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A Decentralized Primal-Dual Framework for
Non-convex Smooth Consensus Optimization

Gabriel Mancino-Ball, Yangyang Xu, and Jie Chen

Abstract—In this work, we introduce ADAPD, A DecentrAlized
Primal-Dual algorithmic framework for solving non-convex and
smooth consensus optimization problems over a network of
distributed agents. The proposed framework relies on a novel
problem formulation that elicits ADMM-type updates, where
each agent first inexactly solves a local strongly convex subprob-
lem with any method of its choice and then performs a neighbor
communication to update a set of dual variables. We present
two variants that allow for a single gradient step for the primal
updates or multiple communications for the dual updates, to
exploit the tradeoff between the per-iteration cost and the number
of iterations. When multiple communications are performed,
ADAPD can achieve theoretically optimal communication com-
plexity results for non-convex and smooth consensus problems.
Numerical experiments on several applications, including a deep-
learning one, demonstrate the superiority of ADAPD over several
popularly used decentralized methods.

Index Terms—non-convex consensus optimization, decentral-
ized optimization, primal-dual method, decentralized learning.

I. INTRODUCTION

IVEN a set of N agents connected by an
Gundirected network (graph) G = (V,E), where
YV = {l,...,N} denotes the set of agents and
E = {(i,j): agenti is connected to agent j} denotes
the set of feasible local communications among agents,

consensus optimization methods solve the following problem
using only local computation and local communication,

where each f;: R? — R is a differentiable, potentially non-
convex, cost function known only to agent i.

Problem (1) arises naturally in various scientific and engi-
neering applications such as distributed machine learning/fed-
erated learning [1]-[3], decentralized matrix factorization [4],
network sensing and localization [5]-[7], and multi-vehicle
coordination [8], to name a few. The decision variable x can
represent the weights of a neural network [1], the location of
a particular object [8], or the state of a smart grid system [6],
for example. Essentially, any scenario in which data is either
too large or naturally distributed fits problem (1).

Gabriel Mancino-Ball and Yangyang Xu are with Department of Math-
ematical Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
(e-mail: mancig@rpi.edu; xuy21@rpi.edu).

Jie Chen is with MIT-IBM Watson Al Lab, IBM, Cambridge, MA, 02142,
USA (email: chenjie@us.ibm.com).

This work was partly supported by the Rensselaer-IBM Al Research
Collaboration, part of the IBM Al Horizons Network. Y. Xu is supported
in part by NSF grants DMS-2053493 and DMS-2208394 and the ONR
award N00014-22-1-2573. J. Chen is supported in part by DOE Award DE-
OE0000910.

A. Problem Formulation

It is well known [6], [9] that if G is connected, the following
problem is equivalent to (1):

m)én F(X) subject to WX =X 2)

where W is a mixing matrix [6], [10], [11] that satisfies the
conditions in Assumption 1 below, and

X £ [x x| e RV FX) 2 L3N fix), ()

is the concatenation of local decision variables and the global
objective function, respectively, written in matrix notation.
Here, x; is agent i’s local copy of the global variable x,
and W € RV*V represents the connectivity structure of the
network G.
Assumption 1: The mixing matrix, W € RNXN satisfies,
(i) (Decentralized property) w;; > 0 if (i, j) € &, other-
wise w;; =0,
(ii) (Symmetric property) W = W',
(iii) (Null space property) null (I- W) = span{e}, where
e € R is the vector of all ones, and

(iv) (Spectral property) the eigenvalues of W lie in the range
(=1,1] and can be ordered as

“1<AN(W) <+ < (W) <A (W) = 1.

Several common choices for mixing matrices are presented
in [6].
- Laplacian-based constant edge weight matrix,

w=1-L 4)

where L is the Laplacian matrix of G and 7 > %/l 1(L).
Here, 1 (L) is the largest positive eigenvalue of L. If the
eigenvalues of L are unknown, by the Gershgorin circle
theorem one can use 7 = max;cy{|N;|} + €, for some
€ > 0, where N; = {j: (i,j) € &} is the set of agents
that can communicate with agent 7.

- Metropolis constant edge weight matrix, for some € > 0,

1 ..
max (NN e D) €8

i =10 (G j)¢eESandixj, (O
1= Yrevwik, i=].

- Symmetric fastest distributed linear averaging matrix,
(FDLA), which is a matrix that achieves the fastest infor-
mation diffusion through G and is obtained by solving a
semidefinite program [12].

Note that the constraint formulation WX = X in (2) is not

the only choice for a consensus problem. Under Assumption 1,
an equivalent consensus constraint adopted by others [4], [13],
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[14] is x; = x; for all (i,j) € &. This constraint is an
edge-based constraint, whereas we consider a vertex-based
constraint. When a primal-dual approach is designed, if G
is dense, then a vertex-based constraint introduces fewer dual
variables than an edge-based constraint. Further, an optimal
W can be designed, given G [12].

A vital quantity for our analysis comes from the spectral
properties of G. We define

o2

W e’ = max {142 (W)l [ty (W} € [0.1). (6)

The metric in (6) is one way to measure the connectivity of
G, where p ~ 0 implies good connectivity.

Under Assumption 1, particularly null(VI— W) = null(I -
W) = span{e}, a further equivalent reformulation to (1) is

m)}n F(X) subject to VI- WX =0, (@)

where 0 € RN*P is the matrix of all zeros. A benefit of this
formulation is that the constraint VI - WX = 02 can now be
incorporated into a penalty term, zln HVI - WXH , where n >
0 is a penalty parameter. The gradient associated with this term
is % (I— W)X, which can be computed by a single neighbor
communication.

One way to solve (7) is to form the aungented Lagrangian

with dual variables Y = [y] yN] and perform a
primal-dual type update as in IDEAL [15]. The issue with this
approach is that the communication and computation phases
are inherently coupled, illustrated as follows. The classic
primal-dual updates at iteration k used to solve (7) are

2
XK1 = argmin F(X) + <\/I “WYK, X> o “\/I - WX”F ,
X
VI - WYFH = VT - WYF + %(I - W)Xk+, ®)

If a first-order method is used to solve the X subproblem,
then part of the gradient will contain WX at each gradient
computation, thus for every gradient computed, one neighbor
communication must be performed.

Another way to solve (7), as suggested by the Prox-PDA
method [4], is to introduce an additional proximal term of the
form 5 [[X — X*||5.-. where BTB = — (I - W)+D with some
diagonal matrix D. This negates the neighbor communication
required in the X subproblem of (8), but introduces a new pa-
rameter D that impacts this method’s numerical performance.

Interestingly, Prox-PDA with a special choice of BB
recovers the distributed ADMM algorithm [16] for consensus
optimization with edge-based constraint; see Appendix B for
details. Hence, part of this work serves to compare ADMM-
type methods derived from using edge-based constraints ver-
sus vertex-based constraints for solving problem (1) in a
decentralized manner. Our numerical findings in Section IV
indicate that our below derived inexact ADMM gives better
performance than distributed ADMM [16].

To remove the addition of D from Prox-PDA, yet still decou-
ple the communication and computation phases of traditional
primal-dual methods, we propose adding an extra variable (and
constraint), leading to the following formulation:

)r(n%? F(X) subject to X =Xy, VI-WX(=0. )
20

Governed now by two blocks of primal variables, a natural
approach to solve (9) would be to use an ADMM-type
update [17], [18], but as argued in Section II, the classic
ADMM cannot be implemented in a decentralized manner
to solve (9). Hence, we are motivated to design a method
that: (i) solves (9) using only decentralized communication
and local gradient computations and (ii) achieves the optimal
communication complexity results established in [19].

We state the technical assumptions on F below.

Assumption 2: The objective function F in (9) satisfies:

(i) F is L-smooth, i.e. there is 0 < L < oo such that

IVF(X) -VF(Y)|lp < LIIX-Y|p, ¥V X, Y e RVXP,
(10
(ii) F is lower bounded, i.e. there is f such that

—c0 < f<F(X), Y XeRN*P, (11

The gradient of F, written in matrix notation, is
VF(X) £ % [Vfi(x1) Vin(xn)]" e RVXP,

Note that the assumptions (10) and (11) are standard in non-
convex optimization. If each f; is L;-smooth then L > max; L;
and the lower boundedness assumption is equivalent to the
existence of a minimizer of F.

Before demonstrating a brief literature review, we state a
standard definition [4], [11], [19] for stationary points of (1).

Definition 1 (&-stationary point): A matrix X € RN*P is
called an e-stationary point of (1) if

(12)

2
| _ <112
”W =N, Vfi(X)”2+”X—XHF <e (13)
where X £ ﬁeTX is the average vector across the N rows of
Xand X = ﬁeeTX is a matrix version of this same average.

B. Related Works

Distributed computing dates back decades ago to the sem-
inal work [20]. Centralized computing paradigms, where
W = #eeT in (2) have been heavily studied; when each f;
is convex, methods such as ADMM [17] and FedAVG [21]
have theoretical convergence guarantees. The focus of this
paper is on decentralized computing paradigms. Methods
such as DGD [10] and the distributed subgradient method
in [22] have been shown to have sublinear convergence in the
convex differentiable and convex non-differentiable settings,
respectively. When strong convexity is assumed, the NEAR-
DGD [23] method improved the convergence result of DGD
by allowing for multiple communications during each itera-
tion. If f; has Lipschitz continuous gradient and is strongly
convex, ADMM [6] and Acc-DNGD-SC [24] exhibit linear
convergence. The EXTRA [6] method also exhibits linear
convergence if the global function f is restricted strongly
convex!. SSDA [9] and the recent distributed FGM [25]
were designed for convex problems where the gradients of
the Fenchel conjugates’ of the objective functions f; are

'A convex, differentiable function h: R? — R is restricted strongly
convex about a point X with parameter u > 0 if (Vh(x) — VA(X),x - X) >
ux - f(||§ for all x e RP.

2The Fenchel conjugate of a convex function h: RP — R is h*(y) =
supx (X,y) — h(x).
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computable, with the later providing complexity results when
only approximate gradients are computable. IDEAL [15] and
FlexPD [26] are recent primal-dual methods that perform
many, or just a few, local neighbor communications per local
primal update, respectively.

