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REDUCING THE COMPLEXITY OF TWO CLASSES OF
OPTIMIZATION PROBLEMS BY INEXACT ACCELERATED
PROXIMAL GRADIENT METHOD"
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Abstract. We propose a double-loop inexact accelerated proximal gradient (APG) method
for a strongly convex composite optimization problem with two smooth components of different
smoothness constants and computational costs. Compared to APG, the inexact APG can reduce
the time complexity for finding a near-stationary point when one smooth component has higher
computational cost but a smaller smoothness constant than the other. The strongly convex com-
posite optimization problem with this property arises from subproblems of a regularized augmented
Lagrangian method for affine-constrained composite convex optimization and also from the smooth
approximation for bilinear saddle-point structured nonsmooth convex optimization. We show that
the inexact APG method can be applied to these two problems and reduce the time complexity for
finding a near-stationary solution. Numerical experiments demonstrate significantly higher efficiency
of our methods over an optimal primal-dual first-order method by Hamedani and Aybat [SIAM J.
Optim., 31 (2021), pp. 1299-1329] and the gradient sliding method by Lan, Ouyang, and Zhou
[arXiv2101.00143, 2021].
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1. Introduction. We consider composite optimization in the form of
(1.1) F*= m%@n {F(x)=g(x)+ H(x)} with H(x)=h(x)+ r(x),
xeR™

where g is Lg-smooth and p-strongly convex with p 2> 0, h is convex and Lp-smooth,
and r is closed convex with an easy proximal mapping and an easy projection onto
Or(+). This problem arises in many applications, e.g., sparse regression [65, 82], mul-
titask learning [15], matrix completion [8], and sparse inverse covariance estimation
[16].

Besides (1.1) itself, we also study its application in the numerical schemes to solve
two classes of convex problems. One is affine-constrained composite optimization,

(1.2) Hg%{i f(x)+r(x) st. Ax=Db,

and the other is bilinear saddle-point structured nonsmooth optimization,

(13) min { 760) 4 7(0) + [ty A%) — 0(3)] }.

xeR?
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In both problems, we assume that f is L;-smooth p-strongly convex with u > 0,
while r is similar to that in (1.1). Also, ¢ is closed convex, has a bounded domain,
and admits an easy proximal mapping. For simplicity, we only consider equality
constraints in (1.2) in this section, but we will consider both equality and inequality
constraints in the main body of the paper as shown in (5.1). The applications of (1.2)
can be found in linearly constrained LASSO problems [17, 30] and shape-restricted
nonparametric regression [11], and problem (1.3) arises in overlapping group LASSO
[10, 29, 81], fused LASSO [10, 66], and robust principal component analysis [7].

Most of the existing works target an e-optimal solution of (1.1), namely, a solution
x satisfying F(x) — F* < e. In contrast, we aim at finding an e-stationary solution
of (1.1), namely, a solution x satisfying ||€| < & for some £ € OF(X). It is easy to
obtain an O(/)-stationary solution (see (3.15) below) from an e-optimal solution,
which, however, may not be a near-stationary solution. For example, T = ¢ is an
e-optimal solution of min, |x|, but it is not a near-stationary solution for any ¢ > 0.
On the contrary, an e-stationary point x of (1.1) is also an €||Xx —x*||-optimal solution
by F(x) — F(x*) < (€,x —x*) < ||£] - ||x — x*|| for any & € OF(X), where x* is one
minimizer. In addition, an e-stationary solution can be verified in practice more easily
than an e-optimal solution. For this reason, we also focus on computing e-stationary
solutions (defined later in Definitions 5.1 and (6.1) of (1.2) and (1.3).

1.1. Composite subproblems/approximation. Both (1.2) and (1.3) can be
solved by numerical procedures that solve instances of (1.1) as we discuss below.

We consider solving (1.2) by an inexact regularized augmented Lagrangian method
(iRALM), which performs the following update in the kth main iteration:
(1.4)

x(k“)zargminxeRnf(x) + r(x)—i—()\(k), AX—b>-‘r%HAX—b||2+p?kHX—X(k)H2.

Here x(*) is the main iterate, A is the Lagrange multiplier, Sx > 0 is a penalty
parameter, and p; > 0 is a regularization parameter. It is easy to see that the
problem in (1.4) is an instance of (1.1) with

(15) 9() = F60+ L —x®P and  hx)= (A®, Ax—b) + 2 | Ax—b?

and the smoothness constants are L, = Ly + py and Ly, = Bx||A||.
For (1.3), we use the smoothing technique by [54], which approximates (1.3) by

(1.6) Join {f(x) +r(x) + max [(y, Ax) — ¢(y) — g”y —-y|?] }

and solves (1.6) using a smooth optimization method. Here, p > 0 is a smoothing
parameter, and y(®) € dom(¢). Again, we can view (1.6) as an instance of (1.1) with

(1.7) 9(x)=f(x) and  h(x) = max [(y, Ax) = 6(y) - g\ly -y
and the smoothness constants L, = Ly and Lj, = ||A[]?/p.

We consider solving (1.2) and (1.3) by gradient-based methods which only need
to query (f,Vf) and (A(-),AT(-)) and use the proximal mappings of 7 and ¢. We
are interested in the oracle complexity of the studied methods, which is defined as the
numbers of queries that the methods make to (f, Vf) and (A(-),AT(-)), denoted by
Q¢ and Qa, respectively, until an e-stationary point is found. Similarly, we define the
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oracle complexity of a method for (1.1) as the numbers of queries it makes to (g, Vg)
and (h, Vh), denoted by Q4 and Q},, respectively, until an e-stationary point is found.
In contrast to oracle complexity, we define the time complexity or cost of a numerical
procedure as the total number of arithmetic operations it performs. Additionally,
we focus on a practical scenario where the time complexity for querying (f, Vf) is
significantly higher than (A(-), AT(-)). This scenario arises from many applications in
statistics and machine learning, e.g., linearly constrained LASSO problems [17, 30],
where querying (f, Vf) requires processing a large amount of data while querying
(A(-),AT(-)) does not involve any data and can be relatively easy.

1.2. Contributions. Our main contribution is to show that when the time com-
plexity of querying (f, Vf) is significantly higher than (A(-),AT(-)), the known time
complexity in the literature for finding e-statioanry points of (1.2) and (1.3) can be
further reduced if we solve (1.4) and (1.6) using an inezact accelerated prozimal gra-
dient (1IAPG) method, which queries (f, Vf) significantly fewer than (A(-), AT ().

Our iAPG is a double-loop variant of the APG [2, 52, 54, 55, 70]. When applied

o (1.1), the APG treats G := g + h as a whole and solves (1.1) by

1
(1.8)  x*+Y = argmin <VG(y(k)),x - y(k)> + WHX —y®|12 4 7(x) for k>0,
xER™ k

where y(¥) € R is an auxiliary iterate and n > 0 is a step length parameter. By
the assumption made on 7, (1.8) can be solved easily, e.g., in a closed form. When
p >0, it is known (see, e.g., [52]) that the APG finds an e-optimal solution for (1.1)
with Qg =Qn=0( # In(1)). However, according to the instantizations in (1.5)
and (1.7), querying (g, Vg) has significantly higher time complexity than (h,Vh) in
both instances since the former requires querying (f, V f) while the latter only requires
querying (A(-), AT(-)). Given that, a potential strategy to reduce the time complexity
for solving (1.1), and thus (1.2) and (1.3), is to query (g, Vg) and (h, Vh) in different
frequencies so as to reduce @4, even if doing so may slightly increase Q.

To implement this strategy, one technique is to separate g and h by solving the
following proximal mapping subproblem in the kth iteration:

. 1
(1.9) x(F+1) :argm1n<Vg(y(k)),x—y(k)> + o Hx—y(”“)H2 + h(x) + r(x).
x€R” Mk

Unlike (1.8), (1.9) typically cannot be solved explicitly. A practical solution is to
use an iterative method to solve (1.9) inexactly to a certain precision. This requires
a double-loop implementation. Note that (1.9) itself is a strongly convex instance
of (1.1) and thus can be solved inexactly by the APG in oracle complexity with
logarithmic dependency on the precision. By choosing an appropriate precision for
solving (1.9) in each iteration, we show that, when p > 0, our iAPG can find an
e-stationary solution of (1.1) with oracle complexity!

(1.10) Qg=0< Lﬂﬁn(i)) anth:6<,/L9:Lhm(i>>.

The iAPG has lower time complexity than the APG when L, is significantly larger
than L, and querying (g, Vg) is much more costly than (h, Vh).

1Here and in the rest of the paper, 9] suppresses some logarithmic terms.
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According to (1.5), the iAPG has lower time complexity than the APG for solving
(1.4) when B is much larger than py, which is indeed the case in the iRALM. As a
consequence, we show that the iRALM, in which (1.4) is solved by the iAPG, finds
an e-stationary point of (1.2) with oracle complexity?

(1.11) Qf:0<ﬁ1n2 (i)) and QA:6< I;LflnC)Jr\/‘A;T!).

Without the affine constraint Ax =b, it is shown by [51, 52] that any gradient-based
method has to query (f,Vf) at least Q(\/%T’ In(1)) times to find an e-optimal point
of (1.2). With Ax =Db, it is shown by [57] that any gradient-based method needs to
query (A(-),AT(-)) at least O(‘\l/%ial) times. In either case, the oracle complexity of
the iIRALM matches the corresponding lower bound up to logarithmic factors.
Similarly, according to (1.7), the iAPG has lower time complexity than the APG
when p is small, which is true for the smoothing method. In fact, to obtain an e-
optimal point of (1.3) by solving (1.6), one needs to set p = ©(e). In this case, we
show that when g > 0, the smoothing method, where (1.6) is solved by the iAPG,
finds an e-stationary point of (1.3) with the same oracle complexity as in (1.11). This
complexity matches the lower bound [57] up to logarithmic factors.
Summary of contributions. We summarize our contributions mentioned above.

e We present an iAPG method for solving (1.1). It is a double-loop method
where the inner iterations are terminated using a computable stopping crite-
rion based on the stationarity measure of the solution. We prove the oracle
complexity of the proposed iAPG is given in (1.10). When evaluating (g, Vg)
has significantly higher cost than (h,Vh) but L, is much smaller than Ly,
the i1APG is superior to the APG for solving (1.1). Compared to the existing
iAPGs, e.g., [35], our analysis focuses on the strongly convex case which has
important applications in (1.2) and (1.3). Moreover, our method includes
a line search scheme on the step length parameter to improve the practical
performance while other iAPGs do not.

e Applying the proposed iAPG to the subproblems of the iRALM for (1.2),
we derive in (1.11) the oracle complexity of the iRALM for finding an e-
stationary solution. This complexity is better than existing ones, e.g., [20, 73],
when querying (f,Vf) is significantly more costly than (A(-),AT(-)). The
complexity in [41] is similar to ours.® However, the inner loop of their method
requires a predetermined number of iterations, which is often conservative
and yields poor practical performance; see the numerical results in section 7.
Additionally, we show that the iAPG combined with the smoothing technique
[54] can find an e-stationary solution of (1.3) with oracle complexity in (1.11),
which is also better than existing ones.

1.3. Notation. x®y denotes the componentwise product of two vectors x and y.
For any number sequence {a;};>0, we define Zfikl a; =0 and Hfikl a; =11if k1 > ko.
The proximal mapping of a function r is prox, (z) := argmin, {$||x — z|? + r(x)}.
The distance of a point z to a set S is defined as dist(z,S) := minkes ||x — z||.

