
PHYSICAL REVIEW B 106, 165123 (2022)

Aubry-André Anderson model: Magnetic impurities coupled to a fractal spectrum
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The interplay between incommensurability and strong correlations is a challenging open issue. It is explored
here via numerical renormalization-group (NRG) study of models of a magnetic impurity in a one-dimensional
quasicrystal. The principal goal is to elucidate the physics at the localization transition of the Aubry-André
Hamiltonian, where a fractal spectrum and multifractal wave functions lead to a critical Aubry-André Anderson
(AAA) impurity model with an energy-dependent multifractal hybridization function. This goal is reached in
three stages of increasing complexity: (1) Anderson impurity models with uniform fractal hybridization functions
are solved to arbitrarily low temperatures T . Below a Kondo temperature, these models approach a fractal
strong-coupling fixed point where impurity thermodynamic properties are oscillatory in logb T about negative
average values determined by the spectrum’s fractal dimension DF < 1, with b set by the fractal self-similarity
near the Fermi energy. (2) An impurity hybridizing uniformly with all conduction states of the critical AAA
model is shown to approach the fractal strong-coupling fixed point corresponding to DF = 0.5 and b � 14.
(3) When the multifractal wave functions of the critical AAA model are taken into account, low-T impurity
thermodynamic properties are again negative and oscillatory, but with a more complicated structure than in (2).
Under sample-averaging, the mean and median Kondo temperatures exhibit power-law dependencies on the
Kondo coupling with exponents characteristic of different fractal dimensions. We attribute these signatures to
the impurity probing a distribution of fractal strong-coupling fixed points with decreasing temperature. To treat
the AAA model, the numerical renormalization group (NRG) is combined with the kernel polynomial method
(KPM) to form a general, efficient treatment of hosts without translational symmetry in arbitrary dimensions
down to a temperature scale set by the KPM expansion order. Implications of our results for heavy-fermion
quasicrystals and other applications of the NRG+KPM approach are discussed.

DOI: 10.1103/PhysRevB.106.165123

I. INTRODUCTION

A. Background and aims of this work

Strongly correlated electronic systems host qualitatively
new, emergent phenomena that are of both fundamental in-
terest and experimental relevance. Quantum impurity models
such as the Kondo model [1,2], which was first used to
describe iron impurities in a metal, represent a particularly
simple type of correlated quantum many-body system: they
consist of a strongly interacting local region (the “impu-
rity”) either embedded in a noninteracting metallic host or,
in the context of quantum dots [3,4], tunnel-coupled to con-
ducting leads. Despite the simplicity of the noninteracting
host degrees of freedom, which makes these problems more
tractable than generic correlated systems and has allowed
significant progress in their understanding, impurity models
provide quintessential examples of asymptotic freedom and
nonperturbative phenomena such as Kondo screening [5,6],
while also being rich enough to host boundary quantum
critical phenomena [7–13]. Our understanding of bulk cor-
related materials, such as heavy-fermion systems [14] and
high-temperature superconductors, draws heavily on insights

from impurity models. Indeed, state-of-the-art numerical tech-
niques such as the dynamical mean-field theory [15] and its
extensions map the correlated electron problem to a self-
consistent quantum impurity model.

While the most physically relevant impurity problems—
the Anderson [16] and Kondo models—are solvable for clean,
noninteracting electronic hosts, much less is understood about
their behavior in inhomogeneous systems. The interplay be-
tween disorder and strong correlations, and more generally
the nature of quantum phase transitions in inhomogeneous
systems, remain challenging open problems. Progress has
been made for impurity systems with quenched random-
ness, in which one can treat the randomness as uncorrelated
and average over it, yielding a non-Fermi liquid ground
state [17–24]. However, many experimentally relevant sys-
tems have correlated-but-aperiodic [25] (or nearly aperiodic)
spatial inhomogeneity. Examples include quasicrystals [26],
incommensurate optical lattices [27], and moiré materials
[28–30]. Each case provides experimental evidence for cor-
related phases [31–33], such as quantum criticality without
tuning in the Yb-Al-Au heavy-fermion quasicrystal [34–37]
and observation of insulating phases at integer fillings of
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the moiré unit cell in magic-angle twisted bilayer graphene
[38–40]. To date, however, there is no theoretical framework
that handles both the aperiodic inhomogeneity and the strong
interactions on the same footing.

In this paper, we take an initial step toward developing
such a framework by studying Kondo physics in an elec-
tronic host described by a spinful version of the Aubry-André
(AA) tight-binding model for a one-dimensional quasicrystal
[41] (related to the Harper model for band electrons in a
magnetic field [42]). Increasing the strength λ of a smooth, pe-
riodic potential that is incommensurate with the λ = 0 lattice
[as depicted in Fig. 1(a)] drives a localization-delocalization
quantum phase transition [43] without a mobility edge [41,44]
[shown schematically in Fig. 1(c)]. Precisely at the transi-
tion, the host has a fractal energy spectrum [reflected in the
iterative sequence of minibands in Fig. 1(b)] and critical
single-particle wave functions [41,42,45–47]; the global den-
sity of states (global DOS) is a nonuniform fractal [48–52]
while the local DOS (or LDOS) on any tight-binding site
exhibits multifractal character [49,53,54]. To solve our Aubry-
André Anderson (AAA) impurity problem, we introduce a
“KPM+NRG” computational approach that combines the
numerical renormalization group (NRG) for nonperturbative
solution of quantum impurity models [55,56] with the kernel
polynomial method (KPM) [57] for efficiently evaluating the
global or local DOS of inhomogenous hosts in arbitrary di-
mensions [57].