Of particular interest to us are algorithms dealing explicitly
with non-convex local cost functions, e.g. neural networks.
When each f; has Lipschitz continuous gradient, the celebrated
DGD [27] has been shown to converge using diminishing
step-sizes with a rate O ((1 - p)~2K~!), where p is defined
in (6) and K is the iteration number. As indicated in the
introduction, Prox-PDA [4] is a primal-dual method that is
closely related to non-convex ADMM [28] which converges
at a rate O (K‘l), but has superior numerical performance
when compared to DGD. SONATA/NEXT [7], [29] is a primal
method that exhibits the same convergence rate as Prox-
PDA and incorporated a potentially non-smooth but convex
regularizer into the objective. While SONATA is applicable
to a larger class of problems, it needs to take step-sizes
proportional to N~! for convergence; as N — oo, SONATA’s
performance can suffer because of this requirement. If the
Chebyshev communication protocol [30] is used, SONATA
additionally can achieve the O ((1-p) "3K~!) rate, but
SONATA must communicate two variables for every algorithm
update. Both Prox-PDA and SONATA require agents to solve
a local strongly convex subproblem. Our proposed framework
can achieve a convergence rate of O ((1-p)™°K~!) when
multiple neighbor communications are performed; note this is
optimal for the class of smooth nonconvex problems [19].

Methods that use stochastic gradients have also been heav-
ily studied. Adapting DGD to stochastic updates yields D-
PSGD [2] which is shown to have a convergence rate of
O (K7%%). Recent works such as D? [31], DSGT [32], and D-
GET [11] make use of stochastic gradient updates mixed with
a gradient tracking scheme and draw inspiration from their
non-stochastic and centralized counterparts [6], [33]. D? im-
proves the convergence of D-PSGD, but requires more restric-
tive assumptions on the eigenvalues of W. The convergence
rate of DSGT was shown to be O (K™% + (1 -p)3K™!)
in [32] and later improved to O (K703 +(1-p2)~'K™)
in [34]. D-GET is able to achieve a rate O (K™!) but re-
quires a full gradient computation every few iterations; GT-
SARAH [35] achieves the same rate but removes the full
gradient computation. The authors in [36] develop a primal-
dual method with convergence rate O (K°°), where each
agent computes one local stochastic gradient per update. The
recent SPPDM [37] can also achieve a stochastic e-stationary
point in O (5‘1) iterations using stochastic gradients and incor-
porates a potentially non-smooth but convex regularizer into
the objective; SPPDM requires a mini-batch of size Q (¢7!) to
achieve this rate. We remark that our framework can exhibit
the optimal convergence rate when deterministic gradients are
used, yet we include relevant decentralized stochastic methods
here for sake of completeness.

Additional algorithms to consider are asynchronous algo-
rithms that do not require a synchronous communication step
and algorithms that use time-varying mixing matrices and/or
mixing matrices that do not satisfy Assumption 1. Some

prominent asynchronous algorithms include AD-PSGD [38],
the Asynchronous Primal-Dual method in [39], APPG [40],
and the asynchronous ADMM [13], [41]. Algorithms that
handle different network structures from those considered here
have also been considered: Push-Pull [42] handles directed
graphs and DIGing [43] is a gradient tracking algorithm
that works for network structures where W changes at every
iteration. While these scenarios are certainly interesting, we
focus on synchronous updates and undirected graphs.

C. Summary of Contributions

Our main contributions are listed below:

- We motivate the novel problem formulation of (9) for
solving the non-convex and smooth decentralized con-
sensus optimization problem. We propose ADAPD, A
DecentrAlized Primal-Dual algorithmic framework for
solving such problem. Our framework is based on per-
forming inexact ADMM-type updates by the augmented
Lagrangian function of problem (9). Two variants to our
framework: ADAPD-OG (ADAPD-One Gradient) and
ADAPD-MC (ADAPD-Multiple Communications) are
presented. ADAPD-OG performs a single gradient step
instead of inexactly solving a local strongly convex sub-
problem. ADAPD-MC allows each agent to communicate
multiple times with their neighbors for each update. These
variants allow for agents to optimize the balance between
performing local computation and local communication.

- We prove that ADAPD and ADAPD-OG converge to
an e-stationary point, see (13), in O (L(1-p)~2e7!)
neighbor communications. When the MC variant is used,
this complexity is reduced to O (L(1 — p)~*3&71), which
is optimal for smooth, non-convex consensus optimization
problems [19]. For both ADAPD and ADAPD-OG, a key
ingredient of our analysis is defining a Lyapunov function
that decreases with every iteration.

- We compare ADAPD on several non-convex problems
to state-of-the-art methods such as DGD [27], Prox-
PDA [4], D-PSGD [2], DSGT [32], D-GET [11], and
SPPDM [37]. Four experiments are conducted in total:
two using deterministic gradients and two using stochastic
gradients. In all cases, ADAPD demonstrates numerical
superiority over these popularly used methods.

D. Notation

We use bold face letters such as X and x to denote a matrix
and a vector, respectively. Let x;; denote the element in the i h
row and j'" column of the matrix X. The Frobenius norm of a
matrix is denoted [|-||, while the Euclidean norm of a vector
is denoted ||-||, . Define the standard matrix inner product of
A,B € RV*? to be (A,B) = 3N, Zj.’:l a;jb;;. For a given
symmetric matrix U € RV*VN | we denote ||A||(2j 2 (AUA) . If
U is positive definite, then ||A||%J defines a norm. For square
matrices A, B € RV*V | define the matrix inequality A < B to
hold if and only if B — A is positive semi-definite.
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II. ADAPD FRAMEWORK

To solve (9), we employ the au%mented Lagrangian function
with penalty parameter 0 < n < +, which is

Ly(X,X0: Y. Z) = F(X) + (Y. X = Xo) + 5 X = X0l

(14)
+ <Z, VI- WX0> + H\/I - WXOHF
with dual variables
Y £ [y yv]'. Z2 [z av]T e RN (15)

The classic ADMM [17] approach for solving (9) performs
the following updates using (14):

XK1 = argmin Ly(X, X} Yk, 2% (16)
X

Xg“ = argmin L,,(Xk”,X();Yk,Zk) Y
Xo

YiHl — vk 4 ) (Xk+1 _X16+1) (18)

Zk+l :Zk +,32 \/I—VVXg-'-1 (19)

where 1, B2 > 0 are the step-sizes for the dual variables.

Notice that in practice, the exact minimizer of (16) is
difficult to find; thus a natural alternative to (16) would be
to perform an inexact update to the local decision variable as
in [44], [45]. This would lead to a computationally efficient
way to solve the local subproblem (16) that fully utilizes local
computing power without overburdening the agents.

Further, notice that the optimal solution to (17) involves
solving

5 (2I=W)Xp = ;XM 4+ YK~ VI-WZk, (20)
It should be stated that (2I — W)_1 exists (by Assump-
tion 1(iv)). However, it is not easy to solve in a decentralized
setting: since W is not diagonal, solving (17) would involve
another iterative method (e.g. Jacobi method), which may
require many communications to find the exact minimizer. To
remedy this, we note that (20) is a linear equation and apply
a simple split for the unknown Xg:

1 k+1 1 k — 1yk+l1 k k
Lox+t - Lwxt = Lxk+l 4 yk - VT-WZF,

Remarkably, such a rough estimate for solving the X¢ subprob-
lem based on the past iterate X(’j still guarantees convergence,
based on the following intuition. Let X(’;” be the solution
of (20). Then the one gradient step in (21) replaces the
unknown term WXX*! by WXX. Our analysis will show that
Xk Xk — 0. Hence the one-step gradient descent update
Will become a close approximation to the exact update, and
thus it can still guarantee convergence.

Additionally, the Z update in (19) cannot be implemented in
a decentralized manner, as VI — W in general will not preserve
the underlying network topology. However, notice that if Z° €
range(VI — W), then Z¥ € range(VI — W), for all k > 0 from
(19). Hence, we can multiply VI - W to the left of all terms
in (19) and obtain the equivalent update

VICWZ = VI—Wzk + L La- W)XE+

Doing so allows us to use ZK = VI - WZF to simplify all
relevant terms in (21) and (22).

2n

(22)

To summarize, defining 8y = B2 = TL], we propose the
following modifications to (16)-(19):

Xk & argmin L,(X, X} YK, %) (23)
Xk = (ka S SERVIVGEA) (24)
Yk+1 — Yk + 5 (Xk+l _ X16+1) (25)
24 =78+ La-wyxh (26)

On the surface, there are two multiplications with W in (23)-
(26). However, they involve the same variable X, differing in
only two consecutive iterations. This implies that except for
the first iteration, our framework requires only one multipli-
cation by W per iteration and hence only one communication
among agents (for networks where multiple communications
are permitted, see Section II-A).

We make two remarks on the solution of the local subprob-
lem (23).

Remark 1: For n < %, the X update performed in (23)
is accomplished by inexactly solving the following strongly

convex local subproblem for all agents i =1,..., N,
2
miny, fr(xe) + (v.x =% )+ o e -xb [ @)

where the inexactness is quantified by the following error
quantities. We require

2 ) .
||rf.‘+1”2 < % with 28)
r{.‘” 4 Vfi(x{-‘”) +yl’.( + ,i](xf.‘” - Xg,i)’ Vk > 0,

to hold for the local error at iteration k and for the cumulative

error we require,
=0(1-p). (29)

Remark 2: Similar to the results in [46], we can require,

Yot €K+l

B[] < % Vi 20, and 29) (30)

and the theoretical results are not significantly affected. This
allows for stochastic solvers to be used by each local agent.
From an agent’s point of view, (23)-(26) can be summarized
in Alg. 1 below.

Algorithm 1: ADAPD (agent view)

Input: X°, X0, YO, Z0 = VI- WZ° with
70 ¢ range(\/I W), K, n > 0, a non-increasing
sequence {ek}kK: I

1 for k=0,...,K—-1do
2 |(fori=1,...,Nin parallel do
3 | |Update x; until ||rk+1||2 el with rf*!in (28)

4 | |if kK =0 then

‘ k+1 k+l

1 ok
S 11X < 2 (ZjeMu{t} WijXo,; +X

6 | |else

k+1 1 k+1
7 t‘o,i “— 3 (Xi +

+n(yF - zk))

X§i+77(yl 22 +zk 1))

k+1 ko 1 (k1 _ (k+l
s ||y <y +-(1 - xt)

Fk+1 k+l k+1
0| |% <—z + = (l—w”)x ZJGNIWU 0.7
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Recall that we obtain a unique sequence {Z* }le in
range(VI— W) from the generated Z-sequence. Therefore,
without causing confusion, we can use the corresponding
Z-sequence in our analysis. Notice that our framework is
sufficiently flexible to allow each agent to use different local
subroutines to solve (27). In networks where the comput-
ing power of the agents differs vastly (see, e.g. [1]), this
flexible framework allows for agents with higher compute
capabilities to fully utilize their compute power whereas agents
with lower compute capabilities are not expected to utilize
heavy optimization tools to solve their local subproblems.
We now describe two variants/modifications to Alg. 1 that
can be employed if the computational constraints and/or the
communication constraints are relaxed.

