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Abstract

A noncommutative (nc) polynomial is called (globally) trace-positive if its evaluation
at any tuple of operators in a tracial von Neumann algebra has nonnegative trace. Such
polynomials emerge as trace inequalities in several matrix or operator variables, and
are widespread in mathematics and physics. This paper delivers the first Positivstel-
lensatz for global trace positivity of ncpolynomials. Analogously to Hilbert’s 17th
problem in real algebraic geometry, trace-positive nc polynomials are shown to be
weakly sums of hermitian squares and commutators of regular ncrational functions.
In two variables, this result is strengthened further using a new sum-of-squares certifi-
cate with concrete univariate denominators for nonnegative bivariate polynomials. The
trace positivity certificates in this paper are obtained by convex duality through solving
the so-called unbounded tracial moment problem, which arises from noncommutative
integration theory and free probability. Given a linear functional on nc polynomials,
the tracial moment problem asks whether it is a joint distribution of integral operators
affiliated with a tracial von Neumann algebra. A counterpart to Haviland’s theorem
on solvability of the tracial moment problem is established. Moreover, a variant of
Carleman’s condition is shown to guarantee the existence of a solution to the tracial
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moment problem. Together with semidefinite optimization, this is then used to prove
that every trace-positive nc polynomial admits an explicit approximation in the 1-norm
on its coefficients by sums of hermitian squares and commutators of nc polynomials.

Mathematics Subject Classification Primary 13J30 - 46L51 - 14P99; Secondary
47A63 - 47L60

1 Introduction

Trace inequalities in several operator variables are ubiquitous in mathematics and
physics. For example, Golden—Thompson, Lieb—Thirring inequalities and their gen-
eralizations play an important role in quantum statistical mechanics [7, 54]. Another
source of trace inequalities is quantum information [3, 41], where they materialize
through data processing inequalities and restrictions on quantum correlations. In oper-
ator algebras [15, 39] and noncommutative probability [18, 24], they appear through
Holder, Minkowski and other inequalities in noncommutative L?-spaces, as well as
trace convexity of entropy. In mathematical optimization, hierarchies of semidefinite
programs based on tracial noncommutative optimization are applied to compute matrix
factorization ranks [16]. Finally, the recently resolved [23] Connes’ embedding prob-
lem has several interpretations in terms of trace inequalities [ 19, 28, 40, 45]. This paper
studies trace polynomial inequalities that are valid globally, without restrictions on the
variables or their norms, in all finite von Neumann algebras. For the first time, we pro-
vide necessary and sufficient certificates (Positivstellensitze) for such inequalities to
hold, obtained by solving the associated unconstrained tracial moment problem.

Let R<x> be the real free x-algebra of noncommutative (nc) polynomials in self-
adjoint variables x1, .. ., x,. A tracial von Neumann algebra is a pair (¥, ) consisting
of a finite von Neumann algebra 7 and a tracial state T on . Given an nc polynomial
f € R<x> and a tuple of self-adjoint operators X € F, we consider the evaluation
f(X) € F and its trace 7(f (X)) € C. We say that f € R<x> is (globally) trace-
positive if 7(f (X)) > Oforall X € F7, and all tracial von Neumann algebras (F, 7).

The notion of trace positivity of nc polynomials fits in between positivity (of com-
mutative polynomials) on tuples of real numbers and positive semidefiniteness on
tuples of operators. Commutative and operator positivity are both well-studied, the
former in real algebraic geometry and moment problems [11, 35, 49, 53], and the
latter under the umbrella of free analysis and free convexity [1, 17, 21]. In both cases,
algebraic certificates for positivity, the so-called Positivstellensitze, are usually given
in terms of sums of squares. For example, the famous resolution of Hilbert’s 17th prob-
lem asserts that a commutative polynomial is nonnegative if and only if it is a sum of
squares of rational functions. Analogously, an nc polynomial is everywhere positive
semidefinite if and only if it is a sum of hermitian squares of nc polynomials [20, 36].
On the other hand, results on trace-positive nc polynomials are scarcer. Only alge-
braic certificates for trace positivity on domains with additional restrictions have been
given so far. In [25, 28], Positivstellensétze for trace positivity on bounded domains
(in terms of Archimedean quadratic modules) were derived. Likewise well-understood
are nc polynomials that are trace-positive on tuples of k x k matrices for a fixed k € N
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[29], which were focal in the Procesi—Schacher conjecture [42]. On the other hand, a
characterization of nc polynomials that are trace-positive without norm or dimension
restrictions on the input has been absent (except for the single operator case, where
even positivity of polynomials in trace powers can be handled [27]).

Polynomial positivity is dual to moment problems [11, 43, 53]. While the classical
moment problem aims at determining which functionals on a polynomial ring arise
from integration with respect to some measure, the tracial moment problem considers
functionals on a free algebra that arise from noncommutative integration [38] with
respect to a trace on a von Neumann algebra. Its C*-analog pertains to relativistic
quantum theory [12]. In free probability, a unital algebra A with a trace t is viewed
as a noncommutative probability space, and the functionals on R<x> of the form
p — t(p(X)) for X € A" are called noncommutative laws or joint distributions of X
[37,57]. Noncommutative joint distributionsgiven by evaluations on tuples of elements
from tracial von Neumann algebras (F, t) have been characterized by the solution of
the bounded tracial moment problem [19, 45]. The special case of noncommutative
joint distributionsof tuples from finite-dimensional von Neumann algebras is settled in
[6]. This paper solves the unbounded tracial moment problem of describing functionals
arising from 7 and evaluations on (possibly unbounded) operators affiliated with F.

1.1 Main results

The contribution of this paper is twofold: we solve the unbounded tracial moment prob-
lem, and derive a Positivstellensatz for trace-positive nc polynomials. Before stating
these results, we require some notation. Given a tracial von Neumann algebra (F, 1),
let L®(F, t) be its x-algebra of power-integrable operators, i.e., the intersection of
all the LP-spaces associated with (F, 7). That is, X € L“(F, ) if X is an operator
affiliated with F, and t(|X|”) < oo for all p € N. Let R<x >, be the subspace of
symmetric (or self-adjoint) polynomials in R<x >. Obvious examples of trace-positive
polynomials are sums of hermitian squares and commutators of nc polynomials; how-
ever, not all trace-positive polynomials are of this form. To remedy this, one has
to replace ncpolynomials with a certain class of regular ncrational functions. Let
K C R<x>g, be the convex cone of all (symmetric) nc polynomials that can be writ-
ten as sums of hermitian squares and commutators of elements in the *x-subalgebra

R<xi,...,x,, (1 —i—x%)*l,...,(l +x,21)7]>

of the free skew field [9, 58]. For example, the following noncommutative lift of
the Motzkin polynomial

xgxfxz + x%xlzx% — 3x2x12x2 +1

belongs to /I (Example 3.2) even though it is not a sum of hermitian squares and
commutators of ncpolynomials. The cone K plays a central role in our first main
result, the solution of the unbounded tracial moment problem. The following theorem
comprises tracial analogs of Haviland’s theorem and Carleman’s condition.
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Theorem A Let ¢ : R<x>g, — R be a linear functional with ¢ (1) = 1.

(a) There exists a tracial von Neumann algebra (F, t) and X € L®(F, t)" such that
@(p) = t(p(X)) forall p € R<x>, if and only if p(K) = Rxo.

(b) The equivalent conditions in (a) hold if there is M > 0 such that ga(x;) <rM"
forall j=1,...,nand evenr € N.

The first part of Theorem A is proved as Theorem 4.2, while the second part is
given in Theorem 7.1. The proof combines methods and results from convexity [2],
the theory of unbounded operators [52], and noncommutative integration [38, 55].
Theorem A is used to obtain a tracial Positivstellensatz for nc polynomials.

Theorem B The following are equivalent for f € R<x>g,:

(1) t(f(X)) =0forall (F,t)and X € F";
(i) t(f(X)) =0forall (F,t)and X € L*(F,1)";
(iii) f lies in the closure of K with respect to the finest locally convex topology on
R<x>g,
@iv) for every e > 0 there exists r € N such that

"o "
f+EZZEXJ

j=1k=0
is a sum of hermitian squares and commutators in R<x>.

