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Received: 19 May 2022 / Revised: 6 October 2022 / Accepted: 13 October 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
A noncommutative (nc) polynomial is called (globally) trace-positive if its evaluation
at any tuple of operators in a tracial von Neumann algebra has nonnegative trace. Such
polynomials emerge as trace inequalities in several matrix or operator variables, and
are widespread in mathematics and physics. This paper delivers the first Positivstel-
lensatz for global trace positivity of ncpolynomials. Analogously to Hilbert’s 17th
problem in real algebraic geometry, trace-positive ncpolynomials are shown to be
weakly sums of hermitian squares and commutators of regular nc rational functions.
In two variables, this result is strengthened further using a new sum-of-squares certifi-
catewith concrete univariate denominators for nonnegative bivariate polynomials. The
trace positivity certificates in this paper are obtained by convex duality through solving
the so-called unbounded tracial moment problem, which arises from noncommutative
integration theory and free probability. Given a linear functional on ncpolynomials,
the tracial moment problem asks whether it is a joint distribution of integral operators
affiliated with a tracial von Neumann algebra. A counterpart to Haviland’s theorem
on solvability of the tracial moment problem is established. Moreover, a variant of
Carleman’s condition is shown to guarantee the existence of a solution to the tracial
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moment problem. Together with semidefinite optimization, this is then used to prove
that every trace-positive ncpolynomial admits an explicit approximation in the 1-norm
on its coefficients by sums of hermitian squares and commutators of ncpolynomials.

Mathematics Subject Classification Primary 13J30 · 46L51 · 14P99; Secondary
47A63 · 47L60

1 Introduction

Trace inequalities in several operator variables are ubiquitous in mathematics and
physics. For example, Golden–Thompson, Lieb–Thirring inequalities and their gen-
eralizations play an important role in quantum statistical mechanics [7, 54]. Another
source of trace inequalities is quantum information [3, 41], where they materialize
through data processing inequalities and restrictions on quantum correlations. In oper-
ator algebras [15, 39] and noncommutative probability [18, 24], they appear through
Hölder, Minkowski and other inequalities in noncommutative L p-spaces, as well as
trace convexity of entropy. In mathematical optimization, hierarchies of semidefinite
programs based on tracial noncommutative optimization are applied to computematrix
factorization ranks [16]. Finally, the recently resolved [23] Connes’ embedding prob-
lem has several interpretations in terms of trace inequalities [19, 28, 40, 45]. This paper
studies trace polynomial inequalities that are valid globally, without restrictions on the
variables or their norms, in all finite von Neumann algebras. For the first time, we pro-
vide necessary and sufficient certificates (Positivstellensätze) for such inequalities to
hold, obtained by solving the associated unconstrained tracial moment problem.

Let R<x> be the real free ∗-algebra of noncommutative (nc) polynomials in self-
adjoint variables x1, . . . , xn . A tracial von Neumann algebra is a pair (F , τ ) consisting
of a finite von Neumann algebra F and a tracial state τ on F . Given an ncpolynomial
f ∈ R<x> and a tuple of self-adjoint operators X ∈ Fn

sa, we consider the evaluation
f (X) ∈ F and its trace τ( f (X)) ∈ C. We say that f ∈ R<x> is (globally) trace-
positive if τ( f (X)) ≥ 0 for all X ∈ Fn

sa and all tracial von Neumann algebras (F , τ ).
The notion of trace positivity of ncpolynomials fits in between positivity (of com-

mutative polynomials) on tuples of real numbers and positive semidefiniteness on
tuples of operators. Commutative and operator positivity are both well-studied, the
former in real algebraic geometry and moment problems [11, 35, 49, 53], and the
latter under the umbrella of free analysis and free convexity [1, 17, 21]. In both cases,
algebraic certificates for positivity, the so-called Positivstellensätze, are usually given
in terms of sums of squares. For example, the famous resolution of Hilbert’s 17th prob-
lem asserts that a commutative polynomial is nonnegative if and only if it is a sum of
squares of rational functions. Analogously, an ncpolynomial is everywhere positive
semidefinite if and only if it is a sum of hermitian squares of ncpolynomials [20, 36].
On the other hand, results on trace-positive ncpolynomials are scarcer. Only alge-
braic certificates for trace positivity on domains with additional restrictions have been
given so far. In [25, 28], Positivstellensätze for trace positivity on bounded domains
(in terms of Archimedean quadratic modules) were derived. Likewise well-understood
are ncpolynomials that are trace-positive on tuples of k × k matrices for a fixed k ∈ N
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[29], which were focal in the Procesi–Schacher conjecture [42]. On the other hand, a
characterization of ncpolynomials that are trace-positive without norm or dimension
restrictions on the input has been absent (except for the single operator case, where
even positivity of polynomials in trace powers can be handled [27]).

Polynomial positivity is dual to moment problems [11, 43, 53]. While the classical
moment problem aims at determining which functionals on a polynomial ring arise
from integration with respect to some measure, the tracial moment problem considers
functionals on a free algebra that arise from noncommutative integration [38] with
respect to a trace on a von Neumann algebra. Its C∗-analog pertains to relativistic
quantum theory [12]. In free probability, a unital algebra A with a trace τ is viewed
as a noncommutative probability space, and the functionals on R<x> of the form
p �→ τ(p(X)) for X ∈ An are called noncommutative laws or joint distributions of X
[37, 57].Noncommutative joint distributionsgiven by evaluations on tuples of elements
from tracial von Neumann algebras (F , τ ) have been characterized by the solution of
the bounded tracial moment problem [19, 45]. The special case of noncommutative
joint distributionsof tuples from finite-dimensional von Neumann algebras is settled in
[6]. This paper solves the unbounded tracialmoment problemof describing functionals
arising from τ and evaluations on (possibly unbounded) operators affiliated with F .

1.1 Main results

The contribution of this paper is twofold:we solve the unbounded tracialmoment prob-
lem, and derive a Positivstellensatz for trace-positive ncpolynomials. Before stating
these results, we require some notation. Given a tracial von Neumann algebra (F , τ ),
let Lω(F , τ ) be its ∗-algebra of power-integrable operators, i.e., the intersection of
all the L p-spaces associated with (F , τ ). That is, X ∈ Lω(F , τ ) if X is an operator
affiliated with F , and τ(|X |p) < ∞ for all p ∈ N. Let R<x>sa be the subspace of
symmetric (or self-adjoint) polynomials inR<x>. Obvious examples of trace-positive
polynomials are sums of hermitian squares and commutators of ncpolynomials; how-
ever, not all trace-positive polynomials are of this form. To remedy this, one has
to replace ncpolynomials with a certain class of regular nc rational functions. Let
K ⊂ R<x>sa be the convex cone of all (symmetric) ncpolynomials that can be writ-
ten as sums of hermitian squares and commutators of elements in the ∗-subalgebra

R<x1, . . . , xn, (1 + x21 )
−1, . . . , (1 + x2n )

−1>

of the free skew field [9, 58]. For example, the following noncommutative lift of
the Motzkin polynomial

x2x
4
1 x2 + x22 x

2
1 x

2
2 − 3x2x

2
1 x2 + 1

belongs to K (Example 3.2) even though it is not a sum of hermitian squares and
commutators of ncpolynomials. The cone K plays a central role in our first main
result, the solution of the unbounded tracial moment problem. The following theorem
comprises tracial analogs of Haviland’s theorem and Carleman’s condition.
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Theorem A Let ϕ : R<x>sa → R be a linear functional with ϕ(1) = 1.

(a) There exists a tracial von Neumann algebra (F , τ ) and X ∈ Lω(F , τ )n such that
ϕ(p) = τ(p(X)) for all p ∈ R<x>sa if and only if ϕ(K) = R≥0.

(b) The equivalent conditions in (a) hold if there is M > 0 such that ϕ(xrj ) ≤ r !Mr

for all j = 1, . . . , n and even r ∈ N.

The first part of Theorem A is proved as Theorem 4.2, while the second part is
given in Theorem 7.1. The proof combines methods and results from convexity [2],
the theory of unbounded operators [52], and noncommutative integration [38, 55].
Theorem A is used to obtain a tracial Positivstellensatz for ncpolynomials.

Theorem B The following are equivalent for f ∈ R<x>sa:

(i) τ( f (X)) ≥ 0 for all (F , τ ) and X ∈ Fn;
(ii) τ( f (X)) ≥ 0 for all (F , τ ) and X ∈ Lω(F , τ )n;
(iii) f lies in the closure of K with respect to the finest locally convex topology on

R<x>sa;
(iv) for every ε > 0 there exists r ∈ N such that

f + ε

n∑

j=1

r∑

k=0

1

k! x
2k
j

is a sum of hermitian squares and commutators in R<x>.

See Theorems 6.1 and 7.2 below for the proof. In addition to the aforementioned
mathematics areas, techniques from polynomial and semidefinite optimization [6, 31]
are applied in the proof of Theorem B.

The negative answer to Connes’ embedding problem [23] implies that in general,
one cannot restrict (i) in Theorem B to finite-dimensional von Neumann algebras
(Proposition 6.4). Nevertheless, it suffices to consider only II1 factors in Theorem
B(i). On the other hand, trace polynomial inequalities that are valid in all finite von
Neumann algebras (and are described by Theorem B) do not necessarily hold in all
formal tracial algebras [39].

Alas, the coneK is not closed in general (Proposition 6.8). However, the statement
of Theorem B can be improved for a class of bivariate ncpolynomials. We say that
f ∈ R<x1, x2> is cyclically sorted if it is a linear combination of cyclic permuta-
tions of products of the form xi1x

j
2 . It turns out (Corollary 5.4) that cyclically sorted

ncpolynomials are trace-positive precisely when they belong to K. This statement is
a consequence of the following new Positivstellensatz for commutative polynomials.

