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ABSTRACT

Webridge two research directions on graph neural networks (GNNs),

by formalizing the relation between heterophily of node labels (i.e.,

connected nodes tend to have dissimilar labels) and the robustness

of GNNs to adversarial attacks. Our theoretical and empirical anal-

yses show that for homophilous graph data, impactful structural

attacks always lead to reduced homophily, while for heterophilous

graph data the change in the homophily level depends on the node

degrees. These insights have practical implications for defending

against attacks on real-world graphs: we deduce that separate ag-

gregators for ego- and neighbor-embeddings, a design principle

which has been identified to significantly improve prediction for

heterophilous graph data, can also offer increased robustness to

GNNs. Our comprehensive experiments show that GNNs merely

adopting this design achieve improved empirical and certifiable

robustness compared to the best-performing unvaccinated model.

Additionally, combining this design with explicit defense mecha-

nisms against adversarial attacks leads to an improved robustness

with up to 18.33% performance increase under attacks compared to

the best-performing vaccinated model.
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1 INTRODUCTION

Graph neural networks (GNNs) aim to translate the enormous em-

pirical success of deep learning to data defined on non-Euclidean do-

mains, such as manifolds or graphs [6], and have become important

tools to solve a variety of learning problems for graph structured

and geometrically embedded data. However, recent works show

that GNNs—much like their “standard” deep learning counterparts—

have a high sensitivity to adversarial attacks: intentionally intro-

duced minor changes in the graph structure can lead to significant

changes in performance. This finding, first articulated by Zügner

et al. [52] and Dai et al. [10], has triggered studies that investigated

different attack scenarios [24, 30, 41, 42].

A different aspect of GNNs that has been scrutinized recently

is that most GNNs do not perform well with many heterophilous

datasets. GNNs generally perform well under homophily (or assor-

tativity), i.e., the tendency of nodes with similar features or class

labels to connect [35, 47]. Such datasets are thus called homophilous

(or assortative). While homophilous datasets dominate the study of

networks, homophily is not a universal principle; certain networks,

such as romantic relationship networks or predator-prey networks

in ecology, are mostly heterophilous (or disassortative). Employing

a GNN which does not account for heterophily can lead to signifi-

cant performance loss in heterophilous settings [1, 2, 47]. Previous

works have thus proposed architectures for heterophilous data.

While previous work has focused on naturally-occurring het-

erophily, heterophilous interactions may also be introduced as ad-

versarial noise: as many GNNs exploit homophilous correlation,

they can be sensitive to changes that render the data more het-

erophilous. A natural follow-up question is if and how this obser-

vation manifests itself in previously proposed attacking strategies

on GNNs. In this work, we thus investigate the relation between

heterophily and robustness of GNNs against adversarial attacks of

graph structure, focusing on semi-supervised node classification.

More specifically, our main contributions are:

• Formalization: We formalize the relation between adversar-

ial structural attacks and the change of homophily level in the

underlying graphs with theoretical (§3.1) and empirical (§5.1)

analysis. Specifically, we show that on homophilous graphs, ef-

fective structural attacks lead to increased heterophily, while,

on heterophilous graphs, they alter the homophily level contin-

gent on node degrees. To our knowledge, this is the first formal

analysis of such kind.

• Heterophily-inspired Design:We show how the relation be-

tween attacks and heterophily can inspire more robust GNNs by
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demonstrating that a key architectural feature in handling het-

erophily, separate aggregators for ego- and neighbor-embeddings,

also improves the robustness of GNNs against attacks (§3.2).

• Extensive Empirical Analysis:We show the effectiveness of

the heterophilous design in improving empirical (§5.2) and cer-

tifiable (§5.3) robustness of GNNs with extensive experiments

on real-world homophilous and heterophilous datasets. Specifi-

cally, we compare GNNs with this design, which we refer to as

heterophily-adjusted GNNs, to non-adjusted models, including

state-of-the-art models designed with robustness in mind. We

find that heterophily-adjusted GNNs are up to 11.1 times more

certifiably robust and have stronger performance under attacks

by up to 40.00% compared to non-adjusted, standard models.

Moreover, this design can be combined with existing vaccina-

tion mechanisms, yielding up to 18.33% higher accuracy under

attacks than the best non-adjusted vaccinated model. Our code

is available at https://github.com/GemsLab/HeteRobust.

2 NOTATION AND PRELIMINARIES

Let G = (V, E,X) be a simple graph with node set V , edge set

E and node attributes X. The one-hop neighborhood 𝑁 (𝑣) = {𝑢 :

(𝑢, 𝑣) ∈ E} of a node 𝑣 ∈ V is the set of all nodes directly adjacent to

𝑣 ; the 𝑘-hop neighborhood of 𝑣 ∈ V is the set of nodes reachable by

a shortest path of length 𝑘 . We represent the graph G algebraically

by an adjacency matrix A ∈ {0, 1} |V |× |V |
and node feature matrix

X ∈ R |V |×𝐹
. We use As = A + I to denote the adjacency matrix

with self-loops added, and denote the corresponding row-stochastic

matrices as Ā = D−1A and Ās = D−1
s
As, respectively, where D is

a diagonal matrix with D𝑖𝑖 =
∑
𝑗 A𝑖 𝑗 (Ds is defined analogously).

We further assume that there exists a vector y, which contains a

unique class label 𝑦𝑣 for each node 𝑣 . Given a training set TV =

{(𝑣1, 𝑦1), (𝑣2, 𝑦2), ...} of labeled nodes, the goal of semi-supervised

node classification is to learn a mapping ℓ : V → Y from the nodes

to the set Y of class labels.

Graph neural networks (GNNs). Most current GNNs operate

according to a message passing paradigm where a representation

vector r𝑣 is assigned to each node 𝑣 ∈ V and continually updated by

𝐾 layers of learnable transformations. These layers first aggregate

representations over neighboring nodes 𝑁 (𝑣) and then update the

current representation via an encoder ENC. For prevailing GNN

models like GCN [18] and GAT [40], each layer can be formalized

as r(𝑘 )𝑣 = ENC
(
AGGR

({
r(𝑘−1)𝑢 : 𝑢 ∈ 𝑁 (𝑣) ∪ {𝑣}

}))
, where AGGR is the

mean function weighted by node degrees (GCN) or an attention

mechanism (GAT), and ENC is a learnable (nonlinear) mapping.

Adversarial attacks on graphs. Given a graph G = (V, E,X) and
a GNN 𝑓 that processes G, an adversarial attacker tries to create

a perturbed graph G′ = (V, E′,X) with a modified edge-set E′

such that the performance of the GNN 𝑓 is maximally degraded.

The information available to the attacker can vary under different

scenarios [17, 37]. Here, we follow the gray-box formalization by

[52], where the attacker knows the training set TV , but not the

trained GNN 𝑓 . The attacker thus considers a surrogate GNN and

picks perturbations that maximize an attack loss L
atk

[49, 52],

assuming that attacks to the surrogate model are transferable to

the attacked GNN. For node classification, the attack loss L
atk

quantifies how the predictions z𝑣 ∈ [0, 1] |Y |
made by the GNN 𝑓

differ from the true labels y. For a targeted attack of node 𝑣 with

class label 𝑦𝑣 ∈ Y, we adopt the negative classification margin

(CM-type) [42, 52]: L
atk

= −Δ𝑐 = −(z𝑣,𝑦𝑣 − max𝑦≠𝑦𝑣 z𝑣,𝑦). The
attacker usually has additional constraints, such as a limit on the

size of the perturbations allowed [49, 52].

Taxonomy of attacks.We follow the taxonomy of attacks intro-

duced in [17, 37]. For node classification, the attacker may aim to

change the classification of a specific node 𝑣 ∈ V (targeted attack),

or to decrease the overall classification accuracy (untargeted at-

tack). Attacks can also happen at different stages of the training

process: we refer to attacks introduced before training as (pre-

training) poison attacks, and attacks introduced after the train-

ing process (and before potential retraining on perturbed data) as

(post-training) evasion attacks. While our theoretical analysis

(§3) mainly considers targeted evasion attacks, we consider other

attacks in our empirical evaluation (§5).

Characterizing homophily and heterophily in graphs. Using

class labels, we characterize the types of connections in a graph

contributing to its overall level of homophily/heterophily as follows:

Definition 1 (Homo/Heterophilous path and edge). A 𝑘-

hop homophilous path from node𝑤 to 𝑢 is a length-𝑘 path between

endpoint nodes with the same class label 𝑦𝑤 = 𝑦𝑢 . Otherwise, the

path is called heterophilous. A homophilous or heterophilous edge is

a special case with 𝑘 = 1.

Following [27, 47], we define the homophily ratio ℎ as:

Definition 2 (Homophily ratio). The homophily ratio is the

fraction of homophilous edges among all the edges in a graph: ℎ =

|{(𝑢, 𝑣) ∈ E|𝑦𝑢 = 𝑦𝑣}|/|E |.
When the edges in a graph are wired randomly, independent to

the node labels, the expectation for ℎ is ℎ𝑟 = 1/|Y| for balanced
classes [27]. For simplicity, we informally refer to graphs with

homophily ratio ℎ ≫ 1/|Y| as homophilous graphs (which have

been the focus in most prior works), graphs with homophily ratio

ℎ ≪ 1/|Y| as heterophilous graphs, and graphs with homophily

ratio ℎ ≈ 1/|Y| as weakly heterophilous graphs.

3 RELATION BETWEEN GRAPH

HETEROPHILY & MODEL ROBUSTNESS

In this section, we first show theoretical results on the relation

between adversarial structural attacks and the change in the ho-

mophily level of the underlying graphs. Though empirical analyses

from previous works have suggested this relation on homophilous

graphs [17, 41], to our knowledge, we are the first to formalize

it with theoretical analysis and address the case of heterophilous

graphs. As an implication of the relation, we then discuss how a

key design that improves predictive performance of GNNs under

heterophily can also help boost their robustness.

