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Abstract

The species–area relationship (SAR) has over a 150-year-long history in

ecology, but how its shape and origins vary across scales and organisms

remains incompletely understood. This is the first subcontinental freshwater

study to examine both these properties of the SAR in a spatially explicit

way across major organismal groups (diatoms, insects, and fish) that differ in

body size and dispersal capacity. First, to describe the SAR shape, we evaluated

the fit of three commonly used models, logarithmic, power, and

Michaelis–Menten. Second, we proposed a hierarchical framework to explain

the variability in the SAR shape, captured by the parameters of the SAR

model. According to this framework, scale and species group were the top pre-

dictors of the SAR shape, climatic factors (heterogeneity and median condi-

tions) represented the second predictor level, and metacommunity properties

(intraspecific spatial aggregation, γ-diversity, and species abundance distribu-

tion) the third predictor level. We calculated the SAR as a sample-based rare-

faction curve using 60 streams within landscape windows (scales) in the

United States, ranging from 160,000 to 6,760,000 km2. First, we found that all

models provided good fits (R2 ≥ 0.93), but the frequency of the best-fitting

model was strongly dependent on organism, scale, and metacommunity prop-

erties. The Michaelis–Menten model was most common in fish, at the largest

scales, and at the highest levels of intraspecific spatial aggregation. The power

model was most frequent in diatoms and insects, at smaller scales, and in

metacommunities with the lowest evenness. The logarithmic model fit best

exclusively at the smallest scales and in species-poor metacommunities, pri-

marily fish. Second, we tested our framework with the parameters of the most

broadly used SAR model, the log–log form of the power model, using a struc-

tural equation model. This model supported our framework and revealed that

the SAR slope was best predicted by scale- and organism-dependent

metacommunity properties, particularly spatial aggregation, whereas the inter-

cept responded most strongly to species group and γ-diversity. Future research
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should investigate from the perspective of our framework how shifts in

metacommunity properties due to climate change may alter the SAR.

KEYWORD S
biodiversity, climate, diatoms, environmental heterogeneity, fish, insects, intraspecific
spatial aggregation, metacommunity, scale, skewness, species abundance distribution,
stream

INTRODUCTION

The species–area relationship (SAR) is an almost univer-
sal ecological phenomenon that describes how species
richness increases with area or number of sampling units
(Drakare et al., 2006; Lomolino, 2000; Matthews et al.,
2021; Rosenzweig, 1995; Scheiner et al., 2011). It has a
broad application in ecology for upscaling biodiversity
from local to regional and larger scales, which are targets
of conservation policies (Kunin et al., 2018), detection
of biodiversity hotspots (Fattorini, 2021; Guilhaumon
et al., 2008; Veech, 2000), and estimation of extinction
with habitat loss (Chaudhary & Mooers, 2018; Fattorini
et al., 2021; Pimm & Raven, 2000). Herein, we focus on
SARs of noncontiguous habitats on the mainland (hereaf-
ter simply SARs), rather than island SARs, and describe
how species richness changes with an increasing number
of samples (individual stream reaches), rather than the
size of an island or other isolate.

There are two major directions in the SAR research. The
first is concerned with the form of the best-fitting SAR
model, which is most often linear (logarithmic), concave
(power), or saturating (Michaelis–Menten) when richness is
expressed as a function of log-area (Figure 1; DeMalach
et al., 2019; He & Legendre, 1996). However, this research
has generally been limited to terrestrial systems (DeMalach
et al., 2019; Dengler et al., 2020; Matthews et al., 2016;
Triantis et al., 2012), leaving open important questions
about the freshwater SAR, namely, how fast richness
increases with area, whether it saturates, and if the model
form depends on species group, scale, and the environment,
similarly to terrestrial systems.

The second line of SAR research, also predominantly
terrestrial, investigates what factors control the SAR
shape, which is generally described by the parameters of
the log–log form of the power SAR model because they
have a biological interpretation. These factors include
scale, organismal biology, and habitat characteristics
(Drakare et al., 2006; Matthews et al., 2016, 2019;
Rosenzweig, 1995; Triantis et al., 2012). They may
influence the SAR shape directly or indirectly through
metacommunity properties, including intraspecific spa-
tial aggregation, regional species pool, and species

abundance distribution (SAD) (Chase et al., 2019; Chase
& Knight, 2013; DeMalach et al., 2019; May, 1975;
Preston, 1962). For example, higher spatial aggregation
(individuals of a species clustered together), larger species
pools, and more uneven SADs lead to a steeper richness
increase with area.

Both the SAR shape and its underlying mechanisms
depend on the spatial scale at which the SAR is measured,
including grain and extent (Palmer & White, 1994).
As the scale increases, the SAR shape becomes saturating
(He & Legendre, 1996; Matthews et al., 2016; Triantis
et al., 2012). The relative importance of the mechanisms
creating the SAR also shifts with dispersal, operating at
small to intermediate scales, habitat diversity, primarily at
intermediate scales, and speciation, mostly at the largest
scales (Lomolino, 2000; Triantis et al., 2012; Turner &
Tjørve, 2005).

The SAR and its drivers also depend on organismal
biology. Weaker dispersers, which tend to be larger bod-
ied, have more aggregated spatial distributions, more
symmetrical SADs (Borda-de-Água et al., 2017), and
steeper SARs (Drakare et al., 2006). However, how scale
and species group affect the SAR relative to other factors
is not well understood, particularly in freshwaters, where
more SAR research is needed (Soininen & Teittinen,
2019). This is problematic not only for our fundamental
understanding of the SAR but also from a conservation
point of view. Streams and rivers are some of the most
threatened ecosystems worldwide (Tickner et al., 2020;
Wiens, 2016), and basic knowledge of biodiversity scaling
is essential for determining what factors will require pres-
ervation or mitigation and at what scale, particularly
under climate change. Therefore, the goal of this study
was to determine how scale (spatial extent) and species
groups differing in body size and dispersal capacity,
including diatoms, insects, and fish, control the shape of
the SAR. We hypothesized that the SAR shape would be
defined by scale and species group, viewed here as exoge-
nous factors, through their effect on hierarchical predic-
tors of the SAR, including climatic and metacommunity
factors (Figure 2).