See Theorems 6.1 and 7.2 below for the proof. In addition to the aforementioned
mathematics areas, techniques from polynomial and semidefinite optimization [6, 31]
are applied in the proof of Theorem B.

The negative answer to Connes’ embedding problem [23] implies that in general,
one cannot restrict (i) in Theorem B to finite-dimensional von Neumann algebras
(Proposition 6.4). Nevertheless, it suffices to consider only II; factors in Theorem
B(i). On the other hand, trace polynomial inequalities that are valid in all finite von
Neumann algebras (and are described by Theorem B) do not necessarily hold in all
formal tracial algebras [39].

Alas, the cone KC is not closed in general (Proposition 6.8). However, the statement
of Theorem B can be improved for a class of bivariate nc polynomials. We say that
f € R<uxy, x2> is cyclically sorted if it is a linear combination of cyclic permuta-
tions of products of the form xixé. It turns out (Corollary 5.4) that cyclically sorted
nc polynomials are trace-positive precisely when they belong to K. This statement is
a consequence of the following new Positivstellensatz for commutative polynomials.

Theorem C If f € R[x, y] is nonnegative on R? then there exists k € N such that
(1 + x> f is a sum of squares in R[x, y].

The proof (see Theorem 5.2) relies on real algebraic geometry of affine surfaces
[49]. Theorem C is a strenghtened solution of Hilbert’s 17th problem for bivariate
polynomials, since only rational squares with uniform univariate denominators are
needed.
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2 Preliminaries

In this section we review the terminology and notation on von Neumann algebras, their
affiliated operators, nc polynomials and rational functions that are used throughout the

paper.
2.1 Affiliated and power-integrable operators

A tracial von Neumann algebra is a pair (F, t) of a finite von Neumann algebra F
with a separable predual and a faithful normal tracial state T on F. Suppose F acts
on a Hilbert space H; then a closed and densely defined operator X on H is affiliated
with F if it commutes with every unitary operator in the commutant of F in B(H).

Next we review selected notions from noncommutative integration theory, fol-
lowing [38, 55]. For p € [1, 00), the noncommutative LP-space LP(F, t) is the
completion of F with respect to the norm X — t(|X |P)1/P [38, Section 3]. Note
that L?(F, ) is a Hilbert space, and F acts on it via the left regular representation.
Since 7 is finite, operators on L2(.7-' , ) affiliated with F form a «x-algebra [38, Sec-
tion 2]: the sum/product of closed affiliated operators are understood as the closure of
the sum/product as unbounded operators; see also [55, Section IX.2]. The sequence
(L?(F, 7)) pe[1,00) can then be naturally seen as a decreasing net of nested subspaces
in this algebra of operators affiliated with F [38, Theorem 5]. Holder’s inequality for
noncommutative L?-spaces [55, Theorem IX.2.13(iv)] states that

|T(Z1 - Z)| < W Zillpy -~ 11 Znllp, 2.0

for Z; € LPi(F, t) and % +- 4 p]_n = 1. Therefore

L°(F.t):= () LP(F.1)
pell,00)

is a x-algebra, and 7 extends to a tracial state on L (F, t). The algebra L* (F, ) was
introduced in [22, Section 3], and its elements are power-integrable operators affiliated
with (F, 7). For example, if 7 = L°([0, 1]) and 7 is the integration with respect to
the Lebesgue measure on [0, 1], then log(¢) € L*(F, 7)\F and 7(|log(?)|?) = p!.

2.2 Noncommutative polynomials and rational functions

Letx = (xy, ..., x,) be atuple of freely noncommuting variables, and let <x > be the
free monoid of words in x. Let R<x > be the real free x-algebra of nc polynomials over
x, with the involution given by x;’.‘ =xjforj=1,...,n.Ford e Nlet R<x>,4 C
R<x> be the subspace of ncpolynomials of degree at most d. The universal skew
field of fractions of R<x > is the free skew *x-field R€x > (see e.g. [9, 26, 58]). In this
paper, we consider the following *-subalgebra of R€<x 3>:

A=R<xy, ..., x, 1+x)7 L (x2S,
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Alternatively, A can be viewed as the free product of n copies of Rz, ﬁ]. For
d € Nlet A; C A denote the subspace of elements that are linear combinations of
products in x1, ..., x,, (1 —i—xlz)_l, 0+ x,%)_1 of length at most d.

If X is a tuple of (possibly unbounded) self-adjoint operators affiliated with a finite
von Neumann algebra F, then the evaluation

aX)=aX1,..., Xp, A+ XD .., +XxH7hH

is well-defined for every a € A because the affiliated operators form an algebra and
(I +X)~!is abounded operator for a self-adjoint X. Furthermore, if X € L“(F, 7)"
then 7 (a(X)) is well-defined. More precisely, if a € A, then t(a(X)) is well-defined
for every X € LP(F, t)" by Holder’s inequality (2.1).

3 Sums of hermitian squares with denominators, and the cone KC

This section is devoted to the introduction and first properties of the convex cone /C
(see (3.1) below) that is essential for the moment problem and positivity certificates
of this paper.

Given a x-algebra B let

By = (b € B: b* = b},

B = {Zbib;‘: bi € B},

[B, B] = span{b1by — byb;: by, by € B}.

The following lemma lists relations between the above convex cones and subspaces
in the x-algebras R<x> and A.

Lemma 3.1 Under the natural embedding R<x> C A,

(@) [A, AINR<x> = [R<x>, R<x>];

(b) T2ZANR<x> = R2R<x>;

(©) 2ZAN[A, Al = {0}

(d) (Z2A+[A A) NR<x> D 22R<x> +[R<x>, R<x>]forn > 2;
@ (I+x)™ 1= +x)™" e x> Aforallm € N.

Proof (a) There is an embedding of .4 into formal power series R<<x>> that sends
(1 —|—xJ2.)’1 to Z,fio(—l)ksz.k. Ifs,7 € R<x>> are givenas s = y spw and
1= ee x> fww, then their commutator

we<x>

[s,t]=§j D suty - [u, v]

i=0 |u|+|v|=i
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is a convergent (with respect to the adic topology of the power series) series of com-
mutators. From here we immediately deduce that [R<<x>>, R<<x>] N R<x> =
[R<x>, R<x>], so (a) follows.

b)If X € My(C), and s € %2A, then s(X) is a positive semidefinite matrix.
Hence (b) holds by the Helton-McCullough Positivstellensatz, see [36, Theorem 0.2]
or [20, Theorem 1.1].

(c) For every X € My (C)?, and ¢ € [A, A] we have tr(c(X)) = 0. On the other
hand, if f € A\{0}, then there are k € Nand Y € My (C)%, such that f(Y¥) is nonzero,
see e.g. [58, Remark 6.7]. Consequently tr(f (Y) f*(¥)) > 0. Therefore (c) holds.

(d) See Example 3.2 below.

(e) Since(l—}—x]z.)_l = (1+xJ2.)_2(1+x12.)andl—(l+x]2.)_1 = sz.(1+x]2.)_1belong
to ©2A, sodo (1 +x12.)”" and 1 — (1 +x12.)”" =(1-( —l—sz.)’l) ymta +xJ2.)*i
for every m € N. O

Example 3.2 Let m = x2x‘l‘x2 + x%xlzxg — 3xzx%xz + 1. Note that m is a noncom-

mutative lift of the classical Motzkin polynomial (see [35, Proposition 1.2.2] or [49,
Remark 1.1.2]), which is nonnegative on R? but not a sum of squares of polynomials.
In particular, m ¢ L?>R<x> +[R<x>, R<x>]. On the other hand, by [44, Section
42)wehavem = s + c fors € £2A and ¢ € [A, A] where

s =1 —xix)*A+xH)7 11 —x3xd) +
(1 +x)7 a3 —xDPo 4+ 62 = DA +xH) K@ - 1)

and
c=2[x2,[(1 +x12)_1,x2]]~
Let us define the convex cone
K:=(Z2A+[A A) NR<x>g (3.1)
in R<x>q,.

Lemma3.3 Ay, C 22A+[A, Al + R<x>g,.

