
Journal of Optimization Theory and Applications
https://doi.org/10.1007/s10957-022-02132-w

Momentum-Based Variance-Reduced Proximal Stochastic
Gradient Method for Composite Nonconvex Stochastic
Optimization

Yangyang Xu1 · Yibo Xu2

Received: 25 April 2021 / Accepted: 27 October 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Stochastic gradient methods (SGMs) have been extensively used for solving stochas-
tic problems or large-scale machine learning problems. Recent works employ various
techniques to improve the convergence rate of SGMs for both convex and noncon-
vex cases. Most of them require a large number of samples in some or all iterations
of the improved SGMs. In this paper, we propose a new SGM, named PStorm, for
solving nonconvex nonsmooth stochastic problems. With a momentum-based vari-
ance reduction technique, PStorm can achieve the optimal complexity result O(ε−3)

to produce a stochastic ε-stationary solution, if a mean-squared smoothness condition
holds. Different from existing optimal methods, PStorm can achieve the O(ε−3) result
by using only one or O(1) samples in every update. With this property, PStorm can
be applied to online learning problems that favor real-time decisions based on one
or O(1) new observations. In addition, for large-scale machine learning problems,
PStorm can generalize better by small-batch training than other optimal methods that
require large-batch training and the vanilla SGM, as we demonstrate on training a
sparse fully-connected neural network and a sparse convolutional neural network.

Keywords Stochastic gradient method · Variance reduction · Momentum ·
Small-batch training

Mathematics Subject Classification 90C15 · 65K05 · 68Q25

Communicated by Amir Beck.

B Yangyang Xu
xuy21@rpi.edu

Yibo Xu
yibox@clemson.edu

1 Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA

2 School of Mathematical and Statistical Sciences, Clemson University, Clemson, SC 29634, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10957-022-02132-w&domain=pdf
http://orcid.org/0000-0002-4163-3723

Journal of Optimization Theory and Applications

1 Introduction

The stochastic approximation method first appears in [26] for solving a root-finding
problem. Nowadays, its first-order version, or the stochastic gradient method (SGM),
has been extensively used to solve machine learning problems that involve huge
amounts of given data and also to stochastic problems that involve uncertain streaming
data. Complexity results of SGMs have been well established for convex problems.
Many recent research papers on SGMs focus on nonconvex cases.

In this paper, we consider the regularized nonconvex stochastic programming

�∗ = Min
x∈Rn

�(x) := {
F(x) ≡ Eξ [f (x; ξ)]}+ r(x), (1.1)

where f (· ; ξ) is a smooth nonconvex function almost surely for ξ , and r is a closed
convex function onRn . Examples of (1.1) include the sparse onlinematrix factorization
[19], the online nonnegative matrix factorization [40], and the streaming PCA (by a
unit-ball constraint) [21]. In addition, as ξ follows a uniform distribution on a finite
set � = {ξ1, . . . , ξN }, (1.1) recovers the so-called finite-sum structured problem.
It includes most regularized machine learning problems such as the sparse bilinear
logistic regression [28], the sparse convolutional neural network [18], and the group
sparse regularized deep neural networks [27].

1.1 Background

When r ≡ 0, the recent work [3] gives an O(ε−3) lower complexity bound of SGMs to
produce a stochastic ε-stationary solution of (1.1) (seeDefinition 1.2), by assuming the
so-called mean-squared smoothness condition (see Assumption 2). Several variance-
reduced SGMs [6, 9, 32, 33] have achieved an O(ε−3) or Õ(ε−3) complexity result.1

Among them, [6, 9] only consider smooth cases, i.e., r ≡ 0 in (1.1), and [32, 33]
study nonsmooth problems in the form of (1.1). To reach an O(ε−3) complexity
result, the Hybrid-SGD method in [32] needs O(ε−1) samples at the initial step and
then at least two samples at each update, while [9, 33] require O(ε−2) samples after
every fixed number of updates. The STORMmethod in [6] requires one single sample
of ξ at each update, but it only applies to smooth problems. Practically on training
a (deep) machine learning model, small-batch training is often used to have better
generalization [14, 20]. In addition, for certain applications such as reinforcement
learning [30], one single sample can usually be obtained, depending on the stochastic
environment and the current decision. Furthermore, regularization terms can improve
generalization of a machine learning model, even for training a neural network [34].
We aim at designing a new SGM for solving the nonconvex nonsmooth problem (1.1)
and achieving a (near)-optimal2 complexity result by using O(1) (that can be one)
samples at each update.

1 Throughout the paper, we use Õ to suppress an additional polynomial term of | log ε|.
2 By “optimal,” we mean that the complexity result can reach the lower bound result; a result is “near
optimal,” if it has an additional logarithmic term or a polynomial of logarithmic term than the lower bound.

123

Journal of Optimization Theory and Applications

1.2 Mirror-Prox Algorithm

Our algorithm is amirror-prox SGM, andwe adopt themomentum technique to reduce
variance of the stochastic gradient in order to achieve a (near)-optimal complexity
result.

Let w be a continuously differentiable and 1-strongly convex function on dom(r),
i.e.,

w(y) ≥ w(x) + 〈∇w(x), y − x〉 + 1

2
‖y − x‖2, ∀ x, y ∈ dom(r).

The Bregman divergence induced by w is defined as

V (x, z) = w(x) − w(z) − 〈∇w(z), x − z〉. (1.2)

At each iteration of our algorithm, we obtain one or a few samples of ξ , compute
stochastic gradients at the previous and current iterates using the same samples, and
then perform a mirror-prox momentum stochastic gradient update. The pseudocode is
shown in Algorithm 1.We name it as PStorm as it can be viewed as a proximal version
of the Storm method in [6]. Notice that when βk = 1,∀ k ≥ 0, the algorithm reduces
to the non-accelerated stochastic proximal gradient method. However, our analysis
does not apply to this case, for which an innovative analysis can be found in [7].

Algorithm 1:Momentum-based variance-reduced proximal stochastic gradient
method for (1.1)
1 Input: max iteration numer K , minibatch size m, and positive sequences {βk } ⊆ (0, 1) and {ηk }.
2 Initialization: choose x0 ∈ dom(r) and let d0 = 1

m0

∑
ξ∈B0 ∇ f (x0; ξ) with m0 i.i.d. samples

B0 = {ξ01 , . . . , ξ0m0
}

3 for k = 0, 1, . . . , K − 1 do
4 Update x by

xk+1 = argmin
x

{
〈dk , x〉 + 1

ηk
V (x, xk) + r(x)

}
. (1.3)

5 Obtain m i.i.d. samples Bk+1 = {ξk+1
1 , . . . , ξk+1

m } and let

vk+1 = 1
m
∑

ξ∈Bk+1
∇ f (xk+1; ξ), uk+1 = 1

m
∑

ξ∈Bk+1
∇ f (xk ; ξ). (1.4)

6 Let dk+1 = vk+1 + (1 − βk)(dk − uk+1).

7 Return xτ with τ selected from {0, 1, . . . , K − 1} uniformly at random or by the distribution

Prob(τ = k) =
ηk
4 (1−ηk L)− η2k

5mηk+1
(1−βk)

2

∑K−1
j=0

(
η j
4 (1−η j L)− η2j

5mη j+1
(1−β j)

2

) , k = 0, 1, . . . , K − 1. (1.5)

123

Journal of Optimization Theory and Applications

1.3 RelatedWorks

Many efforts have been made on analyzing the convergence and complexity of SGMs
for solving nonconvex stochastic problems, e.g., [1, 6–11, 32, 33, 37]. We list com-
parison results on the complexity in Table 1.

The work [10] appears to be the first one that conducts complexity analysis of SGM
for nonconvex stochastic problems. It introduces a randomized SGM. For a smooth
nonconvex problem, the randomized SGM can produce a stochastic ε-stationary solu-
tion within O(ε−4) SG iterations. The same-order complexity result is then extended
in [11] to nonsmooth nonconvex stochastic problems in the form of (1.1). To achieve
an O(ε−4) complexity result, the accelerated prox-SGM in [11] needs to take 	(k)
samples at the k-th update for each k. Assuming a weak-convexity condition and using
the tool of Moreau envelope, [7] establishes an O(ε−4) complexity result of stochas-
tic subgradient method for solving more general nonsmooth nonconvex problems to
produce a near-ε stochastic stationary solution (see [7] for the precise definition).

In general, the O(ε−4) complexity result cannot be improved for smooth nonconvex
stochastic problems, as [3] shows that for the problem minx F(x) where F is smooth,
any SGM that can access unbiased SG with bounded variance needs
(ε−4) SGs to
produce a solution x̄ such that E

[‖∇F(x̄)‖] ≤ ε. However, with one additional mean-
squared smoothness condition on each unbiased SG, the complexity can be reduced
to O(ε−3), which has been reached by a few variance-reduced SGMs [6, 9, 23, 32,
33]. These methods are closely related to ours. Below we briefly review them.

Spider. To find a stochastic ε-stationary solution of (1.1) with r ≡ 0, [9] proposes the
Spider method with the update: xk+1 = xk − ηkvk for each k ≥ 0. Here, vk is set to

vk =
{

1
|Bk |

∑
ξ∈Bk

(∇ f (xk; ξ) − ∇ f (xk−1; ξ)
)+ vk−1, if mod(k, q)
= 0,

1
|Ck |

∑
ξ∈Ck

∇ f (xk; ξ), otherwise,
(1.6)

where |Bk | = 	(1
qε2

), |Ck | = 	(ε−2), and q = 	(ε−1) or q = 	(ε−2). Under
the mean-squared smoothness condition (see Assumption 2), the Spider method can
produce a stochastic ε-stationary solution with O(ε−3) sample gradients, by choosing
appropriate learning rate ηk (roughly in the order of 1

q‖vk‖).
Storm. [6] focuses on a smooth nonconvex stochastic problem, i.e., (1.1) with r ≡ 0. It
proposes the Stormmethod, which can be viewed as a special case of Algorithm 1with
m0 = m = 1 applied to the smooth problem. However, its analysis and also algorithm
design rely on the knowledge of a uniform bound on {‖∇ f (x; ξ)‖} or on the bound of
the variance of the stochastic gradient. In addition, because the learning rate of Storm
is set dependent on the sampled stochastic gradient, its analysis needs almost-sure
uniform smoothness of f (x; ξ). This assumption is significantly stronger than the
mean-squared smoothness condition, and also the uniform smoothness constant can
be much larger than an averaged one.
Spiderboost. [33] extends Spider into solving a nonsmooth nonconvex stochastic
problem in the form of (1.1) by proposing a so-called Spiderboostmethod. Spiderboost

123

Journal of Optimization Theory and Applications

Ta
bl
e
1

C
om

pa
ri
so
n
of

th
e
co
m
pl
ex
ity

re
su
lts

of
se
ve
ra
l
m
et
ho

ds
in

th
e
lit
er
at
ur
e
to

ou
r
m
et
ho

d
to

pr
od

uc
e
a
st
oc
ha
st
ic

ε
-s
ta
tio

na
ry

so
lu
tio

n
of

a
no
nc
on
ve
x
st
oc
ha
st
ic

op
tim

iz
at
io
n
pr
ob
le
m

M
et
ho
d

Pr
ob
le
m

K
ey

as
su
m
pt
io
ns

#S
am

pl
es

at
k-
th

ite
ra
tio

n
C
om

pl
ex
ity

A
cc
el
er
at
ed

pr
ox
-S
G
M

[1
1]

m
in
x
{E

ξ
[f

(x
;ξ

)]
+
r(
x)

}
E

ξ
[f

(x
;ξ

)]
is
sm

oo
th

r
is
co
nv
ex

	
(k

)
O

(ε
−4

)

St
oc
ha
st
ic
su
bg
ra
di
en
t[
7]

m
in
x
{E

ξ
[f

(x
;ξ

)]
+
r(
x)

}
E

ξ
[f

(x
;ξ

)]
is

w
ea
kl
y-
co
nv
ex

r
is
co
nv
ex

bo
un

de
d
st
oc
ha
st
ic
su
bg

ra
d.

