
\mathrm{S}\mathrm{I}\mathrm{A}\mathrm{M} \mathrm{J}. \mathrm{O}\mathrm{P}\mathrm{T}\mathrm{I}\mathrm{M}. © 2023 \mathrm{S}\mathrm{o}\mathrm{c}\mathrm{i}\mathrm{e}\mathrm{t}\mathrm{y} \mathrm{f}\mathrm{o}\mathrm{r} \mathrm{I}\mathrm{n}\mathrm{d}\mathrm{u}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{l} \mathrm{a}\mathrm{n}\mathrm{d} \mathrm{A}\mathrm{p}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{e}\mathrm{d} \mathrm{M}\mathrm{a}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{s}
\mathrm{V}\mathrm{o}\mathrm{l}. 33, \mathrm{N}\mathrm{o}. 1, \mathrm{p}\mathrm{p}. 1-35

REDUCING THE COMPLEXITY OF TWO CLASSES OF
OPTIMIZATION PROBLEMS BY INEXACT ACCELERATED

PROXIMAL GRADIENT METHOD*
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Abstract. We propose a double-loop inexact accelerated proximal gradient (APG) method
for a strongly convex composite optimization problem with two smooth components of different
smoothness constants and computational costs. Compared to APG, the inexact APG can reduce
the time complexity for finding a near-stationary point when one smooth component has higher
computational cost but a smaller smoothness constant than the other. The strongly convex com-
posite optimization problem with this property arises from subproblems of a regularized augmented
Lagrangian method for affine-constrained composite convex optimization and also from the smooth
approximation for bilinear saddle-point structured nonsmooth convex optimization. We show that
the inexact APG method can be applied to these two problems and reduce the time complexity for
finding a near-stationary solution. Numerical experiments demonstrate significantly higher efficiency
of our methods over an optimal primal-dual first-order method by Hamedani and Aybat [SIAM J.
Optim., 31 (2021), pp. 1299--1329] and the gradient sliding method by Lan, Ouyang, and Zhou
[arXiv2101.00143, 2021].
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1. Introduction. We consider composite optimization in the form of

(1.1) F \ast = min
x\in \BbbR n

\{ F (x) = g(x) +H(x)\} with H(x) = h(x) + r(x),

where g is Lg-smooth and \mu -strongly convex with \mu \geqslant 0, h is convex and Lh-smooth,
and r is closed convex with an easy proximal mapping and an easy projection onto
\partial r(\cdot ). This problem arises in many applications, e.g., sparse regression [65, 82], mul-
titask learning [15], matrix completion [8], and sparse inverse covariance estimation
[16].

Besides (1.1) itself, we also study its application in the numerical schemes to solve
two classes of convex problems. One is affine-constrained composite optimization,

(1.2) min
x\in \BbbR n

f(x) + r(x) s.t. Ax= b,

and the other is bilinear saddle-point structured nonsmooth optimization,

(1.3) min
x\in \BbbR n

\biggl\{ 
f(x) + r(x) + max

y\in \BbbR m

\bigl[ 
\langle y,Ax\rangle  - \phi (y)

\bigr] \biggr\} 
.
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2 QIHANG LIN AND YANGYANG XU

In both problems, we assume that f is Lf -smooth \mu -strongly convex with \mu \geqslant 0,
while r is similar to that in (1.1). Also, \phi is closed convex, has a bounded domain,
and admits an easy proximal mapping. For simplicity, we only consider equality
constraints in (1.2) in this section, but we will consider both equality and inequality
constraints in the main body of the paper as shown in (5.1). The applications of (1.2)
can be found in linearly constrained LASSO problems [17, 30] and shape-restricted
nonparametric regression [11], and problem (1.3) arises in overlapping group LASSO
[10, 29, 81], fused LASSO [10, 66], and robust principal component analysis [7].

Most of the existing works target an \varepsilon -optimal solution of (1.1), namely, a solution
\=x satisfying F (\=x) - F \ast \leqslant \varepsilon . In contrast, we aim at finding an \varepsilon -stationary solution
of (1.1), namely, a solution \=x satisfying \| \=\bfitxi \| \leqslant \varepsilon for some \=\bfitxi \in \partial F (\=x). It is easy to
obtain an O(

\surd 
\varepsilon )-stationary solution (see (3.15) below) from an \varepsilon -optimal solution,

which, however, may not be a near-stationary solution. For example, \=x = \varepsilon is an
\varepsilon -optimal solution of minx | x| , but it is not a near-stationary solution for any \varepsilon > 0.
On the contrary, an \varepsilon -stationary point \=x of (1.1) is also an \varepsilon \| \=x - x\ast \| -optimal solution
by F (\=x) - F (x\ast ) \leqslant \langle \bfitxi , \=x - x\ast \rangle \leqslant \| \bfitxi \| \cdot \| \=x - x\ast \| for any \bfitxi \in \partial F (\=x), where x\ast is one
minimizer. In addition, an \varepsilon -stationary solution can be verified in practice more easily
than an \varepsilon -optimal solution. For this reason, we also focus on computing \varepsilon -stationary
solutions (defined later in Definitions 5.1 and (6.1) of (1.2) and (1.3).

1.1. Composite subproblems/approximation. Both (1.2) and (1.3) can be
solved by numerical procedures that solve instances of (1.1) as we discuss below.

We consider solving (1.2) by an inexact regularized augmented Lagrangian method
(iRALM), which performs the following update in the kth main iteration:
(1.4)

x(k+1) \approx argminx\in \BbbR nf(x) + r(x)+ \langle \bfitlambda (k), Ax - b\rangle + \beta k
2
\| Ax - b\| 2 + \rho k

2
\| x - x(k)\| 2.

Here x(k) is the main iterate, \bfitlambda (k) is the Lagrange multiplier, \beta k > 0 is a penalty
parameter, and \rho k > 0 is a regularization parameter. It is easy to see that the
problem in (1.4) is an instance of (1.1) with

(1.5) g(x) = f(x) +
\rho k
2
\| x - x(k)\| 2 and h(x) = \langle \bfitlambda (k), Ax - b\rangle + \beta k

2
\| Ax - b\| 2

and the smoothness constants are Lg =Lf + \rho k and Lh = \beta k\| A\| 2.
For (1.3), we use the smoothing technique by [54], which approximates (1.3) by

(1.6) min
x\in \BbbR n

\biggl\{ 
f(x) + r(x) + max

y\in \BbbR m

\bigl[ 
\langle y,Ax\rangle  - \phi (y) - \rho 

2
\| y - y(0)\| 2

\bigr] \biggr\} 
and solves (1.6) using a smooth optimization method. Here, \rho > 0 is a smoothing
parameter, and y(0) \in dom(\phi ). Again, we can view (1.6) as an instance of (1.1) with

(1.7) g(x) = f(x) and h(x) = max
y\in \BbbR m

\bigl[ 
\langle y,Ax\rangle  - \phi (y) - \rho 

2
\| y - y(0)\| 2

\bigr] 
and the smoothness constants Lg =Lf and Lh = \| A\| 2/\rho .

We consider solving (1.2) and (1.3) by gradient-based methods which only need
to query (f,\nabla f) and (A(\cdot ),A\top (\cdot )) and use the proximal mappings of r and \phi . We
are interested in the oracle complexity of the studied methods, which is defined as the
numbers of queries that the methods make to (f,\nabla f) and (A(\cdot ),A\top (\cdot )), denoted by
Qf and QA, respectively, until an \varepsilon -stationary point is found. Similarly, we define the
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iAPG AND REDUCED COMPLEXITY FOR STRUCTURED PROBLEM 3

oracle complexity of a method for (1.1) as the numbers of queries it makes to (g,\nabla g)
and (h,\nabla h), denoted by Qg and Qh, respectively, until an \varepsilon -stationary point is found.
In contrast to oracle complexity, we define the time complexity or cost of a numerical
procedure as the total number of arithmetic operations it performs. Additionally,
we focus on a practical scenario where the time complexity for querying (f,\nabla f) is
significantly higher than (A(\cdot ),A\top (\cdot )). This scenario arises from many applications in
statistics and machine learning, e.g., linearly constrained LASSO problems [17, 30],
where querying (f,\nabla f) requires processing a large amount of data while querying
(A(\cdot ),A\top (\cdot )) does not involve any data and can be relatively easy.

1.2. Contributions. Our main contribution is to show that when the time com-
plexity of querying (f,\nabla f) is significantly higher than (A(\cdot ),A\top (\cdot )), the known time
complexity in the literature for finding \varepsilon -statioanry points of (1.2) and (1.3) can be
further reduced if we solve (1.4) and (1.6) using an inexact accelerated proximal gra-
dient (iAPG) method, which queries (f,\nabla f) significantly fewer than (A(\cdot ),A\top (\cdot )).

Our iAPG is a double-loop variant of the APG [2, 52, 54, 55, 70]. When applied
to (1.1), the APG treats G := g+ h as a whole and solves (1.1) by

(1.8) x(k+1) = argmin
x\in \BbbR n

\Bigl\langle 
\nabla G(y(k)),x - y(k)

\Bigr\rangle 
+

1

2\eta k
\| x - y(k)\| 2 + r(x) for k\geqslant 0,

where y(k) \in \BbbR n is an auxiliary iterate and \eta k > 0 is a step length parameter. By
the assumption made on r, (1.8) can be solved easily, e.g., in a closed form. When
\mu > 0, it is known (see, e.g., [52]) that the APG finds an \varepsilon -optimal solution for (1.1)

with Qg =Qh =O(
\sqrt{} 

Lg+Lh

\mu ln( 1\varepsilon )). However, according to the instantizations in (1.5)

and (1.7), querying (g,\nabla g) has significantly higher time complexity than (h,\nabla h) in
both instances since the former requires querying (f,\nabla f) while the latter only requires
querying (A(\cdot ),A\top (\cdot )). Given that, a potential strategy to reduce the time complexity
for solving (1.1), and thus (1.2) and (1.3), is to query (g,\nabla g) and (h,\nabla h) in different
frequencies so as to reduce Qg, even if doing so may slightly increase Qh.

To implement this strategy, one technique is to separate g and h by solving the
following proximal mapping subproblem in the kth iteration:

(1.9) x(k+1) = argmin
x\in \BbbR n

\Bigl\langle 
\nabla g(y(k)),x - y(k)

\Bigr\rangle 
+

1

2\eta k
\| x - y(k)\| 2 + h(x) + r(x).

Unlike (1.8), (1.9) typically cannot be solved explicitly. A practical solution is to
use an iterative method to solve (1.9) inexactly to a certain precision. This requires
a double-loop implementation. Note that (1.9) itself is a strongly convex instance
of (1.1) and thus can be solved inexactly by the APG in oracle complexity with
logarithmic dependency on the precision. By choosing an appropriate precision for
solving (1.9) in each iteration, we show that, when \mu > 0, our iAPG can find an
\varepsilon -stationary solution of (1.1) with oracle complexity1

(1.10) Qg =O

\Biggl( \sqrt{} 
Lg
\mu 

ln

\biggl( 
1

\varepsilon 

\biggr) \Biggr) 
and Qh = \widetilde O\Biggl( \sqrt{} Lg +Lh

\mu 
ln

\biggl( 
1

\varepsilon 

\biggr) \Biggr) 
.

The iAPG has lower time complexity than the APG when Lh is significantly larger
than Lg and querying (g,\nabla g) is much more costly than (h,\nabla h).

1Here and in the rest of the paper, \widetilde O suppresses some logarithmic terms.
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4 QIHANG LIN AND YANGYANG XU

According to (1.5), the iAPG has lower time complexity than the APG for solving
(1.4) when \beta k is much larger than \rho k, which is indeed the case in the iRALM. As a
consequence, we show that the iRALM, in which (1.4) is solved by the iAPG, finds
an \varepsilon -stationary point of (1.2) with oracle complexity2

(1.11) Qf =O

\Biggl( \sqrt{} 
Lf
\mu 

ln2
\biggl( 
1

\varepsilon 

\biggr) \Biggr) 
and QA = \widetilde O\Biggl( \sqrt{} Lf

\mu 
ln

\biggl( 
1

\varepsilon 

\biggr) 
+

\| A\| 
\surd 
\mu \varepsilon 

\Biggr) 
.

Without the affine constraint Ax= b, it is shown by [51, 52] that any gradient-based

method has to query (f,\nabla f) at least \Omega (
\sqrt{} 

Lf

\mu ln( 1\varepsilon )) times to find an \varepsilon -optimal point

of (1.2). With Ax= b, it is shown by [57] that any gradient-based method needs to

query (A(\cdot ),A\top (\cdot )) at least O( \| A\| \surd 
\mu \varepsilon ) times. In either case, the oracle complexity of

the iRALM matches the corresponding lower bound up to logarithmic factors.
Similarly, according to (1.7), the iAPG has lower time complexity than the APG

when \rho is small, which is true for the smoothing method. In fact, to obtain an \varepsilon -
optimal point of (1.3) by solving (1.6), one needs to set \rho = \Theta (\varepsilon ). In this case, we
show that when \mu > 0, the smoothing method, where (1.6) is solved by the iAPG,
finds an \varepsilon -stationary point of (1.3) with the same oracle complexity as in (1.11). This
complexity matches the lower bound [57] up to logarithmic factors.
Summary of contributions. We summarize our contributions mentioned above.

\bullet We present an iAPG method for solving (1.1). It is a double-loop method
where the inner iterations are terminated using a computable stopping crite-
rion based on the stationarity measure of the solution. We prove the oracle
complexity of the proposed iAPG is given in (1.10). When evaluating (g,\nabla g)
has significantly higher cost than (h,\nabla h) but Lg is much smaller than Lh,
the iAPG is superior to the APG for solving (1.1). Compared to the existing
iAPGs, e.g., [35], our analysis focuses on the strongly convex case which has
important applications in (1.2) and (1.3). Moreover, our method includes
a line search scheme on the step length parameter to improve the practical
performance while other iAPGs do not.

\bullet Applying the proposed iAPG to the subproblems of the iRALM for (1.2),
we derive in (1.11) the oracle complexity of the iRALM for finding an \varepsilon -
stationary solution. This complexity is better than existing ones, e.g., [20, 73],
when querying (f,\nabla f) is significantly more costly than (A(\cdot ),A\top (\cdot )). The
complexity in [41] is similar to ours.3 However, the inner loop of their method
requires a predetermined number of iterations, which is often conservative
and yields poor practical performance; see the numerical results in section 7.
Additionally, we show that the iAPG combined with the smoothing technique
[54] can find an \varepsilon -stationary solution of (1.3) with oracle complexity in (1.11),
which is also better than existing ones.

1.3. Notation. x\odot y denotes the componentwise product of two vectors x and y.
For any number sequence \{ ai\} i\geqslant 0, we define

\sum k2
i=k1

ai = 0 and
\prod k2
i=k1

ai = 1 if k1 >k2.

The proximal mapping of a function r is proxr
\bigl( 
z
\bigr) 
:= argminx\{ 1

2\| x  - z\| 2 + r(x)\} .
The distance of a point z to a set \scrS is defined as dist(z,\scrS ) :=minx\in \scrS \| x - z\| .

2The factor ln2( 1
\varepsilon 
) in Qf can be reduced to ln 1

\varepsilon 
if \beta 0 =\Theta ( 1

\varepsilon 
) and \rho 0 =\Theta (\varepsilon ); see Remark 1.

3The complexity in [41] is lower than that in (1.11) by a logarithmic factor. However, [41] targets
an \varepsilon -optimal solution which is hard to verify.
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iAPG AND REDUCED COMPLEXITY FOR STRUCTURED PROBLEM 5

2. Literature review. The APGmethods [2, 52, 54, 55, 70] are optimal gradient-
based methods for (1.1). However, the APGs cannot be directly applied to (1.2) due
to the affine constraints or to (1.3) due to the sophisticated nonsmooth term. The
iAPG performs similar updates as an APG except that the proximal mapping sub-
problem (1.9) is solved inexactly by another optimization algorithm, making the iAPG
a double-loop algorithm. Different iAPGs have been studied in the literature based
on different inexactness criteria when solving the subproblems [4, 31, 34, 35, 63, 71].

2.1. Related iAPGs. The iAPG in [63] assumes that an \varepsilon k-optimal solution of
(1.9) can be found while the iAPG by [31] requires a solution of (1.9) that satisfies
an inexact criterion based on the O(\varepsilon 2k/k

2)-subgradient of H. Both papers assume
the summability of \{ \varepsilon k\} . They analyze the number of outer iterations for finding an
\varepsilon -optimal solution of (1.1) but not the oracle complexity for solving (1.9). In contrast,
we show the total oracle complexity for finding an \varepsilon -stationary solution of (1.1), which
can be verified more easily than an \varepsilon -optimal solution.

The iAPG by [31] can be directly applied to (1.2) by viewing r in (1.1) as an
indicator function of the constraint set of (1.2). This way, (1.9) becomes a quadratic
program with affine constraints. Then, an inexact semismooth Newton--conjugate
gradient method is applied to compute an inexact solution to (1.9) that approxi-
mately satisfies the primal-dual optimality conditions. However, they only analyze
the number of outer iterations but not the total oracle complexity.

When (1.1) is convex but not strongly convex, the iAPG by [71] minimizes the
duality gap of (1.9) using an APG method to find an approximate solution of (1.9)
satisfying an inexact condition defined with the \varepsilon k-subdifferential of H. Choosing
\varepsilon k = 1/kq, it can find an \varepsilon -optimal solution of (1.1) with oracle complexityQg =O( 1\surd 

\varepsilon 
)

and Qh =O( 1
\varepsilon q ) for q arbitrarily close to 3

2 . Under the same setting, the iAPG by [4]
assumes an approximate solution to (1.9) that satisfies either an inexact relative rule

or an inexact extra-step relative rule. With oracle complexity Qg =O
\bigl( L2/3

g

\varepsilon 2/3

\bigr) 
, it finds

a solution to (1.1) whose \varepsilon -subgradient has a norm no greater than \varepsilon , which is weaker
than an \varepsilon -stationary point. They do not analyze the complexity for computing the
inexact solution to (1.9) so Qh is unknown.

