
Leveraging the Graph Structure of Neural Network Training
Dynamics

Fatemeh Vahedian

University of Michigan

Ann Arbor, USA

vfatemeh@umich.edu

Ruiyu Li

University of Michigan

Ann Arbor, USA

ruiyuli@umich.edu

Puja Trivedi

University of Michigan

Ann Arbor, USA

pujat@umich.edu

Di Jin

University of Michigan

Ann Arbor, USA

dijin@umich.edu

Danai Koutra

University of Michigan

Ann Arbor, USA

dkoutra@umich.edu

ABSTRACT
Understanding the training dynamics of deep neural networks

(DNNs) is important as it can lead to improved training efficiency

and task performance. Recent works have demonstrated that repre-

senting the wirings of neurons in feedforward DNNs as graphs is

an effective strategy for understanding how architectural choices

can affect performance. However, these approaches fail to model

training dynamics since a single, static graph cannot capture how

DNNs change over the course of training. Thus, in this work, we

propose a compact, expressive temporal graph framework that ef-

fectively captures the dynamics of many workhorse architectures

in computer vision. Specifically, it extracts an informative summary

of graph properties (e.g., eigenvector centrality) over a sequence

of DNN graphs obtained during training. We demonstrate that

our framework captures useful dynamics by accurately predicting

trained, task performance when using a summary over early train-

ing epochs (<5) across four different architectures and two image

datasets. Moreover, by using a novel, highly-scalable DNN graph

representation, we also show that the proposed framework captures

generalizable dynamics as summaries extracted from smaller-width

networks are effective when evaluated on larger widths
1
.

CCS CONCEPTS
• Computing methodologies→Machine learning.

KEYWORDS
Deep Learning, Neural Network Training, Dynamic Graph Mining

ACM Reference Format:
Fatemeh Vahedian, Ruiyu Li, Puja Trivedi, Di Jin, and Danai Koutra. 2022.

Leveraging the Graph Structure of Neural Network Training Dynamics. In

Proceedings of the 31st ACM International Conference on Information and

1
Code: https://github.com/pindapuj/NN_Code.git

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9236-5/22/10. . . $15.00

https://doi.org/10.1145/3511808.3557628

Knowledge Management (CIKM ’22), October 17–21, 2022, Atlanta, GA, USA.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3511808.3557628

1 INTRODUCTION
The impressive success of deep neural networks (DNNs) in machine

learning tasks across a variety of domains [1, 5, 10, 19, 28] has led

to considerable interest in understanding how the interplay be-

tween the training process, model architecture, hyper-parameters

and other factors influences task performance [6, 8, 11, 23]. Key to

this endeavor is a representation or framework for studying DNNs

that is amenable to jointly analyzing these factors [12]. Recogniz-

ing the intuitive relationship between the wiring of neurons in

DNNs and graphs, recent works [7, 24, 31] have proposed graph
representations of DNNs and sought to leverage network science

to understand how properties of the resulting representation are

related to performance or behavior. Such graph representations are

intuitive, provide a unified language (e.g., network science) for dis-

cussing properties of different architectures and have been shown

to be effective at understanding static properties of DNNs.

However, existing graph representations are unable to capture

how DNNs change throughout training and, therefore, cannot be

effectively used to understand DNN training dynamics. Indeed,

capturing dynamics is difficult as DNN graphs must not only be

generated over time but also be expressive enough to meaningfully

model how DNN parameters evolve. Existing graph representations

are either unable to effectively scale for temporal settings due to

untenable memory requirements [24] or are not expressive enough

for a dynamic setting [31]. Therefore, we introduce a new graph

representation and a corresponding framework that is able to model

the training dynamics ofmanyworkhorse architectures in computer

vision, while also preserving the benefits of a graph representation.

