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ABSTRACT

We bridge two research directions on graph neural networks (GNNs),
by formalizing the relation between heterophily of node labels (i.e.,
connected nodes tend to have dissimilar labels) and the robustness
of GNNs to adversarial attacks. Our theoretical and empirical anal-
yses show that for homophilous graph data, impactful structural
attacks always lead to reduced homophily, while for heterophilous
graph data the change in the homophily level depends on the node
degrees. These insights have practical implications for defending
against attacks on real-world graphs: we deduce that separate ag-
gregators for ego- and neighbor-embeddings, a design principle
which has been identified to significantly improve prediction for
heterophilous graph data, can also offer increased robustness to
GNNs. Our comprehensive experiments show that GNNs merely
adopting this design achieve improved empirical and certifiable
robustness compared to the best-performing unvaccinated model.
Additionally, combining this design with explicit defense mecha-
nisms against adversarial attacks leads to an improved robustness
with up to 18.33% performance increase under attacks compared to
the best-performing vaccinated model.
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1 INTRODUCTION

Graph neural networks (GNNs) aim to translate the enormous em-
pirical success of deep learning to data defined on non-Euclidean do-
mains, such as manifolds or graphs [6], and have become important
tools to solve a variety of learning problems for graph structured
and geometrically embedded data. However, recent works show
that GNNs—much like their “standard” deep learning counterparts—
have a high sensitivity to adversarial attacks: intentionally intro-
duced minor changes in the graph structure can lead to significant
changes in performance. This finding, first articulated by Ziigner
et al. [52] and Dai et al. [10], has triggered studies that investigated

different attack scenarios [24, 30, 41, 42].

A different aspect of GNNs that has been scrutinized recently
is that most GNNs do not perform well with many heterophilous
datasets. GNNs generally perform well under homophily (or assor-
tativity), i.e., the tendency of nodes with similar features or class
labels to connect [35, 47]. Such datasets are thus called homophilous
(or assortative). While homophilous datasets dominate the study of
networks, homophily is not a universal principle; certain networks,
such as romantic relationship networks or predator-prey networks
in ecology, are mostly heterophilous (or disassortative). Employing
a GNN which does not account for heterophily can lead to signifi-
cant performance loss in heterophilous settings [1, 2, 47]. Previous
works have thus proposed architectures for heterophilous data.

While previous work has focused on naturally-occurring het-
erophily, heterophilous interactions may also be introduced as ad-
versarial noise: as many GNNs exploit homophilous correlation,
they can be sensitive to changes that render the data more het-
erophilous. A natural follow-up question is if and how this obser-
vation manifests itself in previously proposed attacking strategies
on GNNs. In this work, we thus investigate the relation between
heterophily and robustness of GNNs against adversarial attacks of
graph structure, focusing on semi-supervised node classification.
More specifically, our main contributions are:

e Formalization: We formalize the relation between adversar-
ial structural attacks and the change of homophily level in the
underlying graphs with theoretical (§3.1) and empirical (§5.1)
analysis. Specifically, we show that on homophilous graphs, ef-
fective structural attacks lead to increased heterophily, while,
on heterophilous graphs, they alter the homophily level contin-
gent on node degrees. To our knowledge, this is the first formal
analysis of such kind.

e Heterophily-inspired Design: We show how the relation be-
tween attacks and heterophily can inspire more robust GNNs by
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demonstrating that a key architectural feature in handling het-
erophily, separate aggregators for ego- and neighbor-embeddings,
also improves the robustness of GNNs against attacks (§3.2).
Extensive Empirical Analysis: We show the effectiveness of
the heterophilous design in improving empirical (§5.2) and cer-
tifiable (§5.3) robustness of GNNs with extensive experiments
on real-world homophilous and heterophilous datasets. Specifi-
cally, we compare GNNs with this design, which we refer to as
heterophily-adjusted GNNs, to non-adjusted models, including
state-of-the-art models designed with robustness in mind. We
find that heterophily-adjusted GNNs are up to 11.1 times more
certifiably robust and have stronger performance under attacks
by up to 40.00% compared to non-adjusted, standard models.
Moreover, this design can be combined with existing vaccina-
tion mechanisms, yielding up to 18.33% higher accuracy under
attacks than the best non-adjusted vaccinated model. Our code
is available at https://github.com/GemsLab/HeteRobust.

2 NOTATION AND PRELIMINARIES

Let G = (‘V,&,X) be a simple graph with node set V, edge set
& and node attributes X. The one-hop neighborhood N (v) = {u :
(u,v) € E}ofanodev € V is the set of all nodes directly adjacent to
v; the k-hop neighborhood of v € V is the set of nodes reachable by
a shortest path of length k. We represent the graph G algebraically
by an adjacency matrix A € {0, 1}/VI*IVl and node feature matrix
X € RIVIXF We use Ag = A +1 to denote the adjacency matrix
with self-loops added, and denote the corresponding row-stochastic
matrices as A = D7'A and As = D; A, respectively, where D is
a diagonal matrix with Dj; = 3} jAij (Ds is defined analogously).
We further assume that there exists a vector y, which contains a
unique class label y, for each node v. Given a training set 7y =
{(v1,y1), (v2,y2), ...} of labeled nodes, the goal of semi-supervised
node classification is to learn a mapping £ : V — Y from the nodes
to the set Y of class labels.

Graph neural networks (GNNs). Most current GNNs operate
according to a message passing paradigm where a representation
vector ry, is assigned to each node v € V and continually updated by
K layers of learnable transformations. These layers first aggregate
representations over neighboring nodes N(v) and then update the
current representation via an encoder ENC. For prevailing GNN
models like GCN [18] and GAT [40], each layer can be formalized
as 1 = ENC (AGGR ({r&kil) tu € N(v) U {v}})), where AGGR is the
mean function weighted by node degrees (GCN) or an attention
mechanism (GAT), and ENC is a learnable (nonlinear) mapping.
Adversarial attacks on graphs. Given a graph G = (V, &,X) and
a GNN f that processes G, an adversarial attacker tries to create
a perturbed graph G’ = (V, &, X) with a modified edge-set &’
such that the performance of the GNN f is maximally degraded.
The information available to the attacker can vary under different
scenarios [17, 37]. Here, we follow the gray-box formalization by
[52], where the attacker knows the training set 7, but not the
trained GNN f. The attacker thus considers a surrogate GNN and
picks perturbations that maximize an attack loss Ly [49, 52],
assuming that attacks to the surrogate model are transferable to
the attacked GNN. For node classification, the attack loss L,
quantifies how the predictions z, € [0,1] 1Y made by the GNN f
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differ from the true labels y. For a targeted attack of node v with
class label y, € Y, we adopt the negative classification margin
(CM-type) [42, 52]: Lo = —~Ac = —(Zo,y, — MaAXyzy, Zy y). The
attacker usually has additional constraints, such as a limit on the
size of the perturbations allowed [49, 52].
Taxonomy of attacks. We follow the taxonomy of attacks intro-
duced in [17, 37]. For node classification, the attacker may aim to
change the classification of a specific node v € V (targeted attack),
or to decrease the overall classification accuracy (untargeted at-
tack). Attacks can also happen at different stages of the training
process: we refer to attacks introduced before training as (pre-
training) poison attacks, and attacks introduced after the train-
ing process (and before potential retraining on perturbed data) as
(post-training) evasion attacks. While our theoretical analysis
(§3) mainly considers targeted evasion attacks, we consider other
attacks in our empirical evaluation (§5).
Characterizing homophily and heterophily in graphs. Using
class labels, we characterize the types of connections in a graph
contributing to its overall level of homophily/heterophily as follows:
DEFINITION 1 (HOMO/HETEROPHILOUS PATH AND EDGE). A k-
hop homophilous path from node w to u is a length-k path between
endpoint nodes with the same class label y,, = y. Otherwise, the
path is called heterophilous. A homophilous or heterophilous edge is
a special case with k = 1.