Theorem C If f ∈ R[x, y] is nonnegative on R
2 then there exists k ∈ N such that

(1 + x2)k f is a sum of squares in R[x, y].
The proof (see Theorem 5.2) relies on real algebraic geometry of affine surfaces

[49]. Theorem C is a strenghtened solution of Hilbert’s 17th problem for bivariate
polynomials, since only rational squares with uniform univariate denominators are
needed.
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2 Preliminaries

In this section we review the terminology and notation on vonNeumann algebras, their
affiliated operators, ncpolynomials and rational functions that are used throughout the
paper.

2.1 Affiliated and power-integrable operators

A tracial von Neumann algebra is a pair (F , τ ) of a finite von Neumann algebra F
with a separable predual and a faithful normal tracial state τ on F . Suppose F acts
on a Hilbert spaceH; then a closed and densely defined operator X onH is affiliated
with F if it commutes with every unitary operator in the commutant of F in B(H).

Next we review selected notions from noncommutative integration theory, fol-
lowing [38, 55]. For p ∈ [1,∞), the noncommutative L p-space L p(F , τ ) is the
completion of F with respect to the norm X �→ τ(|X |p)1/p [38, Section 3]. Note
that L2(F , τ ) is a Hilbert space, and F acts on it via the left regular representation.
Since τ is finite, operators on L2(F , τ ) affiliated with F form a ∗-algebra [38, Sec-
tion 2]: the sum/product of closed affiliated operators are understood as the closure of
the sum/product as unbounded operators; see also [55, Section IX.2]. The sequence
(L p(F , τ ))p∈[1,∞) can then be naturally seen as a decreasing net of nested subspaces
in this algebra of operators affiliated with F [38, Theorem 5]. Hölder’s inequality for
noncommutative L p-spaces [55, Theorem IX.2.13(iv)] states that

∣∣τ(Z1 · · · Zn)
∣∣ ≤ ‖Z1‖p1 · · · ‖Zn‖pn (2.1)

for Z j ∈ L p j (F , τ ) and 1
p1

+ · · · + 1
pn

= 1. Therefore

Lω(F , τ ) :=
⋂

p∈[1,∞)

L p(F , τ )

is a ∗-algebra, and τ extends to a tracial state on Lω(F , τ ). The algebra Lω(F , τ )was
introduced in [22, Section 3], and its elements are power-integrable operators affiliated
with (F , τ ). For example, if F = L∞([0, 1]) and τ is the integration with respect to
the Lebesgue measure on [0, 1], then log(t) ∈ Lω(F , τ )\F and τ(| log(t)|p) = p!.

2.2 Noncommutative polynomials and rational functions

Let x = (x1, . . . , xn) be a tuple of freely noncommuting variables, and let<x> be the
freemonoid of words in x . LetR<x> be the real free ∗-algebra of ncpolynomials over
x , with the involution given by x∗

j = x j for j = 1, . . . , n. For d ∈ N let R<x>d ⊂
R<x> be the subspace of ncpolynomials of degree at most d. The universal skew
field of fractions of R<x> is the free skew ∗-field R (<x )> (see e.g. [9, 26, 58]). In this
paper, we consider the following ∗-subalgebra of R (<x )>:

A := R<x1, . . . , xn, (1 + x21 )
−1, . . . , (1 + x2n )

−1> .
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Alternatively, A can be viewed as the free product of n copies of R[t, 1
1+t2

]. For
d ∈ N let Ad ⊂ A denote the subspace of elements that are linear combinations of
products in x1, . . . , xn, (1 + x21 )

−1, . . . , (1 + x2n )
−1 of length at most d.

If X is a tuple of (possibly unbounded) self-adjoint operators affiliated with a finite
von Neumann algebra F , then the evaluation

a(X) = a(X1, . . . , Xn, (I + X2
1)

−1, . . . , (I + X2
n)

−1)

is well-defined for every a ∈ A because the affiliated operators form an algebra and
(I + X)−1 is a bounded operator for a self-adjoint X . Furthermore, if X ∈ Lω(F , τ )n

then τ(a(X)) is well-defined. More precisely, if a ∈ Ap then τ(a(X)) is well-defined
for every X ∈ L p(F , τ )n by Hölder’s inequality (2.1).

3 Sums of hermitian squares with denominators, and the coneK
This section is devoted to the introduction and first properties of the convex cone K
(see (3.1) below) that is essential for the moment problem and positivity certificates
of this paper.

Given a ∗-algebra B let

Bsa = {b ∈ B : b∗ = b},

�2B =
{
∑

i

bi b
∗
i : bi ∈ B

}
,

[B,B] = span {b1b2 − b2b1 : b1, b2 ∈ B} .

The following lemma lists relations between the above convex cones and subspaces
in the ∗-algebras R<x> and A.

Lemma 3.1 Under the natural embedding R<x> ⊂ A,

(a) [A,A] ∩ R<x> = [R<x>, R<x>];
(b) �2A ∩ R<x> = �2

R<x>;
(c) �2A ∩ [A,A] = {0};
(d) (�2A + [A,A]) ∩ R<x> � �2

R<x> +[R<x>, R<x>] for n ≥ 2;
(e) (1 + x2j )

−m, 1 − (1 + x2j )
−m ∈ �2A for all m ∈ N.

Proof (a) There is an embedding of A into formal power series R<<x>> that sends
(1+ x2j )

−1 to
∑∞

k=0(−1)k x2kj . If s, t ∈ R<<x>> are given as s = ∑
w∈<x> sww and

t = ∑
w∈<x> tww, then their commutator

[s, t] =
∞∑

i=0

∑

|u|+|v|=i

sutv · [u, v]
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is a convergent (with respect to the adic topology of the power series) series of com-
mutators. From here we immediately deduce that [R<<x>>, R<<x>>] ∩ R<x> =
[R<x>, R<x>], so (a) follows.

(b) If X ∈ Mk(C)nsa and s ∈ �2A, then s(X) is a positive semidefinite matrix.
Hence (b) holds by the Helton-McCullough Positivstellensatz, see [36, Theorem 0.2]
or [20, Theorem 1.1].

(c) For every X ∈ Mk(C)nsa and c ∈ [A,A] we have tr(c(X)) = 0. On the other
hand, if f ∈ A\{0}, then there are k ∈ N and Y ∈ Mk(C)nsa such that f (Y ) is nonzero,
see e.g. [58, Remark 6.7]. Consequently tr( f (Y ) f ∗(Y )) > 0. Therefore (c) holds.

(d) See Example 3.2 below.
(e) Since (1+x2j )

−1 = (1+x2j )
−2(1+x2j ) and 1−(1+x2j )

−1 = x2j (1+x2j )
−1 belong

to �2A, so do (1+ x2j )
−m and 1− (1+ x2j )

−m = (1− (1+ x2j )
−1)

∑m−1
i=0 (1+ x2j )

−i

for every m ∈ N. �

Example 3.2 Let m = x2x41 x2 + x22 x

2
1 x

2
2 − 3x2x21 x2 + 1. Note that m is a noncom-

mutative lift of the classical Motzkin polynomial (see [35, Proposition 1.2.2] or [49,
Remark 1.1.2]), which is nonnegative on R

2 but not a sum of squares of polynomials.
In particular, m /∈ �2

R<x> +[R<x>, R<x>]. On the other hand, by [44, Section
4.2] we have m = s + c for s ∈ �2A and c ∈ [A,A] where

s = (1 − x21 x
2
2 )

∗(1 + x21 )
−1(1 − x21 x

2
2 ) +

x2(1 + x21 )
−1(x31 − x1)

2x2 + (x22 − 1)(1 + x21 )
−1x21 (x

2
2 − 1)

and

c = 2
[
x2, [(1 + x21 )

−1, x2]
]
.

Let us define the convex cone

K := (
�2A + [A,A]) ∩ R<x>sa (3.1)

in R<x>sa.

Lemma 3.3 Asa ⊆ �2A + [A,A] + R<x>sa.

Proof Consider the set of formalwords in 2n symbols x1, . . . , xn, (1+x21 )
−1, . . . , (1+

x2n )
−1 that do not contain subwords x j (1+ x2j )

−1 or (1+ x2j )
−1x2j ; it maps injectively

intoA, and its image, denoted E , is a basis ofA. An expansion of a ∈ A with respect
to E will be called the normal form of a. That is, univariate sub-expressions in a are
written as partial fractions, with the inverses on the left for the sake of bookkeeping.

It suffices to show that u + u∗ ∈ �2A + [A,A] + R<x>sa for all u ∈ E . This is
done by consecutively eliminating (1+x21 )

−1, . . . , (1+x2n )
−1 from u; we demonstrate

this only for (1+ x21 )
−1, and the other (1+ x2j )

−1 are eliminated in the same manner.
Every v ∈ E can be uniquely written as

v = v0(1 + x21 )
−m1v1(1 + x21 )

−m2v2 · · · (1 + x21 )
−m�v�
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where mk > 0 and vk ∈ E with v j �= 1 for 0 < j < � do not contain (1 + x21 )
−1. Set

δ(v) = �. More generally, for a ∈ A let δ(a) be the maximum of δ(v) for v appearing
in the normal form of a.