The inner accelerated inexact composite gradient (IA-ICG) method and the dou-
bly accelerated inexact composite gradient (DA-ICG) method proposed by [35] can
be applied to (1.1). Both methods apply a relaxed accelerated gradient algorithm to
find a solution of (1.9) satisfying two error inequalities (see Problem B in [35]). When
(1.1) is convex but not strongly convex, the oracle complexities of the IA-ICG method
and the DA-ICG method for finding an \varepsilon -stationary point of (1.1) are Qg = O

\bigl( Lg

\varepsilon 2

\bigr) 
,

Qh = O
\bigl( \surd Lg+Lh

\surd 
Lg

\varepsilon 2

\bigr) 
and Qg = O

\bigl( L2/3
g

\varepsilon 2/3

\bigr) 
, Qh = O

\bigl( \surd Lg+LhL
1/6
g

\varepsilon 2/3

\bigr) 
, respectively, the

latter of which is the best result in the literature.
In contrast to [4, 31, 35, 71], our work focuses on the case when (1.1) is strongly

convex. Our result is the best in the literature and complements the results by [35].
Moreover, our main studies are the applications of the proposed iAPG in (1.2) and
(1.3), which are not studied in [4, 31, 35, 71]. Additionally, our method includes a
line search scheme for the step length parameter, which those works do not consider.

2.2. Related methods for solving (1.2). The augmented Lagrangian method
(ALM) [27, 60, 61] and its variants [5, 21, 22, 23, 24, 25, 28, 32, 33, 39, 49, 58, 62,
73, 74, 75, 76] can be applied to (1.2). The methods in [22, 33] require an exact
solution of ALM subproblems, i.e., (1.4) with \rho k = 0, which is not practical for
many applications. Inexact (regularized) ALMs are studied by [39, 49, 58, 75], where
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6 QIHANG LIN AND YANGYANG XU

(regularized) ALM subproblems are solved inexactly by APG. When \mu = 0, these
methods have oracle complexity Qf =QA =O( 1\varepsilon ), and when \mu > 0, the method by [75]
has oracle complexity Qf =QA = O( 1\surd 

\varepsilon 
). An accelerated linearized ALM is studied

by [73], where f in (1.2) is linearized in the ALM subproblem. If the augmented term
is also linearized so that the subproblem can be solved exactly, the method by [73]
has the same oracle complexity as [75] in both cases when \mu = 0 and when \mu > 0. If
the augmented term is not linearized, the methods by [5, 23, 25, 73] only need O( 1\surd 

\varepsilon 
)

iterations even when \mu = 0, but the ALM subproblem becomes challenging to solve
exactly. The linearized ALM method is analyzed in a unified framework together
with other variants of the ALM by [62] and is generalized for nonlinear constraints
by [74]. The same complexity as [75] is achieved in [62, 74]. A cutting-plane based
ALM is proposed by [76] that can find an \varepsilon -stationary point for (1.2) with oracle
complexity Qf = QA = \widetilde O( m\surd 

\varepsilon 
) when \mu = 0 and Qf = QA = \widetilde O(m ln( 1\varepsilon )) when \mu > 0,

where m is the number of constraints. Hence, its complexity is better than ours only
when m = o(\varepsilon  - 

1
2 ). A method similar to ALM is studied in [46] for decentralized

distributed optimization with the consensus constraint, which is a special case of the
affine constraints in (1.2).

The (linearized) Bregman methods [79, 80] and their accelerated variants [28, 33]
are equivalent to gradient-based methods applied to the Lagrangian dual problem of
(1.2). Similar techniques are explored in [14, 18]. However, these methods require
easy evaluation of the proximal mapping of f , which limits their applications. For
(1.2) with a strongly convex but not necessarily smooth objective, a dual \varepsilon -optimal
solution can be found by an accelerated Uzawa method [64] or an inexact ALMmethod
[32] within O( 1\surd 

\varepsilon 
) main iterations. However, the method in [64] requires solving a

Lagrangian subproblem exactly and is thus impractical for general f . Although the
method by [32] only needs to solve ALM subproblems inexactly, the authors only
analyze the total number of main iterations but not the overall oracle complexity.

Penalty methods [14, 18, 38, 44] are also classical approaches for (1.2), where the
affine constraints are moved to the objective function through a penalty term and the
unconstrained penalty problem is then solved by another optimization algorithm like
the APG. The primal method in [14, 18] requires r= 0 and A is positive semidefinite
while the dual method in [14, 18] requires an easy evaluation of the convex conjugate
function of f , which limits the applications. When \mu = 0, [38] shows that if the penalty
parameter is large enough, the penalty method finds an (\varepsilon , \varepsilon )-primal-dual solution of
(1.2) (see Definition 1 in [38]) with oracle complexity Qf =QA =O( 1\varepsilon ). The penalty
method by [44] solves a sequence of unconstrained penalty problems with increasing
penalty parameters and only performs one APG iteration on each penalty problem.
It has oracle complexity Qf = QA = O( 1\varepsilon ) when \mu = 0 and Qf = QA = O( 1\surd 

\varepsilon 
) when

\mu > 0. The complexity results in [38, 44] are higher than ours in both cases. The
penalty method has also been applied to distributed optimization problems in [45]
with consensus constraint, which is a special affine constraint.

By Lagrange multipliers, constrained optimization can be formulated as a min-
max problem to which the primal-dual methods [67, 68, 69, 72, 83], mostly based
on smoothing technique [54], can be applied. However, the methods by [67, 69, 72]
require a closed-form solution of prox\eta f while the method by [83] requires a closed-
form solution of the convex conjugate function of f , and thus they have limited
applications. The authors of [68] extend the algorithm and analysis in [67] by allowing
prox\eta f to be evaluated inexactly. However, they do not include the oracle complexity
for inexactly evaluating the proximal mapping in their complexity analysis.
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iAPG AND REDUCED COMPLEXITY FOR STRUCTURED PROBLEM 7

2.3. Related methods for solving (1.3). Smoothing techniques [1, 3, 54] are
a class of effective approaches for solving the structured problem (1.3). They construct
close approximation of (1.3) by one or a sequence of smooth problems, which are then
solved by smooth optimization methods such as the APG. When \mu = 0, the methods

by [1, 3, 54] find an \varepsilon -optimal solution with complexity Qf =QA = O(\| A\| 
\varepsilon +

\sqrt{} 
Lf

\varepsilon ).

When \mu > 0, the adaptive smoothing method by [1] finds an \varepsilon -optimal solution with

Qf =QA =O(
\sqrt{} 

Lf

\mu ln( 1\varepsilon )+
\| A\| \surd 
\mu \varepsilon ), which is higher than our complexity given in (1.11)

when the query to (f,\nabla f) is significantly more costly than (A(\cdot ),A\top (\cdot )).
In the literature, (1.3) has also been studied as a bilinear saddle-point problem

[6, 9, 12, 26, 53, 84, 85]. The methods in [6, 9, 53] require a closed form of the
proximal mapping of f + r and thus may not be applicable to (1.3). When \mu = 0,
the methods by [12, 26, 84, 85] find an \varepsilon -saddle-point (see Definition 3.1 in [26]) or
an \varepsilon -optimal solution with the same oracle complexity as the smoothing methods
mentioned above. When \mu > 0, the method of [85] finds an \varepsilon -optimal solution with
the same oracle complexity as the smoothing method [1]. Problem (1.3) has also
been studied as a variational inequality [13, 50, 70]. In particular, when \mu = 0, the
mirror-prox methods in [50, 70] find an \varepsilon -optimal solution of (1.3) with complexity

Qf =QA =O(
Lf+\| A\| 

\varepsilon ), which is later reduced to Qf =QA =O(
\sqrt{} 

Lf

\varepsilon + \| A\| 
\varepsilon ) by [13].

For all the methods we discussed above for solving (1.2) and (1.3), the oracle
complexity is essentially the number of iterations the algorithms perform to find
the desired solution. Since all of those methods always evaluate both (f,\nabla f) and
(A(\cdot ),A\top (\cdot )) in each iteration, Qf and QA are the same for them. When the evalu-
ation cost of (f,\nabla f) is significantly higher than that of (A(\cdot ),A\top (\cdot )), it will be more
efficient to query (f,\nabla f) less frequently than (A(\cdot ),A\top (\cdot )) without compromising the
solution quality. This actually can be achieved using the gradient sliding techniques
[36, 37, 40, 42, 43, 56], which compute the gradient of one (more expensive) compo-
nent of the objective function once in each outer iteration and process the remaining
components in each inner iteration. The iAPG in this paper utilizes a similar double-
loop technique to differentiate the frequencies of evaluating (f,\nabla f) and (A(\cdot ),A\top (\cdot ))
and thus reduce Qf . Although the idea behind the iAPG is similar to the gradient
sliding techniques, such a technique has not been studied for problem (1.2) under
an iRALM framework. Although (1.3) has been studied by [36, 40], we consider the
case of \mu > 0, which is not covered in [36] and for which [40] needs to apply the
sliding method for convex cases in multiple stages. Moreover, except [42], which ter-
minates the inner loop based on a computable duality gap,4 the existing gradient
sliding techniques must run the inner loop for a predetermined number of iterations
which depends on some unknown parameters of the problem. On the contrary, we
terminate our inner loop based on a computable stationarity measure, which makes
our method more efficient in practice, as we demonstrate in section 7.

3. Inexact accelerated proximal gradient method with line search. In
this section, we consider (1.1) where g is \mu -strongly convex with5 \mu > 0 and Lg-
smooth (i.e., \nabla g is Lg-Lipschitz continuous), h is convex and Lh-smooth, and r is
closed convex and allows easy computation of prox\eta r(z) and dist(z\prime , \partial r(z)) for any
z\prime ,z \in \BbbR n and \eta > 0. We assume that (g,\nabla g) is significantly more costly to query
than (h,\nabla h) and Lg is significantly smaller than Lh. We propose an iAPG for (1.1)

4The method in [42] is a conditional gradient method that assumes a linear optimization oracle,
which is different from our setting.

5Results for the case of \mu = 0 can be found in the longer arXiv version [48].
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8 QIHANG LIN AND YANGYANG XU

Algorithm 1 \widetilde x(k+1) = iAPG(g,h, r,x(0), \eta  - 1, \gamma 0, \mu ,L, (\varepsilon k)k\geqslant 0, \varepsilon ) for (1.1).

Algorithm 2 (x(k+1), \gamma k+1, \eta k, \alpha k) = LineSearch(x(k),z(k), \gamma k, \eta k - 1, \mu ,L, \varepsilon k).

in Algorithm 1, which is a modification of the APG in [52, Algorithm 2.2.19], by
including a line search procedure (in Algorithm 2) for the step length parameter \eta k
and solving the following proximal mapping subproblem inexactly:
(3.1)

x(k+1) \approx x
(k+1)
\ast 

:= argmin
x\in \BbbR n

\biggl\{ 
\Phi (x;y(k), \eta k) :=

\Bigl\langle 
\nabla g(y(k)),x - y(k)

\Bigr\rangle 
+

1

2\eta k
\| x - y(k)\| 2+h(x)+r(x)

\biggr\} 
.

The APG requires x(k+1) = x
(k+1)
\ast , while our iAPG only needs x(k+1) to be an \varepsilon k-

stationary point, i.e., a point satisfying (3.2). Our line search procedure follows [47].
It can be shown that x(k+1) produced by the iAPG is an \varepsilon -optimal solution of

(1.1) if k is large enough and \varepsilon k decreases to zero in an appropriate rate. To generate
an \varepsilon -stationary solution of (1.1), we just need to perform a proximal gradient step
from x(k+1) using a separate step length \~\eta k that can also be searched by the standard
scheme as in [2]. We present this procedure in Algorithm 3, where G := g+ h.

3.1. Convergence analysis for iAPG. In this subsection, we analyze the con-
vergence rate of the proposed iAPG. The analysis also applies to APG by setting
\varepsilon k = 0. The technical lemmas below are needed.

Lemma 3.1. Let \{ (\eta k, \~\eta k, \alpha k, \gamma k)\} be generated from Algorithm 1. It holds that

(3.3)
\gamma dec
Lg

< \eta k \leqslant 
1

L
,

\gamma dec
Lg +Lh

< \~\eta k \leqslant 
1

L
, \alpha k \leqslant 1 and \gamma k \geqslant \mu , for any k\geqslant 0.

Proof. From lines 2 and 4 of Algorithm 2, we have \eta k \leqslant 1
L in Algorithm 1. In

addition, the condition in line 6 of Algorithm 2 will hold and Algorithm 2 will stop
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iAPG AND REDUCED COMPLEXITY FOR STRUCTURED PROBLEM 9

Algorithm 3 (\widetilde x(k+1), \~\eta k+1) = SeekStationary(x(k+1), \~\eta k).

if \eta k \leqslant 1
Lg

. Given line 4 of Algorithm 2, we have \eta k >
\gamma \mathrm{d}\mathrm{e}\mathrm{c}
Lg

in Algorithm 1. Since

\~\eta 0 \leqslant 1
L ,

\gamma \mathrm{d}\mathrm{e}\mathrm{c}

Lg+Lh
< \~\eta k \leqslant 1

L hold similarly.

Solving \alpha k from the equation in line 4 of Algorithm 2 gives

(3.4) \alpha k =
 - (\gamma k  - \mu ) +

\sqrt{} 
(\gamma k  - \mu )2 + 4\gamma k/\eta k
2/\eta k

=
2\gamma k

(\gamma k  - \mu ) +
\sqrt{} 

(\gamma k  - \mu )2 + 4\gamma k/\eta k
.

Since \mu \leqslant L \leqslant 1/\eta k, we have (\gamma k  - \mu )2 + 4\gamma k/\eta k \geqslant (\gamma k + \mu )2. Thus it follows from
(3.4) that \alpha k \leqslant 1\forall k \geqslant 0. Notice if \gamma k \geqslant \mu , then \gamma k+1 = (1 - \alpha k)\gamma k + \alpha k\mu \geqslant \mu . Since
\gamma 0 \geqslant \mu , we have \gamma k \geqslant \mu \forall k\geqslant 0 by induction.

Lemma 3.2. In any iteration of Algorithms 1, 2, and 3 will respectively perform

at most log\gamma \mathrm{d}\mathrm{e}\mathrm{c}

L\gamma 2
\mathrm{d}\mathrm{e}\mathrm{c}

Lg
and log\gamma \mathrm{d}\mathrm{e}\mathrm{c}

L\gamma 2
\mathrm{d}\mathrm{e}\mathrm{c}

Lg+Lh
iterations. Moreover, if Algorithm 1 runs for

t iterations, Algorithms 2 and 3 will perform at most t+ ( ln\gamma \mathrm{i}\mathrm{n}\mathrm{c}
ln\gamma  - 1

\mathrm{d}\mathrm{e}\mathrm{c}

)t+ 1
ln\gamma  - 1

\mathrm{d}\mathrm{e}\mathrm{c}

ln(
Lg\eta  - 1

\gamma \mathrm{d}\mathrm{e}\mathrm{c}
)

and t+ 1+ 1
ln\gamma  - 1

\mathrm{d}\mathrm{e}\mathrm{c}

ln(
\~\eta 0(Lg+Lh)

\gamma \mathrm{d}\mathrm{e}\mathrm{c}
) iterations in total, respectively.

Proof. Let nk and mk be the numbers of iterations performed within Algorithms
2 and 3, respectively, in iteration k of Algorithm 1. When Algorithm 2 ends, we have
\eta k = \gamma nk - 1

dec min\{ L - 1, \gamma inc\eta k - 1\} . Since \gamma \mathrm{d}\mathrm{e}\mathrm{c}
Lg

< \eta k and \eta k - 1 \leqslant 1
L by (3.3), we have

\gamma \mathrm{d}\mathrm{e}\mathrm{c}

Lg
<\gamma nk - 1

dec \cdot 1
L , which implies nk \leqslant log\gamma \mathrm{d}\mathrm{e}\mathrm{c}

L\gamma 2
\mathrm{d}\mathrm{e}\mathrm{c}

Lg
. Similarly, mk \leqslant log\gamma \mathrm{d}\mathrm{e}\mathrm{c}

L\gamma 2
\mathrm{d}\mathrm{e}\mathrm{c}

Lg+Lh
.

The second conclusion can be proved in the same way as Lemma 6 in [55]. In
particular, when Algorithm 2 ends, we must have \eta k = \gamma nk - 1

dec min\{ L - 1, \gamma inc\eta k - 1\} \leqslant 
\gamma nk - 1
dec \gamma inc\eta k - 1, which means nk \leqslant 1 + ( ln\gamma \mathrm{i}\mathrm{n}\mathrm{c}

ln\gamma  - 1
\mathrm{d}\mathrm{e}\mathrm{c}

) + 1
ln\gamma  - 1

\mathrm{d}\mathrm{e}\mathrm{c}

ln(\eta k - 1

\eta k
) and thus

t - 1\sum 
k=0

nk \leqslant t+

\biggl( 
ln\gamma inc

ln\gamma  - 1
dec

\biggr) 
t+

1

ln\gamma  - 1
dec

ln

\biggl( 
\eta  - 1

\eta t - 1

\biggr) 
\leqslant t+

\biggl( 
ln\gamma inc

ln\gamma  - 1
dec

\biggr) 
t+

1

ln\gamma  - 1
dec

ln

\biggl( 
Lg\eta  - 1

\gamma dec

\biggr) 
.

A similar argument can be used to bound
\sum t - 1
k=0mk.

Lemma 3.3. Let \kappa =
Lg

\gamma \mathrm{d}\mathrm{e}\mathrm{c}\mu 
and \alpha k generated by Algorithm 1. Then \alpha k \geqslant \sqrt{} 

1
\kappa \forall k\geqslant 0.

Proof. Lemma 3.1 indicates \gamma k+1 \geqslant \mu . Hence, from (3.3) and the update of \gamma k+1,

it follows that \alpha k =
\surd 
\eta k\gamma k+1 \geqslant 

\sqrt{} 
1
\kappa , and we obtain the desired results.