3.1 How Do Structural Attacks Change

Homophily in Graphs?

Homophilous graphs: structural attacks are mostly hetero-

philous attacks. Our first result shows that, for homophilous data,

effective structural attacks on GNNs (as measured by loss L
atk

)

always result in a reduced level of homophily where either new

heterophilous connections are added or existing homophilous con-

nections are removed. It also states that direct perturbations on
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1-hop neighbors of the target nodes are more effective than indirect

perturbations (influencer attacks [52]) on multi-hop neighbors. For

simplicity, akin to previous works [49, 52] we establish our results

for targeted evasion (post-training) attacks in a stylized learning

setup with a linear GNN. However, our findings generalize to more

general setups on real-world datasets as we show in our experi-

ments (§5.1). In the theorems below, we use the notion of gambit

node: node 𝑢 is called a gambit if a perturbation that targets node

𝑣 ∈ V adjusts the connectivity of node 𝑢 ∈ V .

Theorem 1. Let G = (V, E,X) be a self-loop-free graph with

adjacency matrix A and node features x𝑣 = 𝑝 · onehot(𝑦𝑣 ) + 1−𝑝
|Y| · 1

for each node 𝑣 , where 1 is an all-1 vector, and 𝑝 is a parameter

that regulates the signal to noise ratio. Assume that a fraction ℎ of

each node’s neighbors belong to the same class, while a fraction
1−ℎ
|Y|−1

belongs uniformly to any other class. Consider a 2-layer linear GNN

𝑓
(2)
𝑠 (A,X) = Ā2

s
XW trained on a training set TV ⊆ DV , with at least

one node from each class 𝑦 ∈ Y, and degree 𝑑 for all nodes with a

distance less than 2 to any 𝑣 ∈ DV . For a unit structural perturbation

that involves a target node 𝑣 ∈ DV , and a correctly classified gambit

node with degree 𝑑𝑎 , the following statements hold if ℎ ≥ 1

|Y| :

(1) the attack loss L
atk

(§2) of the target 𝑣 increases only for actions

increasing heterophily, i.e., when removing a homophilous edge

or path, or adding a heterophilous edge or path to node 𝑣 ;

(2) direct perturbations on edges (or 1-hop paths) incident to the target

node 𝑣 lead to greater increase in L
atk

than indirect perturbations

on multi-hop paths to target node 𝑣 .

We give the proof in App. A. Intuitively, the relative inability

of existing GNNs to make full use of heterophilous data [35, 47]

can be exploited by inserting heterophilous connections in graphs

where homophilous ones are expected. Though the theorem shows

that effective attacks on homophilous graphs necessarily reduce

the homophily level, the converse is not true: not all perturbations

which reduce the homophily level are effective attacks [31].

Heterophilous graphs: structural attacks can be homophil-

ous or heterophilous, depending on node degrees. When a

graph displays heterophily, our analysis shows a more complicated

picture on how the level of homophily in the graph is changed by

effective structural attacks: in heterophilous case, the direction of

change is dependent on the degrees of both the target node 𝑣 and the

gambit node 𝑢 of the attack. Specifically, if the degree of either node

is low, attacks increasing the heterophily are still effective; however,

if the degrees 𝑑 and 𝑑𝑎 of both nodes are high, attacks decreasing

the heterophily will be effective. Similar to the homophilous case,

we formalize our results below for targeted evasion attacks in a

stylized learning setup.

Theorem 2. Under the setup of Thm. 1, for a unit perturbation

that involves a target node 𝑣 with degree 𝑑 , and a correctly classified

gambit node with degree 𝑑𝑎 , the following statements hold:

(1) (Low-degree target node) if 0 < 𝑑 ≤ |Y| − 2, for any 𝑑𝑎 ≥ 0

and ℎ ∈ [0, 1], the attack loss L
atk

(§2) of 𝑣 increases only under

actions increasing heterophily in the graph;

(2) (High-degree target node) if 𝑑 > |Y| − 2, conditioning on the

degree 𝑑𝑎 of the gambit node:

(a) (Low-degree gambit node) if 𝑑𝑎 <
(𝑑+2) ( |Y |−1)
𝑑−|Y |+2 , for any

ℎ ∈ [0, 1], the attack loss L
atk

(§2) of 𝑣 increases only under

actions increasing heterophily in the graph;

(b) (High-degree gambit node) if 𝑑𝑎 ≥ (𝑑+2) ( |Y |−1)
𝑑−|Y |+2 , for

0 ≤ ℎ <
𝑑𝑎 (𝑑−|Y |+2)−(𝑑+2) ( |Y |−1)

(𝑑+1) |Y |𝑑𝑎 < 1

|Y | , Latk
(§2) of 𝑣

increases only under actions reducing heterophily.

In the statements above, the actions increasing heterophily include

removing a homophilous edge or adding a heterophilous edge to node

𝑣 , and the actions reducing heterophily include adding a homophilous

edge or removing a heterophilous edge to node 𝑣 .
The above theorems cover the situation when the gambit nodes

are initially classified correctly (where attacks introducing het-

erophily can be unambiguously defined using the ground-truth

class labels of the nodes involved). However, in §5.1, we show on

real-world datasets that a relaxed interpretation of the theorems,

where heterophily is instead defined by the predicted class labels

of GNNs, can explain the behavior of the attacks regardless of the

initial correctness of the gambits.

3.2 Boosting Robustness with A Simple

Heterophilous Design

A natural follow-up question is whether GNNs with better perfor-

mance under heterophily are also more robust against structural at-

tacks.We deduce that a key design for improving GNN performance

for heterophilous data—separate aggregators for ego- and neighbor-

embeddings—can also boost the robustness of GNNs by enabling

them to better cope with adversarial changes in heterophily.

Separate aggregators for ego- and neighbor-embeddings. This

design uses separate GNN aggregators for ego-embedding r𝑣 and
neighbor-embeddings {r𝑢 : 𝑢 ∈ 𝑁 (𝑣)}. Formally, the representation

learned for node 𝑣 in the 𝑘-th layer is:

r(𝑘 )𝑣 = ENC
(
AGGR1(r(𝑘−1)𝑣 , r(𝑘−2)𝑣 , ..., r(0)𝑣 ), AGGR2({r(𝑘−1)𝑢 : 𝑢 ∈ 𝑁 (𝑣) } )

)
,

(1)

where AGGR1 and AGGR2 are separate aggregators, such as averaging
functions (GCN), attention mechanisms (GAT), or other pooling

mechanisms [15]. This design has been utilized in existing GNN

models (we show examples later in this section), and has been

shown to significantly boost the representation power of GNNs

under natural heterophily [47]. The ego-aggregator AGGR1may also

introduce skip connections [43] to the ego-embeddings aggregated

in previous layers as shown in Eq. (1), which is another design that

further improves the representation power under heterophily [47].

Intuition. The key design changes, as compared to the GCN for-

mulation in §2, allow for the ego-embedding r𝑣 to be aggregated

and weighted separately from the neighbor-embeddings {r𝑢 : 𝑢 ∈
𝑁 (𝑣)}, as well as for the use of skip connections to ego-embeddings

of previous layers. Intuitively, ego-embeddings of feature vectors

at the first layer are independent of the graph structure and thus

unaffected by adversarial structural perturbations. Hence, a sepa-

rate aggregator and skip connections can provide better access to

unperturbed information and mitigate the effects of the attacks.

Theoretical analysis.We formalize the above intuition that shows

how separate aggregators for ego- and neighbor-embeddings enable

GNN layers to reduce the attack loss.

Theorem 3. Under the setup of Thm. 1, consider two alternative

layers from which a two-layer linear GNN is built: (1) a layer defined
as 𝑓𝑠 (A,X) = ĀsXW; and (2) a layer formulated as 𝑓 (A,X;𝛼) =(
(1 − 𝛼)Ā + 𝛼I

)
XW, which mixes the ego- and neighbor-embedding

linearly under a predefined weight 𝛼 ∈ [0, 1]. Then, for ℎ > 1/|Y|,
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𝛼 > 1/(1 + 𝑑𝑎), and a unit perturbation increasing Latk
as in Thm. 1,

outputs of layer 𝑓 lead to a strictly smaller increase in L
atk

than 𝑓𝑠 .

We provide the proof in App. A; note that for 𝛼 = 1/(1 + 𝑑𝑎),
the two layers are the same: 𝑓 (A,X;𝛼) = 𝑓𝑠 (A,X). Theorem 3

shows that an increase to the weights of ego-embedding (manually

or through training) improves the robustness of the GNN 𝑓 for a

homophily ratio ℎ > 1/|Y|. Though aggregators and encoders are

stylized in this simple instantiation of the design in the theorem,

the empirical analysis in §5.2 confirms that GNNs with more ad-

vanced aggregators and encoders, which we will discuss next, also

benefit from separate aggregators. Specifically, we find that such

GNNs outperform methods without this design by up to 40.00%

and 48.88% on homophilous and heterophilous graphs, respectively,

while performing comparably on clean datasets.

Instantiations of the design on GNNs. We demonstrate how the

heterophilous design outlined in Eq. (1) is instantiated in various

GNN models, which are used in our empirical evaluation in §5.

In particular, we highlight how these GNN architectures allow

separate aggregations of the ego- and neighbor-embeddings.

• InH2GCN [47], a final representation is computed for each node

𝑣 ∈ V through r(final)𝑣 = CONCAT(r(0)𝑣 , r(1)𝑣 , ..., r(𝐾 )
𝑣 ), where r(0)𝑣

is the non-linear ego-embedding of node features and r(𝑘 )𝑣 are the

intermediate representations aggregated in the 𝑘-th layer, where

𝑘 ∈ (1, ..., 𝐾). By interpreting the update rule’s CONCAT as the ENC
operation, AGGR1 as the skip connection to the ego-embedding

of node features, and the concatenation of the intermediate rep-

resentations as AGGR2, the ego- and neighbor-embeddings are

separately aggregated as stated in the design.

