2111.05410v2 [cs.LG] 20 Feb 2023

arxiv

Leveraging the Graph Structure of Neural Network Training
Dynamics

Fatemeh Vahedian
University of Michigan
Ann Arbor, USA
vfatemeh@umich.edu

Di Jin
University of Michigan
Ann Arbor, USA
dijin@umich.edu

ABSTRACT

Understanding the training dynamics of deep neural networks
(DNNs) is important as it can lead to improved training efficiency
and task performance. Recent works have demonstrated that repre-
senting the wirings of neurons in feedforward DNNs as graphs is
an effective strategy for understanding how architectural choices
can affect performance. However, these approaches fail to model
training dynamics since a single, static graph cannot capture how
DNN s change over the course of training. Thus, in this work, we
propose a compact, expressive temporal graph framework that ef-
fectively captures the dynamics of many workhorse architectures
in computer vision. Specifically, it extracts an informative summary
of graph properties (e.g., eigenvector centrality) over a sequence
of DNN graphs obtained during training. We demonstrate that
our framework captures useful dynamics by accurately predicting
trained, task performance when using a summary over early train-
ing epochs (<5) across four different architectures and two image
datasets. Moreover, by using a novel, highly-scalable DNN graph
representation, we also show that the proposed framework captures
generalizable dynamics as summaries extracted from smaller-width
networks are effective when evaluated on larger widths!.

CCS CONCEPTS

» Computing methodologies — Machine learning.

KEYWORDS
Deep Learning, Neural Network Training, Dynamic Graph Mining

ACM Reference Format:

Fatemeh Vahedian, Ruiyu Li, Puja Trivedi, Di Jin, and Danai Koutra. 2022.
Leveraging the Graph Structure of Neural Network Training Dynamics. In
Proceedings of the 31st ACM International Conference on Information and

1Code: https://github.com/pindapuj/NN_Code.git

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CIKM °22, October 17-21, 2022, Atlanta, GA, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9236-5/22/10...$15.00
https://doi.org/10.1145/3511808.3557628

Ruiyu Li
University of Michigan
Ann Arbor, USA
ruiyuli@umich.edu

Puja Trivedi
University of Michigan
Ann Arbor, USA
pujat@umich.edu

Danai Koutra
University of Michigan
Ann Arbor, USA
dkoutra@umich.edu

Knowledge Management (CIKM ’22), October 17-21, 2022, Atlanta, GA, USA.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3511808.3557628

1 INTRODUCTION

The impressive success of deep neural networks (DNNs) in machine
learning tasks across a variety of domains [1, 5, 10, 19, 28] has led
to considerable interest in understanding how the interplay be-
tween the training process, model architecture, hyper-parameters
and other factors influences task performance [6, 8, 11, 23]. Key to
this endeavor is a representation or framework for studying DNNs
that is amenable to jointly analyzing these factors [12]. Recogniz-
ing the intuitive relationship between the wiring of neurons in
DNN s and graphs, recent works [7, 24, 31] have proposed graph
representations of DNNs and sought to leverage network science
to understand how properties of the resulting representation are
related to performance or behavior. Such graph representations are
intuitive, provide a unified language (e.g., network science) for dis-
cussing properties of different architectures and have been shown
to be effective at understanding static properties of DNNs.
However, existing graph representations are unable to capture
how DNNs change throughout training and, therefore, cannot be
effectively used to understand DNN training dynamics. Indeed,
capturing dynamics is difficult as DNN graphs must not only be
generated over time but also be expressive enough to meaningfully
model how DNN parameters evolve. Existing graph representations
are either unable to effectively scale for temporal settings due to
untenable memory requirements [24] or are not expressive enough
for a dynamic setting [31]. Therefore, we introduce a new graph
representation and a corresponding framework that is able to model
the training dynamics of many workhorse architectures in computer
vision, while also preserving the benefits of a graph representation.

