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Abstract- The key enablers for emerging cellular networks such as densification, concurrent operation at multiple
bands and harnessing mmWave spectrum give birth to a peculiar set of new network management challenges. One
such key challenge is the user mobility management. In this article, we identify the key issues that render current
mobility management paradigm inadequate for delivering the expected Quality of Experience (QoE) and resource
efficiency in emerging and future cellular networks. Together, these challenges call for paradigm shift in the way
mobility is managed in cellular networks. We present an Advanced Mobility Management and Utilization Framework
(A-MMUF) that can enable this paradigm shift by transforming mobility management from being a reactive to a
proactive process. The core idea of A-MMUF is to build upon Mobility Prediction Models (MPMs) to predict various
attributes of user mobility and traffic patterns such as next candidate cell for handover (HO), time of HO, future cell
loads. These predictions are then leveraged to not only improve HO process for better QoE and less signaling
overhead, but also to enable proactive automation to further maximize network performance in terms of energy and
spectrum efficiency. However, understandably, the gains offered by the A-MMUF hinge on the accuracy of the MPMs,
which may vary, not only with the choice of underlying machine learning technique, but also with the volume, variety,
and fidelity of the training data. We analyze the potential gains of A-MMUF through three case studies: namely
proactive HO, proactive Mobility Load Balancing (P-MLB), and proactive Energy Savings (P-ES). In addition to
demonstrating significant gains in all three case studies, the results provide useful insights into the agility vs accuracy
tradeoff that can be leveraged for choosing optimal machine learning models for practical deployment of A-MMUF.

1. INTRODUCTION

Mobility is raison d'etre of wireless cellular networks. The ability to seamlessly support User Equipment (UE)
mobility has been the key factor behind the wide scale penetration and applications of the wireless cellular networks.
A recent study projects that mobile data traffic will increase by 287 times between 2017 and 2027, where 5G will
account for 90% of mobile subscriptions in North America [1]. This trend combined with imminent advent of
autonomous cars and unmanned aerial vehicles highlights the need for making mobility management in future
networks even more efficient, reliable, and seamless. On the other hand, network densification coupled with the
millimeter-wave (mmWave) bands adaptation is emerging as the predominant mechanism to meet the capacity
enhancement goals [2]. Emerging networks are envisioned to be based on heterogencous (HetNets) architectures
where the ubiquitous and continuous connectivity will be rendered by the legacy/advanced sub-6GHz macro cells and
the additional capacity will be provided by the deployment of a large number of small-cells, operating at higher bands.
Particularly, mmWave small-cells are being considered as the game-changer for the future ultra-dense multi-band
networks. Deploying more mmWave Base Stations (BSs) within the same geographical region has strong potential to
solve the two long-standing and intertwined problems in cellular networks of spectrum scarcity and interference.
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While the ultra-dense deployment along with mmWave has potential to address the capacity crunch, it leads to a set
of network management problems. One such key yet largely overlooked problem is the compounded increase in the
number of handovers (HO) [3]. While the control-plane is provided by sub-6GHz cells, the transition of user-plane
from one small-cell to another small-cell in a dense network deployment scenario is an open problem. Similarly, for
semi-static users, load balancing from one small-cell to another small-cell is another big challenge. This problem alone
leads to numerous network resource efficiency as well as user Quality-of-Experience (QoE) issues such as: increased
signaling overhead and hence poor spectrum utilization, higher latency, decreased average UE throughput and battery
life due to time lost in cell discovery, increased chance of radio-link and HO failures. In fact, 3GPP studies [4] reveal
that HO failure rate in the traditional HetNets is as high as 60%. The average failure rate almost doubles as compared
to one in a macro-only network. A detail description of intra- and inter-frequency HO along with the associated
challenges is given in [3] [5].