O
(1

)
O

(ε
−4

)

Sp
id
er

[9
]

m
in
x
{E

ξ
[f

(x
;ξ

)]}
m
ea
n-
sq
ua
re
d
sm

oo
th
ne
ss

se
e
A
ss
um

pt
io
n
2

	
(ε

−2
)
or

	
(ε

−1
)

O
(ε

−3
)

St
or
m

[6
]

m
in
x
{E

ξ
[f

(x
;ξ

)]}
f(

·;
ξ
)
is
sm

oo
th

a.
s.

bo
un

de
d
st
oc
ha
st
ic
gr
ad
.∗

1
Õ

(ε
−3

)

Sp
id
er
bo

os
t[
33
]

m
in
x
{E

ξ
[f

(x
;ξ

)]
+
r(
x)

}
m
ea
n-
sq
ua
re
d
sm

oo
th
ne
ss

r
is
co
nv
ex

	
(ε

−2
)
or

	
(ε

−1
)

O
(ε

−3
)

H
yb
ri
d-
SG

D
[3
2]

m
in
x
{E

ξ
[f

(x
;ξ

)]
+
r(
x)

}
m
ea
n-
sq
ua
re
d
sm

oo
th
ne
ss

r
is
co
nv
ex

	
(ε

−1
)
if
k

=
0
O

(1
)
bu
t

at
le
as
t2

if
k

>
0

O
(ε

−3
)

PS
to
rm

(T
hi
s
pa

pe
r)

m
in
x
{E

ξ
[f

(x
;ξ

)]
+
r(
x)

}
m
ea
n-
sq
ua
re
d
sm

oo
th
ne
ss

r
is
co
nv
ex

O
(1

)
an
d
ca
n
be

1
va
ry
in
g
st
ep
si
ze

Õ
(ε

−3
)

O
(1

)
an
d
ca
n
be

1
co
ns
ta
nt

st
ep
si
ze

O
(ε

−3
)

∗ :
T
he

bo
un

de
dn

es
s
as
su
m
pt
io
n
on

st
oc
ha
st
ic
gr
ad
ie
nt

m
ad
e
by

St
or
m

[6
]
ca
n
be

lif
te
d
if
a
bo

un
d

σ
on

th
e
va
ri
an
ce

of
th
e
st
oc
ha
st
ic
gr
ad
ie
nt

is
kn

ow
n

To
ob
ta
in

th
e
lis
te
d
re
su
lts
,a
ll
th
e
co
m
pa
re
d
m
et
ho
ds

as
su
m
e
un
bi
as
ed
ne
ss

an
d
va
ri
an
ce

bo
un
de
dn
es
s
of

th
e
st
oc
ha
st
ic
(s
ub
)g
ra
di
en
ts
.T

he
re
su
lts

on
ly

sh
ow

th
e
de
pe
nd

en
ce

on
ε
.A

ll
ot
he
r
co
ns
ta
nt
s
(e
.g
.,
th
e
sm

oo
th
ne
ss

co
ns
ta
nt

L
an
d
th
e
in
iti
al
ob

je
ct
iv
e
er
ro
r)
ar
e
hi
dd

en
in

th
e
bi
g-
O
.M

or
e
co
m
pl
et
e
re
su
lts

of
th
e
pr
op

os
ed

m
et
ho

d
ar
e
gi
ve
n
in

R
em

ar
ks

2.
2
an
d
2.
3

123

Journal of Optimization Theory and Applications

iteratively performs the update

xk+1 = argmin
x

〈vk, x〉 + 1
η
V (x, xk) + r(x), (1.7)

where V denotes the Bregman divergence induced by a strongly-convex function, and
vk is set by (1.6) with q = |Bk | = 	(ε−1) and |Ck | = 	(ε−2). Under the mean-
squared smoothness condition, Spiderboost reaches a complexity result of O(ε−3) by
choosing η = 1

2L , where L is the smoothness constant.
Hybrid-SGD. [32] considers a nonsmooth nonconvex stochastic problem in the form
of (1.1). It proposes a proximal stochastic method, called Hybrid-SGD, as a hybrid of
SARAH [22] and an unbiased SGD. The Hybrid-SGD performs the update xk+1 =
(1 − γk)xk + γk x̂k+1 for each k ≥ 0, where

x̂k+1 = argmin
x

〈vk, x〉 + 1
2ηk

‖x − xk‖2 + r(x).

Here, the sequence {vk} is set by v0 = 1
|B0|

∑
ξ∈B0 ∇ f (x0; ξ) with |B0| = 	(ε−1)

for a given ε > 0 and

vk = βk−1vk−1 + βk−1
(∇ f (xk ; ξk) − ∇ f (xk−1; ξk)

)+ (1 − βk−1)∇ f (xk ; ζk), (1.8)

where ξk and ζk are two independent samples of ξ . A mini-batch version of Hybrid-
SGD is also given in [32]. By choosing appropriate constant parameters {(βk, γk, ηk)},
Hybrid-SGD can reach an O(ε−3) complexity result. Although the update of vk

requires only two or O(1) samples, its initial setting needs O(ε−1) samples. As
explained in [32, Remark 3], if the initial minibatch size is |B0| = O(1), then the
complexity result of Hybrid-SGD will be worsened to O(ε−4). It is possible to reduce
the O(ε−4) complexity by using an adaptive βk as mentioned in [32, Remark 3] to
adopt the technique in [31]. This way, a near-optimal Õ(ε−3) result may be shown
for Hybrid-SGD without a large initial minibatch. Notice that with ξk = ζk,∀ k, the
stochastic gradient estimator by Hybrid-SGDwill reduce to that by Storm, and further
with γk = 1, ∀ k, the update of Hybrid-SGD will recover ours. However, the analysis
in [31, 32] relies on the independence of ξk and ζk and the condition γk ∈ (0, 1), and
thus it does not apply to our algorithm.
More. There are many other works analyzing complexity results of SGMs on solving
nonconvex finite-sum structured problems, e.g., [2, 13, 17, 24]. These results often
emphasize the dependence on the number of component functions and also the tar-
get error tolerance ε. In addition, several works have analyzed adaptive SGMs for
nonconvex finite-sum or stochastic problems, e.g., [5, 36, 41]. Moreover, along the
direction of accelerating SGMs, some works (e.g., [31, 35, 38, 39]) have considered
minimax structured or compositional optimization problems. An exhaustive review
of all these works is impossible and also beyond the scope of this paper. We refer
interested readers to those papers and the references therein.

123

Journal of Optimization Theory and Applications

1.4 Contributions

Our main contributions are about the algorithm design and analysis.

– We design a momentum-based variance-reduced mirror-prox stochastic gradient
method for solving nonconvex nonsmooth stochastic problems. The proposed
method generalizes Storm in [6] from smooth cases to nonsmooth cases. In addi-
tion, with one single data sample per iteration, it achieves, by taking varying
stepsizes, the same near-optimal complexity result Õ(ε−3) under a mean-squared
smooth condition, which is weaker than the almost-sure uniform smoothness con-
dition assumed in [6].

– When constant stepsizes are adopted, the proposedmethod can achieve the optimal
O(ε−3) complexity result, by using one single or O(1) data samples per iteration.
While Spiderboost [33] can also achieve the optimal O(ε−3) complexity result for
stochastic nonconvex nonsmooth problems, it needs 	(ε−2) data samples every
	(ε−1) iterations and 	(ε−1) samples for every other iteration. To achieve the
optimal O(ε−3) complexity result, Hybrid-SGD [32] needs 	(ε−1) data samples
for the first iteration and at least two samples for all other iterations. However, if
only O(1) samples can be obtained initially, the worst-case complexity result of
Hybrid-SGDwith constant stepsize will increase to O(ε−4). Our proposedmethod
is the first one that uses only one orO(1) samples per iteration and can still reach the
optimal complexity result, and thus it can be applied to online learning problems
that need real-time decision based on possibly one or several new data samples.

– Furthermore, the proposed method only needs an estimate of the smoothness
parameter and is easy to tune to have good performance. Empirically, we observe
that it converges faster than a vanilla SGD and can give higher testing accuracy
than Spiderboost and Hybrid-SGD on training sparse neural networks.

1.5 Notation, Definitions, and Outline

We use bold lowercase letters x, y, g, . . . for vectors. EBk denotes the expectation
about a mini-batch set Bk conditionally on the all previous history, and E denotes the
full expectation. |Bk | counts the number of elements in the set Bk . We use ‖ · ‖ for
the Euclidean norm. A differentiable function F is called L-smooth, if ‖∇F(x) −
∇F(y)‖ ≤ L‖x − y‖ for all x and y.

Definition 1.1 (proximal gradient mapping) Given d, x ∈ dom(r), and η > 0, we

define P(x,d, η) = 1
η
(x − x+), where x+ = argmin

y

{
〈d, y〉 + 1

η
V (y, x) + r(y)

}
.

By the proximal gradient mapping, if a point x̄ ∈ dom(r) is an optimal solution
of (1.1), then it must satisfy P(x̄,∇F(x̄), η) = 0 for any η > 0. Based on this
observation, we define a near-stationary solution as follows. This definition is standard
and has been adopted in other papers, e.g., [33].

Definition 1.2 (stochastic ε-stationary solution) Given ε > 0, a random vector x ∈
dom(r) is called a stochastic ε-stationary solution of (1.1) if for some η > 0, it holds
E[‖P(x,∇F(x), η)‖2] ≤ ε2.

123

Journal of Optimization Theory and Applications

From [12, Lemma 1], it holds

〈
d, P(x,d, η)

〉 ≥ ‖P(x,d, η)‖2 + 1

η

(
r(x+) − r(x)

)
. (1.9)

In addition, the proximal gradient mapping is nonexpansive from [12, Proposition 1],
i.e.,

‖P(x, d1, η) − P(x, d2, η)‖ ≤ ‖d1 − d2‖, ∀d1, d2, ∀ x ∈ dom(r), ∀ η > 0. (1.10)

For each k ≥ 0, we denote

gk = P(xk,dk, ηk), ḡk = P(xk,∇F(xk), ηk). (1.11)

Notice that ‖ḡk‖ measures the violation of stationarity of xk . The gradient error is
represented by

ek = dk − ∇F(xk). (1.12)

Outline. The rest of the paper is organized as follows. In Sect. 2, we establish com-
plexity results of Algorithm 1. Numerical experiments are conducted in Sect. 3, and
we conclude the paper in Sect. 4.

2 Convergence Analysis

In this section, we analyze the complexity result of Algorithm 1. Part of our analysis is
inspired from that in [6] and [33]. In addition, we give a novel analysis that enables us
to obtain the optimal O(ε−3) complexity result by using O(1) samples every iteration.
Throughout our analysis, we make the following assumptions.