Present Work. In this paper, we propose a compact, graph repre-
sentation and corresponding temporal framework for better under-
standing DNN training dynamics. Specifically, we first construct
a series of graphs over the course of training, and then create in-
formative summaries of graph properties (e.g., weighted degree,
eigenvector centrality) to understand how the training induces
structural changes in the DNN graph. To demonstrate the utility of
the proposed framework, we use the temporal summaries extracted
from a few early training epochs (<5) as effective features in the
challenging task of predicting the final performance of fully-trained

https://github.com/pindapuj/NN_Code.git
https://doi.org/10.1145/3511808.3557628
https://doi.org/10.1145/3511808.3557628

CIKM 22, October 17-21, 2022, Atlanta, GA, USA

DNN . Notably, reliably predicting performance is practically useful
for early stopping [32]. Our main contributions are:

o Compact, expressive graph representation of DNN: We in-
troduce a graph representation for convolutional layers that is sig-
nificantly more compact than existing graph representations [24],
enabling use in the analysis of the training dynamics.
Graph framework for NN performance prediction: We pro-
pose a temporal framework that summarizes sequences of DNN
graphs to effectively model structural changes during training.
o Extensive empirical analysis: Across several DNN architec-
tures (AlexNet, VGG, LeNet, ResNet) and two image datasets,
we verify the utility our framework in the challenging task of
final performance prediction from early training epochs. Indeed,
with temporal summaries over less than 5 epochs of training, our
framework achieves classification accuracy of 90%. We also show
that it captures generalizable dynamics by extracting summaries
from smaller-width networks and predicting on large widths.

2 PROPOSED NN GRAPH REPRESENTATION

We now introduce our proposed compact representation of convo-
lutional layers that can effectively and efficiently capture training
dynamics. We begin by discussing existing graph representations.

DNNs as Graphs: Related Work & Limitations. Existing works
primarily focus on representing DNNs which contain only fully
connected (fc) and convolutional (conv) layers as these are the
key components of many popular vision architectures (LeNet [16],
VGG [27] and ResNet [8]). You et al. [31] propose representing
DNNs as relational graphs where edges correspond to message
passing between layers (nodes), and show that the graph clustering
coefficient and average path length can identify a “sweet spot” for
task performance. Rieck et al. [24] leverage weighted, stratified
DNN graphs, where neurons correspond to nodes, and weights
correspond to edges. They introduce a corresponding complexity
measure which is empirically well-aligned with best training prac-
tices. Filan et al. [7] focus on weighted graph representation for
MLPs only, where each neuron—including the input/output layers—
corresponds to a node, and two neurons are linked if they appear in
consecutive layers. They find that DNNs are “surprisingly modular”

While these representations provide interesting insights into
DNNes, they are not suitable for understanding dynamics.

Unweighted graphs cannot represent how convolutional filters
or neurons change over training. Weighted edges in graph repre-
sentations of fc layers [7, 24] suggest a mechanism for capturing
dynamics. However, Rieck et al. “unroll” the convolution operator
so each position in operation maps to a node in the graph and each
multiplication maps to a weighted edge. Besides destroying the
semantics of filters, unrolling leads to an explosion of nodes/edges
and untenable memory requirements, as understanding dynam-
ics requires creating DNN graphs over some epochs (time steps).
Motivated by the inefficiencies and promise of the unrolled graph
representation [24], we propose a compact, “rolled” representa-
tion for conv layers (Fig. 1), which is not only more interpretable
than the unrolled model, but also highly effective despite its low
footprint (§ 4).

Vahedian, Li, Trivedi, Jin, Koutra.

Convi Conv2 FC -Rolled Graph Representation
— — Conv1 Conv2 FC
1 | G 10"

Sx5x3 5x5x6 L~ ~

Filters in
Conv layers

: \ ' MNodes i

: A \. ':C.g:a;ns "
ey \ \\\ B :;umnsin
: '\§/w P f"_x"('/o

\

. \,
120 + Norm(channel 6) — A

%
g B

Figure 1: Rolled graph representation example: The resultant
graph is a tri-partite graph with three node types (Convl,
Conv2, FC).