A. Framework Variants

1) Computation Variant: In scenarios where agents may
face a lack of computational resources to solve (27), it may
be inefficient to compute V f;(-) many times. To remedy this,
we propose ADAPD-OG (One Gradient), which requires each
agent to only compute a single gradient during every iteration.
More precisely, we do the update:

Xk = xk —r](VF(Xk)+Yk). G1)

Notice that if X¥*! is the exact solution of (27), then X**! =
X5 —n (VF()A("”) + Yk), which is a backward step because

VF(X**1) is unknown. The update in (31) is a forward step.
Since we can show [ X**! — XK||z — 0, the forward step
will eventually be a close approximation of the backward
step, and thus we can expect convergence. Alg. 2 displays
the pseudocode of ADAPD-OG.

Algorithm 2: ADAPD-OG (agent view)
Input: X°, X3, Y0, Z0 = VI- WZ° with
70 € range(VI - W), K, > 0.
1 for k=0,...,K—-1do
2 |fori=1,...,N in parallel do
3| [xfH xg’i - (VA& +y%)
4

Perform lines 4 - 9 in Alg. 1 to update X’étl,yf.‘“,

k+1

and z;

2) Communication Variant: For convergence, it may be
practical to allow agents more than one communication dur-
ing each ADAPD update. We denote the following multiple
communication modification (either to Alg. 1 or Alg. 2)
with appending an “-MC” (Multiple Communications) to the
algorithm name.

As stated in the introduction, our analysis depends on the
value of p which measures how quickly an average value
can be computed in a decentralized manner. In a centralized
computing paradigm, where each agent is allowed to com-
municate with all other agents either directly or via a central
server, the mixing matrix W can be replaced by the averaging

matrix %eeT. In this instance p = 0, which can lead to

the fastest convergence for our algorithm in both theory and
practice. However, by Assumption 1(i), the communication
pattern of the agents is limited to performing only neighbor
communications.

One straightforward modification to improve our method’s
dependence on p is to replace W by WX (R denotes a
power, not an iteration number here) for the Z update in
(26) and the computation of X! where R > 1 is an inte-
ger. Notice that WX satisfies Assumption 1(ii)-(iv). Thus all
our theoretical results hold for this MC modification. Since
p(WR) = [[WR — ZeeT|, = p(W)R, this MC modification
can lead to a smaller p if R > 1. However, if p(W) is
very close to one, R needs to be very large in order to push
o(WR) to zero. For this case, more efficient methods have
been proposed in the literature for distributed averaging [30],
[47], [48]. We employ the Chebyshev accelerated method
considered in [30]. The pseudocode is shown in Alg. 3. While
the Chebyshev acceleration is called at iteration k£ of ADAPD-
MC or ADAPD-OG-MC, the input A will be X5*!.

Algorithm 3: Chebyshev acceleration

Input: W, A% Al = WAO, R.
1 Compute the step-sizes pg =1, u; =
2 forr=1,...,R do

3 turﬂ — %,Ur — Hr-1

1
P

Hr-1 Ar—l

AT 2u, WA —
Hr+1

PHr+1
Output: AR

4

The following lemma shows that the properties in Assump-
tion 1(ii)-(iv) still hold for the operator used in the Chebyshev
acceleration and provides an explicit convergence rate for
Alg. 3. A proof is included in Appendix A; see the proof of
Theorem 4 in [9] and Corollary 6.1 in [30] for further details.

Lemma 1: The output of Alg. 3 can be represented as
AR =P (W, R) A, where P (W, R) is a degree-R polynomial
of W and satisfies Assumptions 1(ii)-(iv). Additionally, we
have that AR = A® 2 A for any R and

A% - Al <2(1-VT=p)" a° - A

(32)

We note that employing Alg. 3 is only feasible if either: (i)
the communication pattern is so sparse that consensus error is
the main bottleneck for convergence, or (ii) communication
cost is low relative to the computation cost, meaning that
agents can communicate faster than they can compute. In prac-
tice, it is suggested that agents find a balance that distributes
work evenly between communication and computation.

III. THEORETICAL GUARANTEES

Our theoretical analysis draws from decentralized analytical
methods such as [4], [27] and classical non-convex ADMM
analyses, as in [18]. We first show the change in the augmented
Lagrangian function value after one ADAPD iteration, i.e.
(23)-(26). Then we define a Lyapunov function and use it to
show convergence. A crucial quantity for our analysis is

Vi = (g - xf) - (x§ - xE). (33)
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We define X;' 2 X0, to ensure that V{ is defined for all
k > 0. In the convergence analysis of Alg. 1, we will make
consistent use of the following two facts.

Fact 1 (Peter-Paul and Young’s Inequality): For any A,B €

RNXP forany 6 >0 and i =1,...,m, we have,
(A,B) < S A% + 5 IBII%., (34)
IZm Adlly < m =2 1A . (39)

A. Convergence Results of ADAPD

The first step in the analysis creates an equivalence expres-
sion among the dual and primal variables. Proofs are located

in Appendix C.
Lemma 2: For all k > 0, the dual variables in (25) and (26)
can be expressed as

1-WZk =Y* -

Yk = R¥
where R* £ [r}
i=1,...,N.
Next we characterize the change of the augmented
Lagrangian function value after one ADAPD iteration.
Lemma 3: Let {(X, Xk Y*,Z*)} be obtained from Alg. 1
or equivalently by updates (23)-(26) such that (28) holds. If
n< ﬁ, then it holds for all £ > O that

(36)
(37

1 k k—1

Lwxk - xk1)
k 1 k k-1

- VF(xk) - Lxk - xkT)

rk,]" for r¥ defined in (28) for all

L]](xk+l Xk+1.Yk+1 Zk+1)—£77(Xk Xk.Yk Zk)

s ZLU ! ||Xk+l XkHF + EZkL 27]

(38)

Xk+l Xk”
+1 HY"“ - Y[ +nfjz< - 2

Notice that the inequality in (38) does not imply the non-
increasing monotonicity of the augmented Lagrangian function
at the generated iterates. Below, we bound the dual variable
change by the primal variable change and the V(’j term. Then
we establish another inequality and add it to (38) to build a

non-increasing Lyapunov function.

Lemma 4: Under the assumptions of Lemma 3, it holds
that for all £ > 0,
(39)

2 2 2
R e Y ¥ e

2 2
n(1=p) ”Zk+1 _ Zk”F < SLZUHX’(” _ Xk”F 4+ 10

2
OHF + 16n¢g,

where V'(; is defined in (33).
Lemma 5: For all k > 0, the following relation holds

o (Vv = -xp

2
- ok [VT=wx|
7 Oflp

2 2 2
L |lvk K+l _ xk Kk xk-1
M Wl W )

< (L= S R X[+ e - XA

2 2
k_xk-1lI _ 1 |lyk 2
XX - o Vi, +

1
tag

where V’(; is defined in (33).

Using Lemmas 4 and 5, we are ready to build a non-
increasing Lyapunov function as follows.

Lemma 6: Let {(X*,X}:; Y*, Z¥)} be obtained from Alg. 1
or equivalently by updates (23)-(26) such that (28) holds. If
n < 5p, then

2
k+1 k+1. yk+1 k+1 C k
L, (XKH X1 yhtl zk+ )+ﬁH\/I—WX0“ .

2
vk
XOHF
2 2
< LXK Xk vk zh + £ H\/I —kaH k_ xg-IHF
((8L2<1 —p)+16L2) 1p?+(C+2) L(1-p) (1 p))‘ _XkH2
2(1-p)n F
2
2CLp-C-1 k+1 _ wk
e | A
(1 p)+(32L+16L(1—p))77+4C(1—p)
2L(1-p)
42)

for all k > 0, where C > W is a fixed constant.

For the rest of the analysis, we fix C = as used in

Lemma 6, define the Lyapunov function:

2 2
Ok 2 £, (XK X Y5, 28+ 5 [VI=WE||+ € xb - x5
43
We show the lower boundedness of this Lyapunov function in
the following proposition and use this to obtain the conver-
gence of Alg. 1.
Proposition 1: Under Assumptions 1 and 2, let
{(Xk, Xk Y*,Z*)} be obtained from Alg. 1 or equivalently

by updates (23) (26) such that (28) and (29) hold. Choose C
and 7 such that

28
(1-p)?

2. 1
C= _(l—i)z and n < 5CL (44)

Then the Lyapunov function (43) is uniformly lower bounded.
More specifically, for all k£ > 0,
k >¢i= f _ (1=p)+(32L+16L(1-p)) n+4C (1-p) ZZO

2L(1—p) o€k~ 1> _(Z‘;_’)

where we take €y = €; and f is defined in Assumption 2.

We are now in position to prove the convergence rate results
of ADAPD.

Theorem 1: Under the same conditions assumed in Propo-
sition 1, it holds that

c| Z (“Xk+1 Xk” “Xk+1 _ Xk”2)

(46)
(32L+16L(1—p))17+(4C+1)(1—p)
<P 2L(1-0)K o e
where Ap £ ®° — ¢ and
a1 226;7L7]. (47)

Theorem 2 (Convergence of ADAPD): Under the same
conditions assumed in Proposition 1, it holds

L K—l (va()—(kH)H; +||Xk+l _Xk+1||§:)

((2L2+1)C2+C4)A¢
KC,

(192L2+96) 12
KC(1-p)?