Present Work. In this paper, we propose a compact, graph repre-

sentation and corresponding temporal framework for better under-

standing DNN training dynamics. Specifically, we first construct

a series of graphs over the course of training, and then create in-

formative summaries of graph properties (e.g., weighted degree,

eigenvector centrality) to understand how the training induces

structural changes in the DNN graph. To demonstrate the utility of

the proposed framework, we use the temporal summaries extracted

from a few early training epochs (<5) as effective features in the

challenging task of predicting the final performance of fully-trained

ar
X

iv
:2

11
1.

05
41

0v
2

 [c
s.L

G
]

20
 F

eb
 2

02
3

https://github.com/pindapuj/NN_Code.git
https://doi.org/10.1145/3511808.3557628
https://doi.org/10.1145/3511808.3557628

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Vahedian, Li, Trivedi, Jin, Koutra.

DNNs. Notably, reliably predicting performance is practically useful

for early stopping [32]. Our main contributions are:

• Compact, expressive graph representation of DNN: We in-

troduce a graph representation for convolutional layers that is sig-

nificantly more compact than existing graph representations [24],

enabling use in the analysis of the training dynamics.

• Graph framework for NN performance prediction:We pro-

pose a temporal framework that summarizes sequences of DNN

graphs to effectively model structural changes during training.

• Extensive empirical analysis: Across several DNN architec-

tures (AlexNet, VGG, LeNet, ResNet) and two image datasets,

we verify the utility our framework in the challenging task of

final performance prediction from early training epochs. Indeed,

with temporal summaries over less than 5 epochs of training, our

framework achieves classification accuracy of 90%. We also show

that it captures generalizable dynamics by extracting summaries

from smaller-width networks and predicting on large widths.

2 PROPOSED NN GRAPH REPRESENTATION
We now introduce our proposed compact representation of convo-

lutional layers that can effectively and efficiently capture training

dynamics. We begin by discussing existing graph representations.

DNNs as Graphs: RelatedWork & Limitations. Existing works
primarily focus on representing DNNs which contain only fully

connected (fc) and convolutional (conv) layers as these are the

key components of many popular vision architectures (LeNet [16],

VGG [27] and ResNet [8]). You et al. [31] propose representing

DNNs as relational graphs where edges correspond to message

passing between layers (nodes), and show that the graph clustering

coefficient and average path length can identify a “sweet spot” for

task performance. Rieck et al. [24] leverage weighted, stratified

DNN graphs, where neurons correspond to nodes, and weights

correspond to edges. They introduce a corresponding complexity

measure which is empirically well-aligned with best training prac-

tices. Filan et al. [7] focus on weighted graph representation for

MLPs only, where each neuron—including the input/output layers—

corresponds to a node, and two neurons are linked if they appear in

consecutive layers. They find that DNNs are “surprisingly modular.”

While these representations provide interesting insights into

DNNs, they are not suitable for understanding dynamics.

Unweighted graphs cannot represent how convolutional filters

or neurons change over training. Weighted edges in graph repre-

sentations of fc layers [7, 24] suggest a mechanism for capturing

dynamics. However, Rieck et al. “unroll” the convolution operator

so each position in operation maps to a node in the graph and each

multiplication maps to a weighted edge. Besides destroying the

semantics of filters, unrolling leads to an explosion of nodes/edges

and untenable memory requirements, as understanding dynam-

ics requires creating DNN graphs over some epochs (time steps).

Motivated by the inefficiencies and promise of the unrolled graph

representation [24], we propose a compact, “rolled” representa-

tion for conv layers (Fig. 1), which is not only more interpretable

than the unrolled model, but also highly effective despite its low

footprint (§ 4).

Figure 1: Rolled graph representation example: The resultant
graph is a tri-partite graph with three node types (Conv1,
Conv2, FC).