Assume that (1 + x21 )
−1 appears in u (as otherwise there is nothing to be done);

that is, δ(u) ≥ 1. After subtracting an element of [A,A] from u + u∗ and taking a
maximal term with respect to δ, we can assume that u starts with (1 + x21 )

−1. We
can write u = u′(1 + x21 )

−mu′′ for m > 0 and u′, u′′ ∈ E with δ(u′) = � δ(u)
2 � and

δ(u′′) = δ(u) − 1 − δ(u′). Then

u + u∗ = (
u′ + u′′∗)(1 + x21 )

−m(u′ + u′′∗)∗

+ u′(1 − (1 + x21 )
−m)u′∗

+ u′′∗(1 − (1 + x21 )
−m)u′′

− u′u′∗ − u′′∗u′′.

(3.2)

The first three terms of (3.2) belong to �2A by Lemma 3.1(e). Furthermore, note
that δ(u′′u′′∗) < δ(u), and since u′ is either 1 (if δ(u) = 1) or starts with (1 + x21 )

−1,
there is c ∈ [A,A] such that δ(u′u′∗ − c) < δ(u). Using (3.2) and induction on δ(u)

it then follows that u + u∗ ∈ �2A + [A,A] + R<x>sa. �

Let AC = C ⊗R A denote the complexification of A.

Lemma 3.4 Every linear functional ϕ : R<x>sa → R satisfying ϕ(K) = R≥0
extends to a linear∗-functionalφ : AC → C satisfyingφ(�2AC+[AC,AC]) = R≥0.

Proof Note that �2A + [A,A] is a convex cone in Asa, and

Asa = �2A + [A,A] ∩ Asa + R<x>sa

by Lemma 3.3. Hence ϕ extends to a linear fuctional φ′ : Asa → R that satisfies
φ′(�2A+[A,A]∩Asa) = R≥0 by the Riesz extension theorem [53, Proposition 1.7].
Let ρ, ι : AC → A beR-linear maps given by ρ(a) = 1

2 (a+a) and ι(a) = 1
2i (a−a).

Thus a = ρ(a) + i ι(a) for a ∈ AC. Let φ : AC → C be defined as

φ(a) = 1

2
φ′(ρ(a) + ρ(a)∗) + i

2
φ′(ι(a) + ι(a)∗)

for a ∈ AC. Then φ is a ∗-functional,

φ([a, b]) = φ
(
[ρ(a), ρ(b)] − [ι(a), ι(b)] + i

([ρ(a), ι(b)] + [ι(a), ρ(b)])
)

= 0

and

φ(aa∗) = φ
(
ρ(a)ρ(a)∗ + ι(a)ι(a)∗ + i

(
ι(a)ρ(a)∗ − ρ(a)ι(a)∗

))

= φ′(ρ(a)ρ(a)∗ + ι(a)ι(a)∗
) ≥ 0

for all a, b ∈ AC. Therefore φ(�2AC + [AC,AC]) = R≥0. �
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4 Unbounded tracial moment problem

The tracial analog of the moment problem for probability measures with compact sup-
port was solved in [19, 45]. To obtain our rational Positivstellensatz on global trace
positivity, one has to consider analogs of probability measures with non-compact
support. In this section we solve the unbounded tracial moment problem for noncom-
mutative joint distributions.

Proposition 4.1 For every linear ∗-functional φ : AC → C satisfying φ(1) = 1 and
φ(�2AC + [AC,AC]) = R≥0 there exist a tracial von Neumann algebra (F , τ ) and
X ∈ Lω(F , τ )nsa such that φ(a) = τ(a(X)) for all a ∈ AC.

Proof We split the proof, which is a version of the Gelfand–Naimark–Segal construc-
tion for unbounded functionals on A that produces power-integrable operators, in
several steps.

Step 1: Construction of unbounded operators.OnAC we define a semi-scalar prod-
uct 〈a, b〉 = φ(ab∗). By the Cauchy–Schwarz inequality for semi-scalar products,

N = {a ∈ AC : φ(aa∗) = 0}

is a vector subspace of AC and N ∗ = N . Furthermore, for every a ∈ N , b ∈ AC

and ε > 0 we have

0 ≤ φ
(
(a∗ ± εb)(a∗ ± εb)∗

) = ε
(
εφ(bb∗) ± 2Re φ(ba)

) ;

since ε > 0 was arbitrary, and a can be replaced by ia, it follows that ba, ab ∈ N .
Hence N is an ideal in AC. Let H be the completion of AC/N with respect to 〈·, ·〉.
Then H is a separable Hilbert space; let #»a ∈ H denote the vector corresponding to
a ∈ AC. The left multiplication by x j in AC induces a densely defined symmetric
operator X ′

j on H. In particular, X ′
j is closable by [52, Section 3.1]; let X j be its

closure. Since x2j + 1 is invertible inA, the elements x j + i and x j − i inAC are also
invertible. Hence the linear operators X ′

j + i I and X ′
j − i I are invertible on AC/N .

Therefore X j is a self-adjoint operator by [52, Proposition 3.8]. Note that

a(X)
#»
b = # »

ab

for all a, b ∈ AC. Then −i belongs to the resolvent set of X j , the resolvent (X j +
i I )−1 is a bounded operator onH and

ran(X j + i I )−1 = dom X j (4.1)

by [52, Proposition 3.10].
Step 2: A tracial von Neumann algebra. Let F ⊆ B(H) be the von Neumann

algebra generated by (X1 + i I )−1, . . . , (Xn + i I )−1, i.e., the weak operator topology
closure of the unital ∗-algebra generated by (X1 + i I )−1, . . . , (Xn + i I )−1. Define
τ : F → C as τ(F) = 〈F #»

1 ,
#»
1 〉. Then τ is a faithful normal state onF . Furthermore,
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τ is tracial. Indeed, let P, Q be arbitrary elements of the unital ∗-algebra generated by
(X1 + i I )−1, . . . , (Xn + i I )−1. Then P = p(X) and Q = q(X) for some p, q ∈ AC.
Since φ([AC,AC]) = {0}, we have

τ(PQ) = φ(pq) = φ(qp) = τ(QP).

By construction, the Hilbert space L2(F , τ ) naturally embeds into H. In fact,
L2(F , τ ) = H. To see this, it suffices to show that #»a ∈ L2(F , τ ) implies #    »x ja ∈
L2(F , τ ) for every a ∈ A and j = 1, . . . , n. Suppose #»a ∈ L2(F , τ ); let K ⊂ H
be the closure of { #  »pa : p ∈ C[x j , (1 + x2j )

−1]}, and let K0 ⊆ L2(F , τ ) be the

image of #»a under the ∗-algebra generated by (X j + i I )−1. Note that (x j ± i)−1 ∈
C[x j , (1 + x2j )

−1]. The map

C

[
t, 1

t±i

]
→ K , f �→ #            »

f (x j )a

induces a Hilbert space isomorphism

L2(R, μ) → K (4.2)

where μ is the finite measure on R satisfying

∫

R

f dμ = φ( f (x j )aa
∗)

for f ∈ C[t, 1
t±i ]. The preimage of K0 under the isomorphism (4.2) contains the

set {(t ± i)−k : k ∈ N0}. Therefore K0 is dense in K by [53, Lemma 6.9]. Thus in
particular #    »x ja ∈ K = K0 ⊂ L2(F , τ ), as desired.

Step 3: Affiliation. Let U ∈ B(H) be a unitary in the commutant of F . Since

U (X j + i I )−1 = (X j + i I )−1U (4.3)

and ran(X j + i I )−1 = dom X j by (4.1), we have U dom X j ⊆ dom X j . Moreover,
(4.3) then implies

(X j + i I )U (X j + i I )−1(X j + i I ) = (X j + i I )(X j + i I )−1U (X j + i I )

on dom X j , from where we conclude X jU = UX j on dom X j . Since the unitary
U in the commutant of F was arbitrary, the self-adjoint operator X j onH is affiliated
with F .

Step 4: Integrability. Since the positive semidefinite operator X2
j is affiliated with

F , by the spectral theorem there exists a projection valued measure Eλ with values in
F such that X2

j = ∫∞
0 λ dEλ. Then for every p ∈ N,

τ(|X j |2p) = τ(X2p
j ) =

∫ ∞

0
λp dτ(Eλ) =

∫ ∞

0
λp d〈Eλ

#»
1 ,

#»
1 〉 = 〈X2p

j
#»
1 ,

#»
1 〉 < ∞,
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where the second equality holds by [38, Section 3], the third equality holds by the
definition of integration, and the inequality holds since

#»
1 ∈ dom X2p

j . Therefore

X j ∈ L2p(F , τ ). As p ∈ N was arbitrary, it follows that X j ∈ Lω(F , τ ).
Step 5: Conclusion. Finally, we have

τ(a(X)) = 〈a(X)
#»
1 ,

#»
1 〉 = φ(a)

for every a ∈ AC. �

Let (F , τ ) be a tracial von Neumann algebra and X ∈ Lω(F , τ )nsa. The functional

p �→ τ(p(X)) on R<x>sa is called a noncommutative joint distribution (cf. [57,
Section 2.3] or [37, Section 6.4]).We obtain the following tracial version of Haviland’s
theorem [35, Theorem 3.1.2].

Theorem 4.2 Let ϕ : R<x>sa → R be a linear functional with ϕ(1) = 1. Then ϕ is
a noncommutative joint distributionif and only if ϕ(K) = R≥0.

