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Abstract—In emerging 5G networks, User Equipment camps
traditionally on 4G network. Later, if the user requests a 5G
service, it can simultaneously camp on 4G and 5G using EUTRAN
New-Radio Dual-Connectivity (EN-DC) approach. In EN-DC, poor
radio-conditions in either 4G or 5G network can be detrimental
to user Quality-of-Experience (QoE). Although operators want to
maximize EN-DC activation to fully utilize the 5G network, sub-
optimal parameter configuration to turn on ENDC can compromise
key-performance-indicators due to excessive radio-link-failures
(RLFs) or voice-muting. While the need to maximize the EN-DC
activation is obvious for maximizing the 5G network’s utility, RLF
and mute avoidance are vital to maintain the QoE requirements.
To achieve aforementioned tradeoff, this paper presents the first
solution to optimally configure the EN-DC activation parameters.
We collect two datasets from real network to develop machine-
learning-models to predict RLF and muting, respectively. We also
investigate and compare the potential of various under-sampling,
oversampling, and synthetic data generation techniques including
Tomek-Links and Generative Adversarial Networks for their po-
tential to address the data imbalance problem inherent in the real
network training data. Leveraging these models, we formulate and
solve two QoE-aware optimization problems that can maximize
EN-DC activation while minimizing RLF or voice-muting. System-
level simulation-based results show that compared to state-of-the-
art solution that does not take into account RLF or voice-muting
risk in EN-DC activation, the proposed solution can intelligently
determine ENDC activation criteria that minimize the risk of
RLF and voice muting while giving the operator’s desired level
of priority to maximize 5G network utilization.

Index Terms—5G, Artificial intelligence, EN-DC, new radio,
radio link failure, voice call muting.

1. INTRODUCTION

NEW Radio (NR), with innovative use cases of en-
hanced Mobile Broadband (eMBB) for large vol-
ume transmissions, massive Machine Type Communications
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(mMTC) for sensors and Internet of Things (IoT) devices, and
Ultra Reliable Low Latency Communications (URLLC) for
mission critical applications come with unprecedented Quality
of Experience (QoE) goals. Given the magnitude of these use
cases and applications, studies project that 5 G subscriptions
will top 2.6 billion by the end of 2025 [1]. While the capacity
crunch will be addressed primarily by ultra-dense Base Station
(BS) deployment and mmWave band utilization [2], ensuring
QoE with a conglomeration of 5 G and legacy technologies, i.e.,
4G-LTE, remains an open challenge of utmost importance.

As per 3GPP Release 15 specification 37.863 [3], E-UTRAN
New Radio Dual Connectivity (EN-DC) allows 5 G capable User
Equipment (UE) to simultaneously connect to a 4G-LTE eN-
odeB (eNB) and 5 G gNodeB (gNB). Although EN-DC concept
is first conceived in 3GPP Release 15, the process stated in the
more recent releases such as in Rel. 16 and 17 is similar without
any significant changes. Therefore, we focus our discussion
on the EN-DC procedure standardized in 3GPP Release 15. In
EN-DC, the LTE eNB acts as amaster node, playing a crucial role
in the EN-DC session setup, while the gNB acts as a secondary
node providing the 5 G data path as illustrated in Fig. 1. This
non-standalone 5 G network deployment enabled by EN-DC
is aimed to address the extreme capacity demand challenge,
reduces the capital expenditures (CAPEX) of network operators,
and accelerate the penetration of 5 G networks. However, this
additional complexity leads to new challenges including the
increased signaling overhead and the need to determine the
optimal parameters for EN-DC activation/deactivation.

EN-DC activation comes with an intrinsic trade-off between
5 G network utilization and potential QoE degradation due to
Radio Link Failure (RLF) and voice call muting. To the best of
the authors’ knowledge, there does not exist a study in open
literature to quantitatively analyze this trade-off and offer a
solution to optimally configure EN-DC activation parameters.
A high number of EN-DC activations are desirable for fully
utilizing the 5 G network. However, an unintelligent maxi-
mization of EN-DC activations can result in several Quality of
Experience (QoE) related issues, including excessive amount of
ping-pong EN-DC activation/deactivation, recurrent RLFs, and
exasperating voice call muting. RLF is the radio interface dis-
ruption between BS and UE, and is typically caused by coverage
hole or poor signal quality as a result of high interference. UE
observes high interference either during handover (HO) process
due to sub-optimal HO parameter configuration [4], [5], [6], [7],
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Fig. 1. EN-DC activation and signaling process for 5 G NR.

or due to the interference from the neighboring cells usually at
the cell-edge. On the other hand, voice call muting refers to the
instance when a UE is unable to receive audio packets during an
active voice call. Similar to RLF, voice call muting is observed
mostly due to poor radio conditions.

EN-DC operations require the control plane to be setup be-
tween UE and LTE eNB, while the user plane can be transmitted
by 5 G gNB or both LTE eNB and 5 G gNB simultaneously as
per the configuration. As a result, UE must maintain a strong
connection both with LTE and 5 G nodes simultaneously. Poor
radio conditions either on 4 G or 5 G can subsequently result
in RLF or voice muting, which will be detrimental to the user
experience.

By accelerating the EN-DC activation in an attempt to in-
crease network efficiency, EN-DC may be triggered at poor radio

the signaling overhead by preventing the unnecessary EN-DC
activation attempts e.g., in poor 4 G or 5 G radio conditions.
Thus, the proposed solution eliminates the additional signaling
generated due to RLFs caused by sub-optimal EN-DC activation
parameters.

As quantifying the relationship between the signal condition
(i.e., RSRP and SINR) vs RLF and voice muting is essential
for optimization of EN-DC activation, the proposed framework
leverages a data-driven approach to quantify this relationship in
the absence of analytical models due to system-level complexity.
Existing analytical models to address the dual connectivity
issues are based on numerous assumptions to make the equations
tractable, however, the results become impractical in real world
scenario. On the other hand, existing simulators do not capture
the intricacies of a live mobile network, and the simplification
renders the results practically unusable in a live network. With
the widespread deployment of 5 G mobile networks, there is
an urgent need to develop a real network-based data-driven
approach to address the aforementioned challenges. To the best
of authors’ knowledge, there does not exist any data driven work
based on real network data that focuses on maximizing 5 G
network utilization through EN-DC and minimizing potential
QoE degradation due to RLF and voice call muting.