Next, we establish the relationship between two iterates in Algorithm 1.

Proposition 3.4. Let \{ (x(k),z(k), \alpha k, \gamma k)\} k\geq 0 be generated by Algorithm 1. Then

(3.5)
F (x(k+1)) - F \ast +

\gamma k+1

2
\| x\ast  - z(k+1)\| 2

\leqslant (1 - \alpha k)
\Bigl[ 
F (x(k)) - F \ast +

\gamma k
2
\| x\ast  - z(k)\| 2

\Bigr] 
+ \varepsilon k\alpha k\| x\ast  - z(k+1)\| \forall k\geqslant 0.
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10 QIHANG LIN AND YANGYANG XU

Proof. Let x\ast be an optimal solution of (1.1) and \widehat x(k) = \alpha kx
\ast + (1  - \alpha k)x

(k).
Then

(3.6) \widehat x(k)  - y(k) = \alpha k(x
\ast  - y(k)) + (1 - \alpha k)(x

(k)  - y(k)).

By the update of y(k) in Algorithm 2, we have z(k)  - y(k) = - \gamma k+1

\alpha k\gamma k
(x(k)  - y(k)). This

together with (3.6) gives

\widehat x(k)  - y(k) = \alpha k(x
\ast  - y(k)) - \alpha k(1 - \alpha k)\gamma k

\gamma k+1
(z(k)  - y(k))(3.7)

= \alpha k

\biggl[ 
x\ast  - (1 - \alpha k)\gamma k

\gamma k+1
z(k)  - \alpha k\mu 

\gamma k+1
y(k)

\biggr] 
,

where the last equality follows from the update of \gamma k+1. According to (3.2), there
exists e(k) \in \BbbR n such that \| e(k)\| \leqslant \varepsilon k and e(k)  - \nabla g(y(k))  - 1

\eta k
(x(k+1)  - y(k)) \in 

\partial H(x(k+1)). By the convexity of H, we have

H(x(k+1))\leqslant H(\widehat x(k)) +
\bigl\langle 
e(k)  - \nabla g(y(k)) - 1

\eta k
(x(k+1)  - y(k)),x(k+1)  - \widehat x(k)

\bigr\rangle 
,

which, by the fact that \langle u,v\rangle = 1
2

\bigl( 
\| u\| 2 + \| v\| 2  - \| u - v\| 2

\bigr) 
, implies

H(x(k+1))\leqslant H(\widehat x(k)) +
\Bigl\langle 
e(k)  - \nabla g(y(k)),x(k+1)  - \widehat x(k)

\Bigr\rangle 
 - 1

2\eta k

\Bigl( 
\| x(k+1)  - y(k)\| 2 + \| x(k+1)  - \widehat x(k)\| 2  - \| \widehat x(k)  - y(k)\| 2

\Bigr) 
,

\leqslant H(\widehat x(k)) +
\Bigl\langle 
\nabla g(y(k)),\widehat x(k)  - x(k+1)

\Bigr\rangle 
+ \varepsilon k\| x(k+1)  - \widehat x(k)\| 

 - 1

2\eta k

\Bigl( 
\| x(k+1)  - y(k)\| 2 + \| x(k+1)  - \widehat x(k)\| 2  - \| \widehat x(k)  - y(k)\| 2

\Bigr) 
.

From the inequality above and the stopping condition of Algorithm 2, we have

F (x(k+1))\leqslant g(y(k)) +
\bigl\langle 
\nabla g(y(k)),x(k+1)  - y(k)

\bigr\rangle 
+

1

2\eta k

\bigm\| \bigm\| x(k+1)  - y(k)
\bigm\| \bigm\| 2 +H(x(k+1))

\leqslant g(y(k)) +
\bigl\langle 
\nabla g(y(k)),\widehat x(k)  - y(k)

\bigr\rangle 
+

1

2\eta k

\bigm\| \bigm\| \widehat x(k)  - y(k)
\bigm\| \bigm\| 2 +H(\widehat x(k))

 - 1

2\eta k

\bigm\| \bigm\| \widehat x(k)  - x(k+1)
\bigm\| \bigm\| 2 + \varepsilon k\| x(k+1)  - \widehat x(k)\| .

Applying (3.6) to the above inequality, we have

F (x(k+1))\leqslant g(y(k)) +
\bigl\langle 
\nabla g(y(k)), \alpha k(x

\ast  - y(k)) + (1 - \alpha k)(x
(k)  - y(k))

\bigr\rangle 
+

1

2\eta k

\bigm\| \bigm\| \widehat x(k)  - y(k)
\bigm\| \bigm\| 2

+H(\alpha kx
\ast + (1 - \alpha k)x

(k)) - 1

2\eta k

\bigm\| \bigm\| \widehat x(k)  - x(k+1)
\bigm\| \bigm\| 2 + \varepsilon k\| x(k+1)  - \widehat x(k)\| .

By the fact that \alpha k \in (0,1] from Lemma 3.1, (3.7), and the convexity of H, we have
(3.8)
F (x(k+1))\leqslant (1 - \alpha k)

\bigl[ 
g(y(k)) + \langle \nabla g(y(k)),x(k)  - y(k)\rangle +H(x(k))

\bigr] 
+ \alpha k

\bigl[ 
g(y(k)) +

\Bigl\langle 
\nabla g(y(k)),x\ast  - y(k)

\Bigr\rangle 
+H(x\ast )

\bigr] 
+ \varepsilon k\| x(k+1)  - \widehat x(k)\| 

+
\alpha 2
k

2\eta k

\bigm\| \bigm\| x\ast  - (1 - \alpha k)\gamma k
\gamma k+1

z(k)  - \alpha k\mu 

\gamma k+1
y(k)

\bigm\| \bigm\| 2  - 1

2\eta k

\bigm\| \bigm\| \widehat x(k)  - x(k+1)
\bigm\| \bigm\| 2.
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iAPG AND REDUCED COMPLEXITY FOR STRUCTURED PROBLEM 11

Since \gamma k+1 = \alpha 2
k/\eta k = (1 - \alpha k)\gamma k + \alpha k\mu , we have from the convexity of \| \cdot \| 2 that

\alpha 2
k

2\eta k

\bigm\| \bigm\| \bigm\| \bigm\| x\ast  - (1 - \alpha k)\gamma k
\gamma k+1

z(k)  - \alpha k\mu 

\gamma k+1
y(k)

\bigm\| \bigm\| \bigm\| \bigm\| 2 =\gamma k+1

2

\bigm\| \bigm\| \bigm\| \bigm\| x\ast  - (1 - \alpha k)\gamma k
\gamma k+1

z(k)  - \alpha k\mu 

\gamma k+1
y(k)

\bigm\| \bigm\| \bigm\| \bigm\| 2
\leqslant 
(1 - \alpha k)\gamma k

2
\| x\ast  - z(k)\| 2 + \alpha k\mu 

2
\| x\ast  - y(k)\| 2,

which, together with (3.8) and the \mu -strong convexity of g, implies

F (x(k+1))\leqslant (1 - \alpha k)

\biggl[ 
g(y(k)) + \langle \nabla g(y(k)),x(k)  - y(k)\rangle +H(x(k)) +

\gamma k
2
\| x\ast  - z(k)\| 2

\biggr] 
+ \alpha k

\biggl[ 
g(y(k)) + \langle \nabla g(y(k)),x\ast  - y(k)\rangle +H(x\ast ) +

\mu 

2
\| x\ast  - y(k)\| 2

\biggr] 
 - 1

2\eta k

\bigm\| \bigm\| \widehat x(k)  - x(k+1)
\bigm\| \bigm\| 2 + \varepsilon k\| x(k+1)  - \widehat x(k)\| 

\leqslant (1 - \alpha k)

\biggl[ 
F (x(k)) +

\gamma k
2
\| x\ast  - z(k)\| 2

\biggr] 
+ \alpha kF (x

\ast ) - 1

2\eta k

\bigm\| \bigm\| \widehat x(k)  - x(k+1)
\bigm\| \bigm\| 2(3.9)

+ \varepsilon k\| x(k+1)  - \widehat x(k)\| .

By the definitions of z(k+1) and \widehat x(k), it holds that

(3.10) \| \widehat x(k)  - x(k+1)\| 2 = \| \alpha kx\ast + (1 - \alpha k)x
(k)  - x(k+1)\| 2 = \alpha 2

k\| x\ast  - z(k+1)\| 2.

Apply (3.10) to (3.9) and use \gamma k+1 = \alpha 2
k/\eta k to obtain the desired inequality.

We apply (3.5) to derive the convergence rate of Algorithm 1.

Theorem 3.5. For any c\in [0,1), Algorithm 1 guarantees that

\psi k+1 \leqslant 
k\prod 
j=0

(1 - c\alpha j)

\Biggl( 
\psi 0 +

\surd 
\kappa 

2(1 - c)2L

k\sum 
t=0

\varepsilon 2t\prod t - 1
j=0(1 - c\alpha j)

\Biggr) 
for k\geqslant 0,(3.11)

where \psi k := F (x(k)) - F \ast + (1 - (1 - c)\alpha k)
\gamma k
2 \| x\ast  - z(k)\| 2 and \kappa is defined in Lemma

3.3. In addition, when \varepsilon k = 0 \forall k, Algorithm 1 guarantees that, for k\geqslant 0,

(3.12)

F (x(k+1)) - F \ast +
\gamma k+1

2
\| x\ast  - z(k+1)\| 2

\leqslant 

\biggl( 
1 - 1\surd 

\kappa 

\biggr) k+1 \Bigl( 
F (x(0)) - F \ast +

\gamma 0
2
\| x\ast  - z(0)\| 2

\Bigr) 
.

Proof. By the Young's inequality, we have that for any c\in [0,1),

\varepsilon k\alpha k\| x\ast  - z(k+1)\| \leqslant (1 - c)\alpha k+1\alpha 
2
k

2\eta k
\| x\ast  - z(k+1)\| 2 + \eta k

2(1 - c)\alpha k+1
\varepsilon 2k.

Recall \gamma k+1 =
\alpha 2

k

\eta k
. Hence, we have from (3.5) that

F (x(k+1)) - F \ast +
\gamma k+1

2
\| x\ast  - z(k+1)\| 2

\leqslant (1 - \alpha k)
\Bigl[ 
F (x(k)) - F \ast +

\gamma k
2
\| x\ast  - z(k)\| 2

\Bigr] 
+

(1 - c)\alpha k+1\gamma k+1

2
\| x\ast  - z(k+1)\| 2 + \eta k

2(1 - c)\alpha k+1
\varepsilon 2k,
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12 QIHANG LIN AND YANGYANG XU

which, after rearranging terms, is reduced to

(3.13)
F (x(k+1)) - F \ast +

\bigl( 
1 - (1 - c)\alpha k+1

\bigr) \gamma k+1

2
\| x\ast  - z(k+1)\| 2

\leqslant (1 - \alpha k)
\Bigl[ 
F (x(k)) - F \ast +

\gamma k
2
\| x\ast  - z(k)\| 2

\Bigr] 
+

\eta k
2(1 - c)\alpha k+1

\varepsilon 2k.

Then it follows from (3.13), the definition of \psi k, and F (x
(k)) - F \ast \geqslant 0 that

(3.14) \psi k+1 \leqslant 
1 - \alpha k

1 - (1 - c)\alpha k
\psi k +

\eta k
2(1 - c)\alpha k+1

\varepsilon 2k \leqslant (1 - c\alpha k)\psi k +

\surd 
\kappa 

2(1 - c)L
\varepsilon 2k,

where the first inequality is because 1 - \alpha k

1 - (1 - c)\alpha k
= 1  - c\alpha k

1 - (1 - c)\alpha k
\leqslant 1  - c\alpha k and the

second inequality is by (3.3) and Lemma 3.3. Recursively applying (3.14) gives

\psi k+1 \leqslant 
k\prod 
j=0

(1 - c\alpha j)\psi 0 +

\surd 
\kappa 

2(1 - c)L

k\sum 
t=0

\Bigl( k\prod 
j=t+1

(1 - c\alpha j)
\Bigr) 
\varepsilon 2t

=

k\prod 
j=0

(1 - c\alpha j)

\Biggl( 
\psi 0 +

\surd 
\kappa 

2(1 - c)L

k\sum 
t=0

\varepsilon 2t\prod t
j=0(1 - c\alpha j)

\Biggr) 
,

which implies (3.11) because \alpha j \leqslant 1 \forall j \geqslant 0.
When \varepsilon k = 0, (3.12) can be derived by Lemma 3.3 and recursively using (3.5).

The result in (3.11) is similar to Propositions 2 and 4 in [63] but takes a different
form. It will be later used to derive the oracle complexity of our iAPG. The result
in (3.12) is exactly the convergence property of the APG [52] for a strongly convex
case. Although (3.12) is not new, we still present it here because we need it later to
analyze the complexity to obtain x(k+1) in line 5 of Algorithm 2.

3.2. Complexity of APG for finding an \varepsilon -stationary point of (1.1). The
oracle complexity of Algorithm 1 must include the complexity for finding x(k+1) sat-
isfying (3.2) in each iteration of Algorithm 2. Such an x(k+1) can be found by approx-
imately solving (3.1), which is an instance of (1.1) with the g, h, and r components
being \Phi ( \cdot ;y(k), \eta k) - r(\cdot ), 0, and r(\cdot ), respectively. The assumption on r allows us to
apply the exact APG method, i.e., Algorithm 1 with \varepsilon k = 0\forall k \geqslant 0 to (3.1) in order
to find x(k+1). The convergence of the objective gap by the exact APG method is
characterized by (3.12). However, (3.2) requires x(k+1) to be an \varepsilon k-stationary solution
of (1.1) instead of an \varepsilon k-optimal solution. Hence, we first establish the complexity
for the exact APG method to find an \varepsilon -stationary solution of (1.1). The analysis is
standard in the literature and is included for the sake of completeness.

Lemma 3.6. Let CL =
Lg+Lh\surd 

L
+
\sqrt{} 

Lg+Lh

\gamma \mathrm{d}\mathrm{e}\mathrm{c}
, where L and \gamma dec are those in Algo-

rithms 1 and 2. It holds that, for any k\geqslant 0,

(3.15) dist
\bigl( 
0, \partial F (\widetilde x(k+1))

\bigr) 
\leqslant CL

\sqrt{} 
2
\bigl( 
F (x(k+1)) - F \ast 

\bigr) 
.

Proof. When the stopping condition of Algorithm 3 holds, we have (cf. [78,
Lemma 2.1]) F (x) - F (\widetilde x)\geqslant 1

2\~\eta \| x - \widetilde x\| 2, and thus

(3.16) \| \widetilde x(k+1)  - x(k+1)\| \leqslant 
\sqrt{} 
2\~\eta k+1

\bigl( 
F (x(k+1)) - F (\widetilde x(k+1))

\bigr) 
.
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iAPG AND REDUCED COMPLEXITY FOR STRUCTURED PROBLEM 13

Also, from the update of \widetilde x, we have 0 \in \nabla (g + h)(x) + 1
\eta (\widetilde x - x) + \partial r(\widetilde x), and thus

dist
\bigl( 
0, \partial F (\widetilde x)\bigr) \leqslant \| \nabla (g + h)(\widetilde x) - \nabla (g + h)(x) + 1

\eta (\widetilde x - x)\| \leqslant (Lg + Lh +
1
\eta )\| \widetilde x - x\| .

Hence, for \widetilde x(k+1) in Algorithm 1, it holds that

dist
\bigl( 
0, \partial F (\widetilde x(k+1))

\bigr) 
\leqslant 

\biggl( 
Lg +Lh +

1

\~\eta k+1

\biggr) 
\| \widetilde x(k+1)  - x(k+1)\| 

3.16
\leqslant 

\biggl( 
Lg +Lh +

1

\~\eta k+1

\biggr) \sqrt{} 
2\~\eta k+1

\bigl( 
F (x(k+1)) - F (\widetilde x(k+1))

\bigr) 
.(3.17)

Applying (3.3) and the fact that F (\widetilde x(k+1))\geqslant F \ast , we obtain the desired result.

By (3.12) and (3.15), we immediately have the following result.

Theorem 3.7. Let \kappa and CL be defined in Lemmas 3.3 and 3.6. When \varepsilon k = 0
for k\geqslant 0, Algorithm 1 returns \~x(k+1) as an \varepsilon -stationary point of (1.1) with

(3.18) k+ 1\leqslant 2
\surd 
\kappa ln

\biggl( 
CL

\sqrt{} 
2
\Bigl( 
F (x(0)) - F \ast +

\gamma 0
2
\| x\ast  - z(0)\| 2

\Bigr) 1
\varepsilon 

\biggr) 
.

4. Oracle complexity of iAPG. In this section, we show the oracle complexity
of Algorithm 1 for finding an \varepsilon -stationary solution of (1.1) in the strongly convex case.
The complexity in the convex but not strongly convex case is not included due to space
limits. For that result, we refer interested readers to [48].

4.1. Complexity for ensuring (3.2). We can find x(k+1) satisfying (3.2) by
calling the iAPG method (Algorithm 1) with the following inputs:

(4.1) x(k+1) = iAPG
\Bigl( 
\Phi (\cdot ;y(k), \eta k) - r(\cdot ),0, r(\cdot ),x(k), \eta k, \eta 

 - 1
k , \eta  - 1

k , \eta  - 1
k , (0)k\geqslant 0, \varepsilon k

\Bigr) 
,

where \Phi is defined in (3.1). Here we use x(k) as the initial solution to compute
x(k+1) and the inputs in (4.1) are chosen based on the fact that \Phi (\cdot ;y(k), \eta k) - r(\cdot ) is
1/\eta k-strongly convex and (1/\eta k+Lh)-smooth. The complexity of finding x(k+1) then
follows from Theorem 3.7.