• GraphSAGE (withmean aggregator) [15] utilizes a concatenation-

based encoding scheme through their update of

r(𝑘 )𝑣 = 𝜎

(
CONCAT

(
r(𝑘−1)𝑣 , MEAN

(
{r(𝑘−1)𝑢 ,∀𝑢 ∈ 𝑁 (𝑖)}

))
·W

)
,

where ENC(x1, x2) = 𝜎 (CONCAT(x1, x2) ·W), AGGR1(·) = r(𝑘−1)𝑢 ,

and AGGR2 is the mean function.

• GPR-GNN [8] embeds each node feature vector separately with

a fully connected layer to compute R(0)
𝑣: (orH(0)

𝑣: as in the original

paper), similar to H2GCN, and then updates each node’s hidden

representations through a weighted sum of all 𝑘-th hop layers

around the ego-node, where 𝑘 ∈ (0, 1, ..., 𝐾). By interpreting

the summation as the ENC operation, AGGR1(·) = 𝜸0R(0)
, and

AGGR2(·) = ∑𝐾
𝑘=1

𝜸𝑘 Ã𝑘symR(𝑘−1)
, where 𝜸 denotes the weights

associated with each 𝑘-hop ego network, the aggregation of the

ego- and neighbor-embeddings is decoupled.

• FAGCN [2] follows a similar update function to GPR-GNN with

r(𝑙 )
𝑖

= 𝜀r(0)
𝑖

+
∑︁

𝑗∈𝑁 (𝑖 )

𝛼𝐺
𝑖 𝑗√︁
𝑑𝑖𝑑 𝑗

r(𝑙−1)
𝑗

where r(0)
𝑖

(or h(0)
𝑖

in the original paper) represents the non-

linear ego-embedding and 𝛼𝐺
𝑖 𝑗
is a constant measuring the ratio

of low and high frequency components. The heterophilous design

can similarly be recovered by interpreting the sum as the ENC

operation, AGGR1(·) = 𝜀r(0)
𝑖

as a weighted skip connection to the

ego-embedding of features, and the weighted sum of embeddings

within the neighborhood 𝑁 (𝑖) of node 𝑖 ∈ V as AGGR2(·).
• CPGNN [48] formulates the update function of belief vectors

R(𝑘 )
after the 𝑘-th propagation layer as R(𝑘 ) = R(0) +AR(𝑘−1) H̄,

where R(0)
(B̄(0)

in the original paper) consists of prior belief

vectors for each node (as the ego-embeddings r(0)
𝑖

in Eq. (1)), and

H̄ is the learnable compatibility matrix. The heterophilous design

is recovered by letting AGGR1(·) = R(0)
as a skip connection,

AGGR2(·) = AR(𝑘−1) H̄, and the ENC operation as the summation.

• APPNP [19] first generates predictions R(0)
𝑣: (or H(0)

𝑣: as in the

original paper) of each node 𝑣 based on its own feature, then

updates the predictions through power iterations of Personalized

PageRank. More specifically, the 𝑘-th iteration step is formulated

as R(𝑘 ) = (1 − 𝛼)ÃsymR(𝑘−1) + 𝛼R(0)
. The heterophilous design

can be recovered by letting AGGR1(·) = R(0)
as a skip connec-

tion to the initial prediction, AGGR2(·) = ÃsymR(𝑘−1)
, and the

summation weighted by 𝛼 as the ENC operation.

4 RELATED WORK

Adversarial attacks and defense strategies for graphs. Since

Nettack [52] and RL-S2V [10] first demonstrated the vulnerabili-

ties of GNNs against adversarial perturbations, a variety of attack

strategies under different scenarios have been proposed, including

adversarial attacks on the graph structure [3, 7, 10, 24, 42], node

features [30, 38], or combinations of both [41, 49, 52]. On the de-

fense side, various techniques for improving the GNN robustness

against adversarial attacks have been proposed, including: adver-

sarial training [4, 42, 49]; RGCN [46], which adopts Gaussian-based

embeddings and a variance-based attention mechanism; low-rank

approximation of graph adjacency [12] against Nettack [52]; Pro-

GNN [16], which estimates the unperturbed graph structure in

training with the assumptions of low-rank, sparsity, and homophily

of node features; GCN-Jaccard [41] and GNNGuard [45], which

assume homophily of features (or structural embeddings) and train

GNN models on a pruned graph with only strong homophilous

links; and Soft Medoid [13], an aggregation function with improved

robustness. Other recent works have looked into the certification

of nodes that are guaranteed to be robust against certain structural

and feature perturbations [4, 50, 51], including approaches based on

model-agnostic randomized smoothing [5, 9, 21]. Interested readers

can refer to the recent surveys [17, 37] for a comprehensive review.

GNNs & Heterophily. Recent works [28, 31, 35, 47] have shown

that heterophilous datasets can lead to significant performance loss

for popular GNN architectures (e.g., GCN [18], GAT [40]). This

issue is also known in classical semi-supervised learning [34]. To

address this issue, several GNN designs for handling heterophilous

connections have been proposed [1, 2, 11, 25, 35, 47, 48]. Yan et al.

[44] recently discussed the connection between heterophily and

oversmoothing for GNNs, and designs to address both issues; [29]

studied how locally-occuring heterophily affects fairness of GNNs.

However, the formal connection between heterophily and robust-

ness of GNNs has received little attention. Here we focus on a simple

yet powerful design that significantly improves performance under

heterophily [47], and can be readily incorporated into GNNs.

5 EMPIRICAL EVALUATION

Our analysis seeks to answer the following questions: (Q1) Does

our theoretical analysis on the relations between adversarial at-

tacks and changes in heterophily level generalize to real-world
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datasets? (Q2) Do heterophily-adjusted GNNs, i.e., models with

separate aggregators for ego- and neighbor-embeddings, show im-

proved robustness against state-of-the-art attacks? (Q3) Does the

identified design improve the certifiable robustness of GNNs?

First, we describe the experimental setup and datasets that we

use to answer the above questions.

Attack Setup.We consider both targeted and untargeted attacks

(§2), generated by Nettack [52] and Metattack [49], respectively.

For each attack method, we consider poison (pre-training) and eva-

sion (post-training) attacks, yielding 4 attack scenarios in total. We

focus on robustness against structural perturbations and keep the

node features unchanged. We randomly generate 3 sets of perturba-

tions per attack method and dataset, and consistently evaluate each

GNN model on them. For Nettack, we randomly select 60 nodes

from the graph as the target nodes for each set of perturbations,

instead of the GCN-based target selection approach as in [52]: the

approach in [52] only selects nodes that are correctly classified by

GCN [18] on clean data; this introduces unfair advantage towards

GCN, especially on heterophilous datasets where GCN can exhibit

significantly inferior accuracy to models like GraphSAGE [47]. For

the experiments in §5.1, we use a budget of 1 perturbation per tar-

get node to match the setup of our theorems; for the benchmark

study in §5.2, we use an attack budget equal to a node’s degree and

allow direct attacks on target nodes. For Metattack, we budget the

attack as 20% of the number of edges in each dataset, and we use

the Meta-Self variant as it shows the most destructiveness [49].

GNN Models. To show the effectiveness of our identified design,

we evaluate four groups of models against adversarial attacks:

(1) Baseline models without any vaccination, including some of

the most popular methods: GCN [18], GAT [40], and the graph-

agnostic multilayer perceptron (MLP) which relies only on node

features; (2) State-of-the-art “vaccinated” baselines designed with

robustness in mind: ProGNN [16], GNNGuard [45], GCN-SVD [12]

and GCN-SMGDC, which adopts the Soft Medoid aggregator [13]

and GDC [20] on GCN [18] architecture; (3)Models with the het-

erophilous design only: GraphSAGE [15],H2GCN [47], CPGNN [48],

GPR-GNN [8] FAGCN [2] and APPNP [19]; we discussed how these

models instantiate this design in §3.2; (4) Models with both the

heterophilous design and explicit robustness-enhancing mecha-

nisms, where we adopt two existingmechanisms: (i) SVD-based low-

rank approxmiation [12] (H2GCN-SVD and GraphSAGE-SVD), and

(ii) Soft Medoid aggregator [13] with GDC [20] (H2GCN-SMGDC

and GraphSAGE-SMGDC). We combine both these mechanisms

with heterophily-adjusted GNNs instead of non-adjusted models

(e.g., GCN)—detailed formulations are given on our repository. We

set the number of layers as 2 and the size of hidden units per layer

as 64 for all models to ensure a fair comparison between different

architectures and designs. We provide more implementation details

and hyperparameter settings on our repository (App. §B).

Datasets & Evaluation Setup.We consider three widely-used cita-

tion networks [33, 36] with strong homophily—Cora [32], Pubmed,

andCiteseer—alongwith oneweakly and one strongly heterophilous

graph, introduced by Lim et al. [27]: FB100 [39] and Snap Patents [22,

23]. We report summary statistics in Table 1, and provide more

details on our repository. For computational tractability, we sub-

sample the Snap Patents data via snowball sampling [14], where we

Table 1: Dataset statistics.

Homophilous Heterophilous

Cora Pubmed Citeseer FB100 Snap

#Nodes |V| 2,485 19,717 2,110 2,032 4,562

#Edges |E | 5,069 44,324 3,668 78,733 12,103

#Classes |Y| 7 3 6 2 5

#Features 𝐹 1,433 500 3,703 1,193 269

Homophily ℎ 0.804 0.802 0.736 0.531 0.134

keep 20% of the neighbors for each traversed node; we give detailed

algorithm on our repository. The sizes of the datasets that we used

in our experiments are similar to those in previous works on GNN

robustness [13, 16]. We follow the evaluation procedure of [16, 52]

to split the nodes of each dataset into training (10%), validation

(10%) and test (80%) data, and determine the model parameters on

training and validation splits. We report the average performance

and standard deviation on the 3 sets of generated perturbations.