Rolled Graph Representation of Conv Layers. Let tensor,𝒦𝑖 ,

be a kernel in layer 𝑖 with 𝑓𝑖 filters, each with 𝑐𝑖 channels and di-

mensions ℎ𝑖 ×𝑤𝑖 . We use bracket notation to index into the kernel:

for example,𝒦𝑖 [𝑙, :, :, :] indexes the 𝑙 th filter of kernel𝒦𝑖 . We cre-

ate 𝑓𝑖 nodes representing each filter {𝑣 (𝑖)
1

, 𝑣
(𝑖)
2

, ...𝑣
(𝑖)
𝑓𝑖
}, where node

features are defined as the corresponding biases in that layer. Then,

𝒦𝑗 is the next convolutional layer, defined analogously. While

edges between neurons in fc layers are directly defined through

neuron weights, each kernel contains multiple weights. To extract

a weighted edge, we take the norm over each kernel’s channels.

Formally, the edge between node 𝑣
(𝑖)
𝑘

representing the 𝑘𝑡ℎ filter

in layer 𝑖 (i.e., 𝒦𝑖 [𝑘, :, :, :]) and node/filter 𝑣
(𝑗)
𝑙

in layer 𝑗 = 𝑖 + 1
(i.e. 𝒦𝑗 [𝑙, :, :, :]) has weight 𝑤𝑣

(𝑖)
𝑘

,𝑣
(𝑗)
𝑙

= norm(𝒦𝑗 [𝑙, 𝑘, :, :]), which

is the norm of the 𝑘th channel of the 𝑙 thfilter in the 𝑗 th layer. While

alternative edge weight configurations can be supported, we focus

on the filter norm as other studies, including those on pruning NNs

[18], have demonstrated that this value has strong correlation with

filter importance. As shown in Fig. 1, in the case of two conv layers

(i.e., w/o the fc layer), the resultant graph is an attributed bipartite

graph with 𝑓𝑖 + 𝑓𝑗 nodes and 𝑓𝑖 × 𝑓𝑗 edges, where node attributes

include flattened weight vectors or filter maps. Other information

such as average gradients can also be used as node features.

3 PROPOSED TEMPORAL FRAMEWORK
Successful performance prediction based on only a few epochs

could be used for early stopping [32], and thus, more efficient NN

training. We show the utility of our proposed graph representa-

tion, by investigating the relationship between the temporal graph

structure of NNs in early training stages and NN performance in

downstream tasks. Formally:

Task 1 (NNPerformance Prediction). LetN = {𝑁𝑡𝑟1 , . . . , 𝑁𝑡𝑟𝑛 }
be a training set of𝑛 NNs trained for𝑇 epochs andA = {𝛼1, 𝛼2, . . . , 𝛼𝑛}
their corresponding downstream task accuracies (e.g., for image classi-
fication). We seek to predict the accuracy 𝛼𝑡𝑠𝑡 of a new instance 𝑁𝑡𝑠𝑡

trained for a very small number of 𝑡 ≪ 𝑇 epochs by using 𝑡 epochs
for the trained NNs in N .

Leveraging the Graph Structure of Neural Network Training Dynamics CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

Building on temporal graph mining and summarization [2, 9, 20,

25], to tackle this problem, we introduce a temporal graph-based

framework (Fig. 2), which consists of four steps:

Step (S1) Graph generation. This step involves converting the

training process of each input NN 𝑁𝑡𝑟𝑖 ∈ N into a time-evolving

graph where each static snapshot corresponds to a different epoch

(time step). The output is a set of 𝑛 temporal graphs {G𝑡𝑟1 , ...,G𝑡𝑟𝑛 },
where G𝑡𝑟𝑖 = {G1

𝑖
, ...,G𝑡

𝑖
} corresponds to the 𝑖𝑡ℎ original NN in N .

Step (S2) Feature extraction.Next, the goal is to capture the struc-
tural dynamics of the NN training process. We aim to select graph

measures that can capture changes during the training process,

take into account the edge weight of graphs and can be calculated

efficiently. In order to do that in an interpretable way, we extract

two well-known node centralities from each snapshot of each gen-

erated time-evolving graph G𝑖 : weighted degree centrality and

eigenvector centrality [4]. The weighted degree is a simple func-

tion of the learnable weight matrix W during the training phase

of NN, therefore it gives us insights into the training dynamics at

the node/neuron/filter level. The eigenvector centrality is an exten-

sion of the degree centrality, which captures the highly influential

nodes, and has been successfully used in neuroscience to capture

the dynamic changes of real neural networks (or connectomes) [21].