Proposition 4.1 (complexity for ensuring (3.2)). Let x
(k+1)
\ast and \Phi be defined in

(3.1). Suppose Algorithm 1 is applied to (3.1) with the inputs given in (4.1). Solution
x(k+1) satisfying (3.2) can be found after at most Tk queries to (h,\nabla h), where
(4.2)

Tk =O

\left(  \sqrt{} 1 +
Lh
L

ln

\sqrt{} 
Lg +Lh +L2

h/L

\sqrt{} 
\Phi (x(k);y(k), \eta k) - \Phi (x

(k+1)
\ast ;y(k), \eta k)

\varepsilon k

\right)  .

Proof. Recall that \Phi ( \cdot ;y(k), \eta k) - r(\cdot ) is ( 1
\eta k

+Lh)-smooth and 1
\eta k
-strongly convex.

From the strong convexity of \Phi , it holds that

(4.3)
1

2\eta k
\| x(k)  - x

(k+1)
\ast \| 2 \leqslant \Phi 

\Bigl( 
x(k);y(k), \eta k

\Bigr) 
 - \Phi 

\Bigl( 
x
(k+1)
\ast ;y(k), \eta k

\Bigr) 
.
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14 QIHANG LIN AND YANGYANG XU

By instantizing Theorem 3.7 on (3.1), Algorithm 1 with the inputs given in (4.1) must
find x(k+1) satisfying (3.2) in no more than tk iterations with

tk \leqslant 2

\sqrt{} 
1 + \eta kLh
\gamma dec

ln

(4.4)

\bigl( 1/\eta k+Lh\surd 
1/\eta k

+
\sqrt{} 

1/\eta k+Lh

\gamma \mathrm{d}\mathrm{e}\mathrm{c}

\bigr) \sqrt{} 
2\Phi (x(k);y(k), \eta k) - 2\Phi (x

(k+1)
\ast ;y(k), \eta k)+

1
\eta k
\| x(k) - x

(k+1)
\ast \| 2

\varepsilon k

=O

\left(    
\sqrt{} 
1 +

Lh
L

ln

\bigl( \sqrt{} 
Lg+

Lh\surd 
L
+
\sqrt{} 
Lg +Lh

\bigr) \sqrt{} 
\Phi (x(k);y(k), \eta k) - \Phi (x

(k+1)
\ast ;y(k), \eta k)

\varepsilon k

\right)    ,

where the second equation is because of (3.3) and (4.3) and uses the fact ln(1 - a) - 1 \geqslant a
for any a \in (0,1). By instantizing Lemma 3.2 on (3.1) with the input given in (4.1),
the total number of queries of (h,\nabla h) must be no more than

Tk = 2

\biggl( 
1 +

ln\gamma inc

ln\gamma  - 1
dec

\biggr) 
tk +

2

ln\gamma  - 1
dec

ln

\biggl( 
1 + \eta kLh
\gamma dec

\biggr) 
+ 2tk + 2+

2

ln\gamma  - 1
dec

ln

\biggl( 
1 + \eta kLh
\gamma dec

\biggr) 
,

which, together with (4.4) and (3.3), implies the conclusion.

4.2. Oracle complexity in the strongly convex case. With Theorem 3.5
and Proposition 4.1, we establish the oracle complexity to produce an \varepsilon -stationary so-
lution of (1.1) by specifying \{ \varepsilon k\} k\geqslant 0 and bounding \Phi (x(k);y(k), \eta k) - \Phi (x

(k+1)
\ast ;y(k), \eta k).

To do so, let \varepsilon 0 > 0 be any constant and define the following quantities:

\varepsilon k =
\varepsilon 0

k+ 1

\sqrt{}    k - 1\prod 
j=0

(1 - c\alpha j) \forall k\geqslant 1,(4.5)

S =

\surd 
\kappa 

2(1 - c)2L

\infty \sum 
k=0

\varepsilon 2k\prod k - 1
j=0 (1 - c\alpha k)

=

\surd 
\kappa 

2(1 - c)2L

\infty \sum 
k=0

\varepsilon 20
(k+ 1)2

<\infty ,(4.6)

\delta k =

\sqrt{}    k - 1\prod 
j=0

(1 - c\alpha j)

\sqrt{} 
2(\psi 0 + S)

\mu 
\forall k\geqslant 0,(4.7)

where c \in [0,1) is the same constant as that in Theorem 3.5 and \kappa is defined in
Lemma 3.3. By (3.11), (4.5), and (4.6), we have

(4.8) \psi k+1 \leqslant 
k\prod 
j=0

(1 - c\alpha j) (\psi 0 + S) \forall k\geqslant 0.

With these preparations, \Phi (x(k);y(k), \eta k) - \Phi (x
(k+1)
\ast ;y(k), \eta k) can be upper bounded.

Lemma 4.2. Suppose \{ \varepsilon k\} k\geqslant 0 in Algorithm 1 are given in (4.5). Let x
(k+1)
\ast and

\Phi be defined by (3.1) and \delta k by (4.7) with c\in [0,1). Algorithm 1 guarantees that
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iAPG AND REDUCED COMPLEXITY FOR STRUCTURED PROBLEM 15

\Phi (x(k);y(k), \eta k) - \Phi (x
(k+1)
\ast ;y(k), \eta k)\leqslant 

\left\{   
1
2Ldist

\bigl( 
0, \partial F (x(0))

\bigr) 2
if k= 0,

1
2L

\Bigl( 
\varepsilon k - 1 +

3Lg(\delta k+\delta k - 1)

\gamma \mathrm{d}\mathrm{e}\mathrm{c}
\surd 
c

\Bigr) 2
if k\geqslant 1.

(4.9)

Proof. By y(0) = x(0), we have \Phi (x(0);y(0), \eta 0) =H(x(0)). Also, it holds that

\Phi (x;y(0), \eta 0)\geqslant 
\Bigl\langle 
\nabla g(x(0)),x - x(0)

\Bigr\rangle 
+

1

2\eta 0
\| x - x(0)\| 2 +H(x(0)) + \langle \bfitxi ,x - x(0)\rangle 

for any \bfitxi \in \partial H(x(0)) and any x, from the convexity of H. Since \eta 0 \leqslant 1
L , we have

\Phi (x(0);y(0), \eta 0) - \Phi (x
(1)
\ast ;y(0), \eta 0)(4.10)

\leqslant  - min
x

\biggl\{ \Bigl\langle 
\nabla g(x(0)) + \bfitxi ,x - x(0)

\Bigr\rangle 
+

1

2\eta 0
\| x - x(0)\| 2

\biggr\} 
=
\eta 0
2
\| \nabla g(x(0)) + \bfitxi \| 2 \leqslant 1

2L
\| \nabla g(x(0)) + \bfitxi \| 2.

Minimizing the right-hand side of (4.10) over \bfitxi \in \partial H(x(0)) gives (4.9) for k= 0.
Suppose k\geqslant 1. By the definition of \psi k in Theorem 3.5 and the \mu -strong convexity

of F , we have

\psi k \geqslant 
\mu 

2
\| x(k) - x\ast \| 2+(1 - (1 - c)\alpha k)

\gamma k
2
\| z(k) - x\ast \| 2 \geqslant \mu 

2
\| x(k) - x\ast \| 2+ c\mu 

2
\| z(k) - x\ast \| 2,

where the second inequality is due to (3.3). This inequality implies, for any k\geq 0,
(4.11)

max
\Bigl\{ 
\| x(k)  - x\ast \| ,

\surd 
c\| z(k)  - x\ast \| 

\Bigr\} 
\leqslant 

\sqrt{} 
2\psi k
\mu 

\leqslant 

\sqrt{}    k - 1\prod 
j=0

(1 - c\alpha j)

\sqrt{} 
2(\psi 0 + S)

\mu 
= \delta k,

where the second inequality is by (4.8) and the equality is by (4.7). Since c \in (0,1)
and y(k) is a convex combination of x(k) and z(k), it follows from (4.11) that

(4.12) \| y(k)  - x\ast \| \leqslant \delta k\surd 
c

\forall k\geqslant 0.

By (3.2), it holds that dist
\bigl( 
0,\nabla g(y(k - 1))+ 1

\eta k - 1
(x(k) - y(k - 1))+\partial H(x(k))

\bigr) 
\leqslant \varepsilon k - 1

for k\geqslant 1. Hence, by the definition of \Phi in (3.1), we have

dist
\bigl( 
0, \partial \Phi (x(k);y(k), \eta k)

\bigr) (4.13)

\leqslant \varepsilon k - 1 + \| \nabla g(y(k)) - \nabla g(y(k - 1))\| + 1

\eta k - 1
\| x(k)  - y(k - 1)\| + 1

\eta k
\| x(k)  - y(k)\| 

\leqslant \varepsilon k - 1 +Lg\| y(k)  - y(k - 1)\| + Lg
\gamma dec

\| x(k)  - y(k - 1)\| + Lg
\gamma dec

\| x(k)  - y(k)\| 

\leqslant \varepsilon k - 1 +
Lg(\delta k + \delta k - 1)\surd 

c
+

Lg
\gamma dec

\biggl( 
\delta k +

\delta k - 1\surd 
c

\biggr) 
+

Lg
\gamma dec

\biggl( 
\delta k +

\delta k\surd 
c

\biggr) 
,

where the second inequality is by (3.3) and the third one by (4.11), (4.12), and the
triangle inequality. In addition, by the strong convexity of \Phi ( \cdot ;y, \eta ), it follows that

\Phi (x(k);y(k), \eta k) - \Phi (x
(k+1)
\ast ;y(k), \eta k)\leqslant 

\eta k
2
dist

\bigl( 
0, \partial \Phi (x(k);y(k), \eta k)

\bigr) 2 \forall k\geqslant 1,(4.14)
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16 QIHANG LIN AND YANGYANG XU

which, together with (4.13) and the facts that c < 1, \gamma dec \leqslant 1, \eta k \leqslant 1
L , and \delta k \leqslant \delta k - 1,

gives the result in (4.9) for k\geqslant 1. This completes the proof.

Lemma 4.2 allows us to simplify (4.2) and obtain the following result.

Theorem 4.3 (oracle complexity to obtain an \varepsilon -stationary solution). Suppose
\{ \varepsilon k\} k\geqslant 0 in Algorithm 1 are given in (4.5). Also, suppose x(k+1) is computed by ap-
plying Algorithm 1 to (3.1) with the inputs given in (4.1). Then for any \varepsilon > 0,
Algorithm 1 with6 L = \Theta (Lg) can produce an \varepsilon -stationary solution of (1.1) by Ksc

crit

queries to (g,\nabla g) and T sc
crit queries to (h,\nabla h), where

Ksc
crit =O

\biggl( \surd 
\kappa ln

C2
L(\psi 0 + S)

\varepsilon 2
+ ln

\biggl( 
Lg +Lh

\mu 

\biggr) \biggr) 
,(4.15)

T sc
crit =O

\Biggl( \sqrt{} 
Lg +Lh

\mu 
ln

\biggl( 
(1 +

Lh
Lg

)C\varepsilon 

\biggr) 
\cdot ln C

2
L(\psi 0 + S)

\varepsilon 2

\Biggr) 
.(4.16)

Here, \kappa is defined in Lemma 3.3, \psi 0 in Theorem 3.5, CL in Lemma 3.6, and

C\varepsilon =max

\Biggl\{ 
dist

\bigl( 
0, \partial F (x(0))

\bigr) 
\varepsilon 0

,
2\surd 
1 - c

(4.17)

+
6Lg

\varepsilon 0\gamma dec
\sqrt{} 
c(1 - c)

\sqrt{} 
2(\psi 0 + S)

\mu 

\biggl\lceil \surd 
\kappa ln

2(\psi 0 + S)C2
L

\varepsilon 2

\biggr\rceil \Biggr\} 
.

Proof. Let K1 be the smallest integer such that \widetilde x(K1) is an \varepsilon -stationary point. It
follows from the definition of \psi k, (3.15), and (4.8) that

(4.18) dist
\bigl( 
0, \partial F (\widetilde x(k+1))

\bigr) 
\leqslant CL

\sqrt{}    2

k\prod 
j=0

(1 - c\alpha j) (\psi 0 + S) \forall k\geqslant 0.

LetK \prime 
1 = \lceil 

\surd 
\kappa ln

2(\psi 0+S)C
2
L

\varepsilon 2 \rceil . Since \alpha j \geqslant 1/
\surd 
\kappa by Lemma 3.3, (4.18) implies

\prod K\prime 
1 - 1

j=0 (1 - 
c\alpha j) (\psi 0 + S)\leqslant (1 - c/

\surd 
\kappa )K

\prime 
1 (\psi 0 + S)\leqslant \varepsilon 2

2C2
L
, which means K1 \leqslant K \prime 

1.

By Lemma 3.2, until an \varepsilon -stationary solution is found, the total numbers of
iterations in Algorithms 2 and 3 are (1 + ln\gamma \mathrm{i}\mathrm{n}\mathrm{c}

ln\gamma  - 1
\mathrm{d}\mathrm{e}\mathrm{c}

)K1 +
1

ln\gamma  - 1
\mathrm{d}\mathrm{e}\mathrm{c}

ln(
Lg

\mu \gamma \mathrm{d}\mathrm{e}\mathrm{c}
) and K1 + 1 +

1
ln\gamma  - 1

\mathrm{d}\mathrm{e}\mathrm{c}

ln(
Lg+Lh

L\gamma \mathrm{d}\mathrm{e}\mathrm{c}
), respectively. Since (g,\nabla g) is queried only twice in each iteration of

Algorithms 2 and 3, the total number of queries to (g,\nabla g) by Algorithm 1 is at most

(2+ ln\gamma \mathrm{i}\mathrm{n}\mathrm{c}

ln\gamma  - 1
\mathrm{d}\mathrm{e}\mathrm{c}

)K1+1+log\gamma \mathrm{d}\mathrm{e}\mathrm{c}
(

\mu L\gamma 2
\mathrm{d}\mathrm{e}\mathrm{c}

Lg(Lg+Lh)
), which implies (4.15) when L=\Theta (Lg) because

K1 \leqslant K \prime 
1.

Next we bound the right-hand side of (4.2). By the definition of \delta k in (4.7) and
the choice of \varepsilon k in (4.5), we have

\varepsilon k - 1 +
3Lg(\delta k+\delta k - 1)

\gamma \mathrm{d}\mathrm{e}\mathrm{c}
\surd 
c

\varepsilon k
=

(k+ 1)

k
\surd 
1 - c\alpha k - 1

+
3Lg(k+ 1)

\varepsilon 0\gamma dec
\surd 
c

\sqrt{} 
2(\psi 0 + S)

\mu 
(4.19)

+
3Lg(k+ 1)

\varepsilon 0\gamma dec
\surd 
c
\surd 
1 - c\alpha k - 1

\sqrt{} 
2(\psi 0 + S)

\mu 

6We assume L=\Theta (Lg) just to simplify the results. The analysis holds for any L\leqslant Lg .
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iAPG AND REDUCED COMPLEXITY FOR STRUCTURED PROBLEM 17

\leqslant 
2\surd 
1 - c

+
6Lg(k+ 1)

\varepsilon 0\gamma dec
\sqrt{} 
c(1 - c)

\sqrt{} 
2(\psi 0 + S)

\mu 
\leqslant 

2\surd 
1 - c

+
6LgK

\prime 
1

\varepsilon 0\gamma dec
\sqrt{} 
c(1 - c)

\sqrt{} 
2(\psi 0 + S)

\mu 

for any 1\leqslant k\leqslant K \prime 
1  - 1, where the inequality comes from \alpha k - 1 \leqslant 1. This implies

(4.20) \Phi (x(k);y(k), \eta k) - \Phi (x
(k+1)
\ast ;y(k), \eta k)\leqslant 

1

2L
C2
\varepsilon .

In iteration k of Algorithm 1, the query number of (h,\nabla h) to compute x(k+1)

satisfying (3.2) is at most Tk given in (4.2), and Algorithm 2 will stop after at most

log\gamma \mathrm{d}\mathrm{e}\mathrm{c}

L\gamma 2
\mathrm{d}\mathrm{e}\mathrm{c}

Lg
iterations by Lemma 3.2. In addition, two queries to (h,\nabla h) are made in

each iteration of Algorithm 3, which will stop after at most log\gamma \mathrm{d}\mathrm{e}\mathrm{c}
L\gamma 2

\mathrm{d}\mathrm{e}\mathrm{c}

Lg+Lh
iterations

by Lemma 3.2. Hence, the query number of (h,\nabla h) at iteration k of Algorithm 1 is

no more than (log\gamma \mathrm{d}\mathrm{e}\mathrm{c}

L\gamma 2
\mathrm{d}\mathrm{e}\mathrm{c}

Lg
)Tk + 2 log\gamma \mathrm{d}\mathrm{e}\mathrm{c}

L\gamma 2
\mathrm{d}\mathrm{e}\mathrm{c}

Lg+Lh
. Applying (4.20) to the right-hand

side of (4.2), we can show that the total number of queries to (h,\nabla h) before finding
an \varepsilon -optimal solution is at most

T sc
crit =K1 \cdot O

\Biggl( 
log\gamma \mathrm{d}\mathrm{e}\mathrm{c}

\biggl( 
L\gamma 2dec
Lg

\biggr) \sqrt{} 
1 +

Lh
L

ln

\Biggl( \sqrt{} 
Lg
L

+
Lh
L

+
L2
h

L2C\varepsilon 

\Biggr) 

+log\gamma \mathrm{d}\mathrm{e}\mathrm{c}

L\gamma 2dec
Lg +Lh

\biggr) 
.

Using the facts that K1 \leqslant K \prime 
1 and L = \Theta (Lg) and the fact that ln(

Lg+Lh

Lg
)
\surd 
\kappa \leqslant \sqrt{} 

Lg+Lh

Lg

\surd 
\kappa =

\sqrt{} 
Lg+Lh

\gamma \mathrm{d}\mathrm{e}\mathrm{c}\mu 
, we obtain the desired result in (4.16).