To identify the characteristics that distinguish the Kondo
problem considered here from more conventional versions, it
is useful to review how a magnetic impurity interacts with its
electronic environment. The Anderson impurity model [16]
fully captures tunneling of electrons between the impurity
level and the host in an energy-dependent hybridization func-
tion that is proportional to the host’s local density of state
(local DOS or LDOS) at the impurity site. One can expect
criticality of a quasicrystalline host to have two effects on
the impurity. First, the energy eigenstates near the Fermi
energy are highly nonuniform in space [49,58]; depending
on its location, the impurity may be either very weakly or
very strongly coupled to any given host state, resulting in
an LDOS very different from the global DOS ρ(ε). Thus,
the Kondo temperature TK—the characteristic scale for the
many-body screening of the impurity’s magnetic moment—
should become broadly distributed, as also seen in random
systems [17–22,59]. Another effect, specific to quasicrystals
and the focus of the current paper, is that the DOS itself
becomes fractal at the critical point [49]: the eigenenergies
cluster in flat minibands, separated from one another by a
self-similar hierarchy of gaps [see Fig. 1(b)]. At a fixed band
filling, the DOS is almost always infinite at the Fermi energy
εF , and one cannot expect the Kondo temperature to exhibit
the dependence logTK ∼ −1/ρ(εF ) that holds in conventional
metallic hosts [2].

To explore the preceding general expectations and achieve
a deeper understanding of how critical wave functions and a
fractal spectrum impact the physics of a strongly interacting
impurity, we progress in three stages, gradually incorporating
more features of the full problem of interest. (1) We isolate
the effect of a fractal spectrum (neglecting the wave function
contribution) by treating a local magnetic level that hybridizes

(a)

(b)

(b)

FIG. 1. (a) Schematic of the AAA model describing a magnetic
impurity (red circle) hybridizing with matrix element V with the
middle site of an Aubry-André chain (green circles). (b) An impurity
hybridizes with an emergent, self-similar electron band formed by
dividing a uniform band of half-width D into subbands separated by
gaps, and then repeatedly dividing each subband into narrower ones.
For iteration number l → ∞, the band evolves into a fractal contain-
ing no interval of nonzero width. (c) Schematic phase diagram for
the AAA model in its Kondo limit [Eq. (8)]: Renormalization-group
flow of the Kondo coupling JK in a typical system for bare JK � D.
In the delocalized phase (λ < λc), a divergent JK signals many-body
quenching of the impurity spin. In the localized phase (λ > λc),
vanishing of JK is associated with an asymptotically free impurity
spin. (For λ > λc, sufficiently large bare values of JK/D can cause
local screening of the impurity spin.) The orange diamond marks the
critical point (λ = λc) that is the main focus of this paper.

[see Fig. 1(a)] with an idealized energy spectrum following a
well-understood fractal pattern, namely, a uniform Cantor set.
This simplification allows robust NRG solution for thermo-
dynamic properties down to arbitrarily low temperatures and
the identification of characteristic signatures of fractality. (2)
We apply the KPM+NRG approach to an impurity mixing
with the global DOS of the critical host, a problem that also
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FIG. 2. Summary of main results: (a) Impurity entropy Simp vs temperature T for an Anderson impurity strongly hybridizing with one of
three hosts: a uniform Cantor-set fractalC(5) (see Sec. II B) at band filling nc = 0.5, and the global DOS and LDOS of the critical Aubry-André
(AA) model [Eq. (2) with λ = 2t] at nc = 0.309. LDOS data are averaged over 100 random impurity positions. The upper (lower) dashed line
marks the average value expected for the fractal dimension DF = log5 3 of C(5) (DF = 0.5 of the AA model). (b) Kondo temperature TK vs
reciprocal Kondo coupling 1/JK forC(5) at nc = 0.5 and for the AA DOS at nc = 0.5, 0.309. Dashed lines are small-JK fits to TK ∼ Jα

K with α

values shown in the legends. (c) Mean TK and median med(TK ) over 500 random impurity positions vs 1/JK for the AA LDOS at nc = 0.309.
Technical details (see Secs. II and III): impurity parametersU = −2εd = D, treating the AA model for L = 106 sites to KPM expansion order
NC = 105. Also (a) hybridization V = 1.6D and NRG discretization � = 51/4 (� = 3) for C(5) (AA model); (b) � = 5; (c) � = 8.

neglects the wave-function contribution but takes account of
the specific form of the fractal spectrum for the model qua-
sicrystal. Although we cannot access such low temperatures
as in (1), we are able to establish with confidence (for large,
finite systems at two different band fillings) that the infrared
limit exhibits the same signatures of fractality. (3) We perform
a KPM+NRG study of the full model of interest, using the
first two stages to guide the interpretation of results.

B. Overview of principal results

This section provides a summary of the main findings from
the three stages of our study, illustrated in Fig. 2 in terms of
two physical properties whose precise definitions appear in
Sec. III B. The first is Simp, the impurity contribution to the
thermodynamic entropy, representing the difference between
the total entropy of the combined host-impurity system and
the total entropy of the host alone. The second property shown
in Fig. 2 is the Kondo temperature TK , already introduced
above as the characteristic scale for screening of the impurity
magnetic moment by the host. For a magnetic impurity in a
conventional metal [2], (a) Simp remains near ln 2 [60] over a
range of intermediate temperatures where the impurity acts as
a spin one-half degree of freedom before crossing over below
TK to approach a low-temperature “strong-coupling” limit of
zero, and (b) TK is exponentially sensitive to the effective
impurity-host exchange coupling JK .

As noted above, we have explored three classes of models:
(1) an impurity coupled to a host with a Cantor-set spectrum,
(2) an impurity nonlocally coupled to the AA model, i.e.,
replacing the LDOS with the global DOS, and (3) an impurity
locally coupled to the AA model. While case (3) is the most
physically relevant, it is also the least tractable.

