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Abstract—In node classification tasks, graph convolutional neu-
ral networks (GCNs) have demonstrated competitive performance
over traditional methods on diverse graph data. However, it is
known that the performance of GCNs degrades with increasing
number of layers (oversmoothing problem) and recent studies
have also shown that GCNs may perform worse in heterophilous
graphs, where neighboring nodes tend to belong to different
classes (heterophily problem). These two problems are usually
viewed as unrelated, and thus are studied independently, often at
the graph filter level from a spectral perspective.

We are the first to take a unified perspective to jointly explain
the oversmoothing and heterophily problems at the node level.
Specifically, we profile the nodes via two quantitative metrics: the
relative degree of a node (compared to its neighbors) and the
node-level heterophily. Our theory shows that the interplay of
these two profiling metrics defines three cases of node behaviors,
which explain the oversmoothing and heterophily problems jointly
and can predict the performance of GCNs. Based on insights from
our theory, we show theoretically and empirically the effectiveness
of two strategies: structure-based edge correction, which learns
corrected edge weights from structural properties (i.e., degrees),
and feature-based edge correction, which learns signed edge
weights from node features. Compared to other approaches,
which tend to handle well either heterophily or oversmoothing,
we show that our model, GGCN, which incorporates the two
strategies performs well in both problems. We provide a longer
version of this paper in [1] and codes on https://github.com/Yujun-
Yan/Heterophily_and_oversmoothing.

I. INTRODUCTION

GCNs are effective and widely used in various applica-
tions [2, 3, 4], but their performance may degrade in some cases.
Li et al. [5] pointed out the “oversmoothing problem”: GCNs
perform worse with increasing number of layers. It is claimed
that oversmoothing could be caused by GCNs exponentially
losing expressive power in the node classification task [6] and
that the node representations converge to a stationary state
decided by the node degrees and input features [7, 8]. These
works analyze the asymptotic node representations in the limit
of infinite layers, but they do not characterize how the node
representations change over the layers (we call different types
of changes node behaviors) and how different node behaviors
contribute to oversmoothing. Going beyond empirical measures
of oversmoothing [9], we propose theoretically-grounded node-
level metrics that characterize different node behaviors across
GCN layers, and show theoretically and empirically how they
can explain oversmoothing and identify the nodes triggering it.

GCNs may also perform poorly on heterophilous graphs [10],
which—unlike homophilous graphs—comprise many neighbor-
ing nodes that belong to different classes [11]. This is termed
as the “heterophily problem”. For instance, in protein networks,

amino acids of different types tend to form links [12], and in

transaction networks, fraudsters are more likely to connect to

accomplices than to other fraudsters [13]. Most GCNs [2, 3]

fail to effectively capture heterophily, so various designs have

been proposed to handle it [10, 12, 14, 15]. These works take
the spectral perspective and design various high-frequency
graph filters to address heterophily. However, they neglect the
fact that different node behaviors impact GCNs’ performance
under heterophily differently and need to be handled separately.

In this work, we show that GCNs can perform differently

on graphs that have similar graph-level heterophily but are

dominated by different node behaviors.

This work. These two problems, which cause performance
degradation, have mostly been studied independently. Recent
work on oversmoothing [7] was shown only empirically
to address heterophily, and vice versa [14]. Motivated by
this empirical observation, we are the first to find a joint
explanation for the two problems. Specifically, we aim to
identify meaningful node-level metrics that are theoretically-
grounded and their interplay can be used to characterize
different node behaviors (profiles), which in turn can explain
both problems. We found that the relative degree of a node
(compared to its neighbors) and its node-level heterophily
define three types of node behaviors, two of which are related
to performance degeneration. Based on our theoretical insights,
we show theoretically and empirically the effectiveness of
two strategies: structure-based edge correction, which learns
corrected edge weights from structural properties like node
degree, and feature-based edge correction, which learns signed
edge weights from node features. Signed edge weights can
model both positive and negative influence from the neighbors.