Assumption 1 (finite optimal objective) The optimal objective value �∗ of (1.1) is
finite.

Assumption 2 (mean-squared smoothness) The function f (· ; ξ) satisfies the mean-
squared smoothness condition:Eξ

[‖∇ f (x; ξ)−∇ f (y; ξ)‖2] ≤ L2‖x−y‖2, ∀ x, y ∈
dom(r).

Assumption 3 (unbiasedness and variance boundedness) There is σ > 0 such that

Eξ [∇ f (x; ξ)] = ∇F(x), E[‖∇ f (x; ξ) − ∇F(x)‖2] ≤ σ 2, ∀ x ∈ dom(r). (2.1)

It is easy to show that under Assumptions 2 and 3, the function F(x) = Eξ [f (x; ξ)]
is L-smooth; see the arguments at the end of Section 2.2 of [32]. We first show a few
lemmas. The lemma below estimates one-iteration progress. Its proof follows from
[33].

123

Journal of Optimization Theory and Applications

Lemma 2.1 (one-iteration progress) Let {xk} be generated from Algorithm 1. If F is
L-smooth, then

�(xk+1) − �(xk) ≤ ηk

2
(2 − ηk L)‖ek‖2 − ηk

4
(1 − ηk L)‖ḡk‖2, ∀ k ≥ 1,

where ḡk is defined in (1.11).

Proof By the L-smoothness of F and the definition of gk in (1.11), we have

F(xk+1) − F(xk) ≤ 〈∇F(xk), xk+1 − xk〉 + L

2
‖xk+1 − xk‖2

= −ηk〈∇F(xk), gk〉 + η2k L

2
‖gk‖2. (2.2)

Using the definition of ek in (1.12) and the inequality in (1.9), we have

−〈∇F(xk), gk〉 = 〈ek, gk〉 − 〈dk, gk〉 ≤ 〈ek, gk〉 − ‖gk‖2 + 1

ηk

(
r(xk) − r(xk+1)

)
.

Plugging the above inequality into (2.2) and rearranging terms give

�(xk+1) − �(xk) ≤ ηk〈ek, gk〉 − ηk‖gk‖2 + η2k L

2
‖gk‖2.

By the Cauchy–Schwartz inequality, it holds ηk〈ek, gk〉 ≤ ηk
2 ‖ek‖2 + ηk

2 ‖gk‖2, which
together with the above inequality implies

�(xk+1) − �(xk) ≤ ηk

2
‖ek‖2 − ηk

2
(1 − ηk L)‖gk‖2. (2.3)

From (1.10) and the definitions of gk and ḡk in (1.11), it follows

− ‖gk‖2 ≤ −1

2
‖ḡk‖2 + ‖gk − ḡk‖2 ≤ −1

2
‖ḡk‖2 + ‖dk − ∇F(xk)‖2

= −1

2
‖ḡk‖2 + ‖ek‖2. (2.4)

Now plug the above inequality into (2.3) to give the desired result. ��

The next lemma gives a recursive bound on the gradient error vector sequence {ek}.
Its proof follows that of [6, Lemma 2].

123

Journal of Optimization Theory and Applications

Lemma 2.2 (recursive bound on gradient error) Under Assumptions 2 and 3, it holds

E
[‖ek+1‖2] ≤ 2β2

k σ
2

m
+ 4(1 − βk)

2η2k L
2

m
E
[‖ḡk‖2]

+(1 − βk)
2
(
1 + 4η2k L

2

m

)
E
[‖ek‖2],∀ k ≥ 0,

where ḡk and ek are defined in (1.11) and (1.12).

Proof First, notice EBk+1 [〈vk+1, ek〉] = 〈∇F(xk+1), ek〉 and EBk+1 [〈uk+1, ek〉] =
〈∇F(xk), ek〉, and thus

EBk+1 [〈vk+1 − ∇F(xk+1), ek〉] = 0, EBk+1[〈uk+1 − ∇F(xk), ek〉] = 0. (2.5)

Hence, by writing ek+1 = vk+1−∇F(xk+1)+(1−βk)(∇F(xk)−uk+1)+(1−βk)ek ,
we have

EBk+1

[‖ek+1‖2] = EBk+1

[‖vk+1 − ∇F(xk+1) + (1 − βk)(∇F(xk) − uk+1)‖2]

+(1 − βk)
2‖ek‖2. (2.6)

By the Young’s inequality, it holds

‖vk+1 − ∇F(xk+1) + (1 − βk)(∇F(xk) − uk+1)‖2
= ∥∥βk

(
vk+1 − ∇F(xk+1)

)+ (1 − βk)
(
vk+1 − ∇F(xk+1) + ∇F(xk) − uk+1)∥∥2

≤ 2β2
k ‖vk+1 − ∇F(xk+1)‖2 + 2(1 − βk)

2‖vk+1 − ∇F(xk+1)

+ ∇F(xk) − uk+1‖2. (2.7)

From the definition of vk+1 and uk+1 in (1.4), we have

EBk+1

[‖vk+1 − ∇F(xk+1) + ∇F(xk) − uk+1‖2]

= 1

m2EBk+1

∥∥∥∥∥∥

∑

ξ∈Bk+1

(
∇ f (xk+1; ξ) − ∇ f (xk; ξ) − ∇F(xk+1) + ∇F(xk)

)
∥∥∥∥∥∥

2

= 1

m2

m∑

j=1

E
ξ k+1
j

∥∥∥∇ f (xk+1; ξ k+1
j) − ∇ f (xk; ξ k+1

j) − ∇F(xk+1) + ∇F(xk)
∥∥∥
2

≤ 1

m2

m∑

j=1

E
ξ k+1
j

∥∥∥∇ f (xk+1; ξ k+1
j) − ∇ f (xk; ξ k+1

j)

∥∥∥
2

≤ L2

m
‖xk+1 − xk‖2, (2.8)

where the second equality holds because of the i.i.d. samples in Bk+1 and the zero
mean of the random vector ∇ f (xk+1; ξ k+1

j)−∇ f (xk; ξ k+1
j)−∇F(xk+1)+∇F(xk)

123

Journal of Optimization Theory and Applications

resulted from unbiasedness in Assumption 3, the first inequality is due to the fact that
the variance of a random vector is upper bounded by its second moment, and the last
inequality follows from Assumption 2.

Now, take conditional expectation on both sides of (2.7), use (2.8), and substitute
it into (2.6). We have

EBk+1

[‖ek+1‖2] ≤ (1 − βk)
2‖ek‖2 + 2β2

kEBk+1

[‖vk+1 − ∇F(xk+1)‖2]

+2(1 − βk)
2L2

m
EBk+1

[‖xk+1 − xk‖2].

Taking a full expectation over the above inequality and using Assumption 3, we have

E
[‖ek+1‖2] ≤ (1 − βk)

2
E
[‖ek‖2]+ 2β2

k σ
2

m
+ 2(1 − βk)

2L2

m
E
[‖xk+1 − xk‖2]

= (1 − βk)
2
E
[‖ek‖2]+ 2β2

k σ
2

m
+ 2(1 − βk)

2η2k L
2

m
E
[‖gk‖2], (2.9)

where we have used xk+1 − xk = −ηkgk in the equality.
By similar arguments as those in (2.4), it holds

‖gk‖2 ≤ 2‖ḡk‖2 + 2‖gk − ḡk‖2 ≤ 2‖ḡk‖2 + 2‖ek‖2.

Plugging the above inequality into (2.9), we obtain the desired result. ��

2.1 Results with Varying Stepsize

In this subsection, we show the convergence results of Algorithm 1 by taking varying
stepsizes. Using Lemmas 2.1 and 2.2, we first show a convergence rate result by
choosing the parameters that satisfy a general condition. Then we specify the choice
of the parameters.

Theorem 2.1 Under Assumptions 1 through 3, let {xk} be the iterate sequence from
Algorithm 1, with the parameters {ηk} and {βk} satisfying the condition:

1

4
(1 − ηk L) − ηk

5mηk+1
(1 − βk)

2 > 0, and

ηk

2
(2 − ηk L) − 1

20ηk L2 + (1 − βk)
2(1 + 4η2k L

2

m)

20ηk+1L2 ≤ 0, ∀ k ≥ 0. (2.10)

Let {ḡk} be defined in (1.11). Then

123

Journal of Optimization Theory and Applications

K−1∑

k=0

(
ηk

4
(1 − ηk L) − η2k

5mηk+1
(1 − βk)

2

)

E[‖ḡk‖2]

≤ �(x0) − �∗ + σ 2

20m0η0L2 +
K−1∑

k=0

β2
k σ

2

10mηk+1L2 . (2.11)

Proof From Lemmas 2.1 and 2.2, it follows that

E

[

�(xk+1) + ‖ek+1‖2
20ηk+1L2

− �(xk) − ‖ek‖2
20ηk L2

]

≤ E

[
ηk

2
(2 − ηk L)‖ek‖2 − ηk

4
(1 − ηk L)‖ḡk‖2 − ‖ek‖2

20ηk L2

]

+ 1

20ηk+1L2
E

[
2β2

k σ 2

m
+ 4(1 − βk)

2η2k L
2

m
‖ḡk‖2 + (1 − βk)

2

(

1 + 4η2k L
2

m

)

‖ek‖2
]

. (2.12)

We have from the condition of {βk} that the coefficient of the term ‖ek‖2 on the
right-hand side of (2.12) is nonpositive, and thus we obtain from (2.12) that

E

[
�(xk+1) + ‖ek+1‖2

20ηk+1L2 − �(xk) − ‖ek‖2
20ηk L2

]

≤ β2
k σ

2

10mηk+1L2 −
(

ηk

4
(1 − ηk L) − η2k

5mηk+1
(1 − βk)

2

)

E[‖ḡk‖2].

Summing up the above inequality from k = 0 through K − 1 gives

E

[
�(xK) + ‖eK ‖2

20ηK L2 − �(x0) − ‖e0‖2
20η0L2

]

≤
K−1∑

k=0

β2
k σ

2

10mηk+1L2 −
K−1∑

k=0

(
ηk

4
(1 − ηk L) − η2k

5mηk+1
(1 − βk)

2

)

E[‖ḡk‖2],

which implies the inequality in (2.11) by E[‖e0‖2] ≤ σ 2

m0
. ��

Below we specify the choice of parameters and establish complexity results of
Algorithm 1.

Theorem 2.2 (convergence rate with varying stepsizes)Under Assumptions 1 through
3, let {xk} be the iterate sequence from Algorithm 1, with m0 = m and the parameters
{ηk} and {βk} set to

ηk = η

L(k + 4)
1
3

, βk = 1 + 24η2k L
2 − ηk+1

ηk

1 + 4η2k L
2

, ∀ k ≥ 0, (2.13)

123

Journal of Optimization Theory and Applications

where η ≤ 3√4
8 is a positive number. If τ is selected according to (1.5), then

E[‖ḡτ ‖2] ≤
2
(
L(�(x0) − �∗) + 3√4σ 2

20mη
+ σ 2

10m

(
1152η3(54)

1
3 (log(K + 3) − log 3) + 1

3 3√9η

))

3
(7
32 − 1

5 (54)
1
3
)
η
(
(K + 4)

2
3 − 4

2
3
) .