Rolled Graph Representation of Conv Layers. Let tensor, IC;,
be a kernel in layer i with f; filters, each with ¢; channels and di-
mensions h; X w;. We use bracket notation to index into the kernel:
for example, IC;[1, ;, +, :] indexes the I™ filter of kernel IC;. We cre-
ate f; nodes representing each filter {vil), vz(l), .
features are defined as the corresponding biases in that layer. Then,
IC; is the next convolutional layer, defined analogously. While
edges between neurons in fc layers are directly defined through
neuron weights, each kernel contains multiple weights. To extract

a weighted edge, we take the norm over each kernel’s channels.
()
k

.v(?) }, where node

Formally, the edge between node v, representing the kth filter

in layer i (ie., IC;[k,:::]) and node/filter v;j) in layer j = i+1
(i.e. IC;[1, 5 :]) has weight Wi) = norm(’C; (L k,:,:]), which
& Y

is the norm of the k' channel of the [™filter in the j layer. While
alternative edge weight configurations can be supported, we focus
on the filter norm as other studies, including those on pruning NNs
[18], have demonstrated that this value has strong correlation with
filter importance. As shown in Fig. 1, in the case of two conv layers
(i.e., w/o the fc layer), the resultant graph is an attributed bipartite
graph with f; + f; nodes and f; X f; edges, where node attributes
include flattened weight vectors or filter maps. Other information
such as average gradients can also be used as node features.

3 PROPOSED TEMPORAL FRAMEWORK

Successful performance prediction based on only a few epochs
could be used for early stopping [32], and thus, more efficient NN
training. We show the utility of our proposed graph representa-
tion, by investigating the relationship between the temporal graph
structure of NNs in early training stages and NN performance in
downstream tasks. Formally:

Task 1 (NN PERFORMANCE PREDICTION). Let N = {N¢r, ..., Nir, }
be a training set of n NNs trained forT epochs and A = {1, ag, ..., on}
their corresponding downstream task accuracies (e.g., for image classi-
fication). We seek to predict the accuracy o;st of a new instance Ny
trained for a very small number of t < T epochs by using t epochs
for the trained NNs in N.

Leveraging the Graph Structure of Neural Network Training Dynamics

Building on temporal graph mining and summarization [2, 9, 20,
25], to tackle this problem, we introduce a temporal graph-based
framework (Fig. 2), which consists of four steps:

Step (S1) Graph generation. This step involves converting the
training process of each input NN Ny, € N into a time-evolving
graph where each static snapshot corresponds to a different epoch
(time step). The output is a set of n temporal graphs {G;r,, ... Gtr,, }»
where Gy, = {G}, s Gf} corresponds to the ith original NN in N.

Step (S2) Feature extraction. Next, the goal is to capture the struc-
tural dynamics of the NN training process. We aim to select graph
measures that can capture changes during the training process,
take into account the edge weight of graphs and can be calculated
efficiently. In order to do that in an interpretable way, we extract
two well-known node centralities from each snapshot of each gen-
erated time-evolving graph G;: weighted degree centrality and
eigenvector centrality [4]. The weighted degree is a simple func-
tion of the learnable weight matrix W during the training phase
of NN, therefore it gives us insights into the training dynamics at
the node/neuron/filter level. The eigenvector centrality is an exten-
sion of the degree centrality, which captures the highly influential
nodes, and has been successfully used in neuroscience to capture
the dynamic changes of real neural networks (or connectomes) [21].
Eigenvector centrality can be used to capture importance and con-
nectivity of filters/neurons (i.e., the nodes in our graph represen-
tation). It has also been used for detecting communities [22] or
clusters [30], and thus provides structural information about the
clusterability of the NN, which is complementary to that provided
by the simpler and more efficient-to-compute degree centrality.
Our choice of features is guided by the inherent k-partite structure
of our proposed graph representation, which cannot be captured
well by other commonly-used graph features (e.g., clustering-based
features like triangles, transitivity, clustering coefficient are 0).

Step (S3) Graph signature construction. In order to be able
to compare DNN graphs (with different number of nodes and
edges) [13, 14], we summarize the structural changes in the gen-
erated temporal graphs at the graph level (rather than the node
level, as in (S2)), and construct a statistical summary of the ex-
tracted node centralities (signature) per time-evolving graph G;.