Case (1) might arise if the DOS were fractal but the wave
functions remained delocalized. This could occur, for exam-
ple, if the “impurity spin” were a nonlocal two-level system
such as a nonlinear oscillator [61]. In this case, we have
found a fractal strong-coupling fixed point with the highly

unusual feature [see data labeled “C(5)” in Fig. 2(a)] that
the impurity’s thermodynamic properties, such as its entropy
Simp, exhibit oscillations that are periodic in logb T about a
negative value that is determined by the fractal dimension
DF < 1 of the spectrum [defined in Eq. (16)]. The period of
these oscillations is set by the self-similarity of the fractal
DOS under multiplicative rescaling ε − εF → (ε − εF )/b of
energies about the Fermi energy εF , whereas the oscillation
phase depends on the band filling. Kondo screening sets in
around a temperature TK ∼ Jα

K , where α = 1/(1 − DF ) for
small JK [see Fig. 2(b)]. Both this power-law dependence of
TK and the negative temperature-averaged values of impurity
thermodynamic properties reproduce the behaviors of a sys-
tem with a smooth (nonfractal) DOS exhibiting a singularity
ρ(ε) ∝ |ε − εF |r at the Fermi energy, where r = DF − 1 < 0.
We have verified these results numerically to arbitrarily low
temperatures.

Case (2) considers the global DOS of the critical AA
model, which has a fractal dimension DF = 0.5 and an energy
self-similarity factor b � 14. A magnetic impurity hybridiz-
ing with this DOS (amounting to a uniform coupling to
all conduction electrons of the one-dimensional host) ex-
hibits thermodynamic properties that are both qualitatively
and quantitatively consistent with the fractal strong-coupling
scenario over the temperature range that we can probe; see
Simp data labeled “AA DOS” in Fig. 2(a) and TK curves labeled
“AA” in Fig. 2(b).

Case (3) builds on intuition and insight from the fractal
strong-coupling fixed point to interpret data for the full AAA
impurity model. For individual samples representing specific
impurity locations within the host, the system appears to probe
several different fractal strong-coupling fixed points as it flows
to strong coupling, as exemplified by often-large fluctuations
in impurity thermodynamic quantities about temperature-
dependent average values. Sample-averaging the impurity
thermodynamic quantities brings out log-temperature oscil-
lations about a background value that drifts slowly with
temperature; see data labeled “AA LDOS” in Fig. 2(a).
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Importantly, the oscillations qualitatively resemble those from
case (2), implying that sample averaging is similar to working
with the global DOS. The multifractal wave functions at the
delocalization-localization transition lead to a broad distribu-
tion of Kondo temperatures, with a clear tail in its cumulative
distribution function towards vanishing Kondo coupling JK .
As a result, the mean and median Kondo temperatures differ in
the small-JK limit, although they both follow power-law forms
as shown in Fig. 2(c), indicative of a singular hybridization
function. However, in contrast to case (2), the power laws
TK ∼ Jα

K do not have α values that are simply related to a
single fractal dimension.

C. Outline of the rest of the paper

The remainder of the paper is organized as follows: Sec-
tion II defines the models studied, while Sec. III describes the
numerical methods used and the observable properties that
we compute. Sections IV, V, and VI present in turn more
detailed results from the three stages of our investigation. Dis-
cussion and conclusions appear in Sec. VII. Appendix A lays
outs the KPM+NRG approach, shows that it reproduces the
pure-NRG treatment of two specific model hosts, and yields
excellent agreement with the density-matrix renormalization
group [62] for the AAA impurity model at smaller system
sizes. Appendices B and C address other technical details.

II. MODELS

We are interested in describing a magnetic impurity with
an on-site repulsion embedded in a quasicrystalline host. One
of the simplest possible descriptions of such a host is the AA
model of a one-dimensional tight-binding chain of spin-1/2
electrons subjected to an incommensurate potential. We will
find it advantageous to make further simplifications to sepa-
rately understand the effects of a fractal energy spectrum and
multifractal wave functions, both of which occur at the critical
point of the AA model.

A. Aubry-André Anderson impurity model

The Anderson impurity Hamiltonian for an interacting im-
purity level coupled to one site (hereafter called “the impurity
site”) of an otherwise noninteracting host lattice can be written
as

HA = Hhost + Himp + Hhyb. (1)

In the AAA model, illustrated schematically in Fig. 1(a), the
host is represented by the spinful AA Hamiltonian

Hhost =
L∑
j=1

∑
σ

[
t (c†

jσ c j+1,σ + H.c.)

+ λ cos(2πQ j + φ) c†
jσ c jσ

]
, (2)

where c jσ annihilates a band electron with spin z component
σ = ↑ or ↓ at site j in a one-dimensional chain of L sites. This
AA chain [see Fig. 1(a)] has a nearest-neighbor tight-binding
hopping t and a potential with a strength λ, an incommensu-
rate wave number Q, and a phase φ that will be treated as a
random variable to be averaged over; see Fig. 1(a)].

The second term on the right-hand side of Eq. (1) is

Himp = (εd + εF )(n̂d↑ + n̂d↓) +Un̂d↑n̂d↓ + h

2
(n̂d↑ − n̂d↓),

(3)
describing a nondegenerate impurity orbital occupied by
n̂dσ = d†

σdσ electrons having spin z component σ , energy
εd measured from the host Fermi energy εF , and an on-site
repulsion U . The impurity is subjected to a local magnetic
field h that is set to zero except when calculating the local
magnetic susceptibility (Sec. III B) and certain results shown
in Appendix A 4. Finally,

Hhyb = V
∑

σ

(d†
σ cRσ + H.c.) (4)

introduces mixing between the impurity level and host lattice
site R with a hybridization matrix element V that can be taken
to be real and non-negative.