A. Related Work

The concept of dual-connectivity has been studied well over
the past years [24], [25], [26]. A detailed review of these studies
can be found in a recent mobility management survey in emerg-
ing cellular networks [27]. Meanwhile, more specific studies
of dual-connectivity gain in terms of delay and throughput [8],
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[14], [15], [18], [20], [22], mobility [9], [10], [11], [12], energy
efficiency [13], [17], [19], [20], [22], reliability [12], [17], [21],
and latency [28] exist in literature as well. However, to the best
of the authors’ knowledge, no study in the existing literature
addresses the QoE-aware criteria to activate dual-connectivity
between two different mobile technologies viz a viz 4 G and
5 G. Particularly, there does not exist a study on RLF and muting
instances in the context of EN-DC.

Most of the RLF-related literature [29], [30], [31], [32], [33]
addresses intra-frequency HO issues by controlling the system’s
common parameters. For instance, in [29], time-to-trigger (TTT)
and handover margin (HOM) are tuned based on the type of RLF
observed during the HO. Similarly, in [30], authors propose to
tune A3-offset to prevent RLF between intra-frequency neigh-
bors. Authors in [31] categorized HO failure into too early, too
late, and wrong cell HO to adjust TTT and A3-offset accordingly.
Apart from optimizing intra-frequency HO parameters, authors
in [32] proposed transmission power adjustments to eliminate
coverage holes in an attempt to avoid RLF. RLF detection
approach in [33] used a radio frequency (RF) threshold to detect
possible instances of RLF and accelerated the HO to a better
cell if available. However, no scheme to determine optimal RF
thresholds is not presented in the study.

On the other hand, the academic literature on voice call
muting, specifically IP-based Voice over LTE (VoLTE) muting,
is rather scarce. The primary reason for this is bi-fold; a) the
low penetration rate of VOLTE calls due to the incapability of
mobile handset, the inability of eNBs to cater VOLTE calls, or
the reluctance of the mobile network operators to enforce VOLTE
calls; b) the voice muting prevention is often treated as a separate
problem on its own. Instead, the traditional hit-and-trial-based
tuning of various parameters for coverage hole avoidance, SINR
improvement, seamless handover, and resource availability is
often assued to indirectly minimize voice muting. The RLF
avoidance approaches discussed above [29], [30], [31], [32], [33]
may minimize voice call muting as well, However, the optimiza-
tion techniques aimed specifically at voice muting prevention
need to meet more stringent criteria than the aforementioned
approaches. This is because, unlike traditional HTTP/FTP traf-
fic, voice call requires real-time low-latency packet transfer for
high definition and jitter-free voice communication. Hence, in
a bid to camp the UE on the best available frequency band,
network operators use different set of mobility parameters for
VoLTE and ordinary data traffic.

In the context of voice call muting, the study of HO between
WiFi access points [34] and radio resource scheduling [35] exist
in literature. However, none of the existing studies aim to inves-
tigate a scheme for a QoE-aware dual-connectivity (EN-DC).
Furthermore, as concluded earlier, most of the RLF prevention
approaches proposed in literature target intra-frequency HO
optimization and do not identify actual measurement thresh-
olds to detect possible RLF. Therefore, there is a dire need
for a framework that can detect potential RLF threshold and
potential muting threshold considering the signal strength and
quality, and utilize that information to configure the optimal
inter-Random Access Technology (inter-RAT) parameters for
resource-efficient and QoE-aware EN-DC activation.
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This paper is the extension of our previously published con-
ference paper [36]. In contrast to [36] the new contributions in
this work include a Al model for voice muting minimization, and
deep hyper-parameter optimization both in the development of
Al models and when minimizing the impact of class imbalance.
Moreover, in [36] the results shown were based on random values
of B1 RSRP thresholds. On the contrary, this work presents the
optimization function formulation for RLF and muting aware
EN-DC activation to get the optimal parameters required for
EN-DC activation.

The proposed model has been shown in Fig. 2. Though there is
clear similarity between the RLF and muting prediction models,
they are distinct in two key aspects. 1) Different input data: RLF
model relies only on RF data with past RLF labels as input to it,
whereas muting prediction model relies on RF data with muting
labels as well as the output of the RLF model as input to it.
2) Different class imbalance techniques: RLF prediction model
works best with a different imbalance technique (Tomek Link)
compared to the muting prediction model which performs best
with GAN. Reason for this difference in performance of class
imbalance handling techniques for the two models is explained
in detail in Section III-D and III-E.

B. Contributions

The main contributions of this paper can be summarized as

follows:

1) Thisis the first study to quantify and optimize the trade-off
between 5 G network utilization and user QoE degra-
dation due to RLF or muting during EN-DC activation,
leveraging real network data measurements. To optimize
this tradeoff, we propose a two-stage Al model trained on
real data from a live commercial network. The developed
model is capable of accurately predicting QoE degradation
in terms of potential RLF and muting instances, as shown
in Fig. 2.

2) We present a domain knowledge-based scheme to enrich
the minority RLF and muting samples by identifying po-
tential RLF occasions using low-level counters specified
by 3GPP. To address the data imbalance problem, we in-
vestigate the potential of a large number of data balancing
approaches, including state-of-the-art oversampling and
undersampling techniques, as well as non-traditional tech-
niques such as Generative Adversarial Network (GAN).

3) In order to enable network operators to configure two
different sets of mobility parameters for voice bearer
activated UEs and non-voice active UEs, we formulate and
solve two separate optimization problems that maximize
EN-DC activation and minimize RLF or voice muting risk.
Given the non-convexity of the optimization problems, we
solve them using Genetic Algorithm (GA). To evaluate
the efficacy of GA to yield a near optimal solution, we
benchmark GA’s performance against a brute force-based
solution.

4) We perform extensive system-level simulations to evalu-
ate the proposed Al-based QoE aware EN-DC activation
framework while comparing it with the state-of-the-art
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Fig. 2.  Overview of the proposed Al-based prediction models for potential RLF and potential muting.

industry solution for EN-DC activation (i.e., EN-DC ac-
tivation without taking into account RLF or voice mut-
ing risk). Results show that the proposed solution can
intelligently configure EN-DC activation criteria such
that RLF or voice muting can be reduced to practically
Zero.

The rest of the paper is organized as follows. In Section II,
we briefly describe the 3GPP based EN-DC activation proce-
dure, RLF trigger conditions, and the support of voice calls
over cellular networks. Real LTE network measurement data
collection, exploration, and data imbalance issue are described in
Section III. The two stage Al model to predict potential RLF and
potential muting is also presented in Section III. Optimization
problem formulation for an efficient RLF and mute-aware EN-
DC activation criteria is discussed in Section IV. In Section V
we show that the Minimization of Drive Test (MDT) data can be
used to determine the suitable EN-DC activation configuration
parameters while minimizing the chances of RLF and voice
muting. Finally, we conclude the paper in Section VI.