Proof (⇒) is straightforward. (⇐) The functional ϕ extends to a ∗-functional φ :
AC → C satisfying φ(�2AC + [AC,AC]) by Lemma 3.4. Then ϕ(p) = φ(p) =
τ(p(X)) for some (F , τ ) and X ∈ Lω(F , τ )nsa, and all p ∈ R<x>sa, by Proposition
4.1. �

Remark 4.3 The cone �2

R<x> +[R<x>, R<x>] is closed in R<x> by [6, Propo-
sition 1.58 and Corollary 3.11] and [53, Remark A.29] and does not contain K by
Lemma 3.1(d). The condition “ϕ ≥ 0 on K” is therefore more restrictive than “ϕ ≥ 0
on �2

R<x> +[R<x>, R<x>]”.
The proof of Proposition 4.1 actually implies a more general version of Theorem

4.2. Let S ⊂ R<x>sa. Denote

KS :=
⎛

⎝[A,A] +
∑

s∈{1}∪S

s · �2A
⎞

⎠ ∩ R<x>sa. (4.4)

In particular, K∅ equals K from (3.1). Let us say that the functional p �→ τ(p(X))

for some tracial von Neumann algebra (F , τ ) and X ∈ Lω(F , τ )nsa is noncommutative
joint distributionconstrained by S if s(X) � 0 for all s ∈ S.

Corollary 4.4 Let ϕ : R<x>sa → R be a linear functional with ϕ(1) = 1. Then
ϕ is a noncommutative joint distributionconstrained by S ⊂ R<x>sa if and only if
ϕ(KS) = R≥0.

Proof (⇒) is again straightforward. For (⇐), recall the construction of (F , τ ) and
X ∈ Lω(F , τ )n from the proof of Proposition 4.1. Then for every s ∈ S and a ∈ AC,

〈s(X)a, a〉 = ϕ(saa∗) ≥ 0.

Therefore τ(s(X)FF∗) ≥ 0 for every F ∈ F , whence s(X) � 0. �


123



I. Klep et al.

5 A commutative intermezzo and bivariate trace-positive
polynomials

In this section, we give a commutative analog of Theorem 4.2, and establish a refined
solution of Hilbert’s 17th problem for commutative bivariate polynomials that lifts to
a positivity certificate for a special class of ncpolynomials.

Let t = (t1, . . . , tn) be commuting indeterminates, and consider the convex cone

C = R[t] ∩ �2
R

[
t1, . . . , tn,

1
1+t21

, . . . , 1
1+t2n

]

in R[t]. We start by recording the commutative counterpart of Theorem 4.2. While it
follows from [53, Theorem 13.33 and Example 13.36] and it can be proved in a similar
way as Proposition 4.1 (with adaptations regarding strongly commuting operators as
in [43, Corollary 2.6]), we provide a simpler independent argument, inspired by real
algebraic geometry.

Proposition 5.1 Let ϕ : R[t] → R be a linear functional with ϕ(1) = 1. Then ϕ

comes from a probability measure if and only if ϕ(C) = R≥0.

Proof Only the backward implication is nontrivial. Let h = (1+ t21 ) · · · (1+ t2n ), and
A = R[t, 1

h ]. By a variant of Schmüdgen’s Positivstellensatz [35, Corollary 3.5.2],
every bounded nonnegative f ∈ A lies in the closure (with respect to the finest locally
convex topology) of �2A in A. On the other hand, every f ∈ A becomes bounded
when divided by a sufficiently high power of h. Therefore, the closure of �2A agrees
with the convex cone of nonnegative functions in A. The rest follows by Haviland’s
theorem [35, Theorem 3.1.2]. �


Next, we give a new strenghened solution of Hilbert’s 17th problem for bivariate
polynomials.

Theorem 5.2 If f ∈ R[t1, t2] is nonnegative on R
2 then there exists k ∈ N such that

(1 + t21 )k f is a sum of squares in R[t1, t2].
Proof We wish to show that f is a sum of squares in the ring of fractions

A = R[t1, t2]1+t21
=
{
(1 + t21 )−k p : p ∈ R[t1, t2], k ∈ N0

}
.

The ring A is the coordinate ring of the affine real variety X = Y × A
1, where Y is

the projective line P
1 minus one real point [0 : 1] and two complex conjugate nonreal

points [1 : ±i]. Let S ⊂ A
2 be the plane affine curve t21 +t22 = 1. Then S is isomorphic

to P
1 minus two complex conjugate points [1 : ±i]. So Y ∼= S\{x} where x is a real

point of S, and hence X ∼= (S × A
1)\L is isomorphic to S × A

1 minus the real line
L = {x} × A

1. Let q ∈ R[S] be such that x is the only (real or complex) zero of q
in S. Then A = R[X ] is isomorphic to ring of fractions R[S × A

1]q = {q−kg : g ∈
R[S × A

1], k ∈ N0}. To show that every nonnegative polynomial function on X is
a sum of squares in A, it therefore suffices to see that every nonnegative polynomial
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function on S×A
1 is a sum of squares in R[S×A

1]. The latter is in fact true and was
proved in [51, Theorem 2]. �

Remark 5.3 Recall that every nonnegative real polynomial is a sum of squares of
rational functions (byHilbert’s 17th problem, as solved byArtin). Speaking informally,
Theorem 5.2 states that 1 + t21 is a uniform denominator for such sums of squares in
the case of two variables. Let us point out how this relates to several previous results.
If h ∈ R[t1, t2] is such that its homogenization is a positive definite form, then for
every nonnegative f ∈ R[t1, t2] there exists k ∈ N such that hk f is a sum of squares
inR[t1, t2] ( [48, Corollary 3.12]). This result applies, in particular, to h = 1+ t21 + t22 ,
but not to h = 1+ t21 . In fact, one checks easily that Theorem 5.2 implies the statement
for h = 1 + t21 + t22 .

A weaker uniform denominator result, which however is valid for any number of
variables, says that if the homogenizations of f , h ∈ R[t1, . . . , tn] are both positive
definite, then there exists k ∈ N such that hk f is a sum of squares of polynomials (
[46] for h = 1 +∑

i t
2
i and [50, Remark 4.6] in general).

Let us now apply the preceding commutative result to a special class of bivariate
ncpolynomials. Let n = 2 and x = (x1, x2). We say that f ∈ R<x1, x2> is cyclically
sorted [28, Definition 4.1] if

f ∈ span{xi1x j
2 : i, j ∈ N0} + [R<x1, x2>, R<x1, x2>].

The noncommutative lift of the Motzkin polynomial in Example 3.2 is cyclically
sorted.

Corollary 5.4 If f ∈ R<x1, x2>sa is cyclically sorted, then the following are equiva-
lent:

(i) f (ξ) ≥ 0 for all ξ ∈ R
2;

(ii) τ( f (X)) ≥ 0 for all X ∈ Mk(C)2sa and k ∈ N;
(iii) τ( f (X)) ≥ 0 for every tracial von Neumann algebra (F , τ ) and X ∈ F2

sa;
(iv) f ∈ K.

Proof (iv)⇒(iii)⇒(ii)⇒(i) is clear.
(i)⇒(iv) Let π : R<x1, x2, (1+ x21 )

−1> → R[t1, t2, (1+ t21 )−1] be the homomor-
phism given by π(x1) = t1 and π(x2) = t2. Let

V = span{(1 + x21 )
−k xi1x

j
2 : i, j, k ∈ N0} ⊂ R<x1, x2, (1 + x21 )

−1>

and observe that there is a unique linear map η : R[t1, t2, (1 + t21 )−1] → V such that
π ◦ η = id. Furthermore,

η
(
(1 + t21 )−k1 t i11 t j12

)
η
(
(1 + t21 )−k2 t i21 t j22

)∗ = (1 + x21 )−k1 xi11 x j1+ j2
2 xi21 (1 + x21 )−k2

= (1 + x21 )−k1−k2 xi1+i2
1 x j1+ j2

2

+
[
(1 + x21 )−k1 xi11 x j1+ j2

2 , xi21 (1 + x21 )−k2
]
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and so
η(a)η(b)∗ ∈ V + [A,A] (5.1)

for all a, b ∈ R[t1, t2, (1 + t21 )−1]. By (i), π( f ) is a nonnegative bivariate poly-
nomial, so by Theorem 5.2 there exist s1, . . . , s� ∈ R[t1, t2, (1 + t21 )−1] such that
π( f ) = s21 + · · · + s2� . Then

f̃ := η(s1)η(s1)
∗ + · · · + η(s�)η(s�)

∗ ∈ K.

Since f , f̃ ∈ V + [A,A] by (5.1) and π( f ) = π( f̃ ), we have f − f̃ ∈ [A,A].
Therefore f ∈ K. �


6 Globally trace-positive polynomials

In this section we characterize multivariate trace-positive polynomials as the closure
ofK in Theorem 6.1. Closedeness and stability of the cone K are also discussed. Fur-
thermore, Proposition 6.4 touches upon a connection between global trace positivity
and Connes’ embedding problem.

6.1 A Positivstellensatz

Solvability of the general moment problem gives rise to the following description of
trace-positive polynomials.

Theorem 6.1 For f ∈ R<x>sa, the following are equivalent:

(i) τ( f (X)) ≥ 0 for every tracial von Neumann algebra (F , τ ) and X ∈ Fn
sa;

(ii) τ( f (X)) ≥ 0 for every tracial vonNeumannalgebra (F , τ )and X ∈ Lω(F , τ )nsa;
(iii) τ( f (X)) ≥ 0 for every tracial von Neumann algebra (F , τ ) and X ∈

Ldeg f (F , τ )nsa;
(iv) f lies in the closure of K with respect to the finest locally convex topology on

R<x>sa.