5. Inexact regularized augmented Lagrangian method. In this section,
we consider the affine-constrained composite problem

(5.1) min
x

\{ G(x) := f(x) + r(x)\} s.t. AEx= bE , AIx\leqslant bI ,

where f is Lf -smooth and \mu -strongly convex with \mu \geqslant 0, and r is closed convex and
allows easy computation of prox\eta r(z) and dist(0, \partial r(z)) for any z \in \BbbR n and \eta > 0.
We assume that (f,\nabla f) is significantly more expensive than (A(\cdot ),A\top (\cdot )) to evaluate,
where A = [AE ;AI ]. We denote the Lagrange multiplier by \bfitlambda = [\bfitlambda E ;\bfitlambda I ] with \bfitlambda E
and \bfitlambda I associated to the equality and inequality constraints, respectively. We assume
(5.1) has an optimal solution x\ast and the multiplier \bfitlambda \ast = [\bfitlambda \ast 

E ;\bfitlambda 
\ast 
I ] satisfying

(5.2) 0\in \partial G(x\ast ) +A\top \bfitlambda \ast ; AEx
\ast = bE , AIx

\ast \leqslant bI ; \bfitlambda 
\ast 
I \geqslant 0, \langle \bfitlambda \ast 

I ,AIx
\ast  - bI\rangle = 0.

Our goal is to find an \varepsilon -stationary solution of (5.1) defined formally below.

Definition 5.1 (\varepsilon -stationary solution). For a given \varepsilon \geqslant 0, a point \=x \in dom(G)
is called an \varepsilon -stationary solution of (5.1) if there exists \=\bfitlambda = [\=\bfitlambda E ; \=\bfitlambda I ] such that

dist
\bigl( 
0, \partial G(\=x) +A\top \=\bfitlambda 

\bigr) 
\leqslant \varepsilon ;

\sqrt{} 
\| AE\=x - bE\| 2 + \| [AI \=x - bI ]+\| 2 \leqslant \varepsilon ;(5.3)

\=\bfitlambda I \geqslant 0, \| \=\bfitlambda I \odot (AI \=x - bI)\| \leqslant \varepsilon .(5.4)
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18 QIHANG LIN AND YANGYANG XU

Algorithm 4 Inexact regularized augmented Lagrangian method (iRALM).

We consider an iRALM presented in Algorithm 4 for finding an \varepsilon -stationary
solution for (5.1). At iteration k, the iRALM generates the next solution by

(5.5) x(k+1) \approx argminx
\Bigl\{ 
\Psi k(x) :=\scrL \beta k

(x,\bfitlambda (k)) +
\rho k
2
\| x - x(k)\| 2

\Bigr\} 
.

Here, \scrL \beta is the augmented Lagrangian function of (5.1) with the following form:

\scrL \beta (x,\bfitlambda ) =G(x) + \langle \bfitlambda E ,AEx - bE\rangle +
\beta 

2
\| AEx - bE\| 2

+
1

2\beta 

\Bigl( \bigm\| \bigm\| [\beta (AIx - bI) +\bfitlambda I ]+
\bigm\| \bigm\| 2  - \| \bfitlambda I\| 2

\Bigr) 
.

In particular, the iPLAM requires x(k+1) to be an \=\varepsilon k-stationary point of \Psi k. We
can guarantee this by applying Algorithm 1 to (5.5). We will show that, compared
to existing results, the iRALM finds an \varepsilon -stationary solution with a significantly
reduced number of queries to (f,\nabla f) but a slightly increased number of queries to
(A(\cdot ),A\top (\cdot )).

Before giving the details, we first present the following lemmas to characterize
the relationship between two consecutive iterates of Algorithm 4.

Lemma 5.2. Algorithm 4 guarantees that, for any k\geqslant 0,

\=\varepsilon k\| x(k+1)  - x\ast \| 

(5.7)

\geqslant \mu \| x(k+1)  - x\ast \| 2 + 1

2\beta k

\bigl( 
\| \bfitlambda (k+1)  - \bfitlambda \ast \| 2 + \| \bfitlambda (k+1)  - \bfitlambda (k)\| 2  - \| \bfitlambda (k)  - \bfitlambda \ast \| 2

\bigr) 
+
\rho k
2

\bigl( 
\| x(k+1)  - x(k)\| 2 + \| x(k+1)  - x\ast \| 2  - \| x(k)  - x\ast \| 2

\bigr) 
.

Proof. From (5.6), there exists v(k) \in \partial x\scrL \beta k
(x(k+1),\bfitlambda (k))+\rho k(x

(k+1) - x(k)) such
that \| v(k)\| \leqslant \=\varepsilon k, and thus by the \mu -strong convexity of G, we have

\langle v(k),x(k+1)  - x\ast \rangle (5.8)

\geqslant G(x(k+1)) - G(x\ast ) +
\mu 

2
\| x(k+1)  - x\ast \| 2 + \langle A\top 

E\bfitlambda 
(k)
E ,x(k+1)  - x\ast \rangle 

+
\bigl\langle 
\beta kA

\top 
E(AEx

(k+1)  - bE),x
(k+1)  - x\ast \bigr\rangle 

+
\bigl\langle 
A\top 
I [\beta k(AIx

(k+1)  - bI) +\bfitlambda 
(k)
I ]+,x

(k+1)  - x\ast \bigr\rangle 
+ \langle \rho k(x(k+1)  - x(k)),x(k+1)  - x\ast \rangle .
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iAPG AND REDUCED COMPLEXITY FOR STRUCTURED PROBLEM 19

By the Cauchy--Schwarz inequality, it holds that \langle v(k),x(k+1) - x\ast \rangle \leqslant \| v(k)\| \cdot \| x(k+1) - 
x\ast \| \leqslant \=\varepsilon k\| x(k+1) - x\ast \| . Hence, by the update of \bfitlambda (k+1) and the facts AEx

\ast = bE and
AIx

\ast \leqslant bI , we obtain from (5.8) that

\=\varepsilon k\| x(k+1)  - x\ast \| (5.9)

\geqslant G(x(k+1)) - G(x\ast ) +
\mu 

2
\| x(k+1)  - x\ast \| 2 + \langle \bfitlambda (k+1)

E ,AEx
(k+1)  - bE\rangle 

+ \langle \bfitlambda (k+1)
I ,AIx

(k+1)  - bI\rangle + \langle \rho k(x(k+1)  - x(k)),x(k+1)  - x\ast \rangle 

=G(x(k+1)) - G(x\ast ) +
\mu 

2
\| x(k+1)  - x\ast \| 2 + \langle \bfitlambda (k+1)

E ,AEx
(k+1)  - bE\rangle 

+ \langle \bfitlambda (k+1)
I ,AIx

(k+1)  - bI\rangle +
\rho k
2

\bigl( 
\| x(k+1)  - x(k)\| 2

+ \| x(k+1)  - x\ast \| 2  - \| x(k)  - x\ast \| 2
\bigr) 
.

Using the updating equation of \bfitlambda (k+1) again, we have

\langle \bfitlambda (k+1)
E  - \bfitlambda \ast 

E ,AEx
(k+1)  - bE\rangle =

\Bigl\langle 
\bfitlambda 
(k+1)
E  - \bfitlambda \ast 

E ,
1

\beta k
(\bfitlambda 

(k+1)
E  - \bfitlambda 

(k)
E )
\Bigr\rangle 

(5.10)

=
1

2\beta k

\Bigl( 
\| \bfitlambda (k+1)

E  - \bfitlambda \ast 
E\| 2 + \| \bfitlambda (k+1)

E  - \bfitlambda 
(k)
E \| 2  - \| \bfitlambda (k)

E  - \bfitlambda \ast 
E\| 2

\Bigr) 
.

By [75, Lemma 4], it holds that

\langle \bfitlambda (k+1)
I  - \bfitlambda \ast 

I ,AIx
(k+1)  - bI\rangle \geqslant 

\Bigl\langle 
\bfitlambda 
(k+1)
I  - \bfitlambda \ast 

I ,max
\Bigl\{ 
 - 

\bfitlambda 
(k)
I

\beta k
, AIx

(k+1)  - bI

\Bigr\} \Bigr\rangle 
,

which together with max\{  - \bfitlambda 
(k)
I

\beta k
, AIx

(k+1)  - bI\} = 1
\beta k

(\bfitlambda 
(k+1)
I  - \bfitlambda 

(k)
I ) gives

\langle \bfitlambda (k+1)
I  - \bfitlambda \ast 

I ,AIx
(k+1)  - bI\rangle (5.11)

=
\Bigl\langle 
\bfitlambda 
(k+1)
I  - \bfitlambda \ast 

I ,
1

\beta k
(\bfitlambda 

(k+1)
I  - \bfitlambda 

(k)
I )
\Bigr\rangle 

=
1

2\beta k

\Bigl( 
\| \bfitlambda (k+1)

I  - \bfitlambda \ast 
I\| 2 + \| \bfitlambda (k+1)

I  - \bfitlambda 
(k)
I \| 2  - \| \bfitlambda (k)

I  - \bfitlambda \ast 
I\| 2
\Bigr) 
.

Adding (5.10) and (5.11) to (5.9) gives

\=\varepsilon k\| x(k+1)  - x\ast \| \geqslant G(x(k+1)) - G(x\ast ) +
\mu 

2
\| x(k+1)  - x\ast \| 2 + \langle \bfitlambda \ast ,Ax(k+1)  - b\rangle 

(5.12)

+
\rho k
2

\bigl( 
\| x(k+1)  - x(k)\| 2 + \| x(k+1)  - x\ast \| 2  - \| x(k)  - x\ast \| 2

\bigr) 
+

1

2\beta k

\bigl( 
\| \bfitlambda (k+1)  - \bfitlambda \ast \| 2 + \| \bfitlambda (k+1)  - \bfitlambda (k)\| 2  - \| \bfitlambda (k)  - \bfitlambda \ast \| 2

\bigr) 
.

By the KKT conditions 0\in \partial G(x\ast )+A\top \bfitlambda \ast and \langle \bfitlambda \ast 
I ,AIx

\ast  - bI\rangle = 0, it follows that

G(x(k+1)) - G(x\ast ) + \langle \bfitlambda \ast ,Ax(k+1)  - b\rangle 

=G(x(k+1)) - G(x\ast ) + \langle A\top \bfitlambda \ast ,x(k+1)  - x\ast \rangle \geqslant \mu 

2
\| x(k+1)  - x\ast \| 2,

where the inequality holds from the \mu -strong convexity of G. Applying this inequality
to (5.12) gives the desired result.
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20 QIHANG LIN AND YANGYANG XU

5.1. Outer-iteration complexity. In this subsection, we assume that (5.6) can
be guaranteed. We specify the choices of \{ \beta k\} k\geqslant 0, \{ \rho k\} k\geqslant 0, and \{ \=\varepsilon k\} k\geqslant 0 and establish
the outer-iteration complexity of Algorithm 4. To do so, we first show the uniform
boundedness of the primal-dual iterates below.

Lemma 5.3 (bounded iterates). Suppose \beta k = \beta 0\sigma 
k and \rho k = \rho 0\sigma 

 - k \forall k \geqslant 0 for
some \beta 0 > 0, \rho 0 > 0, and \sigma > 1 in Algorithm 4. It holds, for any k\geqslant 0, that\sqrt{} 

\beta 0\rho 0\| x(k+1)  - x\ast \| 2 + \| \bfitlambda (k+1)  - \bfitlambda \ast \| 2 \leqslant 
k\sum 
i=0

2\beta i\=\varepsilon i\surd 
\beta 0\rho 0

(5.13)

+

\sqrt{} 
\beta 0\rho 0\| x(0)  - x\ast \| 2 + \| \bfitlambda (0)  - \bfitlambda \ast \| 2.

Proof. Multiplying 2\beta k to both sides of (5.7) gives

2\beta k\=\varepsilon k\| x(k+1)  - x\ast \| 
(5.14)

\geqslant 2\mu \beta k\| x(k+1)  - x\ast \| 2 +
\bigl( 
\| \bfitlambda (k+1)  - \bfitlambda \ast \| 2 + \| \bfitlambda (k+1)  - \bfitlambda (k)\| 2  - \| \bfitlambda (k)  - \bfitlambda \ast \| 2

\bigr) 
+ \beta 0\rho 0

\bigl( 
\| x(k+1)  - x(k)\| 2 + \| x(k+1)  - x\ast \| 2  - \| x(k)  - x\ast \| 2

\bigr) 
.

Sum up (5.14) to have

\beta 0\rho 0\| x(k+1)  - x\ast \| 2 + \| \bfitlambda (k+1)  - \bfitlambda \ast \| 2

\leqslant 
k\sum 
i=0

2\beta i\=\varepsilon i\| x(i+1)  - x\ast \| + \beta 0\rho 0\| x(0)  - x\ast \| 2 + \| \bfitlambda (0)  - \bfitlambda \ast \| 2.

We obtain (5.13) by the inequality above and >Lemma A.1 with \lambda i = 2\beta i - 1\=\varepsilon i - 1\surd 
\beta 0\rho 0

,

uk =

\sqrt{} 
\beta 0\rho 0\| x(k)  - x\ast \| 2 + \| \bfitlambda (k)  - \bfitlambda \ast \| 2, and C = \beta 0\rho 0\| x(0)  - x\ast \| 2 + \| \bfitlambda (0)  - \bfitlambda \ast \| 2.

By Lemmas 5.3 and A.2, we show that Algorithm 4 produces an \varepsilon -KKT point.

Theorem 5.4. Let \beta k and \rho k be defined as in Lemma 5.3, \=\varepsilon = \varepsilon (\sigma  - 1)
8(\sigma +1) min

\{ 1,
\surd 
\beta 0\rho 0\} , and \=\varepsilon k = min\{ \=\varepsilon ,

\sqrt{} 
\rho 0
20\sigma \sigma 

 - k\} \forall k \geqslant 0 in Algorithm 4. Then Algorithm.
4 will stop and return x(k) as an \varepsilon -stationary point of (5.1) with k no more than

K :=max

\biggl\{ \biggl\lceil 
log\sigma 

4D0
\surd 
\rho 0\surd 

\beta 0\varepsilon 

\biggr\rceil 
,

\biggl\lceil 
log\sigma 

4D0

\beta 0\varepsilon 

\biggr\rceil 
,(5.15) \biggl\lceil 

log\sigma 
5(D0 + \| \bfitlambda \ast \| )2

\beta 0\varepsilon 

\biggr\rceil 
,

\biggl\lceil 
2 log\sigma 

8

\varepsilon (ln\sigma )2

\biggr\rceil 
 - 1

\biggr\} 
+ 1,

(5.16) where D0 =

\sqrt{} 
\beta 0\rho 0\| x(0)  - x\ast \| 2 + \| \bfitlambda (0)  - \bfitlambda \ast \| 2.

Proof. Since \=\varepsilon i \leqslant \=\varepsilon for i\geqslant 0, we have from (5.13) that
(5.17)

\| x(k)  - x\ast \| \leqslant 2\=\varepsilon (\sigma k  - 1)

\rho 0(\sigma  - 1)
+

D0\surd 
\beta 0\rho 0

, \| \bfitlambda (k)  - \bfitlambda \ast \| \leqslant 2\=\varepsilon 
\surd 
\beta 0(\sigma 

k  - 1)
\surd 
\rho 0(\sigma  - 1)

+D0, \forall k\geqslant 0,

with D0 defined in (5.16). Hence, by the triangle inequality and (5.17), it holds that

\| x(k+1)  - x(k)\| \leqslant 2\=\varepsilon (\sigma k+1 + \sigma k  - 2)

\rho 0(\sigma  - 1)
+

2D0\surd 
\beta 0\rho 0

, \| \bfitlambda (k+1)  - \bfitlambda (k)\| 

\leqslant 
2\=\varepsilon 
\surd 
\beta 0(\sigma 

k+1 + \sigma k  - 2)
\surd 
\rho 0(\sigma  - 1)

+ 2D0,
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iAPG AND REDUCED COMPLEXITY FOR STRUCTURED PROBLEM 21

and thus

\rho K - 1\| x(K)  - x(K - 1)\| \leqslant 2\=\varepsilon (\sigma + 1)

\sigma  - 1
+

2D0
\surd 
\rho 0\surd 

\beta 0\sigma K - 1
,

1

\beta K - 1
\| \bfitlambda (K)  - \bfitlambda (K - 1)\| (5.18)

\leqslant 
2\=\varepsilon (\sigma + 1)\surd 
\beta 0\rho 0(\sigma  - 1)

+
2D0

\beta 0\sigma K - 1
.

By the choice of \=\varepsilon and the definition of K in (5.15), we have from (5.18) that

(5.19) \rho K - 1\| x(K)  - x(K - 1)\| \leqslant 3\varepsilon 

4
,

1

\beta K - 1
\| \bfitlambda (K)  - \bfitlambda (K - 1)\| \leqslant 3\varepsilon 

4
.

Additionally, since \=\varepsilon i \leqslant 
\sqrt{} 

\rho 0
20\sigma \sigma 

 - i for i \geqslant 0, it is implied by (5.13) that \| \bfitlambda (k)  - 
\bfitlambda \ast \| \leqslant k

\sqrt{} 
\beta 0

5\sigma + D0 and thus \| \bfitlambda (k)\| \leqslant k
\sqrt{} 

\beta 0

5\sigma + D0 + \| \bfitlambda \ast \| , which further implies

\| \bfitlambda (k)\| 2 \leqslant 2\beta 0k
2

5\sigma + 2(D0 + \| \bfitlambda \ast \| )2 \forall k\geqslant 0. Hence,

(5.20)
1

\beta K - 1

\biggl( 
\| \bfitlambda (K)\| 2 + 1

4
\| \bfitlambda (K - 1)\| 2

\biggr) 
\leqslant 

1

\beta 0\sigma K - 1

\biggl( 
\beta 0K

2

2\sigma 
+

5

2
(D0 + \| \bfitlambda \ast \| )2

\biggr) 
.