For each snapshot G;T) of Gi, we create a signature vector using
five node feature aggregators, which were introduced in [3] for
graph similarity: median, mean, standard deviation, skewness, and
kurtosis, where all but the median are moments of the correspond-

ing distribution. Thus, Ggf) is mapped to a (static) signature vector

si(T) € R, representing the statistical summary of its node features
(i.e., degree or eigenvector centrality) at time 7. To put more em-
phasis on the most recent timesteps, we can redefine the signature
at time 7 as the linear weighted average of the signatures up to that

. 3T jas()
point, sl@ — %
ous signatures, sl@ — asgf) +(1- a)sgf_l). To obtain the temporal
signature of the evolving graph G;, we aggregate the (static) signa-
tures up to timestamp/epoch ¢, sf = s} S..8 sf, where @ denotes

concatenation.

, or an exponential function of the previ-

Step (S4) Performance prediction. For the performance predic-
tion step, we consider a classification task: We train a classifier (e.g.,

CIKM 22, October 17-21, 2022, Atlanta, GA, USA

Training —
Output:
.......—-Epoch 1 Epolch 2 E}Iwch 3 . E. 100 Cat
- 1 1

“““ | ® Graph Generation | Dog

| Tepporal @ @
[_® Feature extraction | Outputs High / Low
§ Feares 1] 1 V| ==
NN | e.. degree | 8 Trained