It is convenient to transform HA to the single-particle
eigenbasis {|εk, σ 〉} of Hhost, where εk is the energy eigenvalue
of a state annihilated by an operator c̄k,σ that has wave func-
tion φk,σ ( j) = 〈 j, σ |εk〉 at lattice site j. Himp is unaffected by
the basis change, while the remaining parts of HA become

Hhost =
∑
k,σ

εk c̄
†
kσ c̄kσ , (5)

Hhyb = V
∑
k,σ

[φk (R)d†
σ c̄kσ + H.c.]. (6)

The influence of the host on the impurity is completely deter-
mined by the so-called hybridization function


(ε) = πV 2
∑
k

|φk (R)|2δ(ε − εk ) ≡ πV 2ρR(ε), (7)

where ρR(ε) is the host LDOS per spin orientation at the
impurity site R, to be distinguished from the global DOS (per
spin orientation, per lattice site) ρ(ε) = L−1 ∑

k δ(ε − εk ).
For −εd , U+εd 
 V, T [60], occupancy nd = 1 over-

whelmingly predominates, localizing a spin-1/2 degree of
freedom in the impurity level. In this limit, the Schrieffer-
Wolff transformation [63] can be used to map HA to an
effective Kondo Hamiltonian

HK = Hhost + JKSimp · sR +VK
∑

σ

c†
Rσ cRσ , (8)

where VK is the strength of local potential scattering from
the impurity and JK is the local Kondo exchange coupling
between the impurity spin Simp = ∑

α,β d
†
α

1
2σαβdβ and the

host spin sR = ∑
α,β c

†
Rα

1
2σαβcRβ at the impurity site. For

simplicity, in this paper we focus on particle-hole-symmetric
impurities, i.e., εd = −U/2, for which cases the Schrieffer-
Wolff transformation gives

JK/D = 8V 2/U, VK = 0. (9)

We note that a nonzero potential scattering VK can also be
generated due to asymmetry of the hybridization function
about the Fermi energy.

In the case of the AA host, sample averaging can be per-
formed by varying the phase φ, so without loss of generality
we can couple the impurity to the middle lattice site j = R =
L/2. We apply open boundary conditions to the AA chain
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and set Q = (
√

5 − 1)/2, the reciprocal of the golden ratio.
The properties of the AA band are strongly dependent on the
filling. Following Ref. [64], we focus on a fixed band filling
(rather than a fixed chemical potential) to try to avoid the
Fermi energy falling in a large energy gap in our finite-size
simulations. Guided by this earlier paper, which identified
nongapped fillings over system sizes on the order of L = 104,
the filling of the conduction band

nc = 1

2L

L∑
j=1

∑
σ

〈c†
jσ c jσ 〉 (10)

is taken to be 0.309 per spin per site, while the half-filled case
nc = 1/2 is also studied for comparison.

A great advantage of the AA model is that its phase dia-
gram is known exactly from duality transformations [41,65]
as well as from the Bethe-ansatz for commensurate approx-
imants [66–68]. The model has a localization-delocalization
transition at λc = 2t for all eigenenergies (i.e., without a mo-
bility edge) as sketched for JK = 0 in Fig. 1(c). The LDOS
reflects this transition—e.g., through its geometric mean value
exp ln ρR [69], with the averaging taking place over both φ and
ε—allowing us to predict the low-temperature behavior of a
strongly correlated impurity on either side of the transition.
We note that averaging over impurity location or φ yield
equivalent results. Throughout the delocalized phase (λ <

λc), the host states are spatially extended, so a typical impurity
will hybridize with an LDOS that, in the thermodynamic
limit L → ∞, is featureless around ε = εF . The impurity will
therefore exhibit conventional Kondo physics, with even very
weak Kondo couplings such that ρR(εF )JK � 1 resulting in
local-moment screening at temperatures T much below a local
Kondo temperature TK ∝ exp[−1/ρR(εF )JK ]. By contrast, in
the localized phase λ > λc, the band wave functions are ex-
ponentially localized. Hence, an impurity coupled to a typical
site R will hybridize only with a discrete subset of band states
|εk〉. The smallest value of |εk − εF | over this subset defines a
gap scale εgap(R) such that 
(ε) = 0 for |ε − εF | < εgap(R).
As a result, the physics will be similar to that of a magnetic
impurity in a band insulator, where Kondo screening occurs
only if JK exceeds a threshold value, while for weaker Kondo
couplings the impurity moment becomes asymptotically free
as T → 0. This phenomenon is summarized by the schematic
RG flows in Fig. 1(c).

A complete solution of the AAA Hamiltonian at the critical
point of the AA model remains a nontrivial and challenging
task. In the following, we develop a novel numerical approach
to solve this problem by integrating the KPM for computing
the LDOS into the NRG method. The NRG and KPM methods
are both formulated for a dimensionless spectrum contained
within the interval [−1, 1]. With this in mind, we identify
the greatest particle or hole excitation energy above the Fermi
energy εF as

D = Dhost + |εF |, (11)

where Dhost = supk |εk| is the half-bandwidth of Hhost. In the
case of the AA model, both Dhost and (for nc �= 1

2 ) εF depend
on the incommensurate potential strength λ entering Eq. (2).

We then define a reduced band energy

ε̃ = (ε − εF )/D, (12)

as well as a reduced DOS, LDOS, and hybridization function

ρ̃(ε̃) = Dρ(Dε̃), ρ̃R(ε̃) = DρR(Dε̃), (13)


̃(ε̃) = D
(Dε̃)/(πV 2), (14)

all of which are unit normalized and necessarily vanish for
|ε̃| > 1. Finally, we define reduced Hamiltonians

H̃A = HA/D, H̃K = HK/D. (15)

containing reduced parameters U/D, εd/D, V/D, JK/D, and
VK/D.

The results presented in this paper were all computed for
fixed U = −2εd = D, with V being varied to control the
Kondo coupling JK . The KPM+NRG technique is restricted
to temperatures exceeding a scale set by the finite energy
resolution of the KPM. For this reason, before turning to
results for the AAA model, we first consider a simpler model
that can be studied to arbitrarily low temperatures.