In sum, we make the following contributions:

« Theoretically-grounded Node Metrics: We introduce two
theoretically-grounded metrics, relative degree and node-level
heterophily, to profile the nodes across layers in GCNs. The
profiling provides a joint explanation for what triggers the
heterophily and oversmoothing problems.

o Insights: Our theory states that under certain conditions,
low-degree nodes tend to trigger the oversmoothing problem
in strongly homophilous graphs, while high-degree nodes
tend to cause the oversmoothing and heterophily problems
in weakly homophilous (i.e., heterophilous) graphs. We also
show that leveraging signed edge weights can help alleviate
both problems.

« Improved Model & Empirical Analysis: Based on our
insights, we show theoretically and empirically the effec-
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Fig. 1: Node representation dynamics during neighborhood aggregation
(in 1D for illustration purposes; ‘MR’: misclassification rate). The
expectation of node representations from class 1 & 2 are denoted by p
and —pu, respectively. The bars show the expected node representations
of node v; before and after the aggregation.

tiveness of two strategies, structure-based edge correction
and feature-based edge correction. Our empirical results
show that our model, GGCN, which leverages the two
strategies is robust to oversmoothing, achieves state-of-the-art
performance on datasets with high levels of heterophily, and
achieves competitive performance on homophilous datasets.

II. PRELIMINARIES

We first provide the major notations and definitions that we
use in the paper, and a brief background on GCNs.

Notation. We denote an unweighted and self-loop-free graph
as G (V, &) and its adjacency matrix as A. We represent the
degree of node v; € V by d;, and the degree matrix—which
is a diagonal matrix whose elements are node degrees—by
D. Let V; be the set of nodes directly connected to v;, i.e.,
its neighbors. I is the identity matrix. We denote the node
representations at I-th layer as F(), and the i-th row of F is
fi(l), which is the representation of node v;. The input node
features are given by F(°). The weight matrix and bias vector
at the [-th layer are denoted as W) and b, respectively.

Supervised Node Classification Task. We focus on node
classification: Given a random sample of node representations
(£ £} € R™ and their labels {y;...y,} € R for
training, we aim to learn a function .% : R +— R"™, such that
the loss E(.Z(y:,y:)) is minimized, where y; = f(fi(o)) is
the predicted label of v;. The misclassification rate is defined
as the probability P(y; # ¥;) to misclassify an arbitrary node

in the representation space.

GCNs. In node classification tasks, an L-layer GCN con-
tains two components [16]: (1) neighborhood propagation
and aggregation: f(l) = AGGREGZ—\TE(f;l), v; € Ny, and (2)

combination: £ = compINE(f", £"), where AGGREGATE

and COMBINE are learnable functions. The loss is given
by ,E”CE:CrossEntropy(Softmax(fi(L)W(L> +b®)), ;). The
vanilla GCN suggests a renormalization trick on the adjacency
A to prevent gradient explosion [2]. The (I+1)-th output is given
by: F+D) = o(AFOW®), where A = D Y/2(I+A)D" Y2, D
is the degree matrix of I + A, and ¢ is ReLU. When the non-
linearities in the vanilla GCN are removed, it reduces to a linear
model called SGC [17], which has competitive performance and
is widely used in theoretical analyses [6, 7]. For SGC, the [-th
layer representations are given by: F() = A'F(®) and the last
layer is a logistic-regression layer: j; = Softmax(FHWE) 4
b)), We note that only one weight matrix WX is learned,
which is equivalent to the products of all weight matrices in a
linear GCN. More related works can be found in § VI

III. THEORETICAL ANALYSIS

We now formally introduce two metrics: node-level ho-
mophily h; and relative degree 7;. We show theoretically how
these metrics (1) characterize different node behaviors across
GCN layers, and (2) can be used for node profiling to explain
the oversmoothing and heterophily problems.

We first introduce the theoretical setup. Throughout the
section, we analyze binary node classification using the
typically-studied SGC model (§ II). The nodes in class 1 and
class 2 are denoted as sets V; and Vs, respectively. Later, in § V,
we show empirically that the insights obtained in this section
are also effective for other non-linear models in multi-class
classification. We give all the proofs in the long version [1].