architecture | - iy :
~~~~~~~~~~~~~~~~~~~ Signature construction . Classifier

Signatures

@ Performance prediction

Figure 2: Our proposed framework for predicting NN perfor-
mance in a downstream image classification task, shown for
one test instance.

Table 1: Description of NNs: early stopping epoch range, ac-
curacy, and accuracy threshold defining the classes of the
classification task.

CIFAR-10 ImageNet
LeNet AlexNet VGG ResNet-32 ResNet-44 LeNet AlexNet ResNet-50
Early stop. 11~50 30~50  45~50 16~120 16~120 16~50 16~50 16~120
Acc. range 9.4~73.8 5.5~82.4 8.8~87.6 8.4~90.0 9.9~89.8 0.6~14.4 0.6~20.1 0.86~41.66
Acc. thres. 40 40 40 40 40 9 10 25

SVM, MLP) using the training graphs {G:r,, Gtr,, ... Gtr, } Tepre-
sented by their temporal signatures {sfrl, sgrz, ey Sir,, }, and their
corresponding accuracies A = {aj, a2, ..., an} mapped to labels
L=A{l,b,..., I} (e.g., high/low accuracy) based on some thresh-
old. Test NN instances are then classified by the trained model.

4 EMPIRICAL ANALYSIS

In this section, we empirically evaluate our framework in the NN
performance prediction task. We seek to answer three questions:
(Q1) How effective is our framework when predicting the perfor-
mance per DNN architecture? (Q2) Can our framework generalize
to unseen architectures? (Q3) How efficient is it?

Data. We investigate NN dynamics using two well-known image
classification datasets, CIFAR-10 [15] and ImageNet [26]. CIFAR-10
consists of 50K training images and 10K test images. For ImageNet,
we use a sample that has 50K training images and 5K validation
images used as the test set [17].

Baselines. We compare our framework with variants of a graph-
agnostic approach that was proposed in [29] to predict the accuracy
of NNs directly from the learned weights. We consider three base-
line methods using different feature vectors as input to our step
(84): (1) By, leverages the flattened parameters (weights/kernels
and biases) of the last layer, since, according to [29], the parameters
learned in the last dense layer are as informative as those from
all the layers for predicting NN performance?; (2) By, applies 7
aggregators to the flattened vector of the last layer: the mean, the
variance, and qth percentiles for g € {0, 25,50,75,100}; (3) By
applies our 5 aggregators (from step (S3)) on the flattened vector
of the last layer: median, mean, standard deviation, skewness, and
kurtosis. We also compare our proposed rolled graph representation
to (4) the previously proposed unrolled representation [24].

2This observation was consistent with our experiments: the entire flattened vector
across layers did not lead to higher prediction accuracy.



CIKM 22, October 17-21, 2022, Atlanta, GA, USA

1.00
095

100
095
0.90
085

Sors| /H

Zo70
0.65 — M
0.60 -==- SVM-wAVg  --=- MLP-wAVg
055 SVM-expAvg MLP-expAvg 055

050 050
i3 3 78 9 2 a

CIFAR-10 CIFAR-10 100
— e 0.95
0.90 = 0.90
085
goso
Sors
Soro Zoro
0.65 0.65
0.60 0.60
055 7
050
o 1 1 P

085
Zos0
5075

—swm

6 8 10 12 14
Timestamp.

(c) VGG: deg

ImageNet

i 5 6 6 8
Timestamp Timestamp

(a) LeNet: deg (b) AlexNet: evec

1.00 1.00 1.00
0.95 ImageNet 0.95 ImageNet 0.95
0.90 0.90 090

085
o080
Sors

0.85 0.85]
EDBO gﬂau-
5075 So7s]
go70 o0 o0
0.65 0.65 065
060 0.60 060 =3z
055 055 055
o. 050 050

Vahedian, Li, Trivedi, Jin, Koutra.

100 100 100
CIFAR-10 hyes CIFAR10 hyes

] 0.90 R =

0.85 -

3080

ors

Sor| /s

oes| J

060

055 055

0501234 8 9 10 11 050

CIFAR-10

050
o0ss| /
zoso| /
Lors
§oro
065
060

2 4 12 1

i23 4

6 8 10 56 7 56 7 8 9 1011
Timestamp Timestamp Timestamp

(d) VGG: evec (e) ResNet-44: deg (f) ResNet-44: evec

1.00 1.00 1.00
095 ImageNet 0.95 ImageNet 095 5,
090 090{
085 0.85{ =%
Zo080| 2080
Sors| Sors
o0 S o0
065 > 065
060 0.60
055 055

ImageNet

i 2 3 4 5 6 7 8 9 i 2 3 4 5 6 7 8 9
Timestamp Timestamp

i 2 3 4 5 6 7 8 9
Timestamp

(g) LeNet: deg (h) LeNet: evec (i) AlexNet: deg

1 2 3 4 5 6 7 8 9 00 1 2 3 4 5 6 7 00 1 2 3 4 5 6 7
Timestamp Timestamp Timestamp

(j) AlexNet: evec (k) ResNet-50: deg (1) ResNet-50: evec

Figure 3: NN performance classification on CIFAR-10 (a-f) and ImageNet (g-1): ‘deg’ for degree-based and ‘evec’ for eigenvector
centrality-based temporal signature. For ImageNet, eigenvector-based signatures yield higher performance compared to the

degree-based ones.

(Q1) NN Performance Prediction - Per Architecture. Task setup.
We cast the NN performance prediction as a classification task
where the generated temporal graphs are labeled as high and low
