep,, pue pers

2 <

$189),, 10J SI[NSAI 1$3q AL, "UONN[OS Y} UI SOIdZUOU Jo a3eIuadiad ay) 105 ST A)Isuap,, ‘AJLIeuone)s

JO uone[OIA Y} 10§ ST peid,, ‘Korindoe Sunsa) 10y ST Js9),, $SO[Sururen 10y st uren,, ‘syooda ()¢ 0) suni poylouwr Yory ‘00 = YOJeq-TuIll Isn SPOYIW 1Y) ISIY Y],

8L°09 609 1,L98 SL'T 1Cce I8°0 798I 69t 9°0% ¢¢'¢ 7998 SI'e L8661 6°S £5°88 ST'T ¢
8L'CTL 891 £0'88 1—o61"8 6L°€S 68°0 £v'0C €6'C 9°68 8L'C 9L'88 1-9t¥'6 16ty LTV 0F'68 I-919°L —oC
001 61°0 L1°88 9T'¢S 001 1o £9°9¢ 981 001 9L°0 19°68 1-96¥'C 001 0r'0 ¥PL'68 TI0ET 00
Kysuap peid 159) uren Kysuap peid 159) uren Kysuap peid 159) uren Kysuap peid 159) uren Y
ans-puakH 1s00q10p1dg aos efruea wiolSd POYRIN

(4°¢) 1opowr ay) Sururen uo 3s00qiopids pue ‘qOS-pLGAH ‘DS e[ueA oY) ‘uu0}§q poyowr pasodoid ayy £q yooda jo surre) ur synsay € a|qel

pringer

As

Journal of Optimization Theory and Applications

A=0 A=2x10"4 A=5x10"4
25 8 15
[sa{——PStorm ——PStorm —v—PStorm
2 —o vanilla SGD | M -o vanilla SGD 4 -o vanilla SGD
a b —— Spiderboost a 6 —— Spiderboost 2 10 r\ —— Spiderboost
215 Hybrid-SGD el Hybrid-SGD o Ui Hybrid-SGD
j=2) j=2] 4 (=)
= c [=4
£ 1 £ £
o g g5
0.5 2
0 0 0
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
epoch number epoch number epoch number
100 100 100
o ' 1
3 80 % 80 % 80
I e o =
3 60 3 60 3 60 il
© © ©
2 40 ——PStorm W 2 40 ——PStorm 2 40 ——PStorm
b === vanilla SGD @ J\//-— vanilla SGD % —= vanilla SGD
2 20 /I\//‘——Spiderboosl 2 20K —— Spiderboost wa‘f\ 2 20 \/\’\/——Spiderboost W
Hybrid-SGD Hybrid-SGD Hybrid-SGD
0 0 0
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
epoch number epoch number epoch number
2 - 6 10
_‘E‘ —v—PStorm ‘E' —v—PStorm *E
@ -0 illa SGD @ -5 vanilla SGD c 8
P vanil
_5 1.5 "‘ Alh « |~ Spiderboost .5 4 —— Spiderboost _S H /(- .M
5 SAFUE N Hybrid-seD g el Hybrid-SGD 6 Mg TR
® ' i T ® L i PR TIAL I A ® h o v By
5 1 m . ' ! b.ﬂ\,lrll 5 \.\‘. hi Y b b 5 Ve v
a0y LAY 4 —v—PStorm
Sos " 52 i S ~= vanilla SGD
iha T T 2 —— Spiderboost
g 2 2 Hybrid-SGD
) o 7 o
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
epoch number epoch number epoch number
» 101 «» 100 «» 100
o ——PStorm < ° —v—PStorm
2 100.5 -o vanilla SGD 2 & 80 t -o vanilla SGD
g ™ —— Spiderboost S 80 5 —— Spiderboost
= Hybrid-SGD = E 60 Hybrid-SGD
S 100 S S
% g’:’ 60 ||——PStorm % 40 i
z 99.5 z —e= vanilla SGD z
3 i 3 —— Spiderboost 8 20
s b5 Hybrid-SGD 5
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
epoch number epoch number epoch number