In the next section we explicate the challenges in mobility management in Ultra-Dense Multi-Band Network (UDMN)
that must be addressed to meet resource efficiency and QoE in future networks. In the subsequent sections, we present
an advanced mobility management framework called Advanced Mobility Management and Utilization Framework
(A-MMUF) that has potential to address the aforementioned challenges. The key novelty of A-MMUF lies in building
UE Mobility Prediction Models (MPMs) and then exploiting them to not only improve HO process in UDMN, but
also to enable proactive self-optimization. Through three case studies on proactive HO, proactive Mobility-Load-
Balancing (MLB) and proactive Energy-Savings (ES), we show how A-MMUF can help achieve proactive mobility
management and enable numerous proactive Self-Organizing-Network (SON) functions, now also called zero touch
automation and will be referred as automation in rest of the paper. As the gains offered by A-MMUF hinge on the
accuracy of the MPMs and in real networks no MPM may yield 100% accuracy, we also analyze the impact of MPMs
accuracy on potential gains achievable by A-MMUF under various scenarios.

II. CHALLENGES IN MOBILITY MANAGEMENT OF UDMN

The following challenges define the breadth and depth of the impending yet under-addressed problem of mobility
management:

1. Resource-Inefficiency and Scarcity

1.1. Resource-Hungry Mobility Support
In current cellular networks that mainly consist of macro cells on sub-6GHz bands, mobility support is offered by
incorporating elaborate HO mechanisms that rely on heavy pre- and post-HO signaling (preparation, execution, and
completion phases). Thus, supporting UE mobility is already a resource-hungry and extremely complex process in
legacy networks that causes significant signaling overhead. With extreme densification, number of HOs increase
dramatically and mobility management signaling overheads start offsetting the capacity gains.

1.2. Large HO Completion Time
The time to complete a HO is targeted at 65ms [6] in a 4G network, and this time is designed mainly for macro cell-
based deployments. However, in UDMN, given the much smaller average cell size and thus the small UE sojourn
time, the time to complete a HO must be reduced significantly. The new agile HO design also needed to meet the
ambitious low latency requirements imposed by 5G/6G use-case of Ultra Reliable Low Latency Communications
(URLLC) [7].

1.3. Mobile Battery life
To perform a HO in UDMN, mobile devices must discover small-cells operating on different frequency bands by
periodically running an Inter-frequency small-cell discovery process. UDMN will require inter-frequency small-cell
discovery rate to be much higher than the current rate for 4G. This will exacerbate mobile battery life problem in
UDMN.
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2. User-Experience Degradation

2.1. High risk of Breakdown of Current Mobility Management Mechanism
HO failure can be caused by many factors such as loss of signaling during HO or during admission control where the
target cell does not have resources for incoming bearers. Because of HO failure, Radio Resource Control connection
needs to be re-established which leads to extra control signaling overhead and degraded QoE. In 4G networks, HO
failure rate is targeted at less than 5%. However, 3GPP study [4] shows that adding only ten small-cells per macro cell
can push the HO failure rate as high as 60%, indicating the potential breakdown of current mobility management
mechanism in UDMN.

2.2. QoE Degradation During Intra-Frequency Handover

Another caveat of increased HO rate is the hidden loss in average throughput and higher chances of radio-link-failure.
This is primarily due to the temporary negative Signal to Interference and Noise Ratio (SINR in dB scale) just before
the HO trigger, where the HO target cell is stronger than the serving cell by more than or equal to HO margin, and for
a duration equal to sum of a) timeToTrigger [6] [5] and b) the delay due to Random Access Channel and HO processing
at target BS. The resultant SINR dilapidation becomes more critical with the speed of the UE) or due to the suboptimal
HO parameter configuration or cell overlap planning. The degraded SINR condition reduces the UE throughput and
results in an increase in data retransmission rate. In addition, the higher chances of RLF led to increased HO failures
and negatively affects retainability Key Performance Indicator (KPT).