Eigenvector centrality can be used to capture importance and con-

nectivity of filters/neurons (i.e., the nodes in our graph represen-

tation). It has also been used for detecting communities [22] or

clusters [30], and thus provides structural information about the

clusterability of the NN, which is complementary to that provided

by the simpler and more efficient-to-compute degree centrality.

Our choice of features is guided by the inherent 𝑘-partite structure

of our proposed graph representation, which cannot be captured

well by other commonly-used graph features (e.g., clustering-based

features like triangles, transitivity, clustering coefficient are 0).

Step (S3) Graph signature construction. In order to be able

to compare DNN graphs (with different number of nodes and

edges) [13, 14], we summarize the structural changes in the gen-

erated temporal graphs at the graph level (rather than the node
level, as in (S2)), and construct a statistical summary of the ex-

tracted node centralities (signature) per time-evolving graph G𝑖 .
For each snapshot G(𝜏)

𝑖
of G𝑖 , we create a signature vector using

five node feature aggregators, which were introduced in [3] for

graph similarity: median, mean, standard deviation, skewness, and
kurtosis, where all but the median are moments of the correspond-

ing distribution. Thus, G(𝜏)
𝑖

is mapped to a (static) signature vector

𝑠
(𝜏)
𝑖
∈ R5, representing the statistical summary of its node features

(i.e., degree or eigenvector centrality) at time 𝜏 . To put more em-

phasis on the most recent timesteps, we can redefine the signature

at time 𝜏 as the linear weighted average of the signatures up to that

point, s(𝜏)
𝑖
←

∑𝜏
𝑗=1

𝑗∗s(𝑗)∑
𝑗

, or an exponential function of the previ-

ous signatures, s(𝜏)
𝑖
← 𝛼s(𝜏)

𝑖
+ (1 − 𝛼)s(𝜏−1)

𝑖
. To obtain the temporal

signature of the evolving graph G𝑖 , we aggregate the (static) signa-
tures up to timestamp/epoch 𝑡, s𝑡

𝑖
= s1

𝑖
⊕ ... ⊕ s𝑡

𝑖
, where ⊕ denotes

concatenation.

Step (S4) Performance prediction. For the performance predic-

tion step, we consider a classification task: We train a classifier (e.g.,

Figure 2: Our proposed framework for predicting NN perfor-
mance in a downstream image classification task, shown for
one test instance.

Table 1: Description of NNs: early stopping epoch range, ac-
curacy, and accuracy threshold defining the classes of the
classification task.

CIFAR-10 ImageNet

LeNet AlexNet VGG ResNet-32 ResNet-44 LeNet AlexNet ResNet-50

Early stop. 11∼50 30∼50 45∼50 16∼120 16∼120 16∼50 16∼50 16∼120
Acc. range 9.4∼73.8 5.5∼82.4 8.8∼87.6 8.4∼90.0 9.9∼89.8 0.6∼14.4 0.6∼20.1 0.86∼41.66
Acc. thres. 40 40 40 40 40 9 10 25

SVM, MLP) using the training graphs {G𝑡𝑟1 ,G𝑡𝑟2 , ...,G𝑡𝑟𝑛 } repre-
sented by their temporal signatures {s𝑡𝑡𝑟1 , s

𝑡
𝑡𝑟2

, ..., s𝑡𝑡𝑟𝑛 }, and their

corresponding accuracies A = {𝛼1, 𝛼2, . . . , 𝛼𝑛} mapped to labels

L = {𝑙1, 𝑙2, . . . , 𝑙𝑛} (e.g., high/low accuracy) based on some thresh-

old. Test NN instances are then classified by the trained model.

4 EMPIRICAL ANALYSIS
In this section, we empirically evaluate our framework in the NN

performance prediction task. We seek to answer three questions:

(Q1) How effective is our framework when predicting the perfor-

mance per DNN architecture? (Q2) Can our framework generalize

to unseen architectures? (Q3) How efficient is it?