Zk()fk
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((2L2+1)C2C3+C3C4+4C|

o ) yK-l e, (48)
where C, is defined in (47), C, = % C; =
N
(32L+16L(1-p))np+(4C+1) (1-p) a 16 ok 2 1 k
(1) , Cy = e X= ﬁle, and

Xk 2 LeeTXK.
Remark 3: Let ko = argmin (”Vf(ik)”; + || XK - )_(k”i)
1<k <K

Then ||Vf()'(k°)||§ + Xk - X"OHfE =0 g‘%) Hence, in order
to produce an e-stationary point as defined in Definition 1,
o4
all the problems in (27) are smooth and strongly convex.
The steepest gradient method has linear convergence to solve
such problems. Hence, to produce Xk"l as a £l accurate

we need K = iterations. Furthermore, notice that

solution of the problem in (27), it needs O (log o ) gradient

evaluations foreachi =1, ..., N. Choose €;41 = w7 +1 > for all
k > 0 and for some y > 1 where e =0 (1-)p). Then {ek+1}
is summable, and the total gradient evaluations to produce an
&- statlonary point of (1) would be Zk 01 O (logN(k+1)7) =

1

B. Convergence Results of ADAPD-OG

The convergence rate results of the ADAPD-OG follow the
same logic as the results for ADAPD; proofs are differed to
Appendix D. Notice that (37) is no longer a valid relation when
Alg. 2 is used. Instead, we have the following from (25) and
31):

Yh = v - L (XE-XET) V20, (49)

As in the analysis for ADAPD, we define Xal B X8 and

further define X~! 2 X°. We have the following result.
Theorem 3 (Conver. fence of ADAPD-OG): Under Assump-

tions 1 and 2, let {(X*,X}; Y*,Z*)} be obtained from Alg. 2

or equivalently by (31) and (24)-(26). Choose C and n such

that A 6
(1 -p)?

and n < —— 5 (50)

CL
Then, it holds
(2L2+1) Cr+C3 | A
1 k 5 (”Vf(xk+l)”2+||xk+l Xk+1H ) ( o )“’
L o (U=p)=(C+DLU-p)n-((1-p)+D4L?n* Gy 2
Tp? S 2(1-p)n 2=

112 A a8 2 &0 3
W’CS_UT’A&)_(D —£+1 X

1 anTwk
NeeX.

where C; =

N _
2 L ¥ xK, and Xk £
i=1

Remark 4: Theorems 2 and 3 give the convergence results
in terms of the constants Ci, C,,C3, and C4 for Alg. 1 (or
CA'l,CA'z,CAg, and C, for Alg. 2) which depend on C (C‘) and
n, and in turn depend on L and p. To make this dependency
clearer, we use the O (-) notation to give dependency only
in terms of L, p, and the algorithm iteration number K. For
Alg. 1, using (29), and for Alg. 2, we have

£ 28 (19 &[5+ x4 =X L) =0 (L )
ShH

C. Complexity Analysis

We now give a complexity analysis for Alg’s 1 and 2
regarding the number of primal gradient computations and
neighbor communications each method must perform to find
an g-stationary point (see Definition 1); we refer to these
quantities as the computation and communication complexi-
ties, respectively. This leads to the following corollaries, whose
proofs are in Appendix E.

Corollary 1 (Complexity results of ADAPD): Under the
same conditions assumed in Theorem 2, if steepest gradient
descent is used to solve the subproblem (27), such that
conditions (28) and (29) hold, then Alg. 1 can produce an
g-stationary point in respectively

0((1 07e ) ando((l e )

gradient computations® and neighbor communications.

(52)

Corollary 2 (Complexity results of ADAPD-OG): Under the
same conditions assumed in Theorem 3, Alg. 2 can produce
an g-stationary point in

L
0t )

gradient computations and neighbor communications.

Corollaries 1 and 2 show that both ADAPD and ADAPD-
OG depend upon the quantity (1 — p)~2 in terms of the
number of communications required to achieve e-stationarity.
To improve this to the optimal communication complexity in
terms of the dependence on p (see, e.g. [9]), we have the
following theorem.

Theorem 4 (Complexity results of ADAPD-MC): Under
the same conditions assumed in Theorem 2, let R = [—2=]
Vi-p

iterations of the Chebyshev acceleration Alg. 3 be performed
during the line 9 update of Alg. 1. Then Alg. 1 can produce

an e-stationary point in O (£) and O (‘/I_L) gradient com-
e

putations and neighbor communications, respectively.

Theorem 5 (Complexity results of ADAPD-OG-MC): Under
the same conditions assumed in Theorem 3, let R = | : ]
-p

iterations of the Chebyshev acceleration Alg. 3 be performed
during the line 9 update of Alg. 2. Then Alg. 2 can produce

L
Vi-pe

putations and neighbor communications, respectively.

an g-stationary point in O (£) and O gradient com-

IV. NUMERICAL EXPERIMENTS

We test our proposed methods on several non-convex
problems: (i) a binary classification problem using logistic
regression with a non-convex regularizer, (ii) a multi-target
cooperative localization problem, and (iii) two image classi-
fication problems using convolutional neural networks. The
experiments serve to verify both the flexibility of our methods,

3The O(-) hides a log dependency on & here.
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as well as their numerical superiority over other decentralized
optimization methods. Implementations of our methods are
made available at https://github.com/RPI-OPT/ADAPD.

For experiments (i) and (ii), we compare our methods to
DGD with a diminishing step-size [27] and the single gradient
version of Prox-PDA, called Prox-GPDA [4]. We also ran
experiments with Prox-PDA but found no advantage over
using Prox-PDA versus Prox-GPDA; since Prox-GPDA only
requires one gradient computation per update, we use this as
a baseline. For Alg. 1, we use € = W in (28) where é
and d are tuned from a fixed set of values and solve each
agent’s local problem (27) by the FISTA [49] method. For
experiment (iii), we compare to D-PSGD [2], DSGT [32], D-
GET [11], a single stochastic gradient implementation of Prox-
PDA [4], and SPPDM [37]. For all experiments, we fix a set
of penalty parameters/step-sizes and optimize each algorithm
over this set, choosing whichever penalty/step-size performs
the best. For all methods besides Prox-(G)PDA and SPPDM,
we use the same mixing matrix, which will be described in
each subsection below. For Prox-(G)PDA, we take W to be
the formulation as given in [4] (see equation (23) in [4] and
the discussion that follows) and for SPPDM, we use the graph
Laplacian as stated in their problem formulation.

A. Non-convex Regularized Logistic Regression

We consider the non-convex decentralized binary classifica-
tion problem [4], [46]. Utilizing a logistic regression formu-
lation, the local agent cost functions are given by,

fixi) = 5 B

log (1 +exp(=b; (xi,a;))) +Zd 1 %

(54)
where x; [d] denotes the d’”* component of the vector x;. Given
a set of data {(a;,b; )}m‘ forall i =1,...,N, where b; €
{-1,+1} denotes a partlcular class label, (54) can be used to
perform blnary classification and the non-convex regularizer,
>b d=1 ﬁ(’;‘T helps to promote sparsity on the solutions. We
use the a9a dataset [S0], [51] which consists of 32,561 training
data points and 16,281 testing data points. Each data point
a; € R contains numerical features about adults from the
1994 Census database and b; indicates whether or not the
adults earn more or less than $50,000 per year. We fix N = 50
for this experiment and simulate agent connectivity in two
ways: (i) using a ring-structured graph and (ii) using a random
Erdos Rényi graph, with connection probability equal to 0.3
(i.e. each agent is connected to roughly 15 other agents).

For the ring-structured graph, we choose W to be

i=7],
(i,j)e& andi # j,
0, otherwise,

1

2
Wij = %,
and for the random Erdds Rényi graph, we use the Laplacian-
based constant edge weight matrix from (4). We vary a €
{0.01, 1.0} to study the effect that the non-convex term has
on each agent’s local subproblem. For all runs, we fix the
communication budget to 500 neighbor communications. Ad-

ditionally, we compare ADAPD-MC and ADAPD-OG-MC to
the other methods. We perform 5 iterations of the Chebyshev

acceleration in Alg. 3 during every outer iteration of Alg. 1
for ADAPD-MC and 2 iterations for ADAPD-OG-MC. This
means we only compute 250 gradients for ADAPD-OG-MC,
to keep with the 500 communication budget. We report the &-
stationarity violation (13) for the following four scenarios: (i)
the random Erdos Rényi graph with o = 1.0, (ii) the random
Erdos Rényi graph with @ = 0.01, (iii) the ring graph with
a = 1.0, and (iv) the ring graph with @ = 0.01.

From Figure 1, it is evident that when the communication
pattern is sparse (i.e. the two rightmost plots), performing
multiple communications and multiple local updates can re-
duce the stationarity violation faster over performing just one
neighbor communication or just one local update. When the
communication pattern is not too sparse (i.e. the two leftmost
plots), ADAPD-OG performs significantly better and requires
fewer gradients than the other methods compared here. In all
cases, ADAPD and it’s variants outperform DGD and Prox-
GPDA.

B. Multi-Target Cooperative Localization

Multi-target cooperative localization is a target locating
problem [5]: given only a noisy distance metric, can N agents
locate Ny common targets? Let {wl}N be a set of locations
of the agents, i.e. w; € R* for all i = 1 , N. Then the local
objective function for each agent is given by

2
fi(xi) = £ 2 (€00 - il - wil3) (55)

where &; ; is a random variable that represents a noisy distance
metric, and x; = [x;[1]7 X; [NT]T]T € RIT i5 a
stacking of the vectors {x; [t]} . Note that (55) is indeed
non-convex, but it is not globally L-smooth for any L > 0.
However, we still find this problem is valuable to test our
methods. Denote the true targets as x*[z] forallz =1,..., Np;
these are used to generate &;, for all i and ¢ by computing
& = |IX" 1] - w,~||§ + €, where ¢ ; is drawn from a normal
distribution with mean 0 and variance o> > 0. For all of our
experiments we set o> = 0.01. We simulate agent connectivity
by randomly generating N = 50 agents in [—1, 1]x[-1, 1] grid
and creating an edge between agents if the Euclidean distance
between them is less than or equal to 0.3. Each coordinate in
the targets {x*[¢] i\gl is drawn independently from a normal
distribution with mean 0 and variance 0.1. Figure 2 shows the
connectivity of the agents, as well as an example of target
locations.

For this example, W is chosen to be the Laplacian-based
constant edge weight matrix from (4). We randomly generate
Nt =5 targets and limit the communications to be 1,500 for
all algorithm runs, with all methods starting from the same
initial point. Since the targets are randomly generated for each
experiment, we perform 10 independent trials and plot the
mean results, with an associated 95% confidence interval.

Figure 2 shows that in terms of stationarity violation,
ADAPD is superior to DGD and Prox-GPDA. Using only 20%
more gradient computations on each agent, ADAPD is able to
both solve the localization problem and find the true targets
with fewer communications than the other methods. Addi-
tionally, ADAPD-OG utilizes the same number of gradient
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Fig. 1. Stationarity violation for the non-convex logistic regression problem (in order from left to right): random Erdos Rényi graph with @ = 1.0, random
Erdos Rényi graph with @ = 0.01, ring-structured graph with @ = 1.0, and ring-structured graph with a = 0.01.