2.3. Loss of Throughput During Inter-Frequency Handover

Given planned exploitation of a diverse range of bands, inter-frequency mobility is a vital component of 5G and 6G but
has not received the attention it deserves in the research community. Inter-frequency mobility requires event A2 to be
triggered, which is followed by the configuration of periodical measurement gap for the UE by the BS. However, this
process interrupts data transmission and reception as the UE shifts the radio to measure reference signal strength from
the neighboring cells operating at a different frequency. As a result, UE cannot transmit/receive data for 10ms resulting
in up-to 25% loss in throughput. UDMNs with a variety of frequencies ranging from sub-6GHz to mmWave band may
require the UE to perform an extensive search of available frequencies before initiating a mobility decision. This issue
can be aggravated when considering the latency goal of <lms [7] for URLLC use-case. A similar issue can arise during
E-UTRAN New-Radio Dual-Connectivity where UEs will traditionally camp on 4G and after searching for an optimal
5G cell, dual-connectivity activation process will be initiated.

3. Unprecedented Channel Behavior in mmWave Cells

3.1. Non-Graceful Signal Decay
Conventional cellular bands exhibit graceful signal decay. This graceful signal decay along with planned cell overlaps
allows the use of HO Margin (offset+hysteresis) for HO preparation and execution phase and to avoid ping pong as
shown in Fig. 1. However, mmWave cells in UDMN will have a sudden signal decay for example when link becomes
non-line of sight. This means no or little cell overlaps leaving far less time to prepare and execute HOs. This challenge
alone renders current mobility management paradigm inadequate for future networks and requires rethinking of the
way HOs are performed.
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Fig. 1. Relative spatial margins to complete HOs in UDMN consisting of macro cells, conventional small-cells and mmWave
small-cells.

3.2. Cell Discovery Issue with mmWave Small-Cells

Conventional sub-6 GHz band cells have omni-directional or wide-beam sector antennas, and thus can be easily
discovered by an approaching mobile user to start the HO process. On the contrary, mmWave cells rely on narrow
beams to overcome the high propagation losses and require line of sight conditions. This means unless a mmWave
cell has aligned its beam with an oncoming mobile user using advanced beam control and beam management
technologies, it cannot discover the user, or be discovered by the user to start the HO processes. This gives rise to an
unprecedented cell/user discovery problem in mmWave cells making mobility management more challenging in
UDMN as described in [2].

4. Reactive Automation Use-Cases Affected by the Mobility Management in UDMN

Finally, aforementioned idiosyncrasies of UDMN render ineffective a number of recently standardized automation
functions such as the Mobility-Robustness-Optimization (MRO), MLB, and ES [8] . This is because the current design
of these automation functions relies on assumption of relatively low rate of UE transitions among cells and thus
relatively slow variation in cell loads that is reflective of macro cell only network.

Remarkably, until now most of the research towards UDMN remains focused on channel modelling and hardware
design aspects of the mmWave based UDMN. The mobility management in UDMN so far remains a Terra incognita.
Above challenges imply that, if no measures are taken to rethink mobility management for future UDMN, UE mobility
management can become the bottleneck in QoE as well resource efficiency in practical deployments of UDMN despite
of advances in physical layer, and adaptation of new spectrum.

In the subsequent sections, we present an Advanced Mobility Management and Utilization Framework (A-MMUF)
for addressing the aforementioned challenges.

III. A FRAMEWORK FOR ADVANCED MOBILITY MANAGEMENT AND UTILIZATION

The core idea of the advanced mobility management and utilization framework (A-MMUF) is illustrated in Fig. 2.
The two cornerstone features that make A-MMUF distinct from existing mobility management paradigm are:

e Leveraging Artificial Intelligence (Al) to predict mobility patterns from data readily available in the network.
e Leveraging mobility prediction to enable proactive mobility management and proactive automation functions
(P-AUTO).

The proposed A-MMUF framework highlighted in Fig. 2 involves the following steps:

1) Training data collection: The sources of this data for training the mobility prediction models could be call
detail records, Minimization of Drive Test measurements, HO reports, crowd source data, geographical maps
etc. [8]. However, almost all real data is expected to be sparse or incomplete. A domain knowledge-based
pre-processing and cleansing of the data is required before it can be used for model training. For example,
from the domain knowledge (field experience and theory) we know that apart from shadowing, the amount
of HO margin and the UE direction and UE velocity will offset the HO completion location compared to the
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2)

3)

actual cell border. The collected data therefore should have a buffer zone to accommodate such variations.
Similarly, since the UE capability affects the user mobility direction when performing inter-frequency HO,
the collected data should not be biased towards a particular set of frequencies. Moreover, since the radio
conditions and corresponding radio link failures are highly dependent on LoS/NLoS and outdoor/indoor
conditions, having a marker for these categories helps improve the quality of collected data. In case the data
is small but representative, methods such Generative Adversarial Networks (GANs) can be used to augment
the data. In cases where data is incomplete, it can be augmented using synthetic data such as that produced
from well calibrated system level simulators with realistic mobility modeling [5].

