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Abstract. Motivated by recent progress in quantum information theory,
this article aims at optimizing trace polynomials, i.e., polynomials in non-
commuting variables and traces of their products. A novel Positivstel-
lensatz certifying positivity of trace polynomials subject to trace con-
straints is presented, and a hierarchy of semidefinite relaxations con-
verging monotonically to the optimum of a trace polynomial subject
to tracial constraints is provided. This hierarchy can be seen as a tra-
cial analog of the Pironio, Navascués and Acin scheme (Pironio et al. in
New J. Phys. 10(7):073013, 2008) for optimization of noncommutative
polynomials. The Gelfand-Naimark—-Segal (GNS) construction is applied
to extract optimizers of the trace optimization problem if flatness and
extremality conditions are satisfied. These conditions are sufficient to ob-
tain finite convergence of our hierarchy. The results obtained are applied
to violations of polynomial Bell inequalities in quantum information the-
ory. The main techniques used in this paper are inspired by real algebraic
geometry, operator theory, and noncommutative algebra.
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1. Introduction

The goal of this article is to solve the class of polynomial optimization prob-
lems with noncommuting variables (e.g., polynomials in matrices) involving
the trace. Applications of interest arise from quantum theory and quantum
information science [28,45,48] as well as control theory [16,57]. Further mo-
tivation relates to the generalized Lax conjecture [38], where the goal is to
obtain computer-assisted proofs based on noncommutative sums of squares in
Clifford algebras [46]. The verification of noncommutative polynomial trace
inequalities has also been motivated by a conjecture formulated by Bessis,
Moussa and Villani (BMV) in 1975 [8], which has been recently proved by
Stahl [58] (see also the Lieb and Seiringer reformulation [40]). Further efforts
focused on applications arising from bipartite quantum correlations [20], and
matrix factorization ranks in [21]. In a related analytic direction, there has
been recent progress on multivariate generalizations of the Golden—Thompson
inequality and the Araki-Lieb—Thirring inequality [26,55].

There is a plethora of prior research in quantum information theory
involving reformulating problems as optimization of noncommutative poly-
nomials. One famous application is to characterize the set of quantum correla-
tions. Bell inequalities [6] provide a method to investigate entanglement, which
allows two or more parties to be correlated in a non-classical way, and is often
studied through the set of bipartite quantum correlations. Such correlations
consist of the conditional probabilities that two physically separated parties
can generate by performing measurements on a shared entangled state. These
conditional probabilities satisfy some inequalities classically, but violate them
in the quantum realm [12].

Classically, polynomial optimization aims at minimizing a polynomial
over a set defined by a finite conjunction of polynomial inequalities, i.e., a
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basic closed semialgebraic set. Solving this optimization problem is NP-hard
in general [37]. Lasserre’s hierarchy [36] is a nowadays well established method-
ology to handle polynomial optimization in a practical way. This framework
consists of approximating the solution of the initial problem by considering a
hierarchy of convex relaxations. Each step of the hierarchy boils down to com-
puting the optimal value of a semidefinite program [1], that is, the optimum of
a linear function under linear matrix inequality constraints. As a consequence
of Putinar’s Positivstellensatz [52], if the quadratic module generated by the
polynomials describing the semialgebraic set is archimedean, the hierarchy of
semidefinite bounds converges from below to the minimum of the polynomial
over this semialgebraic set.

In the free noncommutative context (i.e., without traces), a polyno-
mial is positive semidefinite if and only if it can be written as a sum of
hermitian squares (SOHS) [23,42]. One can rely on such SOHS decomposi-
tions to perform eigenvalue optimization of noncommutative polynomials over
noncommutative semialgebraic sets, i.e., under noncommutative polynomial
inequality constraints. The noncommutative analogues of Lasserre’s hierarchy
[4,14,27,45,49] allow one to approximate as closely as desired the optimal
value of such eigenvalue minimization problems. In [45], Navascués, Pironio
and Acin provide a way to compute bounds on the maximal violation levels of
Bell inequalities: they first reformulate the initial problem as an eigenvalue op-
timization one and then approximate its solution with a converging hierarchy
of semidefinite programs, based on the noncommutative version of Putinar’s
Positivstellensatz due to Helton and McCullough [27]. This is the so-called
Navascués—Pironio—Acin (NPA for short) hierarchy and can be viewed as the
“eigenvalue” version of Lasserre’s hierarchy. This leads to a hierarchy of upper
bounds on the maximum violation level of Bell inequalities (see also [15,53]).
Further extensions [4,14,49] have been provided to optimize the trace of a
given polynomial under positivity constraints. NCSOStools [7,13] can compute
lower bounds on minimal eigenvalues or traces of noncommutative polynomial
objective functions over noncommutative semialgebraic sets.

This work greatly extends these frameworks to the case of optimiza-
tion problems involving trace polynomials, i.e., linear combinations of prod-
ucts of matrices and matrix traces. A very simple example of such polynomial
is tr(Ay) - tr(A3) + (tr(A142))?, where A; and Ay are noncommutative vari-
ables, e.g., A1 and A5 can be both quantum physics operators. One important
underlying motivation is that trace polynomials are involved in several prob-
lems arising from quantum information theory. For instance, [19] presents a
framework to obtain the limit output states for a large class of input states
having specific sets of parameters. To obtain these limits, one needs to compute
bounds for generalized traces of tensors. One way to model such generalized
traces is to consider a reformulation as an optimization problem involving
trace polynomials. In this problem, trace polynomials arise as cost functions
but they can also appear in the constraints. Convex relaxations of trace poly-
nomial problems can be obtained as in the NPA hierarchy: one can associate
a new variable to each word trace (e.g., tr(Ay), tr(A;4s) and tr(A2) in the
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above example), then incorporate the initial constraints into the semidefinite
matrix defined in the NPA hierarchy. Moreover the noncommuting operators,
denoted by A;, C in [48], fulfill causal constraints, which leads to equality
constraints such as

tr<Ai1Ai2 A ClekZ s Okm> — tr(AilAiz s Aim) tr(Clekz s Ckm) =0.

This results in a so-called scalar extension of the NPA hierarchy, which
allows the authors to successfully identify correlations not attainable in the
entanglement-swapping scenario. However, [48] does not provide a proof of
convergence for this hierarchy. In [28], the author focuses on the multilinear
case and obtains a characterization of all multilinear equivariant trace poly-
nomials which are positive on the positive cone. In contrast with [28], we
consider optimization of nonlinear trace polynomials over trace polynomial
inequalities after assuming that the quadratic module generated by the poly-
nomials involved in the set of constraints is archimedean. In a closely related
work in real algebraic geometry [34], the first and third author derive several
Positivstellensétze for trace polynomials positive on semialgebraic sets of fixed
size matrices. In particular, [34] establishes a Putinar-type Positivstellensatz
stating that any positive polynomial admits a weighted SOHS decomposition
without denominators. In the dimension-free setting, finite von Neumann al-
gebras and their tracial states provide a natural framework for studying tra-
cial polynomial inequalities. This paper characterizes trace polynomials which
are positive on tracial semialgebraic sets, where the initial polynomials and
constraints involve freely noncommutative variables and traces, and the eval-
uations are performed on von Neumann algebras.

Tm

Contributions

A trace polynomial is a polynomial in symmetric noncommutative variables
T1,...,T, and traces of their products. Thus naturally each trace polynomial
has an adjoint. A pure trace polynomial is a trace polynomial that is made
only of traces, i.e., has no free variables x;. For instance, the trace of a trace
polynomial is a pure trace polynomial, e.g.

f=a1m02? — tr(ze) tr(zy2o) tr(zias) oz,
tr(f) = tr(azfzs) — tr(ws) tr(z122)” tr(zfas),
f* = alwoxy — tr(wo) tr(zywe) tr(x?as )2 oo

Given a set of symmetric trace polynomials S, let Dg be the set of all
tuples (X1,...,X,), where X, are operators from a finite von Neumann alge-
bra with a given tracial state, that satisfy s(X1,...,X,) = 0 for all s € S.

In Sect. 3 we state and prove a pure trace variant of the Helton—-McCullough
[27] noncommutative version of Putinar’s Positivstellensatz [52]: we obtain a
representation of pure trace polynomials positive on a set described by pure
trace polynomial inequalities, using weighted sums of squares. This first (non-
cylic) Positivstellensatz is valid under the classical assumption that the qua-
dratic module generated by the polynomials involved in the set of constraints is
archimedean (Corollary 3.6). Our proof relies on the classical Kadison-Dubois
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representation theorem (see e.g. [41]) and the Gelfand-Naimark-Segal (GNS)
construction.

Then, we derive in Sect. 4 a novel, cyclic Positivstellensatz for the more
general case of trace polynomials which are positive on tracial semialgebraic
sets. A subset of symmetric trace polynomials M€ is a cyclic quadratic mod-
ule if 1 € MY, MY 4+ MY C MY tr(MY) C MY and hMY°h* C
M€ for every trace polynomial h. In analogy with the commutative set-
ting we say that M is archimedean if N — 22 — .- — 22 € M%¢ for some
N > 0. Observe that each M contains all sums of elements of the form
tr(hihy) - - - tr(heh))hohy for h; € T. Lemma 4.1 below describes the smallest
cyclic quadratic module M®(S) containing a given set of generators S C T.