Stationarity Violation

10 Method (# grads)

DGD (1500)

—=— Prax-GPDA (1500}
ADAPD (1817)

—— ADAPD-OG (1500

10°

Distance to True Target

DGD (1

—=— Prax-GPDA (1300
ADAPD (1817
—— ADAPD-OG (1500)

—075 —050 —025 000 035 050 07
Wi

.00

200 400 600 800 1000 1200 1400

Communications

G 200 400 600 800 1000 1200 1400 [}

Communications

Fig. 2. In order from left to right: agent locations and their connectivity (darker colors indicate more connections), example of target locations, stationarity
violation, and distance to true targets for the multi-target cooperative localization problem.

computations and neighbor communications as Prox-GPDA
and DGD, but still performs better.

C. Convolutional Neural Networks

For these experiments, we fix N 8 agents and use
a ring-structured graph where self-weighting and neighbor
weighting is set to be % We train the models on a cluster
of 8 NVIDIA Tesla V100 GPUs, where each GPU represents
an agent. PyTorch is used in the training of the models and
OpenMPI is used to perform the neighbor communication of
the neural network weights. All experiments are performed
with 10 different initial starting points. We report the average
results, as well as a 95% confidence interval taken over the
10 trials.

1) MNIST: The first Convolutional Neural Network (CNN)
experiment we perform is training LeNet [52] on the MNIST
dataset. We make the activation function for each layer the
hyperbolic tangent function to ensure smoothness of the local
objective functions. Since methods like DSGT [32] and D-
GET [11] require multiple neighbor communications during
each update, we instead fix the number of epochs for this
experiment to 50 and fix the mini-batch size to 64 for all
methods. We randomly generate 10 sets of initial points for the
agents and report the average of all relevant metrics, as well as
a 95% confidence interval. For ADAPD and ADAPD-OG, we
simply replace the full gradient computation by a stochastic
gradient during each local agent update. It is worth noting that
neither ADAPD, nor Prox-PDA, have theoretical convergence
guarantees in this experimental setting. Nonetheless, we see
impressive results for this problem and thus include it. To see
the effect of stochasticity here, we run the ADAPD in Alg. 1
by computing both one and two stochastic gradients during
line 3. For Prox-PDA, we compute one stochastic gradient
step. Similar to [2], we report the stationarity violation for all
methods, as well as the training loss and testing accuracy using

the average of the local agent’s weights*. In practice, this is not
feasible due to the decentralized communication pattern, how-
ever, an average model can be obtained after all local training
has been done by performing many neighbor communication
rounds [12]. Note that the training loss reported here is not
scaled by ﬁ to facilitate a fair comparison with standard CNN
training methods (i.e. centralized training).

Additionally, we report the wall-clock time taken to reach
and stay above 97% testing accuracy for the MNIST image
classification problem in Table I. This value comes from se-
lecting the highest whole number of testing accuracy that most
methods exceed. D-GET does not achieve this accuracy in the
alloted amount of epochs. The “Samples” column indicates
the amount of data visited by each agent to achieve the 97%
testing accuracy and the “Communications” column indicates
the corresponding number of communications performed by
each agent (for D-GET, these values are simply the total
numbers used during training). We also include each method’s
highest testing accuracy in the last column.

While D-GET is able to achieve the lowest stationarity
violation, the training loss and testing accuracy indicate it
does not converge to a solution that solves the classification
problem well. Figure 3 and Table I show that both ADAPD
and ADAPD-OG outperform competitors in terms of testing
accuracy, suggesting that ADAPD is able to find a solution that
generalizes better than other methods. Additionally, Table I
shows that ADAPD (with 2 SGD steps) and ADAPD-OG
require far fewer communications to achieve a high testing
accuracy. In a network setting where communication time
dominates the computation time, ADAPD and its variants can
outperform the competitors.

4Similar results for both the MNIST and CIFAR-10 image classification
problems are observed if the local weights are used to compute the training
loss and testing accuracy.
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for the MNIST image classification problem.
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In order from left to right: stationarity violation, training loss, testing accuracy, and a zoomed version of the testing accuracy over the last ten epochs

To reach 97% testing accuracy

Method Highest accuracy (%)
Time (s) Samples Communications
D-GET X 376,524 4,096 72.17
D-PSGD 31.56 92,800 1,450 97.53
DSGT 26.78 73,600 2,300 97.64
Prox-PDA 80.99 227,200 3,550 97.25
SPPDM 116.73 326,400 5,100 97.09
ADAPD-0OG 16.35 48,000 750 98.77
ADAPD (1 SGD) 74.2 121,600 1,900 98.12
ADAPD (2 SGD) 47.5 83,200 650 98.85
TABLE 1

TIME TO REACH 97% TESTING ACCURACY ON THE MNIST IMAGE CLASSIFICATION PROBLEM. FINAL COLUMN REPRESENTS HIGHEST OVERALL
TESTING ACCURACY. BOLD ITEMS INDICATE THE BEST VALUE.

2) CIFAR-10: The second CNN experiment we perform
is training the ALL-CNN model [53] on the CIFAR-10
dataset [54]. We add batch normalization after every ReLU
activation function and perform no data augmentation prior to
training. For these experiments, we fix the mini-batch size to
128 for all methods and limit the number of updates so that
each method runs for 500 epochs. We only use the ADAPD
algorithm with 1 stochastic gradient step for these experiments,
but we tune the dual step-size in (25) and (26). In Figure 4,
we report the same metrics as in the MNIST experiment.

Similar to the MNIST image classification problem, we
report the wall-clock time taken to reach and stay above
88% testing accuracy in Table II. In terms of stationarity, all
methods besides D-GET struggle. However, ADAPD performs
better than the competitors in terms of testing accuracy (see
Figure 4 and Table II). Similar to the MNIST results, this
suggests that ADAPD is able to find a solution to the image
classification problem that generalizes better than the com-
petitors. Additionally, ADAPD greatly saves on the number
of data samples and communications necessary to achieve a
high testing accuracy.

V. CONCLUSION

In this work, we presented ADAPD: A DecentrAlized
Primal-Dual framework for solving non-convex and smooth
consensus optimization problems over a network of agents.
Two variants to ADAPD are presented, the ADAPD-OG (One
Gradient) and the ADAPD-MC (Multiple Communications).
We demonstrated that ADAPD and ADAPD-OG achieves
O (L(1-p)2e7!) communication complexity to find an
g-stationary point and showed this can be reduced to
O (L(1-p)%5¢71) when the MC variant is used; this is

optimal for the class of smooth, non-convex, decentralized
consensus problems considered in this work. Finally, we
presented four numerical experiments that validate our claim
that ADAPD outperforms other state-of-the-art decentralized
methods. Future research topics would be extending the the-
oretical guarantees of ADAPD-OG to the stochastic case and
demonstrating convergence in a time-varying/asynchronous
setting of ADAPD and its variants.
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Fig. 4. In order from left to right: stationarity violation, training loss, testing accuracy, and a zoomed version of the testing accuracy over the last hundred
epochs for the CIFAR-10 image classification problem.

To reach 88% testing accuracy

Method Highest accuracy (%)
Time (s) Samples  Communications
D-GET X 3,125,006 35,530 84.16
D-PSGD 651.88 1,011,200 7,900 88.92
DSGT 1,900.23 2,348,800 36,700 88.37
Prox-PDA 1,025.57 1,523,200 11,900 88.88
SPPDM 1,395.84 1,708,800 13,350 88.91
ADAPD (1 SGD) 870.11 806,400 6,300 89.62
TABLE II

TIME TO REACH 88% TESTING ACCURACY ON THE CIFAR-10 IMAGE CLASSIFICATION PROBLEM. FINAL COLUMN REPRESENTS HIGHEST OVERALL
TESTING ACCURACY. BOLD ITEMS INDICATE THE BEST VALUE.
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APPENDIX A
SUPPORTING LEMMAS AND PROOFS FOR THE CHEBYSHEV
ACCELERATION

Proof [of Lemma 1] Notice that the iterations of Alg. 3 define
a polynomial in W; denote this as (W, r) for any r > 1. Let
AR = P (W,R) A° be the output of Alg. 3 after R > 1 iter-
ations. Proceeding by induction, we first show that (W, R)
satisfies Assumption 1 (ii) and (iii). Then we establish (32)
which gives part (iv) of Assumption 1. For the case where
R =1, P (W,1) = W and hence Assumption 1 is satisfied.
For the inductive case, it is obvious that Assumption 1 (ii)
holds. For (iii), we compute the following

Qir- i
P (W,R)e= L2 Lwp (W,R - 1)e - EE2p (W,R-2)e
PHR HR

2ir- .
_ ZMR le_,UR 2e
PHR HR
=e

where the second equality holds because of the inductive
hypothesis and the last equality uses line 3 in Alg. 3.

To show part (iv) of Assumption 1, we prove (32). Namely,
we have

1A% = All =[P (W, R) A" - Al
= (70 (W,R)—%eeT) (A°-A) .
1 . .
< Hso (W, R) - ee i [A° - A,

R | )
- (W’ - NeeT) A,

where the last equality comes from defining # (W,R) =
Zf:o v+W" and noting that by our previous argument,
Zf:o v = 1. By Corollary 6.1 in [30], we have that

R 1 cR
T\ _— R

Zyr (Wr—ﬁee ) —2mS2C

r=0 2
here ¢ = YL with x £ 22 Finally utilizing that c® <
where ¢ = =7 with « = = . Finally utilizing that ¢* <

R

(l—y/l—p) < 1 for any p € [0, 1) proves (32) and by the

symmetry of £ (W, r), part (iv) of Assumption 1 holds. [J

APPENDIX B
ON THE EQUIVALENCE BETWEEN PROX-PDA [4] AND
DISTRIBUTED ADMM [16]

Here, we show that the distributed ADMM algorithm [16],
which uses edge-based constraints to enforce consensus (see
(3) in [16]), can reduce to the Prox-PDA method in [4]. Under
the assumption of ATA = L~ (the signed Laplacian of G),
Prox-PDA performs global updates:

XD Z argmin {F(X) - <,u(k),AX> + gH(X, XK A, B)} ,
X

'u(k+1) ZH(k) +,3AXk+1,
(56)


http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
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where H(X,X*;A,B) = [|AX||% + [[X - Xk|[3, 5. Choosing
BB = L* (the unsigned Laplacian of &), we have

H(X,X*;:A,B)

=§i 2 INil i3 = (% Zx~ +'§<xk BTBX*)
2 £ 1 il s J 2 )

JEN;
ﬂ N
+§. <Xi,ZX‘j>—2|M|<Xi’Xz]F>_2<Xi’ZX];> :
i=1 JEN;

JEN;
(57)

Multiplying both sides of the p update in (56) by AT,
letting @ 2 AT u* V k, and dropping the g (x*,BTBX¥) term
from (57) (as the argmin is about X in (56)) results in (10)
from [16]. Hence, the two algorithms are equivalent. As a
result, the distributed ADMM updates from [16] converge in
the non-convex case by the convergence of Prox-PDA [4].