Designing and training the mobility prediction models: The Mobility Prediction Model (MPM) used to
predict a set of attributes of UE mobility should meet two criteria: 1) The MPMs should not only be accurate
but also computationally low cost and they should be capable of performing on real time; 2) The MPMs act
as enabler for the proactive automation functions in UDMN. A simple yet effective way to build such MPM
is to leverage UE reported measurements, which include traces of past cell transitions such as cell IDs, HO
failure reports, Reference-Signal-Received-Power measurement report and call-records to build and train low
complexity MPM. This high frequency and large volume data need to be processed with advanced storage
techniques as highlighted in Fig. 2. Discrete Time Markov Chains (DTMC) have been commonly leveraged
in literature for MPM as they can yield more scalable solution because of being memory-less. DTMC does
not need to store users’ past movements, instead the crux of this information is captured by transition
probabilities. Probability or likelihood of a UE to transit to next cell can be predicted by modelling UE
transition from one cell to another as a Markov stochastic process. Each state in the DTMC represents a cell
wherein HO from a cell to another can be modelled as state transition. However, the DTMC is limited to
spatial prediction only. It does not take into account time domain. A solution to solve this problem is to use
semi-Markov chain for building spatio-temporal based MPM models. A similar model for mobility prediction
is presented in [9] which enables MRO, MLB and ES automation functions. A prediction accuracy of more
than 80% has been achieved using semi-Markov model in experimental evaluation [10]. Moreover, the state
of the art supervised machine learning techniques like Deep Neural Networks, Support Vector Machine,
Decision Trees (XGBoost) can also be leveraged for mobility prediction to achieve better accuracy, albeit at
the cost of increased training and prediction time as shown in recent study [10] that provides performance
comparison of various Al tools for building a MPM from cellular data. To exploit various Al tools, user’s
trajectory can be represented as a set of cells it traverses to transform the mobility prediction problem into a
classification problem with target cells as class labels [10]. Out of the available ML approaches for MPM
models in literature [9] [11], selection for MPM to be used in practical deployment of A-MMUF in a given
scenario can be made based on the desired level of tradeoff between several criteria that include accuracy,
training time, prediction time, and quantity and quality of data required to train the model.

Triggering HO and automation functions proactively: The MPMs can then be used to predict various mobility
metrics such as next HO cell, time of HO, direction of arrival, frequency of HO, load prediction etc. These
predictions can be used to not only trigger HO proactively and mmWave cell discovery, but they can also
make many automation functions proactive rather than reactive such as MRO, MLB, ES, Coverage and
Capacity Optimization (CCO), Inter-Cell-Interference-Coordination (ICIC). Here, the former refers to
Proactive-Mobility Management (P-MM) and the latter Proactive automation (previously known as Proactive
SON), as shown in Fig. 2. For an instance, MPM can predict number of UEs to be associated with a cell in a
future time interval. Thus, it can act as an enabler for transforming several reactive automation functions to
be proactive e.g., energy saving algorithms can optimize the activation and de-activation of the cells based
on the predicted load and thus enhance energy efficiency of the overall network. Similarly, if the predicted
number of UEs to be associated with a cell in the next time interval is greater than a certain threshold the
MPM can be the basis to proactively trigger MLB. Based on the information of estimated load, MLB can
change HO parameters or coverage area of the to-be over-loaded cell and its neighbors such that the extra
traffic is offloaded to neighboring cells and the load is evenly balanced among the cells without sacrificing
QoE. Thus, MPM can transform the most of automation use-cases from reactive to proactive ones.
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Fig. 2. Our proposed Advanced Mobility Management and Utilization Framework (A-MMUF)

However, it can be anticipated that the gains provided by A-MMUF will heavily depend on the accuracy of the MPMs.
In the following section we present three case studies that analyze the gains of A-MMUF for varying accuracy of the
MPM.

