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Abstract: Werner states are multipartite quantum states that are invariant under the
diagonal conjugate action of the unitary group. This paper gives a complete character-
ization of their entanglement that is independent of the underlying local Hilbert space:
for every entangled Werner state there exists a dimension-free entanglement witness.
The construction of such a witness is formulated as an optimization problem. To solve
it, two semidefinite programming hierarchies are introduced. The first one is derived
using real algebraic geometry applied to positive polynomials in the entries of a Gram
matrix, and is complete in the sense that for every entangled Werner state it converges to
a witness. The second one is based on a sum-of-squares certificate for the positivity of
trace polynomials in noncommuting variables, and is a relaxation that involves smaller
semidefinite constraints.
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1. Introduction

1.1. Entanglement. An n-partite quantum state with local dimension d is represented by
a positive semidefinite matrix with trace one in the space L((Cd)®”) of linear operators
acting on (CH®" A quantum state ¢ € L((C%)®") is said to be separable or classically
correlated, if it can be written as a convex combination of product states

1
> pio" @ @0,
i

where Qi(‘/ ) e L(C?) are states, and p; > 0 satisfy > i pi = 1. We denote the set of
separable states on n systems with d levels each as SEP(d, n). A state is termed entangled
ifitis not separable [ 17]. The detection of entanglement can be done with linear operators
known as entanglement witnesses. These are operators W € L((C%)®") for which
tr(Wp) > 0 holds for all separable states ¢ and tr(W¢) < 0 holds for at least one
entangled state ¢. Note that since separable sets are defined as the convex hull of product
states, it suffices to ascertain that tr(J//¢) > 0 holds for all product states ¢ only.

Nevertheless, characterizing the set of entangled states is computationally hard [18]
and it helps to restrict the set of states under consideration. Here we focus on Werner
states [7,13,22,31,49]: these are invariant under the diagonal conjugate action of the
unitary group Uy, i.e.,0 = U®"o(UT)®" forall U € Uy. As a consequence of the Schur-
Weyl duality [38, Theorem 9.3.1], Werner states are linear combinations of permutation
operators. Note that an element o in the symmetric group S, acts on the Hilbert space
(C4)®" by permuting its tensor factors. With some abuse of notation we can then write
a Werner state o as

0= nga, re € C. (1)

o€eS,

That is, Werner states are parametrized by elements of the group algebra CS,,. It is
interesting to note that Werner states appear in both quantum information theory and
many-body physics: they were introduced to show that entanglement and non-locality
are distinct concepts [49], their entanglement structure can be used to characterize corre-
lations close to phase transitions in magnetic systems [42], and the large class of AKLT
models has Werner states as their ground states [1,51].

To detect entanglement in Werner states, it is easy to see that one can restrict to entan-
glement witnesses )V that exhibit the same invariance as the states. Thus we can represent
thembyw =) s, Woo withw, € C. We say that w € CS,, is a dimension-free wit-
ness if the operator V represented by w is a witness regardless of the local dimension d.

The description (1) of Werner states removes the underlying local Hilbert space,
which is especially useful when the latter has large dimension. This raises a natural ques-
tion: can the entanglement of Werner states be also described in a dimension-independent
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manner? Furthermore, does such a dimension-free description yield a computationally
efficient procedure for entanglement detection? This paper provides affirmative answers
to both questions.

For three-partite Werner states, a description of entanglement without referring to
the local dimension was given in [13]. Here we present a complete characterization for
the entire class of Werner states (for any number of local systems). To efficiently detect
their entanglement, we employ semidefinite programming hierarchies.

1.2. SDP hierarchies. Semidefinite programming (SDP) hierarchies have emerged as
powerful tools applicable to a wide range of problems in quantum information theory
[3,10,30,46,48]. Solving an SDP [2] means minimizing a linear function under lin-
ear matrix inequality constraints, which is a convex problem. The advantages of SDPs
lie in the existence of efficient algorithms, the ready availability of numerical solvers
implemented within common computational software, and ability to provide solution
certificates [4,45]. When formulated in this framework, many quantities that are other-
wise difficult to compute can be approximated by a converging sequence of increasingly
larger SDP instances.

A well-known example is the Navascués-Pironio-Acin hierarchy for finding the max-
imum violation levels of Bell inequalities [35]. This hierarchy gives a sequence of outer
approximations to the set of correlations that can be obtained from quantum systems of
arbitrarily large (even infinite-dimensional) local Hilbert space. This is in contrast with
the hierarchies used in entanglement detection: here the available hierarchies detect en-
tanglement of quantum states where the local dimension is fixed [5,6,11,12,14,21,23,
29,34]. While extremely powerful for small systems, these hierarchies are afflicted by
the scaling of the problem size with the local Hilbert space dimension.

It is thus of interest to not only approach non-locality, but also entanglement in a
dimension-free manner. With the help of methods from commutative and noncommu-
tative polynomial optimization [26,28,43], we use our dimension-free characterization
of Werner states to detect their entanglement with SDP hierarchies that do not depend
on the local Hilbert space dimension.

1.3. Main results. The first main contribution of this paper reveals the dimension-
independent nature of entanglement for Werner states.

Theorem A. For all d, n and every entangled Werner state o € L((CH®"Y there exists
a dimension-free witness w € CS,, detecting it.