Scale can affect metacommunity factors and the
SAR indirectly through environmental factors. Aquatic
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communities are influenced by a variety of environmen-
tal factors, but our research here was focused on climate
(heterogeneity and medians) because at large scales cli-
mate outperformed local water physicochemistry and
land use in determining the distributions of diatoms,
insects, and fish in US streams (Pound et al., 2021).
Similarly, our preliminary research showed that local
physicochemistry and land use did not add substantially
to the variance in the SAR already explained by climate
(data not shown). Higher climatic heterogeneity at larger
scales is expected to generate more aggregated conspe-
cific distributions (from species sorting in their preferred
habitats) and higher regional species richness, also
known as γ-diversity (due to greater habitat diversity),
both of which can contribute to a steeper SAR (Chase &
Knight, 2013; Turner & Tjørve, 2005). To account for any
scale-dependent trends in the environment with an
impact on the metacommunity factors and the SAR, we

also included median values of climatic variables in our
model (Figure 2).

Scale can also affect metacommunity factors directly,
for example, by controlling the veil line of the SAD and
the rates of dispersal. This is shown in our conceptual
model as a direct link between scale and metacommunity
factors (Figure 2). First, as scale increases, rarer species
in the left tail of the abundance distribution are progres-
sively unveiled, and the SAD becomes more even and
symmetric (Connolly et al., 2005; de Lima et al., 2020;
Morlon et al., 2009). However, such a trend may emerge
if the effect of scale is not separated from the effect of
sample size, that is, when there are more samples at
larger scales and, consequently, fewer rare species
(de Lima et al., 2020). To control the influence of sample
size on the SAD (and the SAR), our scale-explicit frame-
work was tested with samples and individuals standard-
ized across scales (Figure 3).

F I GURE 1 Common models of the species–area relationship and interpretation of their parameters (b0, b1, c, and z): (a) logarithmic,

(b) power, (c) Michaelis–Menten, and (d) log–log form of the power model.
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Second, scale determines the rates of dispersal and,
along with this, metacommunity properties. High dis-
persal at smaller scales can decrease γ-diversity via intra-
specific disaggregation and subsequent homogenization
and competitive exclusion (Ben-Hur & Kadmon, 2020;
Chave et al., 2002; Matthiessen et al., 2010; Mouquet &
Loreau, 2003). Conversely, dispersal limitation at larger
scales may increase intraspecific spatial aggregation and,
along with this, γ-diversity and evenness, given that
greater aggregation causes individuals to be more strongly
controlled by intraspecific than interspecific competition
(Chave et al., 2002; Ives, 1991). In the proposed frame-
work, spatial aggregation is viewed as a predictor of
both γ-diversity and the SAD, which may be correlated, as
shown for species richness and evenness (Soininen et al.,
2012). Finally, metacommunity factors are predicted to
vary across organismal groups as a result of differences in
dispersal capacity.

The objectives of this research were to examine the
following issues along regional to subcontinental scales
and across major stream organisms: (i) the models that
best fit the SAR, (ii) the factors that discriminate the best
SAR model fits, and (iii) the factors underlying the

variability of the SAR parameters from the perspective
of our hierarchical framework.

MATERIALS AND METHODS

Data sets

Data were collected between 1993 and 2019 during the
warmer months (May–September) from streams in all
major watersheds in the United States by the National
Water-Quality Assessment (NAWQA) Program of the US
Geological Survey and the National Rivers and Streams
Assessment (NRSA) of the US Environmental Protection
Agency. However, the most intensive sampling occurred
within a comparatively short period of time, in 2008 and
2009 for diatoms and insects and in 2008, 2009, 2013, and
2014 for fish. Diatoms and insects were sampled from a
predefined area of substrate in 2278 and 2270 distinct
localities, respectively. Fish were collected by electrofish-
ing and seines from 2296 distinct localities. Diatoms and
fish were identified to species and insects to genus.
Given that the number of individuals per sample varied

F I GURE 2 Conceptual framework depicting the pathways of scale and organismal control of parameters (P1 and P2) of the

species–area relationship (SAR) through environmental and metacommunity factors. Circles: exogenous variables; rectangles:

endogenous variables. Organism includes diatoms, insects, and fish. Because the three organismal groups were not always

sampled from the same streams, the path between organism and environmental factors tests for differences in climatic conditions

among these groups. Single-headed arrows = causal pathways, double-headed arrows = correlations. SAD, species abundance

distribution.

4 of 18 PASSY ET AL.

 19399170, 2023, 3, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/ecy.3917 by Battelle M

em
orial Institute, W

iley O
nline Library on [17/03/2023]. See the Term

s and Conditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable Creative Com

m
ons License



and this could bias the richness estimates and the SAD,
each sample was sampled down once to 400 individuals
for diatoms and 100 individuals for insects and fish
(Figure 3a,b). For each stream locality, bioclimatic data
on temperature and precipitation averages, minima, max-
ima, ranges, seasonality, and extremes (19 variables)
were retrieved from the WorldClim database (Hijmans
et al., 2005).

Spatial design

Scale is defined in terms of grain and extent. Here, grain
was kept constant and represented a single stream site,
whereas extent was widely varied (Figure 3). To test for
the effect of scale on the SAR and its drivers, we
implemented a recently developed landscape window
approach (Leboucher et al., 2019). This method allows
subdivision of the study area into progressively larger

square windows and, thus, the examination of a given
pattern or relationship in a spatially explicit way. In the
United States, successive windows increased by 200 km per
side and measured from 400 � 400 km to 2600 � 2600 km,
comprising 12 different scales (Figure 3d,e). To ensure
that a window adequately represented its respective scale,
each window was subdivided into nine subwindows and
used in further analyses only if seven of nine of the
subwindows contained samples. At each scale, the center
points of the windows were spaced by one-third of the
width of the window such that adjacent windows had some
overlap. For example, the centers of the 800 � 800-km win-
dows were spaced by 266.7 km (Figure 3d). The overlap
was necessary to ensure maximal coverage of the study
area. For instance, two overlapping 2600 � 2600-km
windows covered most of the United States (Figure 3e).
Conversely, two abutting (nonoverlapping) windows of
the same size did not fit within the boundaries of the
United States and failed to meet our seven-out-of-nine