Proof (iii)⇒(ii)⇒(i) Clear.
(i)⇒(iii) Let p = deg f . Suppose τ( f (X)) < 0 for some X ∈ L p(F , τ )nsa. By

Hölder’s inequality (2.1) and the triangle inequality, there exists a positive constant c
such that for every Y ∈ L p(F , τ ) satisfying ‖X1 − Y‖p ≤ 1,

∣∣τ( f (X1, . . . , Xn)) − τ( f (Y , X2, . . . , Xn))
∣∣ ≤ c‖X1 − Y‖p. (6.1)

By [55, Theorem IX.2.13(ii)], F is dense in L p(F , τ ) with respect to the p-norm.
Hence by (6.1) there exists Y1 ∈ F such that τ( f (Y1, X2, . . . , Xn)) < 0. Continuing
in this fashion, we can replace each X j with a bounded operator Y j , and thus obtain
Y ∈ Fn that satisfies τ( f (Y )) < 0.

(ii)⇒(iv) By the Hahn-Banach separation theorem [2, Theorem 3.4], f /∈ K if and
only if there is a functional ϕ : R<x>sa → R such that ϕ( f ) < 0 and ϕ(K) = R≥0.
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Note that such a functional is nonzero, and ϕ(p)2 ≤ ϕ(1)ϕ(p2) for all p ∈ R<x>sa
implies ϕ(1) > 0; thus we can rescale it to ϕ(1) = 1. By Theorem 4.2, there exist
(F , τ ) and X ∈ Lω(F , τ )nsa such that ϕ(p) = τ(p(X)) for p ∈ R<x>. Then
τ( f (X)) < 0.

(iv)⇒(ii) Every X ∈ Lω(F , τ )nsa gives rise to a functional φ : a �→ τ(a(X)) onA,
and φ(K) = R≥0. The restriction of φ to R<x>sa is continuous with respect to the
finest locally convex topology on R<x>sa. Hence f ∈ K implies φ( f ) ≥ 0. �

Remark 6.2 In Theorem 6.1, it suffices to restrict to II1 factors F (which have unique
tracial states), since every tracial von Neumann algebra embeds into a II1 factor [13,
Theorem 2.5] (cf. [25, Proposition 2.2]).

For R > 0 let

MR = �2
R<x> +[R<x>, R<x>] +

n∑

j=1

(R − x2j ) · �2
R<x> .

We can also describe the closure of K without denominators as follows (another
alternative with fewer quantifiers is given in Theorem 7.2 below).

Corollary 6.3 The closure of K in the finest locally convex topology equals

K = {
f ∈ R<x>sa : f + ε ∈ MR for all ε, R > 0

}
. (6.2)

Proof By Theorem 6.1, f ∈ R<x>sa belongs to K if and only if it has nonnegative
trace on all tuples of operators from tracial von Neumann algebras. In other words,
for every R > 0 we have τ( f (X)) ≥ 0 for all X ∈ Fn with ‖X1‖, . . . , ‖Xn‖ ≤ √

R.
By [28, Theorem 3.12], such f belongs to the right-hand side of (6.2). �


6.2 Trace positivity onmatrices

Theorem 6.1 considers global trace positivity over all tracial von Neumann algebras,
which in principle could coincide with global trace positivity over matrices of all finite
dimensions. The recent resolution of Connes’ embedding problem [23] is equivalent
to the existence of:

(1) an everywhere convergent ncpower series that has nonnegative trace on all matrix
tuples, but not on a tuple of operators from a von Neumann algebra [45, Corollary
1.2];

(2) an ncpolynomial that has nonnegative trace on all tuples of matrix contractions,
but not on a tuple of contractions from a von Neumann algebra [28, Theorem 1.6].

In the context of global trace positivity of ncpolynomials, these facts inspire the
following (superficially stronger) statement.

Proposition 6.4 There exists f ∈ R<x>sa such that

(i) tr( f (X)) ≥ 0 for all X ∈ Mk(C)nsa and k ∈ N;
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(ii) τ( f (Y )) < 0 for some tracial von Neumann algebra (F , τ ) and Y ∈ Fn
sa.

To prove this, we first relate trace positivity on arbitrary matrix tuples with the
existence of matricial microstates in free probability [56].

Proposition 6.5 For a tracial vonNeumann algebra (F , τ ) and Y ∈ Fn
sa, the following

are equivalent:

(i) for every f ∈ R<x>sa, tr( f (X)) ≥ 0 for all X ∈ Mk(C)nsa and k ∈ N implies
τ( f (Y )) ≥ 0;

(ii) for all ε > 0 and d ∈ N there are k ∈ N and X ∈ Mk(C)nsa such that

∣∣∣∣τ(w(Y )) − 1

k
tr(w(X))

∣∣∣∣ < ε

for all w ∈ <x>d .

Proof The implication (ii)⇒(i) clearly holds.
Now assume (i) holds, and fix d ∈ N. Let L ∈ R<x>∨

d be given by L(p) =
Re τ(p(Y )), and let C ⊆ R<x>∨

d be the closed convex hull of

C0 =
{
p �→ 1

k
Re tr(p(X)) : k ∈ N, X ∈ Mk(C)n

}
.

Suppose L /∈ C . By the Hahn-Banach separation theorem, there exist f0 ∈ R<x>d ∼=
R<x>∨∨

d and γ ∈ R such that L( f0) < γ < L ′( f0) for all L ′ ∈ C . Let f =
1
2 ( f + f ∗) − γ ∈ R<x>sa. Then L( f ) < 0 < L ′( f ) for all L ′ ∈ C0, which
contradicts (i).

Therefore (i) implies L ∈ C , so every neighborhood of L in R<x>∨
d contains a

convex combination with rational coefficients of elements in C0. By arranging finite
sets of matrices into block diagonal matrices, we see that C0 is closed under convex
combinations with rational coefficients. Thus every neighborhood of L contains an
element of C0, so (ii) holds. �

Proof of Proposition 6.4 Combine Proposition 6.5, the equivalence of Connes’ embed-
ding problem and existence of microstates [10, Proposition 3.3] (also e.g. [56, Section
7.4] or [40, Theorem 7]), and the resolution of Connes’ embedding problem [23,
Section 1.3]. �


6.3 The coneK is neither closed nor stable

In this subsectionwe explore further properties of the coneK.We require two auxiliary
lemmas.

Lemma 6.6 Let a0, a1, a2 ≥ 0 and n ∈ N. If a2an0 ≥ nnan+1
1 then a2−(n+1)a1+a0 ≥

0.
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Proof If a0 = 0, then a1 = 0, and so a2 − (n + 1)a1 + a0 ≥ 0 holds. If a0 �= 0, then

a2 − (n + 1)a1 + a0 ≥ nnan+1
1

an0
− (n + 1)a1 + a0

= a0
n

((
na1
a0

)n+1

− (n + 1)

(
na1
a0

)
+ n

)

= a0
n

(
na1
a0

− 1

) n−1∑

k=0

((
na1
a0

)k

− 1

)
.

The last two factors are both nonnegative if na1 ≥ a0 and both negative if na1 < a0,
so a2 − (n + 1)a1 + a0 ≥ 0 holds. �

Lemma 6.7 Let (F , τ ) be a tracial von Neumann algebra and let a, b ∈ Fsa. Then

2τ
(
(ba2b)

3
2

)
≤ τ

(
a4b2 + b2a4

)
.

Proof By the Araki–Lieb–Thirring inequality [34] (more precisely, its von Neumann
algebra version [30, Corollary 3]),

τ
(
(ba2b)

3
2

)
= τ

(
(|b||a|2|b|) 3

2

)
≤ τ

(
|b| 32 |a|3|b| 32

)
= τ

(
|a|3|b|3

)
.

Then

τ
(
a4b2 + a2b4

)
− 2τ

(
(ba2b)

3
2

)
≥ τ

(
|a|2|b|2|a|2 + |a||b|4|a|

)
− 2τ

(
|a|3|b|3

)

= τ
(
(|a|2|b| − |a||b|2)(|b||a|2 − |b|2|a|)

)

is nonnegative. �

A witness of K �= K for n ≥ 3 is a noncommutative lift of the homogenized

Motzkin polynomial.

Proposition 6.8 Let

h = x22 x
2
1 x

2
2 + x21 x

2
2 x

2
1 + x63 − 3x1x2x

2
3 x2x1 ∈ R<x> .

Then h ∈ K\K.

Proof Consider the commutative homogenized Motzkin polynomial

H = t41 t
2
2 + t21 t

4
2 − 3t21 t

2
2 t

2
3 + t63 ∈ R[t1, t2, t3]

which is not a sum of squares in R[t1, t2, t3] by [35, Proposition 1.2.4]. If h ∈ K,
then (1 + t21 )k1(1 + t22 )k2(1 + t23 )k3H is a sum of squares in R[t1, t2, t3] for some
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k1, k2, k3 ∈ N. The lowest-degree homogeneous part of a sum of squares is again a
sum of squares, so H is a sum of squares in R[t1, t2, t3], a contradiction. Therefore
h /∈ K.

Next we prove h ∈ K. Let (F , τ ) be a tracial von Neumann algebra, and
X1, X2, X3 ∈ Fsa. Set

a0 = τ(X4
1X

2
2 + X2

1X
4
2), a1 = τ(X2X

2
1X2X

2
3), a2 = τ(X6

3).

Note that a0, a1, a2 ≥ 0. By Hölder’s inequality (2.1) (with p1 = 3
2 and p2 = 3),

4

(
τ(X2X

2
1X2X

2
3)

)3

≤ 4

(
τ
(
(X2X

2
1X2)

3
2

))2

τ(X6
3) ≤

(
τ
(
X4
1X

2
2 + X2

1X
4
2

) )2
τ(X6

3).

Therefore 4a31 ≤ a2a20 . Hence

τ(h(X1, X2, X3)) = a0 − 3a1 + a2 ≥ 0

by Lemma 6.6. Since (F , τ ) and X1, X2, X3 were arbitrary, h ∈ K by Theorem 6.1.
�


Remark 6.9 Consider A with the finest locally convex topology. That is, every linear
functional onA is continuous. Then [A,A] is a closed subspace, and �2A is a closed
convex cone inA by [26, Theorem4.5]. On the other hand, if n ≥ 3 then�2A+[A,A]
is not closed by Proposition 6.8.