2The factor an(é) in Q¢ can be reduced to lné if Bo= @(é) and pg = ©(¢); see Remark 1.
3The complexity in [41] is lower than that in (1.11) by a logarithmic factor. However, [41] targets
an e-optimal solution which is hard to verify.
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2. Literature review. The APG methods [2, 52, 54, 55, 70] are optimal gradient-
based methods for (1.1). However, the APGs cannot be directly applied to (1.2) due
to the affine constraints or to (1.3) due to the sophisticated nonsmooth term. The
iAPG performs similar updates as an APG except that the proximal mapping sub-
problem (1.9) is solved inexactly by another optimization algorithm, making the iIAPG
a double-loop algorithm. Different iAPGs have been studied in the literature based
on different inexactness criteria when solving the subproblems [4, 31, 34, 35, 63, 71].

2.1. Related iAPGs. The iAPG in [63] assumes that an eg-optimal solution of
(1.9) can be found while the iAPG by [31] requires a solution of (1.9) that satisfies
an inexact criterion based on the O(e}/k?)-subgradient of H. Both papers assume
the summability of {e;}. They analyze the number of outer iterations for finding an
e-optimal solution of (1.1) but not the oracle complexity for solving (1.9). In contrast,
we show the total oracle complexity for finding an e-stationary solution of (1.1), which
can be verified more easily than an e-optimal solution.

The iAPG by [31] can be directly applied to (1.2) by viewing r in (1.1) as an
indicator function of the constraint set of (1.2). This way, (1.9) becomes a quadratic
program with affine constraints. Then, an inexact semismooth Newton—conjugate
gradient method is applied to compute an inexact solution to (1.9) that approxi-
mately satisfies the primal-dual optimality conditions. However, they only analyze
the number of outer iterations but not the total oracle complexity.

When (1.1) is convex but not strongly convex, the iAPG by [71] minimizes the
duality gap of (1.9) using an APG method to find an approximate solution of (1.9)
satisfying an inexact condition defined with the eg-subdifferential of H. Choosing
e =1/k%, it can find an e-optimal solution of (1.1) with oracle complexity Q, = O(%)
and Qp = O(Eiq) for ¢ arbitrarily close to % Under the same setting, the iAPG by [4]
assumes an approximate solution to (1.9) that satisfies either an inexact 21r/e§lautive rule
or an inexact extra-step relative rule. With oracle complexity @, = O(;"ﬁ), it finds
a solution to (1.1) whose e-subgradient has a norm no greater than e, which is weaker
than an e-stationary point. They do not analyze the complexity for computing the
inexact solution to (1.9) so @, is unknown.

The inner accelerated inexact composite gradient (IA-ICG) method and the dou-
bly accelerated inexact composite gradient (DA-ICG) method proposed by [35] can
be applied to (1.1). Both methods apply a relaxed accelerated gradient algorithm to
find a solution of (1.9) satisfying two error inequalities (see Problem B in [35]). When
(1.1) is convex but not strongly convex, the oracle complexities of the IA-ICG method
and the DA-ICG method for finding an e-stationary point of (1.1) are Q4 = O(%),

/ / 1/6
Qn = O(%) and Qg = O(ig—//j), Qn = O(%;Lg/), respectively, the
latter of which is the best result in the literature.

In contrast to [4, 31, 35, 71], our work focuses on the case when (1.1) is strongly
convex. Our result is the best in the literature and complements the results by [35].
Moreover, our main studies are the applications of the proposed iAPG in (1.2) and
(1.3), which are not studied in [4, 31, 35, 71]. Additionally, our method includes a
line search scheme for the step length parameter, which those works do not consider.

2.2. Related methods for solving (1.2). The augmented Lagrangian method
(ALM) [27, 60, 61] and its variants [5, 21, 22, 23, 24, 25, 28, 32, 33, 39, 49, 58, 62,
73, 74, 75, 76] can be applied to (1.2). The methods in [22, 33] require an exact
solution of ALM subproblems, i.e., (1.4) with p, = 0, which is not practical for
many applications. Inexact (regularized) ALMs are studied by [39, 49, 58, 75], where
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(regularized) ALM subproblems are solved inexactly by APG. When p = 0, these
methods have oracle complexity Q@ = Qa = O(2), and when p > 0, the method by [75]
has oracle complexity Q¢ = Qa = O(ﬁ) An accelerated linearized ALM is studied
by [73], where f in (1.2) is linearized in the ALM subproblem. If the augmented term
is also linearized so that the subproblem can be solved exactly, the method by [73]
has the same oracle complexity as [75] in both cases when p =0 and when pu > 0. If
the augmented term is not linearized, the methods by [5, 23, 25, 73] only need O(ﬁ)
iterations even when p = 0, but the ALM subproblem becomes challenging to solve
exactly. The linearized ALM method is analyzed in a unified framework together
with other variants of the ALM by [62] and is generalized for nonlinear constraints
by [74]. The same complexity as [75] is achieved in [62, 74]. A cutting-plane based
ALM is proposed by [76] that can find an e-stationary point for (1.2) with oracle
complexity Q= Qa = O(%) when p =0 and Qf = Qa = O(mIn(L)) when p > 0,
where m is the number of constraints. Hence, its complexity is better than ours only
when m = o(e~2). A method similar to ALM is studied in [46] for decentralized
distributed optimization with the consensus constraint, which is a special case of the
affine constraints in (1.2).

The (linearized) Bregman methods [79, 80] and their accelerated variants [28, 33|
are equivalent to gradient-based methods applied to the Lagrangian dual problem of
(1.2). Similar techniques are explored in [14, 18]. However, these methods require
easy evaluation of the proximal mapping of f, which limits their applications. For
(1.2) with a strongly convex but not necessarily smooth objective, a dual e-optimal
solution can be found by an accelerated Uzawa method [64] or an inexact ALM method
[32] within O(ﬁ) main iterations. However, the method in [64] requires solving a
Lagrangian subproblem exactly and is thus impractical for general f. Although the
method by [32] only needs to solve ALM subproblems inexactly, the authors only
analyze the total number of main iterations but not the overall oracle complexity.

Penalty methods [14, 18, 38, 44] are also classical approaches for (1.2), where the
affine constraints are moved to the objective function through a penalty term and the
unconstrained penalty problem is then solved by another optimization algorithm like
the APG. The primal method in [14, 18] requires » =0 and A is positive semidefinite
while the dual method in [14, 18] requires an easy evaluation of the convex conjugate
function of f, which limits the applications. When p = 0, [38] shows that if the penalty
parameter is large enough, the penalty method finds an (e,e)-primal-dual solution of
(1.2) (see Definition 1 in [38]) with oracle complexity Q@ =Qa = O(%). The penalty
method by [44] solves a sequence of unconstrained penalty problems with increasing
penalty parameters and only performs one APG iteration on each penalty problem.
It has oracle complexity Q= Qa = O(%) when =0 and Q; =Qa = O(%) when
@ > 0. The complexity results in [38, 44] are higher than ours in both cases. The
penalty method has also been applied to distributed optimization problems in [45]
with consensus constraint, which is a special affine constraint.

By Lagrange multipliers, constrained optimization can be formulated as a min-
max problem to which the primal-dual methods [67, 68, 69, 72, 83], mostly based
on smoothing technique [54], can be applied. However, the methods by [67, 69, 72]
require a closed-form solution of prox, ; while the method by [83] requires a closed-
form solution of the convex conjugate function of f, and thus they have limited
applications. The authors of [68] extend the algorithm and analysis in [67] by allowing
prox, ; to be evaluated inexactly. However, they do not include the oracle complexity
for inexactly evaluating the proximal mapping in their complexity analysis.
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2.3. Related methods for solving (1.3). Smoothing techniques [1, 3, 54] are
a class of effective approaches for solving the structured problem (1.3). They construct
close approximation of (1.3) by one or a sequence of smooth problems, which are then
solved by smooth optimization methods such as the APG. When p =0, the methods

by [1, 3, 54] find an e-optimal solution with complexity Q= Qa = O(H;i‘| + 4/ %)
When £ > 0, the adaptive smoothing method by [1] finds an e-optimal solution with
Qr=Qa=0(/ % In(L)+ U/%), which is higher than our complexity given in (1.11)

€

when the query to (f, Vf) is significantly more costly than (A(-), AT(-)).

In the literature, (1.3) has also been studied as a bilinear saddle-point problem
[6, 9, 12, 26, 53, 84, 85]. The methods in [6, 9, 53] require a closed form of the
proximal mapping of f + r and thus may not be applicable to (1.3). When p = 0,
the methods by [12, 26, 84, 85] find an e-saddle-point (see Definition 3.1 in [26]) or
an e-optimal solution with the same oracle complexity as the smoothing methods
mentioned above. When p > 0, the method of [85] finds an e-optimal solution with
the same oracle complexity as the smoothing method [1]. Problem (1.3) has also
been studied as a variational inequality [13, 50, 70]. In particular, when p = 0, the
mirror-prox methods in [50, 70] find an e-optimal solution of (1.3) with complexity
Qf=Qa= O(iLft”A” ), which is later reduced to Qf =Qa = O(\/g—i— @) by [13].

For all the methods we discussed above for solving (1.2) and (1.3), the oracle
complexity is essentially the number of iterations the algorithms perform to find
the desired solution. Since all of those methods always evaluate both (f,Vf) and
(A(-),AT (")) in each iteration, Q; and QA are the same for them. When the evalu-
ation cost of (f,Vf) is significantly higher than that of (A(:), AT (-)), it will be more
efficient to query (f, Vf) less frequently than (A(-), AT (-)) without compromising the
solution quality. This actually can be achieved using the gradient sliding techniques
[36, 37, 40, 42, 43, 56], which compute the gradient of one (more expensive) compo-
nent of the objective function once in each outer iteration and process the remaining
components in each inner iteration. The iAPG in this paper utilizes a similar double-
loop technique to differentiate the frequencies of evaluating (f, Vf) and (A(-), AT ("))
and thus reduce ;. Although the idea behind the iAPG is similar to the gradient
sliding techniques, such a technique has not been studied for problem (1.2) under
an iRALM framework. Although (1.3) has been studied by [36, 40], we consider the
case of p > 0, which is not covered in [36] and for which [40] needs to apply the
sliding method for convex cases in multiple stages. Moreover, except [42], which ter-
minates the inner loop based on a computable duality gap,* the existing gradient
sliding techniques must run the inner loop for a predetermined number of iterations
which depends on some unknown parameters of the problem. On the contrary, we
terminate our inner loop based on a computable stationarity measure, which makes
our method more efficient in practice, as we demonstrate in section 7.