For the proof of Theorem A see Corollary 7 below. Thus the set of separable Werner
states can be described using hyperplanes of the form w = )" s, Woo whose n! pa-
rameters are entirely independent of the local dimension. A key step in bypassing the
dependence on the local dimension is replacing the usual description (1) of Werner states
in terms of the symmetric group with a special weighted version arising from the repre-
sentation theory of §,,. A characterization of entangled Werner states without referring
to the local Hilbert space is given in Theorem 4.

The second main contribution of this paper are two SDP hierarchies for finding
dimension-free entanglement witnesses for Werner states as in Theorem A. Both of
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them arise from the optimization problem for a given Werner state o:

&= inf &
eeR, weCs,
subjectto  tr(Wp) = —1, )

W s represented by w ,
w + & is a dimension-free witness .

Then o is entangled if and only if ¢* < 1. The difference between our two hierarchies
stems from encoding the last constraint in (2).

The first hierarchy SDP-POP encodes positivity of w + ¢ on product states with poly-
nomials in commuting variables z;; that represent angles between unit vectors. These
variables can be seen as entries of a positive semidefinite Gram matrix with 1s on the
diagonal, corresponding to extremal points of the set of separable states. Using Putinar’s
Positivstellensatz from real algebraic geometry, optimization of a polynomial in vari-
ables z;; over all Gram matrices with 1s on the diagonal can then be cast as a sequence
of SDPs as in Lasserre’s hierarchy [28].

Theorem B. Let o be a Werner state. Then o is entangled if and only if a term in
the hierarchy SDP-POP returns a value less than 1, in which case it also produces a
dimension-free entanglement witness for o.

The second hierarchy SDP-TPOP applies the trace polynomial optimization frame-
work introduced by the second, third and fourth authors [26] to the correspondence
between positive trace polynomials and Werner state entanglement witnesses by the
first author [22]. Trace polynomials are polynomial-like expressions in noncommuting
variables x1, ..., x, and traces of their products. It turns out that positivity of a trace
polynomial over all tracial von Neumann algebras can be characterized with a sum-of-
squares certificate [26, Theorem 4.4]. Since matrices are special cases of tracial von
Neumann algebras, we can use sum-of-squares representations of trace polynomials to
confirm their positivity on matrices. Finally, since Werner state witnesses correspond to
trace polynomials positive on tuples of positive semidefinite matrices ( [22, Theorem 16],
also see Theorem 12), this leads to the hierarchy SDP-TPOP for entanglement detection.

Theorem C. Let 0 be a Werner state. If a term in the hierarchy SDP-TPOP returns a
value less than 1, then o is entangled and a corresponding dimension-free entanglement
witness is produced.

While the hierarchy SDP-POP is complete since it converges to an entanglement wit-
ness for every entangled Werner state, it is not clear whether SDP-TPOP detects every
entangled Werner state. However, the latter hierarchy’s first steps involve much smaller
semidefinite constraints than the hierarchy SDP-POP, which makes it more suitable for
concrete calculations. As a demonstration, we use SDP-TPOP to produce an exact en-
tanglement witness for a 4-partite Werner state, for which the Peres-Horodecki criterion
(i.e., a negative partial transpose signals entanglement [19,36]) fails (Sect. 6).

2. Dimension-Free Entanglement Witnesses for Werner States

In this section we present a parametrization of Werner states with the group algebra of
the symmetric group that admits a dimension-free characterization of entanglement. Our



Dimension-Free Entanglement Detection 1055

approach generalizes [13] where tripartite Werner states were considered. We start by in-
troducing notions from the representation theory of the symmetric group that are required
throughout the paper. Then we build towards Theorem 4 which relates entanglement of
Werner states with a certain system of polynomial inequalities that is independent of the
local dimension. As a consequence we prove the existence of dimension-free entangle-
ment witnesses (Corollary 7).

The group algebra CS,, has a canonical conjugate-linear involution T given by invert-
ing group elements, (3_, s azo) =3 . s, @, o~ Furthermore, there is a natural
trace

7:CS, —» C, 1t(a) =nlayg

where ajq is the coefficient of the identity id in a € CS,,. Throughout the paper we

view CS,, as a Hilbert space with the scalar product induced by t; that is, \/LHS" is an

orthonormal basis of CS,,. We define the set of states as
{reCS,:r=aa’, acCSs,, t(r)=1}

The terminology is justified by Lemma 1(2) below. Note that 7 = aa" forsome a € CS,,
if and only if r is a positive semidefinite element of the finite-dimensional C*-algebra
CS,,, which is further equivalent to ®(r) > O for every x-representation ® of CS,,.

We now outline the necessary facts from the representation theory of the symmetric
group [15,38]. To each partition A  n is associated an irreducible representation of
S, (cf. [15, Chapter 4]); let x; be its character. Let {w, : A F n} be a complete set of
centrally primitive idempotents for CS,, [15, Section 3.4]. They can be written as

id
w, = 2409 PG

n!

oeS,

where y; (id) is both the multiplicity and the dimension of the irreducible representation
corresponding to A in CS,,.

The trace 7 can be seen as the linear extension of the character of the regular repre-
sentation of §,,. If o € S, then the Schur column orthogonality relations [15, Section
2.2] imply

Yin X0(id)* =n! ifo =id,
0 otherwise .