Following [27, 47], we define the homophily ratio A as:

DEFINITION 2 (HOMOPHILY RATIO). The homophily ratio is the
fraction of homophilous edges among all the edges in a graph: h =
I{(u.0) € Elyu = yo}l/|E].

When the edges in a graph are wired randomly, independent to
the node labels, the expectation for A is h, = 1/|Y| for balanced
classes [27]. For simplicity, we informally refer to graphs with
homophily ratio h > 1/|Y| as homophilous graphs (which have
been the focus in most prior works), graphs with homophily ratio
h < 1/|Y| as heterophilous graphs, and graphs with homophily
ratio h ~ 1/|Y| as weakly heterophilous graphs.

3 RELATION BETWEEN GRAPH
HETEROPHILY & MODEL ROBUSTNESS

In this section, we first show theoretical results on the relation
between adversarial structural attacks and the change in the ho-
mophily level of the underlying graphs. Though empirical analyses
from previous works have suggested this relation on homophilous
graphs [17, 41], to our knowledge, we are the first to formalize
it with theoretical analysis and address the case of heterophilous
graphs. As an implication of the relation, we then discuss how a
key design that improves predictive performance of GNNs under
heterophily can also help boost their robustness.

3.1 How Do Structural Attacks Change
Homophily in Graphs?

Homophilous graphs: structural attacks are mostly hetero-
philous attacks. Our first result shows that, for homophilous data,
effective structural attacks on GNNs (as measured by loss L)
always result in a reduced level of homophily where either new
heterophilous connections are added or existing homophilous con-
nections are removed. It also states that direct perturbations on
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1-hop neighbors of the target nodes are more effective than indirect
perturbations (influencer attacks [52]) on multi-hop neighbors. For
simplicity, akin to previous works [49, 52] we establish our results
for targeted evasion (post-training) attacks in a stylized learning
setup with a linear GNN. However, our findings generalize to more
general setups on real-world datasets as we show in our experi-
ments (§5.1). In the theorems below, we use the notion of gambit
node: node u is called a gambit if a perturbation that targets node
v € V adjusts the connectivity of node u € V.

THEOREM 1. Let G = (V,&,X) be a self-loop-free graph with
adjacency matrix A and node features x, = p - onehot(y,) + 1‘_7’" -1
for each node v, where 1 is an all-1 vector, and p is a parameter
that regulates the signal to noise ratio. Assume that a fraction h of
each node’s neighbors belong to the same class, while a fraction |y|f1
belongs uniformly to any other class. Consider a 2-layer linear GNN
£2Ax) = A2XW trained on a training set Ty C Dey, with at least
one node from each classy € Y, and degree d for all nodes with a
distance less than 2 to anyv € D«y. For a unit structural perturbation
that involves a target node v € Dy, and a correctly classified gambit
node with degree dg, the following statements hold if h > ﬁ:

(1) the attack loss L, (§2) of the target v increases only for actions
increasing heterophily, i.e., when removing a homophilous edge
or path, or adding a heterophilous edge or path to node v;

(2) direct perturbations on edges (or 1-hop paths) incident to the target
node v lead to greater increase in L4y than indirect perturbations
on multi-hop paths to target node v.

We give the proof in App. A. Intuitively, the relative inability
of existing GNNs to make full use of heterophilous data [35, 47]
can be exploited by inserting heterophilous connections in graphs
where homophilous ones are expected. Though the theorem shows
that effective attacks on homophilous graphs necessarily reduce
the homophily level, the converse is not true: not all perturbations
which reduce the homophily level are effective attacks [31].
Heterophilous graphs: structural attacks can be homophil-
ous or heterophilous, depending on node degrees. When a
graph displays heterophily, our analysis shows a more complicated
picture on how the level of homophily in the graph is changed by
effective structural attacks: in heterophilous case, the direction of
change is dependent on the degrees of both the target node v and the
gambit node u of the attack. Specifically, if the degree of either node
is low, attacks increasing the heterophily are still effective; however,
if the degrees d and d, of both nodes are high, attacks decreasing
the heterophily will be effective. Similar to the homophilous case,
we formalize our results below for targeted evasion attacks in a
stylized learning setup.

THEOREM 2. Under the setup of Thm. 1, for a unit perturbation
that involves a target node v with degree d, and a correctly classified
gambit node with degree dg, the following statements hold:

(1) (Low-degree target node) if 0 < d < |Y| -2, foranyd, >0
and h € [0, 1], the attack loss L,y (§2) of v increases only under
actions increasing heterophily in the graph;

(2) (High-degree target node) ifd > |Y| — 2, conditioning on the
degree d, of the gambit node:

(a) (Low-degree gambit node) ifd, < %, for any

h € [0, 1], the attack loss Ly (§2) of v increases only under
actions increasing heterophily in the graph;
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(b) (High-degree gambit node) if d, > ¢2UYI-D

a1y for
da(d—|Y|+2)-(d+2) (1Y]|-1) 1
0<h< (d+D) Y da < IVIE Latk (§2) OfU

increases only under actions reducing heterophily.

In the statements above, the actions increasing heterophily include
removing a homophilous edge or adding a heterophilous edge to node
v, and the actions reducing heterophily include adding a homophilous
edge or removing a heterophilous edge to node v.

The above theorems cover the situation when the gambit nodes
are initially classified correctly (where attacks introducing het-
erophily can be unambiguously defined using the ground-truth
class labels of the nodes involved). However, in §5.1, we show on
real-world datasets that a relaxed interpretation of the theorems,
where heterophily is instead defined by the predicted class labels
of GNNS, can explain the behavior of the attacks regardless of the
initial correctness of the gambits.

3.2 Boosting Robustness with A Simple
Heterophilous Design

A natural follow-up question is whether GNNs with better perfor-
mance under heterophily are also more robust against structural at-
tacks. We deduce that a key design for improving GNN performance
for heterophilous data—separate aggregators for ego- and neighbor-
embeddings—can also boost the robustness of GNNs by enabling
them to better cope with adversarial changes in heterophily.
Separate aggregators for ego- and neighbor-embeddings. This
design uses separate GNN aggregators for ego-embedding r, and
neighbor-embeddings {ry, : u € N(v)}. Formally, the representation
learned for node v in the k-th layer is:

(b (D)

) =enc (AGGR1 (! (ke=1)

), accr2({r* Y u e N(v)})),

1)
where AGGR1 and AGGR2 are separate aggregators, such as averaging
functions (GCN), attention mechanisms (GAT), or other pooling
mechanisms [15]. This design has been utilized in existing GNN
models (we show examples later in this section), and has been
shown to significantly boost the representation power of GNNs
under natural heterophily [47]. The ego-aggregator AGGR1 may also
introduce skip connections [43] to the ego-embeddings aggregated
in previous layers as shown in Eq. (1), which is another design that
further improves the representation power under heterophily [47].
Intuition. The key design changes, as compared to the GCN for-
mulation in §2, allow for the ego-embedding r, to be aggregated
and weighted separately from the neighbor-embeddings {r, : u €
N(v)}, as well as for the use of skip connections to ego-embeddings
of previous layers. Intuitively, ego-embeddings of feature vectors
at the first layer are independent of the graph structure and thus
unaffected by adversarial structural perturbations. Hence, a sepa-
rate aggregator and skip connections can provide better access to
unperturbed information and mitigate the effects of the attacks.
Theoretical analysis. We formalize the above intuition that shows
how separate aggregators for ego- and neighbor-embeddings enable
GNN layers to reduce the attack loss.