Since K  - 1 \geqslant log\sigma 
5(D0+\| \bfitlambda \ast \| )2

\beta 0\varepsilon 
, it holds that 5

2\beta 0\sigma K - 1 (D0 + \| \bfitlambda \ast \| )2 \leqslant \varepsilon 
2 . Also,

K \geqslant \lceil 2 log\sigma 8
\varepsilon (ln\sigma )2 \rceil implies \sigma K \geqslant 64

\varepsilon 2(ln\sigma )4 . Thus K2

\sigma K \leqslant \varepsilon according to Lemma A.2

with a= \varepsilon and b= \sigma K . Hence, the right-hand side of (5.20) is no more than \varepsilon , so

(5.21)
1

\beta K - 1
(\| \bfitlambda (K)\| 2 + 1

4
\| \bfitlambda (K - 1)\| 2)\leqslant \varepsilon .

Now from the updating equations of x(k+1) and \bfitlambda (k+1), we have for any k\geqslant 1,

dist
\bigl( 
0, \partial G(x(k)) +A\top \bfitlambda (k)

\bigr) 
\leqslant \=\varepsilon k - 1 + \rho k - 1\| x(k)  - x(k - 1)\| ,(5.22a) \sqrt{} 

\| AEx(k)  - bE\| 2 +
\bigm\| \bigm\| [AIx(k)  - bI ]+

\bigm\| \bigm\| 2 \leqslant 1

\beta k - 1
\| \bfitlambda (k)  - \bfitlambda (k - 1)\| ,(5.22b)

and, by line 5 of Algorithm 4, we have \bfitlambda 
(k)
I \geqslant 0 \forall k\geq 1 and

\| \bfitlambda (k)
I \odot (AIx

(k)  - bI)\| \leqslant 
\sum 

i\in I,\bfitlambda (k)
i >0

| \bfitlambda (k)
i \cdot (Aix

(k)  - bi)| 

=
\sum 

i\in I,\bfitlambda (k)
i >0

| \bfitlambda (k)
i \cdot (\bfitlambda (k)

i  - \bfitlambda 
(k - 1)
i )| /\beta k - 1 \leqslant 

1

\beta k - 1

\biggl( 
\| \bfitlambda (k)

I \| 2 + 1

4
\| \bfitlambda (k - 1)

I \| 2
\biggr) 
.

(5.22c)

Moreover, by (5.19), (5.21), and \=\varepsilon k \leqslant \varepsilon 
4 , the three inequalities in (5.22) imply that

(x(K),\bfitlambda (K)) is an \varepsilon -stationary solution of (5.1), which completes the proof.

5.2. Overall oracle complexity. In this subsection, we discuss the details of
how to ensure (5.6) and then characterize the total oracle complexity of Algorithm 4
to produce an \varepsilon -stationary point of (5.1). Define

gk(x) = f(x) +
\rho k
2
\| x - x(k)\| 2,(5.23)
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22 QIHANG LIN AND YANGYANG XU

hk(x) = \langle \bfitlambda (k)
E ,AEx - bE\rangle +

\beta k
2
\| AEx - bE\| 2(5.24)

+
\| [\beta k(AIx - bI) +\bfitlambda 

(k)
I ]+\| 2

2\beta k
 - 

\| \bfitlambda (k)
I \| 2

2\beta k
.

Then the iRALM subproblem (5.5) can be written as

(5.25) min
x

\{ \Psi k(x) = gk(x) + hk(x) + r(x)\} ,

which is an instance of (1.1) with g = gk and h = hk. This means that (5.6) can be
ensured by approximately solving the iRALM subproblem (5.25) using Algorithm 1.
This way, we can apply the complexity result in Theorem 4.3 to establish the oracle
complexity for each outer iteration of Algorithm 4.

We adopt the following settings on solving each iRALM subproblem.

Setting 1 (how to solve iRALM subproblems). In iteration k of Algorithm 4,
Algorithm 1 is applied to find x(k+1) satisfying (5.6). More precisely, we compute
x(k+1) by

(5.26) x(k+1) = iAPG
\Bigl( 
gk, hk, r,x

(k), \eta 0, \gamma 0, \mu + \rho k,L,\{ \varepsilon t\} t\geqslant 0, \=\varepsilon k

\Bigr) 
,

where \varepsilon t is defined as in (4.5) for t\geqslant 1, gk is defined in (5.23), hk is defined in (5.24),
and7 L=\Theta (Lf ).

For simplicity, in the setting above, the values of \eta 0, \gamma 0, \gamma dec, \gamma inc, L, and \varepsilon 0 stay
the same across the calls of the iAPG by different iterations of the iRALM. Also, we
use the previous iRALM iterate x(k) as the initial point to solve the kth subproblem.

Setting 2 (choice of parameters). Given an \varepsilon \in (0,1), we choose \{ \beta k\} , \{ \rho k\} ,
and \{ \=\varepsilon k\} in Algorithm 4 as the same as those in Theorem 5.4.

Notation and some uniform bounds. To facilitate our analysis, we first give some
notation used in this subsection. Given K in (5.15) and D0 in (5.16), we let

(5.27)

\rho = \rho K - 1, \beta = \beta K - 1,Bx =
2\=\varepsilon (\sigma K  - 1)

\rho 0(\sigma  - 1)
+

D0\surd 
\beta 0\rho 0

,

B\bfitlambda =
2\=\varepsilon 
\surd 
\beta 0(\sigma 

K  - 1)
\surd 
\rho 0(\sigma  - 1)

+D0, \varepsilon =min

\biggl\{ 
\=\varepsilon ,

\sqrt{} 
\rho 0
20\sigma 

\sigma  - K
\biggr\} 
.

In order to apply Theorem 4.3 to the iRALM subproblem (5.25), we define

L\Psi k
=Lf + \rho k + \beta k\| A\| 2, C(k)

L =
L\Psi k\surd 
L

+

\sqrt{} 
L\Psi k

\gamma dec
, \forall k <K,(5.28)

\kappa (k) =
Lf + \rho k

\gamma dec(\mu + \rho k)
, S(k) =

\surd 
\kappa (k)

2(1 - c)2L

\infty \sum 
t=0

\varepsilon 20
(t+ 1)2

<\infty , \forall k <K,n(5.29)

\psi 
(k)
0 =\Psi k(x

(k)) - \Psi \ast 
k + (1 - (1 - c)\alpha 0)

\gamma 0
2
\| x(k+1)

\ast  - x(k)\| 2 \forall k <K.(5.30)

7Again we assume L=\Theta (Lf ) to simplify the results. The analysis holds for any L\leqslant Lf .
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iAPG AND REDUCED COMPLEXITY FOR STRUCTURED PROBLEM 23

with x
(k+1)
\ast = argminx\Psi k(x) and \Psi \ast 

k =minx\Psi k(x). Moreover, we define
(5.31)

C
(k)
\=\varepsilon k =max

\biggl\{ 
dist

\bigl( 
0, \partial \Psi k(x

(k))
\bigr) 

\varepsilon 0
,

2\surd 
1 - c

+
6(Lf + \rho k)

\varepsilon 0\gamma dec
\sqrt{} 
c(1 - c)

\sqrt{} 
2(\psi 

(k)
0 + S(k))

\mu + \rho k

\Biggl\lceil \sqrt{} 
\kappa (k) ln

2(\psi 
(k)
0 + S(k))(C

(k)
L )2

\=\varepsilon 2k

\Biggr\rceil \biggr\} 
,

where c \in (0,1) is the same as that in (4.5). Because \rho \leqslant \rho k, \beta \geqslant \beta k \forall 0\leqslant k < K, the

quantities defined below are respectively upper bounds of \kappa (k), S(k), L\Psi k
, and C

(k)
L :

\=\kappa =
Lf + \rho 

\gamma dec(\mu + \rho )
, S =

\surd 
\=\kappa 

2(1 - c)2L

\infty \sum 
t=0

\varepsilon 20
(t+ 1)2

<\infty ,(5.32)

L\Psi =Lf + \rho 0 + \beta \| A\| 2, CL =
L\Psi \surd 
L
+

\sqrt{} 
L\Psi 

\gamma dec
.(5.33)

By the above notation, we can show the following two lemmas.

Lemma 5.5. Suppose Setting 2 is adopted. It holds that \rho k \geqslant \rho and \beta k \leqslant \beta 

\forall 0\leqslant k <K. In addition, \| x(k)  - x\ast \| \leqslant Bx and \| \bfitlambda (k)  - \bfitlambda \ast \| \leqslant B\bfitlambda hold \forall 0\leqslant k \leqslant K.

Moreover, \| x(k+1)
\ast  - x\ast \| \leqslant Bx \forall 0\leqslant k <K.

Proof. It is trivial to show that \rho k \geqslant \rho and \beta k \leqslant \beta \forall 0\leqslant k <K. From (5.17) and

the definition of Bx and B\bfitlambda in (5.27), we have \| x(k)  - x\ast \| \leqslant Bx and \| \bfitlambda (k)  - \bfitlambda \ast \| \leqslant 
B\bfitlambda \forall 0 \leqslant k \leqslant K. Moreover, notice that the first inequality in (5.17) also applies to

x
(k+1)
\ast . Hence, we have

(5.34) \| x(k+1)
\ast  - x\ast \| \leqslant 2\=\varepsilon (\sigma k+1  - 1)

\rho 0(\sigma  - 1)
+

D0\surd 
\beta 0\rho 0

\leqslant Bx \forall k <K.

This completes the proof.

Lemma 5.6. Let \psi 
(k)
0 be defined in (5.30). Then for any 1\leqslant k <K,

\psi 
(k)
0 \leqslant 2Bx

\bigl( 
1 + 2\rho 0Bx + \| A\| (2\sigma B\bfitlambda +B\bfitlambda + \| \bfitlambda \ast \| )

\bigr) 
+ (1 - (1 - c)\alpha 0)

\gamma 0B
2
x

2
.

Proof. From (5.22a) and the definition of \Psi k, it follows that

dist
\bigl( 
0, \partial \Psi k(x

(k))
\bigr) 
\leqslant dist

\bigl( 
0, \partial G(x(k)) +A\top \bfitlambda (k)

\bigr) (5.35)

+ \| A\top 
E(\bfitlambda 

(k)
E + \beta k(AEx - bE)) +A\top 

I [\bfitlambda 
(k)
I + \beta k(AIx - bI)]+  - A\top \bfitlambda (k)\| 

=dist
\bigl( 
0, \partial G(x(k))

+A\top \bfitlambda (k)
\bigr) 
+ \| A\top 

E(\beta k(AEx - bE)) +A\top 
I ([\bfitlambda 

(k)
I + \beta k(AIx - bI)]+  - \bfitlambda 

(k)
I )\| 

\leqslant \=\varepsilon k - 1 + \rho k - 1\| x(k)  - x(k - 1)\| 

+ \| A\| 
\sqrt{} 
\beta 2
k\| AEx(k)  - bE\| 2 + \| [\bfitlambda (k)

I + \beta k(AIx - bI)]+  - \bfitlambda 
(k)
I \| 2

\leqslant \=\varepsilon k - 1 + \rho k - 1\| x(k)  - x(k - 1)\| 

+ \| A\| 
\sqrt{} 
\beta 2
k\| AEx(k)  - bE\| 2 + \beta 2

k\| [AIx(k)  - bI ]+\| 2 + \| \bfitlambda (k)
I \| 2

\leqslant \=\varepsilon k - 1 + 2\rho 0Bx + \| A\| (2\sigma B\bfitlambda +B\bfitlambda + \| \bfitlambda \ast \| ),
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24 QIHANG LIN AND YANGYANG XU

where the third inequality is because of the facts that \bfitlambda 
(k)
I \geqslant 0 and that \| [x+ y]+  - 

y\| 2 \leqslant \| [x]+\| 2+\| y\| 2 \forall y\geqslant 0, and the last inequality is because of Lemma 5.5, (5.22b),
and the fact that

\surd 
a+ b\leqslant 

\surd 
a+

\surd 
b \forall a, b\geqslant 0. The inequality in (5.35), together with

the convexity of \Psi k, Lemma 5.5, and (5.34), gives

\Psi k(x
(k)) - \Psi \ast 

k \leqslant 2Bx

\bigl( 
\=\varepsilon k - 1 + 2\rho 0Bx + \| A\| (2\sigma B\bfitlambda +B\bfitlambda + \| \bfitlambda \ast \| )

\bigr) 
\forall 1\leqslant k <K.

The conclusion follows from the fact that \=\varepsilon k - 1 \leqslant 1 and \| x(k+1)
\ast  - x(k)\| 2 \leqslant B2

x.

By Lemma 5.6, we can bound \psi 
(k)
0 uniformly for 0\leqslant k <K by the quantity

\psi 0 :=max
\Bigl\{ 
\psi 
(0)
0 ,2Bx

\bigl( 
1+2\rho 0Bx+ \| A\| (2\sigma B\bfitlambda +B\bfitlambda + \| \bfitlambda \ast \| )

\bigr) 
+(1 - (1 - c)\alpha 0)

\gamma 0B
2
x

2

\Bigr\} 
.

Now we are ready to show the overall oracle complexity of Algorithm 4.

Theorem 5.7 (total oracle complexity to produce an \varepsilon -stationary point). Sup-
pose Settings 1 and 2 are adopted. Let K be given in (5.15). Algorithm 4 will stop
and return an \varepsilon -stationary point of (5.1) after making Qf queries to (f,\nabla f) and QA

queries to (A(\cdot ),A\top (\cdot )) with Qf and QA given as follows. (i) When \mu = 0,

Qf =O

\Biggl( \Bigl( 
K +

\sqrt{} 
Lf
\rho 0

\sigma K/2  - 1\surd 
\sigma  - 1

\Bigr) 
ln
C

2

L(\psi 0 + S)

\varepsilon 2

\Biggr) 
,(5.36)

QA =O

\Biggl( \Bigl( 
K +

\sqrt{} 
Lf
\rho 0

\sigma K/2  - 1\surd 
\sigma  - 1

+
\| A\| 

\surd 
\beta 0\surd 

\rho 0

\sigma K  - 1

\sigma  - 1

\Bigr) 
\cdot K \cdot ln C

2

L(\psi 0 + S)

\varepsilon 2

\Biggr) 
;(5.37)

and (ii) when \mu > 0,

Qf =O

\Biggl( 
K

\sqrt{} 
Lf
\mu 

ln
C

2

L(\psi 0 + S)

\varepsilon 2

\Biggr) 
,(5.38)

QA =O

\Biggl( \Bigl( 
K

\sqrt{} 
Lf
\mu 

+
\| A\| 

\surd 
\beta 0\surd 

\mu 

\sigma K/2  - 1\surd 
\sigma  - 1

\Bigr) 
\cdot K \cdot ln (\psi 0 + S)C

2

L

\varepsilon 2

\Biggr) 
.

Proof. By Theorem 5.4, we only need to bound the overall number of queries
that are made to produce x(K). From Theorem 4.3, we can find an \=\varepsilon k-stationary
point of \Psi k in (5.25) by Algorithm 1 with Q

(k)
f queries to (f,\nabla f) and Q(k)

A queries to

(A(\cdot ),A\top (\cdot )), where

Q
(k)
f = O

\Biggl( \sqrt{} 
\kappa (k) ln

(C
(k)
L )2(\psi 

(k)
0 + S(k))

\varepsilon 2
+ ln

L\Psi k

\mu + \rho k

\Biggr) 
,(5.39)

Q
(k)
A = O

\Biggl( \sqrt{} 
L\Psi k

\mu + \rho k
ln

\biggl( \biggl( 
L\Psi k

Lf + \rho k

\biggr) 
C

(k)
\=\varepsilon k

\biggr) 
\cdot ln

(C
(k)
L )2(\psi 

(k)
0 + S(k))

\varepsilon 2

\Biggr) 
.(5.40)

In the two inequalities above, we have used the fact \=\varepsilon k \geqslant \varepsilon .
When \mu = 0, we have from (5.39), \psi 

(k)
0 + S(k) \leqslant \psi 0 + S, and C

(k)
L \leqslant CL that

Qf =

K - 1\sum 
k=0

Q
(k)
f =

K - 1\sum 
k=0

O

\Biggl( \sqrt{} 
\kappa (k) ln

C
2

L(\psi 0 + S)

\varepsilon 2
+ ln

L\Psi k

\rho k

\Biggr) 

(5.29)
=

K - 1\sum 
k=0

O

\left(  \sqrt{} 1 +
Lf\sigma k

\rho 0
ln
C

2

L(\psi 0 + S)

\varepsilon 2

\right)  ,
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iAPG AND REDUCED COMPLEXITY FOR STRUCTURED PROBLEM 25

which gives (5.36) by
\sum K - 1
k=0

\sqrt{} 
1 +

Lf\sigma k

\rho 0
\leqslant K +

\sqrt{} 
Lf

\rho 0
\sigma K/2 - 1\surd 
\sigma  - 1

. Also, it follows from

(5.35) that dist (0, \partial \Psi k(x
(k)))\leqslant V \Psi for any k\geqslant 0 where

V \Psi =max
\Bigl\{ 
dist

\bigl( 
0, \partial \scrL \beta 0(x

(0),\bfitlambda (0))
\bigr) 
, \=\varepsilon + 2\rho 0Bx + \| A\| (B\bfitlambda (2\sigma + 1) + \| \bfitlambda \ast \| )

\Bigr\} 
=O(1).

By the fact that dist(0, \partial \Psi k(x
(k))) = O(1), the definition of \=\varepsilon 2k in (5.4), and the

inequalities C
(k)
L \leqslant CL, \kappa 

(k) \leqslant \=\kappa , and L\Psi k
= Lf + \rho k + \beta k\| A\| 2 \leqslant L\Psi , we can derive

from (5.31) that ln((
L\Psi k

Lf+\rho k
)C

(k)
\=\varepsilon k ) =O(k). Thus, we have from (5.40) that

QA =

K - 1\sum 
k=0

Q
(k)
A =

K - 1\sum 
k=0

O

\Biggl( \sqrt{} 
L\Psi k

\rho k
ln

\biggl( \Bigl( L\Psi k

Lf + \rho k

\Bigr) 
C

(k)
\=\varepsilon k

\biggr) 
\cdot ln

(C
(k)
L )2(\psi 

(k)
0 + S(k))

\varepsilon 2

\Biggr) 

\leqslant 
K - 1\sum 
k=0

O

\Biggl( \sqrt{} 
Lf + \rho k + \beta k\| A\| 2

\rho k
ln

\biggl( \Bigl( Lf + \rho k + \beta k
Lf + \rho k

\Bigr) 
C

(k)
\=\varepsilon k

\biggr) 
\cdot ln (\psi 0 + S)C

2

L

\varepsilon 2

\Biggr) 

=O

\Biggl( \Biggl( 
K +

\sqrt{} 
Lf
\rho 0

\sigma K/2  - 1\surd 
\sigma  - 1

+
\| A\| 

\surd 
\beta 0\surd 

\rho 0

\sigma K  - 1

\sigma  - 1

\Biggr) 
\cdot K \cdot ln (\psi 0 + S)C

2

L

\varepsilon 2

\Biggr) 
.