Fig. 4 Results in terms of epoch by the proposed method PStorm, the vanilla SGD, Hybrid-SGD, and
Spiderboost on training the model (3.4). The first three methods use mini-batch m = 100

Similar to (3.3), {(x;, y,-)}f\':1 is a c-class training data set with y; € {1, ..., ¢} for
each i, 6 contains all parameters of the neural network, £ denotes a loss function, ¢y
represents the nonlinear transformation via the neural network parameterized by 6,
and A > 0 is a regularization parameter to trade off the loss and sparsity. In the test,
we used the Cifarl0 dataset [15] that has 50,000 training images and 10,000 testing
images. In addition, we set £ to the cross-entropy loss and ¢y to the all convolutional
neural network (AIICNN) in [29] without data augmentation. The AIICNN has nine
convolutional layers with ReLU activation.

We ran each method to 200 epochs. Mini-batch size was set to 100 for PStorm, the
vanilla SGD, and Hybrid-SGD. The stepsizes of PStorm and the vanilla proximal SGD
were tuned in the same way as in Sect. 3.1. For Spiderboost, we set ¢ = [+/50000] =

@ Springer

Journal of Optimization Theory and Applications

224 in (1.6), and its learning rate n in (1.7) was tuned by picking the best one from
{0.01, 0.1, 0.5}. For Hybrid-SGD, we set its parameters in a way similar to that in
Sect. 3.2 but chose the best pair of (L, mg) from {1, 10, 100} x {102, 103, 10*}. Because
the loss for AIICNN is not differentiable, we did not adopt the variance reduction for
PStorm, Hybrid-SGD, and Spiderboost, i.e., we changed u**! = vA*! vk in (1.4)
and x*~! = x¥ in (1.6) and (1.8). Results produced by the four methods are shown
in Table 3 and Fig. 4. Again, each result in the table is the average of those at the
last five epochs. From the results, we see that PStorm and Hybrid-SGD give similar
training loss and testing accuracies. PStorm is slightly better than Hybrid-SGD, and
the advantage of the former is more significant when A = 5 x 10~*. Spiderboost can
give small violation of stationarity, but it tended to have significantly higher loss and
lower accuracies. This is possibly because Spiderboost used larger batch size.

4 Conclusions

We have presented a momentum-based variance-reduced mirror-prox stochastic gra-
dient method for solving nonconvex nonsmooth problems, where the nonsmooth term
is assumed to be closed convex. The method, named PStorm, requires only one data
sample for each update. It is the first O(1)-sample-based method that achieves the
optimal complexity result O(¢~>) under a mean-squared smoothness condition for
solving nonconvex nonsmooth problems. The O(1)-sample update is important in
machine learning because small-batch training can lead to good generalization. On
training sparse regularized neural networks, PStorm can perform better than two other
optimal stochastic methods and consistently better than the vanilla stochastic gradient
method.

Acknowledgements We thank two anonymous referees for their constructive comments and suggestions
to improve the quality and contributions of the paper. This work is partly supported by NSF grants DMS-
2053493 and DMS-2208394 and RPI-IBM AIRC.

References

1. Allen-Zhu, Z.: Natasha 2: Faster non-convex optimization than SGD. In: Advances in Neural Infor-
mation Processing Systems, pp. 2675-2686 (2018)

2. Allen-Zhu, Z., Hazan, E.: Variance reduction for faster non-convex optimization. In: International
Conference on Machine Learning, pp. 699-707 (2016)

3. Arjevani, Y., Carmon, Y., Duchi, J.C., Foster, D.J., Srebro, N., Woodworth, B.: Lower bounds for
non-convex stochastic optimization. arXiv:1912.02365 (2019)

4. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst.
Technol. (TIST) 2(3), 1-27 (2011)