THEOREM 3. Under the setup of Thm. 1, consider two alternative
layers from which a two-layer linear GNN is built: (1) a layer defined
as f;(A,X) = AsXW; and (2) a layer formulated as f(A, X;a) =
((1 = @)A + al) XW, which mixes the ego- and neighbor-embedding
linearly under a predefined weight a € [0, 1]. Then, forh > 1/|Y]|,



KDD ’22, August 14-18, 2022, Washington, DC, USA.

a > 1/(1+dg), and a unit perturbation increasing Ly as in Thm. 1,
outputs of layer f lead to a strictly smaller increase in Ly than fs.

We provide the proof in App. A; note that for @ = 1/(1+d,),
the two layers are the same: f(A,X;a) = fs(A,X). Theorem 3
shows that an increase to the weights of ego-embedding (manually
or through training) improves the robustness of the GNN f for a
homophily ratio h > 1/|Y|. Though aggregators and encoders are
stylized in this simple instantiation of the design in the theorem,
the empirical analysis in §5.2 confirms that GNNs with more ad-
vanced aggregators and encoders, which we will discuss next, also
benefit from separate aggregators. Specifically, we find that such
GNNs outperform methods without this design by up to 40.00%
and 48.88% on homophilous and heterophilous graphs, respectively,
while performing comparably on clean datasets.

Instantiations of the design on GNNs. We demonstrate how the

heterophilous design outlined in Eq. (1) is instantiated in various

GNN models, which are used in our empirical evaluation in §5.

In particular, we highlight how these GNN architectures allow

separate aggregations of the ego- and neighbor-embeddings.

e In H,GCN [47], a final representation is computed for each node
v € V through rz(,ﬁnal) = CONCAT(rZ(,O), rz(,1>, rz(,K)), where rz(,0>
is the non-linear ego-embedding of node features and rgk)

intermediate representations aggregated in the k-th layer, where

k € (1,...,K). By interpreting the update rule’s CONCAT as the ENC

operation, AGGR1 as the skip connection to the ego-embedding

of node features, and the concatenation of the intermediate rep-
resentations as AGGR2, the ego- and neighbor-embeddings are
separately aggregated as stated in the design.

GraphSAGE (with mean aggregator) [15] utilizes a concatenation-

based encoding scheme through their update of

i) = o (coneaT (70, mEAN (1r T vu € N(Y)) - W),

where ENC(x1, X2) = o(CONCAT(x1,x2) - W), AGGR1(+) = r,ﬂk‘l),
and AGGR2 is the mean function.
GPR-GNN [8] embeds each node feature vector separately with

a fully connected layer to compute R,(,?) (or H,(,?) as in the original
paper), similar to HoGCN, and then updates each node’s hidden
representations through a weighted sum of all k-th hop layers
around the ego-node, where k € (0,1,...,K). By interpreting
the summation as the ENC operation, AGGR1(-) = yoR(O), and
AGGR2(+) = Zlk(:l ykAIS‘ymR(k_l), where y denotes the weights
associated with each k-hop ego network, the aggregation of the
ego- and neighbor-embeddings is decoupled.

FAGCN [2] follows a similar update fugction to GPR-GNN with

I'El) = £I‘§O) +

are the

Z %ij -1
JEN(i) Vdid; !

©) (or hl@) in the original paper) represents the non-

i
linear ego-embedding and afj’j is a constant measuring the ratio

where r

of low and high frequency components. The heterophilous design
can similarly be recovered by interpreting the sum as the ENC
operation, AGGR1(-) = ergo) as a weighted skip connection to the
ego-embedding of features, and the weighted sum of embeddings
within the neighborhood N (i) of node i € V as AGGR2(-).

CPGNN (48] formulates the update function of belief vectors

R after the k-th propagation layer as R(K) = RO L ARK-D R,
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where R(®) (B(?) in the original paper) consists of prior belief
vectors for each node (as the ego-embeddings rgo) in Eq. (1)), and
H is the learnable compatibility matrix. The heterophilous design
is recovered by letting AGGR1(-) = R(?) as a skip connection,
AGGR2(-) = AR~DH, and the ENC operation as the summation.

APPNP [19] first generates predictions RZ(,?) (or Hz(,?) as in the
original paper) of each node v based on its own feature, then
updates the predictions through power iterations of Personalized
PageRank. More specifically, the k-th iteration step is formulated
asR(K) = (1 a)AsymR(k_l) +aR(®) The heterophilous design
can be recovered by letting AGGR1(+) = RO asa skip connec-
tion to the initial prediction, AGGR2(+) = AsymR(k_1>, and the
summation weighted by « as the ENC operation.

4 RELATED WORK

Adversarial attacks and defense strategies for graphs. Since
NETTACK [52] and RL-S2V [10] first demonstrated the vulnerabili-
ties of GNNs against adversarial perturbations, a variety of attack
strategies under different scenarios have been proposed, including
adversarial attacks on the graph structure [3, 7, 10, 24, 42], node
features [30, 38], or combinations of both [41, 49, 52]. On the de-
fense side, various techniques for improving the GNN robustness
against adversarial attacks have been proposed, including: adver-
sarial training [4, 42, 49]; RGCN [46], which adopts Gaussian-based
embeddings and a variance-based attention mechanism; low-rank
approximation of graph adjacency [12] against Nettack [52]; Pro-
GNN [16], which estimates the unperturbed graph structure in
training with the assumptions of low-rank, sparsity, and homophily
of node features; GCN-Jaccard [41] and GNNGuard [45], which
assume homophily of features (or structural embeddings) and train
GNN models on a pruned graph with only strong homophilous
links; and Soft Medoid [13], an aggregation function with improved
robustness. Other recent works have looked into the certification
of nodes that are guaranteed to be robust against certain structural
and feature perturbations [4, 50, 51], including approaches based on
model-agnostic randomized smoothing [5, 9, 21]. Interested readers
can refer to the recent surveys [17, 37] for a comprehensive review.
GNNs & Heterophily. Recent works [28, 31, 35, 47] have shown
that heterophilous datasets can lead to significant performance loss
for popular GNN architectures (e.g., GCN [18], GAT [40]). This
issue is also known in classical semi-supervised learning [34]. To
address this issue, several GNN designs for handling heterophilous
connections have been proposed [1, 2, 11, 25, 35, 47, 48]. Yan et al.
[44] recently discussed the connection between heterophily and
oversmoothing for GNNs, and designs to address both issues; [29]
studied how locally-occuring heterophily affects fairness of GNNs.
However, the formal connection between heterophily and robust-
ness of GNNs has received little attention. Here we focus on a simple
yet powerful design that significantly improves performance under
heterophily [47], and can be readily incorporated into GNNs.

5 EMPIRICAL EVALUATION

Our analysis seeks to answer the following questions: (Q1) Does
our theoretical analysis on the relations between adversarial at-
tacks and changes in heterophily level generalize to real-world
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datasets? (Q2) Do heterophily-adjusted GNNs, i.e., models with
separate aggregators for ego- and neighbor-embeddings, show im-
proved robustness against state-of-the-art attacks? (Q3) Does the
identified design improve the certifiable robustness of GNNs?

First, we describe the experimental setup and datasets that we
use to answer the above questions.