(2.14)

Proof Since η ≤ 3√4
8 , it holds ηk ≤ 1

8L . Also, notice
ηk

ηk+1
≤ (54)

1
3 or equivalently

ηk+1
ηk

≥ (45)
1
3 for all k ≥ 0. Hence, it is straightforward to have βk ∈ (0, 1) and thus

(1−βk)
2 ≤ 1−βk for each k ≥ 0.Nownotice 5mηk+1

4ηk
(1−ηk L) ≥ 5

4 (
4
5)

1
3 7
8 > 1 ≥ (1−

βk)
2, so the first inequality in (2.10) holds. In addition, to ensure the second inequality

in (2.10), it suffices to have (1 − βk)(1 + 4η2k L
2

m) ≤ ηk+1
ηk

− 10ηkηk+1L2(2 − ηk L).

Because 20η2k L
2 ≥ 10ηkηk+1L2(2− ηk L), this inequality is implied by (1−βk)(1+

4η2k L
2

m) ≤ ηk+1
ηk

− 20η2k L
2, which is further implied by the choice of βk in (2.13).

Therefore, both conditions in (2.10) hold, and thus we have (2.11).
Next we bound the coefficients in (2.11). First, from 1−ηk L ≥ 7

8 and
ηk

ηk+1
≤ (54)

1
3

for all k, we have

K−1∑

k=0

(
ηk

4
(1 − ηk L) − η2k

5mηk+1
(1 − βk)

2

)

≥ c
K−1∑

k=0

ηk ≥ cη

L

∫ K

0
(x + 4)−

1
3 dx

= 3cη

2L

(
(K + 4)

2
3 − 4

2
3

)
, (2.15)

where c = 7
32 − 1

5 (
5
4)

1
3 > 0. Second,

K−1∑

k=0

β2
k

ηk+1
≤ L

η

K−1∑

k=0

(k + 5)
1
3

(
1 + 24η2k L

2 − ηk+1

ηk

)2

= L

η

K−1∑

k=0

(k + 5)
1
3

(

1 + 24η2k L
2 − (k + 4)

1
3

(k + 5)
1
3

)2

. (2.16)

Note that

K−1∑

k=0

(k + 5)
1
3 η4k = η4

L4

K−1∑

k=0

(k + 5)
1
3 (k + 4)−

4
3 ≤ η4

L4 (54)
1
3

K−1∑

k=0

(k + 4)−1

≤ η4

L4 (54)
1
3 (log(K + 3) − log 3). (2.17)

123

Journal of Optimization Theory and Applications

Furthermore, by a3 − b3 = (a − b)(a2 + ab + b2) for any a, b ∈ R, we have

1 − (k + 4)
1
3

(k + 5)
1
3

= (k + 5)−
1
3

(
(k + 5)

1
3 − (k + 4)

1
3

)

= (k + 5)− 1
3

(k + 5)
2
3 + (k + 5)

1
3 (k + 4)

1
3 + (k + 4)

2
3

,

and thus

K−1∑

k=0

(k + 5)
1
3

(
1 − (k+4)

1
3

(k+5)
1
3

)2

=
K−1∑

k=0

(k + 5)− 1
3

(
(k + 5)

2
3 + (k + 5)

1
3 (k + 4)

1
3 + (k + 4)

2
3

)2

≤ 1

9

K−1∑

k=0

(k + 4)−
5
3 ≤ 1

6 3
√
9
. (2.18)

Now applying the inequality (a + b)2 ≤ 2a2 + 2b2 to (2.16) and then using (2.17)
and (2.18), we obtain

K−1∑

k=0

β2
k

ηk+1
≤ 1152η3L(54)

1
3 (log(K + 3) − log 3) + L

3 3
√
9η

. (2.19)

Therefore, plugging (2.15) and (2.19) into (2.11) and by the selection of τ in (1.5),
we obtain the desired result. ��
Remark 2.1 The result in Theorem 2.2 does not include the noiseless case, i.e., σ = 0.
Nevertheless, if in that case, we can simply choose ηk = 	(1

L) and βk = 1 for all
k ≥ 0. This way, Algorithm 1 reduces to the deterministic mirror-prox method, and
we can easily obtain min0≤k<K ‖ḡk‖2 = O(1

K) from (2.11).

ByTheorem2.2, we below estimate the complexity result ofAlgorithm1 to produce
a stochastic ε-stationary solution.

Corollary 2.1 (complexity result with varying stepsizes) Let ε > 0 be given and sup-
pose σ > 0. Then under the same conditions of Theorem 2.2, Algorithm 1 can produce
a stochastic ε-stationary solution of (1.1) with a total complexity

Ttotal = mK = O

(
max

{
mε−3(L(�(x0) − �∗)

) 3
2 , ε−3(| log ε| + | log σ |) 3

2
σ 3

√
m

})
.

Proof By Theorem 2.2 with η = 3√4
8 , we have

E[‖ḡτ‖2] = O
(
K− 2

3
(
L(�(x0) − �∗) + σ 2 log K

m

))
. (2.20)

123

Journal of Optimization Theory and Applications

Hence, it suffices to let K = 	
(
max

{
ε−3

(
L(�(x0) − �∗)

) 3
2 , ε−3(| log ε| +

| log σ |) 3
2 σ 3

m
3
2

})
, to have E[‖ḡτ‖2] ≤ ε2. This completes the proof. ��

Remark 2.2 If m = 1 or m = O(1) independent of σ , then the total complexity will
be

Ttotal = O

(
max

{
ε−3(L(�(x0) − �∗)

) 3
2 , ε−3σ 3(| log ε| + | log σ |) 3

2

})
.

If σ ≥ 1 is big and can be estimated, we can takem = 	(σ 2). This way, we obtain the

total complexity O
(
ε−3σ 2

(
(| log ε| + log σ)

3
2 + (L(�(x0) − �∗)) 3

2
))
. This result

is near-optimal in the sense that its dependence on ε has the additional logarithmic

term | log ε| 32 compared to the lower bound result in [3]. In the remaining part of this
section, we show that with constant stepsizes, Algorithm 1 can achieve the optimal
complexity result O(ε−3).

2.2 Results with Constant Stepsize

In this subsection, we show convergence results of Algorithm 1 by taking constant
stepsizes, i.e., ηk = η0,∀ k ≥ 1. In order to consider the dependence on the quantities
L , �(x0) − �∗ and σ 2, we give two settings that yield two different results, but each
result has the same dependence on the target accuracy ε. The first result is obtained
from Theorem 2.1 by taking constant stepsizes.

Theorem 2.3 (convergence rate I with constant stepsizes) Under Assumptions 1
through 3, let {xk} be the iterate sequence from Algorithm 1, with the parameters
{ηk} and {βk} set to

ηk = η

L 3
√
K

, βk = β = 4η2/m + 10η2(2 − η/K
1
3)

K
2
3 + 4η2/m

, ∀ k ≥ 0, (2.21)

where η <
3√K
5 is a positive number. If τ is selected from {0, 1, . . . , K − 1} uniformly

at random, then

E[‖ḡτ ‖2] ≤ 1

K
2
3

(
1
4
(
1 − η

3√K

)− 1
5

)

(
L
(
�(x0) − �∗)

η
+ σ 2 3√K

20m0η
2 + 242σ 2η2

10m

)

. (2.22)

Proof First note η
3√K

< 1
5 and thus β ∈ (0, 1). Now it is easy to verify by using

(1−β)2 < 1−β that the conditions in (2.10) are satisfied. Hence, the result in (2.11)
holds.

123

Journal of Optimization Theory and Applications

Second, by the choice of ηk and βk , we have

K−1∑

k=0

(
ηk
4 (1 − ηk L) − η2k

5mηk+1
(1 − βk)

2
)

≥
K−1∑

k=0

(
η

4L 3√K

(
1 − η

3√K

)− η

5L 3√K

)

= η
L K

2
3

(
1
4

(
1 − η

3√K

)− 1
5

)
, (2.23)

and

K−1∑

k=0

β2
k σ

2

10mηk+1L2 ≤
K−1∑

k=0

σ 2 3
√
K

10mηL

(
4η2 + 20η2

K
2
3

)2

= 242σ 2η3

10mL
. (2.24)

Plugging (2.23) and (2.24) into (2.11), we obtain the desired result by the selection of
τ in (1.5). ��

From (2.22), we see that in order to have the O(K− 2
3) convergence rate, we need to

set m0 = 	(
3
√
K). Next we set m0 in this way and estimate the complexity result of

Algorithm 1 with the constant stepsize.

Corollary 2.2 (complexity result I with constant stepsizes) Let ε > 0 be given. Under
Assumptions 1 through 3, let {xk} be the iterate sequence from Algorithm 1 with

m0 ≥ c0
3
√
K and the parameters {ηk} and {βk} set to those in (2.21) where η ≤ 3√K

10 .
Let τ be selected from {0, 1, . . . , K − 1} uniformly at random. Then xτ is a stochastic
ε-stationary solution of (1.1) if

K =

⎡

⎢⎢⎢⎢⎢⎢⎢

40
3
2

(
L
(
�(x0)−�∗)

η
+ σ 2

20c0η2
+ 242σ 2η2

10m

) 3
2

ε3

⎤

⎥⎥⎥⎥⎥⎥⎥

. (2.25)

Proof When η ≤ 3√K
10 , it holds 1

4

(
1− η

3√K

)− 1
5 ≥ 1

40 . Hence, (2.22) withm0 ≥ c0
3
√
K

implies

E[‖ḡτ‖2] ≤ 40

K
2
3

(
L
(
�(x0) − �∗)

η
+ σ 2

20c0η2
+ 242σ 2η2

10m

)

,

which together with the condition of K in (2.25) givesE[‖ḡτ‖2] ≤ ε2. This completes
the proof. ��
Remark 2.3 Suppose that σ ≥ 1 and can be estimated. Also, assume L =
(1)

and �(x0) − �∗ =
(1). In this case, we let η = 	(σ− 2
3

(
L(�(x0) − �∗)) 1

3

)
,

c0 = 	(σ
8
3), and m = O(1) independent of σ . Then from (2.25), we have K =

123

Journal of Optimization Theory and Applications

O
(
ε−3σ L(�(x0) − �∗)

)
. With this choice, the total number of sample gradients will

be

Ttotal = m0 + m(K − 1)

= O

(
ε−1σ 3(L(�(x0) − �∗)

) 1
3 + ε−3σ L(�(x0) − �∗)

)
. (2.26)

The dependence on the pair (ε, σ) matches with the result in [32].

The complexity result given in (2.26) has a low dependence on (ε, σ, L(�(x0) −
�∗)) in the sense that ε−3 only multiplies with σ L(�(x0) − �∗) but not a higher
order. However, the drawback is that the initial batch m0 must be in the order of ε−1

to obtain the complexity result O(ε−3). Our second result with constant stepsizes will
relax the requirement. We utilize the momentum accumulation in the parameter of
(2.9) and give our novel convergence analysis, by introducing the following quantity

�k =
{∏k−1

i=0 (1 − βi)
2, if k ≥ 1,

1, if k = 0.
(2.27)

We first give a generic result below under certain conditions on the parameters.
Then, we will specify the choice of parameters to satisfy the conditions.

