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ABSTRACT
Unsupervised graph representation learning is critical to a wide
range of applications where labels may be scarce or expensive to
procure. Contrastive learning (CL) is an increasingly popular par-
adigm for such settings and the state-of-the-art in unsupervised
visual representation learning. Recent work attributes the success
of visual CL to use of task-relevant augmentations and large, di-
verse datasets. Interestingly, graph CL frameworks report strong
performance despite using orders of magnitude smaller datasets
and employing domain-agnostic graph augmentations (DAGAs).
Motivated by this discrepancy, we probe the quality of representa-
tions learnt by popular graph CL frameworks using DAGAs. We
find that DAGAs can destroy task-relevant information and harm
the model’s ability to learn discriminative representations. On small
benchmark datasets, we show the inductive bias of graph neural
networks can significantly compensate for this weak discriminabil-
ity. Based on our findings, we propose several sanity checks that
enable practitioners to quickly assess the quality of their model’s
learned representations. We further propose a broad strategy for
designing task-aware augmentations that are amenable to graph
CL and demonstrate its efficacy on two large-scale, complex graph
applications. For example, in graph-based document classification,
we show task-relevant augmentations improve accuracy up to 20%.
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1 INTRODUCTION
Graph neural networks (GNNs) have been successfully used to
learn representations for various supervised or semi-supervised
graph-based tasks, including graph-based similarity search for web
documents [18], fake news detection through propagation pattern
classification [4, 12, 20, 44], activity analysis in web and social
networks (e.g., discussion threads on Reddit, code repository net-
works on Github) [55], and scientific graph classification [25, 77, 84].
However, in many practical scenarios, labels are scarce or difficult
to obtain. For example, web pages are seldom assigned with la-
bels which summarize their contents, labeling fake news can be
time-consuming, and labeling drugs according to their toxicity re-
quires expensive wet lab experiments or analysis [13, 28, 29, 96].
Contrastive learning (CL) is an increasingly popular unsupervised
graph representation learning paradigm for such label scarce set-
tings [15, 22, 62, 86, 86, 87] and is currently the state-of-the-art in
unsupervised visual representation learning [6–8, 24].

Broadly, CL frameworks learn representations by maximizing
similarity between augmentations of a sample (positive views)
while simultaneously minimizing similarity to other samples in
the batch (negative views). Recent theoretical and empirical works
attribute the impressive success of visual CL (VCL) to two key prin-
ciples: (i) leveraging strong, task-relevant data augmentation [52, 68,
76, 79, 95] and (ii) training on large, diverse datasets [3, 8, 24, 47, 51].
By using appropriate data augmentations, VCL frameworks learn
high quality representations that are invariant to properties irrel-
evant to downstream task performance; thereby preserving task-
relevant properties and preventing the model from learning brittle
shortcuts [8, 52, 54, 68]. Large, diverse datasets are necessary as
VCL frameworks routinely use 1K–8K samples in a batch to ensure
that enough negative views are available to train stably [6, 8, 10, 24].
Representations learnt using VCL and self-supervised learning in
general have been found to be more robust [26], transferable [30]
and semantically aligned [57] than their supervised counterparts.

Interestingly, graph CL (GCL) frameworks often deviate from
these key principles and yet report seemingly strong task perfor-
mance. Small, binary graph classification datasets [45] are routinely
used to benchmark GCL frameworks. Moreover, due to the non-
euclidean, discrete nature of graphs, it can be difficult to design
task-relevant graph data augmentations [38, 93] or know what
invariances are useful for the downstream task. Therefore, frame-
works often rely upon domain-agnostic graph augmentations (DA-
GAs) [87]. However, DAGAs can destroy task relevant information
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Figure 1: [Left]Domain-Agnostic GraphAugmentations (DA-
GAs) introduced in [87]. Deletion/addition in red/green.
[Right] False Positive Samples. Acidic molecule Phenol and
basic molecule Analine are structurally similar but have dif-
ferent properties. DAGAs can inadvertently generate this
pair as a positive view, resulting in similar representations
for semantically dissimilar entities.

and yield invalid/false positive samples (see Fig. 1). It is also un-
clear if DAGAs induce invariances that are useful or semantically
meaningful with respect to the downstream task.

In this work, we investigate the implications of the aforemen-
tioned discrepancies by probing the quality of representations learnt
by popular GCL frameworks using DAGAs. We show that DAGAs
can destroy task-relevant information and lead to weakly discrim-
inative representations. Moreover, on popular, small benchmark
datasets, we find that flawed evaluation protocols and the strong
inductive bias of GNNs mitigate limitations of DAGAs. Our analy-
sis offers several actionable sanity checks and better practices for
practitioners when evaluating GCL representation quality. Further,
through two case studies on larger, more complex datasets, we
demonstrate that task-aware augmentations (TAAs) are necessary
for strong performance and discuss how to identify such augmen-
tations amenable to GCL. Our main contributions are summarized
as follows:

• Analysis of limitations in domain-agnostic augmenta-
tions: We demonstrate that commonly-used DAGAs lead
models to learn weakly discriminative representations by in-
ducing invariances to invalid views or false-positives. Across
several architectures and datasets, we find these shortcom-
ings are mitigated by the strong inductive bias of GNNs,
which allow existing methods to achieve competitive results
on benchmark datasets.

• Identification of methodological flaws & better prac-
tices: We contextualize recent theoretical work in visual self-
supervised learning to identify problematic practices in GCL:
(i) the use of small datasets and (ii) training with negative-
sample frameworks on binary classification datasets. Fur-
thermore, we provide carefully-designed sanity checks for
practitioners to assess the benefits of proposed augmenta-
tions and frameworks.

• Case studies with strong augmentations: In two case
studies on different data modalities, we demonstrate how to
leverage simple domain knowledge to develop strong, task-
aware graph augmentations. Our systematic process results
in up to 20% accuracy improvements.

For reproducibility, our code and data are available at https://github.
com/GemsLab/GCLAugmentations-BestPractices.

2 PRELIMINARIES & RELATED WORK
We begin by introducing CL. We then discuss how strong, task-
relevant augmentations and large, diverse datasets underpin the
success of VCL. Finally, GCL and graph data augmentation are
discussed. Please see Appendix D for additional related work.