Theorem A (Corollary 4.8). Let MY be an archimedean cyclic quadratic
module, and let a be a symmetric trace polynomial. The following are equiva-
lent:

(i) a =0 on Dpgeye;
(ii) for every € > 0 there exist univariate sums of squares si,s2€ R[t],
depending on €, such that

a = s1(a) — s2(a), e — tr(sz(a)) € M.

In Sect. 5, we rely on this Positivstellensatz to design a converging hier-
archy of semidefinite relaxations to approximate from below the minimum of
a pure trace polynomial under pure trace polynomial inequality constraints.
An extension of this hierarchy to the more general case of trace polynomial
constraints is presented in Sect. 5.3.

Theorem B (Corollary 5.7). Let S be a set of symmetric trace polynomials, and
a a pure trace polynomial. The Positivstellensatz-induced hierarchy of semidef-
inite programs produces a convergent increasing sequence with limit infp, a.

Along the way, we present in Sect. 5.2 a tracial variant of the finite-
dimensional GNS construction under flatness and extremal assumptions. We
use it to obtain finite convergence of our hierarchy as well as exactness of the
relaxed solution, and design an algorithm to extract minimizers. Finally, in
Sect. 6 we give a simple example demonstrating our theoretical results, and
present an application of our techniques to quantum information theory: we
use tracial optimization to find upper bounds on violations of polynomial Bell
inequalities.

2. Notation and Basic Definitions

We begin by introducing basic notions about noncommutative polynomials,
trace polynomials, and semialgebraic sets that will be used throughout the
paper.
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2.1. Noncommutative Polynomials and Trace Polynomials

Let us denote by My, (resp. Si) the space of all real (resp. symmetric) matrices
of order k. The normalized trace of a matrix A € My, is given by trA =
%Zle A; ;. For a fixed n € N, we consider a finite alphabet z1,...,z, and
generate all possible words of finite length in these letters. The empty word
is denoted by 1. The resulting set of words is the free monoid (z), with z =
(z1,...,2n). We denote by R(z) the set of real polynomials in noncommutative
variables, abbreviated as nc polynomials. The algebra R(z) is equipped with
the involution * that fixes RU {z1,...,x,} point-wise and reverses words, so
that R(z) is the x-algebra freely generated by n symmetric letters x1, ..., x,.

We now introduce some algebraic terminology to deal with the trace,
following [50] (see also [33,34]). Two words u,v € (z) are called *-cyclically

equivalent (u RN v) if v or v* can be obtained from u by cyclically rotating the
letters in u. For example, all words of length 3 are %-cyclically equivalent, but

T1ToT3T4 Y rox1x3x4. We denote by T the commutative polynomial algebra
in infinitely many variables tr(w) with w € (z), up to x-cyclic equivalence, that
is, T := R[tr(w), w € (z)/cyc*]. We also let T := T(z) be the free T-algebra on
z. Elements of T are called pure trace polynomials, and elements of T are trace
polynomials. For example, ¢t = tr(z?) — tr(z1)? € T and 2% — tr(aq)z; — 2t €
T = T(z1). The involution on T, denoted also by *, fixes {z1,...,2,} UT
point-wise, and reverses words from (z). The set of all symmetric elements of
T is defined as SymT := {f € T : f = f*}. A linear functional L : T — R
is said to be tracial if L(tr(f)) = L(f) for all f € T. We also consider the
universal trace map 7 defined by

7:T—T,
[ te(f).

A linear functional L : T — R is tracial if and only if L o 7 = L. Such an
L is determined by L|t : T — R being an (arbitrary) linear functional. The
functional L is called unitalif L(1) = 1 and is called symmetricif L(f*) = L(f),
for all f belonging to the domain of L.

2.2. Tracial Semialgebraic Sets and von Neumann Algebras

Given S C Sym T, the matricial tracial semialgebraic set Dg associated to S
is defined as follows:

Ds:=(J{A=(A1,...,A,) €S} : 5(4) = 0 for all 5 € S}. (2.1)
keN

While (2.1) looks like a natural candidate for testing positivity of tracial poly-
nomials, the failure of Connes’ embedding conjecture [29] hinders the existence
of a reasonable Positivstellensatz for (2.1) by [32]. Instead of just matrices of
all finite sizes, one is thus led to include bounded operators, similarly as in the
trace-free setting [27]. Since we deal with tracial constraints, the considered
bounded operators need to admit traces. The natural framework is therefore
given by tracial von Neumann algebras, which we discuss next.
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A real von Neumann algebra F [2] is a unital, weakly closed, real, self-
adjoint subalgebra of the (real) algebra of bounded linear operators on a com-
plex Hilbert space, with the property F NiF = {0}. We restrict ourselves to
separable Hilbert spaces, implying that all von Neumann algebras have sepa-
rable preduals. Much of the structure theory of real von Neumann algebras can
be transfered from complex von Neumann algebras [59, Chapter 5]. Namely,
the complexification of a real von Neumann algebra yields a complex von Neu-
mann algebra with an involutory x-antiautomorphism; conversely, the fixed
set of an involutory x-antiautomorphism on a complex von Neumann algebra
is a real von Neumann algebra. A real von Neumann algebra is finite if in
its complexification, every isometry is a unitary. By [59, Theorem 2.4], a von
Neumann algebra is finite if and only if it admits sufficiently many normal
tracial states, which will play an important role in this article.

A (real) von Neumann algebra is a factor if its center consists of only the
(real) scalar operators. By [59, Theorem 2.6], a factor is finite if and only if it
admits a faithful normal tracial state; in this case, such a state is unique, and
is called the trace of the factor. Finally, a II;-factor is an infinite-dimensional
finite factor (other finite factors are of type I,,, which are n x n complex
matrices in the complex setting, and n x n real matrices or § X 3 quaternion
matrices in the real setting). In this article we consider positivity on operator
semialgebraic sets. These are defined as follows (cf. [7, Definition 1.59]):

Definition 2.1. A tracial pair (F,7) consists of a real finite von Neumann
algebra F and a faithful normal tracial state 7 on F [59, Chapter 5].

Given S C SymT let D?T be the set of all self-adjoint tuples X =
(X1,...,Xn) € F™ making s(X) a positive semidefinite operator for every
s € S; here tr is evaluated as 7. The von Neumann semialgebraic set DEY
generated by S is defined as

o | D27,
(F,7)

where the union is over all tracial pairs (F, 7). Analogously, we define
. F
Dyt = DL,
f

where the union is over all IIj-factors (which come equipped with unique
traces).

Note that finiteness of S is not needed at this stage. Unlike in the free
case [25], these tracial semialgebraic sets are closed neither under direct sums
nor reducing subspace compressions; for example, if s = tr(z1) tr(z2), then

5(3,1) >0 and s(—1,-2) >0, but sB3e-1,1®-2)<0;
s(=2®1,1®-2)>0, but s(-2,1)<0 and s(1,-2)<0.
To sidestep this technical problem we make use of the following well-known
fact that is all but stated in [17, Theorem 2.5].

Proposition 2.2. FEvery tracial pair embeds into a 111 -factor.
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Proof. Let (F,7) be a tracial pair and (F, 7) its complexification. If L(Z) is the
complex von Neumann group algebra of Z [59, Definition 7.4], the free prod-
uct construction (see e.g. [17, Section 1]) along 7 and the trace on L(Z) yields
the von Neumann algebra Fx L(Z) with a normal faithful tracial state whose
restriction to F equals 7. Also, both L(Z) and F admit natural involutory
*-antiautomorphisms, which induce an involutory x-antiautomorphism F x
L(Z). Tts fixed set is a real von Neumann algebra algebra containing (F,7),
and it is a (real) II;-factor if F  L(Z) is a (complex) IT;-factor. If dim F < 2,
then F € {C,C & C} and F * L(Z) € {L(Z), L(Zy * Z.)} is a II;-factor. if
dim F > 3, then F % L(Z) is a II;-factor by [17, Theorem 2.5] (and the proof
of [17, Lemma 2.9]). O

Remark 2.8. A reader might rightfully wonder why the setup is restricted to
reals instead of complexes. Since every complex von Neumann algebra is a real
von Neumann algebra and the real part of a complex tracial state is a real tra-
cial state, all the conclusions in this paper also hold for evaluations in complex
von Neumann algebras. Likewise one could consider complex trace polynomi-
als, but the corresponding formalism for trace symbols would be more intricate
(namely, trace symbols would not be fixed under the involution, so they would
need to be split in real and imaginary part, and relations connecting both with
respect to x would need to be imposed). However, with the view towards op-
timization and implementation using the standard semidefinite programming
solvers it is more convenient to derive results within the real framework.

3. Non-cyclic Positivstellensatz for Pure Trace Polynomials

In this section we provide our first Positivstellensatz, Theorem 3.5, for pure
trace polynomials based on quadratic modules from real algebraic geometry
[41]. A subset M C T is called a quadratic module if 1 € M, M + M C M
and a?M for all @ € T. Given an archimedean quadratic module M C T (in
the usual commutative sense, meaning that for each f € T there is m > 0 such
that m £ f € M), we consider the real points of the real spectrum Sper,, T,
namely the set xy ¢ defined by

xm = {p: T — R| ¢ homomorphism, p(M) C R>g, ¢(1) =1},  (3.1)
The next proposition is the well-known Kadison-Dubois representation

theorem, see e.g. [41, Theorem 5.4.4].