A. Assumptions

Below, we use “i.d.” to represent random variables / vectors
that follow the same marginal distribution and their joint
probability density function (PDF) is a permutation-invariant
function p(x1,...,%,) = p(P(x1,...,X,)), where P(-) means
permutation. We use E 4 (-) to denote the expectation taken
over the randomness of A given B.

We make the following assumptions:
(A1) Random Graph: Node degrees {d;} are i.d. random
variables, where {(-);} represents a set with i =1,...,|V|.
(A2) Inputs: (A2.1) Node labels {y;} are i.d. Bernoulli random
variables given by the ratio p: p = igzl 2),V2 The event
{y; = y;|v; € N;} is independent of y;, Vi, ;.
(A2.2) Initial input node features {fi( )} are random vectors
given by (PDF) f(x), which is expressed as:
fi(x),when y; = 1.

1) = f2(x), when y; = 2.
hen y; =1 0
EEOly) = Y so E(£(”)=0
(£, [y:) —pp, when y; =2 so E(f;™)

(A3) Independence: A is independent of {y;} and {fi(o)}. Also,
given y;, variables fi(o) and y; are conditional independent for
all 7, 7.

B. Node-level Metrics: Definitions
In our theoretical analysis, we consider two node-level
properties: homophily or heterophily, and relative degree.
Given a set of node labels/classes, node-level homophily
captures the tendency of a node to have the same class as its
neighbors. Formally, the homophily of node v; is defined as:
hi =P(y; = y;lv; € N;).
High homophily corresponds to low heterophily, and vice

versa, so we use these terms interchangeably.
The relative degree of node v; evaluates its node degree
compared to its neighbors’ degrees and it is defined as:

Z rij|ds), where r;; = ;i, + i
JGN J +

T = EA\d

When all the nodes have the same degree, 7; = 1.

C. Node Profiling: Theory

In this section, we theoretically show how the two metrics
can characterize different node behaviors across layers.



1) Movements of Node Representations: We monitor the
node behaviors by tracking the changes of node representations
across the layers. Each node representation is mapped to a
point in the feature space whose coordinates are decided
by the representation vector. In this way, the changes of a
node’s representations across the layers can be viewed as the
movements of the mapped point. For example, fi(lH) — fi(l) is
referred to as the movement of node v;’s representation at the
l-th layer. Next, we show that the interplay of the two metrics
relates to different types of movements.

2) Movements at the initial layer: We study how the node
representations change in expectation. We assume v; € V; and
the other case can be derived similarly.

Theorem IIL.1. Given v; € Vi and d;, the conditional

) . .
expectation of representation £, is given by:

EAv{yi}ﬁ{fi(o)Hdiywevl (fi(1)|vi S V17di) (1)

di +1

5) Explanation for Heterophily and Oversmoothing:
Oversmoothing problem: Nodes with low homophily (case 1)
and nodes with high homophily but low degrees (case 2) cannot
benefit from message aggregation. Their representations tend
to move towards the other class. Under certain conditions, their
misclassification rate is increased via message aggregation.
GCNs’ performance on node classification degrades each
time the message aggregation is applied, which explains
oversmoothing in homophilous and heterophilous graphs.
Heterophily problem: In heterophilous graphs, nodes from
case 1 (and sometimes case 2) dominate. The performance
degradation occurs at the first layer, which explains why GCNs
may perform worse than MLP in heterophilous graphs.
Relation between the problems: (1) In heterophilous graphs,
both problems are caused by nodes from case 1 and case
2. Message aggregation makes the representations of these
nodes (esp. case 1) less distinguishable. (2) In homophilous
graphs, we can decompose the oversmoothing process into

- <((1 + p)hi — p)diTi + 1) E(fi(o)\vi eV = "/1;1E(fi(0>|vi € Vy),two stages, where the node behaviors in the second stage

(=00, 3l ifhi < %5 (case 1)

where v} € < (0,1], ifhi>ﬁ&r7§
(1, 00), otherwise (case 3)

is a multiplicative factor. In case 1, vy} decreases as d;
increases; in case 3, 'yl-l increases as d; increases.

