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ABSTRACT
Network alignment, or the task of finding corresponding nodes in
different networks, is an important problem formulation in many
application domains. We propose CAPER, a multilevel alignment
framework that Coarsens the input graphs, Aligns the coarsened
graphs, Projects the alignment solution to finer levels and Refines
the alignment solution. We show that CAPER can improve upon
many different existing network alignment algorithms by enforc-
ing alignment consistency across multiple graph resolutions: nodes
matched at finer levels should also be matched at coarser levels.
CAPER also accelerates the use of slower network alignment meth-
ods, at the modest cost of linear-time coarsening and refinement
steps, by allowing them to be run on smaller coarsened versions
of the input graphs. Experiments show that CAPER can improve
upon diverse network alignment methods by an average of 33% in
accuracy and/or an order of magnitude faster in runtime.

ACM Reference Format:
Jing Zhu, Danai Koutra, and Mark Heimann. 2022. CAPER: Coarsen, Align,
Project, Refine A General Multilevel Framework for Network Alignment.
In Proceedings of the 31st ACM International Conference on Information and
Knowledge Management (CIKM ’22), October 17–21, 2022, Atlanta, GA, USA.
ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3511808.3557563

1 INTRODUCTION
Graphs or networks are foundational representations for relational
structure and their analysis is useful in innumerable scientific and
industrial applications. In many diverse tasks, such as recommen-
dation across multiple social networks, protein-protein interac-
tion analysis, and database schema matching [7], it is necessary to
discover meaningful correspondences between nodes in multiple
networks. This general problem is called network alignment.

Network alignment methods in general have two main limita-
tions. First, they may overfit to local structural similarity and fail
to preserve higher-order measures of matching consistency [1, 4].
Second, especially the most accurate methods tend to rely on solv-
ing challenging optimization problems with high computational
complexity, e.g. quadratic or cubic time in the number of nodes in
one of the input graphs [1, 16, 20].

We argue that multilevel network analysis is a powerful tech-
nique for improving network alignment algorithms on both fronts.
Accordingly, we design the first general multilevel framework to
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pair with any network alignment method, a four-step framework
which we call CAPER: (1) Coarsening a graph into multiple levels
of varying coarseness, (2) Aligning at the coarsest level, and (3)
Projecting back to finer levels, and (4) Refining the solution at each
level. We can accelerate the use of slow network alignment algo-
rithms by running them on the smaller coarsened graphs, while
refining the solutions at multiple levels of structural resolution en-
courages greater consistency between the local and global structure
of matched nodes. Our contributions can be summarized as follows:

• General-Purpose Framework: We propose an intuitive mul-
tilevel framework (CAPER) in which any network alignment
method can be used.

• DesignChoices andEmpirical Success:We propose and study
specific design choices and parameter settings that work well
within CAPER. We provide code and additional supplementary
material at https://github.com/GemsLab/CAPER.

• Study ofAccuracy andRuntimeTradeoff: Through complex-
ity analysis and experiments, we show that CAPER is able to
improve accuracy by 33% on average across multiple datasets
and/or is 10x faster runtime than baselines, depending on the
properties of the base methods employed.

2 RELATED WORK
Graph Coarsening and Multilevel Methods. Graph coarsen-
ing [12] is the process of shrinking a large graph into a similar
smaller one, such that some properties or structures are preserved,
e.g. spectral graph properties or cliques. It has been used to acceler-
ate many graph mining tasks, including graph clustering [3], node
embedding [2, 11] and graph neural networks [17].
Network Alignment. We focus on unsupervised approaches re-
quiring no known matchings a priori. These can be categorized into
two groups. (1) Classic graph alignment approaches often formulate
an optimization-based assignment problem. FINAL [18] opti-
mizes a topological consistency objective which may be augmented
with node and edge attribute information. MAGNA [15], applied
to biological networks, uses genetic algorithms to evolve network
populations while maximizing proximity consistency criteria. More
recently, Zhang et al. [20] leveraged kernel methods to solve the
quadratic assignment problem, but requires cubic computational
complexity. (2) Another line of work relies on embedding-based
methods. REGAL [5] matches structural node embeddings [6, 14]
that are directly comparable across networks. CONE-Align [1] uses
embeddings modeling proximity within each graph [14] and aligns
the graphs’ embedding spaces with a subspace alignment proce-
dure, while GWL [16] solves a Gromov-Wasserstein optimization
problem to jointly find node embeddings and the graph matching.
G-CREWE [13] uses graph compression to accelerate the matching
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Figure 1: An illustrative example of CAPER. The pink and blue nodes in the leftmost figure have the same local structural
similarity, so methods that overfit the local structural similarity may misalign them. But with the help of higher-order infor-
mation (coarsened graphs in step 4), CAPER is able to eventually correctly align the pink nodes as well as the blue nodes.