(o) =Y x.(id)x.(0) = 3)

Abn

Here x; (id) is both the multiplicity and the dimension of an irreducible representation
corresponding to A in CS,,. In particular, t(w;) = Xf(id).
Let 14 be the representation of S, on (C?)®" that permutes the tensor factors,

na(@)(Jv) ® --- Q |vy)) = |vg*1(1)) K - ® |Uafl(n))

foro € S, and |v(),...,|v,) € C4. Under N4, the idempotents w; are mapped to the
central Young projections p; = n4(w,). These satisfy
Py =pr=p;.
PrPu = Prbau

n4(0)py = pana(o) Yo €S,
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Importantly, they form a resolution of the identity
Y p=1 eLC).
An

Given a partition A - n, let h(}) denote the number of summands in X (if X is viewed
as a Young diagram, then h(A) denotes its height). By [38, Proposition 9.3.1],

kerng = Z wy - CS, . “4)
Abn
h(3)>d
Let
Ji = Z w, -CS, .
An
h(i)<d
Then J; and ker ny are complementary (both as orthogonal subspaces and ideals) in
CS,,. Furthermore, J1 C Jo C --- C J, = Jp41 = --- = CS),. Next consider the map

g CS, — L((C%®") defined as

ma(r) =n!We(d, n)ng(r) ,
where
T(wy)
w(pn)

1
We(d,n) = — >

M=n
h(i)<d

®)

is the (Formanek-) Weingarten operator [9,39]. The action of Wg(d, n) scales each
isotypic component according to its multiplicity in CS,, and L((C¢)®"). Note that the
restriction of pg to Jy is bijective onto the image of 1, since J; = (ker nd)L.

The definition of u, is motivated by the following properties:

Lemma 1.(1) Forall a € J; and b € CS,, it holds that

tr(pq(@)na (b)) = t(ab) .
(2) Let r € Jy. Then r is a state if and only if 1 (r) is a state in L((C?)®").

Proof. (1) Since J; is an ideal, we have ab € J;. Next,

() - r(ng(w;.0)) = tr(py) x,. (d) - xa(c) (6)

for all ¢ € CS, and A + n. Indeed, both sides of (6) restrict to traces on the central
simple algebra w;, - CS,,. As ng(wy) = p» and t(w;) = x.(id)2, (6) holds for ¢ = id.
Since traces of central simple algebras over C are unique up to a scalar multiple, we thus
conclude that (6) holds for every ¢ € CS,,. Therefore

r(ua(@na®) = tr (n! We(d, mna(@na(b))

> S g wnab)
T w(pa)

h(i)<d

= Z x (id) x;.(ab) = t(ab), @)

A-n
h(n)<d
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by (6) and (3). '
(2) (=) Suppose 7(r) = 1 and r = aa' for some a € CS,. Then

wa(r) = n'We(d, myna(aa’) = ntWe(d, n)'*na(a)na (@) Wed, n)'/? = 0

and tr(uy(r)) = ©(r) = 1 by (7), s0 jq(r) is a state in L((C?)®").

(<) Suppose that 14 (r) is a state in L((C4)®"). Then g (r) > 0 implies pyna(r) =
0 for all A + n with k(L) < d. Therefore ny(r) > 0 because r € J;. Since the re-
striction of ny to Jg is a x-embedding, we have r = aa’ for some a € Jj. Finally,

T(r) =tr(uq(r)) =1by (7). O
Letz = (zjj : 1 <i < j <n)beatuple of (3) complex variables. Denote by Z the

n x n matrix over C|z, z] with entries Z;; =1, Z;; = z;j and Z;; = z;; fori < j.
Let

Z={aeC® : Z(a) >0}

be the corresponding bounded spectrahedron, also known as the elliptope [47]. Ford € N
also let

Zg={ae Z:1kZ(a) <d}.
Notethat 2y C 2, C --- C Z,, = Z,41 = - - - = Z. Furthermore,
a € Zy if and only if o;;; = (v;|v;) for some unit vectors |vy), ..., |v,) € c? (8)

by viewing a € Z; as entries of a Gram matrix.
Toeachw =) . s, Woo € CS, we assign the polynomial

Sw = Z Wo HZia(i) e Clz, 2] )

ceS,  i=l

where z;; denotes 1 and z; fori < j denotes z;;. These polynomials are also known as
generalized matrix functions [32].
If o € Z4 is given as «;; = (v;|v;) for unit vectors |v1), ..., |v,) € C4, then

fu@) =Y we [ [wilvem) = tr (ra)((v1) (01| @ -+ @ [v) (val))  (10)
i=1

€S,

by [38, Theorem 9.6.1].
We require two technical lemmas.

Lemma 2. Let

Ug = Z w) € kerng .

Abn
h(x)>d

Then f,, is nonnegative on Z and Z4 = Z N { f,, = O}
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Proof. Leta € Zbearbitrary. Since Z = Z,,, by (8) there exist unit vectors |vy) , ..., |v,) €
C" such that a;; = (v;i|v;); denote V = [v1){v1| ® - - ® |vy) (vl € L((C")®"). Note
that V is a projection.