F I GURE 3 Analytical and spatial approaches using a subset of the insect data as an example. (a) Distribution of samples shown as

circles with size proportional to the number of counted individuals. (b) Prior to all analyses, individuals were sampled down to 100 in each

sample. Two 800 � 800-km windows are shown. (c) To ensure that a window adequately represents its respective scale, it was subdivided

into nine subwindows and used in further analyses only if seven out of nine of the subwindows contained samples. A predefined number of

samples was randomly pulled (shown in purple and green circles in the respective windows) n times, where n was proportional to the

number of samples in the window. For example, the green window had 1.5 times more samples, and it was subsampled 1.5 times more than

the purple window. Crosses indicate the center points of the windows. (d, e) Maps showing center points of windows of increasing size for

two sample scales. The black polygons outline the area covered by all windows. In (d) the center points of the windows shown in (c) are

color coded. The subdivision of the United States into hydrologic regions is given in (e).
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criterion. In this case, one of the windows had to be
discarded, leaving a large area of the United States
unsampled. To counterbalance potential pseudore-
plication, that is, some of the samples in two adjacent
windows are the same due to window overlap, we car-
ried out randomizations.

Larger windows contained more samples, and differ-
ences in sample size can bias the estimates of the SAD
and the SAR via sampling effects. Even within the same
scale, windows varied in number of samples (Figure 3c).
To account for this variability, we did the following.
First, at all scales, the same number of samples (60) was
randomly pulled without replacement from each window
to measure environmental heterogeneity and median
environmental conditions and to calculate biotic metrics.
A sample size of 60 was large enough to estimate the
SAR and allowed us to maximize the number of
valid windows, meeting the seven-out-of-nine criterion.
Second, in each window, the number of random pulls of
60 samples was in proportion to the number of samples
in this window (Figure 3c). There were 1000 such ran-
domizations at each scale, or 12,000 randomizations in
total. Thus, all scales had the same number of samples,
and all samples had the same number of individuals for a
given organismal group, giving rise to metacommunities
of the exact same number of individuals at all scales, that
is, 24,000,000 diatoms (1000 random pulls � 60
samples � 400 individuals) and 6,000,000 insects and fish
(1000 random pulls � 60 samples � 100 individuals).

Calculating and modeling the SAR

There are different ways of measuring the SAR, and here
we adopted a Type IIIB species–area curve sensu Scheiner
(2003), based on noncontiguous habitats (here stream
sites) within a region. In essence, this is a sample-based
rarefaction curve (Gotelli & Colwell, 2001), but in the liter-
ature, it is often referred to as a species accumulation
curve, even though the two curves are not identical.
For the generation of this curve, we used the “exact”
method of Ugland et al. (2003) in the “specaccum” func-
tion in the vegan R package (Oksanen et al., 2019) to cal-
culate mean species richness for all combinations of
1, 2, …, 60 stream sites in each random pull at each of the
12 scales, without respect to the spatial position of these
sites. Then mean species richness (S) was expressed as a
function of the number of sampled sites and fitted with
logarithmic, power, and Michaelis–Menten models
(Figure 1a–c). The best-fitting model was selected based
on corrected Akaike information criterion (AICc). Smaller
AICc values indicate better fit, and absolute differences
in AICc (ΔAICc) > 2 indicate strong support for the

better model. We also calculated the log10-log10 form of
the power model (Figure 1d). The fit of this model was
not compared to the fits of the other three models
because such comparisons are not meaningful if S is
log-transformed in some models but not transformed in
others (Dengler et al., 2020).

Drivers of the SAR

According to our framework (Figure 2), the environmen-
tal drivers of the SAR include climatic medians and het-
erogeneity. Using a matrix of random pulls � centered
and standardized median values for all climatic variables,
we carried out a principal component analysis (PCA) for
the data set containing all three species groups as well as
for the data sets of individual species groups. PCA
reduces the number of predictors and eliminates collin-
earity among them by generating synthetic orthogonal
principal components (PCs). In all cases, only the first
two PCs were significant (with eigenvalues exceeding
those randomly generated by a broken-stick model) and
used in further analyses. For each random pull of 60 sam-
ples, we calculated the median Euclidean distance of the
centered and standardized climatic variables as a metric
of climatic heterogeneity.

The metacommunity drivers of the SAR included intra-
specific spatial aggregation, total richness (γ-diversity), and
the SAD, which were calculated for each species group in
each random pull from a window. A global dispersion
parameter k across all taxa in a window was calculated
using maximum-likelihood methods (Xu et al., 2015).
Specifically, parameter k was obtained after maximizing
the following log-likelihood function:

l¼
Xγ

i¼1

oi log pið Þþ m�oið Þ log 1�pið Þ½ �,

where γ is the total number of species in the random pull
from a window, oi is the number of sites occupied by spe-
cies i, m is the total number of sites (60 in our case),
and pi is the predicted occupancy of species i from the
negative binomial distribution. The predicted occupancy
was calculated using the following equation:

pi ¼ 1� 1þ ni
mk

� ��k
,

where ni is the abundance of species i. Ecologically,
parameter k is interpreted as an intraspecific aggregation
metric because it accounts for the degree of clumping in
the spatial distribution of individuals among samples
(White & Bennetts, 1996). As smaller values of parameter
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k signify greater aggregation, for a more straightforward
interpretation we obtained the reciprocal, 1/k, which
increases with aggregation.

The SAD was evaluated by two metrics—skewness,
measuring the symmetry in species abundances about
the mean, and Pielou’s J, measuring the equitability in
species abundances. Negative skewness indicates excess
of rare species, whereas positive skewness shows excess
of common species compared to the normal distribution.
Skewness was calculated using the R package moments
(Komsta & Novometsky, 2015).