Table 1: Comparing alignment meta-frameworks.
General Multiscale Improves Improves

accuracy runtime
MOANA [19] ✗ ✓ ✗ ✓

Boosting [9] ✗ ✗ ✓ ✗

RefiNA [4] ✓ ✗ ✓ ✗

CAPER ✓ ✓ ✓ ✓

step of embedding-based alignment, though the embedding step is
performed on the entire input graphs.
Network Alignment Meta-Frameworks. A few recent works
have proposed meta-frameworks to improve unsupervised network
alignment algorithms. This includes MOANA, the only other mul-
tilevel network alignment approach [19]. MOANA uses multires-
olution matrix factorization to accelerate FINAL [18] (it produces
negative-valued adjacencymatrices that do not workwith other net-
work alignment methods) at the cost of some accuracy. RefiNA [4]
makes the opposite tradeoff, enforcing greater local consistency to
increase accuracy of several base methods at the cost of adding ad-
ditional runtime. Another meta-framework [9] studies how design
choices of recent embedding-based network alignment methods
can be combined to increase accuracy via boosting. Meanwhile, our
approach inherits all these benefits, as shown in Tab. 1.

3 PRELIMINARIES
Graphs. We consider two graphs 𝐺1 and 𝐺2 with nodesets V1,V2
and adjacency matrices A1,A2 containing edges between nodes.
A graph 𝐺𝑖 has a coarsened version 𝐺̃𝑖 with a smaller nodeset
Ṽ𝑖 of 𝑛̃ < 𝑛 nodes. Each node in the original graph corresponds
to a node in the coarsened graph, represented by an assignment
matrix P ∈ {0, 1}𝑛×𝑛̃ . For clarity, we drop the 𝐺̃ notation unless it
is necessary to distinguish coarsened and uncoarsened versions.
Alignment. An alignment between the nodes of two graphs can
be represented by a matrix S, where 𝑠𝑖 𝑗 is the (real-valued or binary)
similarity between node 𝑖 in 𝐺1 and node 𝑗 in 𝐺2.
Problem Statement. Given two graphs 𝐺1 and 𝐺2 with meaning-
ful node alignments, but none known a priori, we seek to shrink
them into coarsened versions 𝐺̃1 and 𝐺̃2, and recover their align-
ment S from S̃ obtained by aligning their coarser versions 𝐺̃1 and
𝐺̃2.

4 METHOD
Next, we detail our CAPER framework, the first general-purpose
multilevel framework for unsupervised network alignment that can
accommodate any base network alignment approach. It consists
of four steps that are carefully designed in order to achieve higher
accuracy and/or lower runtime compared to its base alignment

methods: Coarsen, Align, Project, Refine (CAPER). In Fig. 1, we
provide an example of how CAPER can implicitly enforce higher-
order structural consistency that improves network alignment.