Since 1, (w;) and V are projections, (10) gives

fug@ =t (na ) (V) = Y tr (na(@)V) = 0. (11)

rn
h(n)>d

Let M be the set of all (d + 1)-minors of Z, and let P be the set of all principal
(d + 1)-minors of Z. Observe that P C {f,,: w € CS,} N M. Moreover, p(«) = 0 for
all p € Misequivalentto«a € Z;, which is further equivalent to p(«) = Oforall p € P
because Z(«) is a positive semidefinite matrix. On the other hand, { f,,: w € ker ng} is
precisely the intersection of { f,,: w € CS,,} and the ideal in C[z, 7] generated with M,
by [38, Section 11.6.1]. Therefore

o€ Zy < fpl@) =0 Yw e kern,. (12)
Since 1, (w,,) and V are projections, we have
tr(mu(w))V) =0 = tr(nu(awp)V) =0

for every a € CS,, by the Cauchy-Schwarz inequality. Because the projections 17, (w;)
with h(X) > d generate ker n4 as a left ideal,
tr(m,(w)V) =0 Vw € kerny
<— tr(nu(wp)V) =0 VYhQ) >d
— tr(na(ua)V) =0,
where the last equivalence holds by (11). Combining with (12) then implies o € Z; if
and only if f,,(a) = 0.

Since o € Z was arbitrary, the preceding two paragraphs imply that f,,, is nonneg-
ative on Z, and Zy is precisely the vanishing set of f,, within Z. O

Lemma 3. Suppose that p € C|z, 7] is nonnegative on Z4, and let ¢ > 0. Then there is
u =u" € Kerng such that p + ¢ + f, is nonnegative on Z.

Proof. By Lemma 2 we have f,,(«) > 0 for every o € Z\ Z,. Since p + ¢ is positive
on Zy4, it is also positive on some Euclidean open subset U C Z that contains Z;. Since
Z\U is compact, there exists M > 0 such that

M - min o) > — min o) +¢).
an\Uf”f’( )= an\U(p() )

Then Muy € kerng and p + & + fyu, = p + €+ Mf,, is nonnegative on Z. O

We are now ready to treat entanglement of Werner states in a dimension-independent
manner.

Theorem 4. Given a state r € Jy, the following are equivalent:

(1) pa(r) is entangled;
(ii) there is w = w' € CS, such that

Sw(@) >0 Va e Z,
T(wr) < 0.
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Proof. (ii))=(i) By Lemma 1(1) we have tr(ng (w)uq(r)) = t(wr) < 0, and by (10) we
have

tr (nn (w)(Jv1) (V1] @ -+ @ [va) (va])) = 0

for all unit vectors |v1), ..., |v,) € C¥,and N € N. Since every separable state is
a conic combination of operators of the form |v)(vi| ® - -+ ® |v,)(v,|, we conclude
that tr (ny(w)g) > 0 for all o € SEP(N,n) and N € N. In particular, ng(w) is an
entanglement witness for 4 (7).

(1)=(ii) Since u4(r) is entangled, there exists wog = wg e CS,, such that ng(wp) is
an entanglement witness for wq(r). Therefore T (wor) = tr(ng(wo)q(r)) < 0 and fy,
is nonnegative on Z;. Let e = —%t(wr) > (0. By Lemma 3 there exists u € ker 4 such
that

Sfwo + &+ fu = fuwg+eidu

is nonnegative on Z. Thus w = wyp + ¢id + u satisfies t(wr) = %r(wor) < 0 and
fw(@) >O0foralle e Z. O

Corollary 5. Letr € Jg and d < e. Then:

(1) g (r) is a state if and only if . (r) is a state;
(2) g (r) is entangled if and only if . (r) is entangled.

Proof. By definition we have J; € J,. Then (1) holds by Lemma 1, and (2) holds by
Theorem 4 since the condition (ii) in the statement of Theorem 4 is independent of the
local dimensiond. 0O

Remark 6. The assumption r € J; in Corollary 5 is necessary. Indeed, if d < n then

there exists a nonzero s € ker 4; then for r = id — (1 + m)ss-" ¢ Jg we have

wa(r) = 0 and w,(r) ¥ 0. Furthermore, the direct analog of Corollary 5 fails for 1y
(which is a more conventional parametrization of Werner states than 1¢4), as already the
maximally mixed state fails to remain normalized. Actually, the inadequacy of using
ng for studying entanglement in a dimension-free way stretches beyond normalization.

For example, if r = id — %(12) e CS,, then mng(r) is a separable state and

mm (r) is an entangled state [49].

A witness w = w' e CS, is called dimension-free if tr(ng(w)o) > 0 for all
o € SEP(d,n) and all d € N. Another important consequence of Theorem 4 is the
existence of dimension-free witnesses.

Corollary 7. For all d, n and every entangled Werner state 0 € L((C?)®") there exists
a dimension-free witness w € CS,, detecting it.