Proof Consider the set of formal words in 2n symbols x, . . ., x,, (1+x12)_1, (A
)c,%)_l that do not contain subwords x; (1 + sz.)_l or (1+ sz.)_lsz.; it maps injectively
into 4, and its image, denoted &, is a basis of 4. An expansion of a € 4 with respect
to £ will be called the normal form of a. That is, univariate sub-expressions in a are
written as partial fractions, with the inverses on the left for the sake of bookkeeping.
It suffices to show that u + u* € £2A + [A, A] + R<x>g, for all u € £. This is
done by consecutively eliminating (1 +)612)_1 Lo (1 +)c,%)_l from u; we demonstrate
this only for (1 + x%)_l, and the other (1 + sz.)_l are eliminated in the same manner.
Every v € £ can be uniquely written as

v =1l + xlz)_mlvl(l +x12)_m2v2 (1 + Xlz)_m(l)(
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where my > 0 and vy € € withvj # 1 for 0 < j < £ do not contain (1 + xf)’l. Set
8(v) = £. More generally, for a € Alet §(a) be the maximum of § (v) for v appearing
in the normal form of a.

Assume that (1 + x12)_1 appears in u (as otherwise there is nothing to be done);
that is, 8(u) > 1. After subtracting an element of [A, A] from u + u* and taking a
maximal term with respect to §, we can assume that u starts with (1 + x%)_l. We
can write u = u/(1 +x12)’mu” form > Oand o', u” € £ with §(u') = L%’”J and
Sw")=68u)—1—38w). Then

u -+ ut = (u/ + u”*)(l +x12)—m(u/ +u//*)*
+u' (1= (14 xH ™™™
+u" (1= A+ xH) ™"

/o 1% 1"E 1
—uu —u u.

(3.2)

The first three terms of (3.2) belong to £2.4 by Lemma 3.1(e). Furthermore, note
that 8 (w”u”"*) < 8(u), and since u’ is either 1 (if §(u) = 1) or starts with (1 4 xlz)_l,
there is ¢ € [ A, A] such that § (u'u’* — ¢) < 8(u). Using (3.2) and induction on & (u)
it then follows that u + u* € £2A + [A, A] + R<x>g,. O

Let Ac = C ®r A denote the complexification of A.

Lemma 3.4 Every linear functional ¢ : R<x>s — R satisfying o(K) = Rxo
extends to a linear x-functional ¢ : Ac — C satisfying ¢ (L2 Ac+[Ac, Ac]) = Rso.

Proof Note that £2A + [A, A] is a convex cone in Ag,, and

Asa = EZA +[A, Al N Asa + R<)_C>sa
by Lemma 3.3. Hence ¢ extends to a linear fuctional ¢’ : Ag, — R that satisfies
¢ (22 A+[A, AIN Aga) = Rsq by the Riesz extension theorem [53, Proposition 1.7].

Letp,t: Ac — Abe R-linear maps given by p(a) = %(a 4+a)andi(a) = zii(a—ﬁ).
Thus a = p(a) +it(a) fora € Ac.Let ¢ : Ac — C be defined as

1 .
¢(a) = §¢’(p(a) + p(@)) + %¢’(t(a) + 1(@)*)
for a € Ac. Then ¢ is a x-functional,

b (la, b) = ¢ (Ip(@, pB)] = [t@), cB)] +i([p(@), 1(B)] + [1(@), p(B)]) ) =0

and
$(aa”) = ¢(p(@p@" +Uan@" +i(H@)p@* — p@y@?))
= ¢/ (p(@p@” +uan(@*) = 0
for all a, b € Ac. Therefore ¢ (22 Ac + [Ac, Acl) = Rso. O
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4 Unbounded tracial moment problem

The tracial analog of the moment problem for probability measures with compact sup-
port was solved in [19, 45]. To obtain our rational Positivstellensatz on global trace
positivity, one has to consider analogs of probability measures with non-compact
support. In this section we solve the unbounded tracial moment problem for noncom-
mutative joint distributions.

Proposition 4.1 For every linear *-functional ¢ : Ac — C satisfying (1) = 1 and
O (22 Ac + [Ac, Ac)) = R there exist a tracial von Neumann algebra (F, t) and
X € L®(F, v)}, such that ¢ (a) = t(a(X)) forall a € Ac.

Proof We split the proof, which is a version of the Gelfand—Naimark—Segal construc-
tion for unbounded functionals on A that produces power-integrable operators, in
several steps.

Step 1: Construction of unbounded operators. On Ac we define a semi-scalar prod-
uct (a, b) = ¢(ab*). By the Cauchy—Schwarz inequality for semi-scalar products,

N ={a € Ac: ¢(aa*) =0}

is a vector subspace of Ac and N* = N. Furthermore, for every a € N, b € Ac
and ¢ > 0 we have

0 < ¢ ((a* £ eb)(a* £eb)*) =& (¢¢(bb™) = 2Re p(ba)) ;

since & > 0 was arbitrary, and a can be replaced by ia, it follows that ba, ab € N.
Hence N is an ideal in Ac. Let H be the completion of Ac /N with respect to (-, -).
Then H is a separable Hilbert space; let @ € H denote the vector corresponding to
a € Ac. The left multiplication by x; in Ac induces a densely defined symmetric
operator X;. on H. In particular, X;. is closable by [52, Section 3.1]; let X; be its

closure. Since sz. + 1 is invertible in A, the elements x j+iandx; —iin Ac are also

invertible. Hence the linear operators X ; +il and X ; — i[ are invertible on Ac/N.
Therefore X ; is a self-adjoint operator by [52, Proposition 3.8]. Note that

a(X)b = ab

forall a, b € Ac. Then —i belongs to the resolvent set of X ;, the resolvent (X ; +
i1)~! is a bounded operator on H and

ran(X; +il)~' = dom X 4.1)

by [52, Proposition 3.10].

Step 2: A tracial von Neumann algebra. Let F C B(H) be the von Neumann
algebra generated by (X +il)~!,..., (X, +il)~!,i.e., the weak operator topology
closure of the unital *—alggprggenerated by (X1 + iD7Y (X, + i)~ Define
t:F — Cast(F) = (F1, 1).Then t is a faithful normal state on . Furthermore,
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7 is tracial. Indeed, let P, Q be arbitrary elements of the unital x-algebra generated by
Xi+iD7Y . (X, —i—il)’l.Then P = p(X) and Q = ¢(X) for some p, g € Ac.
Since ¢ ([Ac, Ac]) = {0}, we have

T(PQO) =¢(pq) = ¢(gp) = 1(QP).

By construction, the Hilbert space L2(.7-" , T) naturally embeds into . In fact,
Lz(]-', 7) = H. To see this, it suffices to show that @ € Lz(]-', 7) implies )7171 S
LZ(}', 7) foreverya € Aand j = 1,...,n. Suppose a e Lz(}', T);let K CH
be the closure of {pd: p € Clxj, (1 + sz.)_l]}, and let Ky € L%(F, 1) be the
image of @ under the %-algebra generated by (X; + iI)~!. Note that (x; £ Hle
Clx;, (1 + sz)_l]. The map

(C[t%]—)l{ [ fxja
induces a Hilbert space isomorphism
L*(R, ) —> K 4.2)

where u is the finite measure on R satisfying
/ﬂ;fdu = ¢(f (xj)aa®)

for f e Cl[t, %]. The preimage of Ko under the isomorphism (4.2) contains the
set {(t £ i)_k: k € Np}. Therefore Ky is dense in K by [53, Lemma 6.9]. Thus in
particular W € K = Ko C L3(F, 1), as desired.

Step 3: Affiliation. Let U € B(H) be a unitary in the commutant of F. Since

UX;+iD™ ' =X, +il)~'U (4.3)

and ran(X; + iI)_1 = dom X by (4.1), we have U dom X; C dom X ;. Moreover,
(4.3) then implies

X;+iDUX;+iD™ X +il) = (X +iD)(X; +iD) UK +il)

on dom X ;, from where we conclude X ;U = U X; on dom X ;. Since the unitary
U in the commutant of F was arbitrary, the self-adjoint operator X ; on H is affiliated
with F.