4.1 Graph Coarsening
Given an input graph 𝐺𝑖 , we want to obtain a coarsened graph
𝐺̃𝑖 using grouping-based coarsening methods. We leverage the
normalized heavy-edge matching (NHEM) heuristic [3] for graph
coarsening. This approach repeatedly combines pairs of adjacent
nodes into a supernode in decreasing order of degree-normalized
edge weight [11], which for edge (𝑢,𝑣) with weight𝑤𝑢𝑣 connecting
nodes 𝑢 and 𝑣 with degrees 𝑑𝑢 and 𝑑𝑣 respectively is given by
𝑤𝑢𝑣/

√
𝑑𝑢𝑑𝑣 , until no node is left uncombined or the uncombined

nodes do not have uncombined neighbors (isolated nodes). The
resulting coarse graph consists of these supernodes, which share
an edge if any of the nodes in one supernode shared an edge in the
original graph with any of the nodes in the other supernode.

Graph coarsening turns each input graph 𝐺𝑖 into a coarsened
graph 𝐺̃𝑖 . We iteratively repeat this coarsening procedure up to L
times to produce a sequence of coarsened graphs 𝐺̃ (0)

𝑖
, . . . , 𝐺̃

(𝐿)
𝑖

,
where the first level is the input graph (𝐺̃ (0)

𝑖
= 𝐺𝑖 ), and the coarsest

(smallest) graph is 𝐺̃ (𝐿)
𝑖

. Assignments between nodes at consecutive
levels ℓ − 1 and ℓ are contained in a matrix P(ℓ)

𝑖
for ℓ ∈ [1, . . . , 𝐿].

4.2 Alignment of Coarsened Graphs
We can apply any unsupervised network alignment method to
align the nodes of the coarsest graphs 𝐺̃ (𝐿)

1 and 𝐺̃ (𝐿)
2 to produce

a matching S(L) . We observe that the coarsening procedure some-
times generates slightly different numbers of nodes for the same
graph even if the input graphs have the same size, so the proposed
formulation must be able to handle graphs of different sizes. This
can be done by adding singleton nodes to the smaller graph [1, 20].

4.3 Projection
We project the alignment solution at the coarsest level S(ℓ) to a
mapping between the nodes at the next finer level using the assign-
ment matrices: S(ℓ−1) = P(ℓ)

⊤

1 S(ℓ)P(ℓ)2 . Note that this solution is
coarse, and all nodes in level ℓ − 1 mapped to the same supernode
in level ℓ will have the same match. Thus, we next show how to
use the finer graph structure to refine this coarse solution.

4.4 Soft Refinement
Recent work for refining network alignment [4] operates on “hard”
initial solutions, where each node is mapped to at most one other



Table 2: Dataset statistics: These four datasets represent var-
ious phenomena as shown in the description column.

Name Nodes Edges Description

Arenas [8] 1,133 5,451 communication network
Hamsterster [8] 2,426 16,613 social network
Facebook [10] 4,039 88,234 social network
Magna [15] 1,004 8,323 protein-protein interaction

node. Here, we propose a new refinement operator that uses the
“soft” initial alignments, which better models the various strengths
of several potential matches for each node, as shown in Fig. 5.
Given an initial soft (real-valued) alignment S, we iteratively apply
the update rule S = NORMALIZE(S ◦A1SA2 + 𝜖), where ◦ denotes
Hadamard product, 𝜖 is a small positive minimummatching score to
any pair of nodes to prevent over-reliance on the initially discovered
matches (we set 𝜖 = 10−⌈log10 max(𝑛1,𝑛2) ⌉ ) and NORMALIZE is a
single round of row-wise then column-wise normalization, as in [4].

We iteratively apply this project-and-refine procedure between
successive levels until we arrive back at the input level, giving us
the mapping between nodes in the original graph.

4.5 Computational Complexity
We analyze the time complexity of CAPER as a function of the
number of nodes 𝑛 (to simplify notation we assume this is the
same for both graphs), for sparse graphs with𝑂 (𝑛) edges. Then the
complexity of our CAPER framework is 𝐿𝑓coarsen (𝑛) + 𝑓align ( 𝑛

2𝐿 ) +
𝐿

(
𝑓project (𝑛) + 𝑓refine (𝑛)

)
. The coarsening time applied to each of

𝐿 levels, 𝑓coarsen (𝑛), is linear in the number of edges using heavy-
edge matching [3], which is𝑂 (𝑛). Projection 𝑓project and refinement
𝑓refine consist of matrix multiplications that, bymaintaining a sparse
matching matrix, can also run in 𝑂 (𝑛) time [4].