Proof. If astate 0 = uq(r) is entangled, then w from Theorem 4(ii) is a dimension-free
entanglement witness for ¢, which follows from the proof of (ii))=(i). O

Remark 8. Theorem 4 shows that describing Werner states in L((C4)®") with J; via g
reveals the dimension-free nature of entanglement. While the map 4 is defined using
the Weingarten operator and is of a rather representation-theoretic nature, its unique
preimages in J; can be computed in a very elementary way if one has access to the more
common map 74. Suppose A € L((C%)®") is invariant under the diagonal conjugate
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action of Uy. There is a unique a = Zﬂe s, r7 € Jg such that A = pg(a). By Lemma
1(1), the coefficients of a are given by

1 1 1 .
ae = —7(ao™!) = —tr (a(@mna(@™h) = —tr (Ana(@)’)

foro € §,.
Alternatively, if say 0 = ng(ss?)/tr(ng(ss™)) with s € CS, is given, then r in
0 = 4 (r) is proportional to

Vv/g(d, n)71< Z a);h)ssT

A=n
h(n)<d

with an overall normalization such that the coefficient of id is 1 /n!, and where Wé(d, n)~!
is the inverse of the analog of Wg(d, n) in CS,;,

tr (PA)
T (wx)

We(d,n)™' =n! Z

h(A) <d

3. Entanglement Witnesses via Commutative Polynomial Optimization

With the help of Theorem 4 we now show how semidefinite programming allows us to
find entanglement witnesses for Werner states. The key idea is that finding entanglement
witnesses of this type can be formulated as optimizing a multilinear polynomial over a
compact semialgebraic set. We recall the matrix version of Putinar’s Positivstellensatz
[40] from real algebraic geometry in a form suitable for our application.

Corollary 9. (Complex version of the matrix Positivstellensatz [43, Corollary 1]) A poly-
nomial q € C[z, 7] is nonnegative on Z if and only if ¢ + &€ € Q for every ¢ > 0, where

={ > pizp; : pjeClza} c Clz. 2
J

is the quadratic module generated by Z.

Sandwiching Z with polynomials of at most degree ¢ yields the ¢-truncated quadratic
module

Q¢ = {tr(w ®1,) Glug ®1,)2) : G >0}, 13)

where u, is the vector of ordered monomials in z, z of degree atmost ¢, and G isamg xm
matrix with m, = n("rE'(‘;_l)lg’l) Clearly, O = |, Q¢. Note that f,, can be of degree n; to
consider whether fy, +& € Qg forsome ¢ > 0, itis therefore sensible to restrict £ > (%1 .

A matrix polynomial P(z) € C[z, z]"*" is a sum of squares (SOS) if there is a matrix
polynomial S(z) € Clz, z]™*" such that P(z) = ST(z)S(z). By writing G = Y'Y, the
polynomial matrix (uy ® 1,)"G(uy ® 1,) is easily seen to be SOS,

)
e @ 1) Glue @ 1) = (Y (e @ 1) Y (e @ 1) = (Z Y; (uw,-) (Z Y,»(uwl-) ,
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where Y = (Y1, ..., Yj,) is understood as a block 1 x % matrix with my x n blocks Y;.
Givenr € Jy,consider the following commutative polynomial optimization problem:

e* = inf €
ceR, weCs,
subject to w=uw' (POP)
T(rw) = —1
fw+e>0onZ.

This gives rise to the following hierarchy of SDP relaxations for POP, indexed by
teN:

g = inf 3
ceR, weCs,,
GeL(C™e)
subject to w=uw' SDP_POP
G0 (SDP-POP)
T(rw) = —1

fo+e=t(u,®1,)Gu @1,)7).
Corollary 10. Let r € Jg. Then i (r) is entangled if and only if j < 1 for some £ € N.

Proof. (=) If ug(r) is entangled, then there is w = w’ e CS, such that T(rw) < 0
and fy,|z > 0 by Theorem 4. After rescaling w we can assume that 7 (rw) = —1. By
Corollary 9, there exists £ € N such that f,, + % € Qy. Then szf < % < 1.

(<) Suppose &; < 1 for some £ € N. Then

t(r(w+e¢jid) = t(rw) +&;7(r) = —1+¢; <0

and fwﬁz;id is nonnegative on Z. Therefore 114(r) is entangled by Theorem 4. O

Remark 11. Fix n € N. The £th SDP SDP-POP has

2
Ll n? nn—1D+6\" 0@
nn—1)

real variables (&, coefficients of w = w', and entries of G), and its semidefinite constraint

has size n("il'(’; 71)];[) Thus the size of SDP-POP grows polynomially in £.

4. Entanglement Witnesses via Trace Polynomial Optimization

In this section we associate Werner state witnesses with multilinear trace polynomials
with certain positivity properties (Theorem 12). Thus we translate the problem of find-
ing Werner state witnesses to trace polynomial optimization, and produce a second SDP
hierarchy for entanglement detection.
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4.1. Trace polynomials. Trace polynomials are polynomials in noncommuting variables
where some terms are traced, for example

tr(x1x2)x3 — tr(xox3x))1 + 2tl‘(X1X3)2)C2 +xix3 —x3x1+ 1.
Here we only work with linear combinations of terms of the form
Ty = tr(Xg, - - Xg,) - - t0(Xgy -+ - Xg,)

whereo = (o ...a,)...(¢1...¢)isapermutation. Forexample, T(132y4) = tr(x1x3x2) tr(xs).
As before, let 4 be the representation of S, on (CH®" that permutes the tensor factors.
Then a direct calculation in L((C4)®") shows [27, Lemma 4.9]

tr(ng(0)(X1 Q-+ @ X)) =To-1(X1, ..., Xn) (14)

forall Xy,...,X, € L((Cd).
In particular,

tr(ng (o)) = dNewe@ (15)

where Ncyc(0) is the number of cycles in o. This leads to the following consequence of
[22, Theorem 16].