B. Anderson impurity model in a fractal host

As outlined above, the effect of the host in an Anderson
impurity model is fully captured via a hybridization function
[Eq. (7)] that can be interpreted as the convolution of two
parts: an energy spectrum εk that determines the global DOS
and the probability weight |φk (R)|2 of each single-particle
eigenstate, both of which contribute to the LDOS. At the local-
ization transition point of the one-dimensional quasicrystal,
the DOS is expected to assume a fractal form while the LDOS
(and hence the hybridization function) should be multifractal.
The full multifractal AAA model will be addressed in Sec. VI.
However, we first seek insight from two examples from a sim-
pler class of Anderson impurity models having uniform fractal
hybridization functions. Such a hybridization function has a
unique value 0 < DF < 1 of the box-counting dimension

DF = lim
ε→0

logN (ε)

log ε−1
(16)

where N (ε) is the number of nonoverlapping boxes of width

ε̃ = ε required to cover the support of the reduced hy-
bridization function 
̃(ε̃).

One way to generate a fractal hybridization function is
through a finite subdivision rule, i.e., 
(ε) = liml→∞ 
l (ε)
with 
l+1(ε) = R
l (ε). Here, R is a discrete transformation
that reduces the support of a fractal approximant function,
yielding a new approximant that exhibits fractal scaling down
to a finer energy resolution.

Section IV focuses on a hybridization function

C(4M+1)(ε) described by a uniform 1/(4M + 1) Cantor
set where M is a positive integer. Starting with a flat-top

0(ε) = 1

2πV 2 �(1 − |ε/D|), where �(x) is the Heaviside
function, one forms 
l (ε) for l = 1, 2, 3 . . . by taking
each contiguous energy range over which 
l−1(ε) > 0
and performing three steps: (1) Divide the range into
4M + 1 equal-width intervals labeled 1 to 4M + 1 in
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FIG. 3. Reduced hybridization functions 
̃l (ε̃) approximating a
fractal 1/5 Cantor set: (a) Uniform initial hybridization function

̃0(ε̃). [(b)–(d)] First three approximants 
l (ε̃) formed by iteratively
dividing each interval into five equal parts labeled 1 through 5 and re-
moving the two even-numbered parts. The vertical-red-dashed lines
mark the lower bounds �−m, m = 1, 2 of the first two logarithmic
bins in the NRG discretization of the hybridization function for
discretization � = 5 and offset z = 1. For l � m, ε̃ = �−m lies at
the upper edge of an energy range in the support of 
̃l (ε̃).

order of ascending central energy. (2) Set 
l (ε) = 0
throughout each of the 2M even-numbered intervals. (3)
Set 
l (ε) = (4M + 1)(2M + 1)−1
l−1(ε) throughout the
2M + 1 odd-numbered intervals so that

∫ D
−D 
l (ε) dε = πV 2

for all l . This finite subdivision rule has been designed so that

C(4M+1)(ε) has nonvanishing integrated weight over energy
ranges arbitrarily close to ε = 0 (in contrast to the situation in
a band insulator.) Figure 3 illustrates the first three iterations
of the rule for M = 1.

Since the support of 
l (ε) consists of Nl = (2M + 1)l

subbands, each of width Wl = 2D/(4M + 1)l , Eq. (16) gives
the fractal dimension of 
C(4M+1) as

DC(4M+1) = lim
l→∞

logNl

log(D/Wl )
= log(2M + 1)

log(4M + 1)
. (17)

Another fractal characteristic of 
C(4M+1)(ε) is self-similarity
under energy rescaling about infinitely many different ref-
erence energies. For example, if ε0 lies at the center of
a retained interval beginning with approximant 
l (ε)—
and is thus also at the center of a retained interval for
all higher-order approximants—then 
(ε0 + 
ε) = 
(ε0 +

ε/(4M + 1)) for |
ε| < 3Wl/2. As we shall see, self-
similarity about the Fermi energy will be of particular
consequence for the fractal Anderson impurity problem.

Appendix B briefly treats a related class of hybridization
functions 
C(4M+3)(ε) for positive integer M that can be con-

structed by a variant of the above finite subdivision rule in
which each nonzero energy range of 
l−1(ε) > 0 is divided
into 4M + 3 equal-width windows, and one sets 
l (ε) = 0
throughout each odd-numbered interval. Such a hybridization
function has fractal dimension

DC(4M+3) = log(2M + 1)

log(4M + 3)
(18)

and is self-similar under rescalings ε → ε0 + (ε −
ε0)/(4M + 3) about ε0 = 0 and a countable infinity of other
points. Also considered in Appendix B is a hybridization
function


S(b)(ε) =
⎧⎨
⎩

πV 2

2
(1+b−1/2) b−(m+1/2) < |ε/D| � b−m,

0 otherwise,
(19)

for b > 1 and m = 0, 1, 2, . . .. This function is not fractal: it
has a box-counting dimension equal to its topological dimen-
sion of 1 and exhibits self-similarity under rescalings ε →
ε0 + (ε − ε0)/b about a single reference energy ε0 = 0. Com-
parison between properties in the strong-coupling (Kondo)
limit of the Anderson model with hybridization functions

C(4M+1), 
C(4M+3), and 
S(b) allows us to separate signatures
of fractality from ones that arise merely from self-similarity
about the Fermi energy.

The Cantor-set hybridization function has the advantage
of lending itself rather naturally to treatment using the NRG
method, allowing nonperturbative solution of the correspond-
ing Anderson impurity model down to asymptotically low
temperatures. We do not expect such hybridization functions
to occur in physical settings where the impurity is a spatially
local degree of freedom. However, there are experimentally
relevant settings in which the “impurity spin” is a spatially
nonlocal object, such as a strongly anharmonic eigenmode of
an optical resonator [61]. If we consider a degenerate Fermi
gas coupled to a nonlocal two-level system of this type, it
is plausible that the hybridization function will be roughly
proportional to the total density of states. We leave a more
detailed discussion of this potential experimental realization
to future work.