Data.We investigate NN dynamics using two well-known image

classification datasets, CIFAR-10 [15] and ImageNet [26]. CIFAR-10

consists of 50K training images and 10K test images. For ImageNet,

we use a sample that has 50K training images and 5K validation

images used as the test set [17].

Baselines.We compare our framework with variants of a graph-

agnostic approach that was proposed in [29] to predict the accuracy

of NNs directly from the learned weights. We consider three base-

line methods using different feature vectors as input to our step

(S4): (1) 𝐵𝑊𝑙
leverages the flattened parameters (weights/kernels

and biases) of the last layer, since, according to [29], the parameters

learned in the last dense layer are as informative as those from

all the layers for predicting NN performance
2
; (2) 𝐵

𝑊̂
applies 7

aggregators to the flattened vector of the last layer: the mean, the

variance, and 𝑞th percentiles for 𝑞 ∈ {0, 25, 50, 75, 100}; (3) 𝐵𝑊 ′

applies our 5 aggregators (from step (S3)) on the flattened vector

of the last layer: median, mean, standard deviation, skewness, and

kurtosis. We also compare our proposed rolled graph representation

to (4) the previously proposed unrolled representation [24].

2
This observation was consistent with our experiments: the entire flattened vector

across layers did not lead to higher prediction accuracy.

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Vahedian, Li, Trivedi, Jin, Koutra.

(a) LeNet: deg (b) AlexNet: evec (c) VGG: deg (d) VGG: evec (e) ResNet-44: deg (f) ResNet-44: evec

(g) LeNet: deg (h) LeNet: evec (i) AlexNet: deg (j) AlexNet: evec (k) ResNet-50: deg (l) ResNet-50: evec

Figure 3: NN performance classification on CIFAR-10 (a-f) and ImageNet (g-l): ‘deg’ for degree-based and ‘evec’ for eigenvector
centrality-based temporal signature. For ImageNet, eigenvector-based signatures yield higher performance compared to the
degree-based ones.

(Q1)NNPerformancePrediction - PerArchitecture. Task setup.
We cast the NN performance prediction as a classification task

where the generated temporal graphs are labeled as high and low

accuracy based on the performance of their corresponding NNs.

Table 1 lists the threshold value chosen for low and high accu-

racy labels based on the final accuracy range of trained NNs, as

well as the early stopping epochs for each architecture. Five-fold

cross validation is used to predict the label of the test graphs using

SVM and MLP, where the input is the set of temporal signatures

{s𝑡𝑡𝑟1 , s
𝑡
𝑡𝑟2

, ..., s𝑡𝑡𝑟𝑛 }. In Fig. 3, per classifier we use the three signa-

tures described in Step (S3), denoted as: no suffix, -wAvg, -expAvg.

Results. We present the results for both types of signatures for the

temporal graphs corresponding to the training dynamics of dif-

ferent architectures on CIFAR-10 and ImageNet in Fig. 3 (top and

bottom, resp). In all the cases, classification accuracy of 80-95% is

achieved in less than 10 training epochs. For degree-based signa-

tures, SVM tends to outperform MLP, while the trend is reversed

for eigenvector-based signatures. For example, for both VGG and

AlexNet for the CIFAR-10 image classification task, MLP can predict

the performance with accuracy ∼95% using the eigenvector-based

signatures from the first 6 training epochs; the same trend is ob-

served on ImageNet for the LeNet and AlexNet architectures. In all

the cases, both classifiers reach performance over 80%-90% signifi-

cantly before the early stopping point for all the architectures.