APPENDIX C
SUPPORTING LEMMAS AND PROOFS FOR ADAPD

Proof [of Lemma 2] Recall ZX £ VT— WZ¥ for all k > 0.
Thus by (24), we have
k_ yk-1
Xo - X
== (-vEl - Lk o xAh + 2R Sa- wxh)

(25),(26) . s B}
=22 vk - Dxh - XA+ ZF - La-wxg - x5)

= Ivk+ %(x{; —x(’;—l) -3zk+ La- W)[xg - XK1y,

Combining like terms, rearranging, and multiplying both sides
by % gives (36).

To prove (37), we have from (25) that YK~! Y -
1 (Xk - x{;); plugging this into (28) with k < k — 1 yields
the desired result. ]

The next three Lemmas serve as building blocks to prove

Lemma 3.

Lemma 7: 1If (28) is satisfied and 7 < then

2L’
Ly (XM XG: YR, 24 - £, (X5 X YR, 25

58
< XX+ 4 “

>3+, Vk > 0.

Proof By (10), we have

- F(xK)

< —F(Xk) 4 <—VF(Xk+1),Xk _ Xk+1> + L Xkt - Xka:
Hence,

L, (XM XK YR ZR) - £, (xK XK YR ZF)

2
< <VF(Xk+])’Xk+1 _Xk> _ ﬁ ka _ Xk”

L |Ixck+l _ yk||? k XK+ _ xk) H k+1 _ k”z
+ %X XK+ (Yk XX X X5

_ <VF(X"+1) LYK+ %(an _Xk) xk+1 _Xk>

2
AL S PR Sar o P

< 2L ”VF(Xk+1)+Yk 1 (Xk+1 Xk)H
2Ln-1 ||yck+1 k
2n ”X X ”F

2Ln-1 .

< 77 ka+l Xk” EkLl

where in the last mquality, we have used
HVF(X"“) FYE 4 L(xke X{;)HP < €. 0

Lemma 8: The partial gradient Vx, £, (X, Xo; Y, Z) is %-
Lipschitz continuous about Xy for any (X, Y, Z). Further, for
all £ > 0, we have

Ly XX YR Z25) - £, (xXLUXE YR 26

(59)
< -

2
1 k
2n - XO F
Proof Compute
[Vx, Ly (X, X0 Y, Z) - VXOL;(X X(: Y. 2)||-

= |- wix, - X;] Xo- X,

_,7

where we have used the compatibility of the 2-norm and the
Frobenius norm and Assumption 1(iv). Hence, it holds

L[](Xk+] , X§+] ,Yk, Zk)
2
< L, (X5 XE YK 25+ o xbt -xE|
+ (Vg L (XFH XK YR, 20, XE - X )

(24)
= L,,(Xk+1,X’(§;Yk,Zk)+(2%—

2
2y |Ixck+1 _ xk
’_7)HX0+ _XOHF
Rearranging terms gives the desired result. O
Lemma 9: For all k > 0, the followings hold:

Ll] (Xk+1, XI(§+1 : Yk+1, Zk) _ L}] (Xk+1, X/6+1 ; Yk, Zk)

= [V YA (60)
Ln(xk+l , X]O€+1 ; Yk+] , Zk+]) _ ‘-Li] (Xk+] , X](;+] : Yk+] , Zk)
=zt - 2. (61)

Proof By the Y update (25), we have
L)](Xk+1, X(I§+1;Yk+l’ Zk) _ L]](Xk+ls X(I§+1; Yk, Zk)
_ <Yk+1 _ vk, xk+1 —X’(§+1>
_ <Yk+1 vk U(Yk“ _Yk)>
2
L
for all £k > 0. Hence, (60) holds. Similarly, by the Z update
(26), we have
L;](Xk-'—l X(]§+1.Yk+l Zk+l) —L;I(Xk+1 X(1§+1.Yk+l Zk)
= (21 - ZF NT-Wxf*)
— <Zk+l _ Zk,T](Zk+l _ Zk)>
2
— k+1 _ gk
=nffztt -2,
for all £ > 0. Thus (61) holds, and we complete the proof.
O

Proof [of Lemma 3] The inequality follows from rewriting
L,(Xk Xk vkt 7k — ) (XK, XE YR, Z5) as the sum-
mation of the left-hand sides of (58), (59), (60), and (61) and
using those four inequalities. ]



PRIMAL-DUAL FRAMEWORK FOR DECENTRALIZED NON-CONVEX OPTIMIZATION 14

Proof [of Lemma 4] To prove (39), by (37), we have
2
k+1 _ vk
-y,
- HR"“ —RF —VF(X*) £ VF(XF)

i (R4 + R #9005 - TR x4

i

<l

where in the last inequality we have further used x4 < €
for all k > 0.

To prove (40), notice that if Z° € range(VI — W), then by (19),
7k € range(\/l - W) for all k£ > 0. Thus with p, = 1-2,(W),
we have

(28),(10)
< 4Ly ”Xk+1 - Xk”F +2 “V{;”F +87¢;

2 2
-] <o
and since 1 — p < p», it further holds that,
2 2
w-plee - ol of @
In addition,
2
r]“\/I—W(Zk+1 —Zk)“F (64)
(36) |l\/k+1 k1 k|
D[t vt -],
(34) 2 2
<2 HY"“ - Yk” +2 H (65)
39
( )8L2n“x’<+‘ ka H +16ne + 2 HWVkH
< 8L2n“Xk+' - kaF + 1—7;’ HV{;HF + 1676 (66)

where the last inequality uses Assumption 1(iv). Using (62)
with (63), we complete the proof. (]

Proof [of Lemma 5] By (37), we have
k+1 k yk+l1 k
(yhrt - vk xit - x)

(67)
= (RF* - RF - VR(XE) + VF(XF) -

1 Vk Xk+1

k
TVE X6 -XG).

We handle the two sides of (67) separately. First, we have

<Yk+1 _ Yk, X§+1 _ X§> (68)
(3:6)<ﬁzk+1 ~VI-WZF + Lwvk xke X’(§>
E(La-wxk - Lwvk xk - xk)
2
- L (H\/I e =Wk - X’(;)HF) (69)
1 2
-

2 2 2
L |lvx K+l _ xk Kk _ xk-1
W e W R

where the last equality can be verified straightforwardly.
Second, we have

<Rk+1 - RF - VF(xX}*) 4 VE(XK) - Lvk Xkl - x{;)

(34) (10) 2 2
<ol IRk - RK|G k- x|

2 2
e R

_ i(vk’xkﬂ _Xk>

(39,

k K+l _ xk Kk _ xk-1
vl et -l - Ixs -

Zek +L L ka+1 Xk” +L ka+] XkH

where the last inequality comes from €41 < € for all £ > 1.
Combining like terms results in the right hand side of (41);
further using the equality established in (67) completes the
proof. |
Proof [of Lemma 6] By Lemmas 3 and 4 and also using
€r+1 < €, we have

L (Xk+1 Xk+1.Yk+1 Zk+1)—,£ (Xk,Xg;Yk,Zk)

(8L2(1—p)+16L2)77 +2L(1-p)n-(1-p) ||Xk+1 _Xk||2
2(1-p)n

i,

1

k+1
2n X

32Ln+16L(1-p)p+(1 —p)
0 2L

(I-p)

T\

Now multiplying C > 0 to both sides of (41) and adding to
the above inequality, we have

L, (Xk+1 Xk+1 Yk, Zk+1)+ ”Xk+1 Xk” 2 HVkH
K+l wk
VI W(XK+ —XO)“F

2
< Ln(Xk,Xg;Yk,Zk) +£ H\/I—WX"”

C
+ 2n

k _ k-1 k-1
+ 27] X X(] ‘W + 2n X H
+ ((8L2(1—p)+16L2)n +(C+2)L(1—p)n—(1—p)) ”Xk+1 _ Xk”2
2(1-p)n

2CL-C1 ||vkel <k 20+8(1-p)~C (1-p) |Ix/k|I?
2L et x| 2zt |

(] p)+(32L+]6L(] —p))n+4C (1 p)

2L(1-p)

(71)

Since the minimum eigenvalue of I+ W is py = 1+A5 (W) >
0, it holds %I < C(I+W) when C > 204801p) prence,

(1 P)P
V20-8(1— 2
cllgratains VA + £ [V by otin

g | |,

we have 0 <

S P

Noticing that > —, we have C > M also satisfies

1
T-p) p) = PN (1-p)?
the above requirement. In addition, it holds

2 2
v i s s

k 1 k k+1 k k 1 k
R T R
: C |Ixwk k-1 C |Iwk k-1
Furtherrpore, notlpg o ||XO - X0 ||W < 2 HXO — XO ||F
we obtain the desired result from (71). O
Proof [of Proposition 1] First, it is obvious that

L,(XK,XE; YK, Z%) < @F for all k > 0 by the definition of
®* in (43). Second, notice

-E]](Xk+l , X]6+1 ; Yk+1 , Zk+|)

— F(Xk+l) + <Yk+1,Xk+1 _X/O<+l>

2
(2 NT= WG )+ o V=W

2
+LHX/<+1_X/<+1
n 0 |lF
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(25)5(26)F(Xk+1>+<Yk+l,n(Yk+l _Yk)>+ % xk+1 _X16+1 2
<Zk+l n(ZF+! - Zk)>+ + \/_Xk+1
=F(Xh + 7 (IIY"“HF + IR - YR - IIY"Hi)
”Xk+1 Xk+1 L 2 H\/—an
7

+ 4 (1)l + HZ"” - 247 - |27

Thus, by the definition of f in (11), we have that for any
integer number K > 1, -

K-1
(q)k+l —f)
k=0 -
> Kz:] (L (Xk+1 Xk+1 Yk+1 Zk+1) f)
k=0
'S k+1 7 ||yvk+l I 1 k+1 k1|
= 3 (PO o B YR - YR o xR x|
k=0
K-1
N (77 [+ - Zk” +2_H\/_Xk+1 )
+%IIYKHF ZIVOU7 + % 1257 - % 112°]
> 4V - 4112007 = -m. (73)