IV. A-MMUF CASE STUDIES

In this section, we present three case studies of the presented framework (A-MMUF), namely proactive HO, proactive
MLB (OPERA), and proactive-ES (AURORA).

A. Proactive HO Scheme: Minimizing HO Signaling Overhead and Latency in UDMN:

In current networks, mobility is managed through an elaborate HO process that includes preparation, execution, and
completion phase. Each of these three phases requires the exchange of numerous measurements [3] [11] from UE to
the serving cell, and to the core network, causing huge signaling and latency. In UDMN, the problem will get
exacerbated by the fact that unlike macro cells, small-cells are not typically directly connected to the core network
with dedicated high-speed signaling interfaces where mobility procedures are usually coordinated. This, combined
with the increased HO rate anticipated in UDMN and low latency requirement expected from 5G, call for
transformative change in the way HOs are managed.

To address this challenge, MPMs can be an enabler for a proactive HO (P-HO) scheme. P-HO can be achieved by
predicting the next cell and HO-time through MPM. Consequently, HO preparation phase can be done (e.g., advance
resource allocation) before the HO criteria is satisfied reducing the HO induced latency. Moreover, HO execution
phase can be made seamless by reserving access related resources in the target cell ahead of time. Finally, the HO
completion part where the path switch of user plane from source to target cell takes place can be totally avoided by
core network sending user plane directly to the target cell.

Accuracy vs Agility Tradeoff and its impact on Proactive Automation: The core idea of P-HO is not new, and its
feasibility has already been studied in literature [3] [11]. Here we analyze the dependance of P-HO’s gain (relative to
conventional HO) on the attributes of underlying MPM to gain insights into the accuracy vs agility tradeoff. Simulation
setup used for P-HO evaluation includes 130m inter-site distance and user density of SUEs/small-cell with UEs
moving at speed of 3km/h, 30km/h, and 100km/h. During simulation, UEs are configured with 2dB HO hysteresis and
200ms measurement gap [11]. From domain knowledge, we know that the UE penetrate the coverage of HO target
cell during the HO criteria evaluation & this creates a HO buffer zone that varies with UE trajectory and UE velocity.
We take this under consideration during the simulation and evaluation phase. Fig. 3 shows the gain achieved by P-
HO by using several MPM predictors. We quantify the HO signaling latency (expressed in terms of the delay required
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to transmit and process the HO messages) reduction achieved through various MPMs following the approach in [11].
As it can be seen in Fig. 3, the P-HO gain increases with increase in accuracy of the underlying MPM reaching up to
22.38% using XGBoost based MPM. While in literature often only accuracy is emphasized, when important factors
for achieving the agility needed for P-HO implementation in real network are considered such as training time and
inference time, XGBoost based MPM is not the clear winner. In that case, Semi-Makrov model based MPM emerges
as better choice as it can be retrained quickest, albeit at the cost of lower accuracy and hence lower P-HO gain. The
results bring forth the accuracy vs agility tradeoff that often remains hidden in literature but has valuable insights for
choosing an optimal MPM model for given deployment scenario. A given deployment scenario is characterized by
availability of computational resources and non-stationarity of the UE mobility patterns. Non-stationary UE mobility
patterns may require proportionally higher rate of retraining of the MPM, thus making less accurate, but more agile
MPMs such as Semi-Markov based MPM can be a better choice compared to the most accurate models.
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Fig. 3. HO gain achieved by P-HO scheme based on various MPMs, in comparison to non-predictive HO scheme