Step 4: Integrability. Since the positive semidefinite operator X 5 is affiliated with
F, by the spectral theorem there exists a projection valued measure E; with values in
F such that X? = [o° AdE,. Then for every p € N,

oo oo
r(|Xj|2")=r(X§”)=/ M’dr(Ek)=f WAET, T) = (X]"T. 1) < oo,
0

0 J

@ Springer



Globally trace-positive...

where the second equality holds by [38, Section 3], the third equality holds by the
definition of integration, and the inequality holds since T € domX jzp . Therefore
Xje L?P(F, 1). As p € N was arbitrary, it follows that Xj e LY(F, 7).

Step 5: Conclusion. Finally, we have

t(@a(X) = (@X) T, T) =)

for every a € Ac. O

Let (F, 7) be a tracial von Neumann algebra and X € L (F, t)%,. The functional
p — t(p(X)) on R<x>, is called a noncommutative joint distribution (cf. [57,
Section 2.3] or [37, Section 6.4]). We obtain the following tracial version of Haviland’s
theorem [35, Theorem 3.1.2].

Theorem 4.2 Let ¢ : R<x>¢ — R be a linear functional with ¢ (1) = 1. Then ¢ is
a noncommutative joint distributionif and only if ¢(K) = Rxo.

Proof (=) is straightforward. (<) The functional ¢ extends to a #-functional ¢ :
Ac — C satisfying ¢ (X2 Ac + [Ac, Ac]) by Lemma 3.4. Then ¢(p) = ¢(p) =
7(p(X)) for some (F, ) and X € L”(F, 1)%,, and all p € R<x>g,, by Proposition
4.1. O

Remark 4.3 The cone X’R<x> +[R<x>, R<x>]is closed in R<x> by [6, Propo-
sition 1.58 and Corollary 3.11] and [53, Remark A.29] and does not contain K by
Lemma 3.1(d). The condition “¢ > 0 on K is therefore more restrictive than “p > 0
on L?R<x> +[R<x>, R<x>]".

The proof of Proposition 4.1 actually implies a more general version of Theorem
4.2. Let S C R<x>g,. Denote

Ks:=|[A, Al + Z s 22A NR<x>g,. 44
se{l}us

In particular, Ky equals K from (3.1). Let us say that the functional p — t(p(X))
for some tracial von Neumann algebra (F, t) and X € L“(F, )%, is noncommutative
joint distributionconstrained by S if s(X) > O forall s € S.

Corollary 4.4 Let ¢ : R<x>s — R be a linear functional with ¢(1) = 1. Then
@ is a noncommutative joint distributionconstrained by S C R<x>g, if and only if
P(Ks) = Rxo.

Proof (=) is again straightforward. For (<), recall the construction of (F, t) and
X € L®(F, t)" from the proof of Proposition 4.1. Then for every s € S and a € Ac,

(s(X)a,a) = ¢(saa™) > 0.

Therefore 7(s(X)F F*) > 0 for every F € F, whence s(X) > 0. O
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5 A commutative intermezzo and bivariate trace-positive
polynomials

In this section, we give a commutative analog of Theorem 4.2, and establish a refined
solution of Hilbert’s 17th problem for commutative bivariate polynomials that lifts to
a positivity certificate for a special class of nc polynomials.

Lett = (#1, ..., t,) be commuting indeterminates, and consider the convex cone

C:R[L]OZZR[Il,...,tn, L. ‘}

L4777 147

in R[¢]. We start by recording the commutative counterpart of Theorem 4.2. While it
follows from [53, Theorem 13.33 and Example 13.36] and it can be proved in a similar
way as Proposition 4.1 (with adaptations regarding strongly commuting operators as
in [43, Corollary 2.6]), we provide a simpler independent argument, inspired by real
algebraic geometry.

Proposition 5.1 Let ¢ : R[t] — R be a linear functional with ¢(1) = 1. Then ¢
comes from a probability measure if and only if 9(C) = Rx.

Proof Only the backward implication is nontrivial. Let 2 = (1 + tlz) (14 t,%), and
A = R[z, %]. By a variant of Schmiidgen’s Positivstellensatz [35, Corollary 3.5.2],
every bounded nonnegative f € A lies in the closure (with respect to the finest locally
convex topology) of £?A in A. On the other hand, every f € A becomes bounded
when divided by a sufficiently high power of /. Therefore, the closure of > A agrees
with the convex cone of nonnegative functions in A. The rest follows by Haviland’s
theorem [35, Theorem 3.1.2]. O

Next, we give a new strenghened solution of Hilbert’s 17th problem for bivariate
polynomials.

Theorem 5.2 If f € Ry, t2] is nonnegative on R? then there exists k € N such that
(1+ tlz)kf is a sum of squares in R[t1, t2].

Proof We wish to show that f is a sum of squares in the ring of fractions
A=RIn. bl ={0+D™p: p RNl keN|.

The ring A is the coordinate ring of the affine real variety X = ¥ x A!, where Y is
the projective line P! minus one real point [0 : 1] and two complex conjugate nonreal
points [1 : &i]. Let S C A? be the plane affine curve t12 +t22 = 1. Then S is isomorphic
to P! minus two complex conjugate points [1 : &i]. So ¥ = S\{x} where x is a real
point of S, and hence X = (S x A")\L is isomorphic to § x A! minus the real line
L = {x} x A'. Let ¢ € R[S] be such that x is the only (real or complex) zero of g
in S. Then A = R[X] is isomorphic to ring of fractions R[S x A‘]q = {q”‘g: g €
R[S x Al!], k € Ng}. To show that every nonnegative polynomial function on X is
a sum of squares in A, it therefore suffices to see that every nonnegative polynomial
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function on S x A! is a sum of squares in R[S x Al]. The latter is in fact true and was
proved in [51, Theorem 2]. O

Remark 5.3 Recall that every nonnegative real polynomial is a sum of squares of
rational functions (by Hilbert’s 17th problem, as solved by Artin). Speaking informally,
Theorem 5.2 states that 1 + tl2 is a uniform denominator for such sums of squares in
the case of two variables. Let us point out how this relates to several previous results.
If h € R[#, #2] is such that its homogenization is a positive definite form, then for
every nonnegative f € R[f1, 12] there exists k € N such that /¥ f is a sum of squares
in R[#1, £2] ([48, Corollary 3.12]). This result applies, in particular,to 7 = 1+ tlz + t22,
but notto # = 1+12. In fact, one checks easily that Theorem 5.2 implies the statement
forh =1 +rf+zf.

A weaker uniform denominator result, which however is valid for any number of
variables, says that if the homogenizations of f, h € R[zq, ..., t,] are both positive
definite, then there exists k € N such that ¥ f is a sum of squares of polynomials (
[46]forh =1+ Zi tl.2 and [50, Remark 4.6] in general).

Let us now apply the preceding commutative result to a special class of bivariate
ncpolynomials. Letn = 2 and x = (x1, x2). We say that f € R<xy, x> is cyclically
sorted [28, Definition 4.1] if

fe span{x{x{: i,j € No}+ [R<xqi, x2>, R<xy, x2>].

The noncommutative lift of the Motzkin polynomial in Example 3.2 is cyclically
sorted.

Corollary 5.4 If f € R<xy, xa>g, is cyclically sorted, then the following are equiva-
lent:

(i) f(&) >0forall& € R

(i) T(f(X)) > 0forall X € Mg(C)2, and k € N;
(i) t(f (X)) = 0 for every tracial von Neumann algebra (F,t) and X € ]-?a
@Gv) fek.

Proof (iv)=(iii)=(ii)=(i) is clear.

()=(iv) Letw : R<xy, x2, (1 +x7) 71> — R[#, 12, (1 +13)~ '] be the homomor-
phism given by 7 (x1) = #; and w(x3) = fp. Let

V = span{(1 +x7) *xix]: i, j,k € No} C R<xy, x2, (1 +x]) 7'~

and observe that there is a unique linear map n : R[z, 12, (1 + tlz)’l] — V such that
7 o n = id. Furthermore,

a(+ DR Yn (@ + D) = TR TR (4R
— (1 +x%)—k1—k2x;1+12x£l+]2

+ [ R ]
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and so
n(@n®)* e V+[A, Al (5.1
for all a, b € R[z1, 12, (1 + t12)_1]. By (i), #(f) is a nonnegative bivariate poly-
nomial, so by Theorem 5.2 there exist s1,...,s¢ € R[t1, 5, (1 + tlz)_l] such that

n(f):slz—l—“-—}-sg.Then

Fi=nsonsD* + -+ nsonlse)* € K.