Comparison to baselines. Table 2 summarizes the classification ac-

curacy of the last timestamp 𝑡 of our proposed framework (e.g.,

𝑡 = 9 for LeNet) and the baselines. For all the architectures ex-

cept for VGG, both signature types of our graph-aware framework

achieve significantly higher accuracy than the three graph-agnostic

baselines. For VGG (CIFAR-10), our degree-based graph signature

outperforms the baselines, while the eigenvector-based signature

achieves comparable performance to 𝐵𝑊 ′ , which replaces our graph

features with the flattened weights in the last NN layer. The con-

sistently high accuracy of our framework in this task compared

to the graph-agnostic baselines illustrates the utility of our graph

representation and feature extraction, and the insufficiency of lever-

aging directly the learned weights. Finally, replacing our efficient

Table 2: Comparison of classification accuracy between base-
lines and our graph-based framework. OOM: Out Of Mem-
ory.

CIFAR-10 ImageNet

LeNet AlexNet VGG ResNet-44 AlexNet ResNet-50

𝐵𝑊𝑙
0.63 0.61 0.65 0.48 0.64 0.53

𝐵
𝑊̂

0.8 0.74 0.51 0.74 0.66 0.56

SVM 𝐵𝑊 ′ 0.75 0.82 0.88 0.72 0.67 0.6

unroll-deg 0.92 0.49 OOM OOM OOM OOM

Ours-deg 0.99 0.87 0.97 0.95 0.85 0.88
Ours-evec 0.81 0.94 0.86 0.88 0.86 0.88

𝐵𝑊𝑙
0.68 0.83 0.67 0.47 0.64 0.68

𝐵
𝑊̂

0.55 0.57 0.58 0.61 0.62 0.55

MLP 𝐵𝑊 ′ 0.58 0.75 0.52 0.66 0.67 0.58

unroll-deg 0.93 0.89 OOM OOM OOM OOM

Ours-deg 0.98 0.91 0.96 0.88 0.85 0.74
Ours-evec 0.91 0.96 0.85 0.96 0.94 0.70

rolled graph representation with the baseline unrolled representa-

tion leads to significantly worse performance and longer runtime,

which justifies the utility of our representation. Due to extensive

memory and space requirements of the unrolled representation, we

report results only for LeNet (t=9) and AlexNet (t=14) on CIFAR-10.

(Q2) NN Performance Prediction - Generalizing to Unseen
Architectures. Task setup. To show that our proposed graph rep-

resentation and signatures are general, we fully train a small set of

different NN architectures (and hyperparameters), and predict the

performance on unseen NN architectures. Two sets of experiments

were considered: (1) Train our classifier on the smaller ResNet archi-

tectures (ResNet-32 for CIFAR-10, and ResNet-34 for ImageNet), and

test the performance of the larger ResNet architectures (ResNet-44

for CIFAR-10, and ResNet-50 for ImageNet); (2) Train our classifier

on the combination of old architectures (VGG, AlexNet and LeNet)

to predict the accuracy of a newer architecture (ResNet).

Results. In Figs. 4a and 4b (exp. 1), we observe that our proposed

framework is able to accurately predict the performance level of

the previously unseen, large ResNet architectures. Our results show

that the proposed temporal signatures can be used in a generalized

scenario to predict the accuracy level of the same architecture with

Leveraging the Graph Structure of Neural Network Training Dynamics CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

(a) CIFAR, ResNet44 (b) ImgNet, ResNet50 (c) CIFAR, ResNet32

Figure 4: NN classification to generalize degree signatures
to unseen architectures. (a) Train: ResNet-32, test:ResNet-
44. (b) Train: ResNet-34, test: ResNet-50. (c) Train: LeNet,
AlexNet, VGG, test: ReNet-32.

(a) LeNet (b) VGG (c) ResNet

Figure 5: Avg runtime for the NN training, the graph gener-
ation (S1) and feature extraction (S2) on: (a) CIFAR-10 with
LeNet; (b) CIFAR-10with VGG; and (c) CIFAR-10 (ResNet-44)
and ImageNet (ResNet-50).

different numbers of layers (on the same dataset). This generaliza-

tion from small to bigger architectures is important since it is faster

to train the smaller architectures. In Fig. 4c (exp. 2), we see that

our proposed method also successfully predicts the performance

level of a new architecture (i.e. ResNet) when the training set is a

combination of older architectures (LeNet, VGG, AlexNet).