From Thm. III.1, we identify three types of movements
of node representations, which are characterized by relative
degree 7; and homophily level h;. For illustration purposes, in
Fig. 1, we show the three cases when we apply our theorem
to 1-dimensional node representations. The bars reflect the
value change of v;’s node representation. Intuitively, under
heterophily (case 1), node representations tend to move closer
to the representations of the other class. The higher the
node degree, the more the representation moves. Under high
homophily but low degrees (case 2), node representations still
tend to move towards the other class, but not as much as in
case 1. Only when both the homophily and the degree is high,
the node representations may move away from the other class.
Thus, case 3 is the only favorable case.

3) Movements at deeper layers: The scenarios at deeper
layers are more complex. However, by extending the two node-
level metrics (i.e., homophily and relative degree compared to
neighbors) to effective homophily and effective relative degree,
respectively, we can obtain a similar equation, and the extended
metrics can characterize the nodes into 3 cases similar to
Thm. III.1. More details of the extension and proofs can be
found in the long version [1].

4) Movements & Misclassification Rate: In the long ver-
sion [1], we also prove that under certain condition, the move-
ment of representations towards the other class by a non-zero
step increases the misclassification rate, causing performance
degradation. We note that the condition is important to explain
why recent works [18, 19] find that GCNs can sometimes
perform well in heterophilous graphs (e.g., bipartite graphs)
because the representations of opposite classes swap places.

resemble those in the heterophily problem. Initial Stage. At
shallow layers, nodes of case 3 dominate initially, GCNs benefit

@rm— (case 2) from graph convolution. Developing Stage. Nodes of case

2 and case 1 cannot benefit from message aggregation and
their misclassification rate increases with more layers. In deep
layers, they are misclassified and are wrongly viewed by their
neighbors as coming from a different class. Thus, nodes of case
2 and case 1 cause low effective homophily of their neighbors.
At last, most nodes have low effective homophily in deep
layers and are transformed to case 1, which resembles the
phenomenon in heterophilous graphs ("pseudo-heterophily").

D. Node Profiling With Signed Edges

In this section, we discuss how the interplay of the two
metrics changes when allowing signed edges. We provide theory
to show when signed edges can help enhance the performance
in heterophilous graphs and alleviate oversmoothing. Due to
limited space, we only show the effect of signed edges at the
initial layer; similar results can be derived in deeper layers.

Setup. Each edge is assigned a positive or a negative sign.
Messages passing through a signed edge are multiplied by its
sign. Ideally, we would like to assign the positive signs to
homophilous edges (i.e, edges connecting nodes from the same
class) and negative signs to heterophilous edges. In reality, we
cannot access the nodes’ ground-truth labels and cannot know
whether the edges are homophilous or heterophilous. Thus we
learn the signs, which introduces errors. For node v;, we define
mﬁ as the ratio of neighbors that send incorrect messages at
the [-th layer because we wrongly assign a negative (positive)
sign to a homophilous (heterophilous) edge that connects them.
We define the [-th layer error rate as e\ = E(m!), where the
expectation is over the randomness of the neighbors that send
incorrect messages. We assume that m! is independent of {d;},

{y:} and {£°).