2.1 Contrastive Learning (CL)
Frameworks & Losses. Several CL frameworks [8, 21, 24] have been
proposed to enforce similarity between positive samples and dis-
similarity between negative samples, where positive samples are
generated through data augmentation. Normalized temperature-
scaled cross entropy (NT-XENT) is a popular objective used by
several state-of-the-art CL frameworks [8, 61, 63, 71, 80, 86, 87] and
is defined as follows. LetX be a data domain,D = {𝑥 [1...𝑛] |𝑥𝑖 ∈ X}
be a dataset, T : X → X̃ be a stochastic data transformation that
returns a positive view, and 𝑓 : {X, X̃} → R𝑑 be an encoder. Fur-
ther, assume we are given a batch of size 𝑁 , similarity function
sim : (R𝑑 ,R𝑑 ) → [0, 1], temperature parameter 𝜏 , and encoded
positive pair {𝒛𝑖 , 𝒛 𝑗 }. Then, NT-XENT can be defined as:

ℓ𝑖, 𝑗 = − log
exp

(
sim

(
𝒛𝑖 , 𝒛 𝑗

)
/𝜏
)∑2𝑁

𝑘=1 1[𝑘≠𝑖 ] exp (sim (𝒛𝑖 , 𝒛𝑘 ) /𝜏)
. (1)

Here, the numerator encourages the positive pair to be similar,
while the denominator encourages negative pairs (𝑘 ≠ 𝑖) to be dis-
similar. Alternative CL objectives may enforce such (dis)similarity
differently (e.g., through margin maximization [70] or cosine simi-
larity [21]), but the principles discussed below uniformly explain
the success of contrastive learning frameworks [2].
The role of augmentations. Recent work [52, 68, 69] has demon-
strated that data augmentation is critical for training CL frame-
works. Theoretically, Tian et. al [68] show that positive views should
preserve task-relevant information, while simultaneously minimiz-
ing task-irrelevant information [69]. Training on such views in-
troduces invariances to irrelevant information, leading to more
generalizable representations. Indeed, state-of-the-art VCL frame-
works [6, 8, 9, 17, 24] rely upon strong, task relevant data augmenta-
tion to generate such views. For example, Purushwalkam et al. [52]
show that augmentations used by SimCLR introduce “occlusion in-
variance”, which is useful in classification tasks where objects may
be occluded. Overall, we highlight that augmentation strategies are
not universal [86, 87] and must align with the task; e.g., semantic
segmentation tasks would benefit more from augmentations that
induce view-point invariances [52].
The role of large, high-quality datasets. Empirically, CL frameworks
[8, 10, 24] often require many negative samples in each batch to
avoid class collisions (i.e., false positives) [2]. Further, recent the-
oretical work has shown that optimizing Eq. (1) is equivalent to
learning an estimator for the mutual information shared between
positive views, where the quality of this estimate is upper-bounded
by batch-size [51, 71]. These properties combine to necessitate the
use of large, diverse datasets in contrastive learning.

https://github.com/GemsLab/GCLAugmentations-BestPractices
https://github.com/GemsLab/GCLAugmentations-BestPractices
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2.2 Graph Contrastive Learning (GCL)
Frameworks. In this paper, we focus on three state-of-the-art unsu-
pervised representation learning frameworks for graph classifica-
tion that represent different methodological perspectives: GraphCL
[87], InfoGraph [62] and MVGRL [22]. Similar to SimCLR, GraphCL
uses NT-XENT to contrast representations of augmented samples
using a shared encoder. Much like DeepInfoMax [27], InfoGraph
maximizes the mutual information between local and global views,
where corresponding views are obtained through subgraph sam-
pling and graph-pooling. Meanwhile, MVGRL mirrors CMC [67]
and uses dual encoders to contrast multiple views of a graph, where
views are generated by first running a diffusion process (e.g. Per-
sonalized Page Rank [48], Heat Kernel [37]) over the graph and
then sampling subgraphs.
Graph data augmentation. Existing GCL frameworks leverage three
main strategies to generate views: feature or topological perturba-
tion (GraphCL), sampling (InfoGraph), and/or diffusion processes
(MVGRL). We focus on the domain-agnostic graph augmentations
(DAGAs) introduced by GraphCL, shown in Fig. 1, as these are more
popular in recent frameworks [65, 86, 87], composable [8, 17], fast,
and do not require dual view encoders. An empirical study on the
benefits of DAGAs in GCL [87] demonstrates that (i) composing
augmentations and adjusting augmentation strength to create a
more difficult instance discrimination task improves downstream
performance and (ii) augmentation utility is dataset dependent.
However, a critical assumption underlying DAGA is that by limit-
ing augmentation strength such that only a fraction of the original
graph is modified, task-relevant information is not significantly
altered. In Sec. 3, we revisit this assumption to show that it does
not hold for many datasets and discuss the implications of training
with poorly augmented graphs. Clearly, it is expected that models
trained with task-aware augmentations (TAAs) that induce useful
invariances will learn better features than those trained with DA-
GAs. However, graphs are often used as abstracted representations
of structured data, such as molecules [96] or point clouds [59], and
it is often unclear how to represent task-relevant invariances after
abstracting to the graph space. In Sec. 4, we discuss a broad strategy
for identifying augmentations that induce task-relevant invariances
in the abstracted, graph space and demonstrate the significant per-
formance boosts achieved by using such augmentations.
Automated Graph Data Augmentation. Concurrent works [23, 32, 33,
40, 50, 63, 86, 89] have begun investigating automated graph data
augmentation as a means of both avoiding costly trial and error
when selecting augmentations and generating more informative,
task relevant views. These methods often use bi-level optimization
objectives and/or viewmakers [64] to jointly learn representations
and augmentations (cf. Appendix D for more details). Our analysis
(Sec. 3) remains pertinent for GCL with automated augmentations.
Namely, the proposed sanity checks are not augmentation spe-
cific, the identified evaluation flaws must still be considered, and
untrained models should still be included as baselines. Also, our
discussion on the benefits and properties of TAAs (Sec. 4) remains
relevant as it is difficult to identify post-hoc if an automated aug-
mentation strategy is inducing semantically meaningful invariances
or exploiting shortcuts.

3 REVISITING AUGMENTATIONS &
EVALUATION IN GCL

In this section, we investigate how existingGCL frameworks deviate
from the principles underlying the success of VCL methods and
the effects of such deviations. We discuss and establish three key
observations:
(O1) Standard graph data augmentation is susceptible to altering

graphs semantics and task-relevant information.
(O2) Training on such augmentations can lead to weakly discrim-

inative representations.
(O3) The strong inductive bias of randomly-initialized GNNs ob-

fuscates the performance of weak representations and mis-
aligned evaluation practices.

Empirical Setup. In our analysis, we focus on commonly used graph
classification datasets (Table 1) [45]. Official implementations for
GraphCL1, InfoGraph2, and MVGRL3 are used. We consider the en-
coder architecture used by [87] and report results with graph convo-
lutional layers from GIN [82] (original implementation), PNA [11],
SAGE [19], GAT [73], and GCN [35]. See Appendix A for details on
the training setup.