Attack Setup. We consider both targeted and untargeted attacks
(§2), generated by NETTACK [52] and Metattack [49], respectively.
For each attack method, we consider poison (pre-training) and eva-
sion (post-training) attacks, yielding 4 attack scenarios in total. We
focus on robustness against structural perturbations and keep the
node features unchanged. We randomly generate 3 sets of perturba-
tions per attack method and dataset, and consistently evaluate each
GNN model on them. For NETTACK, we randomly select 60 nodes
from the graph as the target nodes for each set of perturbations,
instead of the GCN-based target selection approach as in [52]: the
approach in [52] only selects nodes that are correctly classified by
GCN [18] on clean data; this introduces unfair advantage towards
GCN, especially on heterophilous datasets where GCN can exhibit
significantly inferior accuracy to models like GraphSAGE [47]. For
the experiments in §5.1, we use a budget of 1 perturbation per tar-
get node to match the setup of our theorems; for the benchmark
study in §5.2, we use an attack budget equal to a node’s degree and
allow direct attacks on target nodes. For Metattack, we budget the
attack as 20% of the number of edges in each dataset, and we use
the Meta-Self variant as it shows the most destructiveness [49].
GNN Models. To show the effectiveness of our identified design,
we evaluate four groups of models against adversarial attacks:
(1) Baseline models without any vaccination, including some of
the most popular methods: GCN [18], GAT [40], and the graph-
agnostic multilayer perceptron (MLP) which relies only on node
features; (2) State-of-the-art “vaccinated” baselines designed with
robustness in mind: ProGNN [16], GNNGuard [45], GCN-SVD [12]
and GCN-SMGDC, which adopts the Soft Medoid aggregator [13]
and GDC [20] on GCN [18] architecture; (3) Models with the het-
erophilous design only: GraphSAGE [15], HoGCN [47], CPGNN [48],
GPR-GNN [8] FAGCN [2] and APPNP [19]; we discussed how these
models instantiate this design in §3.2; (4) Models with both the
heterophilous design and explicit robustness-enhancing mecha-
nisms, where we adopt two existing mechanisms: (i) SVD-based low-
rank approxmiation [12] (HoGCN-SVD and GraphSAGE-SVD), and
(ii) Soft Medoid aggregator [13] with GDC [20] (H2GCN-SMGDC
and GraphSAGE-SMGDC). We combine both these mechanisms
with heterophily-adjusted GNNs instead of non-adjusted models
(e.g., GCN)—detailed formulations are given on our repository. We
set the number of layers as 2 and the size of hidden units per layer
as 64 for all models to ensure a fair comparison between different
architectures and designs. We provide more implementation details
and hyperparameter settings on our repository (App. §B).
Datasets & Evaluation Setup. We consider three widely-used cita-
tion networks [33, 36] with strong homophily—Cora [32], Pubmed,
and Citeseer—along with one weakly and one strongly heterophilous
graph, introduced by Lim et al. [27]: FB100 [39] and Snap Patents [22,
23]. We report summary statistics in Table 1, and provide more
details on our repository. For computational tractability, we sub-
sample the Snap Patents data via snowball sampling [14], where we
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Table 1: Dataset statistics.

Homophilous Heterophilous
Cora Pubmed Citeseer FB100 Snap
#Nodes |V| 2,485 19,717 2,110 2,032 4,562
#Edges |E| 5,069 44,324 3,668 78,733 12,103
#Classes |Y| 7 3 6 2 5
#Features F 1,433 500 3,703 1,193 269
Homophily & 0.804 0.802 0.736 0.531 0.134

keep 20% of the neighbors for each traversed node; we give detailed
algorithm on our repository. The sizes of the datasets that we used
in our experiments are similar to those in previous works on GNN
robustness [13, 16]. We follow the evaluation procedure of [16, 52]
to split the nodes of each dataset into training (10%), validation
(10%) and test (80%) data, and determine the model parameters on
training and validation splits. We report the average performance
and standard deviation on the 3 sets of generated perturbations.
For targeted attacks with NETTACK, we report the classification ac-
curacy on the target nodes; for untargeted attacks with Metattack,
we report it over the whole test data.

Robustness Certificates. We adopt randomized smoothing for
GNN s [5] to evaluate the certifiable robustness, with parameter
choices detailed in our GitHub repository. We only consider struc-
tural perturbations in the randomization scheme. Following Geisler
et al. [13], we measure the certifiable robustness of GNN models
with the accumulated certifications (AC) and the average maxi-
mum certifiable radii for edge additions (7,) and deletions (7;) over
all correctly predicted nodes. More specifically, AC is defined as
=R(0,0) + X >0 R(ra,rq), where R(rq, 1g) is the certifiably cor-
rect ratio, i.e., the ratio of the nodes in the test splits that are both
predicted correctly by the smoothed classifier and certifiably ro-
bust at radius (rg, rg). In addition, we report the accuracy of each
model with randomized smoothing enabled on the test splits of the
clean datasets, which is equal to R(0, 0). We report the average and
standard deviation of each statistic over the 3 different training,
validation and test splits.

Hardware Specifications. We use a workstation with a 12-core
AMD Ryzen 9 3900X CPU, 64GB RAM, and a Quadro P6000 GPU
with 24 GB GPU Memory.

Code and Additional Details. Code and additional details on
the setups and results are available on GitHub repository: https:
//github.com/GemsLab/HeteRobust.

5.1 (Q1) Structural Attacks are Mostly
Heterophilous: Empirical Validation

To show that our theoretical analysis in §3.1 generalizes to more
complex settings beyond the assumptions we made in the theo-
rems, we look into effective targeted attacks made by NETTACK on
real-world homophilous and heterophilous datasets, and present
statistics of the attacks in Table 2, with a focus on the ratios of
heterophilous attacks. We use a budget of 1 perturbation per target
node in this experiment, and the statistics are reported among all
effective perturbations targeting nodes that are correctly classified
on clean datasets by the surrogate GNN of NETTACK (i.e., GCN) as
described in §5. To validate the dependency between the degrees of
the target/gambit nodes and the changes of heterophily predicted
by Thm. 2, we also show the scatter plots of node degrees in Fig. 1.
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Table 2: Effective targeted attacks by NETTACK (§5.1): ratios
of edge additions, deletions and heterophilous attacks (i.e.,
attacks increasing heterophily). We consider two heterophily
definitions, one based on ground-truth class labels (Label),
and the other on predicted class labels by GCN on clean
datasets (Pred.). All attacks are direct perturbations on edges
incident to the targets. Degrees of target and gambit nodes
in the attacks are shown in Fig. 1. All attacks introduce het-
erophilous edges that connect nodes with different predicted
labels, following the takeaways of Thm. 1 and 2.

Sample Attack Type Hete. Attacks
Dataset .
Sizes Add.  Del Label Pred.
:*4 Cora 150 99.33% 0.67% 100.00% 100.00%
2 Pubmed 153 100.00% 0.00% 100.00% 100.00%
E Citeseer 121 100.00% 0.00% 100.00% 100.00%
Z  FB100 112 100.00% 0.00% 50.00% 100.00%
Snap 51 100.00% 0.00% 64.71% 100.00%
Cora.(th = 0.804) Pubmed.(h = 0.802) Citeseer.(h = 0.736)
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Figure 1: Scatter plots of the degrees of the target nodes (x-
axis) and gambit nodes (y-axis) involved in the targeted at-
tacks (§5.1). Attacks tend to leverage gambit nodes with low
degrees, which makes attacks increasing heterophily effec-
tive for heterophilous graphs following Thm. 2.