3. Inexact accelerated proximal gradient method with line search. In
this section, we consider (1.1) where g is p-strongly convex with® 4 > 0 and Ly
smooth (i.e., Vg is Lg-Lipschitz continuous), h is convex and Lp-smooth, and 7 is
closed convex and allows easy computation of prox,,(z) and dist(z’,0r(z)) for any
7',z € R" and n > 0. We assume that (g, Vg) is significantly more costly to query
than (h,Vh) and L, is significantly smaller than Lj,. We propose an iAPG for (1.1)

4The method in [42] is a conditional gradient method that assumes a linear optimization oracle,
which is different from our setting.
5Results for the case of =0 can be found in the longer arXiv version [48].
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Algorithm 1 x**D) =iAPG(g, h,r,x 9 n_1,90, 1, L, (e x>0, €) for (1.1).
Inputs: The three components of (1.1): g, h and 7, x@ ¢ dom(r), n—1 < %, Yo € 1, ﬁ],

p>0, L€ [ Lyl, ek = 0,7dec € (0,1),%inc € [1,400),Yk =0, e >0 ijo < -1, 2» « x@
and set global parameters ygec € (0,1) and ~inc € [1, +00)
for k=0,1,..., do
(x(kH)/ka, Miey Q) = LineSearch(x<k), z(k),’yk,nk_l, wu,L,er).
x®) 4 o (x(’““) - x““)). (X*HD 7)) = SeekStationary(x* T 7).

if dist (0, 0F (x*™V)) < ¢ then

20D

Return: x*t1

Algorithm 2 (x**V 5,1, m, ) = LineSearch(x®), 2%~y 1, p, L, e).
Inpl'ItS: x(k)’ z(k)7 Ve > 0, Me—1 > 0, L€ [1“‘7 Lg]7 ex >0 Mk < mll’l{ : ’Ymcnkil}

YdecL’ Vdec
repeat

2
Nk 4 Ydeck; find ax > 0 and 41 that satisfy yer1 = 22 = (1 — ax) yx + app. Let

N

y®) = m (akfykz““) + fkax(k)); find x**Y such that

(3.2) dist (o, Vg(y®) + L (=) — y®)) 4 aH(x<k+1>)) < e

until g(x**) < g(y™®) + (Vg(y®),x*+D —y®)y 4 L ||x (kD) g (k) )2

2nyg
Return: (x(k+1),’yk+177]k,ozk)

in Algorithm 1, which is a modification of the APG in [52, Algorithm 2.2.19], by
including a line search procedure (in Algorithm 2) for the step length parameter
and solving the following proximal mapping subproblem inexactly:

(3.1)
x(FFD) a5 B+

= argmin {¢><x;y<k>,nk> = (Vgly™),x—y™) +21|x—y<’f>||2+h<x>+r<x>} .
xER"? Mk
The APG requires x(F+1) = xik+1), while our iAPG only needs x*+1) to be an e-
stationary point, i.e., a point satisfying (3.2). Our line search procedure follows [47].
It can be shown that x(**1) produced by the iAPG is an e-optimal solution of
(1.1) if k is large enough and €, decreases to zero in an appropriate rate. To generate
an e-stationary solution of (1.1), we just need to perform a proximal gradient step
from x**1) using a separate step length 7, that can also be searched by the standard
scheme as in [2]. We present this procedure in Algorithm 3, where G :=g + h.

3.1. Convergence analysis for iAPG. In this subsection, we analyze the con-
vergence rate of the proposed iAPG. The analysis also applies to APG by setting
e, = 0. The technical lemmas below are needed.

LeEmMA 3.1. Let {(nx, Gk, ok, Vi) } be generated from Algorithm 1. It holds that

Ydec 1 Ydec ~ 1
< -, — < —
L, <SS o Ly+ Ly <SS o

(3.3) ap <1 and v, > p, for any k> 0.

Proof. From lines 2 and 4 of Algorithm 2, we have 7 < % in Algorithm 1. In
addition, the condition in line 6 of Algorithm 2 will hold and Algorithm 2 will stop
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Algorithm 3 (X1 7, 1) = SeekStationary(x*+1) 7).

(k+1) Tk >0 Trg1 ’sz

Inputs: x
repeat

| Mh+1 < YdecTk+1 and x(k+1) «— prOXnk+1T( <k) - ﬁk+1VG( (k) ))
until G(X (k+1)) < G(x (k)) <VG( (k))7~(k+1> ,X(k)> H~(k+1) (k)H2
(k+1)

k+1

Return: x and Ng41.-

if ny, < %, Given lme 4 of Algorithm 2, we have 7, > e in Algorithm 1. Since

Mo < L, I, ‘j:i <Mk < hold similarly.
Solvmg ay, from the equation in line 4 of Algorithm 2 gives
- - 4 2
(34) ap= —(vk — 1) + v/ (0 2+ ’7k/77k Yk .
2/77k (v = 1) + /(v — 1% + 49 /i

Since u < L < 1/ng, we have (7, — ) + 4y, /e = (v + )%, Thus it follows from
(3.4) that ak < 1VEk > 0. Notice if v, > p, then i1 = (1 — ag)yk + agp = . Since
Yo =, we have vy, > uVk > 0 by induction. ]

LEMMA 3.2. In any iteration 0! Algorithms 1, 2, and 3 will respectively perform

at most log,, decc and log., LL:‘_iich iterations. Moreover, if Algorzthm 1 runs for
g ec Mg

t iterations, Algorzthms 2 and 3 will perform at most t + (11;13“ t+ i _1 In(Lel-1)
de Vde

Ydec

and t +1+ ,1 ln(no(inth)) iterations in total, respectively.

Proof. Let n; and my be the numbers of iterations performed within Algorithms
2 and 3, respectively, in iteration k of Algorithm 1. When Algorithm 2 ends, we have
Ny = Vg:;l min{L , YineMk—1}. Since 2= < ppand n—y < 7 by (3.3), we have

2
e oyl L which implies ny < log.,,.. de“ Similarly, my < log,yd Lgff} .
g ec Lg g

The second conclusion can be proved in the same Way as Lemma 6 in [55]. In

partlcular when Algorithm 2 ends, we must have 77k =gk mm{L s YincMk—1} <

Vi %ncnk 1, which means ny <1+ (1:1‘;*7“1) + i ,1 ln("’;7 L) and thus
de

t—1

1 in 1 - | in 1 L,n_
angw(“_;)H ln(n1><t+<n7_f>t+ _1111( o' 1).
k=0 In YVdec In ’Ydec M1 In Ydec In Vdec “Ydec

A similar argument can be used to bound EZ_:IO my.

LEMMA 3.3. Let k = —=* and ar generated by Algorithm 1. Then o >

Ydecl
VEvE=0.

Proof. Lemma 3.1 indicates 741 > . Hence, from (3.3) and the update of vj41,
it follows that ax = \/MEVet1 = \/7 and we obtain the desired results. 0

Next, we establish the relationship between two iterates in Algorithm 1.

PROPOSITION 3.4. Let {(x®), 2" ay, k) k>0 be generated by Algorithm 1. Then

F(X(k+1)) _F* 4 %”X* _ Z(k+1)||2

3.5
(3.5) <(1—ak)[F(x<k>)—F*+%’“Hx*—z<k>\|2]+skak||x*—z<k+1>|| Yk > 0.
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10 QIHANG LIN AND YANGYANG XU

Proof. Let x* be an optimal solution of (1.1) and X*) = agx* 4+ (1 — ay)x®).
Then
(36) R4y = ay ("~ y ) £ (1 - ) ()~ y®),

By the update of y*) in Algorithm 2, we have z(*) — y(¥) = —Z’;—f{i(x(k) —y®). This
together with (3.6) gives '

N . ap (1 — ag)vk
(3.7) 20 _ g9 o, (s — y®)) — SR O iy )y
Vk+1
I (1 — k) vk 200 _ 6P |
Vk+1 VE+1

where the last equality follows from the update of v;x41. According to (3.2), there
exists e®) € R" such that ||e®|| < ¢4 and e — Vg(y*)) — nik(x(kﬂ) —y®)y €
OH (x*+1)). By the convexity of H, we have

H(x(’““)) < H(g(k)) =+ <e(k) _ Vg(y(k)) _ i(x(kﬂ) _ y(k’))’x(k’+1) _ g(k)>7

Nk
which, by the fact that (u,v) =1 (|[ul|>+||v||* — [[u— v||?), implies
H(x"D)y <H &MY + < Vg(y®), xk+1 _ ﬁ(k)>

1
_— (k+1) _ (k) 2 (k+1) _ (k)2 (k) _ (k) 2
~ 5 (I 12+ 1x 12 - 1% 7).
H(% (k) )+ < ( ) % (k) _X(k+1)> +sk||x(k“) _g(k)H

1

—;—@ﬂ“ﬂ—yWW+wﬂ“”—iww %~ y®?).
Mk

From the inequality above and the stopping condition of Algorithm 2, we have
F(x(k“)) gg(y(k)) + <Vg(y(k)) x(F+1) _ y(k)> + LHX(HI) —y® ||2 + H(X(kﬂ))
’ 21

~ 1. -
<g(y®) + (Vg(y™®),x* —y*)) + T [®) —y®|* + HE®)

_ Lug(k) C x| gy kD 2.
Applying (3.6) to the above inequality, we have
F(x®) < g(y®) + (Va(y ™), ap(x* — y®) + (1 — ag) (x*) — y*)))
R -y
+ H(apx* + (1 — ag)x®) HA““) xUHD|12 g gy i) — W),

By the fact that ay € (0,1] from Lemma 3.1, (3.7), and the convexity of H, we have
(3.8)
FEFD) <1 —ar) [9y™) + (Va(y ™), x*) —y®) + H(x)]

+a[g(y™) + (Vgly®),x" = y®) 4 Hx)] + e x5+ -0

" O‘—%Hx* _ A —aw)we w) ks M| - LHg(k) _x D2
21k Vi 2
+1 Yk+1
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Since Yr41 = ai/mk = (1 — ag)yk + agp, we have from the convexity of | - |2 that

o Q=) g bl e A=) g axi_mwl

= 29 CEIL (k)

Tk Vk+1 Ve+1 Ve+1 Ve+1
g%”x* Ol %Hx* —y®)2

which, together with (3.8) and the u-strong convexity of g, implies
F(x*) <(1— ) [g(y(’“)) +(Vgly®)x® —y®) 4 Hx) + T |x" - Z(’“)IIZ]

o [g(y(’“)) +(Vgly™),x* —y®)) + H(x") + %HX* —y 2}

_ b [R®) — xBHD |2 4 e+ — 58
21,
1
(39)  <(-ay) [F<x<’“>> Ik 2P| P - &Y x|
Nk
+ e [lxFEFD — g0,

By the definitions of z**1 and X*), it holds that
(3.10)  [|IR®) —x*HD)12 = |lagx* 4 (1 — ag)x® — xFHD |12 = o2 ||x* — 2D 12,

Apply (3.10) to (3.9) and use y,+1 =« /nx to obtain the desired inequality. d
We apply (3.5) to derive the convergence rate of Algorithm 1.
THEOREM 3.5. For any c € [0,1), Algorithm 1 guarantees that

k k &2
(3.11) thpy1 < Hl—caJ <¢0+ Z ) for k=0
j=0 1_0%)

0

where ¥y, := F(x®) — F* + (1 — (1 — ¢)ay) & ||x* —z®||? and  is defined in Lemma
3.3. In addition, when €, =0V k, Algorithm 1 guarantees that, for k >0,

F(X(kJrl)) _F* 4 MHX* _ z(k+1)H2

(3.12) 1\ At
<[1-— Oy _ p* 1 J0)1x _ 4012
< (1 \/E> (F(x )—F*+ 5 |x* — 2z )

Proof. By the Young’s inequality, we have that for any ¢ € [0,1),

1—c)agai
( ) k+1 k”X* _Z(k+1)||2 + Nk 2

epag|x* —z*F Y| < i
20,

2(1 — )opgr ©
Recall yg41 = %—E Hence, we have from (3.5) that
FH0) P 20 = o)
< (1= ap) [Fx) = F* 4 Ll = 20|

I S (e D P | S

2 2(1 —c)ak+1 Ck
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12 QIHANG LIN AND YANGYANG XU

which, after rearranging terms, is reduced to
F(X(k:-‘rl)) _ F* + (1 _ (1 _ C)O[]c+1) ’Yk2+1 ||X* _ Z(k+1)H2

<(1-— [F (k)Y _ x4k *_(k’)2} Mk

(3.13)

Then it follows from (3.13), the definition of 14, and F(x*)) — F* >0 that

170[]C Nk 2

3.14 < 1— V22
GBI en S TR 00, Y 20 gy, oF S U T Ve 5 s
where the first inequality is because ﬁ =1- ﬁ < 1 — cay, and the

second inequality is by (3.3) and Lemma 3.3. Recursively applying (3.14) gives

k

k k
Prt1 < Hlfcag Yot o a1 Z( H 1*0043)

=0 t=0  j=t
k k
1;[ 1 - cay) (1/)0—&- Z ' 1_0%))7

which implies (3.11) because a;; <1V j >0
When g, =0, (3.12) can be derived by Lemma 3.3 and recursively using (3.5). O

The result in (3.11) is similar to Propositions 2 and 4 in [63] but takes a different
form. It will be later used to derive the oracle complexity of our iAPG. The result
in (3.12) is exactly the convergence property of the APG [52] for a strongly convex
case. Although (3.12) is not new, we still present it here because we need it later to
analyze the complexity to obtain x(*+1) in line 5 of Algorithm 2.