Proposition 3.1. Let M C T be an archimedean quadratic module. Then, for
all a € T, one has

Vo€ xm wla) >0 & Ve>0 a+ee M.

A homomorphism ¢ : T — R is determined by the “tracial moments”
p(tr(w)) for w € (z). In this sense, the following variant of [22, Theorem 1.3]
is a solution of the tracial moment problem. In the given formulation, it is the
dimension-free analog of the extension theorem [34, Theorem 4.8].



Vol. 23 (2022) Optimization Over Trace Polynomials 75

Proposition 3.2. Let ¢ : T — R be a homomorphism. Then there are a tracial
pair (F,7) and X = X* € F™ such that p(a) = a(X) for all a € T if and only
if the following holds:

(a) @(tr(pp*)) =0 for all p € R(z);

(b) liminfy o %/p(tr(z3")) < oo forj=1,...,n.

Proof. (=) This is trivial since 7(AA*) > 0 and |7(A%F)| < ||A[|?* for every
A€ Fand keN.
(«<=) Denote

a = max {1, mjaxlikrgior.}f 2% go(tr(m?k))} .

Let ¢ : R(x) — R be a linear functional defined by
p(tr(w
) o £0E0)

alvl

for w € (z). Then ¢ is a symmetric tracial functional on R(z), ¢(pp*) > 0 for
every p € R(z) and max; liminfj,_, (b(x?k) < 00. By [22, Theorem 1.3] (or
rather its real version) there is a tracial pair (F,7) and a tuple of self-adjoint
contractions Y € F™ such that ¢(p) = 7(p(Y)) for all p € R{z). Then X = aY
satisfies p(tr(p)) = 7(p(X)) for p € R(z) and thus ¢(a) = a(X) for a € T.

O

Definition 3.3. Given S C T and N > 0 let
S(N) := SU {tr(pp*) | p € R{z)} U {NF —tr(x?k) |[1<j<mn, ke N}CT.
(3.2)
For S C SymT let
S[N]:==SU{N—=z7[j=1,....n} CT. (3.3)
Lemma 3.4. The quadratic module M(S(N)) C T is archimedean for every
S,N.
Proof. We need to show that for every w € (z) there exists m > 0 such that
m =+ tr(w) € M(S(N)). (3.4)
Write w = xfll xff for i1 # ig # - -+ # ig; we prove (3.4) by induction on Z.
If £ =1, (3.4) holds because
NF +1+2tr(2h) = (N7 = tr(2a37)) + tr ((2F £1)%).

kl'. k:)\

kxt1 ke
i iy

and wy = Tyl

For £ > 1 denote A = [£], and let w; = z
Then

*\ 2k1 k2 kf)\—l 2](7,\ k)xfl kQ
tr(wiwy) = tr (xl-l B N P A e

and similarly for tr(wew3); note that 2(A — 1),2(¢{ — A — 1) < £. Hence by
the induction hypothesis there exist mi, ma > 0 such that m; — tr(w;w}) €

M(S(N)). Then

(m1 + m2)E2tr(w) = (m1 — tr(wrwy))+(ma — tr(wows))+tr (w1 w3 ) (wi + ws))
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lies in M(S(N)). O

Recall that the Helton-McCullough archimedean Positivstellensatz [27]
states that any polynomial in noncommutative variables positive on a basic
semialgebraic set belongs to the quadratic module generated by the polynomi-
als describing this set, under the assumption that this module is archimedean.
We are now ready to prove our first theorem, the purely tracial analog of this
noncommutative Helton-McCullough Positivstellensatz.

Theorem 3.5. Let S C T and N > 0 be given. Then for a € T the following
are equivalent:

(i) a(X) >0 forall X € DgJ[VN] ;

(i) a(X) >0 for all X € Dgjy;
(i) a4+¢e € M(S(N)) for alle > 0.

Proof. (1)< (ii) holds by Proposition 2.2. (iii)=-(i) If X € D;’KI], then

forallse S,peR(z), 1 <j<mnandkeN,soa(X)>0.

(i)=-(iii) Suppose a + ¢ ¢ M(S(N)) for some £ > 0. By Proposition 3.1,
there exists a unital homomorphism ¢ : T — R with ¢(M(S(N))) € R>o and
p(a) < 0. Hence

s(X) >0, 7T(pX)p(X)) =0, 7(X7*)<N*

p(tr(pp)) >0, p(tr(a}")) < N*
for all p € R(z), 1 < j <n and k € N. Hence by Proposition 3.2 there exist a
tracial pair (F,7) and X € F™ such that ¢(b) = b(X) for all b € T. Moreover,
the proof of Proposition 3.2 implies || X[ < VN for 1 < j < n. Furthermore,
s$(X) = ¢(s) > 0 for every s € S implies X € Dg[’&]. Finally, a(X) = ¢(a) < 0.
O

Since M(S(N7)) € M(S(Nz)) for Ny > Na, we obtain the following:

Corollary 3.6. Let S C T and a € T. The following are equivalent:
(i) a(X) >0 for all X € DEN;

(ii) a(X) >0 for all X € DY';

(i) a4+¢ € M(S(N)) for alle >0 and N € N.

4. Cyclic Positivstellensatz for Trace Polynomials

In this section we prove a Positivstellensatz for trace polynomials that is less
inspired by the commutative theory than the one from Sect. 3 and relies more
on the tracial structure of trace polynomials. First we introduce the notion of
a cyclic quadratic module. A subset M C Sym T is called a cyclic quadratic
module if

1€ MY, MY 4 MY C M, a*M¥a & MY Va € T, tr(MYe) C MY,

Given S C T let M¢(S) be the cyclic quadratic module generated by S, i.e.,
the smallest cyclic quadratic module in T containing S. A cyclic quadratic
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module M€ is called archimedean if for all a € SymT there exists N > 0
such that N —a € M%°. We start with a few preliminary results.

Lemma 4.1. Let S C T.
(1) Elements of M<°(0) are precisely sums of

tr(hah?) - - tr(hohl ) hohl

for h; € T.
(2) Elements of MY(S) are precisely sums of

q1,  hisihy, tr(hesahy)ge

for h; €T, g; € M), s; € S.
(3) Elements of tr(M°(S)) = MY°(S)N T are precisely sums of

tr(hihy) - - -tr(heh}) tr(hoshg)
for h; € T and s € S.
Proof. Straightforward. O

Note that expressions such as tr(hysihy) tr(hesehs) for h; € T and s; € S
do not belong to M%¢(S). We emphasize that computing such product rep-
resentations in our context would be very hard in practice. Indeed, even if
one bounds the degrees of the h;, computing their coefficients boils down to
solving a nonlinear semidefinite program, which is impractical. Second, even in
the classical commutative case quadratic modules (such as those appearing in
Putinar’s Positivstellensatz) are not closed under multiplication, by contrast
with Schmiigden type representations [56] in which one allows multiplication
of polynomials involved in the set of constraints. Admitting products of con-
straints in sums of squares positivity certificates increases computational cost
only modestly, but from a theoretical viewpoint yields little to no advantages
(in the archimedean case), which is why quadratic modules are preferred from
a practical point of view.

Proposition 4.2. A cyclic quadratic module M€ is archimedean if and only
if there exists N € N such that N — " | 2% € M¥¢.

i=1%yg

Proof. (=) is obvious. For the converse assume N — """ xf € M€ for some
N € N. Then the set M¥°NR(z) is an archimedean quadratic module. Thus,
for all @ = a* € R(z) there exists N € N such that

N —a e M¥°NR(z). (4.1)
In addition, the set H of bounded elements, defined by
H={aecT|3NeNst. N—-a‘ac MY},

is closed under involution, addition, subtraction and multiplication, i.e., is a
x-subalgebra of T [61]. A symmetric element b € T is in H if and only if there
is some N € N with N b € MY°,

For every a € (X) we have

tr(aa*) — tr(a)? = tr((a — tr(a))(a — tr(a))*) € M. (4.2)
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By (4.1) and the fact that M€ is cyclic, there is some N € N with N —
tr(aa*) € M%°. Adding this to (4.2) yields N — tr(a)? € M€, Thus, by the
definition of H, tr(a) € M. The desired result now follows since H is a
subalgebra of T. O

Proposition 4.3. Let (F,7) be a tracial pair and X = X* € F. The following
are equivalent:

(i) X =0;

(ii) 7(XY) > 0 for all positive semidefinite contractions Y € F;

(iii) 7(Xp(X)?) >0 for all p € R[t].

Proof. (1)=-(ii) is clear and (ii)=-(iii) holds since for p(X) # 0,

r(Xp(X0)?) = [pCOI 7 (X (Ip(X) [ 7?p(X)?) )

and ||p(X)||72p(X)? is a positive semidefinite contraction. To prove (iii)=(i),
let 71 C F be the weak operator topology closure of the algebra generated
by X. Then F; is an abelian von Neumann algebra and therefore (Fy, 7|7, ) =
(L°°(X, p), [ -dp) for some standard measure space (X, ) by [59, Theorem
I1.1.18]. For f € L>®(X,p) we have f = 0 if and only if [ fg*du > 0 for
all g € L (X, u). If f is the image of X under the above isomorphism, then
{p(f) | p € R[t]} is dense in Fy. Hence [ fp(f)*du > 0 for all univariate
polynomials p implies f = 0, so (iii)=-(i) holds. O

The following is the cyclic version of the Helton-McCullough theorem
[27]. Note that while the constraints in Theorem 4.4 are arbitrary trace poly-
nomials, the objective function needs to be a pure trace polynomial. A direct
analog for non-pure trace objective polynomials fails, see Example 4.6 below.