Thirdly, by (42) and the definition of ®F in (43), we have

ok 4 (lfp)f(C+2)L(172pi)liz;)(zL2(lfp)+16L2)r72 ||Xk+1 _Xk||2
2
1 K+l _ ok k , (=p)+(B2L+16L(1=p)) n+4C (1=p) _
+(2 - cr) | XOHFscb + oLle
74
Hence, it holds from the choice of C and 7 that
k+1 ko (1-p)+(32L+16L(1-p)) n+4C (1 ,D)
o <@ AL (1=p) (75)
Now assume thau1 thegg: 1e6x1s1ts ko ol 0 such that
- L+16L(1— —
dko f < (1-p)+( +2L((1_p/;))77+ ( 0) Zk oer — 1.
Then summing up (75) gives ® — f < @k —
f + (1 p)+(32L+16Lli(11_;,£))))7]+4C(l—p) ZZQ K & < —1 for all
k > ko. Hence, X7, . (<I> f) = —oo, which con-
tradicts (73). Therefore, we conclude that ®f — f >
— U (RLORLLEp)nACUp) 3120 € = 1, for all k > 0 and
complete the proof. (]

Proof [of Theorem 1] Summing up (74) from k =0to K -1
and dividing by K results in

((1—p)—(C+2)L(1—p)n—(8Lz(l—p)+16L2)712) el G

2(1-p)n
1—22€an L K ka+1 Xk“
< <1>°;{<1>K (l—p)+(32L+126LL<(11_;f;))77+4C(1—p) 1 Zk e
(4S5)<1>‘1K (1—p)+(32L+126LL((11;,;))q+4C(1—p) 1 Zk oy (76)
1-2CLy

By the choice of C and 75, it holds that

2n
—n)— _ _ 201_ 2 2 .
(1-p)~(C+2)L(1L 2’3'_’}))(?71‘ U=p)+16L)n so C; as defined in (47)

is positive, and thus the inequality in (76) implies the desired
result. ]

Proof [of Theorem 2] First, we have for all £k > 0O that

ka+1 _ kP
F

_ “Xk+1 _ WXk L Wkt _ gkt 2
F

_ “Xk+1 _wxk|P
F

|2
F

+”(W— %eeT) (xk+! gk

) (Xk+l _ Xk+1)>

+2(xt - wx"*‘, (W e

(4 )”Xk+1 wxk | ”(W— 1 ee )(Xk+1 Xk+1))

+ % HXk+1 _ WXk+1||F +6 H(W _ NeeT) (xk+1 _ kel ‘;
<2 (1+6) ”Xk+l _ gk ;Jr(l +%)ka+1 _wxk | ’
where 6 > 0, and we have used p = HW - —eeTH2 from (6).
Choosing 6 = —= > 0 and simplifying the result, we obtain

ka+1 Xk+1 < g p)2 Xkt — WXk+1|| a7
Now, by (26) and the proof of Lemma 4, we have
o s o,
< 8L ka“ - Xk”F + 10 |Vg“F + 167¢
and by (25),
“Xk+1 B Xk+1 2 _ ") ”Yk+1 _ Yk”2
(79)

(39)
<412 2”Xk+1 Xk“ +4”Vk” + 872

Thus,

_ < 2
& Zico X X

(77 k+1112
< (l—p)zK Z || X * ”F
2
k+1 k+1
= p)zK Z H WX R )|F
k+1
+ g 21 [ - Wx .
2
< oK (42 - X1, P+ 2l - wxge F)
(78),(79) 48125 K -1 ||k k|12 52 k-1 ||kl
S TU-p)PK k=0 ”X T -X ||F+ (1-p)2K “k=0 ”VOHF
967]
+ TR Zkeo
(9 481202 <K -1 |y k+] _ xk|[2
e (l_p)IZIK =0 ||X X ”F
2
208 K-l |xk+l k _9%6n*
+ e S X X+ e S @
(46) 2 1—
< ol (Cotg + BIECCULRE 5K ¢ ), (80)

where we have used the fact that ||I — W/||, < 2 and the choice
48L%7% 208 208

(T TpP] = (g = C2 and
4 (32L+16L(1-p 8'_’;;401) U=p) “Fyrthermore, we use

of 1 in (96) to have max{

defined C3
(36) and (37) to have

VEXM) 4 VT - wzk!

_ pk+l 1 k+1 k
=R - Laewyxf - xkL 1)
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Now, by Assumption 1(iii), we have e"VI— W = 0. Hence
il KEC TR
= & 2K | ree™ (VKA + \/I—_WZ"”)HZ
< ”Nee H L 3K HF(Xk“) + «/_z’<+l
K |)F(X’<+1)+mzk+' .

" % ZK—I ||VF(Xk+1) _VF(Xk+1)||2
(81),(10) 2
<

IA

HRk+l 1 (I+W) [Xk+1 Xk]HF

2L22 ||Xk+1 Xk+1“
(35),(28)
e sl g - X+ 2

2
+ 2 R e X

(46) ;(80) (2CL2+Cy) Ao
KC,
192L2772+(2C2C3L2+C3C4+4C1)(l—p)
KC(1-p)?

Shle (82

where we have used ||[I+ W]||, < 2 in the fourth inequality
and defined C4 = 71]—62. Finally, we have that

(e o e -5 )

1 (”Vf(,—(kﬂ)”; +|[xk+1 —)_(k+1||12p)

min
1<k’<K
< l ZK_‘

(80), (82)((2L2+1)C2+C4)Ad> (192L2+96) i
KC KC(1-p)? Zk =0 €k
2L%+1)CrC3+C3Cy+4C
(( +1) 21(3— 3C4+4C1) Zk Ve (83)
We complete the proof. U
APPENDIX D

SUPPORTING LEMMAS AND PROOFS FOR ADAPD-OG

We begin the convergence analysis with showing the change
in the augmented Lagrangian function value between two

consecutive iterations.
Lemma 10: Provided that n < 1 we have

Ly (XK XE YK 25 - £, (xF XK YK, 2R

Ly-1 2 (84)
< 2]7] Xk+1 - Xk“F
for all k£ > 0.
Proof By (10), we have
F(xk+1)

< F(xky + <VF(Xk),Xk+1 - xk> + L|Ixk - x|
Thus,
L£,(XM*1 Xk yk 7)) £, (XK, XK vk 7k)
< <VF(Xk) xk+!1 _Xk> + L||xket - Xk”i + (YK XK+ Xk
2

2
Xk—XkH
0llFp

Xk+l Xk”

* 25
n

= (VR(X5) + YK+ L(xbrt - xb), X - xk)
Ln-1 k+1 k112

+ = X =Xl

G- 2
gL it - x4

O
Lemma 11: Let {(X, Xk' YK, Z¥)} be obtained from Alg 2

or equivalently by updates (31) and (24)-(26). If n < +, then
it holds for all £ > 0,
.C,,(Xk+1, X16+1;Yk+1, Zk+1) _ 'Cil (Xk, Xg; Yk, Zk)
< Lt e x| - ek - x 55
et v e -2
Proof The proof follows from rewriting

Ln(XkH,XgH;YkH,ZkH) —L,](Xk,Xg;Yk Zk) as
.[,I(XkH,XgH;Yk“,ZkH) —L,I(Xk,Xé;Yk,Zk)
:L,](Xk+l,Xg+l;Yk+l,Zk+l)—L,I(Xk+l,X§+l;Yk+l,Zk)
+.£n(Xk+1,X(]§+1;Yk+1,Zk)—.E,,(XkH,Xg“;Yk,Zk)
+L,,(Xk+1,X]6+l;Yk,Zk)—£,7(Xk+l,X(]§;Yk,Zk)
+.£,7(Xk+l,Xk;Yk,Zk)—L,I(Xk,Xg;Yk,Zk)

and using (84), (59), (60), and (61) to bound each of the terms

on the right hand side of the equality. U
Lemma 12: Under the assumptions of Lemma 11, it holds
that for all k£ > 0,
R RS T
UHZkH Zk” - ?1L2p) ”Xk Xt 1”F (l—p)n HVkH ®7)
where V§ is defined in (33).
Proof To prove (86), we have from (49) that
" “Yk” - YkHZF — H—VF(Xk) +VF(XkT) = 1 VkH
il 5
To prove (87), we start from (65) to have
V=i -2
< 2wt vt g ],
e S W] i e L
<41y ka xk- 1” + 8 ”Vk” (88)

where the last inequality uses Assumption 1(iv). Now we
notice that (36) still holds for ADAPD-OG. Hence by choosing
Z° € range(VI- W), we have Z¥ € range(VI-W) for all
k > 0 from (19). Thus (62) still holds, and it together with
(88) implies (87). O

Lemma 13: For all k > 0, the following relation holds

2 2 2
%(H\/I—WX"“ V=W - x| - V=W )
7 0 F 0 0 F 0 F

2 2 2

1 k k+1 k k k-1
o (Il ek = e[, - It -

Ly=1 ||xck+1 kP L Lk k-1)? 1 k k-1
< 72 HX0+ _XOHF t32 x5 -x ”F ta HXO - X HF
_ vkl

2n 0llp

(89)
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where V§ is defined in (33).
Proof By (49), we have

<Yk+l ~ Yk, X10c+1 _ X](§>

(90)
= (~VF(X) + V(X - Lk ket -

k
0’ Xo>'

We handle the left and right hand side separately. For the left
hand side, we have

(¥t -vh xg - xg)
gy (e «rwog x|
-W OH;

2 2 2
1 (|lvk k+1 _ k|7 _llwk _ wk-1
o (Va5 + s =4[5, - It - x5 )

For the right hand side, we have

<—VF(Xk) + V(XK1 - Lyk xhel - X’6>
(34), (10} 0 2
< L (ka - XA+ g —X{;HF) - L (v xbr - xh)
L -1)2 2
- I X -

2 2
k K+l _ xk k_ xk-1
g sl et -l - s - )

Combining like terms results in the right hand side of (89);
further using the equality established in (90) completes the
proof. g

Lemma 14: Let {(X¥, Xk' Y, Z¥)} be obtained from Alg.2

or equivalently by updates (31), (24)-(26). If n < +, then
L;I(XkH Xk+l Yk+1 Zk+1)+ \/_Xk+l
+2" Xk+l XkH
< £,(X5 X} Y575 + £ V= H + € |xk - x§- IH
+(L277_]7—1)‘Xk+1 _Xk” (CLn é- 1)ka+1 XkH
4L2(1—p)772+(81L_27)7+CL(1—p) Xk - Xk—1||F
1)

for all £k > 0, where C is a fixed constant that satisfies € >
12+4(1-p)