B. Proactive MLB

MLB targets to optimally distribute traffic over the cells to avoid congestion and to maximize the resource efficiency
in the face of acute UE mobility. However, with shrinking cell sizes and increased rate of UE transitions among cells,
the cell loads in UDMN will change much faster than the rate of cell load change in macro cells. This means
congestions and resource inefficiency both will be observed more often in UDMN if no counter measures are taken.
Legacy load balancing schemes that get triggered from the congestion indicators, i.e., after the congestion has already
happened, while adequate for current networks, will not suffice to meet QoE requirement in future networks. One way
to address this problem is to transform MLB into Proactive-MLB (P-MLB). Authors in [12] propose OPERA
framework where, if the predicted load of the cell in the next time interval is greater than certain threshold, P-MLB
can adopt the HO, cell association and admission control parameters of that cell and its neighboring cells such that
load in the cell to be congested will always remain pre-set threshold and congestion will not be observed at all. In
[12], proactive congestion threat is detected using Semi Markov model. Congestion avoidance takes place by
optimizing soft parameter (CIO) or hard parameters (azimuth, tilt, transmission-power, beamwidth).

Fig. 4 illustrates the benefits of P-MLB in comparison to reactive MLB approaches (RDS-A, RDS-B, RDS-C, and

Joint). RDS-A, RDS-B, and RDS-C are the three most common configurations adopted from real network 4G
deployment settings for one of USA’s national mobile operators in the city of Tulsa. Similarly, in Joint algorithm, LB
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is achieved by changing tilts while keeping in view the coverage constraints. We use Monte Carlo style simulations
for the evaluation of OPERA framework. Simulation setup includes 336 stationary UEs and 84 mobile UEs following
the realistic SLAW mobility pattern, and the HO statistics is collected for a period of one week. Fig. 4 highlights the
reduction in number of unsatisfied UEs and the gain in UE SINR achieved by employing P-MLB based OPERA
framework. P-MLB can be a strong candidate which can help to realize the key 5G/6G use-case of URLLC through
next cell prediction, timely resource allocation and ensuring good SINR.
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Fig. 4. Gain in QoFE achieved by using P-MLB based OPERA framework [12].

C. Proactive Energy Savings (ES)

The objective of ES automation use-case is to minimize the overall energy consumption for a given network load.
Energy consumption of a mobile network can be obtained using the Energy-Consumption-Ratio (ECR) metric. ECR
for a cell is defined as the amount of energy consumed in Joules per each bit of information that is reliably transmitted
in that cell. During low traffic times, cells can be switched to sleep state with minimum energy consumption and the
small traffic can be offloaded to the neighboring overlapping cells. These can be switched back ON during high traffic
times. However, all current ES schemes suffer from two common problem: 1) switching a dormant cell back on has a
latency that can lead to poor QoE; 2) How to discover an OFF cell. Both problems can be solved by leveraging MPM
to transform ES into proactive ES scheme as in [13]. The key idea here is to predict future cell loads using past HO
traces, and accordingly schedule the sleep cycles for the small-cells. This not only allow the sleeping cells to be turned
ON proactively than reactively, but also minimizes the switching ON latency and addresses the cell discovery
challenge.

The average Energy-Reduction-Gain defined in detail in [13] (ratio of difference between ECRPES scheme and
ECR¥°N versus the ECR*'°N) of proactive energy scheme for these mobility prediction schemes against conventional
practice of keeping cells ON all the times is plotted in Fig. 5. Fig. 5 shows that the gain of proactive energy scheme
increases with the prediction accuracy and is found to be maximum (80.68%) for XGBoost. The results also show like
other P-AUTO use-cases discussed above, the ERG also heavily depends on the accuracy of the MPM. Simulation
was conducted in a similar environment as for P-MLB use-case.
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Reference | Scheme Name Input Machine Output Result
Learning Tool
Used
Spatiotemporal Time stamp, Semi Markov More than 80% accurate user
[9] Mobility Serving Cell, ) MPM e
- . Chain future location prediction
Prediction HO occasion
- HO call Data . . Predictive HO to reduce HO
[11] Predictive Records Discrete Time P-HO signaling (by 50%-80%) and
Handover BS dens1t.y, UE | Markov Chain HO latency (by 49%-60%)
velocity
Time stamp,
Serving Cell, Semi Markov Proactive load  balancin,
[12] OPERA HO occasion, . P-MLB . . g
. Chain results in 99% satisfied UEs
BS density, cell
bandwidth
Time stamp, Energy Reduction Gain of
Serving Cell, Semi Markov about 68% for high traffic
[13] AURORA HO occasion, Chain P-ES demand scenario in UDMN as
BS density, BS compared to Always ON
location approach.