II. BACKGROUND

In this section, we briefly describe the 3GPP standard based
procedures for EN-DC activation, RLF trigger criteria, and the
support of voice calls over cellular networks.

A. EN-DC in 3GPP Release 15

A major focus of 3GPP Release 15 [3] is to get the first
incarnation of 5 G NR into the field that complements the
existing 4 G LTE network. To make this happen, a solution in
the form of Dual Connectivity option 3X or EN-DC is crafted.
EN-DC enables UEs to connect simultaneously to 4 G and 5 G

NR base stations. Under this solution, a UE first camps on 4 G
eNB and then initiate activation of EN-DC. Fig. 1(a) illustrates
EN-DC signaling and data connections.

Master node (MN), LTE eNB in this case, starts the EN-DC
activation process by sending the EN-DC configuration message
to the UE. This message contains the event Bl measurement
criteria that define the 5 G RF threshold. 5 G capable UE sends
event B1 to the MN if the Reference Signal Received Power
(RSRP) or Signal to Interference and Noise Ratio (SINR) of
the 5 G cell becomes better than the B1-threshold as shown in
Fig. 1(b). The entering condition of event B1 can be expressed
as:

Mn + Ofn + Ocn - hySt > Blthres (1)
where M, is the measurement result, either RSRP or SINR, of
the 5 G gNB, hyst is the hysteresis parameter, O ¢, and O, are
the optional frequency and cell offset parameters, respectively.

Once the MN receives the event B1 from the UE, it com-
municates with the 5 G gNB for admission control check, and
capability enquiry. 5 G gNB is referred to as secondary node
(SN) after the EN-DC activation.

B. Radio Link Failure in 3GPP

Radio link failure is an instance when a UE abnormally
detaches its connection with the serving cell. RLF procedure
is the same for 4 G and 5 G networks and is observed when
either of the following three conditions is met continuously for
a certain period.

e When timer 7310 expires after consecutive out-of-sync

indication parameter N310 has expired.
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Fig. 3. Summary of 3GPP-defined RLF trigger criteria.

e When the configured number of consecutive unsuccess-
ful Random Access Channel (RACH) attempts have been
reached.

e When the number of consecutive Radio Link Control
(RLC) retransmissions equals the value of the parameter
mazxRLCretransmissions.

These conditions are also summarized in Fig. 3.

C. Voice Over Cellular Networks

The legacy 4 G networks and the latest 5 G NR networks sup-
port voice services through VoLTE and Voice over NR (VoNR)
respectively. The packet switch-based VOLTE and VoNR deliver
high definition voice with much lesser jitter and delay than the
traditional circuit switch networks. 3GPP [37] has standardized
QoS Class Identifier (QCI) value of 5 for voice call signaling,
and QCI of 1 for actual voice call packets. Resource scheduling
for a voice activated user is achieved through Semi-Persistent
Scheduling (SPS) where a fixed number of resources are allo-
cated with high priority in a periodical manner and at predefined
location within the bandwidth. This is done to minimize the
service interruption for an active voice call due to resource
congestion.

D. Relationship Between RLF and Muting

Although VoLTE and VoNR are given higher resource alloca-
tion priority, they are still susceptible to muting under poor RF
conditions due to the drop or loss of voice packets. Under worst
circumstances, the voice muting can extend for several seconds,
which can be detrimental to user experience. Unlike RLF which
has underlying counters that trigger RLF, voice muting is not
dependent on any underlying parameters. This is due to the
real-time flow of packets between the two participants, and call
muting can be observed almost instantly with deteriorating sig-
nal strength (RSRP) or quality (SINR). Given the time sensitive
nature of voice packets, call muting can happen even if actual
RLF does not happen and only the conditions that can lead to
potential RLF occur.

III. AI MODEL FOR RLF AND MUTING PREDICTION TO
ENABLE SMART EN-DC ACTIVATION

This section describes the process of collecting actual mea-
surement data from a real 4 G network to the stage where we
develop Al models. The Al based prediction models are designed
to predict if a given set of RSRP and SINR conditions are
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Fig. 4. Potential RLF occurrences versus the UE RSRP and SINR measure-
ments.

indicator of potential RLF and muting instance. These models
are trained by using classification approaches on the historic data
as explained in Fig. 2 and Section II. Note here that we cannot
employ a rule-based mechanism to identify the RLF or voice
muting, as the UE is limited to measure the RLF counters only
when it camps on the respective cell. The Al models developed
in this article can therefore proactively avoid poor QoE due
to potential RLF or voice muting before the UE camps on the
5 G cell, i.e., before the UE starts monitoring 3GPP based RLF
counters. In other words, 3GPP rule-based mechanism allows
only reactive observation of the RLF after EN-DC and thus
cannot help in minimizing the RLF or muting during EN-DC,
whereas proposed Al based scheme allows proactive prediction
of the potential RLF and muting takes that into account for
optimal EN-DC activation. In this section, we also highlight
the challenge of severe class imbalance in the collected data and
analyze several methods to address the issue.

A. Data Collection, Cleansing and Pre-Processing

1) Potential RLF: A drive test in a commercially deployed
4 G network is conducted for a total of 13 hours. Measurements
including RSRP and SINR are recorded together with the low
level RLF related parameters mentioned in Section II-B at a
time interval of 100 ms. Out of the 460,000 data samples
recorded, the observed instances of actual RLF are only 543 (~7
RLF every 10 minutes). Using this highly imbalanced raw data
with very few RLF occurrences for training the Al-models will
give results biased towards the dominant class i.e., no RLF. To
address this problem, we enhance the data set by incorporating
all the chances of possible RLF for making the model more
robust in detecting RLF. Using domain knowledge, we identify
sets of RSRP and SINR combinations where the correspond-
ing underlying RLF related parameters (7’310, N310, N311,
maxrRACH attempts, max RLCretransmissions) show ab-
normality. We designate these points as potential RLF. The
processed RF data with potential RLF instances label is shown
in the Fig. 4.