Meanwhile, with NHEM shrinking the graph by approximately
a factor of 2 at each level [3], note that we are able to run the base
alignment step on a smaller graph, incurring a runtime of 𝑓align ( 𝑛

2𝐿 )
as opposed to 𝑓align (𝑛) by applying the base alignment algorithm
to the full input graphs. Thus, CAPER can offer computational
speedup particularly for slow base alignment methods, where 𝑓align
may be asymptotically large (such as 𝑂 (𝑛3)),and the savings may
outweigh the overhead of coarsening, projection, and refinement.

5 EXPERIMENTS
We first describe our experimental setup and the datasets and base-
line methods used in our empirical analysis, and then show quanti-
tative improvements from CAPER and a closer ablation study.
Data.We use simulated and real alignment scenarios on graphs rep-
resenting various real-world phenomena (Tab. 2). Following prior
works [5, 9, 18], we simulate a network alignment scenario with
known ground truth: a graph with adjacency matrix A is aligned
to a noisy permuted copy A∗ = SAS

⊤ and S, for which we gen-
erate a random permutation matrix S; we then randomly remove
edges from A∗ with probability 𝑝 ∈ [0.05, 0.10, 0.15, 0.20, 0.25]. The
MAGNA [15] networks are protein-protein interaction (PPI) net-
works that are aligned to versions of themselves with various per-
centages of low-confidence PPIs (edges) added; thus, all edges in
this graph represent real-world phenomena and we do not need to
synthesize an alignment scenario.

Table 3: Number of nodes in the coarsened graph after 2–4
levels of coarsening.

Name 2 3 4

Hamsterster 1,288 702 418
Facebook 2,078 1,078 572

Baselines. We use (1) FINAL [18] and (2) REGAL [5], which are
popular unsupervised network alignment methods that have us-
able public codebases and represent different classes of techniques
(optimization and node embeddings), demonstrating the wide ap-
plicability of our framework. We also use a more recent approach,
(3) GWL [16], which combines optimization and node embeddings,
and achieves good accuracy but has slow runtime due to its 𝑂 (𝑛3)
computational complexity. Moreover, we consider the post hoc
refinement method RefiNA applied to each of the network align-
ment methods: (4) FINAL-RefiNA, (5) REGAL-RefiNA and (6)GWL-
RefiNA. Additionally, we use (7) MOANA [19] as a baseline, the
only other multilevel network alignment method.

For FINAL’s prior alignment information, we take the top 𝑘 =

⌊log2 𝑛⌋ most similar nodes by degree for each node [1, 5]. We set
other parameters for REGAL [5] and GWL [16] using the defaults
recommended by the authors.
CAPERvariants.We test variants of CAPER using each base align-
ment method: CAPER(FINAL), CAPER(REGAL), and CAPER(GWL).
We use 3 coarsening levels and 100 refinement iterations, as in [4],
to balance accuracy and computational efficiency (we found that
more refinement may increase performance if that is desired and
increased runtime is acceptable).
Evaluation.We measure alignment accuracy, or the proportion
of correctly aligned nodes, and runtime.

5.1 Alignment Accuracy
Setup. In Fig. 2, we report the average accuracy and standard de-
viation (+ sign: standard deviation > 0.05) over five trials for each
setting, except for Magna where we do not simulate alignments.
Results. While the existing multilevel alignment method, MOANA,
has accuracy below its single-level counterpart FINAL as expected,
our multilevel framework, CAPER, significantly outperforms dif-
ferent base alignment methods as well as their single-level refined
variants using RefiNA. Moreover, we can see that CAPER is more
robust to noise due to the multilevel consistency that it encour-
ages; this is especially notable for CAPER(REGAL) whose perfor-
mance is very stable even when the noise level increases.