Theorem IIL.2. [Signed Edges] By allowing signed edges, the
movements of representations will be less affected by the initial



homophily level h;, and will be dependent on the error rate
€Y. The multiplicative factor ~y} at the first layer is:

DI v
]EA,{yi},{fi(D)}\diMEVr(fi |di,vi € V1) 2)

_ ((1 —2¢%(p+ (1 — p)ha)diTi + 1>E(f}0)w -

di +1
where
(=00, 3], if el 205
v el (0,1], ifel <05&7 < Gomra g @
(1,00),  otherwise

From Eq. 3, we see that when using signed edges, to benefit
from case 3 (7} > 1), the minimum relative degree satisfies:
o> (1_269)(;&_(1_/))”). Given h; < 1, if the error rate is
low (e? < 0.5), we get:

and

1 < 1
1 (1-2e0)(p+(1—p)hi) = A+p)hi—p’
T phip 8 the minimum rel.at1ve degree required when not
using signed edges. This implies that more nodes can benefit
from using signed edges. We note that if low error rate cannot

be guaranteed, signed edges may hurt the performance.

IV. MODEL DESIGN

Based on our theoretical analysis, we propose two new,

simple mechanisms to address both the heterophily and
oversmoothing problems: structure-based edge correction and

feature-based edge correction. We integrate these mechanisms,

along with a decaying combination of the current and previous
node representations [7],
GGCN, whose effectiveness we show empirically in § V.

A. Structure-based Edge Correction

Our analysis in § III-C and § III-D highlights that, when the
homophily level is high (or error rate is low), oversmoothing
is initially triggered by low-degree nodes. Thus, we aim to

compensate for low degrees by learning new edge weights.

Unlike attention which encodes similarity of features, these

weights only contain structural information (i.e., node degrees).

Based on Eq. (3), we require that the node degrees satisfy
i > 15 (p1+(1 ~yiy to prevent oversmoothing. Since the
node degrees cannot be modified, our strategy is to rescale 0r
correct the edge weights by multiplying them with scalars T,U.

- FOi, ] FO,
ARG =20+ D =
di +1 vy EN; d; +1 d]'+1
N OT
Tz,j F [.77 ]
= Z B 4)
vy EN; \/di+1\/dj+1

This multiplication is equivalent to changing the ratio r;; in
(i)2(di+1)
d;+1
effective 7; at layer [. Training independent T ;.j is not practical
because it would require O(|V|?) additional parameters per
layer, which can lead to overfitting. Moreover, low-rank

Thm. IIL.1 to . That is, a larger ’T»lj increases the

parameterizations suffer from unstable training dynamics.

Intuitively, when 7"13 is small, we would like to compensate for

it via a larger T . Thus, we set 7; ; to be a function of 7;;:
L softplus (eAO (— - 1) AL (5)

into a generalized GCN model,

where A} and \! are learnable parameters We subtract 1 so
that when r;; = 1 (i.e., d; = d;), then 7. = softplus(A\}) is a
constant bias.

Let T® be a matrix with elements T . Our model GGCN

learns a corrected adjacency matrix at [-th layer: Al =

AOTW® | where © is element-wise multiplication.

B. Feature-based Edge Correction

Theorem III.2 points out the importance of signed edges in
tackling the heterophily and oversmoothing problems. Inspired
by this, we aim to learn the signed edge weights based on node
features. Unlike attention weights that are usually nonnegative,
we allow the edge weights to be negative.

For expressiveness, as in GCN [2], we first perform a
learnable linear transformation of each node’s representation at
the I-th layer: FO = FOWO 4 b0 Then, we define a sign
function to be multiplied with the messages exchanged between
neighbors. To allow for backpropagation of the gradient infor-
mation, we approximate the sign function with cosine similarity.
Denote S' as the matrix which stores the sign information about
the edges, defined as: SV[i, j] =Cosine(f\”, £") if (i # j)
& (vj € N;); 0 otherwise.

In order to separate the contribution of similar neighbors
(likely in the same class) from that of dissimilar neighbors
(unlikely to be in the same class), we sg)ht S® into a positive
matrix SpoS and a negative matrix Sn% Thus, our proposed
GGCN model learns a weighted combination of the self-
representations, the positive, and the negative messages:

F+D — g(al(gl FO 4 4(Sio @AZ)F(1>+ﬁ( ) © Al F(l)))

where 56, Bi and ﬂé are scalars obtained by applying softmax
to the learned scalars B(l), B4 and f3L; the non-negative scaling
factor al = softplus(a!) is derived from the learned scalar o;
and o is the nonlinear function Elu. We note that we learn
different o and [3 parameters per layer for flexibility. We also
require the combined weights, al Ai, to be non-negative so that
they do not negate the intended effect of the signed information.