accuracy based on the performance of their corresponding NNs.
Table 1 lists the threshold value chosen for low and high accu-
racy labels based on the final accuracy range of trained NN, as
well as the early stopping epochs for each architecture. Five-fold
cross validation is used to predict the label of the test graphs using
SVM and MLP, where the input is the set of temporal signatures
{sgrl, sirz, . sirn}. In Fig. 3, per classifier we use the three signa-

tures described in Step (S3), denoted as: no suffix, -wAvg, -expAvg.

Results. We present the results for both types of signatures for the
temporal graphs corresponding to the training dynamics of dif-
ferent architectures on CIFAR-10 and ImageNet in Fig. 3 (top and
bottom, resp). In all the cases, classification accuracy of 80-95% is
achieved in less than 10 training epochs. For degree-based signa-
tures, SVM tends to outperform MLP, while the trend is reversed
for eigenvector-based signatures. For example, for both VGG and
AlexNet for the CIFAR-10 image classification task, MLP can predict
the performance with accuracy ~95% using the eigenvector-based
signatures from the first 6 training epochs; the same trend is ob-
served on ImageNet for the LeNet and AlexNet architectures. In all
the cases, both classifiers reach performance over 80%-90% signifi-
cantly before the early stopping point for all the architectures.

Comparison to baselines. Table 2 summarizes the classification ac-
curacy of the last timestamp ¢ of our proposed framework (e.g.,
t = 9 for LeNet) and the baselines. For all the architectures ex-
cept for VGG, both signature types of our graph-aware framework
achieve significantly higher accuracy than the three graph-agnostic
baselines. For VGG (CIFAR-10), our degree-based graph signature
outperforms the baselines, while the eigenvector-based signature
achieves comparable performance to By, which replaces our graph
features with the flattened weights in the last NN layer. The con-
sistently high accuracy of our framework in this task compared
to the graph-agnostic baselines illustrates the utility of our graph
representation and feature extraction, and the insufficiency of lever-
aging directly the learned weights. Finally, replacing our efficient

Table 2: Comparison of classification accuracy between base-
lines and our graph-based framework. OOM: Out Of Mem-
ory.

CIFAR-10 ImageNet

LeNet AlexNet VGG ResNet-44 AlexNet ResNet-50

BWl 0.63 0.61  0.65 0.48 0.64 0.53

By, 0.8 0.74  0.51 0.74 0.66 0.56

SVM By 0.75 0.82  0.88 0.72 0.67 0.6
unroll-deg 0.92 0.49 OOM OOM OOM OOM
Ours-deg  0.99 0.87 0.97 0.95 0.85 0.88
Ours-evec 0.81 0.94 0386 0.88 0.86 0.88

Bw;, 0.68 0.83  0.67 0.47 0.64 0.68

By, 0.55 0.57  0.58 0.61 0.62 0.55

MLP By 0.58 0.75  0.52 0.66 0.67 0.58
unroll-deg 0.93 0.89 OOM OOM OOM OOM
Ours-deg  0.98 091  0.96 0.88 0.85 0.74
Ours-evec 0.91 0.96 0.85 0.96 0.94 0.70

rolled graph representation with the baseline unrolled representa-
tion leads to significantly worse performance and longer runtime,
which justifies the utility of our representation. Due to extensive
memory and space requirements of the unrolled representation, we
report results only for LeNet (t=9) and AlexNet (t=14) on CIFAR-10.

(Q2) NN Performance Prediction - Generalizing to Unseen
Architectures. Task setup. To show that our proposed graph rep-
resentation and signatures are general, we fully train a small set of
different NN architectures (and hyperparameters), and predict the
performance on unseen NN architectures. Two sets of experiments
were considered: (1) Train our classifier on the smaller ResNet archi-
tectures (ResNet-32 for CIFAR-10, and ResNet-34 for ImageNet), and
test the performance of the larger ResNet architectures (ResNet-44
for CIFAR-10, and ResNet-50 for ImageNet); (2) Train our classifier
on the combination of old architectures (VGG, AlexNet and LeNet)
to predict the accuracy of a newer architecture (ResNet).

Results. In Figs. 4a and 4b (exp. 1), we observe that our proposed
framework is able to accurately predict the performance level of
the previously unseen, large ResNet architectures. Our results show
that the proposed temporal signatures can be used in a generalized
scenario to predict the accuracy level of the same architecture with



Leveraging the Graph Structure of Neural Network Training Dynamics

10 10 10
09 09 09
> > > _—
go7 So7 go7
< — SVM < <
06 — mp 0.6 06
o5 — Logistic Regression o o5