Theorem 2.4 Under Assumptions 1 through 3, let {xk} be the iterate sequence from
Algorithm 1. Suppose there are constants A and B such that the parameters {ηk} and
{βk} satisfying the conditions:

2ηk L + 4L2

m

ηk

�k

K−1∑

j=k+1

η j� j ≤ 1, ∀ k = 0, . . . , K − 1, (2.28)

K−1∑

k=1

ηk�k ≤ A, and
K−1∑

k=1

ηk�k

k−1∑

j=0

β2
j

� j+1
≤ B, (2.29)

where K is the maximum number of iterations in Algorithm 1. Let {ḡk} be defined in
(1.11). Then

K−1∑

k=0

ηkE
[‖ḡk‖2] ≤ 12

[
�(x0) − �∗]+ (8A + 6η0)

σ 2

m0
+ 16B

σ 2

m
. (2.30)

Proof We begin by taking the total expectation and telescoping the inequality in (2.3)
over k = 0, . . . , K − 1 to obtain

123

Journal of Optimization Theory and Applications

E
[
�(xK)

]− �(x0) ≤
K−1∑

k=0

ηk

2
E
[‖ek‖2]−

K−1∑

k=0

ηk

2
(1 − ηk L)E

[‖gk‖2]

≤ η0

2
· σ 2

m0
+

K−1∑

k=1

ηk

2
E
[‖ek‖2]

−
K−1∑

k=0

ηk

2
(1 − ηk L)E

[‖gk‖2],

where we have used E
[‖e0‖2] ≤ σ 2

m0
by Assumption 3. Since �(xK) ≥ �∗ from

Assumption 1, the above inequality implies

K−1∑

k=0

ηk

2
(1 − ηk L)E

[‖gk‖2] ≤ �(x0) − �∗ + η0

2
· σ 2

m0
+

K−1∑

k=1

ηk

2
E
[‖ek‖2].

(2.31)

In addition, we divide both sides of (2.9) by �k+1 and obtain from the definition of
�k+1 in (2.27) that

1

�k+1
E
[‖ek+1‖2] ≤ 1

�k
E
[‖ek‖2]+ 1

�k+1

2β2
k σ

2

m
+ 1

�k

2η2k L
2

m
E
[‖gk‖2], ∀ k ≥ 0.

Let j = 0, . . . , k − 1 be another index on which the above inequality is telescoped.
We obtain

1

�k
E
[‖ek‖2] ≤ E

[‖e0‖2]+
k−1∑

j=0

1

� j+1

2β2
j σ

2

m
+

k−1∑

j=0

1

� j

2η2j L
2

m
E
[‖g j‖2], ∀ k ≥ 1.

Multiplying �k to both sides of the above inequality and rearranging it gives

E
[‖ek‖2] ≤ �k

(
σ 2

m0
+ 2σ 2

m

k−1∑

j=0

β2
j

� j+1

)
+ 2L2

m

k−1∑

j=0

�k

� j
η2jE

[‖g j‖2], ∀ k ≥ 1,

where we have used E
[‖e0‖2] ≤ σ 2

m0
again. Now multiply ηk to the above inequality

and sum it up over k = 1, . . . , K − 1 to have

K−1∑

k=1

ηkE
[‖ek‖2]

≤ σ 2
K−1∑

k=1

ηk�k

(
1

m0
+ 2

m

k−1∑

j=0

β2
j

� j+1

)
+ 2L2

m

K−1∑

k=1

k−1∑

j=0

ηk�k

� j
η2jE

[‖g j‖2]

123

Journal of Optimization Theory and Applications

= σ 2
K−1∑

k=1

ηk�k

(
1

m0
+ 2

m

k−1∑

j=0

β2
j

� j+1

)
+ 2L2

m

K−2∑

j=0

η2j

� j

(K−1∑

k= j+1

ηk�k

)
E
[‖g j‖2]

= σ 2
K−1∑

k=1

ηk�k

(
1

m0
+ 2

m

k−1∑

j=0

β2
j

� j+1

)
+ 2L2

m

K−1∑

k=0

η2k

�k

(K−1∑

j=k+1

η j� j

)
E
[‖gk‖2],

(2.32)

where the first equality follows by swapping summation, and the second equality is
obtained by swapping indices and realizing that the coefficient forE

[‖gK−1‖2] is null.
Now we have by substituting (2.32) into (2.31) and rearranging terms that

K−1∑

k=0

ηk

2

(
1 − ηk L − 2L2

m

ηk

�k

K−1∑

j=k+1

η j� j

)
E
[‖gk‖2]

≤ �(x0) − �∗ + η0

2
· σ 2

m0
+ σ 2

2

K−1∑

k=1

ηk�k

(
1

m0
+ 2

m

k−1∑

j=0

β2
j

� j+1

)
,

which together with the conditions in (2.28) and (2.29) gives the bound for gk :

K−1∑

k=0

ηkE
[‖gk‖2] ≤ 4

[
�(x0) − �∗]+ 2(A + η0)

σ 2

m0
+ 4B

σ 2

m
. (2.33)

Use (2.28) again and substitute (2.33) into (2.32). We obtain the bound for ek :

K−1∑

k=0

ηkE
[‖ek‖2] ≤ A

σ 2

m0
+ 2B

σ 2

m
+

K−1∑

k=0

ηk

2
E
[‖gk‖2]

≤ 2
[
�(x0) − �∗]+ (2A + η0)

σ 2

m0
+ 4B

σ 2

m
. (2.34)

Finally, we have from (2.4) that ‖ḡk‖2 ≤ 2‖gk‖2 + 2‖ek‖2. Sum up this inequality
over k = 0, . . . , K −1 and substitute (2.33) and (2.34) into the summation. We obtain
the result in (2.30). ��

Below we specify the choice of parameters and establish complexity results of
Algorithm 1. The following lemma will be used to show the conditions in (2.28) and
(2.29).

Lemma 2.3 Let

βk = 3
[
(k + 3)1/3 − (k + 2)1/3

]
, k ≥ 0. (2.35)

123

Journal of Optimization Theory and Applications

Then we have

K−1∑

j=k+1

� j

�k
≤ 1

2
(k + 2)2/3 + 1

6
(k + 2)1/3 + 1

36
. (2.36)

Proof By the fact a3 − b3 = (a − b)(a2 + ab + b2), we have

βk = 3
[
(k + 3)1/3 − (k + 2)1/3

] = 3

(k + 3)2/3 + (k + 3)1/3(k + 2)1/3 + (k + 2)2/3
.

(2.37)

Hence, βk ∈ [(k + 3)−2/3, (k + 2)−2/3
]
for all k ≥ 0, and it is a decreasing sequence.

In addition, by the definition of �k and βk , it holds for all j > k ≥ 0 that

� j

�k
=
∏ j−1

l=0 (1 − βl)
2

∏k−1
l=0 (1 − βl)2

=
j−1∏

l=k

(1 − βl)
2 ≤ e−2

∑ j−1
l=k βl = e−6

[
(j+2)1/3−(k+2)1/3

]
,

(2.38)

where the inequality holds because 0 ≤ 1 + x ≤ ex ,∀ x ≥ −1. Therefore, we have
that for any k ≥ 0,

K−1∑

j=k+1

� j

�k
≤

K−1∑

j=k+1

e−6
[
(j+2)1/3−(k+2)1/3

]
= e6(k+2)1/3

K−1∑

j=k+1

e−6(j+2)1/3 . (2.39)

Since e−6x1/3 is a decreasing function and has an anti-derivative− 1
36e

−6x1/3(18x2/3+
6x1/3 + 1), we have

K−1∑

j=k+1

e−6(j+2)1/3 ≤
∫ K+1

k+2
e−6x1/3dx

≤ 1

36
e−6(k+2)1/3(18(k + 2)2/3 + 6(k + 2)1/3 + 1). (2.40)

Substituting (2.40) into (2.39) gives (2.36) and completes the proof. ��
Now we are ready to show the second convergence rate result with constant step-

sizes.

Theorem 2.5 (convergence rate II with constant stepsizes) Under Assumptions 1
through 3, let {xk} be the iterate sequence from Algorithm 1 with ηk = η

L 3√K
and

{βk} set by (2.35), where η ≤ min{ 3√K
4 ,

√
m
8 } is a positive number. If τ is selected

from {0, 1, . . . , K − 1} uniformly at random, then

123

Journal of Optimization Theory and Applications

E[‖ḡτ‖2] ≤ 1

K
2
3

(
12L

η

[
�(x0) − �∗]+

(
2−1/3 + 1

6
21/3 + 7

9

) 8
3
√
K

σ 2

m0

+ 32

(1 − 2−2/3)2

σ 2

m

)
. (2.41)

Proof We show the desired result by verifying the conditions in Theorem 2.4. First,
with ηk = η

L 3√K
, the condition in (2.28) becomes

2η
3
√
K

+ 4

m

η2

K 2/3

K−1∑

j=k+1

� j

�k
≤ 1, k = 0, . . . , K − 1.

Notice that when k = K −1 the summation above is null. Hence, by (2.36), it suffices
to require

2η
3
√
K

+ 4

m

η2

K 2/3

(
1

2
K 2/3 + 1

6
K 1/3 + 1

36

)
≤ 1,

which is guaranteed when η ≤ min{ 3√K
4 ,

√
m
8 } and K ≥ 1. Therefore, the condition

in (2.28) holds.
Secondly, by letting k = 0 in (2.36) and recalling �0 = 1, we have

∑K−1
k=1 ηk�k ≤(1

22
2/3 + 1

62
1/3 + 1

36

) η

L 3√K
. Hence, the first condition in (2.29) holds with A =

(
2−1/3 + 1

62
1/3 + 1

36

) η

L 3√K
. Finally, notice

K−1∑

k=1

ηk�k

k−1∑

j=0

β2
j

� j+1

=
K−2∑

j=0

β2
j

(1 − β j)2

K−1∑

k= j+1

ηk
�k

� j

≤ η

L 3
√
K

K−2∑

j=0

β2
j

(1 − β0)2

(
1

2
(j + 2)2/3 + 1

6
(j + 2)1/3 + 1

36

)

≤ η

(1 − β0)2L
3
√
K

K−2∑

j=0

(
1

2
(j + 2)−2/3 + 1

6
(j + 2)−1 + 1

36
(j + 2)−4/3

)

≤ η

(1 − β0)2L
3
√
K

(
3

2
(K 1/3 − 1) + 1

6
log K + 1

12
(1 − K−1/3)

)

≤ 2η

(1 − 2−2/3)2L
, (2.42)

where the first inequality follows from (2.36), the decreasing monotonicity of βk ,
and the setting of ηk , the second inequality holds by β j ≤ (j + 2)−2/3, and the last

123

Journal of Optimization Theory and Applications

inequality is obtained by β0 ≤ 2−2/3 and using the fact 3x1/3 > log x,∀ x > 0. Thus,
the second condition in (2.29) holds with B = 2η

(1−2−2/3)2L
. Therefore, (2.41) follows

from (2.30) and the choice of τ by uniformly random selection. ��
From Theorem 2.5, we can immediately obtain the next complexity result of Algo-

rithm 1 with the constant stepsize.

Corollary 2.3 (complexity result II with constant stepsizes) Let ε > 0 be given. Under
Assumptions 1 through 3, let {xk} be the iterate sequence from Algorithm 1 with

ηk = η

L 3√K
and {βk} set by (2.35), where η ≤ min{ 3√K

4 ,
√

m
8 } is a positive number.