When \mu > 0, we have

Qf =

K - 1\sum 
k=0

Q
(k)
f =

K - 1\sum 
k=0

O

\Biggl( \sqrt{} 
\kappa (k) ln

C
2

L(\psi 0 + S)

\varepsilon 2
+ ln

L\Psi k

\mu + \rho k

\Biggr) 

=O

\Biggl( 
K

\sqrt{} 
Lf
\mu 

ln
C

2

L(\psi 0 + S)

\varepsilon 2

\Biggr) 
,

where \kappa (k) \leqslant \=\kappa =O(
\sqrt{} 
Lf/\mu ) according to (5.32). This gives (5.38). Also, we have

QA =

K - 1\sum 
k=0

Q
(k)
A =

K - 1\sum 
k=0

O

\Biggl( \sqrt{} 
L\Psi k

\mu + \rho k
ln

\biggl( \Bigl( L\Psi k

Lf + \rho k

\Bigr) 
C

(k)
\=\varepsilon k

\biggr) 
\cdot ln

(C
(k)
L )2(\psi 

(k)
0 + S(k))

\varepsilon 2

\Biggr) 

=

K - 1\sum 
k=0

O

\Biggl( \sqrt{} 
Lf + \rho k + \beta k\| A\| 2

\mu + \rho k
ln

\biggl( \Bigl( Lf + \rho k + \beta k
Lf + \rho k

\Bigr) 
C

(k)
\=\varepsilon k

\biggr) 
\cdot ln (\psi 0 + S)C

2

L

\varepsilon 2

\Biggr) 

=O

\Biggl( \Biggl( 
K

\sqrt{} 
Lf
\mu 

+
\| A\| 

\surd 
\beta 0\surd 

\mu 

\sigma K/2  - 1\surd 
\sigma  - 1

\Biggr) 
\cdot K \cdot ln (\psi 0 + S)C

2

L

\varepsilon 2

\Biggr) 
,

where, again, we use the fact ln((
L\Psi k

Lf+\rho k
)C

(k)
\=\varepsilon k ) =O(k) and the inequalities C

(k)
L \leqslant CL,

\kappa (k) \leqslant \=\kappa , and L\Psi k
=Lf + \rho k + \beta k\| A\| 2 \leqslant L\Psi . This proves the case of \mu > 0.

Remark 1. Notice K =O(ln 1
\varepsilon ) by (5.15), \sigma K =O( 1\varepsilon ), and \varepsilon =\Theta (\varepsilon ). Hence, from

Theorem 5.7, we have Qf =O
\bigl( \sqrt{} Lf

\varepsilon ln 1
\varepsilon 

\bigr) 
and QA =O

\bigl( \bigl( \sqrt{} Lf

\varepsilon + \| A\| 
\varepsilon 

\bigr) \bigl( 
ln 1

\varepsilon 

\bigr) 2\bigr) 
for the

case of \mu = 0, and Qf = O(
\sqrt{} 

Lf

\mu (ln 1
\varepsilon )

2) and QA = O((ln 1
\varepsilon 

\sqrt{} 
Lf

\mu + \| A\| \surd 
\mu \varepsilon )(ln

1
\varepsilon )

2) for

the case of \mu > 0. If \rho 0 = O(\varepsilon ) and \beta 0 = O( 1\varepsilon ), then K = O(1). For this setting, the
factors (ln 1

\varepsilon )
2 in Qf and QA above will reduce to ln 1

\varepsilon . The choice of \beta k = \beta 0\sigma 
k and

\rho k = \rho 0\sigma 
 - k enables us to obtain the near-optimal complexity results. This is similar

to the setting in [49, Theorem 5]. However, one potential drawback is that if iRALM
does need to run to K outer iterations, then \beta K \rightarrow \infty and \rho K \rightarrow 0 as \varepsilon \rightarrow 0 and thus
the subproblem becomes ill-conditioned.
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26 QIHANG LIN AND YANGYANG XU

6. Smoothed bilinear saddle-point structured optimization. In this sec-
tion, we consider the bilinear saddle-point structured optimization problem

(6.1) p\ast = min
x\in \BbbR n

\Bigl\{ 
p(x) := f(x) + r(x) + max

y\in \BbbR m

\bigl\{ 
\langle y,Ax\rangle  - \phi (y)

\bigr\} \Bigr\} 
,

where A \in \BbbR m\times n, f is smooth and convex, r and \phi are closed convex and admit
easy proximal mappings, and r allows easy computation of dist(z\prime , \partial r(z)) for any
z,z\prime \in \BbbR n. We assume that (f,\nabla f) is significantly more expensive than (A(\cdot ),A\top (\cdot ))
to evaluate. We adopt the following notation in this section:

G(x) := f(x) + r(x), \=h(x) := max
y\in \BbbR m

\bigl\{ 
\langle y,Ax\rangle  - \phi (y)

\bigr\} 
,(6.2a)

\varphi (y) := min
x\in \BbbR n

\bigl\{ 
G(x) + \langle y,Ax\rangle 

\bigr\} 
, d(y) :=\varphi (y) - \phi (y).(6.2b)

We call p(x) - d(y) the duality gap at (x,y) which is nonnegative by the definition
of p and d. A pair (x\ast ,y\ast ) that satisfies p(x\ast ) = d(y\ast ) or, equivalently, 0\in \partial G(x\ast ) +
A\top y\ast ,0 \in Ax\ast  - \partial \phi (y\ast ) is called a saddle point of (6.1). Apparently, p\ast = p(x\ast ) =
d(y\ast ) =G(x\ast ) + \langle y\ast ,Ax\ast \rangle  - \phi (y\ast ). We make the following assumption on (6.1).

Assumption 1. Function f is Lf -smooth and \mu -strongly convex with \mu > 0;
D\phi :=maxy1,y2\in dom(\phi ) \| y1  - y2\| <\infty ; (6.1) has a saddle point (x\ast ,y\ast ).

Our goal is to find an \varepsilon -stationary solution of (6.1) defined formally below.

Definition 6.1. For \varepsilon \geqslant 0, a point (\=x, \=y) is an \varepsilon -stationary solution of (6.1) if

(6.3) dist
\bigl( 
0, \partial G(\=x) +A\top \=y

\bigr) 
\leqslant \varepsilon , dist

\bigl( 
0,A\=x - \partial \phi (\=y)

\bigr) 
\leqslant \varepsilon .

The following result shows the duality gap of an \varepsilon -stationary solution of (6.1).

Theorem 6.2. Under Assumption 1, if (\=x, \=y) is an \varepsilon -stationary solution of (6.1),

then p(\=x) - d(\=y)\leqslant 2\varepsilon D\phi +
3\varepsilon 2

2\mu .

Proof. Since (\=x, \=y) is an \varepsilon -stationary solution, there exist \=u \in \partial G(\=x) +A\top \=y and
\=v \in A\=x - \partial \phi (\=y) such that \| \=u\| \leqslant \varepsilon and \| \=v\| \leqslant \varepsilon . By the \mu -strong convexity of G and
the Young's inequality, it follows that

G(\=x)\leqslant G(x\ast ) + \langle \=u - A\top \=y, \=x - x\ast \rangle  - \mu 

2
\| \=x - x\ast \| 2

=G(x\ast ) + \langle \=u, \=x - x\ast \rangle  - \langle \=y,A\=x - Ax\ast \rangle  - \mu 

2
\| \=x - x\ast \| 2

\leqslant G(x\ast ) - \langle \=y,A\=x - Ax\ast \rangle + 1

2\mu 
\| \=u\| 2.(6.4)

In addition, by the convexity of \phi and the definition of \=h in (6.2a), we have \=h(\=x) +
\langle \=v, \=y  - \widehat y\rangle \leqslant \langle \=y,A\=x\rangle  - \phi (\=y), where \widehat y \in argmaxy\{ \langle y,A\=x\rangle  - \phi (y)\} . Adding this
inequality to (6.4) gives

p(\=x) + \langle \=v, \=y - \widehat y\rangle \leqslant G(x\ast ) + \langle \=y,Ax\ast \rangle  - \phi (\=y) +
1

2\mu 
\| \=u\| 2

= p(x\ast ) + \langle \=y - y\ast ,Ax\ast \rangle + \phi (y\ast ) - \phi (\=y) +
1

2\mu 
\| \=u\| 2,(6.5)
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iAPG AND REDUCED COMPLEXITY FOR STRUCTURED PROBLEM 27

where the equality holds because (x\ast ,y\ast ) is a saddle point of (6.1). Now from the
convexity of \phi and the factAx\ast \in \partial \phi (y\ast ), it follows that \langle \=y - y\ast ,Ax\ast \rangle +\phi (y\ast ) - \phi (\=y)\leqslant 
0. Hence, we have from (6.5) and the Cauchy--Schwarz inequality that

(6.6) p(\=x)\leqslant p(x\ast ) - \langle \=v, \=y - \widehat y\rangle + 1

2\mu 
\| \=u\| 2 \leqslant p(x\ast ) + \varepsilon D\phi +

\varepsilon 2

2\mu 
.

Similarly, from the convexity of \phi and \=v \in A\=x - \partial \phi (\=y), it follows that

(6.7)  - \phi (\=y)\geqslant  - \phi (y\ast ) + \langle \=v - A\=x, \=y - y\ast \rangle .

In addition, by the definition of \varphi in (6.2) and the fact \=u \in \partial G(\=x) +A\top \=y, we have
\varphi (\=y)+ \langle \=u, \=x - \widehat x\rangle \geqslant G(\=x)+ \langle \=y,A\=x\rangle , where \widehat x= argminx\{ G(x)+ \langle \=y,Ax\rangle \} . Adding this
inequality to (6.7) and using the fact that p\ast =G(x\ast ) + \langle y\ast ,Ax\ast \rangle  - \phi (y\ast ) yield

d(\=y) + \langle \=u, \=x - \widehat x\rangle \geqslant G(\=x) + \langle y\ast ,A\=x\rangle  - \phi (y\ast ) + \langle \=v, \=y - y\ast \rangle 
= p\ast  - p(x\ast ) +G(\=x) + \langle y\ast ,A\=x\rangle  - \phi (y\ast ) + \langle \=v, \=y - y\ast \rangle 
= p\ast  - G(x\ast ) +G(\=x) + \langle y\ast ,A\=x - Ax\ast \rangle + \langle \=v, \=y - y\ast \rangle .(6.8)

Notice  - A\top y\ast \in \partial G(x\ast ). By the convexity of G, we have  - G(x\ast )+G(\=x)+\langle y\ast ,A\=x - 
A\=x\ast \rangle \geqslant 0. Hence, (6.8) and the Cauchy--Schwarz inequality together imply

(6.9) d(\=y) + \langle \=u, \=x - \widehat x\rangle \geqslant p\ast + \langle \=v, \=y - y\ast \rangle \geqslant p\ast  - \varepsilon Dy.

Moreover, from \=u \in \partial G(\=x) +A\top \=y and 0 \in \partial G(\widehat x) +A\top \=y together with the \mu -strong
convexity of G, it holds that \langle \=u, \=x - \widehat x\rangle \geqslant \mu \| \=x - \widehat x\| 2. Hence, by the Cauchy--Schwarz

ineuqality, we have \| \=x - \widehat x\| \leqslant \| \=u\| 
\mu and \langle \=u, \=x - \widehat x\rangle \leqslant \| \=u\| 2

\mu \leqslant \varepsilon 2

\mu , which together with

(6.9) gives d(\=y)\geqslant p\ast  - \varepsilon D\phi  - \varepsilon 2

\mu . Therefore, from (6.6), we conclude that p(\=x) - d(\=y)\leqslant 
2\varepsilon D\phi +

3\varepsilon 2

2\mu . This completes the proof.

Remark 2. By Theorem 6.2, to produce a primal-dual solution of (6.1) with a

duality gap at most \varepsilon > 0, it suffices to find a min
\bigl\{ 

\varepsilon 
4D\phi 

,
\sqrt{} 

4\mu \varepsilon 
3

\bigr\} 
-stationary solution.

When \phi is convex but not strongly convex, \=h can be nonsmooth. In this case, [54]
introduces a smoothing technique and solves an approximation of (6.1) as follows:

(6.10) p\ast \rho = min
x\in \BbbR n

\{ p\rho (x) := f(x) + r(x) + h\rho (x)\} ,

where \rho > 0 is the smoothing parameter, and h\rho is defined by

(6.11) h\rho (x) = max
y\in \BbbR m

\bigl\{ 
\langle y,Ax\rangle  - \phi (y) - \rho 

2
\| y - y(0)\| 2

\bigr\} 
with any y(0) \in dom(\phi ). The result below is from [54, Theorem 1].

Lemma 6.3. h\rho defined in (6.11) is \| A\| 2

\rho -smooth and \nabla h\rho (x) =A\top y(x), where

(6.12) y(x) = argmax
y\in \BbbR m

\biggl\{ 
\langle y,Ax\rangle  - \phi (y) - \rho 

2
\| y - y(0)\| 2

\biggr\} 
= prox\phi /\rho 

\biggl( 
y(0) +

1

\rho 
Ax

\biggr) 
.

Lemma 6.3 implies that (6.10) is an instance of (1.1) with g= f and h= h\rho . This
means we can compute an \varepsilon -stationary point of (6.10) by calling the iAPG method
in Algorithm 1. We present this approach in Algorithm 5.

By Lemma 6.3 and Theorem 4.3, we have the following complexity result.
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28 QIHANG LIN AND YANGYANG XU

Algorithm 5 Smoothing iAPG method for (6.1).

Inputs: x(0) \in dom(r), y(0) \in dom(\phi ), \rho > 0, \eta  - 1 \leqslant 1
L , \gamma 0 \in [\mu ,1/\eta  - 1], L\in [\mu ,Lf ],

and \varepsilon > 0
Compute:

(6.13) \=x= iAPG
\Bigl( 
f,h\rho , r,x

(0), \eta  - 1, \gamma 0, \mu ,L,\{ \varepsilon k\} k\geqslant 0, \varepsilon 
\Bigr) 
,

where h\rho is defined in (6.11) and \varepsilon k is defined as in (4.5) for k\geqslant 0.
Return: \=x and \=y= y(\=x), where y(\cdot ) is defined in (6.12).

Theorem 6.4 (oracle complexity to produce an \varepsilon -stationary solution). Suppose
Assumption 1 holds and (\=x, \=y) is returned by Algorithm 5 with \rho = \varepsilon 

D\phi 
. Then (\=x, \=y)

is an \varepsilon -stationary solution of (6.1). Moreover, if L = \Theta (Lf ), Algorithm 5 produces
(\=x, \=y) using at most Ksp queries to (f,\nabla f) and Tsp queries to (A(\cdot ),A\top (\cdot )), where
(6.14)

Ksp =O

\biggl( \surd 
\kappa f ln

C2
L(\psi 0 + Sf )

\varepsilon 2

\biggr) 
, Tsp =O

\biggl( \biggl( 
\surd 
\kappa f +

\| A\| 
\surd 
\varepsilon \mu 

\biggr) 
ln

\biggl( 
1

\varepsilon 

\biggr) 
ln
C2
L(\psi 0 + S)

\varepsilon 2

\biggr) 
.

Here, \kappa f =
Lf

\gamma \mathrm{d}\mathrm{e}\mathrm{c}\mu 
, Sf is the same as S in (4.6) except that \kappa is replaced by \kappa f ,

\psi 0 = p\rho (x
(0)) - p\ast \rho + (1 - (1 - c)\alpha 0)

\gamma 0
2
\| x\ast 

\rho  - x(0)\| 2,

CL =
Lf +

D\phi \| A\| 2

\varepsilon \surd 
L

+

\sqrt{} 
Lf +

D\phi \| A\| 2

\varepsilon 

\gamma dec

with x\ast 
\rho = argminxp\rho (x), p

\ast 
\rho =minx p\rho (x) = p\rho (x

\ast 
\rho ), and c\in (0,1).

Proof. Suppose that \=x is an \varepsilon -stationary point of p\rho , i.e., dist(0, \partial p\rho (\=x))\leqslant \varepsilon . Let
\=y = y(\=x). Then by Lemma 6.3, we have dist(0,\nabla g(\=x) + \partial r(\=x) +A\top \=y) \leqslant \varepsilon . Also,
notice 0\in A\=x - \partial \phi (\=y) - \rho (\=y - y(0)). Thus dist(0,A\=x - \partial \phi (\=y))\leqslant \rho \| \=y - y(0)\| \leqslant \rho D\phi = \varepsilon .
Therefore, (\=x, \=y) is an \varepsilon -stationary solution of (6.1).

Applying Algorithm 1 to (6.10) by (6.13), the quantity C\varepsilon in Theorem 4.3 becomes

C\varepsilon =max

\Biggl\{ 
dist

\bigl( 
0, \partial p\rho (x

(0))
\bigr) 

\varepsilon 0
,

2

1 - c

+
3Lf (2 - c)

\varepsilon 0\gamma dec
\surd 
c(1 - c)

\sqrt{} 
2(\psi 0 + Sf )

\mu 

\biggl\lceil \surd 
\kappa f ln

2(\psi 0 + Sf )C
2
L

\varepsilon 2

\biggr\rceil \Biggr\} 
.