A second route to obtaining a fractal 
(ε) is for a mag-
netic impurity to hybridize with the global DOS of a critical
quasicrystalline host, rather than the LDOS that also contains
information about site-specific wave functions. Section V
addresses the Anderson model resulting from coupling an im-
purity to the global DOS of the AA model at its critical point
λ = λc = 2t . Figure 4 illustrates the DOS and one particular
LDOS for this critical host. The DOS exhibits a fractal struc-
ture [52] that can be discerned in the self-similar arrangement
of peaks that all have the same height, similar to those that
emerge from the uniform Cantor-set construction. The LDOS
shares the self-similar energy structure of the DOS, but the
peaks have different heights from one another, reflecting the
inhomogeneity of the eigenfunctions. Coupling to this LDOS
yields the multifractal Anderson impurity problem studied in
Sec. VI.
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FIG. 4. DOS and LDOS at the middle site R = L/2 for a single
realization φ = 0 of the Aubry-André model with lattice size L =
106, filling nc = 0.309, and various values of the KPM expansion
parameter NC . (a) LDOS for NC = 105 in the delocalized (λ = t)
and localized (λ = 3t) phases and at the critical point (λ = λc = 2t).
(b) Critical LDOS for different NC values. The self-similarity of the
LDOS emerges with increasing NC . (c) Log-log plots of the critical
DOS and LDOS over positive values of ε̃, with tildes denoting
reduced quantities as defined in Sec. II A. The dashed lines mark the
boundaries of NRG energy bins at ε̃ = ±�−m (m = 1, 2, 3, . . .) for
discretization parameter � = 3. Plots for ε̃ < 0 (not shown) show
very similar behavior.

III. NUMERICAL APPROACH

A. Methods

To solve each impurity model of interest we use the NRG
approach [55,56]. The reduced electronic band energy range
−1 < ε̃ < 1 is divided into bins ε̃m+1 < ±ε̃ < ε̃m, where

ε̃0 = 1, ε̃m = �1−z−m for m = 1, 2, . . . . (20)

Here, � > 1 is a dimensionless discretization parameter and
z > 0 is an offset parameter that can be averaged over to
remove certain artifacts of the energy binning [7,56,70,71];
throughout this paper, z = 1 unless explicitly stated otherwise.

The continuum of band states within each bin is replaced by a
single state: the particular linear combination of bin states that
couples to the impurity degrees of freedom. Following this
logarithmic discretization step, the Lanczos procedure [72] is
used to map the reduced Anderson Hamiltonian to the limit
N → ∞ of

H̃N = H̃imp + (V/D)
∑

σ

(d†
σ f0σ + f †

0σdσ ) +
∑

σ

H̃0,N,σ , (21)

H̃n0,N,σ =
N∑

n=n0

εn f
†
nσ fnσ

+
N−1∑
n=n0

tn( f †
nσ fn+1,σ + f †

n+1,σ fnσ )
]
, (22)

describing a nearest-neighbor tight-binding chain (the “Wil-
son chain”) with sites n0 = 0, 1, 2, . . . ,N coupled to the
impurity only at its end site 0. The annihilation operator f0σ is
identical to cRσ entering Eq. (4). (Our notation departs slightly
from, but is entirely equivalent to, that of Refs. [7,56,73].)

As reviewed in Appendix A 1, the NRG tight-binding pa-
rameters εn and tn are defined entirely in terms of zeroth and
first moments of the hybridization function over each energy
bin,

α±
m = ±

∫ ±ε̃m

±ε̃m+1


̃(ε̃) d ε̃, β±
m = ±

∫ ±ε̃m

±ε̃m+1

ε̃ 
̃(ε̃) d ε̃. (23)

Due to the separation of energy scales introduced by the
discretization parameter � > 1, the hopping coefficients de-
cay exponentially with increasing n as tn ∝ �̄−n/2. It has
previously been found that �̄ = � if 
̃(ε̃) is nonvanishing
as ε̃ approaches zero from both sides, whereas �̄ = �2 if

̃(ε̃) = 0 on one side of ε = 0 (as is the case at the top or
bottom of an electronic band, or in the treatment of a disper-
sive bosonic bath) [74]. We will find that other values of �̄

can be realized for a fractal hybridization function. Whatever
the specific value of �̄, it is useful to define a scaled hopping
coefficient

ξn = �̄n/2 tn. (24)

If 
̃(ε̃) = 
̃(−ε̃) for every ε̃, then (a) α±
m = αm and β±

m =
±βm for every m, and (b) εn = 0 for all n. Absent this strict
particle-hole symmetry, εn also decays at least as fast as
�̄−n/2.

The exponential decay of tight-binding parameters along
the Wilson chain allows a systematic, iterative solution of
a series of finite-chain problems H̃N , N = 0, 1, 2, . . .. Con-
straints of computer memory and processing time require that
only a subset of many-body the eigenstates of H̃N—typically,
the Ns states |EN,r〉 of lowest energy EN,r—be retained to
construct the basis for H̃N+1. Although it is impractical to
extend calculations to the continuum limit � → 1 and Ns →
∞, solutions of H̃N turn out to provide a good account of
thermodynamic properties at reduced temperatures T/D of
order �̄−N/2. Advantage can be taken of conserved quantum
numbers—such as the total charge (electron number measured
from half filling) and the total spin z component—to reduce
the Hamiltonian matrix into block diagonal form and thereby
reduce the computational burden of finding the eigensolution.
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For uniform Cantor-set hybridization functions, the inte-
grals in Eqs. (23) can be computed for approximants 
̃l (ε̃) of
increasing l . Within a fairly small number of iterations, one
reaches converged values for the tight-binding coefficients for
low-numbered Wilson-chain sites and can infer the l → ∞
asymptotes of tn and εn for larger n.