Table 1: Dataset Description

Name Graphs Classes Avg. Nodes Avg. Edges Domain

IMDB-BINARY [85] 1000 2 19.77 96.53 Social
REDDIT-BINARY [85] 2000 2 429.63 497.75 Social
GOSSIPCOP [60] 5464 2 55.48 54.51 News
DEEZER [55] 9629 2 23.49 65.25 Social
GITHUB SGZR [55] 12725 2 113.79 234.64 Social
MUTAG [39] 188 2 17.93 19.79 Molecule
PROTEINS [5] 1113 2 39.06 72.82 Bioinf.
DD [58] 1178 2 284.32 715.66 Bioinf.
NCI1 [77] 4110 2 29.87 32.30 Molecule

3.1 (O1) Domain-agnostic graph augmentations
alter task-relevant information

Given the importance of data augmentation in representation learn-
ing, several works [52, 68, 76, 81, 95] have investigated its prop-
erties. Recently, Gontijo-Lopes et al. [42] identified an empirical
trade-off when selecting amongst augmentations to improve model
generalization. Intuitively, augmentations should generate samples
that are close enough to the original data to share task-relevant
semantics and different enough to prevent trivially similar sam-
ples. This trade-off can be quantified through two metrics, affinity
and diversity. Affinity measures the distribution shift between the
augmented and original sample distributions. Diversity quantifies
how difficult it is to learn from augmented samples instead of only
training samples [42]. While augmentations that best improve gen-
eralization optimize for both metrics [42], it is not clear that DAGAs
also optimize for both. For example, molecular graph classification
tasks are commonly used to evaluate GCL frameworks. However,
as noted in Fig. 1, limited perturbations are needed to invalidate a
molecule or significantly alter its function. Here, augmented data
is sufficiently diverse, but it is not clear if creating invalid molecule
1https://github.com/Shen-Lab/GraphCL
2https://github.com/fanyun-sun/InfoGraph
3https://github.com/kavehhassani/mvgrl
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−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

(a) Random Init. (85.76 ± 7.38)
−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

(b) GraphCL (86.80 ± 1.34)
−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

(c) InfoGraph (89.01 ± 1.13)
−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

(d) MVGRL (89.70 ± 1.1)

Figure 2: Representational Similarity. The normalized cosine similarity between all-pairs of representations is shown above
for the MUTAG dataset. The on-diagonal blocks (indicated by green lines) show intra-class similarity, while off-diagonal
blocks show inter-class similarity. MVGRL, which uses diffusion-based views, learns representations that have high intra-
class similarity and low inter-class similarity, as desired. InfoGraph, which directly maximizes mutual information between
local/global views, preserves high intra-class similarity, and hasmoderate inter-class similarity. GraphCL, which uses domain-
agnostic graph augmentations, has low intra-class similarity in the upper left block. This indicates that training on false
positive/invalid samples can negatively impact representational power.

Table 2: Augmentation Affinity. Affinity [42], measured by
the difference between original and augmented accuracy of
a supervised model, captures how much the data distribu-
tion has changed as a result of augmentation. We see that
DAGAs lead to low affinity. This is expected for molecular
datasets, where it is easy to create invalid molecules, and is
also true for some social network datasets.

Dataset Clean Train Acc. Aug. Train Acc.

MUTAG 90.14 ± 1.36 37.67 ± 1.48
PROTEINS 70.70 ± 4.30 56.54 ± 8.11
NCI1 75.55 ± 4.60 60.15 ± 0.069
DD 84.06 ± 8.81 65.41 ± 14.87
REDDIT-BINARY 85.56 ± 3.21 50.56 ± 0.09
IMDB-BINARY 70.93 ± 0.046 50.11 ± 0.384
GOSSIPCOP 98.047 ± 0.37 96.03 ± 1.57

samples also leads to low affinity, indicating that task-relevant infor-
mation have been destroyed. We conduct the following experiment
to understand the affinity of DAGAs on benchmark datasets.
Experimental setup. We measure affinity as follows: (i) train a su-
pervised PNA encoder on the original training data, (ii) generate
an augmented dataset by using random node/subgraph dropping
at 20% of the graph size, as suggested by [87] and (iii) evaluate
on clean and augmented training data separately. The difference
between clean and augmented accuracy quantifies the distribution
shift induced by augmentations [42].
Hypothesis. We argue that while it is not expected that accuracy
on augmented data will match that of clean data, augmented accu-
racy should be nontrivial if augmentations are indeed information-
preserving [76, 79].

Results. In Table 2, we see a considerable difference between clean
and augmented accuracy across datasets. This implies low affinity,
i.e., a large shift between augmented and training distributions,
and confirms that DAGAs can destroy task-relevant information.
Consequently, training on such samples will harm downstream task

performance, as shown by prior works on VCL [79] and elucidated
below for GCL.

3.2 (O2) Domain-agnostic augmentations
induce weak discriminability

Recall that contrastive losses maximize the similarity between rep-
resentations of positive pairs while simultaneously minimizing the
similarity amongst representations of negative samples. However,
Obs. (O1) identifies that DAGAs have low affinity, which suggests
that task-relevant information has been significantly altered. This
implies that representation similarity will be maximized for samples
that are not semantically similar, e.g., false positive samples. Con-
sequently, the resulting representations may not be discriminative
with respect to downstream classes—i.e., intra-class samples may
have lower similarity than inter-class samples, counter to what is
expected. This claim is investigated in the following experiment.
Experimental setup. We measure the discriminative power of repre-
sentations learned using GCL as follows: givenmodels trained using
GraphCL, InfoGraph and MVGRL, we extract representations for
the entire dataset. Then, we calculate cosine similarity between all
representation pairs. Representational similarity from an untrained
model is also included.
Hypothesis. If a model has learned discriminative representations,
intra-class similarity should be high while inter-class similarity
should be low.
Results. In Fig. 2, we plot the normalized cosine similarity between
representations (sorted by class label), such that the upper left and
lower right quadrants correspond to the similarity between same-
class representations. Results on additional datasets can be found in
Appendix A. We see that MVGRL (Fig. 2d) and InfoGraph (Fig. 2c)
are less likely to encounter false positive pairs as they, respectively,
use diffusion-based views and maximize mutual information over
sampled subgraphs. GraphCL, which uses DAGAs, is more likely
to encounter false positive samples that can harm discriminative
power (Obs. (O1)). Correspondingly, MVGRL and InfoGraph both
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Table 3: Inductive Bias on Benchmark Datasets. Following the same evaluation protocol as [62], we generate embeddings from
an untrained N-Layer GIN encoder and perform classification using an SVM classifier. Results for GraphCL and InfoGraph are
reported from [87]. Best accuracy is in bold; other models whose accuracy with standard deviation falls within the standard
deviation of the best accuracy are underlined. We see across all datasets that untrained models have a strong inductive bias.
On PROTEINS, DD, MUTAG DEEZER and GITHUB-SGZR, untrained models perform competitively against trained models.