3.2. Complexity of APG for finding an e-stationary point of (1.1). The
oracle complexity of Algorithm 1 must include the complexity for finding x**1) sat-
isfying (3.2) in each iteration of Algorithm 2. Such an x+1) can be found by approx-
imately solving (3.1), which is an instance of (1.1) with the g, h, and r components
being ®(-;y*) n) —r(-), 0, and 7(-), respectively. The assumption on r allows us to
apply the exact APG method, i.e., Algorithm 1 with e, =0V %k >0 to (3.1) in order
to find x*+t1. The convergence of the objective gap by the exact APG method is
characterized by (3.12). However, (3.2) requires x(**1) to be an ¢j-stationary solution
of (1.1) instead of an ex-optimal solution. Hence, we first establish the complexity
for the exact APG method to find an e-stationary solution of (1.1). The analysis is
standard in the literature and is included for the sake of completeness.

LEMMA 3.6. Let Cp = L9+LL” + 4/ Li:Lh, where L and ~ygqec are those in Algo-

rithms 1 and 2. It holds that, for any k>0,

(3.15) dist (0,0F (x*+1)) < Cp\[2(F (x+D) — F*).

Proof. When the stopping condition of Algorithm 3 holds, we have (cf. [78,
Lemma 2.1]) F(x) — F(X) > 5:[x — X[|*, and thus

(3.16) JREHD D <324 (F+D) — FRIHD)).
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Also, from the update of X, we have 0 € V(g + h)(x) + %(i — x) + 0r(x), and thus

dist (0,07 (%)) < V(g + h)(®) — V(g + A)x) + L& -0l < (Ly + L+ 1% — x|.
Hence, for x*+1) in Algorithm 1, it holds that

~ 1 _
dist (0, 0F(x* ™)) < (Ly+Lp+ = [0+ (b1
Nk+41

3.16 1 —
(3.17) < |\ Lg+Lp+ = \/QmJr1 (F(xt+D) — F(x(+1)).
‘ Nk+1
Applying (3.3) and the fact that F(X(**+1) > F* we obtain the desired result. 0

By (3.12) and (3.15), we immediately have the following result.

THEOREM 3.7. Let k and Cp, be defined in Lemmas 3.3 and 3.6. When g, =0
for k>0, Algorithm 1 returns X*+t1) as an e-stationary point of (1.1) with

(3.18) k+1<2ykln (cL \/2 (F(x<0>) — P+ %Hx* —200) ||2) i) :

4. Oracle complexity of iAPG. In this section, we show the oracle complexity
of Algorithm 1 for finding an e-stationary solution of (1.1) in the strongly convex case.
The complexity in the convex but not strongly convex case is not included due to space
limits. For that result, we refer interested readers to [48].

4.1. Complexity for ensuring (3.2). We can find x(*+1) satisfying (3.2) by
calling the iAPG method (Algorithm 1) with the following inputs:

(41) X(k+1) =iAPG ((I)( ; y(k)777k) - T(')v077’<')7X(k)ﬂlkan;laﬁ;lﬂ?gla (0)k2078k) )

where ® is defined in (3.1). Here we use x(¥) as the initial solution to compute
x(*+1) and the inputs in (4.1) are chosen based on the fact that ®(-;y®) ) —r(.) is
1/ng-strongly convex and (1/n; 4+ Ly )-smooth. The complexity of finding x(**1) then
follows from Theorem 3.7.

PROPOSITION 4.1 (complexity for ensuring (3.2)). Let Y and ® be defined in
(3.1). Suppose Algorithm 1 is applied to (3.1) with the inputs given in (4.1). Solution
xB+D) satisfying (3.2) can be found after at most Ty, queries to (h,Vh), where
(4.2)

L Lo+ Ly + L2 /L\/®(x®):y(®) ) — d(xEHY y (k)
T =0 Hln Lo DL sy ) — 0 y®.m)

€k

Proof. Recall that ®(-;y®) ny)—r(-)is (nik—i-Lh)—smooth and nik—strongly convex.
From the strong convexity of ®, it holds that

1 )
(4.3) %llx(k) —xFR <o (x(“;y(k),nk) ) (xik“);y('“)mk) :
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14 QIHANG LIN AND YANGYANG XU

By instantizing Theorem 3.7 on (3.1), Algorithm 1 with the inputs given in (4.1) must
find x(*+1) satisfying (3.2) in no more than t; iterations with

(4.4)

1 L
te <2 wln
Ydec

1/7]k+Lh 1/mx+Ln k).~ (K _ (k+1), (k 1 k) (k+1) 2
\/m \/ Yotoe )\/Q‘P(X( Vi KD, ) =20 (s y R g )+ - [ ) x|

e
Ln. WIot Je Vg T L)\ x5y, )~ (x50 )
=0 1+ fln — ,
€k

where the second equation is because of (3.3) and (4.3) and uses the fact In(1—a)~! > a
for any a € (0,1). By instantizing Lemma 3.2 on (3.1) with the input given in (4.1),
the total number of queries of (h, Vh) must be no more than

In~ipn 2 1 L 2 1 L
Tk:2<1+ gl ")t TR m( Akl h)+2tk+2+ - ln( Tk h),
n ’Ydec In Vdec Vdec N7 dec Vdec

which, together with (4.4) and (3.3), implies the conclusion. |

4.2. Oracle complexity in the strongly convex case. With Theorem 3.5
and Proposition 4.1, we establish the oracle complexity to produce an e-stationary so-
lution of (1.1) by specifying {ex }x>0 and bounding ®(x*); y ) ) —d(x; (k+1) v ).
To do so, let g > 0 be any constant and define the following quantities:

where ¢ € [0,1) is the same constant as that in Theorem 3.5 and & is defined in
Lemma 3.3. By (3.11), (4.5), and (4.6), we have

k

(4.8) PYri1 < H 1—ca;) (o +S) Vk =0

With these preparations, ®(x®);y*) n,.) — @(x£k+1);y(k),nk) can be upper bounded.

LEMMA 4.2. Suppose {e}tr>o in Algorithm 1 are given in (4.5). Let Y and

O be defined by (3.1) and &y, by (4.7) with c€[0,1). Algorithm 1 guarantees that
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(4.9)
S-dist (0,0F (x())” if k=0
2L b )

o(x*;y® ) — o(xP Ty ® py < {0 3L, Getoe ) \2
L + g( k10K 1) fk. > 1
2L Ek-1 'Ydec\/E L ==

Proof. By y(@ =x() we have ®(x(©;y(® ny) = H(x©). Also, it holds that

By ) > (Vo) x =xV) + 5o e = x O+ H(x®) + (6,x )

2
for any &€ € 0H (x(?)) and any x, from the convexity of H. Since 1y < f we have
(4.10) B(x*; 5, mo) — Dy, mo)

1
< —min { <Vg(x(0)) +&,x— x(0)> + —|Ix —x© 2}
x 210
1
= DIVg®) + &1 < 5[ V() + €%
2 2L
Minimizing the right-hand side of (4.10) over & € 9H (x(?)) gives (4.9) for k=0.
Suppose k > 1. By the definition of ¥, in Theorem 3.5 and the p-strong convexity
of F', we have
M * Yk * 1 * Cl *

9> B 24 (1= (1= o) B |2 3 2 ) 24 Lt P,

where the second inequality is due to (3.3). This inequality implies, for any k > 0,
(4.11)

2
ma { x| vell2® x|} < |22

where the second inequality is by (4.8) and the equality is by (4.7). Since ¢ € (0,1)
and y®) is a convex combination of x*) and z(®, it follows from (4.11) that

(4.12) ly® —x*|| < f/’% Vk>0.
By (3.2), it holds that dist(O,Vg(y(k_l))+77k%l(X(k) —y*E=D)+0H (xM)) <epn
for k > 1. Hence, by the definition of ® in (3.1), we have
(4.13)
dist (0,99 (x™; y ™ 7))
<t + [Va(y®™) = Valy S )+ ——[x® =y ) -y

L L
Serrt Eyly® -y I+ Z g0yt Lo o
((5}64-(516,1) Lg < Ok 1) L ( 6k>
Copoy + Lt 0n) | Lo (5 TR
Pt \/E VYdec ¥ \ﬁ Vdec i \[

where the second inequality is by (3.3) and the third one by (4.11), (4.12), and the
triangle inequality. In addition, by the strong convexity of ®(-;y,n), it follows that

(4.14) ®(x®;y® np) — o (xPFy® p) < %kdist(O,@@(x(’“);y(k),nk))zwﬂ > 1,
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which, together with (4.13) and the facts that ¢ < 1,74ec < 1,7 < % and 0 < 0p_1,
gives the result in (4.9) for k£ > 1. This completes the proof. B d

Lemma 4.2 allows us to simplify (4.2) and obtain the following result.

THEOREM 4.3 (oracle complexity to obtain an e-stationary solution). Suppose
{ex}rs0 in Algorithm 1 are given in (4.5). Also, suppose x*+1) is computed by ap-
plying Algorithm 1 to (3.1) with the inputs given in (4.1). Then for any € > 0,
Algorithm 1 with® L = ©(Ly) can produce an e-stationary solution of (1.1) by K%,
queries to (g,Vyg) and T3S, queries to (h,Vh), where

cri

(4.15) K, =0 (\fl C2(¢0+5)+1n (Lg:Lh>>7

SC Lg+Lh & O%(l/)0+S)
(4.16) T35 =0 <’ f B In ((1 + I, )C’E> In — = |

Here, k is defined in Lemma 3.3, ¥ in Theorem 3.5, Cr, in Lemma 3.6, and

dist(0,0F (x(0))) 2
o ’ vV 1—c¢

6L, <wo+5> Vl wojswﬂ }

SO’Ydec 1 - C

(4.17) C. =max {

Proof. Let K, be the smallest integer such that X(*1) is an e-stationary point. It
follows from the definition of vy, (3.15), and (4.8) that

k
(4.18) dist (0, 0F(X* 1)) <Cp, |2 ] (1 = cay) (o + 5) Yk >0.
j=0

Let K| = [v/k1n 2(%:725)0%1 Since oj > /\f by Lemma 3.3, (4.18) implies H ( -
caj) (Yo +S) < (1—¢/v/r) 51 (Yo + S) < 567> which means K < K.
L
By Lemma 3.2, until an e-stationary solution is found the total numbers of

iterations in Algorithms 2 and 3 are (1 + 11;13““ VK1 + == ln(uﬁdﬁ’cc) and K7 + 1+

), respectively. Since (g, Vg) is queried only twice in each iteration of

1 Lg+Lp
Invyg, 1 1n( Lae
Algorlthms 2 and 3, the total number of queries to (g, Vg) by Algorithm 1 is at most
2+ 11;1::7‘,‘2)}(1 +1+log,, . (%), which implies (4.15) when L = ©(L,) because
K <K

Next we bound the right-hand side of (4.2). By the definition of dj in (4.7) and
the choice of ¢, in (4.5), we have

3Lg(6k+5k_1)

(4 19) Ek_l + 'chc\/E — (k + 1) 3Lg(k + 1) 2(1/}0 + S)
' €k kvT—car—1  €07decy/C
Ly(k+1) 2(2pg + 5)