For targeted attacks with Nettack, we report the classification ac-

curacy on the target nodes; for untargeted attacks with Metattack,

we report it over the whole test data.

Robustness Certificates. We adopt randomized smoothing for

GNNs [5] to evaluate the certifiable robustness, with parameter

choices detailed in our GitHub repository. We only consider struc-

tural perturbations in the randomization scheme. Following Geisler

et al. [13], we measure the certifiable robustness of GNN models

with the accumulated certifications (AC) and the average maxi-

mum certifiable radii for edge additions (𝑟𝑎) and deletions (𝑟𝑑 ) over

all correctly predicted nodes. More specifically, AC is defined as

−𝑅(0, 0) +∑
𝑟𝑎,𝑟𝑑 ≥0 𝑅(𝑟𝑎, 𝑟𝑑 ), where 𝑅(𝑟𝑎, 𝑟𝑑 ) is the certifiably cor-

rect ratio, i.e., the ratio of the nodes in the test splits that are both

predicted correctly by the smoothed classifier and certifiably ro-

bust at radius (𝑟𝑎, 𝑟𝑑 ). In addition, we report the accuracy of each

model with randomized smoothing enabled on the test splits of the

clean datasets, which is equal to 𝑅(0, 0). We report the average and

standard deviation of each statistic over the 3 different training,

validation and test splits.

Hardware Specifications.We use a workstation with a 12-core

AMD Ryzen 9 3900X CPU, 64GB RAM, and a Quadro P6000 GPU

with 24 GB GPU Memory.

Code and Additional Details. Code and additional details on

the setups and results are available on GitHub repository: https:

//github.com/GemsLab/HeteRobust.

5.1 (Q1) Structural Attacks are Mostly

Heterophilous: Empirical Validation

To show that our theoretical analysis in §3.1 generalizes to more

complex settings beyond the assumptions we made in the theo-

rems, we look into effective targeted attacks made by Nettack on

real-world homophilous and heterophilous datasets, and present

statistics of the attacks in Table 2, with a focus on the ratios of

heterophilous attacks. We use a budget of 1 perturbation per target

node in this experiment, and the statistics are reported among all

effective perturbations targeting nodes that are correctly classified

on clean datasets by the surrogate GNN of Nettack (i.e., GCN) as

described in §5. To validate the dependency between the degrees of

the target/gambit nodes and the changes of heterophily predicted

by Thm. 2, we also show the scatter plots of node degrees in Fig. 1.
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Table 2: Effective targeted attacks by Nettack (§5.1): ratios

of edge additions, deletions and heterophilous attacks (i.e.,

attacks increasing heterophily). We consider two heterophily

definitions, one based on ground-truth class labels (Label),

and the other on predicted class labels by GCN on clean

datasets (Pred.). All attacks are direct perturbations on edges

incident to the targets. Degrees of target and gambit nodes

in the attacks are shown in Fig. 1. All attacks introduce het-

erophilous edges that connect nodes with different predicted
labels, following the takeaways of Thm. 1 and 2.

Dataset

Sample

Sizes

Attack Type Hete. Attacks

Add. Del. Label Pred.

N
e
t
t
a
c
k

Cora 150 99.33% 0.67% 100.00% 100.00%

Pubmed 153 100.00% 0.00% 100.00% 100.00%

Citeseer 121 100.00% 0.00% 100.00% 100.00%

FB100 112 100.00% 0.00% 50.00% 100.00%

Snap 51 100.00% 0.00% 64.71% 100.00%
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Figure 1: Scatter plots of the degrees of the target nodes (x-

axis) and gambit nodes (y-axis) involved in the targeted at-

tacks (§5.1). Attacks tend to leverage gambit nodes with low

degrees, which makes attacks increasing heterophily effec-

tive for heterophilous graphs following Thm. 2.

Homophilous Networks. For the strongly homophilous Cora,

Pubmed and Citeseer graphs, all changes introduced by effective

attacks in the graph structure follow the conclusion of Thm. 1: they

reduce homophily (increase heterophily) by adding heterophilous

edges or removing homophilous edges. These results show that

despite the simplified analysis, the takeaway of Thm. 1 can be

generalized to real-world datasets. In addition, the attacks mostly

introduce, rather than prune, edges, suggesting that attacks adding

outlier edges to the graph are more powerful than attacks removing

informative existing edges. These observations in our experiments

are consistent with the observations from previous works [13, 17].

Heterophilous Networks. For heterophilous graphs FB100 (ℎ ≈
1/|Y|) and Snap (ℎ < 1/|Y|), Fig. 1 shows that almost all attacks

leverage gambit nodes with low degrees (1 or 2); no node with

degree higher than 5 is leveraged. All attacks leveraging correctly

classified gambit nodes are connecting node 𝑢 ∈ V with a different

ground-truth class label 𝑦𝑢 ≠ 𝑦𝑣 to the target nodes 𝑣 ∈ V; attacks

leveraging incorrectly classified gambit nodes are always connect-

ing node 𝑢 with a different predicted class label 𝑦𝑢 ≠ 𝑦𝑣 = 𝑦𝑣 to

the target node 𝑣 , even though some gambit nodes have the same

ground-truth class label 𝑦𝑢 = 𝑦𝑣 ≠ 𝑦𝑢 as the target nodes. These

results validate the conclusion of Thm. 2 on correctly classified

gambit nodes, and demonstrate its generalizability under the het-

erophily definition based on predicted class labels. Note that the

predicted class labels 𝑦𝑢 for each node 𝑢 ∈ V are based on GCN,

which is the surrogate GNN used by Nettack.

5.2 (Q2) Benchmark Study of GNN Models:

Heterophilous Design Leads to Improved

Empirical Robustness

To answer (Q2) on whether heterophily-adjusted GNNmodels show

improved performance against state-of-the-art attacks, we conduct

a comprehensive benchmark study. We consider all four categories

of GNN models mentioned in §5, and evaluate their robustness

against both targeted and untargeted attacks. We report the hyper-

parameters for each method on our repository (App. §B.3). Table 3

shows the performance of each method under poison (pre-training)

attacks and on clean (unperturbed) data, and Fig. 2 visualizes the

corresponding performance changes relative to the clean datasets.

For conciseness, we report additional results on Pubmed in Ta-

ble 5, and under evasion (post-training) attacks on our GitHub

repository (Table 7 and 8), where we also discuss how our simple

heterophilous design leads to only minor computational overhead

compared to existing vaccination mechanisms (App. §C.4).

Targeted attacks by Nettack. 1○ Poison attacks. Under targeted

poison attacks, Table 3 (left) shows that GraphSAGE-SVD and

H2GCN-SVD, which combine our identified design with a low-rank

vaccination approach adopted in GCN-SVD [12], outperform state-

of-the-art vaccinated methods across all datasets by up to 13.34% in

homophilous settings and 18.33% in heterophilous settings. Further-

more, GraphSAGE-SMGDC and H2GCN-SMGDC, which combine

our design with existing vaccinations based on Soft Medoid [13] and

GDC [20], show better performance against attacks in all datasets

compared to GCN-SMGDC, the corresponding baseline without our

design, with up to 19.44% improvement on homophilous settings

and 30.55% improvement on heterophilous settings. In summary,

these observations show that the heterophilous design improves the

robustness of GNNs alongside existing vaccination mechanisms.

Methods merely employing the identified design also show sig-

nificantly improved robustness, though there are differences in

the amount of robustness improvement due to architectural differ-

ences. Specifically, these methods outperform the best unvaccinated

method (GAT) on all datasets by up to 33.75% in average, despite

having mostly comparable performance on clean datasets; meth-

ods like APPNP and CPGNN also show comparable or even better

robustness than state-of-the-art vaccinated GNNs. These observa-

tions also apply to the larger Pubmed dataset in Table 5. We also

note that the graph-agnostic MLP, which is immune to structural

attacks, outperforms all GNNs against attacks on Citeseer and Snap;

this shows the challenges in defending against targeted attacks and

calls for more effective defense strategies upon our discoveries.

2○ Evasion attacks. Under evasion attacks (detailed results are re-

ported in App. Table 7 on our repository), we observe similar trends
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Table 3: Benchmark study: mean accuracy ± stdev against poison attacks, with accuracy on clean datasets in gray for reference.

Accuracy is reported on target nodes for Nettack, and on full test splits for Metattack. Best GNN performance against attacks

is highlighted in blue per dataset, and in gray per model group. MLP is immune to structural attacks and not considered as a

GNN model. Accuracy against evasion attacks are listed on our GitHub repository (App. §C.1), and the setups in §5. Additional

results on Pubmed are listed in App. Table 5. GNNs merely adopting this design achieve up to 40.00% improvement in accuracy

against Nettack compared to the best-performing unvaccinated model (GCN). Additionally, methods combining this design

alongside explicit defense mechanisms (e.g., GraphSAGE-SVD) achieve further robustness improvement to the corresponding

base mechanism without the design (e.g., GCN-SVD), and outperform the best vaccinated baseline by up to 18.33%.

Nettack Metattack

H
e
t
e
r
o
.