Let τ be selected from {0, 1, . . . , K − 1} uniformly at random. Then xτ is a stochastic
ε-stationary solution of (1.1) if

K =
⎡

⎢⎢⎢⎢

(
12L
η

[
�(x0) − �∗]+ (

2−1/3 + 1
6 2

1/3 + 7
9
) 8σ2

m0
+ 32

(1−2−2/3)2
σ2

m

)3/2

ε3

⎤

⎥⎥⎥⎥
. (2.43)

Remark 2.4 We need η ≤ min{ 3√K
4 ,

√
m
8 }, which is true as long as η =

√
m
8 and m ≤

K 2/3

2 . Then we have from (2.43) that K = O(ε−3(L
m1/2 [�(x0) − �∗] + σ 2

m0
+ σ 2

m)3/2)

by ignoring the dependence on absolute constants; the total sample complexity is
m0 + m(K − 1) = O(ε−3(L[�(x0) − �∗]m1/6 + σ 2

m1/3)
3/2) if we let m0 = m. Let

m0 = m = O(1), the total sample complexity m0 + m(K − 1) = O(ε−3) matches
with the lower bound in [3]. However, the dependence on (L(�(x0) − �∗))3/2 will
be not as good as the result in (2.26). Let m0 = m = 	(σ 4

L2(�(x0)−�∗)2), total sample

complexity is m0 + m(K − 1) = O(ε−3σ L(�(x0) − �∗)).

3 Numerical Experiments

In this section, we test Algorithm 1, named as PStorm, on solving three problems.
The first problem is the nonnegative principal component analysis (NPCA) [25], and
the other two are on training neural networks. We compare PStorm to the vanilla
proximal SGD, Spiderboost [33], andHybrid-SGD [32]. Spiderboost andHybrid-SGD
both achieve optimal complexity results, and the vanilla proximal SGD is used as a
baseline for the comparison. For NPCA, all methods were implemented in MATLAB
2021a on a quad-core iMAC with 40 GB memory, and for training neural networks,
all methods were implemented by using PyTorch on a Dell workstation with 32 CPU
cores, 2 GPUs, and 64 GB memory.

3.1 Nonnegative Principal Component Analysis (NPCA)

In this subsection, we compare the four methods on solving the NPCA problem:

Max
x∈Rn

1

2
Ez[x�(zz�)x], s.t. ‖x‖ ≤ 1, x ≥ 0, (3.1)

123

Journal of Optimization Theory and Applications

Fig. 1 Objective error and the
violation of stationarity by
PStorm, the vanilla SGD,
Spiderboost, and Hybrid-SGD
on solving (3.1) with randomly
generated dataset

0 5 10
number of samples 105

10-6

10-4

10-2

100

ob
je

ct
iv

e
er

ro
r

PStorm
vanilla SGD
Spiderboost
Hybrid-SGD

0 5 10
number of samples 105

10-3

10-2

10-1

vi
ol

at
io

n
of

 s
ta

tio
na

rit
y PStorm

vanilla SGD
Spiderboost
Hybrid-SGD

where z ∈ R
n represents a random data point following a certain distribution, and

Ez takes expectation about z. The problem (3.1) can be formulated into the form of
(1.1), by negating the objective and adding an indicator function of the constraint. Two
datasets were used in this test. The first one takes z = w

‖w‖ where w ∼ N (1, I), and
we solved a stochastic problem; for the second one, we used the normalized training
and testing datasets of realsim from LIBSVM [4], and we solved a deterministic
finite-sum problem. For both datasets, each sample function in the objective of (3.1)
is 1-smooth, and thus we used the Lipschitz constant L = 1 for all methods.
Random dataset: For the randomly generated dataset, we set the dimension n = 100
and the minibatch size to m = 10 for PStorm, the vanilla proximal SGD, and the
Hybrid-SGD. For the Spiderboost, we set ε = 5 × 10−3, and for each iteration k, it
accessed q = ε−1 data samples if mod(k, q)
= 0 and ε−2 data samples otherwise.
Each method could access at most 106 data samples. The stepsize of PStorm was
set according to (2.13) with η tuned from {0.1, 0.2, 0.5, 1}, out of which η = 0.1
turned out the best. The stepsize of the vanilla proximal SGD was set to η√

k+1
for

each iteration k ≥ 0 with η tuned from {0.1, 0.2, 0.5, 1}, out of which η = 0.5 turned
out the best. The stepsize of Spiderboost was set to η = 0.5. The Hybrid-SGD has a
few more parameters to tune. As suggested by [32, Theorem 4] and also its numerical
experiments, we set γk , βk , ηk , and the initial batch size to

γk ≡ γ = 3c0m
3
4

√
13m0(K + 1)

1
4

, βk ≡ β = 1 −
√
m√

m0K
, ηk ≡ η = 2

L(3 + γ)
,

m0 = c21

�m(K + 1)
1
3 �

, (3.2)

where K is the maximum number of iterations. We tuned c0 to 10 and c1 to 5.
To evaluate the performance of the testedmethods, we randomly generated 107 data

samples following the same distribution as we described above, and at the iterates of
the methods, we computed their violation of stationarity of the sample-approximation
problem. Since the compared methods have different learning rate, to make a fair
comparison, we measured the violation of stationarity at x by ‖P(x,∇F, 1)‖, where
P is the proximalmapping defined inDefinition 1.1, and F is the sample-approximated
objective. Also, to obtain the “optimal” objective value, we ran the projected gradient
method to 1,000 iterations on the deterministic sample-approximation problem. The
results in terms of the number of samples are plotted in Fig. 1, which clearly shows
the superiority of PStorm over all the other three methods.

123

Journal of Optimization Theory and Applications

0 50 100
epoch number

10-6

10-4

10-2
ob

je
ct

iv
e

er
ro

r
PStorm
vanilla SGD
Hybrid-SGD

0 50 100
epoch number

10-10

100

ob
je

ct
iv

e
er

ro
r

Spiderboost

0 50 100
epoch number

10-4

10-3

10-2

vi
ol

at
io

n
of

 s
ta

tio
na

rit
y

PStorm
vanilla SGD
Hybrid-SGD

0 50 100
epoch number

10-10

100

vi
ol

at
io

n
of

 s
ta

tio
na

rit
y Spiderboost

Fig. 2 Objective error and the violation of stationarity by PStorm, the vanilla SGD, Spiderboost, and
Hybrid-SGD on solving (3.1) with realsim dataset

realsim dataset: The realsim dataset has N = 72, 309 samples in total. We set the
minibatch size tom = 64 for PStorm, the vanilla proximal SGD, and the Hybrid-SGD.
For each iteration k of the Spiderboost, we set |Bk | = q = �√N� = 269 in (1.6), as
suggested by [33, Theorem 3]. The stepsizes of PStorm and the vanilla proximal SGD
were tuned in the same way as above, and the best η was 0.2 for the former and 0.5 for
the latter. The stepsize for Spiderboost was still set to 0.5 as the smoothness constant
is L = 1. For Hybrid-SGD, we set its parameters to

γk ≡ γ = 0.95, βk ≡ β = 1 −
√
m√

m0K
, ηk ≡ η = 2

L(3 + γ)
,

m0 = max

{

N ,
c21

�m(K + 1)
1
3 �

}

,

where K is the maximum number of iterations and c1 was tuned to 15. Notice that
different from (3.2), here we simply fix γ = 0.95. This choice of γ was also adopted in
[32], and it turned out that this setting resulted in the best performance of Hybrid-SGD
for this test.

We ran each method to 100 epochs, where one epoch is equivalent to one pass of
all data samples. The results in terms of epoch number are shown in Fig. 2, where
the violation of stationary was again measured by ‖P(x,∇F, 1)‖ and the “optimal”
objective valuewas given by running the projected gradientmethod to 1,000 iterations.
For this test, we found that Spiderboost converges extremely fast and gave much
smaller errors than those by other methods, and thus we plot the results by Spiderboost
in separate figures. PStorm performed better than the vanilla proximal SGD and the
Hybrid-SGD. We also tested the methods on the datasets w8a and gisette from
LIBSVM. Their comparison performance was similar to that on realsim.

3.2 Regularized Feedforward Fully-connected Neural Network

In this subsection, we compare different methods on solving an �1-regularized 3-layer
feedforward fully-connected neural network, formulated as

min
θ

1

N

N∑

i=1

�
(
softmax

(
W3σ(W2σ(W1xi))

)
, yi
)

+ λ
(‖W1‖1 + ‖W2‖1 + ‖W3‖1

)
.

(3.3)

123

Journal of Optimization Theory and Applications

Here {(xi , yi)}Ni=1 is a c-class training data set with yi ∈ {1, . . . , c} for each i , θ :=
(W1,W2,W3) contains the parameters of the neural network, σ(·) is an activation
function, � denotes a loss function, softmax(z) := 1∑c

j=1 e
z j [ez1; . . . ; ezc] ∈ R

c,∀ z ∈
R
c, and λ ≥ 0 is a regularization parameter to trade off the loss and sparsity.
In the test, we used the MNIST dataset [16] of hand-written-digit images. The

training set has 60,000 images, and the testing set has 10,000 images. Each image
was originally 28 × 28 and vectorized into a vector of dimension 784. We set W1 ∈
R
784×120,W2 ∈ R

120×84, and W3 ∈ R
84×10, whose initial values were set to the

default ones in libtorch, a C++ distribution of PyTorch. We used the hyperbolic
tangent activation function σ(x) = ex−e−x

ex+e−x and the cross-entropy �(q, yi) = − log qyi
for any distribution q ∈ R

c.

The parameters of PStorm were set according to (2.13) with L = 1 and η = 3√4
8 ≈

0.198. Notice that the gradient of the loss function in (3.3) is not uniformly Lipschitz
continuous, and its Lipschitz constant depends on θ . More specifically, the gradient
is Lipschitz continuous over any bounded set of θ . Nevertheless, PStorm with this
parameter setting performed well. The learning rate of the vanilla SGD was set to

ηk = η√
k+1

,∀ k ≥ 0 with η = 3√4
8 . We also tried η = 0.5, and it turned out that the

performance of the vanilla SGD was not as well as that with η = 3√4
8 when λ > 0

in (3.3). For Spiderboost, we set q = �√60000� = 245 in (1.6) as specified by [33,
Theorem 2] and its learning rate η = 0.02 in (1.7).We also tried η = 0.1 and η = 0.01.
It turned out that Spiderboost could diverge with η = 0.1 and converged too slowly
with η = 0.01. For Hybrid-SGD, we fixed its parameter γ = 0.95 as suggested in
the numerical experiments of [32], and we set βk = β = 1 − 1√

K+1
,∀k ≥ 0 in (1.8),

where K is the maximum number of iterations. Its learning rate was set to η = 2
4+Lγ

.
Then we chose the initial mini-batch size m0 from {256, 2560, 30000, 60000} and L
from {5, 10, 50, 100}. The best results were reported.