Homophilous Networks. For the strongly homophilous Cora,
Pubmed and Citeseer graphs, all changes introduced by effective
attacks in the graph structure follow the conclusion of Thm. 1: they
reduce homophily (increase heterophily) by adding heterophilous
edges or removing homophilous edges. These results show that
despite the simplified analysis, the takeaway of Thm. 1 can be
generalized to real-world datasets. In addition, the attacks mostly
introduce, rather than prune, edges, suggesting that attacks adding
outlier edges to the graph are more powerful than attacks removing
informative existing edges. These observations in our experiments
are consistent with the observations from previous works [13, 17].
Heterophilous Networks. For heterophilous graphs FB100 (h ~
1/|Y1) and Snap (h < 1/|Y]), Fig. 1 shows that almost all attacks
leverage gambit nodes with low degrees (1 or 2); no node with
degree higher than 5 is leveraged. All attacks leveraging correctly
classified gambit nodes are connecting node u € V with a different
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ground-truth class label y,, # y, to the target nodes v € V; attacks
leveraging incorrectly classified gambit nodes are always connect-
ing node u with a different predicted class label 4, # 7, = y, to
the target node v, even though some gambit nodes have the same
ground-truth class label y, = y, # 7, as the target nodes. These
results validate the conclusion of Thm. 2 on correctly classified
gambit nodes, and demonstrate its generalizability under the het-
erophily definition based on predicted class labels. Note that the
predicted class labels 7, for each node u € V are based on GCN,
which is the surrogate GNN used by NETTACK.

5.2 (Q2) Benchmark Study of GNN Models:
Heterophilous Design Leads to Improved
Empirical Robustness

To answer (Q2) on whether heterophily-adjusted GNN models show
improved performance against state-of-the-art attacks, we conduct
a comprehensive benchmark study. We consider all four categories
of GNN models mentioned in §5, and evaluate their robustness
against both targeted and untargeted attacks. We report the hyper-
parameters for each method on our repository (App. §B.3). Table 3
shows the performance of each method under poison (pre-training)
attacks and on clean (unperturbed) data, and Fig. 2 visualizes the
corresponding performance changes relative to the clean datasets.
For conciseness, we report additional results on Pubmed in Ta-
ble 5, and under evasion (post-training) attacks on our GitHub
repository (Table 7 and 8), where we also discuss how our simple
heterophilous design leads to only minor computational overhead
compared to existing vaccination mechanisms (App. §C.4).
Targeted attacks by NETTACK. (D) Poison attacks. Under targeted
poison attacks, Table 3 (left) shows that GraphSAGE-SVD and
H2GCN-SVD, which combine our identified design with a low-rank
vaccination approach adopted in GCN-SVD [12], outperform state-
of-the-art vaccinated methods across all datasets by up to 13.34% in
homophilous settings and 18.33% in heterophilous settings. Further-
more, GraphSAGE-SMGDC and HyGCN-SMGDC, which combine
our design with existing vaccinations based on Soft Medoid [13] and
GDC [20], show better performance against attacks in all datasets
compared to GCN-SMGDC, the corresponding baseline without our
design, with up to 19.44% improvement on homophilous settings
and 30.55% improvement on heterophilous settings. In summary,
these observations show that the heterophilous design improves the
robustness of GNNs alongside existing vaccination mechanisms.
Methods merely employing the identified design also show sig-
nificantly improved robustness, though there are differences in
the amount of robustness improvement due to architectural differ-
ences. Specifically, these methods outperform the best unvaccinated
method (GAT) on all datasets by up to 33.75% in average, despite
having mostly comparable performance on clean datasets; meth-
ods like APPNP and CPGNN also show comparable or even better
robustness than state-of-the-art vaccinated GNNs. These observa-
tions also apply to the larger Pubmed dataset in Table 5. We also
note that the graph-agnostic MLP, which is immune to structural
attacks, outperforms all GNNs against attacks on Citeseer and Snap;
this shows the challenges in defending against targeted attacks and
calls for more effective defense strategies upon our discoveries.
(@ Evasion attacks. Under evasion attacks (detailed results are re-
ported in App. Table 7 on our repository), we observe similar trends
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Table 3: Benchmark study: mean accuracy + stdev against poison attacks, with accuracy on clean datasets in gray for reference.
Accuracy is reported on target nodes for NETTACK, and on full test splits for Metattack. Best GNN performance against attacks
is highlighted in blue per dataset, and in gray per model group. MLP is immune to structural attacks and not considered as a
GNN model. Accuracy against evasion attacks are listed on our GitHub repository (App. §C.1), and the setups in §5. Additional
results on Pubmed are listed in App. Table 5. GNNs merely adopting this design achieve up to 40.00% improvement in accuracy
against NETTACK compared to the best-performing unvaccinated model (GCN). Additionally, methods combining this design
alongside explicit defense mechanisms (e.g., GraphSAGE-SVD) achieve further robustness improvement to the corresponding
base mechanism without the design (e.g., GCN-SVD), and outperform the best vaccinated baseline by up to 18.33%.

+1.36 +1.36 +4.08 £6.80 £1.32
67.22 47.22 61.67 22.22
+15

£1.57 £0.00 £1.57

H;GCN-SMGDC
GraphSAGE-SMGDC

NETTACK Metattack
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E 5 h=0.804 h=0.736 h=0.531 h=0.134 h=0.804 h=0.736 h=0.531 h=0.134

U <

= > Poison Clean Poison Clean Poison Clean Poison  Clean Poison Clean Poison Clean Poison Clean Poison Clean
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+272 3,60 272 £3.42 £2.36 =342 +0.47 £0.46 £0.08 0.7 20,14

GraphSAGE-SVD v v 71.67 67.78 70.00 60.00 60.00 26.67 68.86 69.10 55.76 57.: 26.58
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GraphSAGE
CPGNN
GPR-GNN
FAGCN
'GNNGuard ~/
ProGNN v
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£0.58
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Untargeted attacks by Metattack. (D) Poison attacks. We also test

@ H2GCN-sVD (@ GraphSAGE-SMGDC  [l] CPGNN ] APPNP /\ GCN-SVD @ GCN

@ GraphSAGE-SVD [ H2GCN M GPRGNN A GNNGuard A GCN-SMGDC 4pMLP the robustness of each method against untargeted attacks. Table 3

@ H2GCN-SMGDC [l GraphSAGE [C] FAGCN A ProGNN @ GAT . .
Citeseer (h = 0.736) FB100 (h=0.531) (right) shows the performance under poison attacks. Though our
08 08 theoretical analysis in §3 focuses on the effect of the heterophilous
) design under targeted attacks, we observe similar improvements in
g 061 = g 061 o robustness against untargeted attacks in the poison setup. GNNs
2 041 8 2 04 A D+ with the identified design show mostly improved robustness com-
g & ] "t % pared to unvaccinated models, while having similar performance on
c 027 i z 027 a the clean datasets. Specifically, CPGNN shows exceptional robust-
0.0 1 0.0 1 B ness, outperforming the best unvaccinated model by up to 32.85%.
00 02 02 o6 o8 00 02 02 o6 o8 Moreover, models combining the identified design with low-rank
Clean Accuracy Clean Accuracy approximation show up to 21.04% improvement in accuracy com-
Figure 2: (Best viewed in color.) Classification accuracy on pared to GCN-SVD, which uses only low-rank approximation. Mod-
clean data and against poison attacks for target nodes at- els combining the design with Soft Medoid and GDC show up to
tacked by NETTACK. Error bars show standard deviation 37.29% improvement in accuracy compared to GCN-SMGDC. We
across different sets of experiments. Detailed results are also note that the most robust method for each dataset is among
listed in Table 3. As expected, MLP is not influenced by the the ones with the identified design. These results again support the
adversarial structural attacks. effectiveness of the heterophilous design in boosting the robustness

of GNNs in addition to existing vaccination mechanisms.