C. Decaying Aggregation

Besides our two proposed mechanisms that are theoretically
grounded in our analysis (§ III), we also incorporate into GGCN
an existing design—decaying aggregation of messages—that
empirically increases performance. However, we note that, even
without this design, our GCN architecture still performs well

under heterophily and is robust to oversmoothing [1].

Decaying aggregation was introduced in [7] as a way to slow
down the convergence rate of node representations. Inspired by
this work, we modify the decaying function, 7, and integrate
it to our GGCN model:

Fit) = FO 44 (" (a'(BFD + Bl © Ao TO)FO

+B3(S8 0 A0 TF <l>))) (6)

In practice, we found that the following decaying function
works well: /) = In(k 4 1),iff [ > lo; % = 1, otherwise. The
hyperparameters k, [y,  are tuned on the validation set.



V. EXPERIMENTS

We focus on three questions: (Q1) How does GGCN perform
on homophilous and heterophilous graphs? (Q2) How robust
is it against oversmoothing under homophily and heterophily?
(Q3) How can we verify the correctness of our theorems about
oversmoothing on real datasets? We also give an ablation study
for our proposed edge correction mechanisms in [1].
A. Experimental Setup
Datasets. We evaluate the performance of our GGCN model
and existing GNNs in node classification on various real-world
datasets [10]. We provide their summary statistics in Table I,
where we compute the homophily level h of a graph as the
average of h; of all nodes v; € V. For all benchmarks, we
use the feature vectors, class labels, and 10 random splits
(48%/32%/20% of nodes for train/validation/test!) from [10].

Baselines. For baselines we use (1) classic GNN models for
node classification: vanilla GCN [2], GAT [3] and Graph-
Sage [20]; (2) recent models tackling heterophily: Geom-
GCN [10], H2GCN [12], FAGCN [15] and GPRGNN [14];
(3) models tackling oversmoothing: PairNorm [21] and GC-
NII [7] (state-of-the-art); and (4) 2-layer MLP (with dropout
and Elu non-linearity). We use the original codes provided by
the authors for GCN, PairNorm, Geom-GCN, GCNII, H2GCN,
and GPRGNN; we use the codes from a well-accepted Github
repository? for GAT. We report the results of GraphSage and
FAGCN from [12, 22], which use the same data and splits.
We choose the best variant per dataset and denote them as
[model]* for the baselines with multiple variants (Geom-GCN,
GCNII, H2GCN). We give the hyperparameters in [1].
Machine. We ran our experiments on Nvidia V100 GPU.

B. (Q1) Performance Under Homophily & Heterophily

Table I provides the test accuracy of different GNNs on the
supervised node classification task over datasets with varying
graph homophily levels (arranged from low homophily to high
homophily). We report the best performance of each model
across different layers.

GGCN performs the best in terms of average rank (1.78)
across all datasets, which suggests its strong adaptability to
graphs of various homophily levels. In particular, it achieves
the highest accuracy in 5 out of 6 heterophilous graphs (low h)
and improves the accuracy by up to 6%. We note that MLP is
a good baseline for heterophilous data and usually outperforms
models not tailored to heterophily. Our GGCN model is the only
model that always performs better than MLP. For homophilous
data (high h), GGCN maintains its competitive performance,
which is within 1% of the best model.

C. (Q2) Oversmoothing

To test how robust the models are to oversmoothing, we
measure the supervised node classification accuracy for 2 to
64 layers. Table II presents the results for both homophilous
and heterophilous datasets. Per model, we also report the layer
at which the best performance is achieved (column ‘Best’).