Theorem 4.4. Let M<° C SymT be an archimedean cyclic quadratic module
and a € T. The following are equivalent:

(i) a(X) >0 for all X € DYeye;
(i) a(X) > 0 for all X € DI
(iii) a +¢e € M€ for alle > 0.

Proof. Implications (iii)=-(i)=-(ii) are straightforward, so consider (ii)=-(iii).
By Proposition 4.3 we have D}\I/}Lyg = Dg% Meve): Since M€ is archimedean,
there exists IV > 0 such that N — xv € MY for j =1,...,n. Consequently

_ plh

M, Il
Dptere =Dy br(Meve) V]

Meye T Meye [N]

For every j, k we have

NF — tr(x ((ZNk 1 21) Nx§)> € M.

Consequently tr(M°)(N) C MY and thus M (tr(MY)(N)) C M. Then
a+e € M for all € > 0 by Theorem 3.5. O



Vol. 23 (2022) Optimization Over Trace Polynomials 79

For the reader unfamiliar with real algebraic geometry and noncommu-
tative moment problems, we present a self-contained proof of Theorem 4.4 re-
lying only on convex separation results and basic properties of von Neumann
algebras in Appendix A.

Having reached this point, it is tempting to think that membership in
M€ is also enough to characterize all positive tracial polynomials, not just
the pure ones. As it turns out, this intuition is wrong: in the following lines,
we provide a simple counterexample. Given a set of symmetric polynomials
S C R{x) let M(S) denote the (free) quadratic module generated by S [7,
Section 1.4]. Hence M(S) is the smallest set that contains S U {1}, is closed
under addition, and f € M(S) implies hfh* € M(S) for every h € R(x).

Lemma 4.5. Let S1 C T and Sy C R(z). If s(0) > 0 for all s € Sy, then
MCyC(Sl U 52) n R<£> = M(SQ)

Proof. Let m; : T — R be given by m1(a) = a(0), and consider the homomor-
phism m = m; ®idr(g) : T — R(z). Then 7(MY(S; U Ss)) = M(S2) because
m1(51) € Rxg and 7|g(yy = idg(yy. So the statement follows. O

Ezxample 4.6. Let n = 1. Let M be the archimedean cyclic quadratic module
in Sym T generated by

{127} U {te(z1p*(z1)) | p € R[]}
By Proposition 4.3, X; € Df/izyc implies X; > 0 for any tracial pair (F, 7).

On the other hand, if ¢ € [0,1) then z; + & ¢ M({1 — 22}) and therefore
1+ € ¢ MY by Lemma 4.5.

We emphasize that Example 4.6 shows that Theorem 4.4 does not hold in
general for non-pure objectives. To mitigate the absence of a non-pure analog
of Theorem 4.4, we require the following technical lemma.

Lemma 4.7. Lete > 0 and n = [1/e]. If so = §(t —1)*" and s; = sy +1, then
(a) s1 is positive on R, and thus a sum of (two) squares in R[t];
(b) § — s is nonnegative on [0,1], and thus an element of M({t,1 —t}).

Proof.

(a) Clearly si(a) > 0 for a > 0. Since %2(a) = en(a — 1)*"~! < —1 for
every o < 0, we also have sy(a) > —a for @ < 0. So 7 is positive on R
and thus a sum of two squares by an easy application of the fundamental
theorem of algebra (see e.g. [41, Proposition 1.2.1]).

(b) £ — s2 is nonnegative on [0, 1] because (o — 1)*" < 1 for @ € [0,1].
Since t(1 —t) = (1 — )%t + t3(1 — t) € M({t,1 — t}), a result of Fekete
[51, Problem VI1.46] (see [41, Proposition 2.7.3] for a modern treatment)
implies § — s2 € M({t,1 —t}).

O

Although the tracial version of the Helton-McCullough Positivstellen-
satz [27] fails, we have the following positivity certificate for non-pure trace
polynomials.
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Corollary 4.8. Let M<° C SymT be an archimedean cyclic quadratic module
and a € SymT. The following are equivalent:

(i) a(X) = 0 for all X € DYeye;
(i) a(X) =0 for all X € Diieye;
(iii) for every e > 0, there exist sums of (two) squares s1, sz € R[t] such that

a=s1(a) — s2(a), e —tr(sa(a)) € MY (4.3)

(iv) for every € > 0, there exist sums of (two) squares s1,s2 € R[t] and
q € MY such that

tr(ay) + & = tr(si(a)y + s2(a)(1 —y)) + ¢ (4.4)

where y is an auziliary symmetric free variable. That is, tr(ay) + € is in
the cyclic quadratic module generated by M%< y, 1 —y (inside the free
trace ring generated by x,y).

Proof. (ii)<(i) holds by Proposition 2.2. To prove (iii)=(iv), note that (4.3)
implies (after multiplication by y and taking the trace) that tr(ay) + ¢ =
tr(si(a)y + s2(a)(1 — y)) + € — tr(s2(a)). The implication follows by taking
q =¢c —tr(s2(a)) € MY (iv)=(i) Let (F,7) be a tracial pair. If tr(ay) + ¢
belongs to the cyclic quadratic module generated by M€ y. 1 — y for every
e > 0, then tr(a(X)Y) > 0 for all X € Dﬂ:yc and positive semidefinite
contractions Y € F. Therefore a(X) = 0 for all X € D/]\:/izyc by Proposition
4.3.

(i)=-(iii) Since M ¢ is archimedean, there exists N > 0 such that N—a €
M. After rescaling a we can without loss of generality assume that 1 —a €
M, Suppose that (i) holds. Given an arbitrary e > 0 let s1, s2 € R[t] be sums
of squares as in Lemma 4.7. Then there are sums of squares ss, s4, 5 € RJt]
such that

§1— 82 =1, %—82:S3+84t+85(1—t).

By Proposition 4.3 and Theorem 4.4 we have tr(s4(a)a) + 5§ € M. Hence
(s3(a) + tr(ss(a)a) + 5) + s5(a)(1 — a) € M°
and therefore

a = s1(a) — s2(a), g —tr(sz(a)) € M€, O

5. SDP Hierarchy for Trace Optimization

In this section we apply Theorem 3.5 to optimization of pure trace objective
functions subject to (pure) trace constraints and a norm boundedness condi-
tion. Doing so, we obtain a converging hierarchy of SDP relaxations in Sect. 5.1.
When flatness occurs in this hierarchy, one can extract a finite-dimensional
minimizer as shown in Sect. 5.2. Finally, we apply Proposition 4.3 to handle
the more general case of trace polynomials subject to trace constraints and a
norm boundedness condition in Sect. 5.3.
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We define the set of tracial words (abbreviated as T-words) by {] ], tr(u;)v
u;, v € (z)}, which is a subset of T. The set of pure trace words (abbreviated
as T-words) is the subset of T-words belonging to T. For instance, tr(z1)? is a
T-word and tr(zy)z; is a T-word. For u;,v € (), we define the tracial degree
of T, tr(u;)v as the sum of the degrees of the u; and the degree of v. The
tracial degree of a trace polynomial f € T is the length of the longest tracial
word involved in f up to cyclic equivalence. Let us denote by WdT (resp. WdT)
the vector of all T-words (resp. T-words) of tracial degree at most d w.r.t. to
the degree lexicographic order. Finally, let Ty (resp. T4) denote the span of
entries of W5 (resp. W) in T (resp. T), and let 0¥ (n, d) (resp. o™ (n,d)) the
dimension of Ty (resp. Tyq), that is, the length of W7 (resp. WT).

Precise values of o™ (n,d) < o"(n,d) are related to bracelet counting
in combinatorics. To get a crude estimate, notice that the number of tracial
words of degree d is at least n® and at most n? - 2¢. Thus

nd+1 -1 (Qn)dJrl -1
2n—1

SUT(n,d) <
n—1

We introduce the notion of trace Hankel and (pure) trace localizing ma-
trices, which can be viewed as tracial analogs of the noncommutative localizing
and Hankel matrices (see e.g. [7, Lemma 1.44]). Given s € T, let us denote
ds := [deg s/2]. To s and a linear functional L : To4 — R, one associates the
following three matrices:

(a) the tracial Hankel matriz M (L) is the symmetric matrix of size o™ (n, d),
indexed by T-words u,v € Tq, with (MJ(L))y,, = L(tr(u*v));

(b) if s € T, then the pure trace localizing matriz MdT_ds (s L) is the symmetric
matrix of size 0% (n,d — d,), indexed by T-words u,v € T4_g4., with
(Mg_ds(s L))uw = L(uvs);

(c) the trace localizing matriz My_, (s L) is the symmetric matrix of size
o'(n,d — dy), indexed by T-words u,v € Tg_q,, with (My_, (5 L))y, =
L(tr(u*sv)).