(1-p)?
Proof By Lemmas 12 and (85), we have

Ln(Xk+l,Xg+l;Yk+l,Zk+l)—L (Xk Xk.Yk’Zk)

- 2
< B X - X -

21]

Xk+1 Xk”

2(1-p)+6

2(1-p)+4) L2 -
+(((f’l)$||Xk—Xk 1HF+ (T-p)77

2
)VSHF '
Multiplying € > 0 to both sides of (89) and adding it to the
above inequality gives

L, (Xk+1’Xk+l;Yk+l’Zk+1)+QH\/I__leéﬂ ;

s sy - v

A 2
¢ (|lyx K+l _ xk k _ xk-1
A

<Ly (kaxk; Yk9 Zk) + Lg_y;l “Xk+1 - Xk“i"

k+1 k
2'7X+ XH

g k k-1
& It -xt1],

Eetpmpslton vl

Since the minimum eigenvalue of I + W is py > 0 in

4L2(1—p)772+(81L_;77+CL(1—p) ”Xk _xk-1 ||§

A A 2
CLn-C |xk+1 _ wk
T

(6), it holds ZHUAY < € (1+W) when ¢ > 122020
Furthermore, since % > for ¢ > M, we have
1-p PN (1-p)

0< % [Vl + 55 IVE Iy by noticing

g . 4,

2(1-p)n ©2)

2
:Hvkué o) 12-4(1— A >0 (93)

o|{C-p)-12-4(1-p) C

2(1-p)n I+ W
Thus,
A 2

‘En(xk+1,xl(§+1;Yk+l,Zk+l)+%H,/_I_WXI(;H .

. 2 A 2

¢ k+1 _ xck C |lxk+1 _ xk
+ 55 V=W x5 xg - x|

w
. 2
< £, (X X5 Y5, 20 4 SVI=Wh |+ Bt bt - xK
Xk+l Xk

2n

k k-1
- +2T7HX -% Hw

4L2 1 8L2+CL(1 _
( p)772+(] pr)7+ (1-p) ”Xk_Xk IHF

CLn ¢ ”Xk+1 Xk”

2
Xk—xk—IH .
0~ % |

+ 277
Combining like terms, simplifying
. 2 4 2

¢ k+1 _ xk C |[xk+1 _ xk
£ V=g -xf, +m\IX xil,

A 2
C |ek+1 _ xk ¢ k
2n |X0 XOHI—W -X H

o
2
-xi
0llF

=C
2n

and noting that 2% Xk — X'(;‘l”év <

¢ k
: 2n ”Xo
the desired result.

~ XK. yields
0

We now define a new Lyapunov function based on the

A

results from Lemma 14. Fix C £ (112)2 used in (91) and
define

A A, 2 2
At | NEet MY Rl

4L2(1—p)77+8L277+CL(1—p) k k=112
) I =X o0

Before showing that this Lyapunov function is lower bounded,
we first demonstrate the relation between the Lyapunov func-
tion at two consecutive iterations. Using Lemma 14, for all
k > 0, we have

Py ((l—p)—(é+1)L(21—lp)71—((1—p)+2)4L2772) |Xk+1 Xk”
) (2—0)77 F (9s)
1-CLy k+1 _ xk Hk
+( 2n )HXO XO”FSCD
which comes directly from adding and subtracting
AU 8L+ CLOp) || ket _ XK o the left hand

2(1-p)
side of (91),pcombining like terms, and using (94). We now

show that ®F has a finite lower bound via the following
proposition.

Proposition 2: Under Assumptions 1 and 2, let
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{(X¥,XE; YX, Z*)} be obtained from Alg. 2 or equivalently
by (31) and (24)-(26). Choose ¢ and n such that

A a 16
(1-p)?

Then the Lyapunov function (94) is uniformly lower bounded.
More specifically, for all £ > 0,

and n < —=— (96)

2CL

O > f—1> oo, O7)

where f is defined in Assumption 2.

Proof First, we have .E,](Xk,Xg;Yk, Zk) < & for all k, by
the definition of ®F in (94). Second, by the definition of f in
(11), we have for any integer number K > 1, -

K-1 K-1

Z (Ci)k” _i) S Z (L,,(Xk”,Xg”;Yk+1,Zk+]) —f)

(73)

IVl ~ 312 - 98)

Thirdly, by (95) and the choice of € and 7, it holds that
S < dF, (99)
Now assume that there exists a ko > 0 such that ko — f<-L
Then (99) gives ®% — /< dko -f<-1 for all k > kg. Hence,
Dhekot] ((D -f ) = —oo which contradicts (98). Therefore, we
conclude that ®* — f > —1 for all kK > 0 and complete the
proof. - O
We are now in position to prove the convergence rate results
of Alg. 2.

Theorem 6: Under the same conditions assumed in Propo-
sition 2, it holds that

C1 Z (||Xk+1 Xk” ka+1 Xk” )S T(D (100)
where Ag = &% - f+1 and

A s L (1-p)=(C+DL(1-p) n=((1-p)+24L*n*

Ci= o < 0-p1m (101)

Proof Summing up (95) from k = 0 to K — 1 and dividing
by K results in

—p)—(C —p)n—((1-p)+2)4L*1)? _ 2
((1 0) (CH)L(ZI({J—);?)U((I P)+2)4L%n )%Zfzol “Xk+1 _Xk”F

A 2
I-CLn\ 1 vK-1 k+1 _ wk
() & i) e - ],

97 @'-f+1
< K

By the choice of ¢ and n, the C’l defined in (101) is positive,
and the above inequality implies the desired result. g

Proof [of Theorem 3] By (26), we have

, 2
L= wWxE G =0 V- Wz _Zk)HF (102)
<4Lp|xF - XA+ S |IVAIL.
and by (25),
Xk xR 2 [y ke - kP
[ o e =7 I (103)

(87)
<227 X - X+ 2 Vi

Thus,

& SA XA - X
()]

il [\
< ﬁ SR = W) (X - XE|2 (104)
(1 TR Zieo |I(X - W)XEH
< i (425 X =X+ IS - WxE )
< U TG XX+ e TS IV
Dy et xi - x4
e T XA - XA

( IEO)CCZIA (105)

where we have used the fact that ||[I - W]||, < 2 and defined
A 2..2

¢, £ max {‘tﬁ’:p’;z , (11Jp2)2 } Furthermore, we use (36) and (49)
to have

VFE(XK) + VI - Wz = -

Now, using Assumption 1(ii), we have e” VI — W =
% S [/ &

K-l “ﬁeeT (VF(Xk+1) + \/I—_WZ"”)“i

K-l ”F(X"“) + V= WZk+2 i

K HF(Xk+1) + VI WZk+2 i

+ 2 3K VEXE) - vE(XE)|

(106)_(10)K SK-

4 2L Zf 01 ||Xk+1 Xk+1||

(100)3(104)(%2 L24¢3)g ’
CiK

l(I + W)[XEH - XE]. (106)

0. Hence,

2
< [lvee'l, %

2
Rl

(107)

where we have used [|[I+W]|, < 2 in last inequality and

defined C; = % Finally, we have that

(el e -5

< sz:l (||Vf()—(k+1)“§+||xk+1 _an“i_)

(104), (107)((2L2+1)C2+C3)A®
C]K

min
1<k’<K

We complete the proof. (|

APPENDIX E
PROOFS OF THE COMPLEXITY RESULTS

Proof [of Corollary 1] By Remark 4, since one communica-
tion round is performed during each iteration of Alg. 1, the
communication complexity in (52) follows from setting (51)
less than or equal to & and solving for K. Remark 3 demon-
strates the additional logarithmic dependence on the number
of gradient computations. g
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Proof [of Corollary 2] Since only one communication and
one gradient computation are performed during Alg. 2, (53)
follows from setting (51) less than or equal to & and solving
for K. ]

Proof [of Theorem 4] By Lemma 1, the dependence on
the spectrum of the graph after R iterations of Alg. 3 be-

R
comes 2 (l —4/1- p) ; define this quantity to be pgp =
R
2 (1 — 1= p) such that (51) becomes
1 vK-1 < 2 < 23\ _
& SIS (WG] + X =X ) = 0 (e )
(1

08)
With R = |'—12 1, we find a u > 0 such that,
Vi-p

1
2
(172(17\/17,0)[@])

First, we rearrange to have
f—2=1
_ — = Vu-1
(1 Vi p) Vol el

Now, let x = 4/1 — p € (0, 1], then (1-x) € [0, 1) and% < f%'l
so that

7 S U.

(1-0)3T < (1-0)=.

Next, we maximize thzis quantity with respect to x € (0, 1].
Define g(x) 2 (1 —x)> and compute %g(x) to have

2 _
Le(x)=-(1-x)7 (ﬁ + ZI“EC—IZ")) <0,Vx € (0,1).

Hence, g(x) is decreasing on (0, 1). Since g(0+) = 8—12, we
have g(x) < 8—12 for x € (0, 1]. Now we compute,

1 Vu-1

PN i
which holds for all u > 2. Thus, it holds that (1 — pg)™> < 2.

Hence we have the number of gradient computations is inde-
pendent of pr and the number of neighbor communications

must be multiplied by R = O | —= . O
pled by £ =0 (=]

Proof [of Theorem 5] The proof follows the same logic as

the proof of Theorem 4. (]



	I Introduction
	I-A Problem Formulation
	I-B Related Works
	I-C Summary of Contributions
	I-D Notation

	II ADAPD Framework
	II-A Framework Variants
	II-A1 Computation Variant
	II-A2 Communication Variant


	III Theoretical Guarantees
	III-A Convergence Results of ADAPD
	III-B Convergence Results of ADAPD-OG
	III-C Complexity Analysis

	IV Numerical Experiments
	IV-A Non-convex Regularized Logistic Regression
	IV-B Multi-Target Cooperative Localization
	IV-C Convolutional Neural Networks
	IV-C1 MNIST
	IV-C2 CIFAR-10


	V Conclusion
	References
	Appendix A: Supporting Lemmas and proofs for the Chebyshev acceleration
	Appendix B: On the equivalence between Prox-PDA hong17 and distributed ADMM shi14
	Appendix C: Supporting Lemmas and proofs for ADAPD
	Appendix D: Supporting Lemmas and proofs for ADAPD-OG
	Appendix E: Proofs of the complexity results