(Q3) Time efficiency and early stopping. Figure 5 depicts the

total average runtime of NN training for early stopping of each

architecture (green bars) in comparison to the average runtime of

graph generation, degree calculation and eigenvector centrality

calculation for the number of epochs needed for that architecture

to achieve the highest accuracy in classification task. For all the

architectures, our proposed rolled graph representation (in blue)

can achieve a high-accuracy prediction much faster than the early

stopping approach of NN training. But for the baseline unrolled

representation (in red), this is only true for LeNet. As the size of

NN increases, the unrolled graph generation gets slower and the

corresponding graph-based approach is slower than early stopping.

5 CONCLUSION
We investigated the early training dynamics of NNs from a time-

evolving graph perspective. To the best of our knowledge, we are the

first to model the NN training dynamics and structure as a temporal

graph. We coupled this representation with a new, compact graph

model for convolutional layers. Then, we showed that a simple,

temporal graph signature based on summary statistics of the degree

or eigenvector centrality distributions over only a few epochs can be

used as a strong predictor variable to estimate the accuracy of NNs

in downstream tasks. Exploring the role of our efficient proposed

framework for early stopping is a promising future direction.

ACKNOWLEDGEMENTS
This material is based upon work supported by the NSF under Grant

No. IIS 1845491, and Amazon and Facebook faculty awards. Any

opinions, findings, conclusions or recommendations expressed in

this material are those of the authors and do not necessarily reflect

the views of the National Science Foundation or other funding

parties.

REFERENCES
[1] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine trans-

lation by jointly learning to align and translate. In Proc. Int. Conf. on Learning
Representations (ICLR), 2015.

[2] Caleb Belth, Xinyi Zheng, and Danai Koutra. Mining persistent activity in con-

tinually evolving networks. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp. 934–944, 2020.

[3] Michele Berlingerio, Danai Koutra, Tina Eliassi-Rad, and Christos Faloutsos.

Network similarity via multiple social theories. In Proc. Advances in Social
Networks Analysis and Mining 2013, ASONAM ’13, 2013.

[4] Phillip Bonacich. Factoring and weighting approaches to status scores and clique

identification. J math soc, 2(1):113–120, 1972.
[5] Yue Cao, Thomas Andrew Geddes, Jean Yee Hwa Yang, and Pengyi Yang. Ensem-

ble deep learning in bioinformatics. Nat Mach Intell, 2(9):500–508, 2020.
[6] Supriyo Chakraborty and et al. Interpretability of deep learning models: A survey

of results. In SmartWorld, pp. 1–6, 2017. doi: 10.1109/UIC-ATC.2017.8397411.
[7] Daniel Filan, Stephen Casper, Shlomi Hod, CodyWild, Andrew Critch, and Stuart

Russell. Clusterability in neural networks. arXiv preprint arXiv:2103.03386, 2021.
[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-

ing for image recognition. In Proc. Int. Conf. on Computer Vision and Pattern
Recognition (CVPR), 2016.

[9] Petter Holme. Modern temporal network theory: a colloquium. The European
Physical Journal B: Condensed Matter and Complex Systems, 88(9):1–30, 2015.

[10] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proc. Int.
Conf. on Computer Vision and Pattern Recognition (CVPR), 2018.

[11] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep

network training by reducing internal covariate shift. In Proc. Int. Conf. on
Machine Learning (ICML), 2015.

[12] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel:

Convergence and generalization in neural networks. In Proc. Adv. in Neural
Information Processing Systems (NeurIPS), 2018.

[13] Danai Koutra and Christos Faloutsos. Individual and Collective Graph Mining:
Principles, Algorithms and Applications. Synthesis Lectures on Data Mining and

Knowledge Discovery, Morgan & Claypool, 2017.

[14] Danai Koutra, Tina Eliassi-Rad, and Christos Faloutsos. Node and graph similarity:

Theory and applications. In IEEE International Conference on Data Mining (ICDM)
tutorial, 2014.