Definition 5.1. A matrix M indexed by T-words of degree < d satisfies the
tracial Hankel condition if and only if

M., = My, . whenever tr(u*v) = tr(w*z). (5.1)

Remark 5.2. Linear functionals on T4 and matrices from S,r(, 4) satisfying
the tracial Hankel condition (5.1) are in bijective correspondence. To a lin-
ear functional L : Tyq — R, one can assign the matrix MY5(L), defined by
(ME(L))u» = L(tr(u*v)), satisfying the tracial Hankel condition, and vice
versa.

One can relate the positivity of L and the positive semidefiniteness of its
tracial Hankel matrix M7 (L). The proof of the following lemma is straightfor-
ward and analogous to its free counterpart [7, Lemma 1.44].

Lemma 5.3. Given a linear functional L : Toqg — R, one has L(tr(f*f))

>0
for all f € Tq, if and only if, M5(L) = 0. Given s € T, one has L(a*s) > 0
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for all a € Ty_q,, if and only if, MdTids(sL) = 0. Given s € T, one has
Ltr(f*sf)) >0 for all f € Tg_q,, if and only if, Mgids(s L) = 0.

5.1. SDP Hierarchy for Pure Trace Polynomial Optimization

For a finite S C T, N > 0 and d € N define
K
M(S(N))gq := {Za?si |K €N, a; €T, s; € S(N), deg(a?s;) < 2d
i=1
(5.2)
Given b € T and p € R{z), note that b tr(pp*) = tr((bp)(bp)*). Therefore,
elements of M(S(N))4 correspond to sums of elements of the form

ats, a3(N* —te(a3?)), (1), (5.3)
which are of degree at most 2d, fora; € T, s € 5,1 <j<n,keN, feT.
Given a pure trace polynomial a € T, one can then use M(S(N))q for
d =1,2,... to design a hierarchy of semidefinite relaxations for minimizing
a € T over the von Neumann semialgebraic sets D;l[\IN] or Dg[lN].

Let us define api, and all! as follows:

amin := inf{a(A) | A € Dgn1}, (5.4)
't = inf{a(A) | A € DH[N]} inf{a(A) | A€ DVI[\I ]} (5.5)

min

Here the equality in (5.5) holds by Proposition 2.2. Since Dg(y is a subset of

D‘él[\IN} one has al! < apin. Let duin := max{d, : s € {a} U S(N)}. Then,
I,

one can under-approximate a},
indexed by d > dmin:

via the following hierarchy of SDP programs,

Amin,d = sup{m | a —m € M(S(N))a}. (5.6)
Lemma 5.4. The dual of (5.6) is the following SDP problem:
s
st. (MY(L)uw = (ME(L))w.z, whenever tr(u*v) = tr(w*z),
(Mg(L))11 =1, (5.7)

M
M) 4, (sL) =0, forallsé€S,
My (N* —tr(a3*) L) = 0, forallj=1,...,nk<d.
Proof. Let us denote by (M(S(N))q)Y the dual space of M(S(N))4. From
(5.3), one has
(M(S(N))a)¥ ={L:Tey — R | L linear,
L(azs) >0,Vse S,Va € Ty_q,,
L(a®(N* —tr(23%)) > 0,Vj = 1,...,n,Vk < d,Va € Tq_p,
L(tr(ff*)) =2 0,Vf € Ta}
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By using a standard Lagrange duality approach, we obtain the dual of SDP
(5.6):

Amin.d = su m = su inf m-+ L(a—m 5.8
. a—mEMFS(N))d mp LE(M(S(N))d)v( ( )) ( )
< inf sup (m+ L(a —m 5.9
S mp( ( ) (5.9)

= inf L(a) +supm(1 — L(1 5.10
peondI (@) +supm(1 = L(1) (5.10)
=inf{L(f) | L € (M(S(N))a)", L(1) = 1}, (5.11)

The second equality in (5.8) comes from the fact that the inner minimization
problem gives minimal value 0 if and only if a—m € M(S(N))q. The inequality
in (5.9) trivially holds. The inner maximization problem in (5.10) is bounded
with maximum value 0 if and only L(1) = 1. Eventually, (5.11) is equivalent
to SDP (5.7) by Remark 5.2 and Lemma 5.3. O

Before proving that SDP (5.6) satisfies strong duality, we recall that an
e-neighborhood of 0 is the set A defined for a given & > 0 by:

Neo= {A::(Al,...7An)eSZ:sz—zn:Af>0}.

kEN i=1
Lemma 5.5. If f € T vanishes on an e-neighborhood of 0, then f = 0.

Proof. We rely on the standard multilinearization trick and the fact that a
trace polynomial f € T, cannot be a trace identity on (d + 1) x (d + 1)
matrices, as a consequence of [50, Theorem 4.5 (b)]. Since f vanishes on all
n-tuples of (d + 1) x (d + 1) matrices A € N, one has f = 0. O

Theorem 5.6. Let S[N] be as in (3.3) and suppose that Dg contains an
e-neighborhood of 0. Then SDP (5.6) satisfies strong duality, i.e., there is no
duality gap between SDP (5.7) and SDP (5.6).

Proof. The strong duality statement is proved as in [14, Proposition 4.4]. For
this, we construct a linear map L : Toy — R which is a strictly feasible solution
of SDP (5.7), namely L(1) = 1, L(a®s) > 0 for all s € S and for all nonzero
a € Tq_q,, L(a®(N*—tr(23%)) > 0 for all j, k < d and for all nonzero a € T4,
and L(tr(ff*)) > 0 for all nonzero f € T,4. Let us pick m > d and consider
the set U of m x m matrices from Dg(y] with rational entries, written as

U={A® | keN,A® e D}

Note that U contains a dense subset of m x m matrices in NV,. Let us define
> Ly
L= gk AT ,
; [ LA
with
LA:TQd_)}Rv thrf(A)v
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for all A € U. This functional L is obviously linear and unital. One has
L(tr(ff*)) > 0 for all f € Tyq. Now let us assume that L(tr(ff*)) = 0 for
some f € T4. This implies that for all k£ € N one has tr(f(A%)f*(A®)) = 0,
thus f(A®™)f*(A%)) = 0, which in turn implies that f(A®)) = 0. By density
of U in N.NSE, f(A) =0 for all A € N.NST. As m was arbitrary, f vanishes
on N.. By Lemma 5.5, one has f = 0. The two other positivity conditions are
proved in a similar fashion. O

Corollary 5.7. The hierarchy of SDP programs (5.6) provides a sequence of
lower bounds (Gmin.d)d>d,,, monotonically converging to al .

Proof. As M(S(N))a € M(S(N))a+1, one has amin,dg < @min,d+1- Furthermore,
Theorem 3.5 implies that for each each m € N, there exists d(m) € N such
that a —alll + + L € M(S(N))a(m)- Thus one has

min

114
min E < Qmin,d(m)>

which implies that

lim amin,d = =qa'lt . O

d— o0 min

5.2. Finite-Dimensional GNS Representations and Minimizer Extraction
The goal of this section is to derive an algorithm to extract minimizers of pure
trace polynomial optimization problems. The forthcoming statements can be
seen as “pure trace” variants of the results derived in the context of commuta-
tive polynomials [10], eigenvalue optimization of noncommutative polynomials
[42, Lemma 2.2] (see also [49], [1, Chapter 21] and [7, Theorem 1.69]), and
trace optimization of noncommutative polynomials [4].

Definition 5.8. Suppose L : Tog125 — R is a tracial linear functional with
restriction L : Thy — R. We associate to L and L the Hankel matrices Md+5(L)

and MT( ) respectively, and get the block form
MI(L) B
M0 = [V 7).
We say thflt L is §-flat or that L is a §-flat extgnsion of L, if Mg+6(L) is flat
over MY(L), i.e., if rank Mg+5(L) = rank M (L).

Suppose L is 6-flat and let 7 := rank M (L) = M, s(L). Since M7, (L) =
0, we obtain the Gram matrix decomposition M7, 5(L) = [(u, W)]y ., With vec-
tors u,w € R", where the labels u, v are T-words of degree at most d+¢. Then,
we define the following finite-dimensional Hilbert space

H :=span{w | degw < d + 0} = span{w | degw < d},

where the equality is a consequence of the flatness assumption. Afterwards,
one can follow the steps performed in Appendix A (see (A.4)) and consider,
for each p € T, the multiplication operator X, on H and the x-representation
m: T — B(H) defined by m(p) = Xp. Let v be the vector representing 1 in
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H; then L(p) = (m(p)v,v) for all p € T. In general, elements of 7(T) are
central in m(T); if they are actually scalar multiples of the identity on H,
then 7 is not just a x-representation, but it respects trace in the sense that
w(f) = f(n(x1),...,7(xy)) for every f € T. This fact applies to our SDP
hierarchy as follows.

Proposition 5.9. Given S U {a} C Taq, let S[N] be as in (3.3). Set § :=
max{[degs/2] : s € S[N]}. Assume that L is a d-flat optimal solution of
SDP (5.7), and assume that w(T) = R, where 7 : T — B(H) is the
*-representation constructed above. Then, one has

min,a+s = L(a) = aph,. (5.12)

min

Moreover, there are finitely many n-tuples AW of symmetric matrices, and
positive scalars Aj with 3, A\; = 1, such that all = a(D; AW where the
tracial state is given by

@A(]) — Z)\ tr(w A(J) )

forw € (x).