Statistical analyses

Comparing metacommunities and species
groups

Metacommunities best fit with logarithmic, power, and
Michaelis–Menten models were compared with Cliff’s jdj
statistic in terms of climatic and metacommunity factors.
Using this statistic, we also compared species groups with
respect to climatic and metacommunity factors and the
SAR model parameters. Cliff’s jdj measures the probabil-
ity that randomly selected values from two groups will be
different and is unaffected by sample size. We adopted a
jdj of 0.33 as a threshold above which differences
between two groups were considered significant
(Jamoneau et al., 2018 and references therein).

Testing the factors controlling the best SAR
model fit (logarithmic, power,
Michaelis–Menten)

First, the frequency of the best SAR model fit (logarith-
mic, power, and Michaelis–Menten) was examined as a
function of scale and species group. The response of this
frequency to scale was modeled with a linear regression.
Then we calculated the frequency of each of the three
models when they were identified as best in each of
the 12 scales for each species group. The frequencies of
the three best SAR models across scales (response vari-
ables) were compared among species groups (factor)
(12 scales � 3 species groups = 36) with multivariate
ANOVA (MANOVA) and univariate F-tests, followed by
Tukey’s multiple comparison tests. Second, we tested
which variables (scale, species group, climatic factors,
or metacommunity properties) contributed the most
to the separation of the best SAR models with discrimi-
nant function analysis (DFA). Linear DFA was carried
out using the best SAR model as a grouping factor
(logarithmic, power, and Michaelis–Menten) and the

following as predictors: scale, species (diatoms and fish,
represented by dummy variables, given that only two
dummy variables were needed to represent three catego-
ries), climatic variables, and metacommunity properties.
All variables that varied significantly among the three
groups (Cliff’s jdj > 0.33) were included in the DFA.
However, since there were differences in the covariance
matrices among the three groups, we proceeded with a
quadratic DFA because it does not require equality of
covariance matrices. Because many of the variables in the
DFA model were correlated, we performed a backward
selection to eliminate redundant variables, whereby the
variable with the lowest scores on the two discriminant
functions was removed. The backward selection continued
until the Jackknife classification accuracy dropped.
Regressions, MANOVA, and DFA were performed using
SYSTAT 13.

Testing the factors controlling the SAR model
parameters

The drivers of the SAR parameters in all species groups
were tested with a structural equation model (SEM) after
log10-transformation of scale and ln-transformation of
γ-diversity. The SEM was generated with the R package
lavaan (Rosseel, 2012). In the SEM, exogenous variables
were scale and species group (coded as dummy variables
with diatoms being the base level), whereas endogenous
variables included climatic factors (climatic heterogeneity
and PCA scores), metacommunity properties (aggrega-
tion parameter 1/k, γ-diversity, and skewness), and the
parameters of the SAR model. In addition to the overall
SEM, SEMs were also run at a group level to test for
among-group differences in causal paths. The SEM fit
was evaluated by the root mean square error of approxi-
mation (RMSEA) statistic. Redundant pathways, which
did not add to the explained variance, were eliminated.
This was done by sequentially removing variables
with low z-values until the RMSEA statistic became non-
significant. The standardized total effect sizes (direct
+ indirect) of each predictor of the SAR parameters in
the overall SEM were calculated using the standardized
path coefficients.

RESULTS

Climatic variability

The first two climatic PCA axes using data on all three
species groups explained, respectively, 52.8% and 27.0%
of the variance in the data. The first axis was positively
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correlated with temperature and precipitation but nega-
tively correlated with temperature range and precipita-
tion seasonality. The second axis was primarily defined
by temperature isothermality and seasonality, which cor-
related in opposite ways with the axis. The PCA scores
did not differ significantly across species groups (Cliff’s
jdj = 0.01–0.31), nor did the median distances in climatic
conditions (henceforth climatic heterogeneity) (Cliff’s
jdj = 0.02–0.05), indicating that the three species groups
were sampled from similar climatic conditions. PCAs at a
species group level identified the same major gradients.

Best-fitting SAR models and their drivers

All three SAR models provided very good fits with a min-
imum R2 of 0.93 (logarithmic), 0.95 (power), and 0.98
(Michaelis–Menten) and a maximum R2 approaching
1.00 in all models. Based on ΔAICc, Michaelis–Menten
was the best SAR model in 78.0% of the random pulls
and the power model in 17.1% of random pulls, whereas
SARs best fit by the logarithmic model were compara-
tively rare, that is, 1.7% of the random pulls. SARs that

were equally fit by two or three models were also rare
(0.003%–3.0%) and are not discussed further.

Linear regressions of best model frequency against scale
revealed that the frequency of the power model decreased,
whereas the frequency of the Michaelis–Menten model
increased with scale (Figure 4a). The logarithmic model
frequency also declined with scale but was not modeled
because only four scales exhibited logarithmic SARs.
Then we compared the frequency of each model across spe-
cies groups (Figure 4b). The frequency of the logarithmic
model did not vary among groups (p = 0.18), whereas the
frequency of the power and Michaelis–Menten models
depended on species group, as confirmed by MANOVA
(Wilks’ λ = 0.32, p < 0.001) and univariate F-tests
(p < 0.005). Tukey’s post hoc tests further showed that
Michaelis–Menten was significantly more frequently the
best-fitting model in fish compared to diatoms (p < 0.005),
whereas fish and insects did not differ significantly from
each other (p = 0.08), nor did diatoms and insects
(p = 0.40). Conversely, the power model had significantly
lower frequency in fish than in diatoms and insects
(0.001 < p < 0.01), which did not differ significantly from
each other (p = 0.40).