Theorem 12. Let ¢ = Znesn axnq(m) be a state, and let VW = ZUES,, wyna (o). The
following are equivalent:

(1) W detects entanglement in ¢;
(ii) the trace polynomial Zaes,, We T—1(X1, ..., X,) satisfies

> weT,-1(X1,.... Xy) =0 VX; € L(C), X; >0,

oeS,

Z Wy aydNec@™ <.

o,TEeS,

Proof. The set of separable states SEP(d, n) is convex and it suffices to ascertain that
tr(Wp) > 0 holds for all product states ¢. With Eq. (14) one has

rOVo1 ® - ®on) = Y WoT,-1(01, ..., 0n) -

oes,

The expression is multilinear so we can replace the g; by arbitrary X; > 0 in L(Cd).
With Eq. (15) it is immediate that

trWe) = Z We ty dNeve @)

o,meS,
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4.2. Trace polynomial optimization. In this subsection we give an alternative way of
confirming Werner state entanglement using a recently introduced framework for trace
polynomial optimization [26]. The key idea is the following: for the trace polynomials
appearing in Theorem 12, instead of requiring positivity in matrix variables of size d, one
asks for positivity in operator variables from any tracial von Neumann algebra. This is of
course a stronger requirement; however, positivity of trace polynomials over all tracial
von Neumann algebras can be exactly described by sums of squares and their traces.

Let M be the monoid generated by x1, ..., x, subject to relations x% = x; for
j = 1,...,n. Namely, M is the set of words in x1, ..., x, without consecutive rep-
etitions of letters, and for v, w € M define vw as the concatenation of v and w with
consecutive repetitions of letters removed. The empty word in M is denoted by 1. Also
define a natural involution T that reverses words, and an equivalence relation: v ~ w if
w can be obtained by a cyclic rotation of the letters in v.

Denote the equivalence class of u € M\ {1} by t(«). The defining relations for M
(namely sz. = xj for j = 1,...,n) describe projections, and so T simulates a tracial
state on a product of projections. Let A be the complex polynomial ring in symbols T(u)
foru € M\{1}, and let A = A ® CM. Thus A is a noncommutative algebra which
inherits the involution * from M. Assigning elements from M to their equivalence
classes A-linearly extends to a unital trace map T : A — A. For example, if

a = 3it(x))x2x1x3x2 + T(x2)x2 € A
then
a = —3it(x1)xx3x1Xx2 + T(Xx2) X2,
(@) = 3it(x)T(x2x1x3) + T(x2)2 .

Leta € A. Given a von Neumann algebra F with a tracial state w : 7 — C and a

tuple X = (X1, ..., X,) of projections X ; € F, there is a naturally defined evaluation
a(X) € C, determined by t(xj, - - - x;, ) (X1, ..., X)) =0 (X, --- X,).
The elements from A of the form T(u1) - - - T(u,,)ug for ug, .. ., u, € M are called

tracial words. Let us fix some total ordering of tracial words that respects their word
length. For £ € N let W, be the vector of ordered tracial words in .4 of length at most £.
Givena € A let

e =inf {e: a+e=1(W GW,p), G > 0}. (16)

Note that T(W;GWg) yields a trace of sum of squares in .A. The value €, relates to
optimization over all tracial von Neumann algebras in the following way.

Corollary 13 (Complex analog of [26, Corollary 5.7]). The sequence (€¢)¢ in Eq. (16)
is decreasing and bounded; let €* be its limit. Then —e* is the infimum of a(X) over all
tuples X of projections from tracial von Neumann algebras.

We now look at the tracial words arising from elements in S,,. Given a permutation
o=(u1...ar)...(¢1...&) € S, define

te = nNee@r(xy - xg) Ty - xg) €A (17)

We extend this notation linearly to the group algebra CS,,. The definition (17) is mo-
tivated by the following observation. Let w € CS, and let X € L(C")" be a tuple
of projections. On one hand, we can evaluate the trace polynomial 73, on X to obtain
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Ty (X) € C. On the other hand, L(C") is a tracial von Neumann algebra with the unique
tracial state % tr; since elements of A can be evaluated at tuples of projections from von
Neumann algebras, we can also talk about t,,(X) € C. The choice of the cycle-counting
scalar factor in (17) ensures that

Ty(X) = tw(X). (18)

Note that (18) is valid only for projections on C”, and not for those on spaces of other
dimensions.

Proposition 14. Let r € J; be a state. Suppose that there is a w = w' € CS), such that
T(rw) =—1,
ty + 9 =T(W,GW,), (19)

for some 9 < 1, € € N, and G > 0. Then [.(r) is entangled for every e > d, with a
dimension-free witness w = w + ¥id.

Proof. Sincer € J; € J, C J, (recall that J, = J, if e > n), the states u,(r), u,(r)
are either both entangled or both separable by Theorem 4 because the condition (ii)
within it is independent of the local dimension. Thus it suffices to check that w, (r) is
entangled. Firstly,

tr (/,Ln(r)nn(ﬁ)) =t(rw)=t@rw)+0t@F)=—-1+9 <0

by (19) and Lemma 1(1). On the other hand, since t,, +? is the trace of a sum of hermitian
squares in A by (19), it attains nonnegative values on all tuples of projections from any
von Neumann algebra F with a tracial state . Therefore

0 <9+ inf ftX)< 9+ inf tu(X)= 0+ inf Tp(X) (20)
(F,0) XeL(Cmy" XeL(C")"
n T .
inffj.fzxﬁ Xj=X}=x? Xj=X=x?

where the last equality holds by (18). Note that 75 (X) = Ty, (X)+0 tr(Xy) - - - tr(X,,) for
every X € L(C™")", and tr(P) > 1 for every nonzero projection P € L(C"). Therefore
(20) implies

0< inf Ty(X).
XeL(CMy"
x,-:xj:x?