Proof. Fori=1,...,nlet A; = X, be the left multiplication by z; on H, i.e.,
for each T-word w € Ty, A;w is the vector from H corresponding to the label
z;w. The operators A; are well-defined (thanks to the flatness assumption)
and symmetric. After choosing an orthonormal basis of H we can view A; as
r x r symmetric matrices. Let A := (4;,...,4,), and let A C M, be the
algebra generated by A;,..., A,. Since 7(T) = R, the map 7: A — R given
by q(A) — w(trq) = L(q) for ¢ € R(z) is a well-defined faithful tracial state
on A. For each s € S, one has s(4) = (n(s)v,v) = L(s) > 0, where the last
inequality follows from the fact that M} 4. (sL) = 0 as L is a feasible solution
of SDP (5.7). Similarly, one has N* — 7(A%¥) >0, for all j = 1,...,n,k < d.

Therefore, A € Dgl[\IN].

Eventually, amin,a+s = L(a) < ag}n, where the first equality is the strong
duality statement from Theorem 5.6. In addition, one has all < a(A) = L(a),
yielding the desired result (5.12).

We get a tracial representation of the optimizer for a min DY performing
the Artin-Wedderburn block diagonalization on the algebra A. This step relies
on the Wedderburn theorem [35, Chapter 1]. By [7, Proposition 1.68], there
are finitely many tuples of symmetric matrices AY) and positive scalars Aj
with 37, A; = 1 such that

A)) =\ tr(q(AY

for all ¢ € R{x). O

Remark 5.10. The condition 7(T) = R in Proposition 5.9 in particular holds
if L is an extreme optimal solution of (5.7) (cf. the last part of the proof in
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Appendix A). In practice modern SDP solvers rely on interior-point methods
using the so-called self-dual embedding technique [63, Chapter 5]. Therefore,
they will always converge towards an optimum solution of maximum rank,
yielding an extreme linear functional; see [39, §4.4.1] for more details.

Remark 5.11. Proposition 5.9 guarantees that in the presence of a flat exten-
sion, there is an optimizer for agin arising from a finite-dimensional tracial
pair (F,7); furthermore, the dimensions of AU) and the scalars Aj explicitly
determine F and 7, respectively. It is sensible to ask whether ap,;, = a?ﬁn, that
is, whether the optimum can be approximated arbitrarily well with a finite-
dimensional factor, i.e., from Dgyj. If there exist sequences of positive rational

numbers (A;mé)m such that }; )\;m) =1 for all m € N, lim,, )\gm) = \; for all
Jj, and P j AV e Dgl[\IN] whenever the tracial state is given by

w @Am HZAW tr(w(A9)))  for w € (z), (5.13)
J J

then apin, = ag}n. Indeed, a finite-dimensional tracial pair with the rational-

coefficient tracial state as in (5.13) embeds into a finite-dimensional factor.
g}n even if Dg contains an e-neighborhood of 0
admits a finite-dimensional optimizer; see the following example.

However, in general ay;, # a
I,

min

Ezample 5.12. Fix n =1, i.e., T=R[tr(z}) | i € N]. For k € N let

sp=1+(V2+1)% - (tr (27 —221)%) + (\/5 - tr(xl))2> tr(z2¥) e T.

and a

Let X be a symmetric matrix. Then X? # 2X or tr(X) # v/2. Furthermore,
if X is a contraction, then

0=<2X —X?<1, |[V2—tr(X)<V2+1, tr(X?**)<1 forallkeN.
On the other hand, if X is not a contraction, then there is k£ € N such that

1+ (V2+1)2

tr ((X2—2X)?) + (\/§ — tr(X))
Let S = {sx | k € N} and a = —tr(z1). Then Dg = D;_,2 by the above
observations, and consequently anin = —1. On the other hand, consider the

tracial pair (R?,7) with 7(£1,&) = %fl +(1- %)fg. Then Y = (2,0) € R?

satisfies Y2 = 2Y and 7(Y) = v/2,50 Y € DgV. Therefore al}, < a(Y) = —V/2.

min

tr(X %) >

3"

The proof of Proposition 5.9 gives the following procedure for minimizer
extraction.

Algorithm 5.13. PureTraceGNS
Input: an extreme §-flat linear L : Togios — R solution of (5.7).
1: Let us consider the set of T-words {w;} of degree at most < d, such that €,
the matrixz consisting of columns of M(L) indexed by the words wy, . .., w,,
has full rank. Assume wy = 1.
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2: Let M(L) be the principal submatriz of M(L) of columns and rows indezed

by w1, ..., Wy.

: Let C be the Cholesky factor of M(L), i.e., CTC = M(L).

s forie{l,....,n} do

: Let €; be the matriz consisting of columns of MI(L) indexed by x;w1, . . ., z;w,.

- Compute A; as a solution of the system € A; = €;.

- Let A; = CA;C~1.

. end for

. Compute v = Cej.e; = (1,0,...,0)

10: Let A C M, be the algebra generated by A, ..., A,. Compute an or-
thogonal matriz Q performing the simultaneous block-diagonalization of
Ay, ..., A, by [43, Algorithm 4.1]. >
QT AQ = {Diag(BW,...,B®) | BW € A;} where Ay, ..., Ay are simple
*-algebras over R

11: Compute QT A;Q = Diag(Al(-l), cey Agk)) foreachi=1,...,n, and QTv =
(vHT, ..., (vF)DT.

12: Compute \; = ||V7]|, and AV = (Agj), e ,Agf)), forallj=1,... k.

Output: (AV ... A®)) and (M, ..., ).

© % N D WA

The correctness of the procedure PureTraceGNS follows from the proof
of Proposition 5.9.

Corollary 5.14. The procedure PureTraceGNS described in Algorithm 5.13 s
sound and returns the n-tuples AY) and Aj from Proposition 5.9.

Remark 5.15. Note that when flatness occurs, Proposition 5.9 guarantees con-
vergence (actually stabilization) of our SDP hierarchy even if there is no
e-neighborhood of 0 in the feasible set. Moreover, while a flat extension is
evasive from a numerical point of view, an “almost” flat extension, which is a
much more viable output of an SDP solver, is likely sufficient [31].

5.3. SDP Hierarchy for Trace Polynomial Optimization

Here we describe the reduction from the general trace setting to the pure trace
setting.
Let S C SymT and N > 0. Denote

S={tr(fsf*)|seS, feT}C T (5.14)
Proposition 5.16. Let S C SymT, N > 0, and let S be as in (5.14). Then
Dg’;ﬂ = Dg—[’;] for any tracial pair (F,T). Furthermore, the following are

equivalent for a € Tt
(i) a(X) >0 forall X € Dg][VN] ;

(i) a(X) >0 for all X € Dgjy;

(i) a+¢e € M(S(N)) for all e > 0.

Proof. The equality Dg’;] = Dg[’;,] follows from Proposition 4.3. Consequently,

(i)e(ii)<(iii) holds by Theorem 3.5. O
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For all d € N, one has
~ K ~
M(S(N))g = {Za?si |K €N, a; €T, s5; € S(N), deg(a?s;) < 2d} :
i=1
Therefore, elements of M(S(N))4 corresponds to sums of elements of the form

r(fisfi), o (N* —tr(zfh)),  te(f2f3), (5.15)
which are of degree at most 2d, for f; e T,a €T, s€ 5,1 <j<mn, keN.

As in Sect. 5.1, given a € T, one can under-approximate a?ﬁn via the
following hierarchy of SDP programs, indexed by d > dpyin:
Gming = sup{m | a —m € M(S(N))a}. (5.16)

The dual of (5.16) is obtained by replacing the pure trace localizing matrix
constraints in SDP (5.7) by trace localizing matrix constraints associated to
each s € S:

L:’Ig}if*»R L(CL)
L linear
s.t. (MS(L))uw = (M5(L))w., whenever tr(u*v) = tr(w*z),
(MG (L)1 =1, (5.17)

M
My 4. (sL) =0, forallseS,
Mg o ((N* —tr(2?*)) L) = 0, forall j=1,...,nk <d.

As in Theorem 5.6, one can prove that if Dg contains an e-neighborhood of 0,
then there is no duality gap between SDP (5.17) and SDP (5.16). In addition,
the hierarchy of SDP programs (5.16) provides a sequence of lower bounds
monotonically converging to a !

min*

Remark 5.17. There are several variations of (5.17) that lead to agin. For
example, one can replace the d matrix inequalities M}, (N* ftr(x?k)) L)»=0
(for a fixed j) with a single matrix inequality Mj_; ((N — 2%) L) = 0 since

k—1
NE —tr(x?k) —tr (Z(\/Nk 1 Zl‘z)(N—x?)(\/Nk 1 zx;)> .

i=1
While this modification produces a somewhat simpler-looking SDP, note that
the new matrix constraint has size " (n,d — 1), while the combined size of the
replaced constraints equals 22:1 o T (n, k), which is less than o " (n,d — 1).

In practice, when given a concrete set of constraints .S, one should attempt

to simplify (5.17) before solving it, since its most general form can contain
superfluous inequalities with respect to S.

Finally, the next result provides an alternative characterization of (not
necessarily pure) trace polynomials positive on tracial semialgebraic sets (cf.
Corollary 4.8).
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Proposition 5.18. Let S C SymT, N > 0, and let S be as in (5.14). For
a € SymT, the following are equivalent:

(i) a(X) =0 forall X € DgJ[VN] ;

(ii) a(X) =0 for all X € Dg[lN] ;
(iii) for every e > 0, there exist sums of (two) squares s1, s2 € R[t] such that

a=s1(a)—sa(a),  e—tr(sa(a)) € M(S(N)):; (5.18)

(iv) for every e > 0, there exist sums of (two) squares si,s2 € Rt] and
q € M(S(N)) such that

tr(ay) + & = tr(si(a)y + s2(a)(1 —y)) + ¢ (5.19)

where y is an auziliary symmetric free variable.