_|_
€0YdecV VT — cou—1

6We assume L = O(Lg) just to simplify the results. The analysis holds for any L < Lg.
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< 2 6Lkt hets) 2
h \/m EOVdec\/m ® h \/ic
6L, K} 2(¢o +5)

+
€0Ydec /(1 — ¢) I

for any 1 <k < K] — 1, where the inequality comes from «_; < 1. This implies

1
(4.20) o(x;y® ) — oMy ™ ) < 5702

In iteration k& of Algorithm 1, the query number of (h,Vh) to compute x(*+1)
satisfying (3.2) is at most T}, given in (4.2), and Algorithm 2 will stop after at most
2

log., .. LZ—“‘;C iterations by Lemma 3.2. In addition, two queries to (h, Vh) are made in

LYdec

Lg'SLh

by Lemma 3.2. Hence, the query number of (h, Vh) at iteration k of Algorithm 1 is
Ly3 L3 . .

no more than (log,, %T)Tk +2log,, L;’fzch. Applying (4.20) to the right-hand

side of (4.2), we can show that the total number of queries to (h, Vh) before finding

an e-optimal solution is at most

sc L’Y?lec Ly L Ly, L%
Tcrit =K-0 <10g’vdec ( Lg > \/Iln Zg + Z + ?CE

Lyiec
+10g’Ydoc Lg + L)

each iteration of Algorithm 3, which will stop after at most log,, iterations

Using the facts that Ky < K| and L = ©(L,) and the fact that ln(%)\/ﬁ <
1/%# = iji’b, we obtain the desired result in (4.16). o

5. Inexact regularized augmented Lagrangian method. In this section,
we consider the affine-constrained composite problem

(5.1) m)in{G(x) =f(x)+r(x)} st. Apx=bg, A;x<by,

where f is Ly-smooth and p-strongly convex with p > 0, and r is closed convex and
allows easy computation of prox,,(z) and dist(0,09r(z)) for any z € R" and n > 0.
We assume that (f,V f) is significantly more expensive than (A(-), AT(-)) to evaluate,
where A = [Ag;A;]. We denote the Lagrange multiplier by A = [Ag;A7] with Ag
and Aj associated to the equality and inequality constraints, respectively. We assume
(5.1) has an optimal solution x* and the multiplier A* = [A%; A]] satisfying

(5.2) 0€dG(X*)+ A" X" Apx*=bg, A;x*<bp; A} >0, (A\},A;x* —b;)=0.

Our goal is to find an e-stationary solution of (5.1) defined formally below.

DEFINITION 5.1 (e-stationary solution). For a given € > 0, a point X € dom(G)
is called an e-stationary solution of (5.1) if there exists A= [Ag; A;] such that

(5.3)  dist(0,0G(X) + ATX) <&/ [|[Apx —bg|2+ [[[A;x — b/][2< ¢

(5.4) Arz0, A @ (Ax—by)|<e
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Algorithm 4 Inexact regularized augmented Lagrangian method (iRALM).
Inputs: x € dom(G), A, B >0, pr > 0,5 >0,V,k>0ande >0 k+ 0
while Conditions (5.3) and (5.4) with (%, A) = (x®, A®)) do not hold do
Find x**Y &~ arg min,, W), (x), where W}, is defined in (5.5), such that
(5.6) dist (0, 0Wx (x* 1)) < &,
which can be done, e.g., by the iIAPG method. See Settings 1 and 2 below. Let
AP — X g (Apx®tD — b)), AFTY = AP 4 g (A x*TD — b))y, and set
k< k+1
Return: (x®) %)

We consider an iRALM presented in Algorithm 4 for finding an e-stationary
solution for (5.1). At iteration k, the iRALM generates the next solution by

(5.5) x* D) ~ arg minx{\lfk(x) =L, (x, A" + %Hx —x(®) ||2}
Here, Lp is the augmented Lagrangian function of (5.1) with the following form:
Ls(x,A) = G(x) + (Ag,Apx —bg) + éHAEx —bg|?

(H BAX =)+ Ay * = IAdl?)

In particular, the iPLAM requires x*T1) to be an &j-stationary point of ¥j. We
can guarantee this by applying Algorithm 1 to (5.5). We will show that, compared
to existing results, the iRALM finds an e-stationary solution with a significantly
reduced number of queries to (f, Vf) but a slightly increased number of queries to
(A(),AT()).

Before giving the details, we first present the following lemmas to characterize
the relationship between two consecutive iterates of Algorithm 4.

LEMMA 5.2. Algorithm 4 guarantees that, for any k>0,

(5.7)

&l — x|

> pllx B =2 o (AT = X2 D = XA a2)

2By,

" %(HXUH—U _ x(®) ||2 + ”X(k-‘rl) _X*||2 _ ||X(k) —X*||2)-

Proof. From (5.6), there exists v(¥) € 8, L, (xF 1, X)) 4 pp (xF+1) — x(*)) such
that ||v(®)| < &, and thus by the p-strong convexity of G, we have

(5.8) (v x D — x*)
> M) — GO) + B IRt 2 4 (ATAR) XD )
+ (BrAL(Apx*T — b ), x* D — x*)

+ (AT [Br(Ax*D — 1) 4 AW kB %)
+ (pp(xFHD — x(B)y 5 (HD) _ yexy,
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By the Cauchy-Schwarz inequality, it holds that (v(¥), x(*+1) —x*) < ||[v(®) |- ||xk+1) —
x*|| < &|[x*+Y —x*||. Hence, by the update of A**Y) and the facts Agx* =by and
A ;x* < bj, we obtain from (5.8) that

(5.9)  axlxtD — x|
> GxHD) = G + Bl — x| AR Apx ) )
+ <)\(k+1) Ax®TD by 4 (o (x P — x By 5 (1) _ iy
= GOxH) = ) + B = x P+ A, Apx D )
n <>\(Ik+1),AIX(k+1) — b))+ %(”X(k-&-l) — x®)|2

[ =P =[x ® = x ).
Using the updating equation of A+ again, we have

1
(5.10) <>\<’“+1> — AL, Apx®tD _by) = <>\§§“) ~ A~ (AGTY — A(é“))>

B

k+1 * k+1 k k *
e COAREE VRN PYARE VAT VARP I}

By [75, Lemma 4], it holds that
(k)

Ay
AFEFD _xe AxtD Z b)) > <)\§k+1) - )\?,max{ 7 ApxFHD — b1}>,
o

which together with max{— b} = ()\(kH) )\(Ik)) gives

(5.11) AR A;Alx(k“) —by)

k+1 1 (k1 k
:<)‘5+)*>\1aa()\g+)*>‘g))>

k+1 * k+1 k k *
= o (A2 = AT+ A =X = AP = AT R)

Adding (5.10) and (5.11) to (5.9) gives
(5.12)
Sl x| 2> GO) — Gl) + S D —x 2 4 (A7, AxUHY —b)
Pk . .
5 (D = 2 D — o2 = x® = x| ?)

1
"%

By the KKT conditions 0 € 9G(x*) + ATA* and (A}, A;x* —by) =0, it follows that

(”)\ (k+1) A*HQ + ||>\(k+1) _ A(k)HQ _ HA(k) N )\*”2)

G(x (k+1)) G+ <)\*7Ax(k+1) —b)
_ G( (k+1) ) G(X*) + <ATA*7X(k+1) _x*> > g”X(k-‘rl) —X*HQ,

where the inequality holds from the p-strong convexity of G. Applying this inequality
to (5.12) gives the desired result. d
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5.1. Outer-iteration complexity. In this subsection, we assume that (5.6) can
be guaranteed. We specify the choices of {8 x>0, {Pk} k>0, and {€; }r>0 and establish
the outer-iteration complexity of Algorithm 4. To do so, we first show the uniform
boundedness of the primal-dual iterates below.

LeEMMA 5.3 (bounded iterates). Suppose By = Boc* and py = poo™* Yk >0 for

some Bg >0,p9 >0, and o > 1 in Algorithm 4. It holds, for any k >0, that
k

2 -1
(5.13) \/50,00HX“€+1 X*H2+H>\(k+1) ¥ |2<Z Bi€i

v/ Bopollx® — 2 + AQ 2|z,
Proof. Multiplying 28 to both sides of (5.7) gives

(5.14)

288k [x* D —x7|

> 2M5k||x(k+1) —x*||2 + (”/\(k+1) . )‘*HQ + ||>\(k+1) _ )‘(k)”Q _ ||)‘(k) . )\*”2)
+ Bopo ([T — x| 4 [ — |2 — [ x ) — x7|?).
Sum up (5.14) to have
BopollxFHD — x| 4 AFFD — X712

k
<D 28] D = x|+ Bopol = x|+ A — A%
i=0

. . . : o 2Bi—1&ia
We obtain (5.13) by the inequality above and >Lemma A.1 with \; = =,

uie =/ Bopollx® —x* 2+ [A® — X2, and € = fopox© —x*[12 + A = A*|[2. O
By Lemmas 5.3 and A.2, we show that Algorithm 4 produces an e-KKT point.

THEOREM 5.4. Let B and py be defined as in Lemma 5.3, &€ = %min
{1,v/Bopo}, and &, = min{e, \/Lo""} Vk > 0 in Algorithm 4. Then Algorithm.

4 will stop and return x%) as an e-stationary point of (5.1) with k no more than

4D 4D
(5.15) K:= max{ {logo m/pr‘ , [logo O-‘ ;

VBoe Boe
5(Do + [|A"])? 8
1 _ 21 —1 1
[Og" Boe * |78 e(ino)? b
(5.16) where Do =1/ fopolx® —x*||2 + A — x|,
Proof. Since &; < & for i >0, we have from (5.13) that
(5.17) ) )

+ : Sy
polc—1)  /Bopo Vpo(o —1)
with Dg defined in (5.16). Hence, by the triangle inequality and (5.17), it holds that
S« || < 2§(Gk+1 + ok — 2) n 2Dy ’ ||A(k+1)
po(o —1) v Bopo
< 28\/Bo ("t + % — 2) 2Dy,
NGRSy

o) — =AW
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and thus

_ 2e(c+1)  2Do\/po 1 _
5.18 B () _ (K= < ’ A _Z\(E&-D
(318)  prea 510 - XUV < EEE g S | u
26(c+1) 2D

s VBopo(o —1) * Boo k=1

By the choice of & and the definition of K in (5.15)7 we have from (5.18) that

3 3
(519) e X< AT A <
4 ﬂ - 4
Additionally, since & < \/£Zo™" for i > O7 it is implied by (5.13) that [|A®) —
A < ky/ 52 8o 4 Dy and thus AP < £2 + Do + ||A"||, which further implies

||)\(k)||2 2ﬁok +2(Dy + ||)\*||)2Vk>0 Hence

1 1 _ 1 BoK? 5 *
6200 5 (A4 IR ) < (B B+ xp2).