V
a
c
c
i
n
. Cora Citeseer FB100 Snap Cora Citeseer FB100 Snap

ℎ=0.804 ℎ=0.736 ℎ=0.531 ℎ=0.134 ℎ=0.804 ℎ=0.736 ℎ=0.531 ℎ=0.134

Poison Clean Poison Clean Poison Clean Poison Clean Poison Clean Poison Clean Poison Clean Poison Clean

H2GCN-SVD ✓ ✓ 70.00
±2.72

74.44
±3.42

65.00
±3.60

70.00
±2.72

59.44
±3.42

61.67
±2.36

28.89
±3.42

30.56
±2.08

67.87
±0.47

76.89
±0.37

70.42
±0.46

73.42
±1.03

56.72
±0.08

56.81
±0.77

25.60
±0.14

27.63
±0.26

GraphSAGE-SVD ✓ ✓ 71.67
±2.36

77.22
±4.78

67.78
±3.42

70.00
±1.36

60.00
±1.36

60.00
±4.08

26.67
±6.80

27.22
±5.50

68.86
±1.32

77.52
±0.29

69.10
±0.52

72.16
±0.17

55.76
±0.33

57.38
±0.86

26.58
±0.30

26.72
±0.70

H2GCN-SMGDC ✓ ✓ 59.44
±4.37

77.22
±4.78

43.33
±3.60

67.22
±1.57

47.22
±1.57

61.67
±0.00

22.22
±1.57

30.56
±0.79

66.50
±1.65

80.60
±0.33

69.04
±1.24

74.31
±0.92

54.63
±1.51

56.52
±0.10

24.41
±1.09

27.50
±0.62

GraphSAGE-SMGDC ✓ ✓ 56.67
±8.28

78.33
±5.44

46.67
±3.60

67.78
±2.83

47.22
±4.16

59.44
±1.57

20.56
±3.14

29.44
±4.16

66.95
±2.07

79.39
±0.26

68.68
±0.97

74.31
±0.38

55.39
±0.29

55.19
±0.19

25.21
±0.76

26.38
±0.29

H2GCN ✓ 38.89
±5.50

82.78
±8.31

27.22
±1.57

69.44
±6.98

27.78
±3.42

60.56
±1.57

12.78
±2.83

30.00
±2.72

57.75
±6.61

83.94
±0.97

54.34
±0.82

75.34
±0.90

54.84
±0.76

56.95
±0.13

25.34
±0.59

27.49
±0.05

GraphSAGE ✓ 36.67
±2.72

82.22
±9.56

31.67
±10.89

70.56
±6.85

33.89
±3.42

60.00
±2.72

16.67
±7.07

24.44
±4.16

54.68
±2.56

82.21
±0.63

59.74
±1.74

74.64
±0.93

54.72
±0.83

56.60
±1.40

24.14
±0.76

27.18
±0.84

CPGNN ✓ 47.22
±6.14

81.67
±8.28

40.56
±9.65

73.33
±1.36

49.44
±10.30

66.11
±4.16

21.67
±2.72

28.89
±5.50

74.55
±1.23

80.67
±0.51

68.07
±1.93

74.92
±0.62

61.58
±1.50

60.17
±7.09

26.76
±0.41

27.13
±0.63

GPR-GNN ✓ 21.67
±2.72

82.22
±7.49

24.44
±2.08

67.78
±2.08

2.78
±0.79

56.67
±4.91

4.44
±2.08

27.78
±3.42

48.29
±5.23

81.84
±1.75

35.25
±2.77

70.71
±0.46

59.94
±0.60

62.40
±0.83

21.06
±1.29

26.08
±0.31

FAGCN ✓ 26.11
±6.14

83.33
±8.16

25.56
±6.43

70.56
±5.15

6.11
±2.83

58.33
±5.93

8.33
±3.60

29.44
±0.79

60.11
±4.82

81.59
±0.82

53.18
±6.00

73.99
±0.63

55.97
±1.81

59.64
±1.38

24.04
±0.62

27.15
±0.23

APPNP ✓ 58.33
±3.60

72.22
±5.50

56.11
±3.14

68.33
±4.71

36.67
±2.36

58.89
±3.93

25.00
±1.36

28.33
±2.36

62.56
±0.91

72.87
±0.38

49.70
±1.73

69.59
±0.23

57.81
±0.35

57.89
±0.59

27.76
±0.29

27.41
±0.11

GNNGuard ✓ 58.33
±1.36

77.22
±6.29

59.44
±3.14

67.78
±4.78

0.56
±0.79

67.22
±2.08

9.44
±1.57

28.33
±3.60

74.20
±0.55

80.15
±0.55

68.13
±0.74

72.61
±0.28

60.89
±0.48

65.66
±0.60

23.78
±0.67

26.51
±0.98

ProGNN ✓ 48.89
±7.97

79.44
±3.42

32.78
±7.49

67.22
±4.78

33.89
±4.78

51.11
±3.93

17.78
±9.26

27.22
±5.50

45.10
±6.20

81.32
±0.43

46.58
±1.02

71.82
±1.12

53.40
±1.19

49.84
±0.03

24.80
±1.09

27.49
±0.66

GCN-SVD ✓ 53.33
±4.91

75.56
±4.16

28.89
±2.08

59.44
±0.79

41.67
±2.36

50.56
±4.37

25.00
±5.44

27.78
±6.71

47.82
±7.59

76.61
±0.31

51.20
±1.78

66.90
±0.16

55.00
±2.06

55.47
±0.23

25.25
±0.91

26.63
±0.25

GCN-SMGDC ✓ 40.00
±4.91

77.78
±3.93

33.89
±2.83

62.22
±0.79

16.67
±4.08

51.11
±5.67

20.56
±5.15

28.33
±2.36

29.66
±1.18

77.26
±0.52

55.04
±2.36

72.33
±0.59

50.76
±1.19

51.99
±0.30

24.71
±1.21

26.06
±0.60

GAT 13.89
±0.79

84.44
±3.42

8.89
±3.42

70.00
±7.20

0.56
±0.79

60.56
±0.79

3.89
±4.37

30.56
±2.83

41.70
±3.60

83.72
±0.24

48.40
±2.17

73.40
±1.00

50.37
±0.66

61.69
±0.92

25.00
±0.73

27.30
±0.03

GCN 18.33
±3.60

82.78
±5.50

20.56
±5.50

72.78
±8.20

0.00
±0.00

56.11
±7.97

2.22
±3.14

30.56
±2.08

31.98
±4.83

83.12
±0.96

49.43
±2.52

75.30
±1.05

52.62
±0.25

54.20
±0.13

24.36
±0.63

26.68
±0.13
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Figure 2: (Best viewed in color.) Classification accuracy on

clean data and against poison attacks for target nodes at-

tacked by Nettack. Error bars show standard deviation

across different sets of experiments. Detailed results are

listed in Table 3. As expected, MLP is not influenced by the

adversarial structural attacks.

as in poison attacks: GraphSAGE-SVD and H2GCN-SVD are up to

20.55% more accurate than the GCN-SVD, the corresponding base-

line without the heterophilous design, and GraphSAGE-SMGDC

and H2GCN-SMGDC outperform GCN-SMGDC by up to 19.44%.

Methods featuring the identified design alone achieve up to 38.89%

gain in average performance against the best unvaccinated baseline,

which we also observe on Pubmed. We note that two baselines, GN-

NGuard and ProGNN, are designed specifically to defend against

poison attacks, and are not capable of addressing evasion attacks.

Untargeted attacks by Metattack. 1○ Poison attacks. We also test

the robustness of each method against untargeted attacks. Table 3

(right) shows the performance under poison attacks. Though our

theoretical analysis in §3 focuses on the effect of the heterophilous

design under targeted attacks, we observe similar improvements in

robustness against untargeted attacks in the poison setup. GNNs

with the identified design show mostly improved robustness com-

pared to unvaccinated models, while having similar performance on

the clean datasets. Specifically, CPGNN shows exceptional robust-

ness, outperforming the best unvaccinated model by up to 32.85%.

Moreover, models combining the identified design with low-rank

approximation show up to 21.04% improvement in accuracy com-

pared to GCN-SVD, which uses only low-rank approximation. Mod-

els combining the design with Soft Medoid and GDC show up to

37.29% improvement in accuracy compared to GCN-SMGDC. We

also note that the most robust method for each dataset is among

the ones with the identified design. These results again support the

effectiveness of the heterophilous design in boosting the robustness

of GNNs in addition to existing vaccination mechanisms.

2○ Evasion attacks. We present the performance under evasion

attacks on our GitHub repository. Unlike the poison attacks, the

evasion setup only leads to a slight decrease in average accuracy

of less than 2% for most models. Moreover, there appears to be

no clearly increased robustness for vaccinated models (with the

identified design or other vaccination machanisms) compared to

unvaccinated models. This can be attributed to the reduced effec-

tiveness of evasion vs. poison attacks (as in Nettack), and the

increased challenges of untargeted attacks.
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Table 4: Accumulated certifications (AC), average certifiable radii (𝑟𝑎 and 𝑟𝑑 ) and accuracy of GNNs with randomized smoothing

enabled (i.e., 𝑓 (𝜙 (s))) on the test splits of the clean datasets, with ramdomization schemes 𝜙 allowing both addition and deletion

(i.e., 𝑝+ = 0.001, 𝑝− = 0.4), and additional only (i.e., 𝑝+ = 0.001, 𝑝− = 0). For each statistic, we report the mean and stdev across

3 runs. Best results highlighted in blue per dataset, and in gray per model group. We provide results with the deletion only

scheme on our repository (App. §C.2). APPNP, with the identified design, improves the accumulated certification (AC) by up to

5.3x on homophilous datasets and 10.1x on heterophilous ones compared to the best performing baseline without the design.