Proof. (1)< (ii) holds by Proposition 2.2, and (iii)=-(iv) follows by taking ¢ =
e — tr(sy(a)) € M(S(N)). Furthermore, (iv)=-(i) holds by Propositions 4.3
and 5.16.

(i)=-(iii) There is N’ > 0, dependent on N and a, such that N’ —a *= 0
on DE?N]. After rescaling a we can without loss of generality assume that

1—a = 0on DEIEIN]. Suppose that (i) holds. Given an arbitrary ¢ > 0 let
s1,82 € R[t] be sums of squares as in Lemma 4.7. Then there are sums of
squares 3, 84, S5 € R[t] such that

§1— 82 =1, %—82:S3+84t+85(1—t).

By Propositions 4.3 and 5.16 we have
tr(sa(a) + sa(a)a+ ss(a)(1 — ) + § € M(S(N)).
Therefore
a = si(a) — sz(a), e —tr(sa(a)) € M(S(N)). O

Note that Proposition 5.18 allows one to certify that a given trace poly-
nomial is positive semidefinite on a tracial semialgebraic set. Constructing a
hierarchy of SDP programs converging to the minimal eigenvalue of trace poly-
nomials is postponed for future work. As Example 4.6 indicates, it cannot be
simply derived from our scheme for the pure trace polynomial objective func-
tion; namely, the norm of an operator cannot be uniformly estimated with
traces in a dimension-free way.

6. Examples and Applications

In this section we present some experimental results indicating the strength
and computational aspects of the SDP hierarchy in Sect. 5. First we give a toy
example of optimizing a pure trace polynomial over all projections in tracial
von Neumann algebras (Sect. 6.1). Next we describe how our algorithms can
be used for finding upper bounds on quantum violations of polynomial Bell
inequalities in quantum information theory (Sect. 6.2). While the SDPs were
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solved using SeDuMi in Matlab, the sparse input matrices were constructed
with Mathematica.

6.1. A Toy Example
Consider the optimization problem
il’lf ’T(XlXQXg) =+ T(XlXQ)T(Xg)

5 . _ (6.1)
st. X7=X;=X; forj=1,23.

over triples (X1, X2, X3) of operators in tracial pairs (F, 7). Note that if F is a
commutative von Neumann algebra with a tracial state 7 and X7, Xo, X3 € F
are projections, then 7(X;X2X3),7(X1X5),7(X3) > 0. Hence if (6.1) were
restricted only to commutative von Neumann algebras, the solution would be
0. On the other hand, the projections

10 %\{j 3 _ 15
Xl:(oo)’ Xo=| % 2], Xs= _\S/ﬁ 50

16 16

give

1
tr( X1 X0 X3) + tr(X; Xo) tr(X3) = ——.

We next show that —5 is actually the solution of (6.1).

Let n = 3, a = tr(z122x3) +tr(zias) tr(zs) and S = {x?—xj,xj —x?: j=
1,2,3}. By Sect. 5.3, the solution of (6.1) equals lim,,—. oo @min,d, Where Gmin 4 is
the solution of (5.17) for d > 2. In this particular example, the constraints can
be used to vastly simplify (5.17). Namely, it suffices to consider only tracial
words without consecutive repetitions of x;; furthermore, the last two lines
in (5.17) are then superfluous. To state this concretely, let us introduce some
auxiliary notation.

A T-word is square—reduced if no proper powers of x1, xo, x3 appear in it.
To each T-word w we can assign the square-reduced T-word r(w) by repeatedly
replacing x? with z;. Let W be the vector of all square-reduced T-words of
tracial degree at most d, and let R4 be the span of entries of W,. Given a linear
functional L : Roq — R, the square-reduced tracial Hankel matriz MY (L) is
indexed by W} and (M5(L))y,0 = L(tr(r(u*v))). Then dmin,q is the solution
of the SDP

inf L(a)
LiRpq—R
L linear
st (My(L)yw = Mg(L))w,z, whenever tr(u*v) = tr(w*z), (6.2)
(M5(L))1a =1,
a(L) =0

We start with d = 2. The matrix M4(L) is indexed by reduced tracial
words

1,21, 29, x3, tr(21), tr(22), tr(zs),

T\ Lo, ToT1, T1X3, T3L1, T2k3, T3La, tr(x122), tr(z123), tr(zexs),
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tr(xy)xy, tr(xy ) ze, tr(zy ) xs, tr(ze)xy, tr(ze)xe, tr(ze)xs, tr(zs)xy, tr(zs)xs,
tr(zs)ws, tr(zy)?, tr(ze)?, tr(ws)?, tr(zy) tr(ws), tr(zy) tr(zs), tr(ze) tr(zs).

The SDP (6.2) minimizes over 31 x 31 positive semidefinite matrices subject
to 881 linear equations in their entries. By solving it we get dmin,2 = —0.0467.

In the next step we have d = 3, and M%(L) is a 108 x 108 matrix with
11270 linear relations. Now the solution of ( 2) 1S Gmin,3 = —0.0312, which

up to floating point precision agrees with —3—2 Since dmin,3 is a lower bound
for the solution of (6.1) and is attained by the 2 x 2 projections above, we
conclude that —z5 is the solution of (6.1).

Similar optlmlzatlon problem can be used for detecting quantum entan-
glement [5,24]. Namely, trace polynomials are in correspondence with invari-
ant operators [28], and pure trace polynomials, positive subject to certain
constraints, then relate to invariant operators positive on separable Werner
states [18,62]. Pure trace polynomial optimization can be thus used to effi-
ciently produce entanglement witnesses for Werner states, which is a work in
preparation.

6.2. Polynomial Bell Inequalities

In this section we connect trace polynomial optimization to violations of non-
linear Bell inequalities, outline a few examples and prove the optimal bound
on maximal violation of the covariance Bell inequality considered in [47], see
Example 6.2.2 below.

As a prelude, the classical Bell inequality states that

Y (A1 ® B1 + A1 ® By + Ao ® By — Ay ® Ba)y (6.3)

is at most 2 for all separable states 1 € C* @ C* and Aj, B; € M, satisfying
Ar = Aj, A3 = I, B} = By, B} = I. Tsirelson’s bound implies that (6.3) is
at most 2v/2 when arbitrary states are allowed. Moreover, the maximal value
2V/2 is attained when k = 2 and ¢ = %(61 ® e1 + €3 ® e3). In general, if ¥y
is the generalized Bell state,

k
Y = fzej@)e]eRk@Rk

which is a maximally entangled bipartite state on C* @ CF, unique up to
bipartite unitary equivalence, then

V(X @Y )y, = tr(XY) (6.4)

for all X, Y € Si. Therefore Tsirelson’s bound for (6.3) on maximally entangled
states can be recovered as a pure trace polynomial optimization problem

sup tr(z1y1) + tr(ziy2) + tr(xayr) — tr(zays) s.t. x? = 1,y]2 =1.

Note that for finding the maximal violation for arbitrary k& € N, there is no loss
of generality if only symmetric matrices are considered instead of hermitian



92 I. Klep et al. Ann. Henri Poincaré

ones, since

o Z+Z Z-Z WAW W-W
Ui Z W)y =te(ZW) =tr | | 25 2% | | wiw wi
' 2

for all hermitian k x k& matrices Z, W.

Upper bounds on quantum violations of linear Bell inequalities can be
found using the NPA hierarchy [45] for eigenvalue optimization of noncommu-
tative polynomials; for example, one can get Tsirelson’s bound on violations of
(6.3) by eigenvalue-optimizing a;b; + a1bs + asby — azby subject to a? = b? =1
and [a;, b;] = 0.

On the other hand, bilocal models [9,11], covariance of quantum cor-
relations [47] and detection of partial separability [60] lead to more general
polynomial Bell inequalities. While linear Bell inequalities are linear in expec-
tation values of (products of) observables, polynomial Bell inequalities contain
multivariate polynomials in expectation values of (products of) observables.
For this reason, noncommutative polynomial optimization is not suitable for
studying violations of nonlinear Bell inequalities. In contrast, trace polynomial
optimization gives upper bounds on violations of polynomial Bell inequalities,
at least for certain families of states, e.g. the maximally entangled bipartite
states via (6.4). We demonstrate this with the following examples.

6.2.1. Example. Consider a simple quadratic Bell inequality

(V" (A1 © By + Ay @ B1)Y) 4+ (*(A2 @ By — A, @ Bo)p)° <4 (6.5)

given in [60], where it is shown that (6.5) holds for all separable states ),
and for all 2-dimensional states (i.e. all states when k = 2). In [44], (6.5) is
shown to hold for arbitrary states, meaning it admits no quantum violations.
An alternative automatized proof of (6.5) for maximally entangled states of
arbitrary dimension can be obtained by solving the optimization problem

sup (tr(z1y2 + 2231))” + (tr(z191 — 2212))” st 23 =147 =1for j=1,2

(6.6)
Let S = {+(1 —23),£(1 —y3): j = 1,2}. The relaxation of (6.6) with d = 2
as in Sect. 5.3,

inf g st p— (tr(zyys + 22y1))” — (tr(z1ys — 2212))> € M(S(1))a  (6.7)

outputs 4, which coincides with the classical value in (6.5). The concrete im-
plementation of (6.7) encodes the relations z? = yj2 = 1 directly in the SDP
using reduced words analogously as in the toy Example 6.1 (where projections
were considered).