Since f, f € V + [A, Al by (5.1) and 7(f) = 7 (f), we have f — f € [A, Al
Therefore f € K. O

6 Globally trace-positive polynomials

In this section we characterize multivariate trace-positive polynomials as the closure
of K in Theorem 6.1. Closedeness and stability of the cone /C are also discussed. Fur-
thermore, Proposition 6.4 touches upon a connection between global trace positivity
and Connes’ embedding problem.

6.1 A Positivstellensatz

Solvability of the general moment problem gives rise to the following description of
trace-positive polynomials.

Theorem 6.1 For f € R<x>y,, the following are equivalent:

(1) t(f (X)) = 0 for every tracial von Neumann algebra (F, t) and X € F2;

sa’

(ii) 7(f (X)) = Oforeverytracial von Neumannalgebra (F,t)and X € L®(F, )%,
(i) t(f(X)) = 0 for every tracial von Neumann algebra (F,t) and X €

Ldegf(]:’ T)ga;
(iv) f lies in the closure of IC with respect to the finest locally convex topology on

R<x>g.

Proof (iii)=(ii)=(i) Clear.

(i)=(iii) Let p = deg f. Suppose 7(f (X)) < 0 for some X € LP(F, t)l,. By
Holder’s inequality (2.1) and the triangle inequality, there exists a positive constant ¢
such that for every ¥ € LP(F, ) satisfying | X| — Y|, < 1,

|T(f (X1, X)) = T(f (Y, X2, o, X)) S el X1 = Y. (6.1)

By [55, Theorem IX.2.13(ii)], F is dense in LP(F, t) with respect to the p-norm.
Hence by (6.1) there exists Y| € F such that 7 (f (Y1, X2, ..., X;)) < 0. Continuing
in this fashion, we can replace each X ; with a bounded operator Y;, and thus obtain
Y € F" that satisfies 7(f(Y)) < 0.

(ii)=>(iv) By the Hahn-Banach separation theorem [2, Theorem 3.4], f ¢ K if and
only if there is a functional ¢ : R<x>g, — R such that ¢ (f) < 0 and ¢(K) = Rx.
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Note that such a functional is nonzero, and ¢(p)* < ¢(1)p(p?) forall p € R<x>g
implies ¢(1) > 0; thus we can rescale it to ¢(1) = 1. By Theorem 4.2, there exist
(F,71) and X e L®(F,1)Z, such that (p) = t(p(X)) for p € R<x>. Then
(f(X)) <O0.

(iv)=(ii) Every X € L”(F, 1), gives rise to a functional ¢ : a — t(a(X)) on A,
and ¢ (K) = Rxg. The restriction of ¢ to R<x >, is continuous with respect to the
finest locally convex topology on R<x>g,. Hence f € K implies ¢ (f) > 0. O

Remark 6.2 In Theorem 6.1, it suffices to restrict to II; factors F (which have unique
tracial states), since every tracial von Neumann algebra embeds into a II; factor [13,
Theorem 2.5] (cf. [25, Proposition 2.2]).

For R > 0 let

n
Mpg = 22R<£> F[R<x>, R<x>]+ Z(R - sz-) . 22R<£> .
j=l1

We can also describe the closure of K without denominators as follows (another
alternative with fewer quantifiers is given in Theorem 7.2 below).

Corollary 6.3 The closure of IC in the finest locally convex topology equals
K={feR<x>qu: f+e€Mgforalle, R>0}. (6.2)

Proof By Theorem 6.1, f € R<x>g, belongs to K if and only if it has nonnegative
trace on all tuples of operators from tracial von Neumann algebras. In other words,
for every R > 0 we have 7(f (X)) > O forall X € F" with | X{]|, ..., | Xx] < VR.
By [28, Theorem 3.12], such f belongs to the right-hand side of (6.2). O

6.2 Trace positivity on matrices

Theorem 6.1 considers global trace positivity over all tracial von Neumann algebras,
which in principle could coincide with global trace positivity over matrices of all finite
dimensions. The recent resolution of Connes’ embedding problem [23] is equivalent
to the existence of:

(1) an everywhere convergent nc power series that has nonnegative trace on all matrix
tuples, but not on a tuple of operators from a von Neumann algebra [45, Corollary
1.2];

(2) an ncpolynomial that has nonnegative trace on all tuples of matrix contractions,
but not on a tuple of contractions from a von Neumann algebra [28, Theorem 1.6].

In the context of global trace positivity of ncpolynomials, these facts inspire the
following (superficially stronger) statement.

Proposition 6.4 There exists f € R<x>g, such that

(i) tr(f (X)) = 0forall X € M (C), and k € N;
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(i1) =(f(Y)) < 0 for some tracial von Neumann algebra (F,t) and Y € F1..

To prove this, we first relate trace positivity on arbitrary matrix tuples with the
existence of matricial microstates in free probability [56].

Proposition 6.5 Foratracial von Neumann algebra (F, t) andY € F, the following
are equivalent:

(i) for every f € R<x>g,, tr(f (X)) = 0 for all X € My(C)Z, and k € N implies
(fX) =0;
(ii) foralle > 0 and d € N there are k € N and X € My (C)y, such that

t(w)) — %tr(W(X)) <e

forallw € <x>g4.

Proof The implication (ii)=(i) clearly holds.
Now assume (i) holds, and fix d € N. Let L € R<£>g be given by L(p) =
Ret(p(Y)),and let C C R<£>§ be the closed convex hull of

Co = {p — %Retr(p(&)): keN, X e Mk((C)”}.

Suppose L ¢ C. By the Hahn-Banach separation theorem, there exist fy € R<x>; =
R<x>YY and y € R such that L(fy) < y < L'(fo) forall L" € C. Let f =
%(f + f*) —y € R<x>g. Then L(f) < 0 < L'(f) for all L’ € Cy, which
contradicts (i).

Therefore (i) implies L € C, so every neighborhood of L in R<x> 7 contains a
convex combination with rational coefficients of elements in C. By arranging finite
sets of matrices into block diagonal matrices, we see that Cy is closed under convex
combinations with rational coefficients. Thus every neighborhood of L contains an
element of Co, so (ii) holds. m]

Proof of Proposition 6.4 Combine Proposition 6.5, the equivalence of Connes’ embed-
ding problem and existence of microstates [10, Proposition 3.3] (also e.g. [56, Section
7.4] or [40, Theorem 7]), and the resolution of Connes’ embedding problem [23,
Section 1.3]. O

6.3 The cone /C is neither closed nor stable

In this subsection we explore further properties of the cone . We require two auxiliary
lemmas.

Lemma 6.6 Letag,ay,az > Oandn € N. Ifazay > n"a'f+1 thenay—(n+1)ai+ag >
0.
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Proof If ag = 0, then a; = 0, and so ap — (n + 1)a; + ag > 0 holds. If ay # 0, then

nnan+1
ay — (n+ l)ay +aop > a;11 —(m+ Day +ap

0

n+1
@ ((@> —(n+1) (@) + n)
n agp agp
ao (nai | nl nap \* |
Tz () )

k=0

\Y

The last two factors are both nonnegative if na; > ag and both negative if na; < ao,
soay — (n + 1)a; + ag > 0 holds. O

Lemma 6.7 Let (F, t) be a tracial von Neumann algebra and let a, b € Fg,. Then
2T ((bazb)%) <7 (a4b2 + b2a4) .

Proof By the Araki-Lieb—Thirring inequality [34] (more precisely, its von Neumann
algebra version [30, Corollary 3]),

v ((ba®)3) = ((llalb)?) <« (1B13 1l 1613 ) = 7 (1aP b))
Then
z <a4b2 + a2b4) ¢ ((bazb)%) > 1 (|a|2|b|2|a|2 n |a||b|4|a|) —2¢ (|a|3|b|3)
=7 ((aPibl = lallbP) (blla? ~ 1bllaD)
is nonnegative. o

A witness of I # IC for n > 3 is a noncommutative lift of the homogenized
Motzkin polynomial.