H
e
t
e
. Addition & Deletion Addition Only Addition & Deletion Addition Only

AC 𝑟𝑎 𝑟𝑑 Acc. % AC 𝑟𝑎 Acc. % AC 𝑟𝑎 𝑟𝑑 Acc. % AC 𝑟𝑎 Acc. %

H2GCN ✓

C
o
r
a

3.96±0.33 0.46±0.08 3.90±0.30 79.34±1.93 0.42±0.02 0.53±0.03 80.97±1.95

C
i
t
e
s
e
e
r

2.96±0.88 0.33±0.13 3.27±0.67 71.76±4.05 0.29±0.05 0.40±0.06 72.99±2.22

GraphSAGE ✓ 2.16±0.06 0.13±0.00 2.43±0.03 79.61±1.48 0.28±0.03 0.34±0.04 81.07±1.11 2.21±0.15 0.19±0.01 2.56±0.09 73.48±2.90 0.33±0.01 0.44±0.01 74.70±1.37

CPGNN ✓ 1.87±0.27 0.14±0.05 2.24±0.30 75.37±1.65 0.17±0.02 0.21±0.03 78.34±1.26 2.03±0.17 0.11±0.01 2.52±0.20 73.48±0.61 0.15±0.02 0.20±0.02 74.62±0.30

GPR-GNN ✓ 4.42±0.43 0.63±0.06 4.35±0.22 74.90±2.34 0.43±0.03 0.55±0.03 76.96±2.18 4.63±0.27 0.81±0.07 4.92±0.24 66.33±0.20 0.40±0.01 0.59±0.02 67.52±0.49

FAGCN ✓ 4.30±0.07 0.57±0.02 4.25±0.04 76.49±1.73 0.43±0.01 0.54±0.01 79.04±0.68 4.07±0.15 0.58±0.02 4.23±0.09 71.82±0.73 0.38±0.02 0.53±0.02 72.41±1.03

APPNP ✓ 10.11±0.04 1.86±0.01 8.52±0.06 71.97±0.25 0.69±0.00 0.95±0.00 72.27±0.31 9.87±0.02 1.88±0.00 8.61±0.01 69.39±0.23 0.66±0.00 0.95±0.00 69.41±0.22

GAT 1.61±0.10 0.08±0.01 1.85±0.06 79.83±2.36 0.19±0.04 0.23±0.04 81.99±1.94 1.29±0.07 0.07±0.02 1.60±0.06 73.62±1.06 0.09±0.01 0.12±0.02 74.47±0.26

GCN 1.40±0.02 0.06±0.01 1.75±0.08 74.36±3.46 0.13±0.00 0.17±0.01 78.17±2.89 1.79±0.04 0.17±0.02 2.15±0.11 70.38±4.17 0.17±0.01 0.24±0.02 72.04±3.64

H2GCN ✓

F
B
1
0
0

8.12±0.10 1.76±0.02 8.14±0.06 57.38±0.17 0.54±0.00 0.94±0.00 57.11±0.10

S
n
a
p

1.44±0.18 0.59±0.10 3.79±0.40 26.97±0.10 0.11±0.01 0.42±0.05 26.74±0.18

GraphSAGE ✓ 6.98±0.06 1.50±0.04 7.32±0.13 56.72±1.56 0.52±0.01 0.92±0.01 56.70±1.41 0.70±0.21 0.19±0.11 2.16±0.54 26.84±0.47 0.06±0.02 0.24±0.08 27.00±0.63

CPGNN ✓ 6.80±0.19 1.41±0.21 7.05±0.70 59.00±5.71 0.54±0.04 0.90±0.04 60.39±7.26 1.45±0.23 0.61±0.14 3.89±0.51 26.71±0.25 0.12±0.02 0.43±0.08 27.00±0.41

GPR-GNN ✓ 5.81±0.16 1.11±0.02 5.95±0.10 61.99±0.44 0.46±0.01 0.73±0.02 62.26±0.26 0.52±0.06 0.11±0.01 1.70±0.14 26.31±1.03 0.03±0.01 0.11±0.02 26.14±0.73

FAGCN ✓ 7.45±0.21 1.53±0.02 7.40±0.06 59.76±1.47 0.55±0.00 0.90±0.01 60.60±0.36 1.41±0.10 0.56±0.06 3.81±0.22 27.07±0.16 0.10±0.01 0.36±0.03 27.13±0.16

APPNP ✓ 8.90±0.03 1.92±0.02 8.73±0.05 57.87±0.57 0.57±0.00 0.98±0.01 57.89±0.59 3.54±0.03 1.68±0.01 7.95±0.04 27.45±0.14 0.24±0.00 0.86±0.00 27.46±0.17

GAT 4.30±0.26 0.77±0.04 4.72±0.19 61.56±0.78 0.46±0.03 0.74±0.04 61.97±1.41 0.28±0.09 0.04±0.01 0.95±0.33 27.12±0.52 0.02±0.00 0.08±0.02 27.00±0.59

GCN 5.19±0.03 1.14±0.00 6.05±0.01 54.16±0.08 0.43±0.00 0.79±0.01 54.39±0.14 0.32±0.08 0.06±0.03 1.08±0.24 26.17±0.34 0.02±0.01 0.08±0.03 26.38±0.49

Table 5: Additional results on Pubmed (details in App. §C.1).

H
e
t
e
.

V
a
c
c
i
n
.

Pubmed

Poison Evasion Clean

H2GCN-SVD ✓ ✓ 86.11±3.93 86.11±3.93 87.22±4.37

GraphSAGE-SVD ✓ ✓ 81.11±4.16 81.11±3.42 84.44±2.08

H2GCN ✓ 44.44±5.67 46.67±8.16 87.78±3.14

GraphSAGE ✓ 33.33±8.92 34.44±9.06 84.44±3.93

CPGNN ✓ 60.00±7.20 60.00±5.93 82.78±5.67

GPR-GNN ✓ 13.89±4.78 15.56±6.14 85.56±1.57

FAGCN ✓ 27.78±11.00 31.67±13.40 86.67±2.72

APPNP ✓ 79.44±2.83 81.67±2.72 86.67±2.36

GNNGuard ✓ 73.89±6.71 - 82.78±2.83

GAT 7.22±4.16 6.67±4.08 83.33±1.36

GCN 5.56±0.79 5.56±0.79 85.00±2.72

MLP*

N
e
t
t
a
c
k

86.11±4.37 86.11±4.37 86.11±4.37

5.3 (Q3) Heterophily-adjusted GNNs are

Certifiably More Robust

It is worth noting that robustness against specific attacks such as

Nettack and Metattack does not guarantee robustness towards

other possible attacks. To overcome this limitation, robustness cer-

tificates provide guarantees (in some cases probabilistically) that

attacks within a certain radius cannot change a model’s predictions.

Complementary to our evaluation on empirical robustness, we fur-

ther demonstrate that heterophily-adjusted GNNs featuring our

identified design are certifiably more robust than methods without

it, thus answering (Q3). For GNN models and datasets, we exclude

the larger Pubmed dataset and models that learn to rewrite the

graph structure through the training process, or require recalcula-

tion of the low-rank approximation or inverse of matrices (as used

by GDC [20]) for every randomized perturbation, as we find that

sampling on these setups is computationally challenging. We use

the same hyperparameters as the benchmark study in §5.2.

Table 4 shows multiple metrics of certifiable robustness of each

GNN model under edge randomization schemes allowing both ad-

dition and deletion, and allowing addition only; we additionally

report results under a scheme allowing only deletion on our GitHub

repository. For the scheme allowing both addition and deletion, we

observe that all heterophily-adjustedmethods have better certifiable

robustness compared to methods without the design. Specifically,

on homophilous datasets (Cora and Citeseer), methods with the

identified design achieve an up to 5.3 times relative improvement

in accumulated certification. On heterophilous datasets (FB100 and

Snap), they outperform the baselines by a factor of 11.1. In the more

challenging case with the addition only scheme, methods with the

design also show up to 2.9 times relative increase in AC on the

homophilous datasets and 11.0 times relative increase in AC on the

heterophilous datasets compared to the baselines. For the deletion

only scheme, we find that unvaccinated models like GCN already

have decent certifiable robustness in this scenario, commensurat-

ing with our discussions in §5.1 that deletions create less severe

perturbations. Overall, our results show that models featuring our

identified design achieve significantly improved certifiable robust-

ness compared to models lacking this design. However, like in our

empirical robustness evaluation, architectural differences lead to

some variability of robustness; the results also show tradeoffs be-

tween accuracy and robustness. We also observe that the rankings

under certifiable and empirical robustness are different, as in the

previous results from [13]; we discuss more in our repository.

6 CONCLUSION

We formalized the relation between heterophily and adversarial

structural attacks, and showed theoretically and empirically that

effective attacks gravitate towards increasing heterophily in both

homophilous and heterophilous graphs by leveraging low-degree

(gambit) nodes. Using these insights, we showed that a key design

addressing heterophily, namely separate aggregators for ego- and

neighbor-embeddings, can lead to competitive improvement on

empirical and certifiable robustness, with only small influence on

clean performance. Finally, we compared the design with state-of-

the-art vaccination mechanisms under different attack scenarios for
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various datasets, and illustrated that they are complementary and

that their combination can lead to more robust GNN models. We

note that while we focus on the structural attacks, GNNs are also

vulnerable to other types of attacks such as feature perturbations.

We hope our analysis can inspire more effective defense strategies

against adversarial attacks, especially designs that improve robust-

ness by better addressing heterophily, such as heterophily in node

features, or locally-occuring heterophily in homophilous graphs.
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SUPPLEMENTARY MATERIAL ON REPRODUCIBILITY

For reproducibility, we describe main experimental setups at the

beginning of §5, including the attack configurations, the depth and

hidden unit size for GNNs, ratios for training, validation and test

splits, and hardware specifications. We provide code and datasets

on GitHub repository: https://github.com/GemsLab/HeteRobust,

where we also include additional details on the setups and results,

including the implementations and detailed hyperparameters for

GNNs and randomized smoothing (§B), and additional results for

evasion attacks (§C.1) and certifiable robustness (§C.2). In addition,

we report results for GNN models against Nettack on the larger

Pubmed dataset in Table 5, with more details in §C.1; GCN-SVD

and SMGDC-based vaccinations run out of memory on Pubmed.