(@ Evasion attacks. We present the performance under evasion
attacks on our GitHub repository. Unlike the poison attacks, the
evasion setup only leads to a slight decrease in average accuracy
of less than 2% for most models. Moreover, there appears to be
no clearly increased robustness for vaccinated models (with the
identified design or other vaccination machanisms) compared to
unvaccinated models. This can be attributed to the reduced effec-
tiveness of evasion vs. poison attacks (as in NETTACK), and the
increased challenges of untargeted attacks.

as in poison attacks: GraphSAGE-SVD and HyGCN-SVD are up to
20.55% more accurate than the GCN-SVD, the corresponding base-
line without the heterophilous design, and GraphSAGE-SMGDC
and HyGCN-SMGDC outperform GCN-SMGDC by up to 19.44%.
Methods featuring the identified design alone achieve up to 38.89%
gain in average performance against the best unvaccinated baseline,
which we also observe on Pubmed. We note that two baselines, GN-
NGuard and ProGNN, are designed specifically to defend against
poison attacks, and are not capable of addressing evasion attacks.
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Table 4: Accumulated certifications (AC), average certifiable radii (7; and 7;) and accuracy of GNNs with randomized smoothing
enabled (i.e., f(¢$(s))) on the test splits of the clean datasets, with ramdomization schemes ¢ allowing both addition and deletion
(i-e., p+ = 0.001, p_ = 0.4), and additional only (i.e., p+ = 0.001, p_ = 0). For each statistic, we report the mean and stdev across
3 runs. Best results highlighted in blue per dataset, and in gray per model group. We provide results with the deletion only
scheme on our repository (App. §C.2). APPNP, with the identified design, improves the accumulated certification (AC) by up to
5.3x on homophilous datasets and 10.1x on heterophilous ones compared to the best performing baseline without the design.

s Addition & Deletion Addition Only Addition & Deletion Addition Only

-

= AC Fa g Acc. % AC Fa Acc. % AC Fa Fa Acc. % AC Fa Acc. %
H;GCN v 3.96x035  0.46x008  3.90x030 79.34x103 0.42:002  0.53x003  80.97=195 2.96x08s  0.332013  3.27x067  71.762105 0.29x005s  0.40z006  72.99:222
GraphSAGE 2162006 0.13x000 2.43x003  79.61:148 0.28x003  0.34x00s  81.07=11 2.21x015  0.192001  2.561000 73.48:290 0.33x001  0.44x001  74.702157
CPGNN v 1.87x027  0.14z005  2.24z030  75.37+165 0.17x002  0.212003  78.34x12 2.03x007  0.11x001  2.52:020 73.48:06 0.152002  0.20x002  74.62:030
GPR-GNN V. g 442:0m 063200 4.35:02 7490w 0.431003  0.552003  76.96:215 § 4.63x027  0.81x007  4.92:024  66.33:020 0.40+001  0.59x002  67.52:040
FAGCN V8 430:00 05700 425000 764945 0.432001  0.54x001  79.04:06s § 4.07x015  0.58x002  4.23:000 0.38+002  0.532002  72.41x105
APPNP V9 101%1s00  1.86s00 85200 71.97-0 0.69+000  0.952000 72.27:03 5 9.87x002  1.88x000 8.61x001 0.66x000  0.95x000 69.41:
GAT 1.61:010 0.08z001 1.85:006 79.83:230 0.192004  0.23:004  81.99:10 1292007 0.072002  1.602006  73.62:1.06 0.09:001  0.12z002  74.47 02
GCN 1.40z002  0.06:001  1.752008  74.36+3.6 0.132000  0.172001  78.17:25 1.79s000  0.172002  2.15:0m  70.38:417 0.17x001  0.24x002  72.044301
H;GCN v 8.12:010  1.76x002  8.14x006  57.38:01 0.542000 0.94x000 57.11z010 1.44+018  0.592010  3.79x040  26.97:010 0.11x000  0.422005 26.74:0.s
GraphSAGE 6.98x006  1.50:001  7.32x013  56.72:156 0.52x001  0.92:001  56.70=14 0.70021  0.19z0m  2.162051  26.84x047 0.06x002  0.24x00s  27.002063
CPGNN v 6.80:019  1.41:021  7.05x070  59.0057 0.54x001  0.90x001  60.39726 1.452023  0.61:014  3.892051  26.71:025 0.12x002  0.43z00s  27.00x0.01
GPR-GNN v S 5.81x016  1.11x002  5.95x010  61.99x04 0.46:001  0.732002  62.26:020 o 0.52x006  0.112001 1702014 26.312105 0.03z001  0.11x002  26.142073
FAGCN v 5 7.45:021  1.53x002  7.40x006 59.76:1 0.552000  0.90x001  60.60:03¢ g 1.41x010  0.562006 3.81x022  27.07=016 0.10x001  0.36x003  27.13:016
APPNP V' B 890005 1.92:002 8.73:005 57.87:05 0.57x000  0.98z001  57.89x0 L 3541005 1.6820m  7.95:008 0.24x000  0.86:z000
Gat 430s02  0.77s001 472010 61, 046500y 0.7ds00s  61.97101 0.28100  0.04z001  0.95203 10.02c000  0.08:00 27.00:05
GCN 5.19:003  1.14x000 6.05x001 0.43:000  0.79:001  54.39:01 0.32:008  0.062003  1.08z024 0.02:001  0.08z003  26.38:0.0

Table 5: Additional results on Pubmed (details in App. §C.1).

g g Pubmed

e § Poison  Evasion Clean
H,GCN-SVD v v 86.11+3.93  86.11:3.93 87.22:437
GraphSAGE-SVD Vv V 81.11+416  81.11s342 84.44.0.08
H;GCN v 44444567  46.671816  87.78+3.14
GraphSAGE v 33.331892  34.44:006 84.44:3.03
CPGNN v 8 60.00s720  60.00s593 82.78:5.67
GPR-GNN v E 13.892478  15.5616.14  85.56+1.57
FAGCN v E 27.78:11.00  31.67+13.40  86.67+272
APPNP v 79.44+283  81.67:272 86.67+236

3

83.334130
85.00+2.72

86.11x437  86.112437 86.11x437

5.3 (Q3) Heterophily-adjusted GNNs are
Certifiably More Robust

It is worth noting that robustness against specific attacks such as
NETTACK and Metattack does not guarantee robustness towards
other possible attacks. To overcome this limitation, robustness cer-
tificates provide guarantees (in some cases probabilistically) that
attacks within a certain radius cannot change a model’s predictions.
Complementary to our evaluation on empirical robustness, we fur-
ther demonstrate that heterophily-adjusted GNNs featuring our
identified design are certifiably more robust than methods without
it, thus answering (Q3). For GNN models and datasets, we exclude
the larger Pubmed dataset and models that learn to rewrite the
graph structure through the training process, or require recalcula-
tion of the low-rank approximation or inverse of matrices (as used
by GDC [20]) for every randomized perturbation, as we find that
sampling on these setups is computationally challenging. We use
the same hyperparameters as the benchmark study in §5.2.

Table 4 shows multiple metrics of certifiable robustness of each
GNN model under edge randomization schemes allowing both ad-
dition and deletion, and allowing addition only; we additionally

report results under a scheme allowing only deletion on our GitHub
repository. For the scheme allowing both addition and deletion, we
observe that all heterophily-adjusted methods have better certifiable
robustness compared to methods without the design. Specifically,
on homophilous datasets (Cora and Citeseer), methods with the
identified design achieve an up to 5.3 times relative improvement
in accumulated certification. On heterophilous datasets (FB100 and
Snap), they outperform the baselines by a factor of 11.1. In the more
challenging case with the addition only scheme, methods with the
design also show up to 2.9 times relative increase in AC on the
homophilous datasets and 11.0 times relative increase in AC on the
heterophilous datasets compared to the baselines. For the deletion
only scheme, we find that unvaccinated models like GCN already
have decent certifiable robustness in this scenario, commensurat-
ing with our discussions in §5.1 that deletions create less severe
perturbations. Overall, our results show that models featuring our
identified design achieve significantly improved certifiable robust-
ness compared to models lacking this design. However, like in our
empirical robustness evaluation, architectural differences lead to
some variability of robustness; the results also show tradeoffs be-
tween accuracy and robustness. We also observe that the rankings
under certifiable and empirical robustness are different, as in the
previous results from [13]; we discuss more in our repository.