We ran each method to 100 epochs. Mini-batch size was set to 32 for PStorm,
the vanilla SGD, and Hybrid-SGD. Again, to make a fair comparison, we measured
the violation of stationarity at θ by ‖P(θ ,∇F, 1)‖, where P is the proximal mapping
defined inDefinition 1.1, and F is the smooth term in the objective of (3.3). Table 2 and
Fig. 3 show the results by the comparedmethods. Each result in the table is the average
of those at the last five epochs. For Hybrid-SGD, the best results were obtained with
(m0, L) = (60000, 50) when λ = 0 and with (m0, L) = (60000, 100) when λ > 0.
From the results, we see that PStorm and Hybrid-SGD give similar training loss and
testing accuracies while the vanilla SGD and Spiderboost yield higher loss and lower
accuracies. The lower accuracies by Spiderboost may be caused by its larger batch
size that is required in [33], and the lower accuracies by the vanilla SGD are because
of its slower convergence. In addition, PStorm produced sparser solutions than those
by other methods in all regularized cases. In terms of the violation of stationarity, the
solutions by PStorm have better quality than those by other methods. Furthermore, we
notice that the model (3.3) trained by PStorm with λ = 5×10−4 is much sparser than
that without the �1 regularizer, but the sparse model gives just slightly lower testing

123

Journal of Optimization Theory and Applications

Ta
bl
e
2

R
es
ul
ts
by

th
e
pr
op
os
ed

m
et
ho
d
PS

to
rm

,t
he

va
ni
lla

SG
D
,H

yb
ri
d-
SG

D
,a
nd

Sp
id
er
bo
os
to

n
tr
ai
ni
ng

th
e
m
od
el
(3
.3
)

M
et
ho
d

PS
to
rm

V
an
ill
a
SG

D
Sp

id
er
bo
os
t

H
yb
ri
d-
SG

D

λ
T
ra
in

Te
st

G
ra
d

D
en
si
ty

T
ra
in

Te
st

G
ra
d

D
en
si
ty

T
ra
in

Te
st

G
ra
d

D
en
si
ty

T
ra
in

Te
st

G
ra
d

D
en
si
ty

0.
00

3.
61

e–
3

98
.0
1

3.
45

e–
3

10
0

6.
91

e–
2

97
.0
9

3.
42

e–
2

10
0

4.
24

e–
2

97
.4
1

1.
57

e–
2

10
0

1.
50

e–
3

97
.1
1

3.
64

e–
3

10
0

2e
–4

4.
38

e–
2

97
.6
0

1.
60

e–
2

14
.0
6

1.
08

e–
1

96
.6
2

5.
77

e–
2

99
.4
7

8.
70

e–
2

97
.2
4

1.
87

e–
2

27
.1
7

4.
08

e–
2

97
.7
8

9.
53

e–
2

28
.2
9

5e
–4

8.
86

e–
2

97
.1
2

1.
94

e–
2

6.
16

1.
69

e–
1

95
.5
4

5.
96

e–
2

92
.8
6

1.
41

e–
1

96
.1
6

2.
18

e–
2

10
.6
2

8.
34

e–
2

97
.1
2

1.
11

e–
1

12
.6
9

T
he

fir
st
th
re
e
m
et
ho

ds
us
e
m
in
i-
ba
tc
h
m

=
32

.
E
ac
h
m
et
ho

d
ru
ns

to
10

0
ep
oc
hs
.
“t
ra
in
”
is
fo
r
tr
ai
ni
ng

lo
ss
;
“t
es
t”

is
fo
r
te
st
in
g
ac
cu
ra
cy
;
“g
ra
d”

is
fo
r
th
e
vi
ol
at
io
n
of

st
at
io
na
ri
ty
;“
de
ns
ity

”
is
fo
r
th
e
pe
rc
en
ta
ge

of
no

nz
er
os

in
th
e
so
lu
tio

n.
T
he

be
st
re
su
lts

fo
r
“t
es
t,”

“g
ra
d,
”
an
d
“d
en
si
ty
”
ar
e
hi
gh

lig
ht
ed

in
bo

ld

123

Journal of Optimization Theory and Applications

λ = 0 λ = 2× 10−4 λ = 5× 10−4

0 50 100
epoch number

0

0.2

0.4

0.6

tra
in

in
g

lo
ss

PStorm
vanilla SGD
Spiderboost
Hybrid-SGD

0 50 100
epoch number

0

0.2

0.4

0.6

tra
in

in
g

lo
ss

PStorm
vanilla SGD
Spiderboost
Hybrid-SGD

0 50 100
epoch number

0

0.2

0.4

0.6

tra
in

in
g

lo
ss

PStorm
vanilla SGD
Spiderboost
Hybrid-SGD

0 50 100
epoch number

88

90

92

94

96

98

100

te
st

in
g

ac
cu

ra
cy

PStorm
vanilla SGD
Spiderboost
Hybrid-SGD

0 50 100
epoch number

86

88

90

92

94

96

98
te

st
in

g
ac

cu
ra

cy

PStorm
vanilla SGD
Spiderboost
Hybrid-SGD

0 50 100
epoch number

86

88

90

92

94

96

98

te
st

in
g

ac
cu

ra
cy

PStorm
vanilla SGD
Spiderboost
Hybrid-SGD

0 50 100
epoch number

10-3

10-2

10-1

vi
ol

at
io

n
of

 s
ta

tio
na

rit
y

PStorm
vanilla SGD
Spiderboost
Hybrid-SGD

0 50 100
epoch number

10-2

10-1

vi
ol

at
io

n
of

 s
ta

tio
na

rit
y

PStorm
vanilla SGD
Spiderboost
Hybrid-SGD

0 50 100
epoch number

10-2

10-1

vi
ol

at
io

n
of

 s
ta

tio
na

rit
y

PStorm
vanilla SGD
Spiderboost
Hybrid-SGD

0 50 100
epoch number

99

99.5

100

100.5

101

pe
rc

en
ta

ge
 o

f n
on

ze
ro

s

PStorm
vanilla SGD
Spiderboost
Hybrid-SGD

0 50 100
epoch number

0

20

40

60

80

100

pe
rc

en
ta

ge
 o

f n
on

ze
ro

s

PStorm
vanilla SGD
Spiderboost
Hybrid-SGD

0 50 100
epoch number

0

20

40

60

80

100

pe
rc

en
ta

ge
 o

f n
on

ze
ro

s

PStorm
vanilla SGD
Spiderboost
Hybrid-SGD

Fig. 3 Results in terms of epoch by the proposed method PStorm, the vanilla SGD, Hybrid-SGD, and
Spiderboost on training the model (3.3). The first three methods use mini-batch m = 32

accuracy than the dense one. This is important because a sparser model would reduce
the inference time when the model is deployed to predict new data.

3.3 Regularized Convolutional Neural Network

In this subsection, we compare different methods on solving an �1-regularized convo-
lutional neural network, formulated as

min
θ

1

N

N∑

i=1

�
(
softmax(φθ (xi)), yi

)
+ λ‖θ‖1. (3.4)

123

Journal of Optimization Theory and Applications

Ta
bl
e
3

R
es
ul
ts
in

te
rm

s
of

ep
oc
h
by

th
e
pr
op

os
ed

m
et
ho

d
PS

to
rm

,t
he

va
ni
lla

SG
D
,H

yb
ri
d-
SG

D
,a
nd

Sp
id
er
bo

os
to

n
tr
ai
ni
ng

th
e
m
od

el
(3
.4
)

M
et
ho
d

PS
to
rm

va
ni
lla

SG
D

Sp
id
er
bo
os
t

H
yb
ri
d-
SG

D

λ
tr
ai
n

te
st

gr
ad

de
ns
ity

tr
ai
n

te
st

gr
ad

de
ns
ity

tr
ai
n

te
st

gr
ad

de
ns
ity

tr
ai
n

te
st

gr
ad

de
ns
ity

0.
0

2.
30

e–
2

89
.7
4

0.
10

10
0

2.
45

e–
1

85
.6
1

0.
76

10
0

1.
86

36
.6
3

0.
12

10
0

5.
26

e–
2

88
.1
7

0.
19

10
0

2e
–4

7.
61

e–
1

89
.4
0

4.
17

44
.9
1

9.
42

e–
1

88
.7
6

2.
78

89
.6
4

2.
93

20
.4
3

0.
89

53
.7
9

8.
15

e–
1

88
.0
3

1.
68

72
.7
8

5e
–4

1.
15

88
.5
3

5.
94

19
.8
7

2.
15

86
.6
2

5.
55

40
.6
4

4.
69

18
.6
2

0.
81

32
.2
1

1.
75

86
.7
1

6.
09

60
.7
8

T
he

fir
st
th
re
e
m
et
ho

ds
us
e
m
in
i-
ba
tc
h
m

=
10

0.
E
ac
h
m
et
ho

d
ru
ns

to
20

0
ep
oc
hs
.“
tr
ai
n”

is
fo
r
tr
ai
ni
ng

lo
ss
;
“t
es
t”

is
fo
r
te
st
in
g
ac
cu
ra
cy
;
“g
ra
d”

is
fo
r
th
e
vi
ol
at
io
n
of

st
at
io
na
ri
ty
;“
de
ns
ity

”
is
fo
r
th
e
pe
rc
en
ta
ge

of
no

nz
er
os

in
th
e
so
lu
tio

n.
T
he

be
st
re
su
lts

fo
r
“t
es
t,”

“g
ra
d,
”
an
d
“d
en
si
ty
”
ar
e
hi
gh

lig
ht
ed

in
bo

ld

123

Journal of Optimization Theory and Applications

λ = 0 λ = 2× 10−4 λ = 5× 10−4

0 50 100 150 200
epoch number

0

0.5

1

1.5

2

2.5

tra
in

in
g

lo
ss

PStorm
vanilla SGD
Spiderboost
Hybrid-SGD

0 50 100 150 200
epoch number

0

2

4

6

8

tra
in

in
g

lo
ss

PStorm
vanilla SGD
Spiderboost
Hybrid-SGD

0 50 100 150 200
epoch number

0

5

10

15

tra
in

in
g

lo
ss

PStorm
vanilla SGD
Spiderboost
Hybrid-SGD

0 50 100 150 200
epoch number

0

20

40

60

80

100

te
st

in
g

ac
cu

ra
cy

PStorm
vanilla SGD
Spiderboost
Hybrid-SGD

0 50 100 150 200
epoch number

0

20

40

60

80

100
te

st
in

g
ac

cu
ra

cy

PStorm
vanilla SGD
Spiderboost
Hybrid-SGD

0 50 100 150 200
epoch number

0

20

40

60

80

100

te
st

in
g

ac
cu

ra
cy

PStorm
vanilla SGD
Spiderboost
Hybrid-SGD

0 50 100 150 200
epoch number

0

0.5

1

1.5

2

vi
ol

at
io

n
of

 s
ta

tio
na

rit
y PStorm

vanilla SGD
Spiderboost
Hybrid-SGD

0 50 100 150 200
epoch number

0

2

4

6

vi
ol

at
io

n
of

 s
ta

tio
na

rit
y PStorm

vanilla SGD
Spiderboost
Hybrid-SGD

0 50 100 150 200
epoch number

0

2

4

6

8

10

vi
ol

at
io

n
of

 s
ta

tio
na

rit
y

PStorm
vanilla SGD
Spiderboost
Hybrid-SGD

0 50 100 150 200
epoch number

99

99.5

100

100.5

101

pe
rc

en
ta

ge
 o

f n
on

ze
ro

s

PStorm
vanilla SGD
Spiderboost
Hybrid-SGD

0 50 100 150 200
epoch number

40

60

80

100

pe
rc

en
ta

ge
 o

f n
on

ze
ro

s

PStorm
vanilla SGD
Spiderboost
Hybrid-SGD

0 50 100 150 200
epoch number

0

20

40

60

80

100

pe
rc

en
ta

ge
 o

f n
on

ze
ro

s

PStorm
vanilla SGD
Spiderboost
Hybrid-SGD

Fig. 4 Results in terms of epoch by the proposed method PStorm, the vanilla SGD, Hybrid-SGD, and
Spiderboost on training the model (3.4). The first three methods use mini-batch m = 100

Similar to (3.3), {(xi , yi)}Ni=1 is a c-class training data set with yi ∈ {1, . . . , c} for
each i , θ contains all parameters of the neural network, � denotes a loss function, φθ

represents the nonlinear transformation via the neural network parameterized by θ ,
and λ ≥ 0 is a regularization parameter to trade off the loss and sparsity. In the test,
we used the Cifar10 dataset [15] that has 50,000 training images and 10,000 testing
images. In addition, we set � to the cross-entropy loss and φθ to the all convolutional
neural network (AllCNN) in [29] without data augmentation. The AllCNN has nine
convolutional layers with ReLU activation.