A desired property of a convex cone generated by (hermitian) squares is stability
[35, Section 4.1]. Let us adapt this notion to our context. We say that a ∈ A is of
degree at most d if a can be written as an ncpolynomial of degree at most d in the
generators of A. The cone K is stable if there exists a function �: N → N such that
for every d ∈ N and f ∈ K of degree at most d, there are s1, . . . , s� ∈ A of degree at
most �(d) such that f − s1s∗

1 − · · · − s�s∗
� ∈ [A,A].

Lemma 6.10 If n ≥ 2 then K is not stable.

Proof Suppose K is stable. Let M = t41 t
2
2 + t21 t

4
2 − 3t21 t

2
2 + 1 ∈ R[t1, t2] be the

Motzkin polynomial, and let m = x2x41 x2 + x22 x
2
1 x

2
2 − 3x2x21 x2 + 1 ∈ R<x>sa be its

noncommutative lift as in Example 3.2. For λ ∈ R denote Mλ(t1, t2) = M(λt1, λt2) ∈
R[t1, t2] and mλ(x1, x2) = m(λx1, λx2) ∈ R<x>sa. By Corollary 5.4, mλ ∈ K for
all λ. Note that mλ is of degree at most 6 for every λ. Thus by the stability assumption
there exists d ′ ∈ N such that for every λ there are sk ∈ A of degree at most d ′ such
thatmλ −∑k sks

∗
k ∈ [A,A]. Consequently (1+ t21 )d

′
(1+ t22 )d

′
Mλ is a sum of squares

of polynomials in R[t1, t2] for every λ. But this is impossible by the proof of [47,
Theorem 1]. Indeed, if λ �= 0 and the polynomial (1 + t21 )d

′
(1 + t22 )d

′
Mλ of degree

4d ′ + 6 is a sum of squares, then so is (1 + 1
λ2
t21 )d

′
(1 + 1

λ2
t22 )d

′
M . Since the cone of

sums of squares of degree at most 4d ′ + 6 is closed [33, Corollary 3.34], taking the
limit λ → ∞ implies that M is a sum of squares in R[t1, t2], a contradiction. �
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Remark 6.11 It is unclear whether K coincides with the sequential closure K‡ of K
[8],

K‡ = { f ∈ R<x>sa : there is g ∈ R<x>sa such that f + εg ∈ K for every ε > 0}.

See Theorem 7.2 below for a description of K resembling K†.

Remark 6.12 Membership in K can be certified with a sequence of semidefinite pro-
grams. Namely, f ∈ R<x>sa belongs to K if and only if

f =
∑

i

si s
∗
i +

∑

j

[a j , b j ], s j , a j , b j ∈ Ad (6.3)

for some d ∈ N, and (6.3) can be rephrased as a feasibility semidefinite program.
Similarly, for d ∈ N let μd be the solution of the optimization problem

inf
L:A2d→R

Llinear

L( f )

s.t . L(1) = 1 ,

L(ab) = L(ba) , for all a, b ∈ Ad ,

L(s∗s) ≥ 0 , for all s ∈ A2d .

(6.4)

Then (6.4) is a semidefinite program, and (μd)d is an increasing sequence of lower
bounds for inf(F ,τ ),X∈Fn τ( f (X)).

6.4 Tracial arithmetic-geometric mean inequality

The following tracial version of the renowned arithmetic-geometric mean inequality
is essentially known, and can be deduced from the generalized Hölder’s inequality for
unitarily invariant norms [5, Exercise IV.2.7] (cf. [14, Theorem 4.2]) applied to the
nuclear norm on a tracial von Neumann algebra. We present an alternative argument
inspired by the proof of Proposition 6.8.

Proposition 6.13 Let (F , τ ) be a tracial von Neumann algebra. Then

τ( f1 + · · · + fn)

n
≥ τ

⎛

⎝
((

f
1
2
1 · · · f

1
2
n

)∗ (
f

1
2
1 · · · f

1
2
n

)) 1
n

⎞

⎠ (6.5)

for all positive semidefinite f1, . . . , fn ∈ F .

Proof We prove (6.5) by induction on n. If n = 1, (6.5) is an equality. Now assume

(6.5) holds for n. Let f1, . . . , fn+1 � 0, and set f = f
1
2
n · · · f

1
2
1 f

1
2
1 · · · f

1
2
n . By the
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Araki-Lieb-Thirring inequality [30, Corollary 3] and Hölder’s inequality (2.1) with
p1 = n + 1 and p2 = n+1

n ,

τ

((
f

1
2
n+1 f f

1
2
n+1

) 1
n+1
)

≤ τ

(
f

1
2(n+1)
n+1 f

1
n+1 f

1
2(n+1)
n+1

)

= τ

(
f

1
n+1
n+1 f

1
n+1

)

≤ τ ( fn+1)
1

n+1 · τ
(
f

1
n

) n
n+1

.

Therefore

nnτ

((
f

1
2
n+1 f f

1
2
n+1

) 1
n+1
)n+1

≤ τ ( fn+1) ·
(
nτ
(
f

1
n

))n
. (6.6)

By the induction hypothesis,

n τ
(
f

1
n

)
≤ τ ( f1 + · · · + fn) . (6.7)

Let

a0 = τ ( f1 + · · · + fn) ,

a1 = τ

((
f

1
2
n+1 · · · f

1
2
1 f

1
2
1 · · · f

1
2
n+1

) 1
n+1
)

,

a2 = τ ( fn+1) .

Then (6.6) and (6.7) imply nnan+1
1 ≤ a2an0 , so a2 + a0 − (n + 1)a1 ≥ 0 by Lemma

6.6. Therefore (6.5) holds for n + 1. �

Remark 6.14 Other (weaker) inequalities resembling (6.5) are

τ( f1 + · · · + fn)

n
≥
∣∣∣∣τ
(
f

1
n
1 · · · f

1
n
n

)∣∣∣∣ , (6.8)

which holds by (2.1) and the classical algebraic-geometric mean inequality, and

√
τ( f 21 ) + · · · +√

τ( f 2n ))

n
≥

√√√√√τ

⎛

⎝
((

f
1
2
1 · · · f

1
2
n

)∗ (
f

1
2
1 · · · f

1
2
n

)) 2
n

⎞

⎠ (6.9)

which follows by [5, Exercise IV.2.7] applied to the Hilbert-Schmidt norm on
(F , τ ).
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7 Denominator-free characterization of global trace positivity

WhileSection6gives an algebraic certificate for trace positivity in termsof sumsof her-
mitian squareswith denominators, this sectionpresents an alternative that involves only
ncpolynomials. First, we give a sufficient condition for solvability of the unbounded
tracial moment problem (Theorem 7.1). Next, we show that every trace-positive
ncpolynomial can be perturbed to a sum of hermitian squares and commutators of
ncpolynomials (Theorem 7.2). Finally, we demonstrate this principle explicitly on (a
noncommutative lift of) the Motzkin polynomial.

7.1 Tracial Carleman’s condition

In this subsection we show that a variant of Carleman’s condition for the Hamburger
moment problem [53, Corollary 4.10] is a sufficient condition for a functional to be a
noncommutative joint distribution. The following is a tracial version of Nussbaum’s
theorem [53, Theorem 14.19].

Theorem 7.1 Let ϕ : R<x>sa → R be a linear functional satisfying ϕ(1) = 1 and
ϕ(pp∗) = ϕ(p∗ p) ≥ 0 for all p ∈ R<x>. If there is M > 0 such that

ϕ(x2rj ) ≤ (2r)!Mr for all r ∈ N and j = 1, . . . , n, (7.1)

then ϕ is a noncommutative joint distribution.

Proof We extend ϕ to a ∗-functional φ : C<x> → C as

φ(p) = 1

4
ϕ(p + p∗ + p + p∗) + i

4
ϕ(−i p + i p∗ + i p − i p∗)

for p ∈ R<x>. As in the proof of Lemma 3.4 we see that φ(pp∗) = φ(p∗ p) ≥ 0 for
p ∈ C<x>, and then

φ([p, q]) = 1

2
φ([p, q] + [q∗, p∗]) = 1

2
φ
(
(p − q∗)∗(p − q∗) − (p − q∗)(p − q∗)∗

)
= 0

for p, q ∈ C<x>. Therefore φ(�2
C<x>) = R≥0 and φ([C<x>, C<x>]) =

{0}. We proceed with another variation of the Gelfand–Naimark–Segal construction
following the same steps as in the proof of Proposition 4.1.

Step 1: Construction of unbounded operators. On C<x>, there is a semi-scalar
product 〈p, q〉 = φ(pq∗). As in Step 1 of the proof of Proposition 4.1, it gives rise
to a separable Hilbert space H. Let D = { #»p ∈ H : p ∈ C<x>}, which is a dense
subspace ofH. For j = 1, . . . , n let X ′

j be symmetric operators on D induced by left

multiplication by x j onC<x>. Let X̃ j be the closure of X ′
j . Note thatD ⊆ domw(X̃)

for every w ∈ <x>.
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Set R = 1
5
√
M

> 0, and fix 1 ≤ j ≤ n. Let p ∈ C<x> and t ∈ (−R, R) be
arbitrary. By the triangle inequality and the Cauchy–Schwarz inequality,

∥∥∥∥∥

∞∑

k=m

(i t)k

k! X̃ k
j

#»p

∥∥∥∥∥ ≤
∞∑

k=m

|t |k
k!