The data pre-processing involving the integration of the low-
level RLF related parameters leading to the actual RLF brings
the total RLF samples to 27,794. However, this number of RLF
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TABLE II
ACCURACY AND F-1 SCORE OF THE POTENTIAL RLF MODELS AGAINST VARIOUS DATA-IMBALANCE RESOLUTION TECHNIQUES

Classification  Metric || Raw ~ Random g, Random  Near  cny  Tomek  pyy nop,  Cluster gy
Algorithm Data over under Miss Links Centroids
sampling sampling
k"gls“c. Accuracy || 97% 88% 89% 88% 95%  95% 97% %%  97% 90% 97%
egression

KNN Accuracy 98% 98% 95% 98% 88% 97% 97% 96% 97% 98% 97%
SVM Accuracy 97% 89% 89% 89% 89% 97% 89% 89% 97% 94% 97%
Naive Bayes Accuracy 97% 88% 90% 97% 95% 95% 96% 95% 96% 90% 96%
Decision Trees  Accuracy 97% 93% 90% 90% 48% 93% 97% 96% 96% 88% 96%
Random Forest ~ Accuracy 79% 94% 93% 93% 57% 97% 98% 97% 97% 94% 97%
XGBoost Accuracy 78% 93% 91% 91% 78% 97% 98% 97% 97% 94% 97%
Deep Learning  Accuracy 74% 89% 89% 89% 72% 97% 99% 72% 98% 94% 97%
Logistic Fl 0.75 0.88 0.49 0.88 068  0.67 0.74 074 074 0.53 0.75
Regression

KNN Fl1 0.78 0.78 0.68 0.78 0.44 0.75 0.78 0.72 0.77 0.69 0.79
SVM Fl1 0.73 0.88 0.88 0.88 0.88 0.75 0.88 0.88 0.74 0.63 0.76
Naive Bayes F1 0.70 0.88 0.50 0.70 0.62 0.69 0.70 0.66 0.69 0.51 0.72
Decision Trees Fl1 0.75 0.89 0.90 0.90 0.16 0.57 0.75 0.73 0.74 0.47 0.75
Random Forest F1 0.86 0.90 0.92 0.92 0.20 0.77 0.79 0.78 0.79 0.66 0.80
XGBoost F1 0.88 0.91 0.91 0.91 0.31 0.76 0.88 0.78 0.74 0.64 0.79
Deep Learning F1 0.87 0.88 0.88 0.88 0.10 0.76 0.93 0.10 0.80 0.62 0.76

samples still constitutes a very small fraction of the 460,000
total samples. This data when used for training the Machine
Learning (ML) models gives varying performance depending
on the ML tool used. However, due to severe class imbalance
between non-RLF and RLF classes, the performance remains
poor for all ML models. The performance of the state-of-the-art
ML models trained using an imbalanced dataset is shown under
the Raw Data column of Table II. A key observation to be made
from results in column 1 of the Table II that due to extreme class
imbalance, simpler ML models may overfit more thus giving
high accuracy by classifying almost all samples as normal. More
advanced models with a larger number of training parameters
such as XGBoost and deep learning do not overfit to that extent
but still, have high miss-classification rate as indicated by their
lower accuracy. This observation highlights the significance
of the class imbalance problem in real data. This problem is
addressed in alater section. Accuracy metric in Table Il is defined
as below:

TP+TN
TP+TN+FP+FN

where T'P and T'N are the the true positive and true negative
rate, and F'P and F'N refer to false positive and false negative
predictions.

2) Potential Muting: VoLTE call based drive test is con-
ducted for eight hours and call muting related data such as
RSRP and SINR measurement are recorded every 100 ms. To
accurately identify the RF condition that can lead to call muting,
we place one static call participant under good RF conditions.
The other participating user is placed in a moving vehicle
with continuously changing RF conditions. Distinguishing voice
muting is not as straightforward as identifying RLF. Unlike RLF
wherein users send flag to the base station when it occurs, there
does not exist any flag to identify voice muting. Instead, using
domain knowledge, we look into the Real-time Transfer Protocol
(RTP) packets transmission to determine clues for the voice
muting. RTP packets are continuously exchanged between the
UE and the BS during the call period, and the absence of RTP
packets can suggest muting occasions. However, the absence

Accuracy =

©))

of RTP packets exchange can also be observed during the call
setup phase and moments after call termination which, if not
identified properly, can lead to erroneous muting identification.
For this reason, we designate the data points as voice muting
only if the RTP packets are absent while the voice call is in
the established phase. With this setup, out of the 0.3 million
data samples recorded, we observe 2092 actual voice muting
instances (~4.36 muting instances per minute). Similar to RLF,
the fraction of actual muting is far lesser than the normal
case.

For both the potential RLF and potential mute cases, we first
scaled the input data, and then performed a train-test split of
80%-20%. On the training data, we addressed data imbalance
by applying several techniques as discussed below.

B. Addressing Data Imbalance

As observed from results in column 1 of Table II, a key
challenge in creating an RLF and muting prediction model is the
training data class imbalance. If used without a class balancing
technique, ML models trained on the data will either be highly bi-
ased towards the majority class mostly missing the minority class
instances, or will have low overall accuracy. Misclassification of
the minority class will be detrimental to the fidelity of the model
as in our context, the minority class (potential RLF/muting
class) is the class of interest. For that reason, data imbalance
problem must be addressed to have meaningful results. Common
techniques used for data balancing fall under two categories
namely oversampling and undersampling. The former augment
the minority class to match the size of the majority class while
the latter performs the opposite. In the following, we briefly
discuss the approaches we leverage to address the data imbalance
problem. In the following discussion, we denote the minority
class and majority class as Cyyip, and Cy, 5, respectively.

1. Oversampling Techniques:

e Random over sampling randomly duplicates observations

from the C,,,;,, to reinforce its signal.

e Synthetic Minority Oversampling Technique (SMOTE)

synthesizes new minority instances.
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e In Generative Adversarial Network (GAN), two neural
networks contest with each other in the training phase.
The goal of the first neural network is to befool the second
neural neural network by generating synthetic data that
resembles the input training data. The role of the second
neural network is to correctly identify the synthetically
produced data. In this context, we use GAN to create new
synthetic new samples of the minority classi.e., oversample
the Chrin.

2. Undersampling Techniques:

e Random under-sampling randomly removes observations
from the C',q;.

e Near miss algorithm eliminates the majority class data
point after identifying the two nearest samples in the dis-
tribution belonging to different classes, thereby trying to
balance the distribution.