We ran each method to 200 epochs. Mini-batch size was set to 100 for PStorm, the
vanilla SGD, andHybrid-SGD. The stepsizes of PStorm and the vanilla proximal SGD
were tuned in the same way as in Sect. 3.1. For Spiderboost, we set q = �√50000� =

123

Journal of Optimization Theory and Applications

224 in (1.6), and its learning rate η in (1.7) was tuned by picking the best one from
{0.01, 0.1, 0.5}. For Hybrid-SGD, we set its parameters in a way similar to that in
Sect. 3.2 but chose the best pair of (L,m0) from {1, 10, 100}×{102, 103, 104}. Because
the loss for AllCNN is not differentiable, we did not adopt the variance reduction for
PStorm, Hybrid-SGD, and Spiderboost, i.e., we changed uk+1 = vk+1,∀ k in (1.4)
and xk−1 = xk in (1.6) and (1.8). Results produced by the four methods are shown
in Table 3 and Fig. 4. Again, each result in the table is the average of those at the
last five epochs. From the results, we see that PStorm and Hybrid-SGD give similar
training loss and testing accuracies. PStorm is slightly better than Hybrid-SGD, and
the advantage of the former is more significant when λ = 5 × 10−4. Spiderboost can
give small violation of stationarity, but it tended to have significantly higher loss and
lower accuracies. This is possibly because Spiderboost used larger batch size.

4 Conclusions

We have presented a momentum-based variance-reduced mirror-prox stochastic gra-
dient method for solving nonconvex nonsmooth problems, where the nonsmooth term
is assumed to be closed convex. The method, named PStorm, requires only one data
sample for each update. It is the first O(1)-sample-based method that achieves the
optimal complexity result O(ε−3) under a mean-squared smoothness condition for
solving nonconvex nonsmooth problems. The O(1)-sample update is important in
machine learning because small-batch training can lead to good generalization. On
training sparse regularized neural networks, PStorm can perform better than two other
optimal stochastic methods and consistently better than the vanilla stochastic gradient
method.

Acknowledgements We thank two anonymous referees for their constructive comments and suggestions
to improve the quality and contributions of the paper. This work is partly supported by NSF grants DMS-
2053493 and DMS-2208394 and RPI-IBM AIRC.

References

1. Allen-Zhu, Z.: Natasha 2: Faster non-convex optimization than SGD. In: Advances in Neural Infor-
mation Processing Systems, pp. 2675–2686 (2018)

2. Allen-Zhu, Z., Hazan, E.: Variance reduction for faster non-convex optimization. In: International
Conference on Machine Learning, pp. 699–707 (2016)

3. Arjevani, Y., Carmon, Y., Duchi, J.C., Foster, D.J., Srebro, N., Woodworth, B.: Lower bounds for
non-convex stochastic optimization. arXiv:1912.02365 (2019)

4. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst.
Technol. (TIST) 2(3), 1–27 (2011)

5. Chen, X., Liu, S., Sun, R., Hong, M.: On the convergence of a class of adam-type algorithms for
non-convex optimization. In: International Conference on Learning Representations (2018)

6. Cutkosky, A., Orabona, F.: Momentum-based variance reduction in non-convex SGD. In: Advances in
Neural Information Processing Systems, pp. 32 (2019)

7. Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM
J. Optim. 29(1), 207–239 (2019)

8. Davis, D., Drusvyatskiy, D., Kakade, S., Lee, J.D.: Stochastic subgradient method converges on tame
functions. Found. Comput. Math. 20(1), 119–154 (2020)

123

http://arxiv.org/abs/1912.02365

Journal of Optimization Theory and Applications

9. Fang, C., Li, C.J., Lin, Z., Zhang, T.: Spider: Near-optimal non-convex optimization via stochastic
path-integrated differential estimator. In: Advances in Neural Information Processing Systems, pp.
689–699 (2018)

10. Ghadimi, S., Lan, G.: Stochastic first and zeroth-ordermethods for nonconvex stochastic programming.
SIAM J. Optim. 23(4), 2341–2368 (2013)

11. Ghadimi, S., Lan, G.: Accelerated gradient methods for nonconvex nonlinear and stochastic program-
ming. Math. Program. 156(1–2), 59–99 (2016)

12. Ghadimi, S., Lan, G., Zhang, H.:Mini-batch stochastic approximationmethods for nonconvex stochas-
tic composite optimization. Math. Program. 155(1–2), 267–305 (2016)

13. Huo, Z., Huang, H.: Asynchronous stochastic gradient descent with variance reduction for non-convex
optimization. arXiv:1604.03584 (2016)

14. Keskar, N.S., Mudigere, D., Nocedal, J., Smelyanskiy, M., Tang, P.T.P.: On large-batch training for
deep learning: generalization gap and sharp minima. arXiv:1609.04836 (2016)

15. Krizhevsky, A.: Learning multiple layers of features from tiny images. Technical Report, University
of Toronto, Toronto, ON (2009)

16. LeCun,Y.,Bottou, L.,Bengio,Y.,Haffner, P.:Gradient-based learning applied to document recognition.
Proc. IEEE 86(11), 2278–2324 (1998)

17. Lei, L., Ju, C., Chen, J., Jordan, M.I.: Non-convex finite-sum optimization via scsg methods. In:
Advances in Neural Information Processing Systems, pp. 2348–2358 (2017)

18. Liu, B., Wang, M., Foroosh, H., Tappen, M., Pensky, M.: Sparse convolutional neural networks. In:
Proceedings of the IEEEConference on Computer Vision and Pattern Recognition, pp. 806–814 (2015)

19. Mairal, J., Bach, F., Ponce, J., Sapiro, G.: Online learning for matrix factorization and sparse coding.
J. Mach. Learn. Res. 11(Jan), 19–60 (2010)

20. Masters, D., Luschi, C.: Revisiting small batch training for deep neural networks. arXiv:1804.07612
(2018)

21. Mitliagkas, I., Caramanis, C., Jain, P.: Memory limited, streaming PCA. In: Advances in Neural
Information Processing Systems, pp. 2886–2894 (2013)

22. Nguyen, L.M., Liu, J., Scheinberg, K., Takáč,M.: Sarah: a novelmethod formachine learning problems
using stochastic recursive gradient. In: Proceedings of the 34th International Conference on Machine
Learning, Vol. 70, pp. 2613–2621. JMLR. org (2017)

23. Pham, N.H., Nguyen, L.M., Phan, D.T., Tran-Dinh, Q.: ProxSARAH: an efficient algorithmic frame-
work for stochastic composite nonconvex optimization. J. Mach. Learn. Res. 21(110), 1–48 (2020)

24. Reddi, S.J., Hefny, A., Sra, S., Póczos, B., Smola, A.: Stochastic variance reduction for nonconvex
optimization. In: International Conference on Machine Learning, pp. 314–323 (2016)

25. Reddi, S.J., Sra, S., Poczos, B., Smola, A.J.: Proximal stochastic methods for nonsmooth nonconvex
finite-sum optimization. In: Proceedings of the 30th International Conference on Neural Information
Processing Systems, pp. 1153–1161 (2016)

26. Robbins, H., Monro, S.: A stochastic approximation method. Ann. Math. Stat. 22, 400–407 (1951)
27. Scardapane, S., Comminiello, D., Hussain, A., Uncini, A.: Group sparse regularization for deep neural

networks. Neurocomputing 241, 81–89 (2017)
28. Shi, J.V., Xu, Y., Baraniuk, R.G.: Sparse bilinear logistic regression. arXiv:1404.4104 (2014)
29. Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for simplicity: The all convolu-

tional net. arXiv:1412.6806 (2014)
30. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, New York (2018)
31. Tran Dinh, Q., Liu, D., Nguyen, L.: Hybrid variance-reduced SGD algorithms for minimax problems

with nonconvex-linear function. Adv. Neural. Inf. Process. Syst. 33, 11096–11107 (2020)
32. Tran-Dinh, Q., Pham, N.H., Phan, D.T., Nguyen, L.M.: A hybrid stochastic optimization framework

for composite nonconvex optimization. Math. Program. 191(2), 1005–1071 (2022)
33. Wang, Z., Ji, K., Zhou, Y., Liang, Y., Tarokh, V.: Spiderboost and momentum: faster variance reduction

algorithms. In: Advances in Neural Information Processing Systems, pp. 32 (2019)
34. Wei, C., Lee, J.D., Liu, Q., Ma, T.: Regularization matters: generalization and optimization of neural

nets vs their induced kernel. In: Advances in Neural Information Processing Systems, pp. 9709–9721
(2019)

35. Xu, Y., Xu, Y.: Katyusha acceleration for convex finite-sum compositional optimization. Informs J.
Optim. 3(4), 418–443 (2021)

36. Xu, Y., Xu, Y., Yan, Y., Sutcher-Shepard, C., Grinberg, L., Chen, J.: Parallel and distributed asyn-
chronous adaptive stochastic gradient methods. arXiv:2002.09095 (2020)

123

http://arxiv.org/abs/1604.03584
http://arxiv.org/abs/1609.04836
http://arxiv.org/abs/1804.07612
http://arxiv.org/abs/1404.4104
http://arxiv.org/abs/1412.6806
http://arxiv.org/abs/2002.09095

Journal of Optimization Theory and Applications

37. Xu, Y., Yin, W.: Block stochastic gradient iteration for convex and nonconvex optimization. SIAM J.
Optim. 25(3), 1686–1716 (2015)

38. Zhang, J., Xiao, L.: A stochastic composite gradient method with incremental variance reduction. In:
Advances in Neural Information Processing Systems, pp. 32 (2019)

39. Zhang, J., Xiao, L.: Stochastic variance-reduced prox-linear algorithms for nonconvex composite
optimization. Math. Program. 195, 1–43 (2021)

40. Zhao, R., Tan, V.Y.: Online nonnegative matrix factorization with outliers. IEEE Trans. Signal Process.
65(3), 555–570 (2016)

41. Zhou, D., Tang, Y., Yang, Z., Cao, Y., Gu, Q.: On the convergence of adaptive gradient methods for
nonconvex optimization. arXiv:1808.05671 (2018)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

http://arxiv.org/abs/1808.05671

	Momentum-Based Variance-Reduced Proximal Stochastic Gradient Method for Composite Nonconvex Stochastic Optimization
	Abstract
	1 Introduction
	1.1 Background
	1.2 Mirror-Prox Algorithm
	1.3 Related Works
	1.4 Contributions
	1.5 Notation, Definitions, and Outline

	2 Convergence Analysis
	2.1 Results with Varying Stepsize
	2.2 Results with Constant Stepsize

	3 Numerical Experiments
	3.1 Nonnegative Principal Component Analysis (NPCA)
	3.2 Regularized Feedforward Fully-connected Neural Network
	3.3 Regularized Convolutional Neural Network

	4 Conclusions
	Acknowledgements
	References