i 3 5 7 & u 3 42 6 8 10 1 3 5 7
Timestamp Timestamp Timestamp

(a) CIFAR, ResNet44 (b) ImgNet, ResNet50 (c) CIFAR, ResNet32

Figure 4: NN classification to generalize degree signatures
to unseen architectures. (a) Train: ResNet-32, test:ResNet-
44. (b) Train: ResNet-34, test: ResNet-50. (c) Train: LeNet,
AlexNet, VGG, test: ReNet-32.

[ ey oo
o] WS ImageNet
| et (ResNerso

10
H w’ “m (ResNe( 44)
£10t 2 m
F i» 10%]
il inl i

W o, % o, s
w 9 o %' 9050, s@@ %g 0 sp’ﬁ@@q

- Rolled
= Unrolled
102 = carly Stopping

%,, % 7 Yoy %
sa,, Vg 95,} W Py, %, o, o e% 9@%

(a) LeNet (b) VGG (c) ResNet

Figure 5: Avg runtime for the NN training, the graph gener-
ation (S1) and feature extraction (S2) on: (a) CIFAR-10 with
LeNet; (b) CIFAR-10 with VGG; and (c) CIFAR-10 (ResNet-44)

and ImageNet (ResNet-50).

different numbers of layers (on the same dataset). This generaliza-
tion from small to bigger architectures is important since it is faster
to train the smaller architectures. In Fig. 4c (exp. 2), we see that
our proposed method also successfully predicts the performance
level of a new architecture (i.e. ResNet) when the training set is a
combination of older architectures (LeNet, VGG, AlexNet).

(Q3) Time efficiency and early stopping. Figure 5 depicts the
total average runtime of NN training for early stopping of each
architecture (green bars) in comparison to the average runtime of
graph generation, degree calculation and eigenvector centrality
calculation for the number of epochs needed for that architecture
to achieve the highest accuracy in classification task. For all the
architectures, our proposed rolled graph representation (in blue)
can achieve a high-accuracy prediction much faster than the early
stopping approach of NN training. But for the baseline unrolled
representation (in red), this is only true for LeNet. As the size of
NN increases, the unrolled graph generation gets slower and the
corresponding graph-based approach is slower than early stopping.

5 CONCLUSION

We investigated the early training dynamics of NNs from a time-
evolving graph perspective. To the best of our knowledge, we are the
first to model the NN training dynamics and structure as a temporal
graph. We coupled this representation with a new, compact graph
model for convolutional layers. Then, we showed that a simple,
temporal graph signature based on summary statistics of the degree
or eigenvector centrality distributions over only a few epochs can be
used as a strong predictor variable to estimate the accuracy of NNs
in downstream tasks. Exploring the role of our efficient proposed
framework for early stopping is a promising future direction.

CIKM 22, October 17-21, 2022, Atlanta, GA, USA

ACKNOWLEDGEMENTS

This material is based upon work supported by the NSF under Grant
No. IIS 1845491, and Amazon and Facebook faculty awards. Any
opinions, findings, conclusions or recommendations expressed in
this material are those of the authors and do not necessarily reflect
the views of the National Science Foundation or other funding
parties.

REFERENCES

[1] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine trans-
lation by jointly learning to align and translate. In Proc. Int. Conf. on Learning
Representations (ICLR), 2015.

[2] Caleb Belth, Xinyi Zheng, and Danai Koutra. Mining persistent activity in con-
tinually evolving networks. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp. 934-944, 2020.

[3] Michele Berlingerio, Danai Koutra, Tina Eliassi-Rad, and Christos Faloutsos.

Network similarity via multiple social theories. In Proc. Advances in Social
Networks Analysis and Mining 2013, ASONAM ’13, 2013.

[4] Phillip Bonacich. Factoring and weighting approaches to status scores and clique
identification. ¥ math soc, 2(1):113-120, 1972.

[5] Yue Cao, Thomas Andrew Geddes, Jean Yee Hwa Yang, and Pengyi Yang. Ensem-
ble deep learning in bioinformatics. Nat Mach Intell, 2(9):500-508, 2020.

[6] Supriyo Chakraborty and et al. Interpretability of deep learning models: A survey
of results. In SmartWorld, pp. 1-6, 2017. doi: 10.1109/UIC-ATC.2017.8397411.

[7] Daniel Filan, Stephen Casper, Shlomi Hod, Cody Wild, Andrew Critch, and Stuart
Russell. Clusterability in neural networks. arXiv preprint arXiv:2103.03386, 2021.

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-
ing for image recognition. In Proc. Int. Conf. on Computer Vision and Pattern
Recognition (CVPR), 2016.

[9] Petter Holme. Modern temporal network theory: a colloquium. The European