For an AA host, especially at criticality, finding the energy
eigenstates of a sufficiently large system, then constructing
the hybridization function and obtaining its moments over
logarithmic bins in order to compute the tight-binding param-
eters of the NRG Wilson chain, becomes a computationally
prohibitive task. An alternative to exact diagonalization of the
host Hamiltonian is the KPM [57], an efficient and stable
numerical technique that can be used to represent the spec-
tral density of large matrices as an expansion in Chebyshev
polynomials. The representation requires the spectrum to be
rescaled to lie within [−1, 1], which can be accomplished as
described at the end of Sec. II A. After this rescaling, the KPM
representation of the reduced hybridization function is


̃(ε̃) = 1

π
√

1 − ε̃2

(
g0μ0 + 2

NC−1∑
n=1

gnμnTn(ε̃)

)
, (25)

where Tn(x) is the nth Chebyshev polynomial of the first kind
and

gn = 1

NC + 1

[
(NC + 1 − n) cos

πn

NC + 1
(26)

+ sin
πn

NC + 1
cot

π

NC + 1

]
(27)

is a coefficient of the Jackson kernel that is used to remove
the Gibbs phenomenon created by truncating the series after
NC terms [57]. With this kernel, the KPM expansion has an
energy resolution near ε̃ = 0 of

δε̃ = π/NC . (28)

When the hybridization function is computed using the
LDOS at the impurity site R, the moments of the expansion
that must be computed are

μn = 〈R, σ | Tn(H̃host ) |R, σ 〉 , (29)

where |R, σ 〉 (for σ = ↑ or ↓) is a single-particle host
state at the impurity site, and for any single-particle state
|α〉, |αn〉 ≡ Tn(H̃host ) |α〉 can be computed via a set of re-
cursion relations |α0〉 = |α〉, |α1〉 = H̃host |α0〉, and |αn〉 =
2H̃host |αn−1〉 − |αn−2〉 for n � 2.

If the hybridization is instead calculated in terms of the
global DOS, one replaces Eq. (29) by

μn = 1

L
Tr[Tn(H̃host )], (30)

where L is the number of host lattice sites and the trace can
be approximated by stochastic evaluation with random vectors
Nr [75–77]. Our computations used Nr = 100 random vectors,
leading to a relative error in μn of order 1/

√
LNr , and we take

L = 106 throughout, unless otherwise specified.
Appendix A shows how Eq. (25) can be analytically com-

bined with the NRG to yield α±
m and β±

m as weighted sums
over terms in the KPM expansion. This circumvents any nu-
merical integration of the hybridization function and provides

a convergent and controlled evaluation of the Wilson-chain
coefficients. The accuracy of this approach is tested in
Appendix A 3 against analytic calculation of the NRG tight-
binding parameters for one particularly tractable hybridization
functions and in Appendix A 4 against density-matrix RG
results for the AAA model.

B. Observables

Our results focus on a pair of impurity thermodynamic
properties, each expressed as the difference Ximp = Xtot − X (0)

tot
between Xtot, the total value of a quantity X in the coupled
impurity-host system, and X (0)

tot , its counterpart for the same
host in the absence of the impurity. The first property of
interest is the impurity spin susceptibility defined through
[60] χtot(T ) = β(〈S2

tot,z〉 − 〈Stot,z〉2), where β = 1/T and Stot,z

is the total spin-z component: Stot,z = Simp,z + 1
2

∑
n( f †

n↑ fn↑ −
f †
n↓ fn↓) with Simp,z = 1

2 (n f↑ − n f↓) being the z component of
the impurity spin operator defined after Eq. (8) [78]. We also
consider the impurity entropy defined via Stot = β 〈H〉 + ln Z ,
where H is the Hamiltonian and Z = Tr exp(−βH ) is the
grand canonical partition function for zero chemical poten-
tial [after the rescaling in Eq. (12)]. Although Xtot and X (0)

tot
are both expected to be non-negative, nothing prevents their
difference χimp from assuming negative values.

In the NRG treatment, Z = ∑
r exp(−βEN,r ) and Xtot =

Z−1 ∑
r exp(−βEN,r ) 〈N, r|X |N, r〉 for the coupled host-

impurity system are evaluated as traces over many-body
eigenstates |N, r〉 having energies EN,r . The NRG spectrum at
iteration N is used to compute Xtot at temperatures TN (β̄ ) �
�̄−(N−1)/2/β̄ [60] where β̄ is of order 1 [55,56]; the re-
sults presented in this paper were computed for β̄ = 0.9 and
0.9�̄−1/2. The corresponding quantity X (0)

tot can be calculated
in terms of single-particle eigenvalues of the Wilson chain, as
described in more detail in Sec. IV B.

In conventional metallic hosts, the many-body screening
of an Anderson impurity degree of freedom reveals itself in
a monotonic reduction of the impurity entropy from a value
Simp � ln 2 at intermediate temperatures (where the impurity
occupancies nd = 0 and 2 initially become frozen out) toward
limT→0 Simp = 0. There is a parallel, monotonic reduction of
Tχimp (which can be interpreted as being proportional to the
square of the effective impurity moment) from 1/4 toward 0.
In such canonical settings—and in the limit of temperature T
and nonthermal parameters such as frequency ω and magnetic
field B that are all small compared with the half-bandwidth
D—each physical property is solely a function of T/TK , ω/TK ,
B/TK , etc. Here, the Kondo temperature TK serves as the sole
energy scale describing the approach of impurity properties
toward their values in the Kondo strong-coupling ground state.
Moreover TK can be defined as the temperature at which a cho-
sen property crosses through a threshold value en route from
local-moment to strong-coupling behavior, with one common
convention being [55]