Dataset Random Init Random Init Random Init GraphCL InfoGraph
(# Samples) (3 layers) (4 layers) (5 layers) [87] [62]

IMDB-BINARY (1000) 67.22 ± 7.77 61.26 ± 7.01 60.43 ± 5.92 71.14 ± 0.44 73.03 ± 0.87
REDDIT-BINARY (2000) 72.34 ± 6.64 64.57 ± 8.03 67.32 ± 7.41 89.53 ± 0.84 82.50 ± 1.42
DEEZER (9629) 56.59 ± 0.01 54.99 ± 1.74 54.87 ± 2.60 56.19 ± 0.015 55.89 ± 0.88
GITHUB SGZR (12725) 64.51 ± 0.05 64.93 ± 0.04 64.93 ± 0.89 65.81 ± 0.413 Out of Time

MUTAG (188) 85.76 ± 7.38 86.36 ± 6.51 86.73 ± 10.33 86.80 ± 1.34 89.01 ± 1.13
PROTEINS (1113) 73.64 ± 5.464 74.46 ± 4.09 74.22 ± 2.85 74.39 ± 0.45 74.44 ± 0.31
DD (1178) 73.23 ± 8.25 72.15 ± 7.25 77.08 ± 4.18 78.62 ± 0.40 72.85 ± 1.78
NCI1 (4110) 70.65 ± 1.99 70.36 ± 3.11 70.49 ± 2.42 77.81 ± 0.41 76.20 ± 1.06

learn representations with higher intra-class similarity than inter-
class similarity. In contrast, GraphCL has low intra-class similarity
as can be seen in the upper-left quadrant (Fig. 2b). This implies
that the model has not learned features that capture the semantic
similarity between the samples belonging to this class. However, we
note that while MVGRL has learned discriminative representations,
it requires dual encoders and it is unclear what invariances are
learnt by training with diffusion-based views. Finally, we find that
even though the randomly initialized, untrained model (Fig. 2a) has
higher absolute values for average intra- and inter-class similarities
than trained methods, it achieves inter-class similarity relatively
lower than intra-class similarity, as required for discriminative
applications. We further elaborate on this point in the next section.
Proposed evaluation practice. Given that CL frameworks directly
optimize the similarity between representations, we argue that
plotting representational similarity can serve as a simple sanity
check for practitioners to assess the quality of their model’s learned
representations. Indeed, models are often only assessed through
linear evaluation or task accuracy, which may hide differences in
the discriminative power of representations. For example, as shown
in Fig. 2, InfoGraph and MVGRL have similar task accuracy, but
MVGRL has learnt more discriminative representations.

Having established that DAGAs can lead to invalid or false pos-
itive augmented samples and that training on such samples can
lead to poorly-discriminative representations, we next investigate
whether other factors are bolstering GCL performance. Specifically,
we discuss the role of randomly initialized, untrained GNN induc-
tive bias and identify flaws in current GCL evaluation practices.

3.3 (O3) Strong inductive bias of random
models reduces GCL inefficiencies

As noted in Obs. (O2), randomly-initialized, untrained GNNs can
produce representations that are already discriminative without
any training (Fig. 2a). While the strength of inductive bias of GNNs
in (semi-) supervised settings has been noted before [35, 56, 63, 91],
we aim to better contextualize the performance of GCL frameworks
by conducting a systematic analysis of the inductive bias of GNNs,

using several datasets and architectures. Understanding the perfor-
mance of untrained models helps contextualize the cost of training.
Empirical setup. For DEEZER and GITHUB-SGZR, a PNA encoder
is used to stabilize training. All other datasets are trained with a
GIN encoder. MVGRL ran out-of-memory so we did not include it
in this evaluation. See Appendix A for more details.
Results.As shown in Table 3, randomly-initialized, untrainedmodels
perform competitively against trainedmodels on several benchmark
datasets. It is likely that some of the negative effects of training with
DAGAs (Obs. (O1)–(O2)) were mitigated by this strong inductive
bias. However, note that it becomes difficult to justify the additional
cost of GCL on datasets where task performance and representation
quality are not noticeably better than untrained models. Below, we
discuss how to fairly evaluate GCL frameworks and how popular
benchmark datasets are, in fact, inappropriate for GCL.
Proposed evaluation practices. Given that randomly-initialized, un-
trained models are a non-trivial baseline for GCL frameworks, we
argue that they should be included when evaluating novel frame-
works to contextualize the benefits of unsupervised training. While
some recent works [63, 83] include untrained models in their eval-
uation, this practice remains far from standardized.

Furthermore, CL frameworks often define negative samples
through the other samples in the batch. Given the limited size
of popular benchmark datasets (Table 3), it can be difficult to ensure
that each batch is large enough to train stably. Further, given that
these benchmarks are often binary classification tasks, half the
samples, in a balanced setting, are expected to share the positive
pair’s label but be treated as negative samples. This implies that
representations learned with GCL may not be discriminative be-
cause models have minimized similarity for semantically related
examples. We thus argue that evaluating GCL frameworks on these
datasets is flawed and this practice should be discontinued.

We highlight that Dwivedi et al. [14] also find popular graph
classification datasets are problematic in general, but for the specific
case of GraphCL, this point is of some urgency as such small-scale
datasets are part of standard GCL evaluation [63, 86]. However,
we note that self-supervised frameworks that do not rely on neg-
ative samples, such as BYOL[17] and SimSiam[9], can be used as
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an appropriate alternative for binary datasets. Such frameworks
maximize similarity between sample augmentations and avoid de-
generate solutions via stop-gradient operations and exponentially
moving average target networks.

3.4 Summary of Proposed Evaluation Practices
We summarize the practices that we hope will be adopted in future
graph CL research:

• Given that DAGA can destroy task-relevant information and
harm the model’s ability to learn discriminative represen-
tations, there is need for designing context-aware graph
augmentations (Sec. 4).

• Randomly initialized, untrained GNNs have strong inductive
bias and should be reported during evaluation.

• Small, binary graph datasets are inappropriate for evaluating
GCL frameworks.

• GCL frameworks should be comprehensively evaluated using
metrics beyond accuracy to assess representation quality.

4 BENEFITS & DESIGN OF TASK-AWARE
AUGMENTATIONS

In this section, we exemplify the benefits of adhering to key VCL
principles by defining a broad strategy for finding task-aware aug-
mentations in scenarios where prior domain knowledge is available.
We note the goal of this strategy is not to resolve problematic data
augmentations in GCL. Instead, we use the proposed strategy to
help elucidate the benefits of abiding by VCL principles in two
careful case studies.