Since Ty is multilinear and every positive semidefinite operator is a conic combination
of projections, we conclude that Ty is nonnegative on all tuples of positive semidefinite
operators on C". Thus 1, (W) is an entanglement witness for w, (r) by Theorem 12. O

Given a state r € CS,,, let us consider the following trace polynomial optimization
problem:

9* = inf v
PeR, weCs,
subject to w=w' (TPOP)
t(rw) =—1

ty+>0o0onA.
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This gives rise to the following hierarchy of SDP relaxations for TPOP, indexed by
=157

v, = _inf 0
YeR, weCs,,
G
subject to w=uw'
G>0 (SDP-TPOP)
t(rw) = —1

o =7(WGw) .
As a consequence of Proposition 14 we have:

Corollary 15. If v < 1 for some £ € N, then w, (r) is an entangled state.

Remark 16. Fix n € N. Since M is a subset of tracial words in 4, a very crude lower
bound on the length of the vector Wy is

14

My = Zn(n — 1)’-_1 =n

i=1

n—0t—=1
n—2

’

so the number of variables in the £th SDP SDP-TPOP is at least exponential in ¢,

(M¢ + )M,
+ S —

1 +n! =0((n-17%).

5. Comparison of Hierarchies

Some remarks on the two SDP hierachies are in order.

The trace polynomial optimization framework in Proposition 14 shares analogies with
both Theorems 12 and 4. Like the latter, Proposition 14 gives a dimension-independent
certificate of entanglement. On the other hand, the trace polynomial context is closer to
Theorem 12, although Proposition 14 employs a different parametrization of witnesses
(as it appeals to von Neumann algebras and their tracial states which are necessarily
unital), leading to a dimension-independent statement.

However, it is important to mention that Proposition 14 is possibly weaker than The-
orem 4 in the sense that it is unclear whether it detects entanglement of every entangled
Werner state. While a positive resolution of the Connes embedding conjecture would
likely imply the converse of Proposition 14, the former turned out to be false [24].

Nevertheless, Proposition 14 leads to the hierarchy SDP-TPOP for entanglement de-
tection with smaller initial SDPs than the ones in SDP-POP. Comparing the number
of variables from Remark 11 and 16 we see the following: for large ¢, the (commuta-
tive) SDP-POP is much smaller than the (noncommutative) SDP-TPOP. However, when
utilizing SDP hierarchies in practice, one usually computes only the first few steps of
the hierarchy, with the hope that they already give the sought answer. Since projections
and tracial states of their products satisfy several relations, the first few steps of the
second hierarchy SDP-TPOP are actually much smaller than the first few steps of the
first hierarchy SDP-POP. Table 1 below compares the sizes of semidefinite constraints
and numbers of equations in the first two steps of hierarchies (¢ = [5] and £ = [5]+1).
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Table 1. Pairs of sizes of semidefinite constraints and numbers of equations in SDP-POP and SDP-TPOP for
the first two steps in the hierarchies

SDP-POP SDP-TPOP
n Step 1 Step 2 Step 1 Step 2
3 (84,211) (252, 925) (31, 86) (109, 443)
4 (364, 1821) (1820, 18565) (53, 246) (253, 2432)
5 (8855, 230231) (53130, 3108106) (491, 9722) (2681, 157492)

A further reduction is possible if one is interested in real states and real separability.
Then one can take a coarser equivalence relation on M that identifies v and v' (thus T
simulates a tracial state on a product of real projections) and restrict the scalars of A to
be real numbers. Encoding these additional symbolic constraints into A decreases the
number of tracial words of a given length, and thus decreases the size of the semidefinite
constraint in the resulting analog of SDP-TPOP.

6. An Example

In this section we use the second hierarchy SDP-TPOP to detect entanglement in a
four-qubit Werner state which has positive partial transposes across all bipartitions. Let
s = 41-1d+5-(12)+5-(34)+20-(1234) € CSy4 . Thereisauniquer € Jo C CSy such that

m2(ss™)

Q=1 = 5™

is a four-qubit Werner state. More explicitly, as in Remark 8 we get

r o= ggid + 3555 [(12) + G + Fae [ (14) + @3)] + 55375 (13) + 773476 (24)
+30905 [(123) + (132) + (134) + (143)] + oor [(234) + (243) + (124) + (142)]
+2500L [(1324) + (1423)] + 552 15[(1243) + (1342)] + 225 [(1234) + (1432)]

548832
3811 6271 7651
+a7aa16 (13) (24) + 27316 (14) (23) + 374576 (12)(34)

2y

One can check that the partial transposes of o = 2 (r) are positive semidefinite for all
bipartitions. Consequently the Peres-Horodecki or PPT criterion does not detect entan-
glement in 0. However, already the first step (£ = [%] = 2) of the hierarchy SDP-TPOP
confirms that ¢ is entangled. Since r € RSy, it suffices to optimize over w € RSy and real
symmetric G in SDP-TPOP. The numerical solution is ¢, & 0.8537 < 1, from which
a corresponding numerical witness w € RSy as in Proposition 14 can be extracted.
Since 0.8537 is close to 1, one might wish for an exact w € QS4 to clear doubts about
numerical errors. To achieve this, we choose some rational z‘/‘é € (92, 1), for example