¢ Condensed Nearest Neighbor Rule (CNN) works by classi-
fying each sample of C',; using kNN (k-nearest neighbor)
with k=1, and misclassified samples are re-assigned to
Cmin~

® A pair of data instances (x;, ;) where x; € Cpin, T; €
Chnaj and d(x;, x;) is the distance between x; and x;, is
called a Tomek link if there is no data instance xj (zp €
Crin O T, € Cpyqj) such that d(x;, 1) < d(x;,x;) or
d(zj,zy) < d(z;,x;). The tomek link algorithm removes
the unwanted overlap between C,,,4,, and Ciy,qj by remov-
ing majority class sample from Tomek link data pair. This
is done based on the assumption that for the data points
that form a Tomek link, either one of them is a noise or
both are in the borderline.

e Edited Nearest Neighbor Rule (ENN) removes any instance
whose class label is different from the class of at least two
of its three nearest neighbors.

® Neighborhood Cleaning Rule (NCL) modifies the ENN
where three neighbors of each data point are found. If the
classification of the data point z; € C),,; given by its three
neighbors contradicts the original class of x;, then z; is
removed. Conversely, if the data point x; € C,,,;,, and the
three neighbors miss-classify z; as a majority class sample,
then the nearest neighbors that belong to the majority class
are removed.

¢ [In cluster centroids under-sampling, we find the clusters of
the majority class with K-mean algorithms. Then it replaces
the cluster points with cluster centroids as the new majority
samples.

C. Al Model for Potential RLF

After addressing the class imbalance problem, we design to
train and evaluate models using a range of state-of-the-art ML
techniques including logistic regression, KNN, SVM, Naive
Bayes, decision trees, random forest, XGBoost, and deep learn-
ing based models.

To achieve optimal performance, we perform hyperparameter
optimization for each ML algorithm. To avoid under or over-
fitting, we investigate a variety of deep learning neural network
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TABLE III
DEEP LEARNING HYPER-PARAMETERS FOR POTENTIAL RLF MODEL

Hyperparameter Name Search Range/Value

DNN depth d 1,2,3,5}
DNN width w 5,8,10,16}
Activation Function (Hidden Layers) Relu
Activation Function (Output Layers) Sigmoid

Adam (Gradient Descent)
Binary Cross Entropy

Optimizer
Loss Metric
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Fig. 5. Structure of the deep learning based model for predicting potential
RLF. The model is trained, tested and validated after addressing data imbalance
using Tomek link.

architectures with a range of hyper-parameters as shown in
Table III. Our experiments show that a deep learning model with
fully connected three hidden layers with 16, 16 and 8 neurons,
respectively as shown in the Fig. 5, yields the best results. The
model is trained using epoch size of 100 and batch size of 10.

Table II shows the accuracy and Fl-score for various ML
models. Results show that deep learning with data imbalance
problem addressed by Tomek links outperforms others with
accuracy and F1 score of 99% and 0.93, respectively. The
superior performance of Tomek links stems from its ability to
delineate the class boundaries and remove noise and thus make
data less ambiguous. It helps to improve the isolation between
the overlapped classes by removing the majority samples at the
border area as illustrated in Fig. 7.

The decision boundaries of the ML models trained using data
from different data balancing techniques are shown in Fig. 6. As
illustrated in Fig. 6(h), the decision boundary created by the deep
learning model using balanced data from Tomek links indicates
the expected increase in potential RLF with deterioration of
either RSRP or SINR.

D. Al Model for Potential Muting

We follow a similar approach to build an AI model for
potential muting prediction as in III-C. Table IV shows the per-
formance of various ML algorithms in predicting the potential
muting instances.

Unlike the potential RLF model where Tomek link based
preprocessing combined with deep learning worked best, here
deep learning model trained with data using GAN shows the best
results in terms of F1 score. For this model, we also investigate
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Fig. 7.
Histogram and PDF for SINR.

ACCURACY AND F-1 SCORE OF THE POTENTIAL VOICE MUTING MODELS AGAINST VARIOUS DATA-IMBALANCE RESOLUTION TECHNIQUES

6

TABLE IV

=20
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Effect of Tomek Links in addressing data imbalance and improving class isolation (highlighted by blue rectangle). (a) Histogram and PDF for RSRP. (b)

Classification  Metric || Raw ~ Random g, Random  Near  cny  Tomek  pyy nop,  Cluster gy
Algorithm Data over under Miss Links Centroids
sampling sampling
Ili"gls“c. Accuracy || 99% 91% 89% 91% 9%  99% 99% 9%  99% 91% 99%
egression

KNN Accuracy 99% 95% 97% 93% 95% 99% 99% 99% 99% 98% 99%
SVM Accuracy 99% 94% 96% 93% 94% 99% 99% 99% 99% 87% 99%
Naive Bayes Accuracy 99% 89% 86% 90% 91% 99% 99% 99% 99% 87% 99%
Decision Trees ~ Accuracy 99% 97% 97% 89% 88% 97% 99% 99% 99% 90% 99%
Random Forest ~ Accuracy 99% 97% 98% 92% 92% 99% 99% 99% 99% 97% 99%
XGBoost Accuracy 99% 96% 97% 93% 91% 99% 99% 99% 99% 29% 99%
Deep Learning  Accuracy 99% 93% 96% 93% 94% 99% 99% 99% 99% 96% 99%
Logistic Fl 0.41 0.61 0.11 0.71 030 045 0.41 044 043 0.12 0.51
Regression

KNN Fl1 0.43 0.59 0.21 0.73 0.28 0.45 0.48 0.45 0.48 0.39 0.57
SVM F1 0.41 0.63 0.27 0.73 0.28 0.43 0.44 0.47 0.49 0.24 0.76
Naive Bayes F1 0.40 0.60 0.09 0.70 0.27 0.37 0.39 0.42 0.40 0.09 0.79
Decision Trees Fl1 0.41 0.60 0.20 0.69 0.29 0.17 0.45 0.46 0.44 0.11 0.46
Random Forest F1 0.43 0.59 0.33 0.62 0.31 0.42 0.44 0.49 0.49 0.41 0.84
XGBoost F1 0.41 0.60 0.33 0.63 0.35 0.45 0.45 0.50 0.48 0.47 0.86
Deep Learning F1 0.45 0.63 0.22 0.62 0.32 0.47 0.51 0.47 0.48 0.26 0.89
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Fig. 9. Comparison of the original minority class (muting instances) and the

synthetic data generated from GAN. (a) PDF, KL and JS Divergence for RSRP.
(b) PDF, KL and JS Divergence for SINR.

a range of deep learning architectures with a variety of hyper-
parameters to prevent under- or over-fitting as shown in table III.
Our experiments show that a deep learning model with fully
connected three hidden layers of 8, 8 and 4 neurons, respectively
yields the best performance for voice muting prediction. The
model is trained using epoch size of 100 and batch size of 10.