Physical Journal B: Condensed Matter and Complex Systems, 88(9):1-30, 2015.

[10] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proc. Int.
Conf. on Computer Vision and Pattern Recognition (CVPR), 2018.

[11] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In Proc. Int. Conf. on
Machine Learning (ICML), 2015.

[12] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel:

Convergence and generalization in neural networks. In Proc. Adv. in Neural

Information Processing Systems (NeurIPS), 2018.

Danai Koutra and Christos Faloutsos. Individual and Collective Graph Mining:

Principles, Algorithms and Applications. Synthesis Lectures on Data Mining and

Knowledge Discovery, Morgan & Claypool, 2017.

Danai Koutra, Tina Eliassi-Rad, and Christos Faloutsos. Node and graph similarity:

Theory and applications. In IEEE International Conference on Data Mining (ICDM)

tutorial, 2014.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Master’s

thesis, University of Toronto, 2009.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied

to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998. doi:

10.1109/5.726791.

Fei-Fei Li, Andrej Karpathy, and Justin Johnson.

https://www.kaggle.com/c/tiny-imagenet/data, 2017.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning

filters for efficient convnets. In Proc. Int. Conf. on Learning Representations (ICLR),

2017.

Yu Li, Chao Huang, Lizhong Ding, Zhongxiao Li, Yijie Pan, and Xin Gao. Deep

learning in bioinformatics: Introduction, application, and perspective in the big

data era. Methods, 166:4-21, 2019.

Yike Liu, Tara Safavi, Abhilash Dighe, and Danai Koutra. Graph summarization

methods and applications: A survey. ACM Comput. Surv., 51(3), 2018.

Gabriele Lohmann, Daniel S Margulies, Annette Horstmann, Burkhard Pleger, Jo-

eran Lepsien, Dirk Goldhahn, Haiko Schloegl, Michael Stumvoll, Arno Villringer,

and Robert Turner. Eigenvector centrality mapping for analyzing connectivity

patterns in fmri data of the human brain. PloS one, 5(4):¢10232, 2010.

Mark EJ Newman. Finding community structure in networks using the eigenvec-

tors of matrices. Physical review E, 74(3):036104, 2006.

[23] Maithra Raghu, Justin Gilmer, Jason Yosinski, and Jascha Sohl-Dickstein. Svcca:
Singular vector canonical correlation analysis for deep learning dynamics and
interpretability. In Proc. Adv. in Neural Information Processing Systems (NeurIPS),
2017.

[24] Bastian Rieck, Matteo Togninalli, Christian Bock, Michael Moor, Max Horn,
Thomas Gumbsch, and Karsten Borgwardt. Neural persistence: A complexity
measure for deep neural networks using algebraic topology. In Proc. Int. Conf. on
Learning Representations (ICLR), 2019.

(13

[14

[15

[16

=
)

Tiny imagenet.

(18

[19

[20

[21

[22



CIKM 22, October 17-21, 2022, Atlanta, GA, USA

[25] Polina Rozenshtein and Aristides Gionis. Mining temporal networks. In Proceed-
ings of the 25th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, KDD, pp. 3225-3226. ACM, 2019. URL https://rozensp.github.io/
KDD19- tutorial-temporal/.

Olga Russakovsky, Jia Deng, and et al. ImageNet Large Scale Visual Recognition
Challenge. IJCV, 115(3):211-252, 2015. doi: 10.1007/s11263-015-0816-y.

[27] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks
for large-scale image recognition. In Proc. Int. Conf. on Learning Representations
(ICLR), 2015.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with
neural networks. Proc. Adv. in Neural Information Processing Systems (NeurIPS),

[26

[28

Vahedian, Li, Trivedi, Jin, Koutra.

2014.

Thomas Unterthiner, Daniel Keysers, Sylvain Gelly, Olivier Bousquet, and Ilya
Tolstikhin. Predicting neural network accuracy from weights. arXiv preprint
arXiv:2002.11448, 2020.

Qin Wu, Xinggin Qi, Eddie Fuller, and Cun-Quan Zhang. “follow the leader”: A
centrality guided clustering and its application to social network analysis. The
Scientific World Journal, 2013, 2013.

[31] Jiaxuan You, Jure Leskovec, Kaiming He, and Saining Xie. Graph structure of

neural networks. In Proc. Int. Conf. on Machine Learning (ICML), 2020.
Tong Yu and Hong Zhu. Hyper-parameter optimization: A review of algorithms
and applications. arXiv preprint arXiv:2003.05689, 2020.


https://rozensp.github.io/KDD19-tutorial-temporal/
https://rozensp.github.io/KDD19-tutorial-temporal/

	Abstract
	1 Introduction
	2 Proposed NN Graph Representation
	3 Proposed Temporal Framework
	4 Empirical Analysis
	5 Conclusion
	References