5. Chen, X., Liu, S., Sun, R., Hong, M.: On the convergence of a class of adam-type algorithms for
non-convex optimization. In: International Conference on Learning Representations (2018)

6. Cutkosky, A., Orabona, F.: Momentum-based variance reduction in non-convex SGD. In: Advances in
Neural Information Processing Systems, pp. 32 (2019)

7. Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SITAM
J. Optim. 29(1), 207-239 (2019)

8. Davis, D., Drusvyatskiy, D., Kakade, S., Lee, J.D.: Stochastic subgradient method converges on tame
functions. Found. Comput. Math. 20(1), 119-154 (2020)

@ Springer

http://arxiv.org/abs/1912.02365

Journal of Optimization Theory and Applications

9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.

22.

23.
24.
25.
26.
27.

28.
29.

30.
. Tran Dinh, Q., Liu, D., Nguyen, L.: Hybrid variance-reduced SGD algorithms for minimax problems

32.
33.

34.

35.

36.

Fang, C., Li, C.J., Lin, Z., Zhang, T.: Spider: Near-optimal non-convex optimization via stochastic
path-integrated differential estimator. In: Advances in Neural Information Processing Systems, pp.
689-699 (2018)

Ghadimi, S., Lan, G.: Stochastic first and zeroth-order methods for nonconvex stochastic programming.
SIAM J. Optim. 23(4), 2341-2368 (2013)

Ghadimi, S., Lan, G.: Accelerated gradient methods for nonconvex nonlinear and stochastic program-
ming. Math. Program. 156(1-2), 59-99 (2016)

Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochas-
tic composite optimization. Math. Program. 155(1-2), 267-305 (2016)

Huo, Z., Huang, H.: Asynchronous stochastic gradient descent with variance reduction for non-convex
optimization. arXiv:1604.03584 (2016)

Keskar, N.S., Mudigere, D., Nocedal, J., Smelyanskiy, M., Tang, P.T.P.: On large-batch training for
deep learning: generalization gap and sharp minima. arXiv:1609.04836 (2016)

Krizhevsky, A.: Learning multiple layers of features from tiny images. Technical Report, University
of Toronto, Toronto, ON (2009)

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition.
Proc. IEEE 86(11), 2278-2324 (1998)

Lei, L., Ju, C., Chen, J., Jordan, M.I.: Non-convex finite-sum optimization via scsg methods. In:
Advances in Neural Information Processing Systems, pp. 2348-2358 (2017)

Liu, B., Wang, M., Foroosh, H., Tappen, M., Pensky, M.: Sparse convolutional neural networks. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 806-814 (2015)
Mairal, J., Bach, F., Ponce, J., Sapiro, G.: Online learning for matrix factorization and sparse coding.
J. Mach. Learn. Res. 11(Jan), 19-60 (2010)

Masters, D., Luschi, C.: Revisiting small batch training for deep neural networks. arXiv:1804.07612
(2018)

Mitliagkas, I., Caramanis, C., Jain, P.. Memory limited, streaming PCA. In: Advances in Neural
Information Processing Systems, pp. 2886-2894 (2013)

Nguyen, L.M., Liu, J., Scheinberg, K., Takd¢, M.: Sarah: a novel method for machine learning problems
using stochastic recursive gradient. In: Proceedings of the 34th International Conference on Machine
Learning, Vol. 70, pp. 2613-2621. JMLR. org (2017)

Pham, N.H., Nguyen, L.M., Phan, D.T., Tran-Dinh, Q.: ProxSARAH: an efficient algorithmic frame-
work for stochastic composite nonconvex optimization. J. Mach. Learn. Res. 21(110), 1-48 (2020)
Reddi, S.J., Hefny, A., Sra, S., Péczos, B., Smola, A.: Stochastic variance reduction for nonconvex
optimization. In: International Conference on Machine Learning, pp. 314-323 (2016)