Proposition 6.8 Let
h = x3xx3 4+ xixgxd 4 x§ — 3xixox3xox; € R<x>.
Then h € K\K.

Proof Consider the commutative homogenized Motzkin polynomial

H =t}13 + 113 — 3671363 + 15 € R[1y, 12, 13]

which is not a sum of squares in R[¢1, £, 13] by [35, Proposition 1.2.4]. If h € K,
then (1 + t]2)k1(1 + t22)k2(1 + t32)k3H is a sum of squares in R[#q, 2, 3] for some
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k1, kz, k3 € N. The lowest-degree homogeneous part of a sum of squares is again a
sum of squares, so H is a sum of squares in R[#1, #2, #3], a contradiction. Therefore
h ¢ K.

Next we prove h € K. Let (F,t) be a tracial von Neumann algebra, and
X1, X7, X3 € Fgu. Set

ap = T(X1X5 + X1X3), a1 = t1(X2X1X2X3), ar = t(X%).

Note that ag, a1, ax > 0. By Holder’s inequality (2.1) (with p; = % and pr = 3),

3 2 5
4<T(X2XfX2X_Z-,)) < 4(z ((szfxz)%) ) T(X8) < (z (Xj‘xg + X%Xﬁ)) T(X9).
Therefore 4a% < azag. Hence

T(h(X1, X2, X3)) =ap —3a; +a» >0

by Lemma 6.6. Since (F, t) and X1, X», X3 were arbitrary, h € e by Theorem 6.1.
O

Remark 6.9 Consider .4 with the finest locally convex topology. That is, every linear
functional on A is continuous. Then [A4, A] is a closed subspace, and »2 Aisaclosed
convex cone in A by [26, Theorem 4.5]. On the other hand, if n > 3 then 2 A+[A, A]
is not closed by Proposition 6.8.

A desired property of a convex cone generated by (hermitian) squares is stability
[35, Section 4.1]. Let us adapt this notion to our context. We say that a € A is of
degree at most d if a can be written as an nc polynomial of degree at most d in the
generators of A. The cone K is stable if there exists a function A: N — N such that
for every d € Nand f € K of degree at most d, there are s1, ..., s¢ € A of degree at
most A(d) such that f — sys§ — -+ — sgs) € [A, Al

Lemma 6.10 [fn > 2 then K is not stable.

Proof Suppose K is stable. Let M = tl t2 + t} 72 — 3t12t2 + 1 € R[z, n] be the
Motzkin polynomial, and let m = xlexz + xlex2 3xpxix2 +1 € R<x>g, beits
noncommutative lift as in Example 3.2. For A € R denote M, (t1, tz) = M (At, Aty) €
R[t1, 2] and m; (x1, x2) = m(Axy, Ax2) € R<x>g,. By Corollary 5.4, m), € K for
all A. Note that m;,_ is of degree at most 6 for every A. Thus by the stability assumption
there exists d’ € N such that for every A there are s; € A of degree at most d’ such
thatm; — Y, sksk € [A, A]. Consequently (1 +t12)d (1 +t22)d M, is a sum of squares
of polynomials in R[#1, #2] for every A. But this is impossible by the proof of [47,
Theorem 1]. Indeed, if A # 0 and the polynomial 1+ tlz)d,(l + t22)d,M 5 of degree
4d’ + 6 is a sum of squares, then so is (1 + 2 1 )d 1+ 2t2)d M. Since the cone of
sums of squares of degree at most 4d’ + 6 is closed [33, Corollary 3.34], taking the
limit A — oo implies that M is a sum of squares in R[#{, 7], a contradiction. O
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Remark 6.11 1Tt is unclear whether /C coincides with the sequential closure ¥ of K

(8],
¥ = {f € R<x>g, : there is g € R<x>g, such that f + eg € K for every ¢ > 0}.

See Theorem 7.2 below for a description of K resembling .

Remark 6.12 Membership in K can be certified with a sequence of semidefinite pro-
grams. Namely, f € R<x>, belongs to K if and only if

fZZSiS;k‘FZ[aj,bj], sj,aj,bjeAd (6.3)
i J

for some d € N, and (6.3) can be rephrased as a feasibility semidefinite program.
Similarly, for d € N let g be the solution of the optimization problem

inf L
L:/%EJ—HR (f)
Llinear
s.it. L(1)y=1, (6.4)

L(ab) = L(ba), foralla,be A;,
L(s*s) >0, foralls € Ay, .

Then (6.4) is a semidefinite program, and (i) is an increasing sequence of lower
bounds for inf (F ;) xer» T(f(X)).

6.4 Tracial arithmetic-geometric mean inequality

The following tracial version of the renowned arithmetic-geometric mean inequality
is essentially known, and can be deduced from the generalized Holder’s inequality for
unitarily invariant norms [5, Exercise IV.2.7] (cf. [14, Theorem 4.2]) applied to the
nuclear norm on a tracial von Neumann algebra. We present an alternative argument
inspired by the proof of Proposition 6.8.

Proposition 6.13 Let (F, t) be a tracial von Neumann algebra. Then

it ) <<f1£ -~-fné> <f15 ...f,})>" (6.5)

n

for all positive semidefinite f1, ..., fn € F.

Proof We prove (6.5) by induction on n. If n = 1, (6.5) is an equality. Now assume
1 L1 1
(6.5) holds for n. Let fi,..., fux1 = 0,and set f = f,7 --- f" f" -+ fu . By the
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Araki-Lieb-Thirring inequality [30, Corollary 3] and Holder’s inequality (2.1) with

pir=n+land py = =L

n

1

1 1 n+1 1 1 1
2 2 2(n+1) p—= r2(n+1)
T ((fn+lffn+l> ) =T (fn+1 T
.
— < (#1s)
n

<t (et o7 (1)

Therefore

1

1\ ntl
"' ((fnilffnil) ) st (ne(17)). 66

By the induction hypothesis,

1
nr<f5>§‘f(f1+~-~+fn). (6.7)
Let
ap=t(fr+-+fu),
1 11 1 nlﬁ
a =Tt (n2+1"'f12f12"‘ n2+1> ,
ar =T (fut1).

Then (6.6) and (6.7) imply n”af+1 < apag, so ay +ag — (n + 1)a; > 0 by Lemma
6.6. Therefore (6.5) holds for n + 1. O

Remark 6.14 Other (weaker) inequalities resembling (6.5) are

t(fit+ fo) >‘T(f;,.,f,£>
s 1 n

n

, (6.8)

which holds by (2.1) and the classical algebraic-geometric mean inequality, and

JTUD 4+ V(D)

. > |1 ((fﬁ---f}) (f}---f}))" 69)

which follows by [5, Exercise IV.2.7] applied to the Hilbert-Schmidt norm on
(F, 0.
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7 Denominator-free characterization of global trace positivity

While Section 6 gives an algebraic certificate for trace positivity in terms of sums of her-
mitian squares with denominators, this section presents an alternative that involves only
nc polynomials. First, we give a sufficient condition for solvability of the unbounded
tracial moment problem (Theorem 7.1). Next, we show that every trace-positive
ncpolynomial can be perturbed to a sum of hermitian squares and commutators of
nc polynomials (Theorem 7.2). Finally, we demonstrate this principle explicitly on (a
noncommutative lift of) the Motzkin polynomial.

7.1 Tracial Carleman’s condition

In this subsection we show that a variant of Carleman’s condition for the Hamburger
moment problem [53, Corollary 4.10] is a sufficient condition for a functional to be a
noncommutative joint distribution. The following is a tracial version of Nussbaum’s
theorem [53, Theorem 14.19].

Theorem 7.1 Let ¢ : R<x>g — R be a linear functional satisfying ¢(1) = 1 and
o(pp™) = (p*p) = 0 forall p € R<x>. If there is M > 0 such that

9(x7") < @NIM"  forallr eNand j=1,....n, (7.1)

then ¢ is a noncommutative joint distribution.