Augmentation strategy: For many graph-based representation
learning tasks, structured data, such as documents [46], propagation
patterns [44], molecules [28], maps [31], and point-clouds [59], are
first abstracted as graphs via a deterministic process before task-
specific learning can begin. In this practical setting, our idea is
to leverage knowledge pertaining to the original, structured data
to find augmentations that will, in the abstracted graph space, (i)
preserve task-relevant information, (ii) break view symmetry, and
(iii) introduce semantically meaningful invariance. In our first case
study, which focuses on a graph-based document classification
task, we achieve this goal by exploiting existing natural language
augmentations [78] and directly perturbing the raw input before its
graph is constructed. However, when given a sufficiently complex
graph construction process, it can be unclear if augmentations in the
original space will induce useful invariances or retain task-relevant
information in the abstracted graph space. In our second case study,
which focuses on image classification using super-pixel nearest-
neighbor graphs, we encounter this setting and propose to avoid
destruction of task-relevant information by deliberately introducing
task-irrelevant information. We then use augmentations designed
to induce invariance to such irrelevant information.

4.1 Case Study 1: Document Classification
We first focus on a binary graph-based document classification
task. As shown by prior work [18], graph-based representations are
effective at capturing not only the content but also the structure of
a document, leading to improved classification performance in this

setting. Here, our goal is to demonstrate adhering to VCL principles
by using TAAs is needed to improve task performance.
Dataset & Task. The task is to classify movie reviews and plot
summaries according to their subjectivity. Following [46], we con-
vert the Subjectivity document dataset [49] (10k samples) into co-
occurrence graphs, where nodes represent words, edges indicate
that two words have co-occurred within the same window (e.g. win-
dow size 2 and 4), and node features are word2vec [43] embeddings.
An example of this conversion is shown in Fig. 3a. Note that we
only use positive-view-based self-supervised learning frameworks
(e.g., SimSiam, BYOL) because this is a binary classification task
(see Sec 3.3). Accuracy is computed using a 𝑘NN classifier.
Setup of GNN models.We use a Message Passing Attention Network
[46] as the encoder, and a 2-layer MLP as the predictor. The repre-
sentation dimension is 64, and models are trained using Adam [34]
with LR=5e-4. Additional training details are given in Appendix B.
We report results with the original GCN layer used by [46], as well
as with GraphSAGE [19] and GIN [82] layers replacing it.
Domain-Agnostic Graph Augmentations. We conduct an informal
grid search to select which DAGAs and augmentation strengths to
use. Among node, edge, and subgraph dropping at {5%, 10%, 20%}
of text length, we find generating both views using subgraph drop-
ping (10%) performs the best. Generating one view with subgraph
dropping (10%) and the other with node-dropping (10%) performs
second best. We evaluate both strategies.
Task-Aware Augmentations. Recently, Wei et al. [78] proposed sev-
eral intuitive augmentations for use in natural language processing,
namely: synonym replacement, random word insertion, random
word swapping and random word deletion, where the augmenta-
tion strength is determined by the sentence length. (See Fig. 3b
for an example.) By design, these augmentations introduce invari-
ances that are useful to downstream tasks (e.g., invariance to the
occasional dropped word), preserve task-relevant information, and
break view symmetry in the natural language modality. Due to a
co-occurrence based construction process, changes in the under-
lying document will manifest in the corresponding graph, so it is
likely that augmentations remain effective for the abstracted space.
Results. As shown in Table 4, task-relevant, natural language aug-
mentations perform considerably better (up to +20%) than domain
agnostic graph augmentations for both window sizes. Notably,
TAAs are necessary to significantly improve performance over
an untrained baseline, indicating that adhering to key principles of
VCL is indeed beneficial.
Potential Graph Space Augmentations. While natural language aug-
mentations modify samples prior to the graph construction process,
it is easy to see that they can be converted into graph augmenta-
tions, effectively infusing DAGAs with domain knowledge on how
to perturb co-occurence graphs. Specifically, synonym replacement
is equivalent to replacing node features of the selected word (node)
with the closest word2vec embedding. Random insertion can be
approximated in the co-occurence graph by (i) creating a new node
with a randomly selected word2vec embedding and (ii) duplicat-
ing the connections of an existing node. Random deletion can be
represented by (i) randomly removing a node and (ii) rewiring the
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(a) Original (b) Natural Language Space (c) Graph Space

Figure 3: Augmentations for Document Classification: Documents are represented as co-occurrence graphs [46, 92], where
words are treated as nodes with word2vec embeddings, and edges indicate co-occurrence in a sliding windows [43]. As shown
in (b), we perform synonym replacement (purple) and random word insertion (green) to augment sentences without losing
task-relevant information [78]. In (c), we show random node (word) deletion (red). Our results show that natural language
space augmentations improve classification accuracy substantially over baseline augmentations.

Table 4: Document Classification. We use domain-agnostic subgraph dropping (S) and node-dropping (N) at 10% and 5% of
sentence length, respectively, for baseline augmentations. For task-aware augmentations, we stochastically apply synonym
replacement (5%), random insertion (5%), random swapping (5 %) and random deletion (10 %). Random Accuracy with window-
size = 2 is 58.46 ± 1.97. Random Accuracy with window-size = 4 is 63.93 ± 0.045.

GCN SAGE GIN

Augmentation SimSiam Acc. BYOL Acc. SimSiam Acc. BYOL Acc. SimSiam Acc. BYOL Acc.

S. vs. S (ws =2) 69.41 ± 7.28 62.98 ± 3.12 59.17 ± 8.36 67.17 ± 2.70 55.67 ± 4.61 65.02 ± 2.00
S vs. N (ws =2) 57.84 ± 4.31 65.78 ± 8.22 56.74 ± 1.70 63.77 ± 2.90 58.2 ± 8.24 74.26 ± 3.80
Context-Aware (ws = 2) 83.65 ± 2.31 78.12 ± 2.73 81.28 ± 2.54 78.23 ± 4.53 80.37 ± 4.07 77.79 ± 0.09

S vs. S (ws = 4) 61.76 ± 5.12 66.38 ± 2.29 54.68 ± 1.53 67.37 ± 1.11 54.71 ± 3.00 66.18 ± 2.34
S vs. N (ws = 4) 55.38 ± 1.99 68.311.88 59.23 ± 8.03 70.6 ± 4.85 53.31 ± 1.36 66.59 ± 1.57
Context-Aware (ws = 4) 81.12 ± 3.97 74.05 ± 5.465 80.67 ± 10.36 75.65 ± 5.54 75.30 ± 15.61 76.55 ± 7.43

modified graph to connect neighbors of the removed node. Ran-
dom swap is equivalent to swapping the features of two nodes. We
highlight that domain-agnostic subgraph and node dropping do not
rewire the co-occurence graph. Thus, it is unclear what invariance
to these augmentations represents in the original data modality. In
Appendix B, we show that graph-space and document-space syn-
onym replacement perform comparably, but leave the evaluation
of other converted graph space augmentations to future work.