Since data generation using GAN is more complex compared
to other SOTA undersampling and oversampling approaches,
we conduct an additional layer of sanity check by comparing
the real data and synthetic data generated by GAN. Kullback-
Leibler (KL) and Jensen-Shannon (JS) divergence of the GAN
generated samples from the real data, along with the probability
density function (PDF) of the original minority class and the
synthetically generated minority class data is shown in Fig. 9.
The results show that GAN has produced synthetic data that
closely resembles real data.
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Effect of GAN in mitigating the class imbalance issue. (a) Histogram and PDF for RSRP. (b) Histogram and PDF for SINR.

E. Why GAN Based Data Augmentation Has Positive Gain for
Voice Muting Data and Negative for RLF Data

Fig. 8 shows that the class separation in the voice muting data
is much more pronounced than the RLF prediction shown in
Fig. 7. This difference in the class distribution stems from the
fact that: a) both classes belong to different metrics i.e., potential
RLF and potential muting, b) network configures voice bearer
activated UE with a different and more aggressive set of mobility
parameters to keep the UE in a better RF condition at all times.
In the potential RLF case, the class distribution in Fig. 7 is more
overlapped. As Tomek links is an approach designed to improve
the class border isolation, it leads to much better performance
compared to other approaches, including GAN. In the case of
RLF data, the use of GAN to augment minority class worsens
the performance. This is because the GAN-generated synthetic
data further blurs the boundary between the classes.

On the contrary, in the case of call muting data, where bound-
aries are relatively well defined, GANSs generated data addresses
the class imbalance successfully without increasing the bound-
ary overlap to a level that would undermine the performance of
the model.

This is an insightful finding that suggest that despite their
popularity for augmenting training data, GANs should be used
cautiously as their gain can be negative instead of positive
depending on the class distributions and overlap in the training
data.

IV. QOE AWARE EN-DC ACTIVATION

In this section, we describe the optimization function formu-
lation for RLF and muting aware EN-DC activation.

A. EN-DC Activation, RLF, and Muting Formulation

Current industry practice is to maximize the EN-DC activation
instances for maximum utilization of the 5 G network. However,
simply maximizing the EN-DC activation without taking into
consideration of the underlying trade-offs can be detrimental to
the user QoE due to higher RLF and voice muting instances.
Hence, mobile network operators should take into account the
following objectives when enabling EN-DC in their network:

e Maximize EN-DC request by the EN-DC capable UE to

fully leverage the 5 G NR features.
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TABLE V
LiST OF SYMBOLS USED IN OPTIMIZATION PROBLEM FORMULATION

Symbol | Description Symbol | Description

U Set of all UEs u Any user u € U

Ue Set of UEs with EN-DC | U, Set of EN-DC activated
configuration UEs

02 5G RSRP of u 01 5G RSRP threshold

g 4G RSRP of u O4r 4G RSRP threshold

0f 5G SINR of u 055 5G SINR threshold

04 4G SINR of u 045 4G SINR threshold

AT T2, 0 0, 0] | © 051,01, 055 0as]

AT [y 0] AT | (8%, %]

a EN-DC Activation func- | ¢ Potential RLF AI-Model
tion

B RLF function n Potential Muting Al-

Model
¥ Muting function - -

e Facilitate EN-DC activation for each EN-DC request,
which is essentially minimizing the difference between the
number of EN-DC requests and EN-DC activations.

® Avoid degradation in retainability due to RLF at either 4 G
or 5 G network after EN-DC activation.

® Prevent voice muting after activating EN-DC for UEs with
voice service demands.

Using the notations defined in Table V, we can define the

number of EN-DC activations « as:

a(A",0,U.) =Y 1A} >©,;Vi

uelU,.

3

where 1{-} is the indicator function, and the subset U, C U is
the set of EN-DC capable UEs configured with B1 measurement
report. A7’ is the i-th element of the set of RF condition of user
u € U, i.e., for any user u, A} = 0¥, AY = 5, AY

4 = 0} Similarly, the i-th element of the set of thresholds is
@i, where @1 = 931, @2 = 943, @3 = 955, @4 = 945.

UEs may experience RLF after EN-DC activation due to poor
RF conditions. The number of RLF instances denoted here by 3

can be defined as:

B(AYCUs) = Y maz (¢ (A") ¢ (A™?))
uwel,
where U, C U, is the set of EN-DC activated UEs, and ( is the
potential RLF AI-Model, which takes in A" as input and outputs
a prediction of 1 or 0 representing the occurrence of potential
RLF and no RLEF, respectively. The output of the potential RLF
Al-model is represented as ((A"). We consider the output of
potential RLF Al-model for both 4 G and 5 G settings as the UE
will experience RLF if either of the 4 G or 5 G RF conditions
are bad.
Similarly, for the set of UEs requiring voice services, the
number of muting instances 7y can be written as:

V(A0 Ua) = 3 maz (n (A™) .0 (A7)

uelU,

— sSu
_655’

“

&)

where the potential muting AI-Model 7 takes in A" as input
and outputs a prediction of 1 or O representing the occurrence
of potential muting and no muting, respectively. The output of
the potential muting Al-model is represented as n(A™).

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 72, NO. 2, FEBRUARY 2023

Operators can increase EN-DC activations by configuring
lower values of EN-DC thresholds ©. However, this can lead
to RLF or voice muting after EN-DC activation, rendering
the dual connectivity procedure useless. Keeping in view this
tradeoff, the optimization problem in subsection IV-B and
IV-C is formulated to achieve maximum utility and resource
efficiency.

B. RLF Aware EN-DC Optimization

We formulate a multi-objective optimization problem such
that it maximizes EN-DC activations while minimizing the
chances of RLF occurrences. This RLF aware EN-DC optimiza-
tion function is given as:

aw

argmax W

Or=(0%,07r,055,075]

. ' ' '
subject to Bliow < 981 < 051 highs

T T T
Osriow < Oir < Oig nighs

T T s
QSS,low < 955 < 653,high’

' T ‘s
015100 < Obs < 04 nigh:

w < 1. (6)
where w is the operator defined weight that can be used to
adjust the relative importance of EN-DC activations («), and
RLF (B3). 0, 0, 055 and 05 are the optimization variables
for RLF aware EN-DC activation. The first four constraints
limit the parameters in the 3GPP defined range. The range
of optimization variables and constraints indicate that (6) is a
large-scale non-convex NP-hard problem due to the inherent
coupling of optimization parameters and the EN-DC requests.
Non-convexity stems from the fact that we are dealing with
four integer metrics (RSRP and SINR of 4 G and 5 G) in
a heterogeneous multi-RAT network deployment, where the
randomness in UE location and resource requirement result
in variable cell loads that affect 4 G and 5 G SINR metrics
differently. In addition, the 4 G and 5 G RSRP also change with
the distance from the BS, however, non-uniform BS deployment
along with user mobility makes RSRP non-deterministic.