5.2 Alignment Runtime
Setup & Evaluation. Due to GWL’s slow runtime, we only run it
for one trial on the largest Facebook dataset. Others are averaged
over five trials in Fig. 3.
Results. For faster base methods such as FINAL and especially
REGAL, our improvements are mainly in accuracy (up to 50% higher
accuracy); the computational savings of performing the alignment
on smaller graphs does not outweigh the overhead of coarsening
and refinement when the base alignment method is fast. However,
when the base alignment method is slow, as is the case for GWL, our
framework results in considerable computational savings (5-80×



(a) Arenas (b) Hamsterster (c) Magna (d) Facebook
Figure 2: Accuracy (solid lines) vs. different noise levels. CAPER outperforms baselines, particularly as noise increases.

Figure 3: Accuracy vs. runtime for CAPER and RefiNA for 20% noise. CAPER yields better accuracy for FINAL and REGAL by
enforcing higher-order consistency. For GWL, CAPER runs up to 80x faster because the alignment is run on smaller graphs.

(a) Hamsterster (b) Facebook

Figure 4: Sensitivity to number of coarsening levels for CA-
PER(REGAL). In general, 2 levels leads to highest accuracy.
We use 3 levels for the best accuracy/runtime tradeoff.

faster), while largely preserving accuracy. Compared with MOANA,
CAPER achieves better accuracy.

5.3 Sensitivity Analysis
Number of levels. Figure 4 compares the performance of CA-
PER(REGAL) with different numbers of coarsening levels on the
Hamsterster and Facebook datasets. The number of coarsening
levels leads to a tradeoff between accuracy and runtime: more
coarsening leads to smaller coarsened graphs (Tab. 3) and faster
runtime at a cost of some accuracy. For our main experiments, we
used 3 levels of coarsening for all datasets to balance this tradeoff,
and could use 2 levels to achieve even higher accuracy.
Hard vs. soft refinement. In Fig. 5, we see improvement from
our refinement of more expressive “soft” alignments (§ 4.4), most
noticeably for the base method REGAL. For FINAL, because its
initial solution is less accurate on these datasets, we used hard
refinement when operating directly on its solution (at the coarsest
level) and soft refinement at subsequent levels. This also explains
the smaller gap in performance.

(a) Magna (b) Facebook

Figure 5: Sensitivity to soft/hard refinement for CA-
PER(REGAL) and CAPER(FINAL). Soft refinement works
significantly better, especially for accurate base methods.

6 CONCLUSION
We describe the first general-purpose multilevel framework for un-
supervised network alignment. It works with various base network
alignment algorithms, making them more accurate and robust by
incorporating multiscale graph information, and accelerating the
runtime by allowing them to operate on smaller input graphs. How-
ever, not all coarsening methods work well. Some recent spectral
coarsening methods [2] will give clusters with zero nodes and thus
our multi-level alignment framework could fail. One possible future
direction is to characterize the effect of various coarsening methods
on multilevel network alignment.

ACKNOWLEDGEMENTS
This work was performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under Contract DE-
AC52-07NA27344, Lawrence Livermore National Security, LLC. and was
supported by the LLNL-LDRD Program under Project No. 21-ERD-012.
Jing Zhu was an intern at Lawrence Livermore National Laboratory while
working on this project. It was also partially supported by the NSF under
Grant No. IIS 1845491, and Amazon and Facebook faculty awards.



REFERENCES
[1] Xiyuan Chen, Mark Heimann, Fatemeh Vahedian, and Danai Koutra. Cone-align:

Consistent network alignment with proximity-preserving node embedding. In
CIKM, 2020.

[2] Chenhui Deng, Zhiqiang Zhao, Yongyu Wang, Zhiru Zhang, and Zhuo Feng.
Graphzoom: A multi-level spectral approach for accurate and scalable graph
embedding. In ICLR, 2020.