In this case study, we were able directly leverage augmentations
in the original modality, which are known to preserve task-relevant
information and induce useful invariances, to significantly outper-
form DAGAs. The next case study focuses on a more challenging
setting where augmentations in the original modality are not im-
mediately amenable to GCL due to a complex graph construction
process and GNN architectural invariances.

4.2 Case Study 2: Super-pixel Classification
Our second case study is based on super-pixel MNIST classification,
a standard benchmark for evaluating GNN performance [14, 36].

Here, we pursue an alternative strategy for task-aware augmenta-
tion where augmentations must induce invariance to deliberately
irrelevant information (e.g., color for digit classification).
Dataset & Task.We follow the established protocols in [14, 36] to
create super-pixel representations of MNIST, where each image is
represented as a 𝑘-nearest neighbors graph between super-pixels
(homogeneous patches of intensity). Nodes map to super-pixels,
node features are super-pixel intensity and position, and edges are
connections to 𝑘 neighbors. An example is shown in Fig. 4.
Setup of GNN models. The following architecture is used for ex-
periments. The encoder is 5-layer GIN architecture similar to [87]
and [14]. The projector is a 2-layer MLP and there is no predictor.
Models are trained for 80 epochs, using Adam [34] with LR of 1e-3,
and the representation dimension is set to 110. The models are
trained using SimSiam [9], BYOL [17], and SimCLR [8]. We give
more training details in Appendix C. While composing augmenta-
tions is known to improve performance on vision tasks, we avoid
it here in order to fairly compare to graph baselines, which only
consider a single augmentation.
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(a) Original

(b) Node Dropping (c) Colorizing

Figure 4:Augmentations for Super-pixel Classification.Node
dropping alters graph topology and it is unclear if task-
relevant information is preserved. Colorizing preserves
task-relevant information by only perturbing node features.

Table 5: Super-pixel Classification. KNN Accuracy after un-
supervised training with Node Dropping (ND) or context
aware graph augmentations (Colorize) is reported. Context
aware augmentations improve performance. Accuracy of
randomly initialized model is 37.79 ± 0.03.

Aug. SimSiam Acc. SimCLR Acc. BYOL Acc.

ND (20%) 66.30 ± 0.33 68.56 ± 0.16 65.32 ± 0.95
ND (30%) 61.30 ± 0.48 68.07 ± 0.37 61.87 ± 1.03
Colorize 68.95 ± 1.20 73.67 ± 0.10 64.42 ± 2.385

Domain-Agnostic Graph Augmentations. Following [87], we apply
random node dropping at 20% of the graph size to obtain both
samples in the positive pair.
Task-Aware Augmentations. While geometric image augmentations
[8], such as horizontal flipping and rotating, generally preserve
task-relevant information and introduce semantically meaningful
invariance, they cannot break view symmetry in GCL frameworks
as GNNs are permutation invariant. Therefore, the representations
of a pair of flipped images will be similar as their corresponding
super-pixel graph representations are equivalent up to node re-
ordering. On the other hand, augmentations such as cropping may
result in qualitatively different super-pixel graphs. Here, it is un-
clear if the super-pixel graph obtained after augmentation preserves
task-relevant information, even if cropping is information preserv-
ing with respect to the original image. Therefore, it is not trivial
to identify successful augmentations in the abstracted domain that
will also be successful in graph space.

Given the difficulty of identifying augmentations that perturb
super-pixel graph topology but also preserve task-relevant infor-
mation, we focus on image space augmentations that lead to modi-
fied node features in the super-pixel graph. Specifically, we select
random colorization as the TAA as it (i) preserves task-relevant in-
formation as color is not relevant property when classifying digits,
(ii) breaks view symmetry because the node features of augmented
samples are different and (iii) introduces a harmless invariance
to colorization. We briefly note that augmentations are generally

selected to introduce invariances that are useful to the downstream
task. For example, cropping results in occlusion invariance, which
is useful for classification tasks where objects are often partially
covered [52]. Here, we take a complementary approach where aug-
mentations introduce harmless information (color) and the model
learns to ignore it. This can be a useful strategy when it is difficult
to clearly identify potentially useful invariances for a given task.
Results. In Table 5, we observe that training with an information-
preserving, TAA (colorizing) improves accuracy for both SimSiam
and SimCLR. While BYOL generally performs worse than SimSiam
and SimCLR, colorizing is still within standard deviation of DAGAs.
Composing augmentations with colorizing would likely further
improve performance, but this investigation is left to future work.
This confirms that learning invariance to irrelevant information, as
determined by knowledge of the original data modality, is indeed a
viable strategy for creating TAAs. Moreover, we note that randomly-
initialized models have 37.79% accuracy, indicating that super-pixel
data can serve as a sufficiently complex benchmark for future GCL
evaluation [14] (see Appendix C for affinity and representational
similarity analysis).

5 CONCLUSION
In this work, we discuss limitations in the evaluation and design
of existing instance-discrimination GCL frameworks, and intro-
duce new improved practices. In two case studies, we show the
benefits of adhering to these practices, particularly the benefits
using task-aware augmentations. First, through our analysis, we
show that domain-agnostic graph augmentations do not preserve
task-relevant information and lead to weakly discriminative repre-
sentations. We then demonstrate that benchmark graph classifica-
tion datasets are not appropriate for evaluating GCL frameworks
by contextualizing recent theoretical work in VCL. Indeed, we
show that the strong inductive bias of randomly initialized, un-
trained GNNs obfuscates GCL framework inefficiencies. While we
acknowledge the community is moving toward larger and more
extensive benchmarks [14], we emphasize that it is fundamentally
incorrect to continue evaluating GCL on legacy graph classifica-
tion benchmarks. Furthermore, on two case studies with practically
complex tasks, we show how to use domain knowledge to perform
information-preserving, task-aware augmentation and achieve sig-
nificant improvements over training with domain-agnostic graph
augmentations. In summary, GCL is an exciting new direction in
unsupervised graph representation learning and our work can in-
form the evaluation of new methods as well as help practitioners
design task-aware augmentations.
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A EXPERIMENTAL DETAILS OF SECTION 3
For Secs. 3.2, 3.3 experiments, we use a GIN-based encoder [82] simi-
lar to InfoGraph [62] andGraphCL [87] for all datasets but (DEEZER,
GOSSIPCOP, GITHUB-SGZR). PNA is used for (DEEZER,GITHUB-
SGZR) to stabilize Infograph’s loss and in Sec. 3.1. For GOSSIPCOP,
the encoder is based off PyG’s implementation [16]: 1 GCN Layer, 1
Linear Layer, embedding dimension = 128, Optimizer = Adam [34],
LR = 0.001, # of Epochs = 25, batch size = 128.
Sec. 3.1 Experimental Setup: The following training configuration is
used: # of Layers = 3, LR = 0.01, # of Epochs = 30, Batch-Size = 32.
Models are trained on a Nvidia Tesla K80 GPU with Adam. A batch-
norm layer is included between the output of the backbone and cross
entropy layer. For augmentations, we follow [87] and stochastically
apply node dropping at 20% of graph size and subgraph dropping
at 20% of graph size.
Sec. 3.2 Experimental Setup: 3-layer GIN model with hidden di-
mension, learning rate, and epochs trained of (32, NA, NA) for
RAND (Random Initialization), (512,0.001,20) for InfoGraph, and
(32,0.01,20) for GraphCL. Adam and Nvidia Tesla K80 GPUs (12-
GB GPU) were used to train all models. Results for MVGRL ([22])
are not included as we consistently witnessed Out-Of-Memory er-
rors. Results are reported over 3 seeds. Additional Results: Fig. 5a
includes additional results for PROTEINS, NCI1 and DD datasets.
Sec. 3.3 Experimental Setup: For all datasets, excluding DEEZER
and GITHUB-SGZR, we report results from GraphCL and Info-
Graph. We use the same GIN encoder as GraphCL when reporting
the performance of randomly initialized models for these datasets.
On GITHUB-SGZRS, InfoGraph training time on exceeds eights
hours using a NVIDIA Tesla P100. Additional Results: See Table 6.
We find that the inductive bias of GNNs is strong across different
architectures (GraphSAGE, PNA, GCN, and GAT).