F I GURE 4 Frequency of best-fitting models for species–area relationship (SAR) across (a) scales and (b) species groups. In (a), the best

SAR model frequency was calculated for each of three SAR models, Michaelis–Menten, power, and logarithmic, across all species groups

and scales. This frequency was regressed against scale for the Michaelis–Menten model and the power model, and the standardized

regression coefficients and adjusted R 2 (Ra
2) are provided. **p < 0.01 and ***p < 0.001. In (b), the best model frequency was calculated for

each scale and species group (i.e., 12 scales per species group), and then species groups were compared with ANOVA and a Tukey’s post hoc
test. Different letters in (b) indicate significant differences among groups (n = 36, p < 0.05).
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Quadratic DFA identified five variables as having the
strongest discriminative power with respect to the best SAR
model (logarithmic, power, and Michaelis–Menten), includ-
ing ln(spatial aggregation), ln(γ-diversity), skewness, PC2,
and diatoms, and classified correctly 87% of the 34,858 cases
following a Jackknife procedure (Figure 5). The logarithmic
and Michaelis–Menten models were correctly classified in
93% and 95% of the cases, respectively, whereas the power
model was correctly classified in only 51% of the cases. The
first discriminant function was most strongly negatively cor-
related with ln(γ-diversity) and most strongly positively cor-
related with diatoms and skewness. The second
discriminant function was most strongly negatively corre-
lated with skewness and ln(spatial aggregation).

Testing the conceptual framework

Although the Michaelis–Menten was most frequently the
best-fitting model, the log–log model with a minimum
R2 of 0.92 and a maximum R2 of 0.99 also provided a very

good fit of the SAR. Given that the parameters of the
log–log SAR model are most broadly investigated and
have biological meaning, we proceeded with further ana-
lyses of the SAR using these parameters. Thus, slope
z reflects the rate of richness increase with the increase
in number of stream localities, and intercept log(c) is the
log of the mean richness at a stream locality (Figure 1d).
Notably, slope z of the log–log model and the steepness
parameter b1 of the Michaelis–Menten model had a 97%
correlation and intercept log(c) of the log–log model and
saturation parameter b0 of the Michaelis–Menten model
had a 92% correlation. Therefore, results of the analyses
of the parameters of the log–log model apply to the
parameters of the Michaelis–Menten model, which was
most frequently the best model.

Predicting climatic and metacommunity factors

Our overall SEM, testing the hierarchical effects on
the SAR parameters (Figure 6a), had a very good fit

F I GURE 5 (a) Discriminant function analysis (DFA) of the best models of the species–area relationship (logarithmic, L, in purple;

power, P, in yellow; and Michaelis–Menten, M, in blue) with 95% confidence ellipses. Box plots of variables included in the DFA (b–e) and
Pielou’s evenness (J) (f). In (b–f) different letters indicate significant differences (Cliff’s jdj > 0.33). Asterisks indicate values outside the inner

fences, while open circles denote values outside the outer fences.

ECOLOGY 9 of 18

 19399170, 2023, 3, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/ecy.3917 by Battelle M

em
orial Institute, W

iley O
nline Library on [17/03/2023]. See the Term

s and Conditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable Creative Com

m
ons License



F I GURE 6 (a) Structural equation model testing the proposed framework for the pathways of control of slope, z, and intercept, log(c),

of the log–log species–area relationship (SAR). Scale was log10-transformed and γ-diversity was ln-transformed. Single-headed solid

arrows = causal pathways, double-headed dotted arrows = correlations with, respectively, standardized regression coefficients and

correlation coefficients. Gray arrows = positive relationships, red arrows = negative relationships. R2 is given for each endogenous variable.

Standardized total effect sizes of scale, organism, climatic, and metacommunity factors for z (b) and log(c) (c) of the log–log SAR, derived from

the structural equation model.
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(RMSEA = 0.05, p = 0.07). From the climatic factors, het-
erogeneity was well predicted by scale (R2 = 0.74), whereas
PC1 had a very weak response to its predictors, scale and
fish (R2 = 0.09). Although fish entered the model,
suggesting some differences in PC1 among species groups,
these differences were in fact minimal, given the nonsignif-
icant Cliff’s jdj results for PC1. The metacommunity vari-
ables, spatial aggregation, γ-diversity, and skewness, were
well predicted by the exogenous and climatic factors, hav-
ing an R2 of 0.77, 0.91, and 0.69, respectively. Spatial aggre-
gation was most strongly and positively affected by fish,
followed by climatic heterogeneity, that is, the highest
aggregation was observed in fish (Figure 7a) and in hetero-
geneous conditions. Species groups were the primary pre-
dictors of γ-diversity, followed by scale. As to be expected,
γ-diversity was higher at large scales but lower in fish and
insects relative to diatoms (Figure 7b). Skewness was most
strongly and negatively controlled by fish, followed by spa-
tial aggregation. Skewness was significantly lower in fish
than in the other two groups (Figure 7c) and decreased
with aggregation.

SEMs at a group level also had very good fits
(RMSEA = 0.003–0.021, p = 1.00) and complemented
the results from the overall SEM of the combined data
(Appendix S1: Table S1). The group-level SEMs revealed
that spatial aggregation was driven by climatic heteroge-
neity, similarly to the overall SEM, but also by scale and
climatic medians. Although insects and/or fish were the
strongest predictors of γ-diversity and skewness in the
overall SEM, spatial aggregation, scale, and climatic
medians were most influential at the group level.

Predicting the parameters of the log–log SAR

According to the overall SEM, the strongest and positive
predictors of the SAR slope were, in descending order,
spatial aggregation, fish, insects, and γ-diversity
(Appendix S1: Table S1). The SAR intercept responded
most strongly and positively to γ-diversity. Group-level
SEMs indicated that spatial aggregation remained the stron-
gest predictor of the SAR slope, whereas γ-diversity and

F I GURE 7 (a–e) Box plots of selected variables from the structural equation model in Figure 6a across species groups. In each panel,

different letters indicate significant differences (Cliff’s jdj > 0.33). Asterisks indicate values outside the inner fences, while open circles

denote values outside the outer fences.
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spatial aggregation most strongly constrained the SAR inter-
cept (Appendix S1: Table S1). The fact that most of the vari-
ance in the SAR parameters (88%–99.5%) was explained in
the two types of SEMs suggests that all important predictors
were included.

Calculation of the standardized total effect sizes of all
predictors of the SAR parameters in the overall SEM
revealed that metacommunity factors (spatial aggrega-
tion, γ-diversity, and skewness) had the strongest effects
on the slope, followed by scale, climatic heterogeneity,
and fish (Figure 6b). The intercept, on the other hand,
was primarily determined by species group (fish and
insects), followed by γ-diversity (Figure 6c).