[15] Alex Krizhevsky. Learning multiple layers of features from tiny images. Master’s

thesis, University of Toronto, 2009.

[16] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied

to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. doi:
10.1109/5.726791.

[17] Fei-Fei Li, Andrej Karpathy, and Justin Johnson. Tiny imagenet.

https://www.kaggle.com/c/tiny-imagenet/data, 2017.

[18] Hao Li, AsimKadav, Igor Durdanovic, Hanan Samet, andHans Peter Graf. Pruning

filters for efficient convnets. In Proc. Int. Conf. on Learning Representations (ICLR),
2017.

[19] Yu Li, Chao Huang, Lizhong Ding, Zhongxiao Li, Yijie Pan, and Xin Gao. Deep

learning in bioinformatics: Introduction, application, and perspective in the big

data era. Methods, 166:4–21, 2019.
[20] Yike Liu, Tara Safavi, Abhilash Dighe, and Danai Koutra. Graph summarization

methods and applications: A survey. ACM Comput. Surv., 51(3), 2018.
[21] Gabriele Lohmann, Daniel S Margulies, Annette Horstmann, Burkhard Pleger, Jo-

eran Lepsien, Dirk Goldhahn, Haiko Schloegl, Michael Stumvoll, Arno Villringer,

and Robert Turner. Eigenvector centrality mapping for analyzing connectivity

patterns in fmri data of the human brain. PloS one, 5(4):e10232, 2010.
[22] Mark EJ Newman. Finding community structure in networks using the eigenvec-

tors of matrices. Physical review E, 74(3):036104, 2006.
[23] Maithra Raghu, Justin Gilmer, Jason Yosinski, and Jascha Sohl-Dickstein. Svcca:

Singular vector canonical correlation analysis for deep learning dynamics and

interpretability. In Proc. Adv. in Neural Information Processing Systems (NeurIPS),
2017.

[24] Bastian Rieck, Matteo Togninalli, Christian Bock, Michael Moor, Max Horn,

Thomas Gumbsch, and Karsten Borgwardt. Neural persistence: A complexity

measure for deep neural networks using algebraic topology. In Proc. Int. Conf. on
Learning Representations (ICLR), 2019.

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Vahedian, Li, Trivedi, Jin, Koutra.

[25] Polina Rozenshtein and Aristides Gionis. Mining temporal networks. In Proceed-
ings of the 25th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, KDD, pp. 3225–3226. ACM, 2019. URL https://rozensp.github.io/

KDD19-tutorial-temporal/.

[26] Olga Russakovsky, Jia Deng, and et al. ImageNet Large Scale Visual Recognition

Challenge. IJCV, 115(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.
[27] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks

for large-scale image recognition. In Proc. Int. Conf. on Learning Representations
(ICLR), 2015.

[28] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with

neural networks. Proc. Adv. in Neural Information Processing Systems (NeurIPS),

2014.

[29] Thomas Unterthiner, Daniel Keysers, Sylvain Gelly, Olivier Bousquet, and Ilya

Tolstikhin. Predicting neural network accuracy from weights. arXiv preprint
arXiv:2002.11448, 2020.

[30] Qin Wu, Xingqin Qi, Eddie Fuller, and Cun-Quan Zhang. “follow the leader”: A

centrality guided clustering and its application to social network analysis. The
Scientific World Journal, 2013, 2013.

[31] Jiaxuan You, Jure Leskovec, Kaiming He, and Saining Xie. Graph structure of

neural networks. In Proc. Int. Conf. on Machine Learning (ICML), 2020.
[32] Tong Yu and Hong Zhu. Hyper-parameter optimization: A review of algorithms

and applications. arXiv preprint arXiv:2003.05689, 2020.

https://rozensp.github.io/KDD19-tutorial-temporal/
https://rozensp.github.io/KDD19-tutorial-temporal/

	Abstract
	1 Introduction
	2 Proposed NN Graph Representation
	3 Proposed Temporal Framework
	4 Empirical Analysis
	5 Conclusion
	References