Table 6: Inductive Bias: Additional results.
GraphSAGE 3 Layer 4 Layer 5 Layer GraphCL InfoGraph
MUTAG 0.85 ± 0.005 0.85 ± 0.006 0.85 ± 0.005 0.82 ± 0.040 0.85 ± 0.005
PROTEINS 0.73 ± 0.004 0.73 ± 0.003 0.74 ± 0.005 0.75 ± 0.002 0.74 ± 0.008
NCI1 0.74 ± 0.003 0.75 ± 0.006 0.73 ± 0.011 0.78 ± 0.000 0.79 ± 0.002
DD 0.77 ± 0.006 0.78 ± 0.002 0.78 ± 0.005 0.80 ± 0.008 0.77 ± 0.010
REDDIT-B 0.85 ± 0.014 0.83 ± 0.016 0.83 ± 0.005 – 0.66 ± 0.137
IMDB-B 0.66 ± 0.012 0.81 ± 0.008 0.81 ± 0.008 – –
PNA 3 Layer 4 Layer 5 Layer GraphCL InfoGraph
MUTAG 0.88 ± 0.011 0.88 ± 0.010 0.89 ± 0.009 0.86 ± 0.023 0.90 ± 0.014
PROTEINS 0.74 ± 0.003 0.74 ± 0.012 0.74 ± 0.005 0.74 ± 0.007 0.74 ± 0.003
NCI1 0.67 ± 0.008 0.68 ± 0.011 0.68 ± 0.010 0.78 ± 0.008 0.77 ± 0.019
DD 0.76 ± 0.014 0.76 ± 0.002 0.76 ± 0.008 0.80 ± 0.008 0.76 ± 0.006
REDDIT-B 0.90 ± 0.003 0.88 ± 0.014 0.89 ± 0.010 0.92 ± 0.006 0.92 ± 0.006
IMDB-B 0.72 ± 0.007 0.68 ± 0.011 0.68 ± 0.010 0.71 ± 0.009 0.71 ± 0.009
GCN 3 Layer 4 Layer 5 Layer GraphCL InfoGraph
MUTAG 0.85 ± 0.003 0.85 ± 0.004 0.85 ± 0.005 0.82 ± 0.013 0.85 ± 0.003
PROTEINS 0.74 ± 0.003 0.73 ± 0.007 0.74 ± 0.004 0.75 ± 0.004 0.75 ± 0.003
NCI1 0.76 ± 0.004 0.75 ± 0.001 0.75 ± 0.002 0.78 ± 0.008 0.79 ± 0.007
DD 0.78 ± 0.002 0.77 ± 0.012 0.78 ± 0.003 0.79 ± 0.007 0.76 ± 0.003
REDDIT-B 0.52 ± 0.005 0.51 ± 0.003 0.52 ± 0.005 0.92 ± 0.002 0.80 ± 0.062
IMDB-B 0.54 ± 0.001 0.57 ± 0.016 0.58 ± 0.008 0.71 ± 0.011 0.62 ± 0.070
GAT 3 Layer 4 Layer 5 Layer GraphCL InfoGraph
MUTAG 0.84 ± 0.003 0.85 ± 0.009 0.84 ± 0.003 0.81 ± 0.032 0.85 ± 0.013
PROTEINS 0.74 ± 0.002 0.74 ± 0.005 0.74 ± 0.006 0.74 ± 0.007 0.74 ± 0.005
NCI1 0.76 ± 0.009 0.75 ± 0.004 0.76 ± 0.002 0.78 ± 0.004 0.70 ± 0.040
DD 0.78 ± 0.005 0.77 ± 0.006 0.79 ± 0.001 0.79 ± 0.003 0.76 ± 0.005
REDDIT-B 0.52 ± 0.005 0.53 ± 0.004 0.52 ± 0.012 0.75 ± 0.004 –
IMDB-B 0.51 ± 0.004 0.51 ± 0.009 0.50 ± 0.005 0.51 ± 0.007 –

B DOCUMENT CLASSIFICATION
In Sec. 4.1, we demonstrate the benefits of using task-aware aug-
mentations on a graph-based document classification task.
Experimental Setup:Weuse themodel, code base and default settings
of [46]. Models are trained using Adam: lr = 0.001, weight-decay =
1e-4 and cosine scheduler (T=8).We use the code (https://github.com/
jasonwei20/eda-nlp) and augmentations by [78]. Synonym replace-
ment, random deletion, random insertion and random swapping
are applied at 5%, 10%, 5%, 5% of sentence length respectively. We
generate an augmented version of each sentence for every training
epoch. For domain agnostic augmentations, we apply random node
dropping (10%) to generate one view. The other view is generated
by applying random node or subgraph dropping (10%).

As noted in Sec. 4.1, natural language augmentations can be
directly in graph space. We provide proof of concept using the syn-
onym replacement augmentation. In Table 7, results are reported
for a model trained with synonym replacement and graph space
equivalent, node replacement at 5%. This model achieves compara-
ble accuracy to the original task-aware augmentations. We suspect
that synonym replacement is crucial for this task.
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Figure 5:Representational Similarity: In addition toMUTAG
(Figure 2), we provide results on PROTEINS, NCI1 and DD.
Random inductive bias is most noticeable on MUTAG and
PROTEINS. Note that the intra-class similarity can be low
for GraphCL and InfoGraph.
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Table 7: Document Classification: We use the same augmen-
tations as in Table 4. Text-to-Graph augmentations perform
synonym replacement as modifying node features.