ﬁoO’K_1 20 5

Since K — 1 > log, 22042707 St polds that 2Mﬁ(po +IAT])2 < £, Also,
K > [2log, ﬁ] implies 0% > %. Thus £ —x < ¢ according to Lemma A.2

with @ =¢ and b= ¢’. Hence, the right-hand side of (5.20) is no more than ¢, so

(5.21) ﬂ (||>\ 2 + IIA(KA)IIQ) <e
Now from the updating equations of x(**1) and )\(]H'l), we have for any k> 1,
(5.22a) dist (0,9G (x®) + ATA®) <&y + pp [|x® —xE=D,
2 1 _
(5.22D) \/HAExw) —bg|2 +||[Ax® —b;],]|" < m”)\(k) — A=

and, by line 5 of Algorithm 4, we have )\(Ik) >0Vk>1and

NP o@ax® -bl< S AP (Ax® by
ieI A >0
(5.22¢)

k k k— 1 k 1\ k=
= > AT ”>|//3k1<5]€_1(||A§)||2+4||A5 1>||2).

ieI AP >0

Moreover, by (5.19), (5.21), and & < £, the three inequalities in (5.22) imply that
(x5 /\(K)) is an e-stationary solution of (5.1), which completes the proof. d

5.2. Overall oracle complexity. In this subsection, we discuss the details of
how to ensure (5.6) and then characterize the total oracle complexity of Algorithm 4
to produce an e-stationary point of (5.1). Define

(5.23) g1() = F(x) + B = x ),
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(5.24) hi(x) = (A%, Apx — bp) +%||AEx—bE||2

[Be(Ax —br) + AT A
25]@ 2Bk

Then the iRALM subproblem (5.5) can be written as

+

(5.25) min { Wy, (x) = gk (x) + hi(x) + (%)},

which is an instance of (1.1) with ¢ = g5 and h = hy. This means that (5.6) can be
ensured by approximately solving the iRALM subproblem (5.25) using Algorithm 1.
This way, we can apply the complexity result in Theorem 4.3 to establish the oracle
complexity for each outer iteration of Algorithm 4.

We adopt the following settings on solving each iRALM subproblem.

SETTING 1 (how to solve iRALM subproblems). In iteration k of Algorithm 4,

Algorithm 1 is applied to find x*+tY) satisfying (5.6). More precisely, we compute
(k+1) p
X Y

(526) X(k+1) =iAPG (gk7 hk)a T, X(k) » 105770, + p]mLa {gt}t207 gk) )
where €, is defined as in (4.5) fort > 1, g is defined in (5.23), hy is defined in (5.24),
and” L=0©(Ly).

For simplicity, in the setting above, the values of 19, Y0, Ydec, Vinc, L, and ¢ stay
the same across the calls of the iIAPG by different iterations of the iRALM. Also, we
use the previous iRALM iterate x(*) as the initial point to solve the kth subproblem.

SETTING 2 (choice of parameters). Given an e € (0,1), we choose {fr}, {pr},
and {&} in Algorithm 4 as the same as those in Theorem 5.4.
Notation and some uniform bounds. To facilitate our analysis, we first give some
notation used in this subsection. Given K in (5.15) and Dy in (5.16), we let
22’::(0'1( — 1) + D()
po(o—1)  VBopo’

_ 28V/Bo(e" —1) _ o Kk
BA\/W_U+DO,EmIH{€, ﬁ(j }

In order to apply Theorem 4.3 to the iRALM subproblem (5.25), we define

p=pr-1,8=PKr-1,Bx=
(5.27)

kL, Ly,
(5:28)  Lu, =Ly +pi+Bel Al 0£>=7£+ S VE< K,
L Viek) & 2
(5.29) k() — ﬂ’ (k) — Rk - <o 5 <00, VE<K,n
Ydec (1 + Pk) 2(1-¢)?L s (t+1)

(5.30) o =W (x®) — w4 (1- (1 c)ao)% xFHD _x®))12 v < K.

7Again we assume L =©(Ly) to simplify the results. The analysis holds for any L < Ly.
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(k+1)

with x, =argmin, ¥y (x) and ¥} =miny Uy (x). Moreover, we define
(5.31) :
dist (0,00, (x* 2
-]
€0 Vi—c

6(L;+pr) |2 +5®) 2(45") + 50y (CM)?2

+ VE®) In — )
£0%dec /(1 —¢) Ht Pr €k

where ¢ € (0,1) is the same as that in (4.5). Because p < prs B> BrV0 <k < K, the

quantities defined below are respectively upper bounds of ), S*) Ly, , and Cék):

Ly+ _ = ad 2
(5.32) re—tT2 5o \/E2 2 <o,
Yaee (1t + p) 21 —c)PL = (t+1)
_ _ — Ly Ly
5.33 Lo=L A2, CL==2 )
(5.33) v=Ls+po+BlAl% CL @Jr -

By the above notation, we can show the following two lemmas.

LEMMA 5.5. Suppose Setting 2 is adopted. It holds that pr. = p and By < B8
VO<k<K. In addition, |x* —x*|| < Bx and |A® —X*|| < Bx hold V0< k< K.
Moreover, ||X,(kk+1) —x*|<Bx VO<k<K.

Proof. 1t is trivial to show that px > p and ;. < BY0< k< K. From (5.17) and
the definition of By and By in (5.27), we have [|x*) — x*|| < By and [|A®) — X*|| <

B, V0 < k < K. Moreover, notice that the first inequality in (5.17) also applies to

k+1
xi ), Hence, we have

28(cFt — 1) N Dy
po(o —1) VBopo
This completes the proof. O
LEMMA 5.6. Let wék) be defined in (5.30). Then for any 1 < k<K,

(5.34) IxFT — x| < <ByVk<K.

\ B
U < 2B, (14 200 By + | A (20Bx + Ba + [|A*[])) + (1 — (1 — ¢)ag) 222,

Proof. From (5.22a) and the definition of Wy, it follows that
(5.35)
dist (0,095, (x*))) < dist(0,0G(x™) + ATAR)
+|ALAE + Br(Apx —bp)) + ATAY + Bu(Arx — byl — ATAD)|
= dist (0,9G (x™)
+ATA®) + |AL(Be(Apx —bg)) + AT (MY + Bp(Arx —by)ly — AP
<1+ pr|[x®) —xE=D)
ANV B21AEX® — g2+ [IAP + Bu(Arx — b)) - AP
<ot + proa|[x®) —xE=D)
AN B2 1A Ex® — bl + B2IAXE — byl 2+ AP
<Er-1+2p0Bx + |A[(20Bx + Ba+ | A7),
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where the third inequality is because of the facts that )\gk) >0 and that ||[x +y]+ —
yvII? <X+ ]?+|lyl? Yy = 0, and the last inequality is because of Lemma 5.5, (5.22b),
and the fact that v/a + b < /a4 Vb Va,b> 0. The inequality in (5.35), together with
the convexity of ¥y, Lemma 5.5, and (5.34), gives

Uy (x™) — W} < 2By (Ep—1 + 2p0Bx + ||A||(20Bx + Ba + |A*]])) V1< k< K.
The conclusion follows from the fact that £,_; < 1 and [|[x¥™) — x®)||2 < B2. O
By Lemma 5.6, we can bound 1/)0 uniformly for 0 < k < K by the quantity

’YOB:%}

T = max {0, 2B (14 200 B + | Al (20 B+ Ba + X)) + (1= (1 = c)ao) 22

Now we are ready to show the overall oracle complexity of Algorithm 4.

THEOREM 5.7 (total oracle complexity to produce an e-stationary point). Sup-
pose Settings 1 and 2 are adopted. Let K be given in (5.15). Algorithm 4 will stop
and return an 5 stationary point of (5.1) after making Qs queries to (f,Vf) and Qa

queries to ( ) with Q¢ and Qa given as follows. (i) When p=0,
K/2_ 1\ Oy (B +9)
Lyo L\ %o
. = In
(5.36) Q= o Vo1 ) 22 )
Lyok2—1  |A|vBo oK —1 ‘@
(537) Qa= O Lro | |vBo o ) K1 CL("/J02+ S) :
po o —1 Voo o-—1 £

and (ii) when p > O,

Ly Cr(gy+75)
(5.38) Qf=O<K uflnL(EOQ>,

oK/2 7o + )T
QA=O<(K\/: ”A\”}/E’ \I/(E_ll)-K-an).

Proof. By Theorem 5.4, we only need to bound the overall number of queries
that are made to produce x(). From Theorem 4.3, we can find an &j-stationary
point of ¥y, in (5.25) by Algorithm 1 with Qgrk) queries to (f,Vf) and ng) queries to
(A(-),AT("), where

(k)\2 (. (k) (k)
(5.39) Q¥ = 0 VeMm (€)% 0 +5%) |, L
&€ A+ pr
Ly

k k
5a0) OB _ o . m(( Ly, )Cm),ln(O?)?(wéHS(’“)) .
A i+ pr Li+pr) °* g2

In the two inequalities above, we have used the fact & > ¢.
When g =0, we have from (5.39), (k) + S®) <4py + S, and C’L < Cp that

K-1 _
Qf:ZQ(k) ZO(\/HTIH q/}0+S)+lnL‘lj’“>
k=0

9 Pk

—2 — —

K-l k
(5.29) Sofyi+ Lyo® 1 Cr(¥o+9)

Po g2 ’
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which gives (5.36) by YK Y

(5.35) that dist (0,0 (x(¥))) <V\y for any k>0 where

Also, it follows from

V¢ =max {dist(O, L s, (xO X)) 24200 By + | A (Bx(20 4+ 1) + ||>\*||)} =0(1).

By the fact that dist(0,0¥;(x*))) = O(1), the definition of &2 in (5.4), and the
inequalities Cék) <O, k™ <R, and Ly, =L+ pi + Br||A||> < Ly, we can derive

from (5.31) that In((-%-)C) = O(k). Thus, we have from (5.40) that

(B Lu, Luy i) 4 (CED2 @ + @)
Qa kZOQ ZO(\/> ((Lf-l-pk)cé’“).ln L §02

K-1 o <Yor

L+ pr + Brl|A|? Ly~ pr+ Br\ Ak (o +5)Cy

<N o 1 c® ) g WoT2)n
kzzo (\/ B ( Ly +px ) v e

Pk

K/2 _ K — —_—2
o (x4 it AV et =1 ey Wt S)CL Y
po Vo —1 Vo o—1

When i >0, we have

K—-1
Qf:ZQ(k) ZO(FIHCL '(/}O'i_s) +In Ly, >

o K+ Pk
O<K L1, w)
% g2

<kE=0(y/L¢/p) according to (5.32). This gives (5.38). Also, we have

QAzK_1QX“>:K§_jlo< L 1n<( Lu, )c&c)).1n(C£’“)>2(wé’“)+S<’“>)>

where x(F)

2
Pt P M+ Pk Ly + pr g
K-1 — =2
S o Lf+pk+ﬁk||A||2ln<(Lf+pk+5k)C(k)> 1 P+ 9)C
= A+ P L+ pg “k g2

B IA[v/Bo o%/2 — 1 (6o + 5)C7
ol ) ),

where, again, we use the fact ln((LLi];,, )C’(k ) = O(k) and the inequalities Cgc) <Cyp,

k*) <R, and Ly, =Ly + pp + B;.C||A||2 < Ly. This proves the case of j > 0. 0
Remark 1. Notice K =O(In 1) by (5.15), 0¥ =O(1), and £ = ©(¢). Hence, from
Theorem 5.7, we have @y = O(\/ %ln%) and Qa = O \/ Lry HAH ln 1)2) for the

case of u =0, and Qf = O(\/%(ln%)Q) and Qa = \/Tf+ ”A” (In1)?) for
the case of ,u >0. If pg=0(e) and By =O(1), then K O(1). For thls settlng, the
factors (1n )2in Q ¢ and Qa above will reduce to ln = The ch01ce of By = Byo® and
Pk = poa’k enables us to obtain the near-optimal complex1ty results. This is similar
to the setting in [49, Theorem 5]. However, one potential drawback is that if iRALM
does need to run to K outer iterations, then Sx — 0o and px — 0 as € — 0 and thus
the subproblem becomes ill-conditioned.
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6. Smoothed bilinear saddle-point structured optimization. In this sec-
tion, we consider the bilinear saddle-point structured optimization problem

(6.1) p* = min {p(x) = £(x) + r(x) + max {{y. Ax) — 6(y)} }.

where A € R™*" f is smooth and convex, r and ¢ are closed convex and admit
easy proximal mappings, and r allows easy computation of dist(z’,dr(z)) for any
z,z' € R". We assume that (f,Vf) is significantly more expensive than (A(-), AT (-))
to evaluate. We adopt the following notation in this section:

(6.2a) G(x):=f(x) +7(x), h(x):= Jnax {{y,Ax) — ¢(y)},
(6.2b) p(y):= min {G(x) + (v, Ax)},  d(y):=¢(y) = ¢(y)-

We call p(x) — d(y) the duality gap at (x,y) which is nonnegative by the definition
of p and d. A pair (x*,y*) that satisfies p(x*) = d(y*) or, equivalently, 0 € 9G(x*) +
ATy* 0 € Ax* — 9¢(y*) is called a saddle point of (6.1). Apparently, p* = p(x*) =
d(y*)=G(x*) + (y*, Ax*) — ¢(y*). We make the following assumption on (6.1).