∥∥∥X̃ k
j

#»p
∥∥∥

=
∞∑

k=m

|t |k
k!
√

φ(x2kj pp∗)

≤
∞∑

k=m

|t |k
k!

4
√

φ(x4kj )
4
√

φ((pp∗)2)

≤ 4
√

φ((pp∗)2)
∞∑

k=m

(
√
M|t |)k

4
√

(4k)!
k!

(7.2)

is arbitrary small for large m ∈ N since the series

∞∑

k=0

4
√

(4k)!
k! · 5k

is absolutely convergent by the ratio test. Therefore for every t ∈ (−R, R) there is a
well-defined linear map Ũ j (t) : D → H,

Ũ j (t) = exp
(
i t X̃ j

) =
∞∑

k=0

(i t)k

k! X̃ k
j .

By the properties of the exponential function we see that Ũ j (t) is an isometry, and
thus uniquely extends to an isometryUj (t) : H → H. Furthermore,Uj (t)∗ = Uj (−t)
andUj (−t)Uj (t) = Uj (t)Uj (−t) = I onD, and therefore onH, soUj (t) is a unitary.
Furthermore, Uj (s)Uj (t) = Uj (s + t) for all s, t, s + t ∈ (−R, R). Therefore we
can extend the family {Uj (t) : t ∈ (−R, R)} to a well-defined one-parametric unitary
group {Uj (t) : t ∈ R}, uniquely determined by

Uj (ma) = Uj (a)m (7.3)

for all a ∈ (−R, R) and m ∈ Z. Furthermore, this one-parametric group is strongly
continuous by (7.2) and (7.3). By Stone’s theorem [52, Theorem 6.2] there is a unique
self-adjoint operator X j onH such that Uj (t) = exp(i t X j ) for all t ∈ R, and

dom X j =
{
v ∈ H : lim

ε→0

1

ε

(
Uj (ε)v − v

)
exists

}
,

X jv = lim
ε→0

−i

ε

(
Uj (ε)v − v

)
for all v ∈ dom X j

(7.4)
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by [52, Proposition 5.1]. In particular, for #»p ∈ D we have X j
#»p = X̃ j

#»p by the
definition of Ũ j (t) and Uj (t), so X j is an extension of X̃ j .

Step 2: A tracial von Neumann algebra. Let F ⊆ B(H) be the von Neumann
algebra generated by Uj (t) for j = 1, . . . , n and t ∈ R. Define τ : F → C as
τ(F) = 〈F #»

1 ,
#»
1 〉. Note that

〈p(X̃)q(X̃)
#»
1 ,

#»
1 〉 = φ(pq) = φ(qp) = 〈q(X̃)p(X̃)

#»
1 ,

#»
1 〉

for all p, q ∈ R<x>. By estimating as in (7.2) we see that

〈w1(Ũ )w2(Ũ )
#»
1 ,

#»
1 〉 = lim

m→∞

〈
w1

(
m∑

k=0

(i t)k

k! X̃
k

)
w2

(
m∑

k=0

(i t)k

k! X̃
k

)
#»
1 ,

#»
1

〉

= lim
m→∞

〈
w2

(
m∑

k=0

(i t)k

k! X̃
k

)
w1

(
m∑

k=0

(i t)k

k! X̃
k

)
#»
1 ,

#»
1

〉

= 〈w2(Ũ )w1(Ũ )
#»
1 ,

#»
1 〉

for all w1, w2 ∈ <x>. Therefore

τ(w1(U )w2(U )) = τ(w2(U )w1(U ))

for all w1, w2 ∈ <x>, so τ is a faithful normal tracial state on F . By construction,
the Hilbert space L2(F , τ ) naturally embeds into H. Since D = span{w(X)

#»
1 : w ∈

<x>}, we have D ⊂ L2(F , τ ) by (7.4). Therefore H = L2(F , τ ).
Step 3: Affiliation. Let V ∈ B(H) be a unitary in the commutant of F , and fix

1 ≤ j ≤ n. Then V commutes with all Uj (t). If v ∈ dom X j , then 1
ε
(Uj (ε)v − v)

converges as ε → 0. Then the same holds for

V · 1
ε
(Uj (ε)v − v) = 1

ε
(Uj (ε)V v − V v),

so V v ∈ dom X j , and V X jv = X jV v by (7.4). Thus V commutes with X j . Conse-
quently the self-adjoint operators X1, . . . , Xn are affiliated with F .

Step 4: Integrability. Follows exactly as in Step 4 of the proof of Proposition 4.1.
Step 5: Conclusion. By construction we have

τ(p(X)) = 〈p(X)
#»
1 ,

#»
1 〉 = φ(p)

for every p ∈ C<x>. �


7.2 Approximation with sums of hermitian squares and commutators

The aim of this subsection is to establish the tracial version of Lasserre’s perturbation
result [31, 32] for globally positive polynomials.
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Theorem 7.2 For f ∈ R<x>sa, the following are equivalent:

(i) τ( f (X)) ≥ 0 for every tracial von Neumann algebra (F , τ ) and X ∈ Fn
sa;

(ii) for each ε > 0 there exists r ∈ N such that

f + ε

n∑

j=1

r∑

k=0

1

k! x
2k
j ∈ �2

R<x> +[R<x>, R<x>].

For r ∈ N denote

�r =
n∑

j=1

r∑

k=0

1

k! x
2k
j .

Note that �r − n ∈ �2
R<x>. Two optimization problems will be key in the proof

of Theorem 7.2. Let r ∈ N and M ∈ R>0, and consider

Qr ,M :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

inf
L:R<x>2r→R

L linear, self-adjoint, tracial

L( f )

s.t. L(M − �r ) ≥ 0 ,

L(1) = 1 ,

L(p∗ p) ≥ 0 for all p ∈ R<x>r ;

(7.5)

Q∨
r ,M :

⎧
⎨

⎩

sup
z∈R

z

s.t . f − z ∈ �2
2r + R≥0(M − �r ) .

(7.6)

Here �2
2r ⊂ R<x>sa is the set of all (symmetric) ncpolynomials of degree ≤ 2r

that are cyclically equivalent to sums of (degree ≤ r ) squares. Recall [28]: two words

u, v ∈ <x> are called cyclically equivalent (u
cyc∗∼ v) if v or v∗ can be obtained

from u by cyclically rotating the letters in u. For notational convenience, let Cr ,M =
�2

2r + R≥0(M − �r ).

Lemma 7.3 The optimization problems (7.5) and (7.6) are semidefinite programs dual
to each other.

Proof This is a variation on what is now standard material, cf. [6]. Encode the tracial
linear functional L : R<x>2r → R with its Hankel matrix M(L)u,v = L(u∗v) for
u, v ∈ <x>r . With this (7.5) can be rewritten as

Qr ,M :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

inf 〈M(L), G( f )〉
s.t.

〈
M(L), G(M − �r )

〉
≥ 0 ,

M(L)u,v = M(L)û,v̂ if u∗v
cyc∗∼ û∗v̂ ,

M(L)1,1 = 1 ,

M(L) � 0 .

(7.7)
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whereG( f ) denote a Gram matrix of f , i.e., f = V
∗
rG( f )Vr if Vr denote the vector

of all words in x of degree ≤ r . Now (7.7) is easily seen to be a SDP: the objective
function is linear in the entries of M(L), the first constraint is a linear inequality on
the entries ofM(L), the equality constraints give rise to a finite set of linear equations
on the entries of M(L), and the last constraint is a positivity constraint on M(L).

To recognize that (7.6) is an SDP, observe that f − z ∈ Cr ,M if and only if there is
a Gram matrix G( f ), a positive semidefinite G � 0 and λ ≥ 0 such that

V
∗
rG( f )Vr − z

cyc∗∼ V
∗
r GVr + λ(M − �r ). (7.8)

Clearly, (7.8) yields linear constraints on the entries of G, so maximizing z over the
set of feasible G is a semidefinite program.

We shall now use a standard Lagrange duality approach to show the SDPs (7.5) and
(7.6) are dual to each other:

sup
f −z∈Cr ,M

z = sup
z

inf
L∈C∨

r ,M

(z + L( f − z))

≤ inf
L∈C∨

r ,M

sup
z

(z + L( f − z))

= inf
L∈C∨

r ,M

(
L( f ) + sup

z
z(1 − L(1))

)

= inf
{
L( f ) | L ∈ C∨

r ,M , L(1) = 1
}
.

The first equality comes from the fact that the inner minimization problem gives
minimal value 0 if and only if f − z ∈ Cr ,M . The inequality in this chain is obvious.
The inner maximization problem in the next to last line is bounded with maximum
value 0 if and only L(1) = 1. Finally, the optimization problem on the last line is
equivalent to (7.5). �

Lemma 7.4 The convex cone Cr ,M is closed in the finite dimensional Euclidean space
R<x>2r .

Proof The cone �2
2r is well-known to be closed [6, Proposition 1.58]. Hence the

conclusion follows from [4, Theorem 3.2]. �

Lemma 7.5 Strong duality holds for the pair of SDPs (7.5) and (7.6).

Proof Let inf Qr ,M denote the optimal value of (7.5) and let sup Q∨
r ,M denote the opti-

mal value of (7.6). By Lemma 7.3 and weak duality from semidefinite programming
[2, Theorem IV.6.2], sup Q∨

r ,M ≤ inf Qr ,M . If M < n, then (7.5) is not feasible, and
sup Q∨

r ,M = ∞ because Cr ,M = R<x>2r . Hence let M ≥ n. Then M(L) = E11 is
clearly feasible for (7.5), whence inf Qr ,M < ∞.