DISCUSSION

In this novel spatially explicit subcontinental study on
the freshwater SAR, we determined the best model fit,
the factors underlying the SAR shape, and the pathways
of abiotic and biotic control of the parameters of the
log–log model. First, we demonstrated that the best SAR
model was most frequently Michaelis–Menten, but the
frequency of all models (Michaelis–Menten, power, and
logarithmic) varied significantly across species groups
and/or scales. Second, we revealed that all three SAR
models provided good fits and were comparatively well
discriminated by metacommunity properties, species
group, and climate. Third, we showed that the parame-
ters of the log–log SAR were products of complex interac-
tions among hierarchical factors. A comparison of the
standardized total effect sizes of these factors indicated
that metacommunity properties (spatial aggregation,
γ-diversity, and skewness) had the strongest total effects
on the slope, whereas species group (fish and insects) and
γ-diversity had the strongest total effects on the intercept.
In the following sections, we will discuss these findings
in more detail.

Best-fitting SAR models and their drivers

The questions of what model provides the best fit for the
SAR and under what circumstances, that is, at what scales,
species groups, and characteristics of the metacommunity,
have been central to ecology (Connor & McCoy, 1979;
Dengler et al., 2020; He & Legendre, 1996; May, 1975;
Preston, 1962; Tjørve et al., 2021). The species accumula-
tion curve is predicted to be saturating (Dengler
et al., 2020), although a logarithmic best fit has also
been reported (DeMalach et al., 2019). In this study,
the Michaelis–Menten model most often provided the best
fit, but saturation was not observed, given that the

saturation constant b0 fell outside the range of the data.
This is consistent with results from island SARs, where
asymptotes were rarely detected (Triantis et al., 2012).

The interest in the shape of the SAR comes from its
ability to capture the rate of species increase with area
and its sensitivity to environmental and biological
drivers. Thus, He and Legendre (1996) reported a transi-
tion from logarithmic to power to saturating SARs with
the increase in scale and explained it as follows. At small
scales, the logarithmic model, which has a slower rich-
ness increase with area compared to the other two
models, is more likely because spatial autocorrelation of
environmental factors and species composition results in
a weak increase of species with area. At intermediate
scales, the power model predominates because increasing
heterogeneity produces a steeper richness increase with
area. At the largest scales, the encounter of new habitats
decreases, heterogeneity tapers off, and species richness
saturates, which is best captured by an asymptotic model,
such as the Michaelis–Menten model. Similar to He and
Legendre (1996), we detected logarithmic SARs exclu-
sively at small scales, power SARs, predominantly at
smaller scales, and Michaelis–Menten SARs most fre-
quently at the largest scales. However, the SAR best
model frequencies further depended on metacommunity
properties, species group, and the environment.

Both the logarithmic and the power SARs were
observed in metacommunities with lower levels of
intraspecific spatial aggregation. However, these
metacommunities exhibited diverging symmetry and
evenness of the regional abundance distribution and
γ-diversity, and generally belonged to different ​species
groups. Evenness (Pielou’s J) was not included in the
DFA model owing to the high correlation with vari-
ables already in the model (i.e., skewness, Pearson
r = �0.74 and spatial aggregation, Pearson r = 0.66,
p < 0.001 for both correlations). Nevertheless, since
evenness had a strong discriminative power and its
effect was transmitted by other variables, it is discussed
here. Logarithmic SARs described species-poor and
mostly fish metacommunities with significantly lower
and sometimes negative skewness and significantly
higher evenness. Power SARs, in contrast, described
species-rich and predominantly diatom and insect
metacommunities with significantly higher and gener-
ally positive skewness and significantly lower evenness
than metacommunities best fit by the logarithmic or
Michaelis–Menten model. Excess of rare species (nega-
tive skewness) would result in low richness in small
areas, whereas high evenness would give rise to a slow
richness increase toward the maximum richness of the
metacommunity (Chase & Knight, 2013; He &
Legendre, 2002; Tjørve et al., 2008). Because the
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logarithmic model predicts lower richness in small
areas and is linear when richness is expressed as a
function of log-area (Figure 1; Appendix S1: Figure S1),
it performed better than the power model in
metacommunities with higher rarity and evenness.
Conversely, an excess of common species (positive
skewness) and low evenness produce, respectively,
high richness in small areas and a steep richness
increase toward the maximum richness, best fit here by
the power model. This model predicts higher richness
in small areas and is concave, increasing steeply in
large areas when richness is expressed as a function of
log-area (Figure 1; Appendix S1: Figure S1). These
results are partially consistent with a study on the
species accumulation curve in plants where the
power model was also detected predominantly in
metacommunities with the lowest evenness (DeMalach
et al., 2019); however, here the logarithmic rather than
the Michaelis–Menten model was associated with the
highest evenness. Our results further indicated that
species dispersal ability might be a strong determinant
of the SAR shape. Good dispersers have high skewness
(Borda-de-Água et al., 2017), and here diatoms and
insects, with significantly higher skewness than fish
(Figure 7c), displayed significantly higher frequency of
the power model (Figure 4b).

An additional limit on the richness increase with area
was imposed by γ-diversity. Significantly lower γ-diversity
in fish compared to the other two groups (Figure 7b)
would require a smaller area to detect most species and
can thus explain why the sigmoid Michaelis–Menten
SAR was most common in fish. In contrast, significantly
higher γ-diversity in diatoms and insects would explain
the higher incidence of power SARs compared to fish.
Increased performance of the power model in groups or
data sets with higher mean richness was reported in
plants (Dengler et al., 2020), implying that the effect of
richness on the power SAR frequency may be more
general.