Proof We extend ¢ to a x-functional ¢ : C<x> — C as
1 * | = | =k i . .k —
¢(p)=qep+p +p+p)+ je=ip+ip”+ip—ip7)

for p € R<x>. As in the proof of Lemma 3.4 we see that ¢ (pp*) = ¢ (p*p) > 0 for
p € C<x>, and then

1 1
9(Up.qD) = 50(Up.qal+1a". p*D = 30((0 =4 (0 =4") = (P =g (P —g")*) =0

for p,q € C<x>. Therefore ¢(X?’C<x>) = Rs¢ and ¢([C<x>, C<x>]) =
{0}. We proceed with another variation of the Gelfand—Naimark—Segal construction
following the same steps as in the proof of Proposition 4.1.

Step 1: Construction of unbounded operators. On C<x >, there is a semi-scalar
product (p, qg) = ¢(pg™*). As in Step 1 of the proof of Proposition 4.1, it gives rise
to a separable Hilbert space H. Let D = {p € H: p € C<x>}, which is a dense
subspace of H.For j = 1,...,nlet X ; be symmetric operators on D induced by left

multiplication by x; on C<x>. Let ij be the closure of X}.. Note that D € dom w (X)
forevery w € <x>.
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Set R = #M >0,and fix 1 < j <n.Letp € C<x>andt € (—R, R) be
arbitrary. By the triangle inequality and the Cauchy—Schwarz inequality,

0k~ 1 ) r—
> ] < 3 [
k=m

~
3

It |* 2%k
k_ ¢(X pp*)

,4/¢(x4" Vo (pp*)?)
< Jo((ppH?) Z VMt = (:,k)!

is arbitrary small for large m € N since the series

004(4
Z.

k=0

I Mg i Mg

(7.2)

IA

is absolutely convergent by the ratio test. Therefore for every ¢ € (—R, R) there is a
well-defined linear map U;(¢) : D — H,

o]

U () —exp ti

k=0

By the properties of the exponential function we see that U (1) is an isometry, and
thus uniquely extends to anisometry U (¢) : H — H.Furthermore, U;(¢)* = U;(—t)
andU;(—1)U;(t) = U;(t)U;(—t) = I on D, and therefore on H, so U (¢) is a unitary.
Furthermore, U;(s)U;(t) = Uj(s + 1) forall 5,7, s +t € (=R, R). Therefore we
can extend the family {U; (¢) : t € (=R, R)} to a well-defined one-parametric unitary
group {U;(¢) : t € R}, uniquely determined by

Uj(ma) =U;@)" (7.3)
forall a € (—R, R) and m € Z. Furthermore, this one-parametric group is strongly

continuous by (7.2) and (7.3). By Stone’s theorem [52, Theorem 6.2] there is a unique
self-adjoint operator X ; on H such that U (t) = exp(itX;) for all t € R, and

1
dom X; = {v € H: lim —(Uj(s)v - v) exists} ,
’ e—>0¢&
. (7.4)
Xjv = lim —l(Uj(e)v—v) for all v € dom X ;
e—0 &
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by [52, Proposition 5.1]. In particular, for 7 € D we have X; p = X ;P by the
definition of U;(¢) and U;(t), so X is an extension of X ;.

Step 2: A tracial von Neumann algebra. Let F C B(H) be the von Neumann
algebra generated by U;(¢) for j = 1,...,n and t € R. Define r : 7 — C as
T(F) = (F T, T). Note that

(pX)gX T, T) =d(pg) =dgp) = g pX) T, T)

for all p, g € R<x>. By estimating as in (7.2) we see that

mo . \k mo .ok
(w1 @ws@)T, T) n}gnoo<w1 (Z i X") w (Z ) X") T T>

k=0 k=0

N m.o .ok
_ . Z (lt) ~k Z (l[) ~k\ > —
_mh_r)noo<w2 (k 0 k! X>w1 (k 0 k! X) b 1>

(wa(Dyw ()T, T)

for all wy, wy € <x>. Therefore

t(wi(@wz (1)) = t(w2 (Vw1 (U))

for all wy, wy € <x>, so 7 is a faithful normal tracial state on F. By construction,
the Hilbert space L*(F, 1) naturally embeds into H. Since D = span{w (X )T: w e
<x>}, we have D C L*(F, 1) by (7.4). Therefore H = L%(F, 7).

Step 3: Affiliation. Let V € B(H) be a unitary in the commutant of F, and fix
1 < j < n.Then V commutes with all U;(¢). If v € dom X, then %(Uj(s)v — )
converges as € — 0. Then the same holds for

1 1
V.=UjEv—v)=-Uje)Vv—Vuv),
€ e
so Vv e dom X, and VX ;v = X;Vv by (7.4). Thus V commutes with X ;. Conse-
quently the self-adjoint operators X1, ..., X, are affiliated with F.

Step 4: Integrability. Follows exactly as in Step 4 of the proof of Proposition 4.1.
Step 5: Conclusion. By construction we have

t(p(X) = (pXT, T) = p(p)

forevery p € C<x>. O

7.2 Approximation with sums of hermitian squares and commutators

The aim of this subsection is to establish the tracial version of Lasserre’s perturbation
result [31, 32] for globally positive polynomials.
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Theorem 7.2 For f € R<x>y,, the following are equivalent:

(i) ©(f(X)) = 0 for every tracial von Neumann algebra (F, t) and X € F1,;
(ii) for each ¢ > O there exists r € N such that

n r
1
fte ZZ ngz'k € T?R<x> +[R<x>, R<x>].
j=1k=0""

For r € N denote

Note that , — n € £?R<x>. Two optimization problems will be key in the proof
of Theorem 7.2. Let r € Nand M € R, and consider

inf L(f)
L:R<x>7,—R f
L linear, self-adjoint, tracial

Qr,M . S.1. L(M — Qr) > 0 s (75)
L) =1,
L(p*p) >0 forall p e R<x>,;

sup z
VR EEE (7.6)
sit. f—z€03 +Rso(M — Q).

Here @%r C R<x>g, is the set of all (symmetric) nc polynomials of degree < 2r
that are cyclically equivalent to sums of (degree < r) squares. Recall [28]: two words

u,v € <x> are called cyclically equivalent (u N v) if v or v* can be obtained
from u by cyclically rotating the letters in u. For notational convenience, let C, y =
®%r + RZO(M - Qr)-

Lemma 7.3 The optimization problems (7.5) and (7.6) are semidefinite programs dual
to each other.

Proof This is a variation on what is now standard material, cf. [6]. Encode the tracial
linear functional L : R<x>7, — R with its Hankel matrix M(L), , = L(u*v) for
u,v € <x>,. With this (7.5) can be rewritten as

inf (M(L), G(f))
st <M(L), G(M — Q,)> >0,

Qrm M(L)yy = M(L)g5 ifu*v ™ ", 7D
ML) =1,
M(L) > 0.
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where G(f) denote a Gram matrix of f,i.e., f = VIG(f)V, if V, denote the vector
of all words in x of degree < r. Now (7.7) is easily seen to be a SDP: the objective
function is linear in the entries of M(L), the first constraint is a linear inequality on
the entries of M(L), the equality constraints give rise to a finite set of linear equations
on the entries of M(L), and the last constraint is a positivity constraint on M(L).

To recognize that (7.6) is an SDP, observe that f — z € C, j if and only if there is
a Gram matrix G(f), a positive semidefinite G > 0 and A > 0 such that

K CyC* *
VEG(f)V, —z ~ VEGV, +A(M — Q). (7.8)

Clearly, (7.8) yields linear constraints on the entries of G, so maximizing z over the
set of feasible G is a semidefinite program.

We shall now use a standard Lagrange duality approach to show the SDPs (7.5) and
(7.6) are dual to each other:

sup z=sup inf (z+ L(f —2))
f—z2€Cr.m z LeCry

< inf sup(z+ L(f —2))
LeCY

= inf (L 1—L(1
L;IClXM( (f) +supz( (1))

=inf {L(f) | L e€C)y, L) =1}

The first equality comes from the fact that the inner minimization problem gives
minimal value 0 if and only if f — z € C, ». The inequality in this chain is obvious.
The inner maximization problem in the next to last line is bounded with maximum
value O if and only L(1) = 1. Finally, the optimization problem on the last line is
equivalent to (7.5). O

Lemma 7.4 The convex cone C, y is closed in the finite dimensional Euclidean space
R<x>9;.