A PROOFS AND DISCUSSIONS OF THEOREMS

For simplicity of mathematical expressions, we use C
𝑖
(𝑠, 𝑡) to re-

fer a matrix where all elements in the 𝑖-th column are 𝑠 , with all

remaining elements (not in the 𝑖-th column) as 𝑡 ; we use c
𝑖
(𝑠, 𝑡)

when the matrix is a row vector. We further denote C∗ (𝑠, 𝑡) as a
circulant matrix with all diagonal elements as 𝑠 and all off-diagonal

elements as 𝑡 , and B (𝑠, 𝑡) as block matrix of the following form:

B (𝑠, 𝑡) =
[
CT
1
(𝑠, 𝑡) CT

2
(𝑠, 𝑡) · · · CT

|Y | (𝑠, 𝑡)
]T

Proof for Thm. 1. We give the proof in three parts: first, we

analyze the training process of the GNN 𝑓
(2)
𝑠 (A,X) = Ā2

s
XW on

clean data and analytically derive the optimal weight matrix W∗
in a stylized learning setup; then, we construct a targeted evasion

attack and calculate the attack loss for a unit structural attack; last,

we summarize and validate the statements in the theorem.

Stylized learning on clean data. Given the 2-layer linearized

GNN 𝑓
(2)
𝑠 (A,X) = Ā2

s
XW and the training set TV ⊆ DV , the goal

of the training process is to optimize the weight matrix W to min-

imize the cross-entropy loss function L([z]TV ,:, [Y]TV ,:), where
predictions [z]TV ,: = [Ā2

s
X]TV ,:W correspond to the predicted

class label distributions for each node 𝑣 in the training set TV , and

[Y]TV ,: is the one-hot encoding of class labels provided in TV .

Without loss of generality, we reorder TV accordingly such that

the one-hot encoding of labels for nodes in the training set [Y]TV ,: =
B (1, 0) is in increasing order of the class label 𝑦𝑣 . Now we look at

the term [Ā2

s
X]TV ,: in [z]TV ,: = [Ā2

s
X]TV ,:W, which are the feature

vectors aggregated by the twoGNN layers for nodes 𝑣 in the training

setTV . As stated in the theorem,we assumeTV ⊆ DV , where node

𝑢 ∈ DV have degree 𝑑 ; proportion ℎ of their neighbors belong to

the same class, while proportion
1−ℎ
|Y |−1 of them belong to any other

class uniformly, and for each node 𝑣 ∈ V the node features are given

as x𝑣 = 𝑝 ·onehot(𝑦𝑣) + 1−𝑝
|Y | ·1 for each node 𝑣 ∈ V . Then, after the

first layer, we have [ĀsX]TV ,: =
1

𝑑+1B
(
(ℎ𝑑 + 1)𝑝, 1−ℎ

|Y |−1

)
, and after

the second layer [Ā2

s
X]TV ,: =

1

(𝑑+1)2 |Y | ( |Y |−1) B (𝑆1,𝑇1), where

𝑆1 = ((ℎ |Y| − 1)𝑑 + |Y| − 1)2 𝑝 , and 𝑇1 = ( (ℎ |Y |−1)𝑑+|Y |−1)2𝑝
|Y |−1 .

For [Y]TV ,: and [Ā2

s
X]TV ,:, we can find the optimal weightmatrix

W∗ such that [Ā2

s
X]TV ,:W∗ = [Y]TV ,:, making the cross-entropy

loss L([z]TV ,:, [Y]TV ,:) = 0. To find W∗, we can proceed as fol-

lows. First, sample one node from each class to form a smaller set

T𝑆 ⊂ TV . Therefore, we have [Y]T𝑆 ,: = I |Y |× |Y | and [Ā2

s
X]T𝑆 ,: =

C∗ (𝑆1,𝑇1). Note that [Ā2

s
X]T𝑆 ,: is a circulant matrix, and therefore

its inverse exists. Using the Sherman-Morrison formula, we have(
[Ā2

s
X]T𝑆 ,:

)−1
=

(𝑑 + 1)2 ( |Y | − 1)2
𝑝 (𝑑 (ℎ |Y | − 1) + |Y | − 1)2 |Y | C

∗ ( |Y | − 1, −1) . (2)

Now, let W∗ =
(
[Ā2

s
X]T𝑆 ,:

)−1
, then [z]T𝑆 ,: = [Ā2

s
X]T𝑆 ,:W∗ =

[Y]T𝑆 ,: = I |Y |× |Y | . It is also easy to verify that [z]TV ,: = [Y]TV ,:.
We know W∗ =

(
[Ā2

s
X]T𝑆 ,:

)−1
is the optimal weight matrix that

we can learn under TV , since W∗ satisfies L([z]TV ,:, [Y]TV ,:) = 0.

Attack loss under evasion attacks. Now consider an arbitrary

target node 𝑣 ∈ DV with class label 𝑦𝑣 ∈ Y, and a unit structural

perturbation leveraging gambit node 𝑢 ∈ V with degree 𝑑𝑎 that

affects the predictions z𝑣 of node 𝑣 made by GNN 𝑓
(2)
𝑠 . Without

loss of generality, we assume node 𝑣 has 𝑦𝑣 = 1. As 𝑓
(2)
𝑠 contains

2 GNN layers with each layer aggregating feature vectors within

neighborhood𝑁 (𝑣) of each node 𝑣 , the perturbationmust take place

in the direct (1-hop) neighborhood 𝑁 (𝑣) or 2-hop neighborhood

𝑁2 (𝑣) to affect the predictions z𝑣 . For the unit perturbation, the
attacker can add or remove a homophilous edge or path between

nodes 𝑢 and 𝑣 , which we denote as 𝛿1 (𝛿1 = 1 for addition and

𝛿1 = −1 for removal); alternatively, the attacker can add or remove

a heterophilous edge or path between nodes 𝑢 and 𝑣 , which we

denote as 𝛿2 = ±1 analogously. We denote the perturbed graph

adjacency matrix as Ā′
s
, and z′𝑣 = [Ā′2

s
X]𝑣,:W∗

1○ Unit perturbation in direct neighborhood 𝑁 (𝑣). We first con-

sider a unit perturbation in the direct (1-hop) neighborhood 𝑁 (𝑣)
of node 𝑣 . For simplicity of derivation, we assume that the perturba-

tion does not change the row-stochastic normalization of Ās, and

only affects the aggregated feature vectors of the target node 𝑣 .

In the case of 𝛿1 = ±1 and 𝛿2 = 0, we have [Ā′
s
X]𝑣,: − [ĀsX]𝑣,: =

𝛿1
𝑑𝑎+1 c1

((
1−𝑝
|Y | + 𝑝

)
,

(
1−𝑝
|Y |

))
, and

[Ā′2
s
X]𝑣,: − [Ā2

s
X]𝑣,: =

𝛿1

(𝑑𝑎 + 1)2 (𝑑 + 1) |Y|
c
1

(
𝑆2,

𝑇2

|Y| − 1

)
,

where 𝑆2 = 𝑑𝑎 (𝑝 (𝑑 (ℎ |Y| − 1) + ℎ |Y| + |Y| − 2) + 𝑑 + 2) + (𝑑 +
2) ( |Y| − 1)𝑝 + 𝑑 + 2 and 𝑇2 = −𝑑𝑎 (𝑝 (𝑑 (ℎ |Y| − 1) + ℎ |Y| + |Y| −
2) + (−𝑑 − 2) ( |Y| − 1)) − (𝑑 + 2) ( |Y| − 1) (𝑝 − 1). By Multiplying

[Ā′2
s
X]𝑣,: by W∗, we can get the predictions z′𝑣 after perturbations;

we omit the analytical expression of z′𝑣 here due to its complexity.

On the perturbed graph, the CM-type attack loss is calculated

as LCM

atk
(z′𝑣) = −(z′𝑣,𝑦𝑣 − max𝑦≠𝑦𝑣 z

′
𝑣,𝑦). Since LCM

atk
(z𝑣) = −1 on

clean data, the change in attack loss before and after attack is

ΔLCM

atk
= LCM

atk
(z′𝑣 ) − LCM

atk
(z𝑣 ) =

−𝛿1 (𝑑 + 1) ( |Y | − 1)𝑆3
(𝑑𝑎 + 1)2 (𝑑 (ℎ |Y | − 1) + |Y | − 1)2 ,

(3)

where 𝑆3 = (𝑑𝑎 (𝑑 (ℎ |Y| − 1) + ℎ |Y| + |Y| − 2) + (𝑑 + 2) ( |Y| − 1)).
Solving the system of inequalities for 𝛿1 under constraints ΔLCM

atk
>

0, ℎ ∈ [0, 1], |Y| ≥ 2 and 𝑑, 𝑑𝑎, |Y| ∈ Z+, we get the range of 𝛿1 as
𝛿1 < 0, when 0 < 𝑑 ≤ |Y| − 2

𝛿1 < 0, when 𝑑 > |Y| − 2 and 𝑑𝑎 < 𝑑1

𝛿1 < 0, when 𝑑 > |Y| − 2 and 𝑑𝑎 ≥ 𝑑1 and 1 ≥ ℎ > ℎ1

𝛿1 > 0, when 𝑑 > |Y| − 2 and 𝑑𝑎 ≥ 𝑑1 and 0 ≤ ℎ < ℎ1

, (4)
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where 𝑑1 =
(𝑑+2) ( |Y |−1)
𝑑−|Y |+2 and ℎ1 =

𝑑𝑎 (𝑑−|Y |+2)−(𝑑+2) ( |Y |−1)
(𝑑+1) |Y |𝑑𝑎 .

Note that the above solution is not applicable when ℎ =
𝑑−|Y |+1
𝑑 |Y | ,

in which case 𝑑 (ℎ |Y| − 1) + |Y| − 1 = 0 and the solution of optimal

weight matrix W∗ =
(
[Ā2

s
X]T𝑆 ,:

)−1
is undefined.