#}, = 1, and solve the feasibility SDP
w=w', G=0, torw) =—1, tw+z9§:T<WgGWg>. (22)

Geometrically, (22) looks for a point in the intersection of the positive semidefi-
nite cone with an affine subspace. In our example, the 53 x 53 floating point solution G
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produced by the interior-point method SDP solver is positive definite. Therefore rational-

izing, i.e., choosing a sufficiently fine rational approximation of G, and then projecting

onto the affine subspace will result in a rational solution of (22), cf. [8,37].
Concretely, we obtain the exact dimension-free witness w = %id +w € QSy,

= 70530553080581117 id
— 73043335638912450

2153437054 1084798063661 6399721673153
+ Sqiz7arra7s L (12) + 3] = Fa56068712275 [(14) + (23)] — sg5a33508935500 (13)

166092679
~ 576051425 (24)
— 138189(12)(34) — 29998 (13)(24) — £(14)(23)

+ e IIT[(234) + (243) + (124) + (142)]

+ L2072 1(123) + (132) + (134) + (143)]

+ SB[(1243) + (1342)] + Z20:[(1324) + (1423)] — 322053[(1234) + (1432)].

The symmetry with respect to the parametrization of  in (22) is evident.
Note that due to Corollary 5, the state in Eq. (21) is entangled in every dimension
d=>2.

7. Additional Remarks

In this section we indicate how the techniques developed in this paper can be applied to
non-Werner states and immanants.

7.1. States invariant under a different unitary action. It is well known that n-partite
Werner states require fewer parameters (that is, n!) for their description than arbitrary
n-partite states on (C4)®" for d > n. In this article we made use of this parametrization
to remove the local dimension from the problem of detecting entanglement entirely. This
leads to the question: for which other sets of states can entanglement be detected in a
dimension-free manner?

We presented our results for Werner states, however it is not hard to see that they
can also be applied to quantum states 0 € L((C?)®") that are invariant with respect to
U®=h) @ UK for any k. Such states are relevant for efficient port-based teleportation
schemes [44] and are elements of the walled Brauer algebra [33]. Thus they can be
expanded in terms of partially transposed permutation operators,

Z%W(O’)T", a, € C

oEeS,

where -7+ is the partial transpose acting on the last k systems [13, Lemma 6]. As in the
case of Werner states, it suffices to consider entanglement witnesses ¥V for which the
same invariance holds.

In contrast with n,4, the map 7y = ndi is not a x-representation of the algebra CS,,.
However, one can choose a ring structure on the vector space CS,, in a natural way,
resulting in the aforementioned walled Brauer algebra B,,, so that the map 77, is a *-
representation of 5,. By looking at the irreducible representations of 5,, one obtains
amap iy : B, — L((C4y®m) by mimicking the construction of w4 before, only now
relying on a different ring structure (centrally primitive idempotents in 3,,). If o = i (r)
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and W = 774 (w) for some r, w € By, then tr(Wg) equals the trace of rw under the reg-
ular representation of B,,. Similarly, the minimization of an operator containing partial

transposes y . s, Wolld (o) Tk over the set of separable states,

oy min | D wana (@) on) 1] @ -+ @ [vkh 0kl © -+ @ [un) (v
AN " o€S,

=, min Y wena@)v) il @ ® o) (ue] T ® -+ @ [va) (val ")
1B o€eS,

= omin | Y wena(@)|vn) (il @ - ® [ve) (k@ - ® [va) (wal) |
[v1)s-eslvn)€ oeS,
reduces to that of an operator ) . s, Wona(o) with all partial transposes removed.
Therefore nonnegativity of W = 7j;(w) on separable states corresponds to nonnegativ-
ity of f,, on the spectrahedron Z as before. It follows that:

Corollary 17. Analogs of Theorems 4 and 12, Corollaries 5 and 1, and the two hierar-
chies SDP-TPOP and SDP-POP hold for states with U®"0 @ U®*_invariance.

7.2. Witnesses for arbitrary states. Our approach also allows to detect entanglement in
arbitrary states: given some state o € L((C?)®"), the twirl

E(o) = / U®o(UMH®"dU (23)
Ueldy

yields a Werner state which can then be subjected to our hierarchies. Note that not ev-
ery entangled state remains entangled under the twirling (23). The computation of the
integral (23) can be done in the following way [9,39]. Define

®(0) =) _ tr(e"'0)na(o)

g€eS,

If d > n then

E(0) = ®(0) Wg(d, n).

where Wg is the (Formanek-) Weingarten operator from Eq. (5). This yields an invariant
state expanded in terms of the permutation operators, which can be subjected to our
hierarchies SDP-POP and SDP-TPOP.

7.3. Immanant inequalities. We end with noting that the methods presented are directly
applicable to the positivity of generalized matrix functions [cf. Eq. (9)] and are of partic-
ular interest in the context of long-standing open conjectures on immanant inequalities
[16,20,52]. For this it will likely be useful to take into account further symmetries [41]
and sparsity [25,50] in the semidefinite programs.
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