6.2.2. Example. Another class of polynomial Bell inequalities arises from co-
variances of quantum correlations. Let

covy(X,Y) =9 (X @Y ) -4 (X @)y - 9" (T @Y)y
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In [47] it is shown that while
COVw(Al, Bl> + COVw(Al, Bg) + covy, (Al, B3)
+ covy (Ag, Bl) + covy (Ag, BQ) — COVy, (AQ, Bg) (68)
+ covy (Ag, Bl) — COVy, (Ag, Bg)
is at most 2 5 for separable states 1, it attains the value 5 with the Bell state
1o. The authors also performed extensive numerical search within entangled
states for local dimensions & < 5, but no higher value of (6.8) was found. They
leave it as an open question whether higher dimensional entangled states could
lead to larger violations [47, Appendix D.1(b)].
Let
a=tr(z1y1) — tr(z1) tr(y1) + tr(z1y2) — tr(z1) tr(y2) + tr(z1ys) — tr(z) tr(ys)
+ tr(zay1) — tr(zz) tr(y1) + tr(z2y2) — tr(z2) tr(y2) — tr(zays) + tr(z2) tr(ys)
+ tr(zsyr) — tr(zs) tr(y1) — tr(zsyz) + tr(as) tr(yz).
The relaxation of
sup a s.t. x? = 1,y]2 =1forj=1,2,3 (6.9)
with d = 2 returns 5. Therefore the value of (6.8) is at most 5 for every
maximally entangled state, regardless of the local dimension k.

6.2.3. Example. A family of eight quadratic Bell inequalities (arising from
linear ones via elimination) corresponding to a bilocal model for three parties
A, B, C is given in [11]:

1
- g(J1 + J5)? — (£J; £ J,+2) <0, (6.10)

where

2
Ji= 300 (A By - (BY @ G

ij=1
2 . B
Jo= 3 (1) (A, @ By -4 (By @ Cy)”
i,j=1

and A;, B, BY,C; are projections. Inequalities (6.10) are valid for every pair
of separable states ¢, 1", and are equivalent to /|J1| + /|J2| < 1 as derived
in [9]. An upper bound on violations of (6.10) for maximally entangled shared
states 1’1" is given by

sup a s.t. x? =z;,9'; —yj,y”j2 yj,zj =z for j=1,2 (6.11)

where
> tr(ziy)) tr(yf 2 iE 1) tr(aiys) tr(yh 2;)
4,7

+ Ztr(wiyll) tr(yy zj) £ Z D) tr(xiyh) tr(yy z5) — 2.
]
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While (6.11) fits in the trace polynomial optimization scheme presented in
this paper, SDPs arising from (6.11) are very large because a is a pure trace
polynomial of degree 8 in 8 variables. For computing upper bounds on (6.11)
to become viable, the sizes of SDPs will need to be reduced using sparsity and
symmetry techniques, which we plan to develop later.

7. Conclusion and Perspectives

We have derived several novel Positivstellensétze for trace polynomials positive
on tracial semialgebraic sets. Our tracial analog of Putinar’s Positivstellensatz
yields a converging hierarchy of semidefinite relaxations for optimizing pure
trace polynomials under pure trace polynomial inequality constraints. We also
provide an algorithm to extract minimizers of such problems, thanks to a
finite-dimensional Gelfand—Naimark—Segal construction.

A topic of future research is to derive a hierarchy of primal-dual SDP
programs converging to the minimal eigenvalue of a trace polynomial under
trace polynomial inequality constraints. A short-term research investigation
track is to rely on this hierarchy to tackle trace polynomial problems arising
from quantum information theory. Sharing the same computational drawbacks
as the classical Lasserre’s hierarchy, our tracial framework will be limited to
optimization problems involving a modest number of variables. To overcome
this scalability issue, we intend to focus on exploiting structural properties
of the input data. One possibility is to extend the framework from [30] to
optimization problems involving sparse trace polynomials or the one from [54]
to problems involving symmetries.
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A. Alternative Proof of Theorem 4.4

Proof of (i)=(iii). Assume a + ¢ ¢ M€ for some ¢ > 0. Let U = {p €
SymT | tr(p) = 0}. Then M 4 U is a convex cone in SymT. Since a is a
pure trace polynomial, we have a+¢& ¢ M®°+U. Since M€ is archimedean,
for every p € SymT there exists § > 0 such that 1 £ op € M which in
terms of [3, Definition II1.1.6] means that 1 is an algebraic interior point of
the cone M%° 4+ U in Sym T. By the Eidelheit—-Kakutani separation theorem
[3, Corollary II1.1.7] there is a nonzero R-linear functional Ly : SymT — R
satisfying Lo(M®°+U) C R and Lo(a+¢) < 0. In particular, Lo(U) = {0}.
Moreover, Ly(1) > 0 because M is archimedean, so after rescaling we can
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assume Lo(1) = 1. Let L : T — R be the symmetric extension of Ly, i.e.,
L(p) = $Lo(p + p*) for p € T. Note that

L(p) = L(tr(p)) (A1)

for all p € T, and in particular L(pq) = L(gp) for all p,q € T.

Now consider the set C of all symmetric linear functionals L' : T — R
satisfying L'(M%° + U) C R>o and L’(1) = 1. This set is nonempty because
L € C. Endow T with the norm

lpll = max {{[p(X)|| | n € N, X € S5, | X, < 1}.

This is indeed a norm because no nonzero trace polynomial vanishes on matri-
ces of all finite sizes. By the Banach—Alaoglu theorem [3, Theorem II1.2.9], the
convex set C is weak™-compact. Thus by the Krein—Milman theorem [3, The-
orem I11.4.1] we may assume that our separating functional L is an extreme
point of C.

On T we define a semi-scalar product (p,q) = L(pg*). By the Cauchy—
Schwarz inequality for semi-scalar products,

N ={qeT| L(qq") = 0}

is a linear subspace of T. Let p, ¢ € T. Since M€ is archimedean, there exists
0 > 0 such that 1 — dpp* € M and therefore

0 < L(q(1 — dpp*)q*) = L(qq*) — 6L(app*q*) < L(qq*). (A.2)
In particular, ¢ € A implies gp € N, so N is a left ideal. Furthermore, L(N) =
{0}: if L(gq*) = 0, then for every ¢ > 0,
0<L((6+q)(6 £q)") =0(6 £2L(q))
and hence L(q) = 0. Let p = p + N denote the residue class of p € T in T/N.
Because N is a left ideal, we can define linear maps
Xp: T/N =T/N,  7—Dpq
for p € T, which are bounded by (A.2).
Now
(P, 9) = L(pq") (A.3)
is a scalar product on T/A, and we let H denote the completion of T /N with
respect to this scalar product. Each Y, extends to a bounded operator X, on
H, and the map
m: T — B(H), D= Xp (A4)
is clearly a x-representation with kerm = A. Let F be the closure of 7(T) in
B(H) with respect to the weak operator topology. The map

7:m(T) - R, Xp — L(p)
is a faithful tracial state on 7(T) by L(N) = {0} and (A.1). Since

T()ZP) = <]37 1>a
7 extends uniquely to a faithful normal tracial state on F.
Next we claim that w(T) = R. Observe that 1 € H is a cyclic vector for
7 by construction and L(p) = (m(p)1,1). Suppose m(T) # R. If £ denotes the
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weak closure of 7(T) in F, then &£ is a central von Neumann subalgebra of
F; since € # R and all the elements of £ are self-adjoint, there is a nontrivial
projection P € €. Since 1 is cyclic for 7, we have P1 # 0 and (1 — P)1 # 0.
Hence we can define linear functionals L; on T by

Ll(p) — <7T(p)IiT7 PT> <7r(p)(1 — P)T’ El — P)T>
P12 11— P12
for all p € T. One easily checks that L is a convex combination of L; and
Ly, Li(1) = 1 and L;(M%°) = R>(. Furthermore, since P is a weak limit of
{m(sp)}n for some s, € T and

(m(p — tr(p))7(sn) 1, 1) = L(sn(p — t(p))) = L(snp — tr(snp))) =0,

we also have

and Lsy(p) =

(m(p —tr(p))P1, P1) = (n(p — tr(p)) P1,1) = 0

so L;(U) = {0}. Therefore L; € C, so L = Ly = Ly by the extreme property
of L. Then for A\ = || P1]?,

(m(p)T,AT) = Mn(p)1,1) = (n(p) P, PT) = (Pr(p)1, PT) = (n(p)1, P1)

for all p € T. Therefore P1 = A1 since 1 is a cyclic vector for w. So A € {0,1}
since P is a projection, a contradiction.

Let X := (Xay,---» Xz, ). This is a tuple of self-adjoint operators in F,
and 7(T) = R implies p(X) = ¥, for all p € T. Therefore X € Dﬂfyc by (A.3)
and L(M®®) C R>. Finally a(X) = 7(x,) = L(a) < 0.
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