In the case of 𝛿1 = 0 and 𝛿2 = ±1, following a similar derivation

to that in the previous case, we can compute the change in the

CM-type attack loss before and after attack as

ΔLCM

atk
=

𝛿2 (𝑑 + 1) ( |Y| − 1)𝑆3
(𝑑𝑎 + 1) 2 (𝑑 (ℎ |Y| − 1) + |Y| − 1)2

. (5)

Solving the same system of inequalities as in the previous case for

𝛿2, we have 𝛿2 = −𝛿1, where 𝛿1 is bounded by Eq. (4). Note that the

above solution is again not applicable when ℎ =
𝑑−|Y |+1
𝑑 |Y | , and we

always have ℎ1 − 1

|Y | = − ( |Y |−1) (𝑑𝑎+𝑑+2)
(𝑑+1) |Y |𝑑𝑎 < 0 when |Y| ≥ 2.

2○ Unit perturbation in 2-hop neighborhood 𝑁2 (𝑣). We now con-

sider a unit perturbation in the 2-hop neighborhood 𝑁 (𝑣) of node
𝑣 . In this case we will have [Ā′

s
X]𝑣,: = [ĀsX]𝑣,:.

In the case of 𝛿1 = ±1 and 𝛿2 = 0, we have [Ā′2
s
X]𝑣,:− [Ā2

s
X]𝑣,: =

𝛿1
(𝑑𝑎+1)2 |Y | c1

(
𝑆5,

𝑇5
|Y |−1

)
, where

𝑆5 = (𝑑𝑎 (𝑝 (ℎ |Y| − 1) + 1) + (|Y| − 1)𝑝 + 1)

and𝑇5 = (𝑑𝑎 (−ℎ |Y|𝑝 + |Y| + 𝑝 − 1) + |Y|(−𝑝) + |Y| + 𝑝 − 1) . By
multiplying [Ā′2

s
X]𝑣,: with W∗, we can get the predictions z′𝑣 after

perturbations. Following a similar derivation as before, we can get

the change in the CM-type attack loss before and after attack as

ΔLCM

atk
= − (𝑑 + 1)2 ( |Y| − 1) (𝑑𝑎 (ℎ |Y| − 1) + |Y| − 1) 𝛿1

(𝑑𝑎 + 1) 2 (𝑑 (ℎ |Y| − 1) + |Y| − 1)2
. (6)

Solving for 𝛿1 as in previous cases, we get the valid range of 𝛿1 as
𝛿1 < 0, when 𝑑𝑎 < |Y| − 1

𝛿1 < 0, when 𝑑𝑎 ≥ |Y| − 1 and
𝑑𝑎−|Y |+1
|Y |𝑑𝑎 < ℎ ≤ 1

𝛿1 > 0, when 𝑑𝑎 > |Y| − 1 and 0 ≤ ℎ <
𝑑𝑎−|Y |+1
|Y |𝑑𝑎

. (7)

Note that the above solution is not applicable when ℎ =
𝑑−|Y |+1
𝑑 |Y | ,

in which case 𝑑 (ℎ |Y| − 1) + |Y| − 1 = 0 and the solution of optimal

weight matrix W∗ =
(
[Ā2

s
X]T𝑆 ,:

)−1
is undefined.

For the case 𝛿1 = 0 and 𝛿2 = ±1, following a similar derivation

to that in the previous case, we can compute the change in the

CM-type attack loss before and after attack as

ΔLCM

atk
=

(𝑑 + 1)2 ( |Y| − 1) (𝑑𝑎 (ℎ |Y| − 1) + |Y| − 1) 𝛿2
(𝑑𝑎 + 1) 2 (𝑑 (ℎ |Y| − 1) + |Y| − 1)2

(8)

Solving the same system of inequalities as in the previous cases for

𝛿2, we have 𝛿2 = −𝛿1, where 𝛿1 is bounded by Eq. (7). Note that the

above solution is again not applicable when ℎ =
𝑑−|Y |+1
𝑑 |Y | , and we

always have
𝑑𝑎−|Y |+1
|Y |𝑑𝑎 − 1

|Y | =
1−|Y |
|Y |𝑑𝑎 < 0 when |Y| ≥ 2.

Summary and validation of theorem statements. Based on our

discussions, we validate our statements in the theorem next.

1○ From Eq. (4), (7), we observe that for both direct attacks in 1-

hop neighborhood𝑁 (𝑣) and indirect attacks in 2-hop neighborhood
𝑁2 (𝑣), when ℎ ≥ 1

|Y | , the attack loss increases only if 𝛿1 < 0 (i.e.,

removal of a homophilous edge or path to node 𝑣), or if 𝛿2 > 0 (i.e.,

addition of a heterophilous edge or path to node 𝑣).

2○ From Eq. (3), (5), (6) and (8), we can show that

ΔLCM,direct

atk

ΔLCM,indirect

atk

> 1

when ℎ ≥ 1

|Y | , which means we will always have ΔLCM,direct

atk
>

ΔLCM,indirect

atk
> 0 for a unit perturbation increasing loss LCM

atk
. □

Proof for Thm. 2. The theorem statements can be directly

validated from Eq. (4) and its discussions in Proof for Thm. 1, which

solves 𝛿1 and 𝛿2 for an effective unit perturbation in direct neigh-

borhood 𝑁 (𝑣) of node 𝑣 . We similarly note that the conclusions

are not applicable when ℎ =
𝑑−|Y |+1
𝑑 |Y | , in which case the solution of

optimal weight matrix W∗ is undefined. □

Proof for Thm. 3. Here, we mainly focus on analyzing ΔL
atk

for the layer defined as 𝑓 (A,X;𝛼) =
(
(1 − 𝛼)Ā + 𝛼I

)
XW, as the

layer defined as 𝑓𝑠 (A,X) = ĀsXW is a special case when 𝛼 = 1

1+𝑑 .
We follow a similar process as in Proof of Thm. 1.

Layer 𝑓 (A,X;𝛼) =
(
(1 − 𝛼)Ā + 𝛼I

)
XW. We first derive the opti-

mal weight matrix W∗ in a stylized learning setup as in Proof A.

Following a similar process, for this GNN layer we have[ (
(1 − 𝛼 )Ā + 𝛼I

)
X
]
T𝑆 ,:

=
1 − 𝑝
|Y | + C∗

(
𝑝 (𝛼 + ℎ − 𝛼ℎ), (𝛼 − 1) (ℎ − 1)𝑝

|Y | − 1

)
and W∗ =

|Y |−1
𝑝 (𝑎 (ℎ−1) |Y |−ℎ |Y |+1) |Y | · C

∗ (1 − |Y|, 1) .
Now as in Proof for Thm. 1, we consider an arbitrary target node

𝑣 ∈ DV , and a unit structural perturbation leveraging gambit node

𝑢 ∈ V with degree 𝑑𝑎 that affects the predictions z𝑣 of node 𝑣 made

by layer 𝑓 (A,X;𝛼). Note that we only discuss the case of direct

structural perturbation to the 1-hop neighborhood 𝑁 (𝑣) of target
node 𝑣 , as indirect perturbations do not affect the predictions z𝑣
for node 𝑣 produced by a single GNN layer. Following a similar

derivation as in Proof for Thm. 1, in the case of 𝛿1 = ±1 and 𝛿2 = 0,

or 𝛿1 = 0 and 𝛿2 = ±1, the change in the CM-type attack loss ΔLCM

atk

for GNN layer 𝑓 (A,X;𝛼) considering both 𝛿1 and 𝛿2 is

ΔLCM,f

atk
=

((1 − 𝛼) |Y| + 𝛼 − 1)𝛿1
𝑑𝑎 (𝛼 (ℎ − 1) − ℎ) |Y| + 𝑑𝑎

+ (𝛼 − 1) ( |Y| − 1)𝛿2
𝑑𝑎 (𝛼 (ℎ − 1) − ℎ) |Y| + 𝑑𝑎

.

(9)

Layer 𝑓𝑠 (A,X) = ĀsXW. This formulation is a special case of the

previously discussed 𝑓 (A,X;𝛼) formulation when 𝛼 = 1

1+𝑑𝑎 . We

denote the change in the attack loss for this layer as ΔLCM,fs

atk
.

Comparison of increase in attack loss ΔLCM

atk
. Solving the fol-

lowing system of inequalities for variable 𝛼 under constraints

ΔLCM,fs

atk
> ΔLCM,f

atk
> 0, 𝛼, ℎ ∈ [0, 1], |Y| ≥ 2, 𝑑𝑎, |Y| ∈ Z+ and

𝛿1, 𝛿2 ∈ {−1, 0, 1}, we get the valid range of 𝛼 as
1

𝑑𝑎+1 < 𝛼 < 1, when 0 ≤ ℎ < 1

|Y| and 0 < 𝑑𝑎 <
1−|Y|
ℎ |Y|−1 and 𝛿1 < 𝛿2

0 ≤ 𝛼 < 1

𝑑𝑎+1 , when 0 ≤ ℎ < 1

|Y| and 𝑑𝑎 >
1−|Y|
ℎ |Y|−1 and 𝛿1 > 𝛿2

1

𝑑𝑎+1 < 𝛼 < 1, when 1

|Y| ≤ ℎ ≤ 1 and 𝛿1 < 𝛿2

.

(10)

From Eq. (10), we observe that when ℎ > 1

|Y | , a unit perturbation
increasing L

atk
as discussed in Thm. 1 (i.e. 𝛿1 = −1 and 𝛿2 = 0, or

𝛿1 = 0 and 𝛿2 = 1), which satisfys the condition 𝛿1 < 𝛿2, will thus

lead to a strictly smaller increase in ΔLCM,f

atk
for layer 𝑓 (A,X;𝛼)

than the increase ΔLCM,fs

atk
for layer 𝑓𝑠 (A,X) if 𝛼 > 1

𝑑𝑎+1 . □
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