[3] Inderjit S Dhillon, Yuqiang Guan, and Brian Kulis. Weighted graph cuts without
eigenvectors a multilevel approach. IEEE transactions on pattern analysis and
machine intelligence, 29(11):1944–1957, 2007.

[4] Mark Heimann, Xiyuan Chen, Fatemeh Vahedian, and Danai Koutra. Refining
network alignment to improve matched neighborhood consistency. In SDM,
2021.

[5] Mark Heimann, Haoming Shen, Tara Safavi, and Danai Koutra. Regal: Represen-
tation learning-based graph alignment. In CIKM, 2018.

[6] Junchen Jin, Mark Heimann, Di Jin, and Danai Koutra. Toward understanding
and evaluating structural node embeddings. ACM Transactions on Knowledge
Discovery from Data (TKDD), 16(3):1–32, 2021.

[7] Ehsan Kazemi. Network alignment: Theory, algorithms, and applications. Tech-
nical report, EPFL, 2016.

[8] Jérôme Kunegis. Konect: the koblenz network collection. InWWW, 2013.
[9] Alexander Frederiksen Kyster, Simon Daugaard Nielsen, Judith Hermanns, Da-

vide Mottin, and Panagiotis Karras. Boosting graph alignment algorithms. In
Proceedings of the 30th ACM International Conference on Information & Knowledge
Management, pages 3166–3170, 2021.

[10] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset
collection. http://snap.stanford.edu/data, June 2014.

[11] Jiongqian Liang, Saket Gurukar, and Srinivasan Parthasarathy. Mile: Amulti-level
framework for scalable graph embedding. In ICWSM, 2021.

[12] Yike Liu, Tara Safavi, Abhilash Dighe, and Danai Koutra. Graph summarization
methods and applications: A survey. ACM computing surveys (CSUR), 51(3):1–34,
2018.

[13] Kyle K Qin, Flora D Salim, Yongli Ren, Wei Shao, Mark Heimann, and Danai
Koutra. G-crewe: Graph compression with embedding for network alignment. In
Proceedings of the 29th ACM International Conference on Information & Knowledge
Management, pages 1255–1264, 2020.

[14] Ryan A Rossi, Di Jin, Sungchul Kim, Nesreen K Ahmed, Danai Koutra, and
John Boaz Lee. On proximity and structural role-based embeddings in networks:
Misconceptions, techniques, and applications. ACM Transactions on Knowledge
Discovery from Data (TKDD), 14(5):1–37, 2020.

[15] Vikram Saraph and Tijana Milenković. Magna: maximizing accuracy in global
network alignment. Bioinformatics, 30(20):2931–2940, 2014.

[16] Hongteng Xu, Dixin Luo, Hongyuan Zha, and Lawrence Carin Duke. Gromov-
wasserstein learning for graph matching and node embedding. In ICML, pages
6932–6941, 2019.

[17] Yujun Yan, Jiong Zhu, Marlena Duda, Eric Solarz, Chandra Sripada, and Danai
Koutra. GroupINN: Grouping-based interpretable neural network for classifica-
tion of limited, noisy brain data. In KDD, pages 772–782, 2019.

[18] Si Zhang and Hanghang Tong. Final: Fast attributed network alignment. In KDD,
2016.

[19] Si Zhang, Hanghang Tong, Ross Maciejewski, and Tina Eliassi-Rad. Multilevel
network alignment. In The World Wide Web Conference, pages 2344–2354, 2019.

[20] Zhen Zhang, Yijian Xiang, Lingfei Wu, Bing Xue, and Arye Nehorai. KerGM:
Kernelized Graph Matching. In NeurIPS19, pages 3330–3341, 2019.

http://snap.stanford.edu/data

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Method
	4.1 Graph Coarsening
	4.2 Alignment of Coarsened Graphs
	4.3 Projection
	4.4 Soft Refinement
	4.5 Computational Complexity

	5 Experiments
	5.1 Alignment Accuracy
	5.2 Alignment Runtime
	5.3 Sensitivity Analysis

	6 Conclusion
	References