Reddi, S.J., Sra, S., Poczos, B., Smola, A.J.: Proximal stochastic methods for nonsmooth nonconvex
finite-sum optimization. In: Proceedings of the 30th International Conference on Neural Information
Processing Systems, pp. 1153-1161 (2016)

Robbins, H., Monro, S.: A stochastic approximation method. Ann. Math. Stat. 22, 400-407 (1951)
Scardapane, S., Comminiello, D., Hussain, A., Uncini, A.: Group sparse regularization for deep neural
networks. Neurocomputing 241, 81-89 (2017)

Shi, J.V., Xu, Y., Baraniuk, R.G.: Sparse bilinear logistic regression. arXiv:1404.4104 (2014)
Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for simplicity: The all convolu-
tional net. arXiv:1412.6806 (2014)

Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, New York (2018)

with nonconvex-linear function. Adv. Neural. Inf. Process. Syst. 33, 11096-11107 (2020)
Tran-Dinh, Q., Pham, N.H., Phan, D.T., Nguyen, L.M.: A hybrid stochastic optimization framework
for composite nonconvex optimization. Math. Program. 191(2), 1005-1071 (2022)

Wang, Z.,Ji, K., Zhou, Y., Liang, Y., Tarokh, V.: Spiderboost and momentum: faster variance reduction
algorithms. In: Advances in Neural Information Processing Systems, pp. 32 (2019)

Wei, C., Lee, J.D., Liu, Q., Ma, T.: Regularization matters: generalization and optimization of neural
nets vs their induced kernel. In: Advances in Neural Information Processing Systems, pp. 9709-9721
(2019)

Xu, Y., Xu, Y.: Katyusha acceleration for convex finite-sum compositional optimization. Informs J.
Optim. 3(4), 418-443 (2021)

Xu, Y., Xu, Y., Yan, Y., Sutcher-Shepard, C., Grinberg, L., Chen, J.: Parallel and distributed asyn-
chronous adaptive stochastic gradient methods. arXiv:2002.09095 (2020)

@ Springer

http://arxiv.org/abs/1604.03584
http://arxiv.org/abs/1609.04836
http://arxiv.org/abs/1804.07612
http://arxiv.org/abs/1404.4104
http://arxiv.org/abs/1412.6806
http://arxiv.org/abs/2002.09095

Journal of Optimization Theory and Applications

37. Xu, Y., Yin, W.: Block stochastic gradient iteration for convex and nonconvex optimization. SIAM J.
Optim. 25(3), 1686-1716 (2015)

38. Zhang, J., Xiao, L.: A stochastic composite gradient method with incremental variance reduction. In:
Advances in Neural Information Processing Systems, pp. 32 (2019)

39. Zhang, J., Xiao, L.: Stochastic variance-reduced prox-linear algorithms for nonconvex composite
optimization. Math. Program. 195, 1-43 (2021)

40. Zhao, R., Tan, V.Y.: Online nonnegative matrix factorization with outliers. IEEE Trans. Signal Process.
65(3), 555-570 (2016)

41. Zhou, D., Tang, Y., Yang, Z., Cao, Y., Gu, Q.: On the convergence of adaptive gradient methods for
nonconvex optimization. arXiv:1808.05671 (2018)

Publisher’'s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

@ Springer

http://arxiv.org/abs/1808.05671

	Momentum-Based Variance-Reduced Proximal Stochastic Gradient Method for Composite Nonconvex Stochastic Optimization
	Abstract
	1 Introduction
	1.1 Background
	1.2 Mirror-Prox Algorithm
	1.3 Related Works
	1.4 Contributions
	1.5 Notation, Definitions, and Outline

	2 Convergence Analysis
	2.1 Results with Varying Stepsize
	2.2 Results with Constant Stepsize

	3 Numerical Experiments
	3.1 Nonnegative Principal Component Analysis (NPCA)
	3.2 Regularized Feedforward Fully-connected Neural Network
	3.3 Regularized Convolutional Neural Network

	4 Conclusions
	Acknowledgements
	References