1[10] claims that the ratios are 60%/20%/20%, which is different from the
actual data splits shared on GitHub.
Zhttps://github.com/Dieg0999/pyGAT
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Fig. 2: Accuracy of nodes grouped by degree d; on Citeseer. Initial
stage: when mean effective homophily k! (ratio of a node’s neighbors
in the same class—§ III-C3) is high, the accuracy increases as the
degree increases. Developing stage: when Al is low, the accuracy of
high-degree nodes drops more sharply.

As shown in Table II, GGCN and GCNII* achieve increase
in accuracy when stacking more layers, while GPRGNN and
PairNorm exhibit robustness against oversmoothing. Models
that are not designed for oversmoothing have various issues.
The performance of GCN and Geom-GCN* drops rapidly
with more layers; H2GCN* concatenates all the intermediate
outputs and quickly reaches memory capacity; GAT needs
careful initialization when stacking many layers as it may
suffer from numerical instability in sparse tensor operations.

D. (Q3) Empirical Verification of the Two Stages

Using the vanilla GCN model [2], we validate our theorems
by measuring the test accuracy and effective homophily for
different node degrees (binned logarithmically) on real datasets.
We estimate the effective homophily as the portion of the
same-class neighbors that are correctly classified before the
last propagation. Figure 2 shows the results for Citeseer. In the
initial stage (high hl), the accuracy increases with the degree,
but in the developing stage, the trend changes, with high-degree
nodes being impacted the most, as predicted by our theorems.

Initial Stage ~ Transition®,, Pe‘éﬁl:g%i"g

VI. RELATED WORK
Early works [2, 3] propose GCNs based on spectral convolu-
tion, followed by variants that target applications in computer
vision [23], biology [4], algorithmic tasks [24], and more.

Oversmoothing. There are various empirical solutions for the
oversmoothing problem [5] of GCNs: residual connections and
dilated convolutions [25]; new normalization strategies [21]
and aggregations [7]; and edge dropout [26].

Heterophily & GCNs. Heterophily has recently been recog-
nized as an important issue for GCNs [10]. Zhu et al. [12]
identified a set of effective designs that allow GCNs to gener-
alize to heterophilous data and handle adversarial attacks [27],
and [28] introduced a new GCN model that leverages ideas from
belief propagation. Though recent work [7] focused on tackling
oversmoothing, it also empirically showed improvements on
heterophilous data; also, a PageRank-based model has been
shown to perform well under heterophily and alleviate the
oversmoothing problem [14]. These empirical observations
formed the basis of our work. However, they view the two prob-
lems independently and provide analysis from an asymptotic
spectral perspective. On the other hand, our work studies the
representation dynamics and unveils the connections between
oversmoothing and heterophily theoretically and empirically.



TABLE I: Real data: mean accuracy + stdev over different data splits. Per GNN model, we report the best performance across different
layers. Best model per benchmark highlighted in gray. The “' results (GraphSAGE and FAGCN) are obtained from [12, 22].