Assumption 1. Function f is Ly-smooth and p-strongly convex with p > 0;
Dy :=maxy, y,cdom(e) [|[y1 — ¥2|| < 00; (6.1) has a saddle point (x*,y*).

Our goal is to find an e-stationary solution of (6.1) defined formally below.

DEFINITION 6.1. Fore >0, a point (X,y) is an e-stationary solution of (6.1) if
(6.3) dist(0,0G(x) + A'y) <e, dist(0,Ax — 0p(y)) <e.

The following result shows the duality gap of an e-stationary solution of (6.1).

THEOREM 6.2. Under Assumption 1, if (X,y) is an e-stationary solution of (6.1),
2
then p(x) — d(y) <2eDg + 4.

Proof. Since (X,¥) is an e-stationary solution, there exist @ € dG(X) + ATy and
v € AX — 0¢(y) such that ||u|| < e and ||v|| <e. By the p-strong convexity of G and
the Young’s inequality, it follows that

G(®) <G(x) + (a- ATy, % —x") = L]k — x|
= G(x*) + (@,% — ) — (7,AX — AxX") — gnx —x*|2

1
(6.4) <G(X*)—<S’7A>‘<—AX*>+EHﬁ||2-

In addition, by the convexity of ¢ and the definition of h in (6.2a), we have h(x) +
<‘_’7}_’ - §> < <}_’,A)_(> - ¢(}_’)7 where y € argmaxy{<yaAi> - ¢(y)} Addlng this
inequality to (6.4) gives

p(E) + (7,5 — ) < GX") + (7, Ax") — 6(7) + inﬁn?

(6.5) — p() + (7 — y" AX) + B(y") — 6(F) + inan%
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where the equality holds because (x*,y*) is a saddle point of (6.1). Now from the
convexity of ¢ and the fact Ax* € 9¢(y*), it follows that (y—y*, Ax*)+é(y*)—d(y) <
0. Hence, we have from (6.5) and the Cauchy—Schwarz inequality that

52

_ e .
(6.6) p(x) <p(x )*(V,y7y>+@\\UI|2<p(X )+eDo+ o

Similarly, from the convexity of ¢ and v € Ax — d¢(y), it follows that
(6.7) —0(y) = —o(y") + (v - Ax,y —¥").
In addition, by the definition of ¢ in (6.2) and the fact @ € 0G(X) + ATy, we have

o(y)+ (0,x—X) > G(X)+ (¥, Ax), where X = arg min, {G(x) + (¥, Ax)}. Adding this
inequality to (6.7) and using the fact that p* = G(x*) + (y*, Ax*) — ¢(y*) yield

d(y) +(a,x—%X) > G(X) + (y", Ax) — 6(y") + (V,¥y —¥")
=p" —p(x") +G(X) + (y", AX) — o(y") +(V,¥y —¥")
(6.8) =p" -G+ GX)+(y",Ax — Ax") + (V,y —y").

Notice —A Ty* € 0G(x*). By the convexity of G, we have —G(x*) +G(X) + (y*, Ax —
Ax*) > 0. Hence, (6.8) and the Cauchy—Schwarz inequality together imply

(6.9) dy)+(,x—X)=p" + (V,y—y") =p* —¢eD,.

Moreover, from i € 9G(X) + ATy and 0 € 9G(X) + ATy together with the y-strong
convexity of G, it holds that (@i, % — X) > u||x — X||2. Hence, by the Cauchy-Schwarz
— =112
ineuqality, we have ||x — X|| < @ and (@,X — X) < % < %, which together with
6.9) gives d(y) = p* —eD -2, Therefore, from (6.6), we conclude that p(X) —d(¥) <
AT

2eDy + % This completes the proof. 0

Remark 2. By Theorem 6.2, to produce a primal-dual solution of (6.1) with a

€ dpe . .
i, \ 3 } stationary solution.

duality gap at most € > 0, it suffices to find a min{

When ¢ is convex but not strongly convex, h can be nonsmooth. In this case, [54]
introduces a smoothing technique and solves an approximation of (6.1) as follows:

(6.10) P, = min {py(x) := f(x) +7(x) + hy(x)},

where p > 0 is the smoothing parameter, and h, is defined by

(6.11) hy(x) = max {{y. Ax) —(y) ~ 5y —y |’}

with any y(®) € dom(¢). The result below is from [54, Theorem 1].
2

LEMMA 6.3. h, defined in (6.11) is HAT—smooth and Vh,(x) = ATy(x), where

p 1
(6:12) v =argmax{ (v, Ax) ~ ofy) ~ 1y ¥} =prox,, (¥ + L ax).
yER™

Lemma 6.3 implies that (6.10) is an instance of (1.1) with g = f and h = h,,. This
means we can compute an e-stationary point of (6.10) by calling the iAPG method
in Algorithm 1. We present this approach in Algorithm 5.

By Lemma 6.3 and Theorem 4.3, we have the following complexity result.
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Algorithm 5 Smoothing iAPG method for (6.1).

Inputs: x© € dom(r), y©@ € dom(¢), p>0, n_1 < 727 € [, 1/n-1], L € [, Ly],
and € >0 B

Compute:

(613) x =iAPG (f7 hpa T, X(O)an—lvfy()a /’L7L7 {gk}kZOa €) )

where h, is defined in (6.11) and ¢y, is defined as in (4.5) for k > 0.
Return: x and y =y(X), where y(-) is defined in (6.12).

THEOREM 6.4 (oracle complexity to produce an e-stationary solution). Suppose
Assumption 1 holds and (X,y) is returned by Algorithm 5 with p = D%). Then (X,y)
is an e-stationary solution of (6.1). Moreover, if L = ©(Ly), Algorithm 5 produces
(%,¥) using at most Ky, queries to (f,Vf) and Ty, queries to (A(-),AT (")), where
(6.14)

=0 (i 5250). o (v ) () B,

St is the same as S in (4.6) except that k is replaced by Ky,

Here, k= T #,

o =p,(x@) —pi+(1—(1 —c>ao>iuxz —xO2,

D¢|IAH D<¢>”A”

NS
\/Z Ydec

with x = argmin,p,(x), pj = miny p,(x) = p,(x};), and c€ (0,1).

Ly +

CL=

Proof. Suppose that X is an e-stationary point of p,, i.e., dist(0,0p,(X)) <e. Let
¥ = y(X). Then by Lemma 6.3, we have dist(0,Vg(x) + 87“( )+ ATy) <e. Also,
notice 0 € Ax—9¢(y)—p(y— y(o)). Thus dist(0, Ax—0¢(¥)) < p||y—y?| < pDy =¢.
Therefore, (X,¥y) is an e-stationary solution of (6.1).

Applying Algorithm 1 to (6.10) by (6.13), the quantity C. in Theorem 4.3 becomes

dist (0, dp, (x(©
e O
o 1—c

Le(2— 2 2 2

3Lf(2—c) (o + Sy) [\/Efln (Z/Jo+25f)0ﬂ .
EO/YdeC\/E(l - C) 14 €

Now, first notice that by Lemma 6.3, querying Vh,, once needs one query to (A

(-
Second, by Lemma 6.3 and the boundedness of dom(¢), we have dist(0,dp,(x
O(1). Also, by the p-strong convexity of p,, it follows that

), AT()).
) =

o< [140- 1= a0 2] (<) - 5
<[+ -0 9002 66x®) -0 + 03 =00

Hence, In((1 + ”A” )CE) =O(In(1)). Third, the smoothness constant of h,, is w =

M Therefore we obtain the bounds on K, and T, from Theorem 4.3. O
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2

Remark 3. Since 19 = O(1), Sy =0O(1) and Cr = O( ”AE” ), according to Theorem

6.4, we have Q7 = O( %ln(é)) and QA :O((\/LT7+ Ll/i%)lnz(%)).

7. Experimental results. In this section, we demonstrate the practical per-
formance of the proposed algorithms. All the tests were conducted with MATLAB
2021a on a Windows machine with 10 CPU cores and 128 GB memory.

7.1. Multitask learning. We first test the iAPG on multitask learning [15] and
compare it to the exact counterpart. Given m binary-class datasets D; = {(xy,, ylyi)}ZN:ll,
l=1,...,m, with x; ; € R” and the corresponding label y; ; € {+1, —1} for each ! and
i, we solve the multitask logistic regression [19] and use the regularizer given in [15,
equation (23)] together with an ¢; term:

m N;
: 1 T M 2
Hxlz\l/n; N ;lﬂ (1 + exp(—y1,iw; Xl,i)) + §||W||F

g(W)
A 1 I
+ 2L W — =W11T|| 4+ x| W[y,
2 m F
(W)
h(W)

where [[W||1 =3, ;|w; ;| and w; is the Ith of W and the classifier for task .

In the experiments, we fixed Ay = 1072 and chose g € {0.01,0.1} and \; €
{1,10,100}. A larger value of A; leads to a stronger correlation between the m
classifiers and a larger smoothness constant of h. We randomly generated m = 4
binary-class datasets as in [77]. For each | = 1,...,m, every positive sample follows
the Gaussian distribution N(p;, X) and negative sample following N (—p;, 2) with

n—s

_ Pls><s+(1—p)15xs Osx(n—s) :| _ [ 1 :|
> O(n—s)xs I(n—s)x(n—s) - 0 + dl’

where the entries of d; follow the uniform distribution on [3,1]. We set n =200, N; =
500, V1 or n = 2000, N; = 5000, VI. For each combination of (u,A1,n,N;), we
conducted 10 independent trials. Since the smoothness constants of g and h can be
computed explicitly, we also tested the methods without line search. We terminated
the tested method once it produced an e-stationary point W, i.e., dist(0,0F (W)) < ¢,
and € = 107% was set. For both iAPG and APG, we set Yine = 2 and Ygec = % as
in Algorithm 2 if line search is adopted. In addition, for iAPG, the initial inexact-
ness g9 = 1072 was set. The results are shown in Table 1. Here, #g¢ represents the
number® of calls to g or Vg, #h is the number of calls to h or Vh, stat.viol.
denotes dist(0,0F(W)), and the time is in seconds. From the results, we see that
the proposed 1APG requires smaller #g than the exact APG in all cases. Though
iAPG has larger #h than APG, the former takes less time and thus is more effi-
cient. The advantage of IAPG over APG becomes more significant as the problem
becomes more difficult, i.e., when g is smaller and/or A; is bigger. These verify
our theoretical results. In addition, even without knowing the smoothness constants,
the iAPG by line search has a similar performance to that using the smoothness
constants.

8We increase #g by one if g or Vg or (g, Vg) is called. The same rule is adopted for #h.
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TABLE 1
Results by the proposed itAPG method (i.e., Algorithm 1) and its exact counterpart APG on
solving 10 independent random instances of the regularized multitask logistic regression with different
sizes and model parameters. The numbers in the parentheses are the standard deviations.