Table 1. Summary of MPM and Automation (P-AUTO) use-cases.
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Fig. 5. Energy reduction gain achieved with various MPM predictors (System model and Simulation scenario is detailed in [13])

V. LEVERAGING A-MMUF ENABLING NEW USE-CASES OR AVOIDING CONFLICT AMONG MULTIPLE USE-CASES

The discussion in the previous section shows the A-MMUF can enable a variety of use-cases that can transform
reactive optimization or no automation to proactive optimization or proactive automation of parameters associated
with use-case specific KPIs by leveraging the intelligence harness-able from mobility patterns. Other than the P-HO,
P-ES and P-MLB use-cases discussed above, other automation use-cases that benefit from MPM to become proactive
by leveraging A-MMUF style operation include Proactive-CCO (P-CCO), Proactive-ICIC (P-ICIC). MPM can
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transform CCO to P-CCO by enabling proactive optimization of parameters such as Tilt, Transmission-power and
CIO, in anticipation of traffic and mobility patterns. Similarly, through A-MMUF adaptation, ICIC can be transformed
to P-ICIC where radio resources in future cells of the users are reserved in advance. Moreover, in P-ICIC the
scheduling in different sectors of the cells can be done intelligently to minimize cell-edge interference by taking into
account user mobility trajectory (MPM) learned e.g., from past HO traces.

Another novel use-case of A-MMUF is its ability to resolve parametric or objective conflicts that till today limit the
full automation of cellular network optimization. For example, ES automation function is known to have conflict with
CCO use-cases [14] where a cell can be switched off by ES SON causing conflict to objectives of CCO. Similarly, a
CCO can have parametric conflict with the MLB where both automation functions may try change the same parameter
such as transmission-power or CIO for different objectives. A-MMUF, thanks to its MPM powered ability to predict
future cell loads, user location and next cells of users has a potential to enable concurrent operation of multiple
automation functions without conflict. The arrival of users in cell switched off by ES automation function can be
predicted through MPM to turn it ON preemptively thereby avoiding conflict with CCO.

In light of above discussion, it can be concluded that A-MMUF, in contrast to the state-of-the-art conflict prone
reactive automation (SON) can enable multiple automation use-cases to co-exist while ensuring improvement in one
KPI does not have negative implication on another associated KPI. While promising in principle, thorough quantitative
investigation of the conflict avoidance potential of A-MMUF requires dedicated modeling and analysis for each
distinct set of conflicting automation functions and can be subject of future studies.

CONCLUSION

While the mobility management paradigm has evolved over the past decades from 2G to 5G, we explain why the
current mobility management, will not be suitable for the UDMNs. We have highlighted the challenges that stem
mainly due to the peculiar characteristics of mmWave, small footprint of small-cells and the intrinsically reactive
design and operation of mobility management. To address highlighted challenges, we have a framework for
transforming mobility management from a reactive to proactive paradigm by empowering it with machine learning
based mobility and traffic prediction models. We propose A-MMUF framework that leverages regular network
measurements to predict mobility patterns, next candidate cells for HO, and the time of HO as well as future cell loads.
The framework not only solves the identified HO related problem anticipated in UDMNS, but it can also transform
mobility from being a challenge to advantage i.e., the knowledge gained from mobility/HO patterns can be leveraged
to devise new proactive automation solutions. A-MMUF in turn allows mobility management and conventional
automation functions to be proactive rather than reactive meeting the diverse and acute 5G/6G requirements including
extremely low latency in URLLC use-case. We also demonstrate the gains of the A-MMUF through three different
case studies. The case studies on proactive HO, proactive MLB and proactive ES demonstrates how the presented
framework can transform mobility from a bane into a blessing by yielding significant gain in network KPIs. However,
observed gains heavily depend on not only the accuracy but also the training time and interference time of underlying
mobility prediction models.
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