We observed the greatest frequency of the
Michaelis–Menten model at large scales, which were the
most climatically heterogeneous. This is inconsistent
with predictions for power SARs at high heterogeneity
and intermediate scales (He & Legendre, 1996). We
explained this discrepancy with the effect of spatial aggre-
gation, which was highest at high climatic heterogeneity
and large scales. Spatial aggregation, particularly of rare
species, causes the SARs to become sigmoid (Tjørve
et al., 2008). Indeed, SARs best fit here by the sigmoid
Michaelis–Menten model were associated with signifi-
cantly higher aggregation than SARs best fit by
logarithmic and power models (Figure 5b). Additionally,
metacommunities with Michaelis–Menten best fits had
significantly more rare species (lower skewness) compared

to metacommunities best fit by the power model
(Figure 5d). Thus, greater aggregation in metacommunities
with more rare species gave rise to Michaelis–Menten
rather than power fits at large and climatically hetero-
geneous scales. Notably, the environment also had an
impact on the form of the SAR—environments with
higher temperature seasonality (high PC2 scores,
Figure 5e) harbored metacommunities with logarithmic
SARs. Although the shape of the SAR has been
examined with respect to scale, organismal group, envi-
ronment, and metacommunity properties (Connor &
McCoy, 1979; DeMalach et al., 2019; Dengler et al.,
2020; He & Legendre, 1996), this investigation is unique
in addressing simultaneously all these sources of SAR
variability and demonstrating the importance of species’
dispersal capacity and scale-dependent metacommunity
and environmental factors.

Testing the conceptual framework

Predicting climatic and metacommunity factors

All climatic and metacommunity factors except climatic
medians (PC1 and PC2) were well predicted by our over-
all and group-level SEMs. Climatic medians were an
exception because they were weakly correlated with scale
and did not differ appreciably among the three species
groups, which were sampled from the same regions.
Climatic heterogeneity, on the other hand, sharply
increased with scale, as is to be expected across the range
of scales in this investigation.

High climatic heterogeneity resulted in high spatial
aggregation in the overall and group-level SEMs, which
is to be anticipated considering that all three study
groups encompassed species with distinct thermal niches
(Pound et al., 2021). However, climatic heterogeneity
alone was not sufficient to describe spatial aggregation,
implying the operation of factors other than climate.
These factors were most likely organism-, dispersal-,
and environment-related. Specifically, fish—the most
dispersal-limited group in our study (Beisner et al., 2006;
Shurin et al., 2009)—had significantly greater spatial
aggregation than diatoms and insects and the strongest
positive control over aggregation in the overall SEM. In
diatom and fish SEMs, scale, climatic heterogeneity, and
climatic medians had similar contributions, whereas in
insects, climatic medians were the primary driver of spa-
tial aggregation. Spatial aggregation increased with tem-
perature and precipitation in diatoms but decreased in
insects, whereas in fish, spatial aggregation increased
with isothermality. Research on forests has shown that
both habitat heterogeneity and limited dispersal work in
concert to generate spatially aggregated species

ECOLOGY 13 of 18

 19399170, 2023, 3, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/ecy.3917 by Battelle M

em
orial Institute, W

iley O
nline Library on [17/03/2023]. See the Term

s and Conditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable Creative Com

m
ons License



distributions (McFadden et al., 2019; Shen et al., 2009).
To our knowledge, there is no such research in freshwa-
ters, but our analysis implies that climatic heterogeneity
and limited dispersal, together with climatic conditions,
determine the ​spatial distributional patterns of species
and genera in aquatic habitats and, thus, have broader
importance across ecosystems.

In the overall SEM, γ-diversity was largely deter-
mined by species group—fish and insects had the stron-
gest effects (negative). Notably, γ-diversity differed
significantly among the three groups—it was the lowest
in fish but the highest in diatoms. Contrary to our expec-
tation for a positive response of γ-diversity to climatic
heterogeneity and spatial aggregation, γ-diversity showed
little sensitivity to climatic heterogeneity and did not
depend on aggregation in our overall model. This was
because the heterogeneity and aggregation effects on
γ-diversity were largely subsumed by organismal group,
given that within-group correlations of γ-diversity with
climatic heterogeneity and aggregation showed modest to
strong positive responses (fish: Pearson r = 0.17–0.21;
insects: Pearson r = 0.66–0.72; and diatoms: Pearson
r = 0.56–0.81, p < 0.001 for all correlations). Group-level
SEMs confirmed that spatial aggregation was indeed
among the strongest positive predictors of γ-diversity
across groups, as anticipated. In these models, climatic
heterogeneity did not emerge as a strong determinant of
γ-diversity, most likely because its effect was subsumed
by scale.

We expected more even and symmetric SADs at
large scales, consistent with earlier investigations
(Connolly et al., 2005; Morlon et al., 2009). The SAD did
become more even with scale, which correlated posi-
tively with Pielou’s J (Pearson r = 0.37, p < 0.001). The
response of skewness to scale, on the other hand, was
very weakly positive in our overall SEM due to divergent
scale responses among groups, that is, negative in dia-
toms (Pearson r = �0.40, p < 0.001) but positive in
insects and fish (Pearson r = 0.17–0.26, p < 0.001).
For trees, beetles, and birds, the influence of scale on
the SAD symmetry was due primarily to sampling
effects, whereby more samples at large scales reduced
the number of rare species (de Lima et al., 2020).
Here, the number of samples was constant across scales,
but group-specific responses caused scale to exert only a
negligible overall influence on the SAD symmetry.
De Lima et al. (2020) showed that spatial aggregation
was the second most important determinant of SAD
symmetry after sampling effects. Here, spatial aggrega-
tion had a negative effect on skewness in the overall
SEM, but this effect was much stronger in the
group-level SEMs. In the overall SEM, skewness was
mostly defined by fish, which had higher symmetry,

possibly due to weaker dispersal, leading to a lower
frequency of common species and occasional preponder-
ance of rare species (negative skewness).

Predicting the parameters of the log–log SAR

The SAR is a product of multiple mechanisms, operating
at different scales, including sampling effects, environ-
mental heterogeneity, dispersal, and evolutionary inde-
pendence (Connor & McCoy, 1979; Rosenzweig, 1995;
Scheiner et al., 2011; Turner & Tjørve, 2005). Additionally,
the SAR varies across organismal groups, but investiga-
tions of multiple organisms inhabiting the same region
are quite rare, despite the advantage of being unbiased by
differences among taxa in the environment and geologic
history (Fattorini et al., 2017). Here we examined the
drivers of the SAR in diatoms, insects, and fish from all
major US watersheds across regional to subcontinental
scales after controlling for sampling effects. Our SEMs
provided evidence for the proposed conceptual framework
and further identified the most influential pathways of
SAR control, which differed between the slope and the
intercept.