1 iAPG no line search I iAPG with line search [ APGnolinescarch [ APG with line search
(e X)) [ #g #h stat. viol. time[ #g #h stat. viol. time[ #(g,h)  stat. viol. time[ #(g,h)  stat. viol. time
Problem size: n = 200, N; = 500 for each [ =1,..., 4
(0.1,1) [[37(0.0) 546(4.1) 7.de7(7.9¢ 8) 0.03] 46(4.0) 850(66.6) 7.0 7(2.1e7) 0.04] 103(0.0) 8.00 7(3.00-8) 0.04] 158(d.2) 7.5e 7(1.7e-7) 0.05
(0.1,10) || 37(0.0) 1815(7.4) T7.3e-7(7.7e-8) 0.03| 47(2.6) 2209(104.9) 7.0e-7(2.4¢-7) 0.04| 322(1.0) 9.5¢-7(3.1e-8) 0.09| 604(4.4) 8.6e-7(9.5¢-8) 0.15
)
)

(0.1,100) || 37(0.0) 5946(37.0) 7.7 7(6.7¢-8) 0.06| 48(2.1) 5226(298.4) 5.3¢-7(2.6¢-7) 0.06] 1038(4.1) 9.8¢ 7(9.0¢-9) 0.27| 1584(6.0) 9.7e 7(1.3¢-8) 0.38

)
(0.01,1) |[T06(T.1) 1806(13.7) 8.9¢ 7(7.4c 8) 0.05|106(0.9) 2313(24.7) 8.8¢ 7(8.7¢ 8) 0.06] 288(1.0) 9.6 7(2.3¢8) 0.08| 404(1.2) 9.2¢ 7(6.0¢ 8) 0.10
(0.01,10) ||106(1.0) 6023(76.8) 8.6¢-7(6.5¢-8) 0.08106(0.9) 5727(211.3) 8.9e-7(7.6¢-8) 0.08| 874(4.2) 9.8¢-7(1.1e-8) 0.22[1643(10.0) 9.6¢-7(3.1e-8) 0.39
(0.01,100)||107(0.8) 19666(189.9) 8.6¢-7(5.5¢-8) 0.16 [107(1.4) 13381(430.9) 8.6e-7(1.1e-7) 0.13 2775(13.4) 1.0e-6(3.2¢-9) 0.71]4248(22.9) 9.9¢-7(8.6¢-9) 1.02
Problem size: n = 2000, N; = 5000 for each z =1,..

(0.1,1) [[31(0.0) 561(0.6) 5.3¢ 7(2-1c 8) 4.5 38(4.9) 869(113.3) 3.dc 7(2.8¢ 7) 4/ 105(0.0) 850 7(1.96 ) 6 ) T ) 7.9
(0.1,10) ||31(0.0) 1870(5.6) 5.5e-7(2.0e-8) 4.5 41(4.9) 2149(245.9) 6.8¢-7(3.4e-7) 4.8341(0.6) 9.6e-7(1.6¢8) 124 0) 8. ) 20.0
(0.1,100) || 31(0.0) 6102(17.2) 5.6 7(1.6c-8) 4.9)41(6.1) 5103(854.0) 4.5¢-7(3.5¢-7) 301107(2,1) 9.8¢-7(1.0e-8) 32.0[1728(8.2) 9. ) 47.2
(0.01,1) [[91(0.6) 2131(12.5) 7.9¢ 7(6.4c-8) 6.1 88(0.0) 2612(7.3) 7.0c7(1.8¢-8) 6.0[319(0.8) 9.7¢7(2.8¢8) 11.8 2) 9.2¢7(5.7¢-8) 16.2
(0.01,10) || 91(0.0) 7099(17.0) 7.60 7(2.1c 8) 6.4| 88(0.0) 7096(183.2) 7.0¢ 7(2.2¢ 8) 6.3999(0.8) 9.9¢ 7(1.0c 8) 20.2|1903(4.6) 9.7 7(1.9¢ &) 51.7
(0.01,100)]| 91(0.0) 23013(41.8) T.60 7(1.3c 8) 7.3 88(0.0) 18142(281.0) 7.0¢ 7(1.5e 8) 6.9/3183(4.0) 9.9 7(L6ec9) 85.11975(14.5) 9.9¢ 7(1.2¢ 8) 129.1

TABLE 2
Results by the iRALM tAPG method with and without line search and the APD method in [20]
with and without line search on solving 10 independent random instances (7.1) with m = 2000 and
n =>5000. The numbers in the parentheses are the standard deviations.

\ Method [[ #query_obj | #query cstr || pres [ dres [[time|
iRALM_APG no line search [[ 2521(286.3) [21098(4723.5) || 3.0e-7(2.9e-7)[6.2e-8(2.1e-10)[ 18.2
iRALM_iAPG with line search || 2962(347.0) ‘ 9760(1200.6) || 3.0e-7(2.9¢-7)| 5.2¢-8(9.0e-9) || 17.0
APD no line search 7929(606.7) 8.8¢-10(1.1e-9)| 3.0e-7(2.8¢-7) || 51.4
APD with line search 4349(334.8) 1.8e-7(2.2e-7)| 2.9e-7(2.8¢-7)|| 55.3

7.2. Zero-sum constrained LASSO. In this subsection, we test the iRALM
in Algorithm 4 with iAPG as a subroutine, on the zero-sum constrained LASSO [17,
30]:

1 1 ¢
(7.1) m)gniHAx—b\P—l—)\Hle s.t. %;xi:().

Here, A € R™*™ and b € R™, and we divide by /n in the constraint to normalize
the coeflicient vector. We name the proposed method as iRALMiAPG and compare
it to the accelerated primal-dual method, called APD, in [20]. To apply APD, we
solve an equivalent min-max problem by the ordinary Lagrangian function of (7.1).
For iRALM'iAPG,’ we set in Algorithm 4 B = Boc®, pr = poo ™" with By = 1, pp =
1073,0 =3, and g9 = 1075, Vine = 3, Ydec = l in Algorithm 2 if line search is adopted.
We set 79 = 1 and g = 1072 for APD if hne search is adopted; see Algorithm 2.3
in [20].

In the tests, we set m = 2000,n = 5000 and fixed A = 10~2 in (7.1). Each
row of A took the form of HaH’ where a was generated by the standard Gaussian
distribution. We generated a zero-sum sparse vector x° with 200 nonzero components,
whose locations were selected uniformly at random. Then we let b= Ax°410"3 m
with & generated from the standard Gaussian distribution. The stopping tolerance
was set to € = 107% to produce an e-stationary point. We conducted 10 independent
runs. The results are reported in Table 2, where the methods without line search used
explicitly computed smoothness constants to set a constant stepsize. The quantity
#query’obj denotes the number of queries to (A, AT) and #query cstr the number

9A comparison to iRALM with the exact APG as a subroutine can be found in the longer arXiv
version [48] of this paper.
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TABLE 3
Results by the proposed iRALM tAPG, the APD in [20], and the PDS in [41] on solving instances
of the portfolio optimization (7.2) with NASDAQ data.

‘ H Method H #query_obj ‘ #query _cstr H pres ‘ dres ‘ cmpl H time ‘
_ || IRALM_iAPG no line search 112704 ‘ 5530144 0.0e400 | 4.2e-07| 9.2e-19 || 350.6
] iRALMUAPG with line search 37235 ‘ 715328 0.0e+00 | 4.2e-07| 0.0e4-00 || 97.0
= APD no line search 1118808 0.0e+00 | 1.3e-06| 2.2e-17 || 3603.8

PDS 54058 ‘ 176318909 3.5e-18 | 1.1e—06| 1.5e-25 || 3604.0
; iRALM_iAPG no line search 21314 ‘ 375994 0.0e+00|2.3e-07| 7.0e-14 || 54.1
S |[iIRALM_APG with line search 48643 ‘ 117194 0.0e+00 | 2.3e-07| 7.1e-14 || 108.4
Il APD no line search 1119046 0.0e+00 | 8.5e—07| 4.9e-18 || 3603.6
= PDS 6278 ‘ 8927446 0.0e+00 | 2.2e-07| 0.0e4-00 || 195.5
— || iIRALM_APG no line search 3206 ‘ 32178 4.4e-09 | 6.2e-08| 4.8e-13 || 10.8
S |[iIRALMAPG with line search 6601 ‘ 16451 5.2e-09 | 6.2¢-08| 5.6e-13 || 17.8
l APD no line search 1119360 0.0e4-00 | 9.0e-08| 2.6e-21 || 3603.6
- PDS 1404 ‘ 29512311 0.0e+00 | 5.6e-08| 0.0e400 || 591.7

of times the constraint function in (7.1) is evaluated. The quantities pres and dres,
respectively, mean the violations of primal and dual feasibility in the KKT system.
From the results, we see that the proposed method needs significantly less time than
the APD method to produce comparable solutions. In addition, both methods with
line search performed similarly as well as those without line search.

7.3. Portfolio optimization. In this subsection, we test the proposed method
iRALM'iAPG on solving the portfolio optimization:

1 n
(7.2) m)in ngQx s.t. x>0, gxi <1, ETX >c,

where € contains expected return rates of n assets, Q is the covariance matrix of the
return rates, and c is the minimum total return.

We solve instances of (7.2) with the real NASDAQ dataset!® [59], where £ is the
mean of 30-day return rates. The original covariance matrix Qg € R2739%2730 g yank-
deficient, and in (7.2), we set Q = Qg + uI with € {0,1072,0.1}. We set ¢ = 0.02,
a tolerance to £ = 1079, and also a maximum running time to one hour. We found
that APD with line search did not work well for these instances, possibly because of
the rounding error during the line search. Hence, we only reported its results without
line search by explicitly computing the smoothness constants and setting constant
stepsizes. The results by all methods are shown in Table 3, where cmpl represents the
amount of violation of complementarity condition in the KKT system, and all other
quantities have the same meanings as those in Table 2. From the results, we see that
the proposed method iRALM'iAPG was significantly more efficient than APD and
PDS in terms of running time. For the hardest case that corresponds to =0, APD
and PDS both failed to reach the desired accuracy within one hour. PDS required
many more queries to the constraint functions, though its queries to the objective
were significantly fewer than the proposed method. This is because the inner loop of
PDS needs to run to a theoretically determined maximum number of iterations rather
than to a computationally checkable stopping condition.

8. Conclusions. We present an inexact accelerated proximal gradient (IAPG)
method for composite convex optimization, which have two smooth components with
significantly different computational costs. When the more costly component has

10More results on synthetic data can be found in the longer arXiv version [48] of this paper.
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a significantly smaller smoothness constant than the less costly one, the proposed
iAPG can significantly reduce the overall time complexity than its exact counter-
part, by querying the more costly component less frequently than the less costly one.
Using the iAPG as a subroutine, we proposed gradient-based methods for solving
affine-constrained composite convex optimization and for solving bilinear saddle-point
structured nonsmooth convex optimization. Our methods can have significantly lower
time complexity than existing methods.

Appendix A. Technical lemmas. The following technical lemmas are needed
in our convergence analysis. The first lemma below is obtained by applying inequality
Va+b<y/a+ Vb for a,b>0 to the conclusion of Lemma 1 in [63].

LEMMA A.1. Let {ug}r>1 be a sequence of nonnegative numbers. Suppose ui <
C + Zle Aiu; Vk > 1, where C > 0 is a constant and X; > 0V i > 1. Then
up < A+ VOVE2 1.

LEMMA A.2. Leto>1 and a € (0,1). Ifb> % >1, then (log, b)? < a-b.

a2(lno)?
Proof. Let §(z) = 3(Inz)? — 2. Then #'(z) = LInz — 1. Since Inz <z Va >0,
we have ¢'(z) < 0Vz >0, so 0 is decreasing. Hence, 6(z) < (1) < 0Vz > 1, which
implies (log, 22)? < 3% Va2 > 1. Taking 2 = v/b gives (log, b)? < 8V < g b,

(Ino)? = (Ino)?

where the second inequality is by the asssumption that b > %. ]
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