Augmentation (SimSiam) KNN Acc. (BYOL) KNN Acc.

S. vs S. (ws = 2) 62.62 ± 3.21 66.25 ± 2.65
S. vs N. (ws = 2) 57.35 ± 2.47 62.83 ± 2.82
Text-Space (ws = 2) 83.69 ± 0.01 82.69 ± 1.98
Text-to-Graph (ws = 2) 83.33 ± 1.29 78.16 ± 2.11
S. vs S. (ws = 4) 63.70 ± 8.71 67.53 ± 5.00
S. vs N. (ws = 4) 54.77 ± 1.42 65.99 ± 2.78
Text-Space (ws = 4) 83.29 ± 0.9 72.91 ± 4.97
Text-to-Graph Space (ws = 4) 84.67 ± 1.57 77.96 ± 2.04

C SUPER-PIXEL CLASSIFICATION
In Sec. 4.2, we demonstrate the benefits of using task-aware aug-
mentations via a case study on MNIST superpixel classification.
Experimental Setup: 50K images are used for training, 10K for vali-
dation, and 10K for testing. We follow the same procedure as [14]
to convert images to superpixel graphs: SLIC ([1]) is used to ex-
tract superpixels from the image. Then, a 𝑘NN graph is constructed
between the superpixels. Node features are RGB values and (𝑥,𝑦)
coordinates of superpixels. Classification is performed using three
CL frameworks: SimSiam ([9]), SimCLR ([8]), and BYOL ([17]). The
same hyper-parameters and architecture are used for all frame-
works. Specifically, we use a 5-Layer GIN model closely following
[14]. This model is converted fromDGL (https://www.dgl.ai) to PyG
([16]). The following hyper-parameters are used: LR=5e-4, Hidden-
Dim =110, Epochs=80, Batch-size = 128. The Adam ([34]) Optimizer
is used for training. The projector is a 2-layer MLP. The predictor
is a 2-layer MLP. Predictor hidden dimension is 1028. Bottleneck

Table 8: Comparison to [75]. Results only reported for Sim-
CLR, as it performs better than SimSiam and BYOL in pre-
ceding experiments.

Rand Init. ND (20%) ND (30%) Colorize DACL [75]

37.79 ± 0.03 68.56 ± 0.16 68.07 ± 0.37 73.67 ± 0.10 59.94 ± 0.01

Table 9: Super-pixel, Rep. Similarity. Avg. intraclass and in-
terclass cosine similarity is reported. Colorizing produces
representations with the largest difference between intra-
vs. inter- class similarity, indicating that representations are
well-separated.

Method Aug. Intra. Sim Inter Sim. Abs. Diff Rel. Diff Acc.

SimCLR ND (20%) 86.671 78.622 8.04 0.0928 68.56 ± 0.16
SimCLR ND (30%) 87.03 79.05 7.987 0.091 68.07 ± 0.37
SimCLR Colorizing 80.801 67.812 12.988 0.1607 73.67 ± 0.10

Table 10: Super-pixel Affinity. Supervised, clean train accu-
racy is 90.01% and clean test accuracy is 88.69%.

Aug. Aug. Train Acc. Aug. Test Acc.

ND (20%) 39.42 ± 0.011 40.29 ± 0.054
ND (30%) 29.19 ± 0.01 29.09 ± 0.036
Colorizing 47.86 ± 0.05 48.97 ± 0.03

dimension is 128. Results are reported over 3 seeds. DAGAs are
random node dropping (at 20% and 30%). The task-aware augmen-
tation is random colorizing, performed using Scikit-Image ([72]).
As discussed in the main text, colorizing can be represented as
transformation on node features as well.
Additional Results: [75] proposes to mix-up samples at either the
input or hidden representation level as an alternative to domain-
specific augmentations. However, we find that [75] under-performs
both node-dropping and colorizing, despite tuning the mixing pa-
rameter, 𝛼 (see Table. 8).This indicates that context-aware and topo-
logical augmentations are still important to GCL. Table 9 shows
intra/inter similarity and Table 10 shows the affinity.

D ADDITIONAL RELATED WORK
Graph Data Augmentation. [93] train a neural edge predictor to
increase homophily by adding edges between nodes expected to
be of the same class and break edges between nodes of expected
dissimilar classes. However, this approach is expensive and not
applicable to graph classification. [38] focus on feature augmen-
tations because it is easier than designing information preserving
topological transformations. They add adversarial perturbations to
node features as augmentations. In unsupervised settings, labels
are not available and cannot be used for the adversarial perturba-
tion, so the proposed approach is not directly applicable. Since the
writing of this paper, several recent works have been proposed that
perform automatic data-augmentation, some of which we briefly
describe in Table 11.

Graph Self-Supervised Learning. Several paradigms for self-super-
vised learning in graphs have been recently explored, including
the use of pre-text tasks, multi-tasks, and unsupervised learning.
See [41] for an up-to-date survey. Graph pre-text tasks are often
reminiscent of image in-painting tasks [90], and seek to complete
masked graphs and/or node features ([28, 88]). Other successful ap-
proaches include predicting graph level or property level properties
during pre-training or part of regular training to prevent overfitting
([28]). These tasks often must be carefully selected to avoid negative
transfer between tasks. Many unsupervised approaches have also
been proposed. [62, 74] draw inspiration from [27] and maximize
the mutual information between global and local representations;
MVGRL ([22]) contrasts different views at multiple granularities
similar to [71]; [32, 53, 66, 87, 94] use augmentations to generate
views for contrastive learning. See Table 11 for a summary of the
augmentations used.

Table 11: Selected GCL Frameworks
Method Augmentations
BGRL [66] Edge Dropping, Attr. Masking
GCA [94] Edge Dropping, Attr. Masking (both weighted by centrality)
GCC [53] RWR Subgraph Extraction of Ego Network
GraphCL [87] Node Dropping, Edge Adding/Dropping, Attr. Masking, Subgraph Extraction
MVGRL [22] PPR Diffusion + Sampling
SelfGNN [32] Attr. Splitting, Attr. Standardization + Scaling, Local Degree Profile, Paste +

Local Degree Profile
JOAO [86] Min-Max Optimization to adaptively and dynamically select from DAGA set
GraphSurgeon [33] Learnable Feature Augmentors that can be applied pre/post encoding
BYOV [89] Uses graph generation (regularized by InfoMin + InfoBottleNeck) as viewmaker
AdvGCL [63] Adversarial/MinMax Optimization over learnable augmentations
AF-GRL [40] Finds node-level positive samples sharing “local structure and global semantics”
LG2AR [23] Learns a policy over augmentations and their respective strengths without

bi-level optimization
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