C. Voice Muting Aware EN-DC Optimization

As voice users require low-latency and jitter-free communi-
cation unlike FTP/HTTP users, network operators can configure
a different sets of mobility parameters for UEs with active voice
bearers. This allows operators to keep the UE undergoing a voice
call in good radio conditions, and other factors like load balanc-
ing and handover rate are given less priority. To enable intelligent
exploitation, we design a separate optimization problem for the
voice UEs. The EN-DC activation parameters returned by the
voice muting aware EN-DC optimization problem will be used
to configure only voice UEs. The multi-objective optimization
for voice muting aware EN-DC activation can be formulated as
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Fig. 10.  Proposed smart EN-DC activation framework.
follows:
aw
argmax
om=[0y, 05,00, 0] Y

: m m m
subject to Bliow < 051 < OF highs

m m m

94R,low < 94R < 94R,high’
m m m

055 10w < 055 < 055 pigh>
m m m

045 10w < 045 < 045 pnigh>

w< 1. (7

where w is the operator defined weight that can be used to adjust
the relative importance of EN-DC activations (), and muting
(7). 0%, 01k, 05 and )¢ are the optimization variables for voice
muting aware EN-DC activation and the first four constraints
keep their values in the 3GPP defined range.

V. PROPOSED SMART EN-DC ACTIVATION FRAMEWORK AND
SIMULATION RESULTS

Fig. 10 illustrates the high level overview of the proposed Al
powered EN-DC activation framework. We develop a cascaded
2-stage Al model where stage-1 works to predict RLF while
muting prediction is done by the second stage. The predictions
obtained from stage-1 are used alongside actual voice muting
samples obtained from real world measurements. Finally, the
second stage Al model is trained to predict potential voice
muting. Next, the optimization agent evaluates the objective
function in the multi-objective Key Performance Indicator (KPI)
optimization problem formulated in the previous section. This
is done keeping in view the operator defined weightage to the
number of EN-DC activations and the number of RLF/mute.
As the problems in (6) and (7) are non-convex, they can be
solved using brute force (BF) algorithm. However, the large
convergence time of brute force is not suitable for time sen-
sitive problems of RLF, and muting explored in this paper.
Heuristic optimization algorithms can be explored to deal with
the large convergence time of BF. The conventional algorithms
such as greedy algorithm can produce a local optimal solution

but sometimes may fail to produce global optimal solution. In
this backdrop, we analyze genetic algorithm for solving (6)
and (7)), which though known to be less efficient compared
to simpler greedy algorithm has higher chances of converging
to global optima in iterations considerably less than the BF. In
future extension of this study where more advanced objective
function with many more KPIs and constraint will be considered,
an extensive investigation of optimization algorithm might be
needed to find the most suitable solution approach.

Our analysis reveals that GA can converge faster than the
BF approach, which makes the solution agile [38]. The faster
convergence is particularly useful for rapidly changing network
conditions. As illustrated in Fig. 10, the optimization agent
iteratively gets the RLF/muting prediction from the Al engine
for given EN-DC Configuration and Optimization Parameters
(COPs), and the optimal COPs that yield the maximum utility
function are obtained.

A. Simulation Setup

As discussed in earlier sections, the AI models for RLF and
mute detection are developed from the insights drawn from
the data preprocessing, model building, and testing process,
and these models are based on real network data. However,
as operators do not allow to experiment on a live commercial
network, we evaluate the performance of our proposed EN-DC
activation framework using the simulated data obtained from
a state-of-the-art 3GPP compliant simulator called Synthetic-
NET [39]. SyntheticNET is chosen as it has the key features that
are needed for this study but are missing in most other simulators
including 3GPP-based detailed HO and mobility management.

A multi-RAT network with nine macro 4 G eNBs each having
three sectors, and sixteen higher frequency omni directional 5 G
gNBs are deployed in a square of 25 km? area. LTE eNBs are
laid out uniformly in a grid form, while 5 G small cells are
deployed randomly representing hotspot locations. A total of
300 mobile UEs traverse the area following random way point
mobility model. The speed of the users is set to 120 km/h and the
simulations are run for 12,000 ms (equivalent to 12,000 Trans-
mission Time Intervals *TTIs’). After running the simulation,
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TABLE VI
SIMULATION DETAILS FOR SMART EN-DC ACTIVATION
Technology 4G LTE 5G NR
Frequency 2.1GHz 3.5GHz
Cell Type Macro Cell Small Cell
Antenna Type Directional Omni
Number of Transmitters 27 16
Transmit Power 40dBm 30dBm
Base Station Height 30m 20m
6000 I #B1 Reports
#Potential Mute
ool #Potential RLF
4000
3000
2000
1000
0
-120 -15 -110 -105 -100 -5 -20
B1 RSRP Threshold (dBm)
Fig. 11.  Number of UE generated B1 reports (EN-DC activation requests)
against RSRP threshold.
TABLE VII
OPTIMAL PARAMETERS OBTAINED FROM GA FOR A UE WITH A DATA CALL
REQUIREMENT
. - Optimal Parameters
w Algo Iterations  Utilit
8 Yo er =105, 05R 055 0is)
1 BF 741,321 1246.5  -120dBm, -120dBm, -6dB, -7dB
GA 335 1225.5  -120dBm, -119dBm, -8dB, -6dB
05 BF 741,321 47.2 -112dBm, -118dBm, -3dB, -2dB
’ GA 2890 46.1 -112dBm, -118dBm, -7dB, -2dB
0 BF 741,321 2.2 -108dBm, -118dBm, -1dB, -2dB
GA 5543 2.1 -108dBm, -118dBm, -2dB, -2dB

using the RSRP range [-120 dBm, -90dBm], and the SINR range
[-10dB, 10 dB], we generate KPIs for a total of 741,321 distinct
combinations of the four optimization parameters. More detail
about the network configuration can be found in Table VI.