6 CONCLUSION

We formalized the relation between heterophily and adversarial
structural attacks, and showed theoretically and empirically that
effective attacks gravitate towards increasing heterophily in both
homophilous and heterophilous graphs by leveraging low-degree
(gambit) nodes. Using these insights, we showed that a key design
addressing heterophily, namely separate aggregators for ego- and
neighbor-embeddings, can lead to competitive improvement on
empirical and certifiable robustness, with only small influence on
clean performance. Finally, we compared the design with state-of-
the-art vaccination mechanisms under different attack scenarios for
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various datasets, and illustrated that they are complementary and
that their combination can lead to more robust GNN models. We
note that while we focus on the structural attacks, GNNs are also
vulnerable to other types of attacks such as feature perturbations.
We hope our analysis can inspire more effective defense strategies
against adversarial attacks, especially designs that improve robust-
ness by better addressing heterophily, such as heterophily in node
features, or locally-occuring heterophily in homophilous graphs.
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SUPPLEMENTARY MATERIAL ON REPRODUCIBILITY

For reproducibility, we describe main experimental setups at the
beginning of §5, including the attack configurations, the depth and
hidden unit size for GNNS, ratios for training, validation and test
splits, and hardware specifications. We provide code and datasets
on GitHub repository: https://github.com/GemsLab/HeteRobust,
where we also include additional details on the setups and results,
including the implementations and detailed hyperparameters for
GNN s and randomized smoothing (§B), and additional results for
evasion attacks (§C.1) and certifiable robustness (§C.2). In addition,
we report results for GNN models against NETTACK on the larger
Pubmed dataset in Table 5, with more details in §C.1; GCN-SVD
and SMGDC-based vaccinations run out of memory on Pubmed.

A PROOFS AND DISCUSSIONS OF THEOREMS

For simplicity of mathematical expressions, we use C; (s, t) to re-
fer a matrix where all elements in the i-th column are s, with all
remaining elements (not in the i-th column) as t; we use c; (s, t)
when the matrix is a row vector. We further denote C* (s, t) as a
circulant matrix with all diagonal elements as s and all off-diagonal
elements as ¢, and B (s, t) as block matrix of the following form:

B(s,f) = [ CT(s,) Cl(s0) Cly (1)

ProoF FOR THM. 1. We give the proof in three parts: first, we
analyze the training process of the GNN fs(z) (A, X) = A2XW on
clean data and analytically derive the optimal weight matrix W,
in a stylized learning setup; then, we construct a targeted evasion
attack and calculate the attack loss for a unit structural attack; last,
we summarize and validate the statements in the theorem.
Stylized learning on clean data. Given the 2-layer linearized
GNN £ (A, X) = A2XW and the training set 7y € D.y, the goal
of the training process is to optimize the weight matrix W to min-
imize the cross-entropy loss function L([z]g;, ., [Y]7,..), where
predictions [z]g;,. = [A?X]%’:W correspond to the predicted
class label distributions for each node v in the training set 7/, and
[Y] 7, is the one-hot encoding of class labels provided in 7.

Without loss of generality, we reorder 7, accordingly such that
the one-hot encoding of labels for nodes in the training set [Y] g, . =
B (1,0) is in increasing order of the class label y,. Now we look at
the term [AgX] T, i [2] 75, = [AEX] 7+,: W, which are the feature
vectors aggregated by the two GNN layers for nodes v in the training
set 7. As stated in the theorem, we assume 7y C D«,, where node
u € D« have degree d; proportion h of their neighbors belong to
the same class, while proportion % of them belong to any other
class uniformly, and for each node v € V the node features are given
as xy = p-onehot(yy) + T_TIIJ -1for each node v € V. Then, after the
d+1 ((hd+ Dp, Iyl 1) and after
—(d+1) YYD B (S1,T1), where
Si = (HY] = 1)d+|Y| = 1)2p,and Ty = LAYIZVHY -0

[Y]-1
For Y], . and [A2X] ,:» We can find the optimal weight matrix

first layer, we have [AsX] 7,
the second layer [A2X] T =

W.. such that [AgX]:T%;W* = [Y]g;,,.,» making the cross-entropy
loss L([z]g, . [Y]7,,:) = 0. To find W., we can proceed as fol-
lows. First, sample one node from each class to form a smaller set
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Ts C T. Therefore, we have [Y] ;. = I y|x|y| and [AZX]T; =

C* (81, Ty). Note that [AZX X] 75, is a circulant matrix, and therefore
its inverse exists. Using the Sherman-Morrison formula, we have

=9 -1 (d+1)%(|Y] -1)?
(AX15.) = a1+ 197 7191
Now, let W, = ([AZX]qg) , then [z] . = [A2 ]73 W, =
[Ylg.: = Ly|x|y|- It is also easy to verify that [z] ¢, . = [Y]g, ..

We know W, = ([A2X] 73) " is the optimal welght matrix that
we can learn under 7, since W satisfies L([z] g, ., [Y]7,.) = 0.
Attack loss under evasion attacks. Now consider an arbitrary
target node v € Dy with class label y, € Y, and a unit structural
perturbation leveraging gambit node u € V with degree d, that
affects the predictions z, of node v made by GNN fs(z). Without
loss of generality, we assume node v has y, = 1. As fs(z) contains
2 GNN layers with each layer aggregating feature vectors within
neighborhood N (v) of each node v, the perturbation must take place
in the direct (1-hop) neighborhood N(v) or 2-hop neighborhood
N> (v) to affect the predictions z,. For the unit perturbation, the
attacker can add or remove a homophilous edge or path between
nodes u and v, which we denote as §; (5; = 1 for addition and
81 = —1 for removal); alternatively, the attacker can add or remove
a heterophilous edge or path between nodes u and v, which we
denote as §2 = +1 analogously. We denote the perturbed graph
adjacency matrix as A’, and z}, = [A/2X],. W

@ Unit perturbation in direct neighborhood N (v). We first con-
sider a unit perturbation in the direct (1-hop) neighborhood N(v)
of node v. For simplicity of derivation, we assume that the perturba-
tion does not change the row-stochastic normalization of Ag, and
only affects the aggregated feature vectors of the target node v.