Now, first notice that by Lemma 6.3, querying\nabla h\rho once needs one query to (A(\cdot ),A\top (\cdot )).
Second, by Lemma 6.3 and the boundedness of dom(\phi ), we have dist(0, \partial p\rho (x

(0))) =
O(1). Also, by the \mu -strong convexity of p\rho , it follows that

\psi 0 \leqslant 

\biggl[ 
1 + (1 - (1 - c)\alpha 0)

\gamma 0
\mu 

\biggr] 
(p\rho (x

(0)) - p\ast \rho )

\leqslant 

\biggl[ 
1 + (1 - (1 - c)\alpha 0)

\gamma 0
\mu 

\biggr] 
(p(x(0)) - p\ast +

\rho 

2
D2
\phi ) =O(1).

Hence, ln((1 + \| A\| 2

Lf\rho 
)C\varepsilon ) =O(ln( 1\varepsilon )). Third, the smoothness constant of h\rho is \| A\| 2

\rho =
D\phi \| A\| 2

\varepsilon . Therefore we obtain the bounds on Ksp and Tsp from Theorem 4.3.
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iAPG AND REDUCED COMPLEXITY FOR STRUCTURED PROBLEM 29

Remark 3. Since \psi 0 =O(1), Sf =O(1) and CL =O(\| A\| 2

\varepsilon ), according to Theorem

6.4, we have Qf =O
\bigl( \sqrt{} Lf

\mu ln( 1\varepsilon )
\bigr) 
and QA =O((

\sqrt{} 
Lf

\mu + \| A\| \surd 
\varepsilon \mu ) ln

2( 1\varepsilon )).

7. Experimental results. In this section, we demonstrate the practical per-
formance of the proposed algorithms. All the tests were conducted with MATLAB
2021a on a Windows machine with 10 CPU cores and 128GB memory.

7.1. Multitask learning. We first test the iAPG on multitask learning [15] and
compare it to the exact counterpart. Givenm binary-class datasets\scrD l = \{ (xl,i, yl,i)\} Nl

i=1,
l= 1, . . . ,m, with xl,i \in \BbbR n and the corresponding label yl,i \in \{ +1, - 1\} for each l and
i, we solve the multitask logistic regression [19] and use the regularizer given in [15,
equation (23)] together with an \ell 1 term:

min
W

m\sum 
l=1

1

Nl

Nl\sum 
i=1

ln
\bigl( 
1 + exp( - yl,iw\top 

l xl,i)
\bigr) 
+
\mu 

2
\| W\| 2F\underbrace{}  \underbrace{}  

g(W)

+
\lambda 1
2

\bigm\| \bigm\| \bigm\| \bigm\| W - 1

m
W11\top 

\bigm\| \bigm\| \bigm\| \bigm\| 2
F\underbrace{}  \underbrace{}  

h(W)

+\lambda 2\| W\| 1\underbrace{}  \underbrace{}  
r(W)

,

where \| W\| 1 =
\sum 
i,j | wi,j | and wl is the lth of W and the classifier for task l.

In the experiments, we fixed \lambda 2 = 10 - 3 and chose \mu \in \{ 0.01,0.1\} and \lambda 1 \in 
\{ 1,10,100\} . A larger value of \lambda 1 leads to a stronger correlation between the m
classifiers and a larger smoothness constant of h. We randomly generated m = 4
binary-class datasets as in [77]. For each l = 1, . . . ,m, every positive sample follows
the Gaussian distribution \scrN (\bfitmu l,\Sigma ) and negative sample following \scrN ( - \bfitmu l,\Sigma ) with

\Sigma =

\biggl[ 
\rho 1s\times s + (1 - \rho )Is\times s 0s\times (n - s)

0(n - s)\times s I(n - s)\times (n - s)

\biggr] 
, \bfitmu l =

\biggl[ 
1s

0n - s

\biggr] 
+ dl,

where the entries of dl follow the uniform distribution on [ 12 ,1]. We set n= 200,Nl =
500, \forall l or n = 2000, Nl = 5000, \forall l. For each combination of (\mu ,\lambda 1, n,Nl), we
conducted 10 independent trials. Since the smoothness constants of g and h can be
computed explicitly, we also tested the methods without line search. We terminated
the tested method once it produced an \varepsilon -stationary point W, i.e., dist(0, \partial F (W))\leqslant \varepsilon ,
and \varepsilon = 10 - 6 was set. For both iAPG and APG, we set \gamma inc = 2 and \gamma dec = 1

2 as
in Algorithm 2 if line search is adopted. In addition, for iAPG, the initial inexact-
ness \varepsilon 0 = 10 - 3 was set. The results are shown in Table 1. Here, \#g represents the
number8 of calls to g or \nabla g, \#h is the number of calls to h or \nabla h, stat.viol.
denotes dist(0, \partial F (W)), and the time is in seconds. From the results, we see that
the proposed iAPG requires smaller \#g than the exact APG in all cases. Though
iAPG has larger \#h than APG, the former takes less time and thus is more effi-
cient. The advantage of iAPG over APG becomes more significant as the problem
becomes more difficult, i.e., when \mu is smaller and/or \lambda 1 is bigger. These verify
our theoretical results. In addition, even without knowing the smoothness constants,
the iAPG by line search has a similar performance to that using the smoothness
constants.

8We increase \#g by one if g or \nabla g or (g,\nabla g) is called. The same rule is adopted for \#h.
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30 QIHANG LIN AND YANGYANG XU

Table 1
Results by the proposed iAPG method (i.e., Algorithm 1) and its exact counterpart APG on

solving 10 independent random instances of the regularized multitask logistic regression with different
sizes and model parameters. The numbers in the parentheses are the standard deviations.

iAPG no line search iAPG with line search APG no line search APG with line search

(µ, λ1) #g #h stat. viol. time #g #h stat. viol. time #(g, h) stat. viol. time #(g, h) stat. viol. time
Problem size: n = 200, Nl = 500 for each l = 1, . . . , 4

(0.1, 1) 37(0.0) 546(4.1) 7.4e–7(7.9e–8) 0.03 46(4.0) 850(66.6) 7.0e–7(2.1e–7) 0.04 103(0.0) 8.0e–7(3.0e–8) 0.04 158(4.2) 7.5e–7(1.7e–7) 0.05
(0.1, 10) 37(0.0) 1815(7.4) 7.3e–7(7.7e–8) 0.03 47(2.6) 2209(104.9) 7.0e–7(2.4e–7) 0.04 322(1.0) 9.5e–7(3.1e–8) 0.09 604(4.4) 8.6e–7(9.5e–8) 0.15
(0.1, 100) 37(0.0) 5946(37.0) 7.7e–7(6.7e–8) 0.06 48(2.1) 5226(298.4) 5.3e–7(2.6e–7) 0.06 1038(4.1) 9.8e–7(9.0e–9) 0.27 1584(6.0) 9.7e–7(1.3e–8) 0.38

(0.01, 1) 106(1.1) 1806(13.7) 8.9e–7(7.4e–8) 0.05 106(0.9) 2313(24.7) 8.8e–7(8.7e–8) 0.06 288(1.0) 9.6e–7(2.3e–8) 0.08 404(1.2) 9.2e–7(6.0e–8) 0.10
(0.01, 10) 106(1.0) 6023(76.8) 8.6e–7(6.5e–8) 0.08 106(0.9) 5727(211.3) 8.9e–7(7.6e–8) 0.08 874(4.2) 9.8e–7(1.1e–8) 0.22 1643(10.0) 9.6e–7(3.1e–8) 0.39
(0.01, 100) 107(0.8) 19666(189.9) 8.6e–7(5.5e–8) 0.16 107(1.4) 13381(430.9) 8.6e–7(1.1e–7) 0.13 2775(13.4) 1.0e–6(3.2e–9) 0.71 4248(22.9) 9.9e–7(8.6e–9) 1.02

Problem size: n = 2000, Nl = 5000 for each l = 1, . . . , 4
(0.1, 1) 31(0.0) 561(0.6) 5.3e–7(2.1e–8) 4.5 38(4.9) 869(113.3) 3.4e–7(2.8e–7) 4.7 105(0.0) 8.5e–7(1.9e–8) 6.4 165(1.7) 7.5e–7(9.5e–8) 7.9
(0.1, 10) 31(0.0) 1870(5.6) 5.5e–7(2.0e–8) 4.5 41(4.9) 2149(245.9) 6.8e–7(3.4e–7) 4.8 341(0.6) 9.6e–7(1.6e–8) 12.4 647(0.0) 8.2e–7(2.1e–8) 20.0
(0.1, 100) 31(0.0) 6102(17.2) 5.6e–7(1.6e–8) 4.9 41(6.1) 5103(854.0) 4.5e–7(3.5e–7) 5.0 1107(2.1) 9.8e–7(1.0e–8) 32.0 1728(8.2) 9.5e–7(3.7e–8) 47.2
(0.01, 1) 91(0.6) 2131(12.5) 7.9e–7(6.4e–8) 6.1 88(0.0) 2612(7.3) 7.0e–7(1.8e–8) 6.0 319(0.8) 9.7e–7(2.8e–8) 11.8 496(2.2) 9.2e–7(5.7e–8) 16.2
(0.01, 10) 91(0.0) 7099(17.0) 7.6e–7(2.1e–8) 6.4 88(0.0) 7096(183.2) 7.0e–7(2.2e–8) 6.3 999(0.8) 9.9e–7(1.0e–8) 29.2 1903(4.6) 9.7e–7(1.9e–8) 51.7
(0.01, 100) 91(0.0) 23013(41.8) 7.6e–7(1.3e–8) 7.3 88(0.0) 18142(281.0) 7.0e–7(1.5e–8) 6.9 3183(4.0) 9.9e–7(1.6e–9) 85.1 4975(14.5) 9.9e–7(1.2e–8) 129.1

Table 2
Results by the iRALM\.iAPG method with and without line search and the APD method in [20]

with and without line search on solving 10 independent random instances (7.1) with m= 2000 and
n= 5000. The numbers in the parentheses are the standard deviations.

Method #query obj #query cstr pres dres time

iRALM iAPG no line search 2521(286.3) 21098(4723.5) 3.0e–7(2.9e–7) 6.2e–8(2.1e–10) 18.2
iRALM iAPG with line search 2962(347.0) 9760(1200.6) 3.0e–7(2.9e–7) 5.2e–8(9.0e–9) 17.0

APD no line search 7929(606.7) 8.8e–10(1.1e–9) 3.0e–7(2.8e–7) 51.4
APD with line search 4349(334.8) 1.8e–7(2.2e–7) 2.9e–7(2.8e–7) 55.3

7.2. Zero-sum constrained LASSO. In this subsection, we test the iRALM
in Algorithm 4 with iAPG as a subroutine, on the zero-sum constrained LASSO [17,
30]:

(7.1) min
x

1

2
\| Ax - b\| 2 + \lambda \| x\| 1 s.t.

1\surd 
n

n\sum 
i=1

xi = 0.

Here, A \in \BbbR m\times n and b \in \BbbR m, and we divide by
\surd 
n in the constraint to normalize

the coefficient vector. We name the proposed method as iRALM\.iAPG and compare
it to the accelerated primal-dual method, called APD, in [20]. To apply APD, we
solve an equivalent min-max problem by the ordinary Lagrangian function of (7.1).
For iRALM\.iAPG,9 we set in Algorithm 4 \beta k = \beta 0\sigma 

k, \rho k = \rho 0\sigma 
 - k with \beta 0 = 1, \rho 0 =

10 - 3, \sigma = 3, and \varepsilon 0 = 10 - 5, \gamma inc = 3, \gamma dec =
1
2 in Algorithm 2 if line search is adopted.

We set \tau 0 = 1 and \gamma 0 = 10 - 3 for APD if line search is adopted; see Algorithm 2.3
in [20].

In the tests, we set m = 2000, n = 5000 and fixed \lambda = 10 - 3 in (7.1). Each
row of A took the form of a

\| a\| , where a was generated by the standard Gaussian
distribution. We generated a zero-sum sparse vector xo with 200 nonzero components,
whose locations were selected uniformly at random. Then we let b=Axo+10 - 3 \bfitxi 

\| Axo\| 
with \bfitxi generated from the standard Gaussian distribution. The stopping tolerance
was set to \varepsilon = 10 - 6 to produce an \varepsilon -stationary point. We conducted 10 independent
runs. The results are reported in Table 2, where the methods without line search used
explicitly computed smoothness constants to set a constant stepsize. The quantity
\#query\.obj denotes the number of queries to (A,A\top ) and \#query\.cstr the number

9A comparison to iRALM with the exact APG as a subroutine can be found in the longer arXiv
version [48] of this paper.
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Table 3
Results by the proposed iRALM\.iAPG, the APD in [20], and the PDS in [41] on solving instances

of the portfolio optimization (7.2) with NASDAQ data.

Method #query obj #query cstr pres dres cmpl time

µ
=

0

iRALM iAPG no line search 112704 5530144 0.0e+00 4.2e–07 9.2e–19 350.6
iRALM iAPG with line search 37235 715328 0.0e+00 4.2e–07 0.0e+00 97.0

APD no line search 1118808 0.0e+00 1.3e–06 2.2e–17 3603.8
PDS 54058 176318909 3.5e–18 1.1e–06 1.5e–25 3604.0

µ
=

1
0

−
3 iRALM iAPG no line search 21314 375994 0.0e+00 2.3e–07 7.0e–14 54.1

iRALM iAPG with line search 48643 117194 0.0e+00 2.3e–07 7.1e–14 108.4
APD no line search 1119046 0.0e+00 8.5e–07 4.9e–18 3603.6

PDS 6278 8927446 0.0e+00 2.2e–07 0.0e+00 195.5

µ
=

0
.1

iRALM iAPG no line search 3206 32178 4.4e–09 6.2e–08 4.8e–13 10.8
iRALM iAPG with line search 6601 16451 5.2e–09 6.2e–08 5.6e–13 17.8

APD no line search 1119360 0.0e+00 9.0e–08 2.6e–21 3603.6
PDS 1404 29512311 0.0e+00 5.6e–08 0.0e+00 591.7

of times the constraint function in (7.1) is evaluated. The quantities pres and dres,
respectively, mean the violations of primal and dual feasibility in the KKT system.
From the results, we see that the proposed method needs significantly less time than
the APD method to produce comparable solutions. In addition, both methods with
line search performed similarly as well as those without line search.

7.3. Portfolio optimization. In this subsection, we test the proposed method
iRALM\.iAPG on solving the portfolio optimization:

(7.2) min
x

1

2
x\top Qx s.t. x\geqslant 0,

n\sum 
i=1

xi \leqslant 1, \bfitxi \top x\geqslant c,

where \bfitxi contains expected return rates of n assets, Q is the covariance matrix of the
return rates, and c is the minimum total return.

We solve instances of (7.2) with the real NASDAQ dataset10 [59], where \bfitxi is the
mean of 30-day return rates. The original covariance matrix Q0 \in \BbbR 2730\times 2730 is rank-
deficient, and in (7.2), we set Q =Q0 + \mu I with \mu \in \{ 0,10 - 3,0.1\} . We set c = 0.02,
a tolerance to \varepsilon = 10 - 6, and also a maximum running time to one hour. We found
that APD with line search did not work well for these instances, possibly because of
the rounding error during the line search. Hence, we only reported its results without
line search by explicitly computing the smoothness constants and setting constant
stepsizes. The results by all methods are shown in Table 3, where cmpl represents the
amount of violation of complementarity condition in the KKT system, and all other
quantities have the same meanings as those in Table 2. From the results, we see that
the proposed method iRALM\.iAPG was significantly more efficient than APD and
PDS in terms of running time. For the hardest case that corresponds to \mu = 0, APD
and PDS both failed to reach the desired accuracy within one hour. PDS required
many more queries to the constraint functions, though its queries to the objective
were significantly fewer than the proposed method. This is because the inner loop of
PDS needs to run to a theoretically determined maximum number of iterations rather
than to a computationally checkable stopping condition.

8. Conclusions. We present an inexact accelerated proximal gradient (iAPG)
method for composite convex optimization, which have two smooth components with
significantly different computational costs. When the more costly component has

10More results on synthetic data can be found in the longer arXiv version [48] of this paper.
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a significantly smaller smoothness constant than the less costly one, the proposed
iAPG can significantly reduce the overall time complexity than its exact counter-
part, by querying the more costly component less frequently than the less costly one.
Using the iAPG as a subroutine, we proposed gradient-based methods for solving
affine-constrained composite convex optimization and for solving bilinear saddle-point
structured nonsmooth convex optimization. Our methods can have significantly lower
time complexity than existing methods.

Appendix A. Technical lemmas. The following technical lemmas are needed
in our convergence analysis. The first lemma below is obtained by applying inequality\surd 
a+ b\leqslant 

\surd 
a+

\surd 
b for a, b\geqslant 0 to the conclusion of Lemma 1 in [63].

Lemma A.1. Let \{ uk\} k\geqslant 1 be a sequence of nonnegative numbers. Suppose u2k \leqslant 
C +

\sum k
i=1 \lambda iui \forall k \geqslant 1, where C \geqslant 0 is a constant and \lambda i \geqslant 0 \forall i \geqslant 1. Then

uk \leqslant 
\sum k
i=1 \lambda i +

\surd 
C \forall k\geqslant 1.

Lemma A.2. Let \sigma > 1 and a\in (0,1). If b\geqslant 64
a2(ln\sigma )4 \geqslant 1, then (log\sigma b)

2 \leqslant a \cdot b.

Proof. Let \theta (x) = 1
2 (lnx)

2  - x. Then \theta \prime (x) = 1
x lnx - 1. Since lnx < x \forall x > 0,

we have \theta \prime (x) < 0 \forall x > 0, so \theta is decreasing. Hence, \theta (x) \leqslant \theta (1) < 0 \forall x \geqslant 1, which

implies (log\sigma x
2)2 \leqslant 8x

(ln\sigma )2 \forall x \geqslant 1. Taking x =
\surd 
b gives (log\sigma b)

2 \leqslant 8
\surd 
b

(ln\sigma )2 \leqslant a \cdot b,
where the second inequality is by the asssumption that b\geqslant 64

a2(ln\sigma )4 .
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