Suppose that (7.6) is feasible, −∞ < sup Q∨
r ,M ≤ inf Qr ,M . Note that L( f −

inf Qr ,M ) ≥ 0 for all L ∈ C∨
r ,M . This implies that f − inf Qr ,M is in C∨∨

r ,M = Cr ,M
since Cr ,M is closed by Lemma 7.4. Hence sup Q∨

r ,M ≥ inf Qr ,M .
Finally, suppose that (7.6) is infeasible. Then for every λ ∈ R, f −λ /∈ Cr ,M . By the

Hahn-Banach separation theorem [2, Theorem III.1.3], there exists a linear functional
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L ∈ C∨
r ,M with L(Cr ,M ) ⊆ R≥0, L(1) = 1 and L( f ) < λ. As λ was arbitrary, this

shows (7.5) is unbounded, establishing strong duality. �

Lemma 7.6 Suppose f ∈ R<x> is uniformly bounded below on tracial von Neumann
algebras, in the sense that f� := inf(F ,τ ),X∈Fn τ( f (X)) > −∞. Then (7.5) is feasible
for 2r ≥ deg f and M ≥ n, and inf Qr ,M ↗ fM as r → ∞ for some fM ≥ f�.

Proof Feasibility of (7.5) for 2r ≥ deg f and M ≥ n is clear (e.g., L(p) = p(0) for
p ∈ R<x>2r ). If L is feasible for Qr ,M then its restriction is feasible for Qr ′,M for
r ′ < r . Hence the sequence (inf Qr ,M )r≥d is increasing.

Let L be feasible for Qr ,M . Observe that for k ≤ r , the values of L(x2kj ) are bounded
by the linear inequality,

L(x2kj ) ≤ k!M . (7.9)

Then Hadwin’s noncommutative Hölder inequality for linear functionals on the free
algebra (see [19, Proof of Theorem 1.3]) implies a bound

|L(xi1 · · · xiδ )| ≤
δ∏

j=1

2δ
√
L(x2

δ

i j
) ≤

δ∏

j=1

2δ
√

(2δ−1)!M =: cδ

for all 2δ ≤ 2r . In particular, if r ≥ 2deg f −1 then L( f ) ≤ s · cdeg f , where s is the
number of summands in f .

Hence (inf Qr ,M )r is an increasing function bounded from above, whence
inf Qr ,M ↗ fM as r → ∞, for some fM . It remains to show fM ≥ f�.

To each L : R<x> → Rwe assign the infinite Hankel matrixM(L) as in the proof
of Lemma 7.3. If L acts only on R<x>2r we extend it by 0 to all of R<x>. We also
scale each L : R<x> → R to Ľ : R<x> → R by Ľ(w) = 1

c|w| L(w) for a word
w ∈ <x>.

Let L(r) be an optimizer of (7.5), and consider the sequence (M(Ľ(r)))r∈N. Each
entry in each infinite matrix is bounded by 1 in absolute value, so wemay consider this
a sequence in the unit ball B1 of �∞. By the Banach-Alaoglu theorem [2, Theorem
III.2.9], B1 is compact in the weak-∗ topology of �∞. Hence there is an element
M = M(Ľ) in B1 and a subsequence (M(Ľ(rk )))k∈N converging toM(Ľ). In particular,
Ľ(rk )(w) → Ľ(w) as k → ∞, for all w ∈ <x>. Now define

L̂ : R<x> → R, w �→ c|w| Ľ(w).

Then L(rk )|R<x>δ
→ L̂|R<x>δ

as k → ∞, for every δ ∈ N. In particular, L̂ is a ∗-
functional, L̂(1) = 1, L̂( f ) = fM , L̂([R<x>, R<x>]) = {0} and L̂(�2

R<x>) =
R≥0.

Let m ∈ N be arbitrary. Then for every rk ≥ m,

L(rk )(x2mj ) ≤ m!M
by (7.9). Consequently

L̂(x2mj ) ≤ m!M .

123



Globally trace-positive...

Therefore L is a noncommutative joint distributionby Theorem 7.1. In particular,
fM ≥ f� since f� = inf(F ,τ ),X∈Lω(F ,τ )n τ( f (X)) by (i)⇔(ii) of Theorem 6.1. �

Proof of Theorem 7.2 (ii)⇒(i) Let (F , τ ) and X ∈ Fn

sa be arbitrary. Then for every
r ∈ N,

τ
(
�r (X)

) ≤
n∑

j=1

τ
(
exp(X2

j )
)

=: M < ∞.

By (ii), for every ε > 0 there exists r ∈ N such that

τ
(
f (X) + ε�r (X)

) ≥ 0.

Therefore for every ε > 0,

τ( f (X)) ≥ −εM,

and so τ( f (X)) ≥ 0.
(i)⇒(ii) Denote f� = inf(F ,τ ),X τ( f (X)).
First assume f� > 0. Let M > max{ 1

f�
, n} be arbitrary. By Lemmas 7.5 and 7.6

there exists rM > 0 such that sup Q∨
rM ,M > f� − 1

M . That is, there are zM ≥ f� − 1
M ,

λM ≥ 0 and qM ∈ �2
2rM

such that

f − zM = qM + λM
(
M − �rM

)
. (7.10)

Evaluating (7.10) at X = 0 ∈ R
n gives

f (0) − f� + 1

M
≥ f (0) − zM = qM (0) + λM (M − �rM (0)) ≥ λM (M − n),

and therefore

λM ≤ f (0) − f� + 1
M

M − n
. (7.11)

The right-hand side of (7.11) goes to 0 as M → ∞. By (7.10),

f + λM�rM = zM + qM + λMM ∈ �2
2rM ,

and λM → 0 as M → ∞. Therefore (ii) holds.
Now assume f� = 0, and let ε > 0 be arbitrary. By applying (i)⇒(ii) to the

ncpolynomial f + nε
2 and ε

2 > 0, there exists r ∈ N such that
(
f + nε

2

)+ ε
2�r ∈ �2

2r .
But this ncpolynomial equals f + ε�r − ε

2 (�r − n), so f + ε�r ∈ �2
2r . �


Remark 7.7 Let f ∈ R<x>sa. For r ∈ N let

εr = inf
{
ε ∈ R : f + ε�r ∈ �2

2r

}
.
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Then (εr )r is a decreasing sequence, each εr can be computed with a semidefinite
program, and f is trace-positive if and only if infr εr ≤ 0 by Theorem 7.2.

7.3 Sum-of-squares perturbations of the tracial Motzkin polynomial

We illustrate Theorem 7.2 on the polynomialm = x2x41 x2 + x22 x
2
1 x

2
2 −3x2x21 x2 +1 ∈

R<x1, x2>sa from Example 3.2. In fact, we show in Example 7.9 below that for every
ε > 0 there is r ∈ N such thatm+ ε

r ! x
2r
1 is cyclically equivalent to a sum of hermitian

squares. This in particular improves the approximation of the commutative Motzkin
polynomial by sums of squares given in [32, Example 3.5]. We start with a technical
lemma.

Lemma 7.8 Let r ∈ 4N + 1 and ε ≥ r !
(r−1)r−1 . Then the polynomial

p(t) = −
(
t − r

r − 1

) r−1
2

satisfies

2p(t) ≤ t − 3 and tp(t)2 ≤ 1 + ε

r ! t
r

for all t ≥ 0.

Proof Observe that p is concave on R (since r−1
2 is even), p(1) = −1 and p′(1) = 1

2 .
Therefore p(t) ≤ 1

2 (t − 3) for all t ∈ R.
On (0,∞), the function t �→ t(t − 1)r−1 has precisely two local extrema, a local

maximum at 1
r and a local minimum at 1. Therefore

t(t − 1)r−1 − 1

r

(
1

r
− 1

)r−1

≤ tr

for all t ≥ 0. Replacing t with t
r gives

(
t

r

)((
t

r

)
− 1

)r−1

≤ 1

r

(
1

r
− 1

)r−1

+
(
t

r

)r

,

and after multiplication by rr

(r−1)r−1 we obtain

t

(
t − r

r − 1

)r−1

≤ 1 + tr

(r − 1)r−1 .

Therefore tp(t)2 ≤ 1 + ε
r ! t

r holds for all t ≥ 0. �
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Example 7.9 Let M = t41 t
2
2 + t21 t

4
2 − 3t21 t

2
2 + 1 ∈ R[t1, t2] be the Motzkin polynomial.

If r ∈ 4N + 1 and ε ≥ r !
(r−1)r−1 , then M + ε

r ! t
2r
1 is a sum of squares in R[t1, t2]. Note

that r !
(r−1)r−1 decays exponentially towards 0 as r → ∞.

Indeed, let p be as in Lemma 7.8. The univariate polynomials t41 − 3t21 − 2t21 p(t
2
1 )

and 1+ ε
r ! t

2r
1 − t21 p(t

2
1 )2 are nonnegative, and therefore sums of squares inR[t1]. Then

M + ε

r ! t
2r
1 = t21 t

4
2 + (t41 − 3t21 )t22 +

(
1 + ε

r ! t
2r
1

)

=
(
t41 − 3t21 − 2t21 p(t

2
1 )
)
t22 + t21

(
t22 + p(t21 )

)2 +
(
1 + ε

r ! t
2r
1 − t21 p(t

2
1 )2
)

is a sum of (at most five) squares in R[t1, t2].
Let m ∈ R<x1, x2>sa be a cyclically sorted noncommutative lift of M . As in the

proof of Corollary 5.4 we conclude that

m + ε

r ! x
2r
1 ∈ �2

2r

for r ∈ 4N + 1 and ε ≥ r !
(r−1)r−1 . �
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