UEs are configured to measure RF condition of 5 G gNB
every 0.5 s, and an event Bl measurement report is sent to
the MN if the B1 criteria are met. Fig. 11 shows the effect of
changing the B1 threshold on the number of B1 reports (EN-DC
requests), potential RLF, and potential mute occurrences. Fig. 11
signifies the need for a smart EN-DC activation scheme i.e., the
importance of optimally assigning B1 threshold. An incorrect
B1 threshold may deteriorate retainability KPI or integrity KPI
through a large number of RLF instances, and voice muting.
Note that the legacy mobile networks use -120 dBm B1 RSRP
threshold to maximize the 5 G network utilization without taking
into consideration the ensuing QoE degradation.

B. Performance Evaluation

We implement the proposed framework in SyntheticNET.
Table VII shows a comparison between GA and BF in solving
the optimization problem presented in (6). We also evaluate
the proposed framework and the robustness of GA to solve the
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Fig. 12. Number of EN-DC activations and RLF observed when using optimal

parameters in Table VII.

optimization problem for different weights of EN-DC activation
and RLF. 1, 0.5, and O values of w correspond to the very
high importance of EN-DC activation, equal importance for
both EN-DC activation and RLF, and high importance for RLF,
respectively. It can be observed that GA converges 2212, 256,
and 133 times faster compared to the BF for the three cases,
respectively. The longer time needed for GA to find an optimal
solution for 2" and 37 case is intuitive as the solutions space
becomes more complex when EN-DC activation has to take
into account minimization of RLF and muting in addition to
maximizing the 5 G network utilization only. The values of the
objective function and optimal parameters returned by GA and
BF for different weights indicate that GA can converge very
close to the optimal value. We implement the optimal param-
eters reported in Table VII in the SyntheticNET and observe
the number of EN-DC requests, EN-DC activations, and the
potential RLF occurrences. Fig. 12 shows that the number of
EN-DC requests, EN-DC activations as well as the number
of potential RLF is highest for w = 1 and all three of them
decrease as the value of w decreases. With w = 1 in (6),
the optimization function maximizes EN-DC activations and
disregard RLF. This is shown in Fig. 12 where 1328 of the 6025
EN-DC activations results in RLF. Existing mobile networks use
the EN-DC configuration that gives maximum weightage to the
number of EN-DC activations (w = 1). Fig. 12 also shows that
we can reduce RLFs by decreasing w, and can totally eliminate
the chances of RLF with w=0. This however comes at ~50%
loss of EN-DC activations. Thus, the proposed framework offers
a solution for 5 G operators to optimize the tradeoff between
network utilization and QoE.

Forw = 0, the BF solution results in 3501 EN-DC requests and
2413 EN-DC activations indicating that 1088 EN-DC requests
were not entertained due to chances of RLF from poor RF
condition. On the contrary, only 914 EN-DC requests were
rejected when the optimal parameters obtained from GA were
used which resulted in 2295 EN-DC activations.

Table VIII compares the performance of GA with BF for
solving the voice muting aware EN-DC optimization given in
(7). A similar trend is observed for voice muting aware EN-DC
optimization, where GA converges significantly faster than the
BF at the cost of a slightly less optimal objective function. Fig. 13
shows the number of EN-DC requests, EN-DC activations, and
potential muting instances when the optimal EN-DC parameters
from Table VIII are deployed in SyntheticNET with different

Authorized licensed use limited to: University of Oklahoma Libraries. Downloaded on April 15,2023 at 17:38:43 UTC from IEEE Xplore. Restrictions apply.



ZAIDI et al.: DATA DRIVEN FRAMEWORK FOR QOE-AWARE INTELLIGENT EN-DC ACTIVATION

TABLE VIII
OPTIMAL PARAMETERS OBTAINED FROM GA FOR UES REQUIRING VOICE
CALL SERVICES

Optimal Parameters

w Algo Iterations  Utilit .
& Y " = (05,015, 055, 055]
1 BF 741,321 1142 -120dBm, -120dBm, -6dB, -7dB
GA 969 1130.4  -120dBm, -120dBm, -7dB, -10dB
05 BF 741,321 49 -115dBm, -110dBm, -5dB, -1dB
. GA 5607 46.6 -115dBm, -110dBm, -10dB, 0dB
0 BF 741,321 2.2 -112dBm, -110dBm, 0dB, -1dB
GA 10987 2.1 -111dBm, -110dBm, -6dB, -1dB
6000 s #EN-DC Requests
5000 s PEN-DC Activations
s #Potential Muting
4000
3000
2000
1000
0
Fig. 13.  Number of EN-DC activations and muting observed when using

optimal parameters in Table VIII.

weights. It is shown that zero chances of muting instances can
be achieved by assigning more weightage to mute using w =
0. However, since UE is more susceptible to muting rather than
RLF, zero mute occasions can be obtained at the cost of even
lower EN-DC activations (2085) compared to the similar case
with w = 0 in Fig. 12.

VI. CONCLUSION

EN-DC mode addresses strict capacity requirements of the UE
by enabling dual-connectivity to 4 G and 5 G cells. However,
dual-connectivity can be beneficial only if it can be retained for
the required time duration.

Currently, no EN-DC mode selection scheme exists in the
literature that takes into account the risk of RLFs and voice
muting. In this paper, we propose a data driven framework
for intelligent EN-DC activation that can minimize RLF and
muting instances. The core idea of the proposed framework is
to use prior RSRP, SINR, RLF, and voice muting data, gathered
either through drive test or MDT reports to train RLF and voice
muting prediction models. These models are then used as part of
the objective function in an optimization problem to determine
optimal B1 threshold to determine EN-DC activation criteria
that can offer the desired trade-off between utilization of 5 G
network and QoE deterioration caused by RLF or voice muting.

A key challenge in building RLF and voice mute prediction
models from real data is extremely imbalanced training data,
as a number of RLF and voice muting events would be far less
compared to total observations. Our investigation of a large num-
ber of data balancing techniques shows that different techniques
work best for different types of data. For example, for RLF data
where there is significant overlap between the two (RLF and
no RLF) classes, training data augmentation techniques such as
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GAN that aim to increase the number of samples in minority
class by generating synthetic minority samples, may worsen the
situation. Instead, for such data, class balancing techniques such
as Tomek Link work best as they tend to remove the samples
from the majority class that are at the boundary. On the other
hand, for voice muting data, where class imbalance might be
even more extreme, but boundaries are relatively less overlap-
ping, GANSs outperform all other techniques. The performance
evaluations of the proposed solution, using a 3GPP compliant
simulator shows that the proposed scheme can be used to either
totally eliminate RLF and voice muting if a calculated reduction
in EN-DC activation can be tolerated, or it can be used to achieve
any operator policy based trade-off between the 5 G network
utilization and risk of QoE deterioration caused by RLF or call
muting.
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