C'(|Y|-1,-1). (2)

In the case of §; = +1 and §; = 0, we have [A[X],. — [AsX]y,: =
[ 1-p 1-p
e (34 ”’) (13#)). and s .
APX]y. — [A2X]y, = ! Sy, —2—1,
Ao~ (X = s [

where S; = dg(p(d(h| Y| - 1) + Y|+ Y| -2)+d+2)+ (d+
(Y| -Dp+d+2and Tr = —da(p(d(h|Y]| - 1) + h|Y | + | Y| -
2)+(-d-2)(JY]|-1)) - (d+2)(|Y]| - 1)(p — 1). By Multiplying
[AZ2X],.. by W., we can get the predictions z/, after perturbations;
we omit the analytical expression of z], here due to its complexity.
On the perturbed graph, the CM-type attack loss is calculated
LCM(Zv) = _(Zu yo — MaXyzy, Z;!y). Since -ECM(ZZ,) - _1on

clean data the change in attack loss before and after attack is

—61(d+1) (Y] -1)Ss

(da+1)*(d(h|Y|-1) +|Y| - 1)2(’)
3

AL CM

CM
atk 'Latk (Zv) atk (ZU)

where S3 = (dg(d(h|Y| - 1)+ hlY |+ |Y]|-2) + (d+2)(|Y]|-1)).
Solving the system of inequalities for §; under constraints A LEM

0,h € [0,1],|Y]| = 2and d,dg, |Y| € Z*, we get the range of §; as
81 <0, when0 <d < |Y|-2
61 <0, whend > |Y|—-2and d,; < d;

, (4
61 <0, @)

61 >0,

whend > |Y|-2andd; >dyand1 > h> hy
whend > |Y|—-2andd; >diand 0 < h < by
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_ (@+2)(1Y|-1) _ da(d-|Y]+2)-(d+2) (| Y]~ 1)
= —ynr d b= @DV,
d—|Y|+1

Note that the above solution is not applicable when h = IV
in which case d(h|Y|—1) + |Y| — 1 = 0 and the solution of optimal
weight matrix W, = ([AEX]%’:)_

where d;

1is undefined.

In the case of §; = 0 and &, = +1, following a similar derivation
to that in the previous case, we can compute the change in the
CM-type attack loss before and after attack as

S2(d+ 1) (1Y] - 1)S3
(da+ D) 2(d(hY| - 1) +|Y|-D*
Solving the same system of inequalities as in the previous case for
&2, we have 8, = —81, where 1 is bounded by Eq. (4). Note that the

d-|Y|+1
1 _ _(Y]=1)(dg+d+2)

dlY|
v = D < 0when Y| > 2.

@ Unit perturbation in 2-hop neighborhood Ny (v). We now con-
sider a unit perturbation in the 2-hop neighborhood N(v) of node
0. In this case we will have [A;X],,: = [AsX]op,

In the case of 61 = +1 and 6, = 0, we have [AQZX] 0, —

S Ty
(da+11)2|M| c (55, \J/\S—l)’ where
S5 = (da(p(hlY |-+ 1)+ (Y] -1Dp+1)

and Ts = (da(=hlY|p+|Y | +p = 1)+ Y|(=p) + Y| +p—1). By
multiplying [A%2X],, with W, we can get the predictions z, after
perturbations. Following a similar derivation as before, we can get
the change in the CM-type attack loss before and after attack as

@+ DY - 1) ([da(hY| - D + Y| - 1) &
(da+1)2(d(RY|-1) +]Y| - 1)? '

Solving for §; as in previous cases, we get the valid range of §; as

A'Catk

®)

above solution is again not applicable when h = ,and we

always have hy —

[AEX] u,: =

ALEM

(6)

atk —

81 <0, whend, < |Y|-1

81 <0, whend, > |Y]|-1and dalyllylﬂ <h<1 @
81 >0, whend, > |Y|-1and0 < h < a‘yLlZIH
Note that the above solution is not applicable when h = _d’d||§ ||+1’

in which case d(h|Y| - 1) + |Y| — 1 = 0 and the solution of optimal

weight matrix W, = ([A2X] 75,:)_1 is undefined.

For the case §; = 0 and J2 = +1, following a similar derivation
to that in the previous case, we can compute the change in the
CM-type attack loss before and after attack as

ALCM _d+1D)*(Y1-1) (da(hY| - D) + Y| - 1) &

atk (da+1)2(d(hY| - 1) +|Y] - 1)?
Solving the same system of inequalities as in the previous cases for
62, we have 8 = =81, where 1 is bounded by Eq. (7). Note that the

®

above solution is again not applicable when h = d_d||{/‘|+1’ and we
da=YI¥1 1 _ 1-1Y|
always have . " TV = i < 0 when | Y| > 2.

Summary and validation of theorem statements. Based on our
discussions, we validate our statements in the theorem next.

@ From Eq. (4), (7), we observe that for both direct attacks in 1-
hop neighborhood N (v) and indirect attacks in 2-hop neighborhood
Nz (v), when h > %I the attack loss increases only if §; < 0 (i.e.,
removal of a homophilous edge or path to node v), or if 52 > 0 (i.e.,
addition of a heterophilous edge or path to node v).
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CM,direct

atk

CM.,indirect
A 'Catk .
Vs CM,direct

@ From Eq. (3), (5), (6) and (8), we can show that > 1

when h > \_~1V|’ which means we will always have A >

LCM ,indirect

ke > 0 for a unit perturbation increasing loss Lgﬁl m]

ProoF FoR THM. 2. The theorem statements can be directly
validated from Eq. (4) and its discussions in Proof for Thm. 1, which
solves 81 and &, for an effective unit perturbation in direct neigh-

borhood N(v) of node v. We similarly note that the conclusions

d—|Y|+1
d|Y|

optimal weight matrix W, is undefined.

are not applicable when h =

, in which case the solution of
m]

ProoF ForR THM. 3. Here, we mainly focus on analyzing AL,
for the layer defined as f(A, X;a) = ((1 - @)A + aI) XW, as the
layer defined as f;(A, X) = A;XW is a special case when a =
We follow a similar process as in Proof of Thm. 1.

Layer f(A,X;a) = ((1 - @)A + a) XW. We first derive the opti-
mal weight matrix Wy in a stylized learning setup as in Proof A.
Following a similar process for this GNN layer we have

-p (a-1)(h-1)p

|«y | Y] -1

_ [Y]-1 *
and W.. = Sgyr-mymowy - C - 1YL,

Now as in Proof for Thm. 1, we consider an arbitrary target node
v € Dy, and a unit structural perturbation leveraging gambit node
u € V with degree d, that affects the predictions z, of node v made
by layer f(A,X;a). Note that we only discuss the case of direct
structural perturbation to the 1-hop neighborhood N (v) of target
node v, as indirect perturbations do not affect the predictions z,
for node v produced by a single GNN layer. Following a similar
derivation as in Proof for Thm. 1, in the case of §; = £1 and 2 = 0,
or 61 = 0 and §; = +1, the change in the CM-type attack loss A.Lgl\f
for GNN layer f(A,X; ) considering both d; and J is

(Q-a)|Y|+a-1)é (e - 1)(|1Y]-1)5;
dalath—1) W)Y +dy  dala(h—1) - h)Y | +ds
)

1+d”

[((1—a)A+aI)X]7.S’: +C* |p(a+h - ah),

CMSf _
A‘£atk

Layer f;(A,X)
previously discussed f(A, X; a) formulation when a =

= A;XW. This formulation is a special case of the
1 We
1+d, "

denote the change in the attack loss for this layer as ALENS,

Comparison of increase in attack loss A.[:g]\f. Solving the fol-
lowing system of inequalities for variable o under constraints

LM S ALME S 0 0 h e [0,1],|Y] = 2.da, |Y| € Z* and
81,62 € {—1,0,1}, we get the valid range of « as

Ay and 8 < &

danddy > AL and 6 > 6,

<a<1,whenﬁshsland51<52

_1
dg+1

_1
0<a< da+1’

<a<1 when0 < h < IJl/ and 0 < d, <
when 0 < h <
Zovi
(10)

From Eq. (10), we observe that when h > ﬁ a unit perturbation
increasing L, as discussed in Thm. 1 (i.e. 1 = —1 and 82 = 0, or
d1 = 0 and &, = 1), which satisfys the condition §; < 7, will thus
lead to a strictly smaller increase in ALCM’f for layer fAX;a)

[m]

than the increase AL M for layer f;

1
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