Proof The cone G%r is well-known to be closed [6, Proposition 1.58]. Hence the
conclusion follows from [4, Theorem 3.2]. O

Lemma 7.5 Strong duality holds for the pair of SDPs (7.5) and (7.6).

Proof Letinf Q, j denote the optimal value of (7.5) and let sup QX y denote the opti-
mal value of (7.6). By Lemma 7.3 and weak duality from semidefinite programming
[2, Theorem IV.6.2], sup QXM <inf Q, m.If M < n, then (7.5) is not feasible, and
sup QXM = oo because C, iy = R<x>»,. Hence let M > n. Then M(L) = Eq; is
clearly feasible for (7.5), whence inf O, y < 00.

Suppose that (7.6) is feasible, —co < sup QXM < inf Q, p. Note that L(f —
inf Q, ») > Oforall L € CxM. This implies that f — inf Q, s is in CrVX,I =C.m
since C, p is closed by Lemma 7.4. Hence sup Qrv’M >inf Q, M.

Finally, suppose that (7.6) is infeasible. Then forevery A € R, f —X ¢ C, y. By the
Hahn-Banach separation theorem [2, Theorem III.1.3], there exists a linear functional
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L e CVM with L(Cr ) € Rsg, L(1) = 1 and L(f) < A. As A was arbitrary, this
shows (7.5) is unbounded, establishing strong duality. O

Lemma 7.6 Suppose f € R<x> is uniformly bounded below on tracial von Neumann
algebras, inthe sense that f, = inf (r 1) xecF» T(f (X)) > —o0. Then (7.5) is feasible
for2r > deg f and M > n, and inf Q, pr /' fum asr — oo for some fy > fa.

Proof Feasibility of (7.5) for 2r > deg f and M > n is clear (e.g., L(p) = p(0) for
p € R<x>»,). If L is feasible for O, p then its restriction is feasible for Q, js for
r" < r. Hence the sequence (inf Q; p)r>4 is increasing.
Let L be feasible for O, ps. Observe that for k < r, the values of L (sz.k) are bounded
by the linear inequality,
L(x3*) < kM. (7.9)

Then Hadwin’s noncommutative Holder inequality for linear functionals on the free
algebra (see [19, Proof of Theorem 1.3]) implies a bound

8
LG xi)l < [ /L6 ]'[ VDM =: ¢
j=1

=21

for all 2° < 2r. In particular, if r > 29%8/~! then L(f) < s - cgeq s, Where s is the
number of summands in f.

Hence (inf Q, »), is an increasing function bounded from above, whence
inf Qr p /" fum asr — oo, for some fiy. It remains to show fy > fi.

Toeach L : R<x> — R we assign the infinite Hankel matrix M (L) as in the proof
of Lemma 7.3. If L acts only on R<x>2, we extend it by 0 to all of R<x>. We also
scale each L : R<x> — R to L: R<x> — R by L(w) = mL(w) for a word
wE <x>.

Let L) be an optimizer of (7.5), and consider the sequence (M(I:<’))),€N. Each
entry in each infinite matrix is bounded by 1 in absolute value, so we may consider this
a sequence in the unit ball By of £°°. By the Banach-Alaoglu theorem [2, Theorem
IL.2.9], By is compact in the weak-* topology of £>°. Hence there is an element
M= M(L) in By anda subsequence (M(L(’ D)) ke converging to M(L) In particular,
L(’k)(w) — L(w) as k — oo, for all w € <x>. Now define

L:R<x>—>R, wr c|w|I:(w).

Then LY |g_y~; — Llp<y>, as k — oo, for every 8 € N. In particular, L is a -
functional, i(l) =1, f,(f) = fum, i([R<§>, R<x>]) = {0} and i(22R<£>) =
RZO'

Let m € N be arbitrary. Then for every ry > m,

L") <m!M
by (7.9). Consequently

i(xfm) <m!M.
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Therefore L is a noncommutative joint distributionby Theorem 7.1. In particular,
fm = fisince fo =inf(F 1) xereF,ryn T(f (X)) by (1)< (ii) of Theorem 6.1. O

Proof of Theorem 7.2 (ii)=>(i) Let (F, t) and X € F7, be arbitrary. Then for every
reN,

n

T(2-(X) < Z‘L’ (exp(X?)) =M < 0.
j=1
By (ii), for every € > 0 there exists r € N such that
T (f(X) +eQ,(X)) > 0.
Therefore for every ¢ > 0,

T(f(X) = —eM,

and so 7(f (X)) > 0.

(1)=(ii) Denote f, = inf(r ) x T(f(X)).

First assume f, > 0. Let M > max{%, n} be arbitrary. By Lemmas 7.5 and 7.6
there exists ) > 0 such that sup QrVM,M > fo— % That is, there are zp; > fi — %,

Ay > 0and gy € @%W such that

f—zm=qu+iu(M—Q,). (7.10)

Evaluating (7.10) at X = 0 € R” gives

1
JO) - fi+ %2 JO) =z =qu0) + Ay (M — 2, (0)) = Ay (M —n),

and therefore |
Oty

- M—n ’

The right-hand side of (7.11) goes to 0 as M — co. By (7.10),

Am (7.11)

[+ Qe =2u +aqu +AuM € 63,
and Ay; — 0 as M — oo. Therefore (ii) holds.
Now assume f, = 0, and let ¢ > 0 be arbitrary. By applying (i)=>(ii) to the

ncpolynomial f + % and § > 0, there exists » € Nsuch that (f + %)+ 5Q, € 03,.
But this nc polynomial equals f + e, — (22, —n),so f + &R, € @%r. O

Remark 7.7 Let f € R<x>g,. Forr € Nlet
&r :inf{seR: f+eQ e @%r}
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Then (e,), is a decreasing sequence, each &, can be computed with a semidefinite
program, and f is trace-positive if and only if inf, &, < 0 by Theorem 7.2.

7.3 Sum-of-squares perturbations of the tracial Motzkin polynomial

We illustrate Theorem 7.2 on the polynomial m = xzxfxz + x%x%x% — 3x2xfxz +1e
R<x1, x2>4, from Example 3.2. In fact, we show in Example 7.9 below that for every
& > Othereisr € N such that m + %x%’ is cyclically equivalent to a sum of hermitian
squares. This in particular improves the approximation of the commutative Motzkin
polynomial by sums of squares given in [32, Example 3.5]. We start with a technical
lemma.

Lemma7.8 Letr € AN+ 1 and e > Then the polynomial

_rt
(r—nr=1-

1

A
p()——<r_1)

satisfies
€
2p(t) <t —3 and tp(1)*> <1+ 1"
r!
forallt > 0.
Proof Observe that p is concave on R (since % iseven), p(1) = —land p'(1) = %

Therefore p(t) < $(t — 3) forall € R.

On (0, 00), the function 7 — #(t — 1)"~! has precisely two local extrema, a local
maximum at } and a local minimum at 1. Therefore

171 r—1
1t —1 - - (— - 1> <t
r r

for all + > 0. Replacing ¢ with § gives

O =G0

and after multiplication by # we obtain
t—r\ ! '
t <1 —_—.
(r—l) - —i_(r—l)’—1
Therefore tp(1)* < 1+ 1" holds for all # > 0. o
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Example7.9 Let M = t}t3 +t}ty — 31713 + 1 € R[#1, 12] be the Motzkin polynomial.
Ifre4dN+1and e > C then M + rﬁ!tf’ is a sum of squares in R[71, #2]. Note

r!
r—l)”l ’
that # decays exponentially towards 0 as r — o0.

Indeed, let p be as in Lemma 7.8. The univariate polynomials tf — 3t12 — 2t12 p(tlz)
and 1+ r%tlzr — tl2 p(tlz)2 are nonnegative, and therefore sums of squares in R[#;]. Then

& £
M+ ;tfr =171 + (1] — 33 + (1 + th’)
2 e
- (zf — 32— 2t12p(t12))t22 + 17 <t22 + p(tlz)) + (1 + ;tf’ — tlzp(tlz)z)

is a sum of (at most five) squares in R[zq, 1»].
Let m € R<x, xp>g, be a cyclically sorted noncommutative lift of M. As in the
proof of Corollary 5.4 we conclude that

I
m —+ _'x12r € ®%r
r

forre4N+1andsz#. O
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