Spatial aggregation had the strongest total and direct
effects on the SAR slope, and, consistently with expecta-
tions (Scheiner et al., 2011), the direct effect was positive.
Thus, as the scale and climatic heterogeneity increased,
conspecific aggregation into optimal climatic niches
resulted in steeper SAR slopes in the overall and
group-level SEMs. Tjørve et al. (2008) reported that
unevenness had a stronger impact on the shape of the
SAR than spatial aggregation, while DeMalach et al.
(2019) observed comparable influences. In our case, spa-
tial aggregation had a stronger effect on the SAR slope
than skewness across SEMs. Spatial aggregation had a
negative effect on the SAR intercept, which is also to be
expected, as more clumped distributions of individuals
within a species produce lower community richness at
local scales (Chase & Knight, 2013).

The size of the species pool is an important driver of
the SAR (Chase & Knight, 2013; Matthews et al., 2019),
strongly influencing how fast and high the SAR rises,
for example, due to metacommunity processes such as
dispersal rates (Leibold & Chase, 2017; O’Sullivan
et al., 2019). However, the effect of γ-diversity on the
SAR relative to the influence of climate, spatial aggrega-
tion, and the SAD is not well understood. Here we
showed that γ-diversity, a proxy of the species pool, had
the second greatest total effect on the SAR slope followed
by skewness in the overall SEM. Metacommunities with
high γ-diversity had high skewness, both of which
resulted in steep SAR slopes. Although common species
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reduce the SAR slope, in this investigation, high skew-
ness (excess of common species) was associated with low
evenness of the SAD, which elevates the SAR slope.
γ-diversity also had strong direct and total effects
(both positive) on the SAR intercept, revealing that
metacommunities with greater regional species pools had
higher average local richness. At a species group level,
γ-diversity was a less important predictor of the SAR
slope but remained the strongest or the second strongest
predictor of the SAR intercept.

The relationship of the SAR slope with scale is not
straightforward as negative, positive, and unimodal
responses have been noted. Triantis et al. (2012) reported
that as scale increased, more factors contributed to
the SAR on islands, causing the slope to decrease.
Conversely, as scale increases and the area begins to cover
different biogeographic provinces without a common spe-
cies pool, the SAR slope may increase (Rosenzweig, 1995).
A study on British flora documented a unimodal response,
with low SAR slopes at small scales due to species interac-
tions, high slopes at intermediate scales due to habitat het-
erogeneity, and again low slopes at large scales due to low
species turnover (Crawley & Harral, 2001). In our study of
regional to subcontinental areas, we saw strong positive
correlations of the SAR slope with scale across the three
groups (Pearson r = 0.56–0.86, p < 0.001). However, our
overall and group-level SEMs revealed that scale
constrained the slope only weakly positively, whereas
much of the scale effects were indirect, that is, through cli-
matic heterogeneity and γ-diversity.

The scale effect on the slope could be attributed to
some extent to evolutionary independence. Evolutionary
independence is an important positive driver of the SAR
slope at the largest scales, where inclusion of different
provinces with distinct evolutionary histories and spe-
cies pools generates the steepest SAR slopes and the
greatest overall richness (Rosenzweig, 1995; Turner &
Tjørve, 2005). To test whether evolutionary indepen-
dence could have contributed to the SAR slope, we cal-
culated the percentage of species unique to the
14 hydrologic regions enclosed in the two largest win-
dows (2600 � 2600 km; Figure 3e). We observed
0%–10% (4% average) unique diatoms, 0%–16% (4%–5%
average) unique insects, and 0%–48% (14%–15% average)
unique fish. This suggests that at large scales, the
encounter of species unique to a hydrologic region may
have influenced both the SAR slope and γ-diversity.
Scale also constrained the SAR intercept, but its effect
was indirect, mostly through γ-diversity. As is to be
expected, greater species pools at large scales were
responsible for higher intercepts.

Finally, the SAR was dependent on species group in
our overall SEM. Consistent with earlier research

showing that the SAR slope increased with body size
(Azovsky, 2002; Drakare et al., 2006), we observed that
fish exhibited significantly steeper SAR slopes than dia-
toms, whereas insects had a SAR slope intermediate
between diatoms and fish (Figure 7d). In the overall
SEM, fish and insects had a strong, positive, and direct
influence on the SAR slope as well as an indirect influ-
ence through spatial aggregation, skewness, and/or
γ-diversity. Fish and insects also had a weakly negative
direct effect on the SAR intercept but a strongly negative
total effect due to their influence on γ-diversity.
Thus, species-poor, dispersal-limited, and spatially aggre-
gated fish had SARs with higher slopes but lower inter-
cepts, whereas species-rich diatoms with comparatively
weak dispersal limitation and lower level of aggregation
showed the opposite trend. A decrease in the SAR
intercept from autotrophs to invertebrates and finally to
vertebrates (Triantis et al., 2012), and from diatoms
to macroinvertebrates (Azovsky, 2002), as seen here
(Figure 7e), has been explained with the ability of auto-
trophs and smaller organisms to pack more species per
unit area.

In conclusion, we examined the best model fits and
underlying mechanisms of the SAR across scales and
major species groups for the first time in streams.
Metacommunity properties were among the strongest
predictors of the SAR shape, as shown previously
(Chase & Knight, 2013; DeMalach et al., 2019; He &
Legendre, 2002; Tjørve et al., 2008), but we further
traced their origins to species group, scale, and climate,
broadening our understanding of the hierarchical
drivers of the SAR. Our results have important implica-
tions for climate change research. Altered species/genus
distributions and richness of stream diatoms, insects,
and fish projected with climate change (Pound et al.,
2021) may have profound impacts on the spatial aggre-
gation, γ-diversity, and species abundance distribution
and, consequently, on the SAR shape. Therefore, future
studies should explore how climate change may affect
the scaling of biodiversity in streams from the perspec-
tive of our framework.
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