Texas Wisconsin Actor Squirrel  Chameleon Cornell Citeseer Pubmed Cora
Hom. level i 0.11 0.21 0.22 0.22 0.23 0.3 0.74 0.8 0.81 =
#Nodes 183 251 7,600 5,201 2,277 183 3,327 19,717 2,708 2
#Edges 295 466 26,752 198,493 31,421 280 4,676 44,327 5,278 o0
#Classes 5 5 5 5 5 5 7 3 6 Z
GGCN (ours) 84.86+4.55 86.86+3.29 37.54+1.56 55.17+1.58 71.144+1.84 85.68+6.63 77.14+1.45 89.15+0.37 87.95+1.05 1.78
GPRGNN 78.3844.36 82.94+4.21 34.63+1.22 31.61+1.24 46.58+1.71 80.27+s8.11 77.13+1.67 87.54+0.38 87.95+1.18 5.67
FAGCNT 77.56+6.11 79.41+6.55 34.85+1.61 30.59+1.22 46.44+2.81 78.6445.47 74.01+1.85 76.57+1.88 86.34+0.67 8.11
H2GCN* 84.86+7.23 87.654+4.98 35.70+1.00 36.48+1.86 60.11+2.15 82.704+5.28 77.11+1.57 89.4940.38 87.87+1.20 3.89
GCNII* 77.57+3.83 80.39+3.4 37.44+1.30 38.47+1.58 63.86+3.04 77.8643.79 77.334+1.48 90.15+0.43 88.37+1.25 3.67
Geom-GCN*  66.76+2.72 64.514+3.66 31.59+1.15 38.154+0.92 60.00+2.81 60.544+3.67 78.02+1.15 89.9540.47 85.35+1.57 6.67
PairNorm 60.27+4.34 48.43+6.14 27.40+1.24 50.44+2.04 62.744+2.82 58.92+3.15 73.59+1.47 87.53+0.44 85.79+1.01 8.44
GraphSAGE!  82.43+6.14 81.1845.56 34.2340.99 41.61+0.74 58.73+£1.68 75.95+£5.01 76.04+1.30 88.45+0.50 86.90+1.04 6.00
GCN 55.14+5.16 51.76+3.06 27.32+1.10 53.43+2.01 64.824+2.24 60.54+5.3 76.50+£1.36 88.424+0.5 86.98+1.27 7.00
GAT 52.16+6.63 49.4144.09 27.44+0.89 40.724+1.55 60.264+2.5 61.8945.05 76.55+1.23 86.334+0.48 87.30+1.10 7.67
MLP 80.81+4.75 85.29+3.31 36.53+0.70 28.77+1.56 46.214+2.99 81.89+6.40 74.02+1.90 87.16+0.37 75.69+2.00 7.11

TABLE II: Model performance

for different layers: mean accuracy + stdev over different data splits.

Per dataset and GNN model, we also

report the layer at which the best performance (given in Table I) is achieved. ‘OOM’: out of memory; ‘INS’: numerical instability.

Layers 2 4 8 16 32 64 Best 2 4 8 16 32 64 Best
Cora (h=031) layer Cornell (h=0.3) fayer

GGCN (ours) 87.00+£1.15 87.48+1.32 87.63+1.33 87.51+1.19 87.95+1.05 87.28+1.41 32 83.78+£6.73 83.78+6.16 84.86+5.69 83.78+6.73 83.78+6.51 84.32+5.90 6

GPRGNN 87.93+1.11 87.95+1.18 87.87+1.41 87.26+1.51 87.18+1.29 87.32+1.21 4 76.76+8.22 77.57+7.46 80.27+8.11 78.38+6.04 74.59+7.66 70.00+5.73 8

H2GCN* 87.87+1.20 86.10+1.51 86.18+2.10 OOM OOM OOM 2 81.89+5.98 82.70+6.27 80.27+6.63 OOM OOM OOM 1

GCNIT* 85.35+1.56 85.35+1.48 86.38+0.98 87.12+1.11 87.95+1.23 88.37+1.25 64 67.57+11.34 64.5949.63 73.24+5.91 77.84+3.97 75.41+5.47 73.78+4.37 16

PairNorm 85.79+1.01 85.07+0.91 84.65+1.09 82.21+2.84 60.32+s8.28 44.39+5.60 2 50.27+7.17 53.51+8.00 58.38+5.01 58.38+3.01 58.92+3.15 58.92+3.15 32

Geom-GCN* 85.35+1.57 21.01+2.61 13.98+1.48 13.98+1.48 13.98+1.48 13.98+1.48 2 60.54+3.67 23.78+11.64 12.97+2.91 12.97+2.91 12.974+2.91 12.97+2.91 2

GCN 86.98+1.27 83.24+1.56 31.03+3.08 31.05+2.36 30.76+3.43 31.89+2.08 2 60.54+5.30 59.1943.30 58.92+3.15 58.92+3.15 58.9243.15 58.92+3.15 2

GAT 87.30+1.10 86.50+1.20 84.97+1.24 INS INS INS 2 61.89+5.05 58.38+4.05 58.38+3.86 INS INS INS 2
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