TKχimp(TK ) = 0.0701. (31)

For the present paper, we find it preferable to adopt in place
of Eq. (31) the alternative definition

TKχloc(TK ) = 0.0701, (32)
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where

χloc(T ) = −∂ 〈Simp,z(T, h)〉
∂h

∣∣∣∣
h=0

= lim
h→0

−〈Simp,z(T, h)〉
h

,

(33)
is the static local spin susceptibility describing the response
to the local magnetic field h entering Eq. (3). In the Kondo
regime of conventional metallic hosts [79],

χimp(T ) = [1 + ρ(εF )JK + . . .] χloc(T ), (34)

making Eqs. (31) and (32) essentially equivalent. However,
in hosts where the hybridization function vanishes [7,80] or
diverges [81] continuously on approach to the Fermi energy, it
is the approach of Tχloc to zero from above that signals Kondo
screening of the impurity local moment, while Tχimp can
exhibit nonmonotonic temperature variation and/or approach
a nonvanishing T = 0 limit. As will be seen in Secs. IV–
VI, impurities in fractal and multifractal hosts exhibit rather
similar behaviors, leading us to define the Kondo temperature
through the local susceptibility.

IV. UNIFORM CANTOR SET SPECTRA

This section presents results for the Anderson impurity
model with a uniform Cantor set 
(ε). A hybridization func-
tion of this type is made up of an uncountably infinite number
of points, contains no interval of nonzero length, and has zero
measure over its entire range |ε| � D. The relative simplicity
of the finite subdivision rules for creating Cantor sets allows
an NRG treatment of the Anderson impurity model down to
asymptotically low temperatures. The considered hybridiza-
tion functions satisfy 
(ε) = 
(−ε). Except where explicitly
stated to the contrary, we assume that the Fermi energy is
located at εF = 0 so the reduced hybridization function obeys

̃(ε̃) = 
̃(−ε̃).

Section II B specifies a finite subdivision rule for creating
the level-l approximant 
l (ε) to 
C(4M+1)(ε) with M a pos-
itive integer. Since 
l (ε) > 0 for all |ε| < D/(4M + 1)l , a
host described by this hybridization function behaves like a
conventional metal on temperature and energy scales much
smaller than D/(4M + 1)l . For energies ε such that D/(4M +
1)l � |ε| � D, by contrast, 
l (ε) has a hierarchy of gaps of
widths ranging from 2D/(4M + 1)l to 2D/(4M + 1). In the
limit l → ∞, this gap structure extends all the way down to
ε = 0.

We show in this section that on a coarse-grained level
defined by a specific choice of NRG discretization param-
eter, namely � = 4M + 1, 
C(4M+1)(ε) is equivalent to a
continuous hybridization function that diverges on approach
to ε = 0 according to a power law that reflects the fractal
dimension of the 1/(4M + 1) Cantor set. However, when �

is reduced toward 1 to explore the continuum (nondiscretized)
limit of the Anderson impurity model, one finds—as de-
tailed in Appendix B 1—that the hierarchical gap structure of

C(4M+1)(ε) creates additional structure in the n dependence
of the Wilson-chain coefficients tn and εn entering Eq. (22). By
calculating the single-particle eigenvalues of the Wilson-chain
Hamiltonian, we identify a fractal strong-coupling limit of
the Anderson/Kondo model with a Cantor-set hybridization
function. This regime exhibits thermodynamic signatures that

distinguish it from those obtained for a divergent continuous

(ε). The section ends with full NRG many-body results
showing how thermodynamic properties evolve with decreas-
ing temperature toward the fractal strong-coupling limit. The
focus throughout will be on the uniform 1/5 Cantor set,
with brief mention of results for C(4M + 1) with M > 1 and
two other families of self-similar hybridization functions dis-
cussed in Appendix B.

A. Wilson-chain description of Cantor-set
hybridization functions

The tight-binding coefficients εn and tn entering Eq. (22),
the Wilson-chain description of Hhost, are fully determined by
the set of moments α±

m and β±
m defined in Eqs. (23). Since


l (ε) = 
l (−ε) for every approximant to 
C(4M+1)(ε), we
need only compute αm = α±

m and βm = ±β±
m , with symmetry

dictating that εn = 0 for all n.
The NRG mapping of a hybridization 
(ε) can be per-

formed using any value � > 1 of the Wilson discretization
parameter. However, the self-similarity of 
C(4M+1) most
clearly reveals itself by considering

�k = (4M + 1)1/2k for k = 0, 1, 2, . . . (35)

In practice, NRG calculations will be performed for small
values of k, but allowing for k → ∞ provides a route for
approaching the continuum limit � = 1.

1. � = 4M + 1 Wilson chain: Equivalence to a power-law
divergent hybridization function

For an offset parameter z = 1 entering Eq. (20), the
choice � = 4M + 1 places the NRG bin boundaries ±ε̃m at
the upper/lower edges of the central nonvanishing range of

̃m(ε̃), as illustrated in Fig. 3 for M = 1 and m = 1, 2. A con-
sequence of this alignment is that αm and βm cease to change
with increasing l once l > m. Due to the self-similarity of

̃C(4M+1)(ε̃) under ε̃ → ε̃/(4M + 1), it is straightforward to
see that for l → ∞ and for m � 0,

αm[C(4M + 1)] = M

(2M + 1)m+1
,

βm[C(4M + 1)] = 2M(M + 1)

[(2M + 1)(4M + 1)]m+1
. (36)

It is instructive to compare Eqs. (36) with the corre-
sponding moments for a continuous, power-law-divergent
hybridization function 
P(r) that has the reduced form


̃P(r)(ε̃) = 1

2
(1 + r)|ε̃|r (37)

with −1 < r < 0 [81]:

αm[P(r)] = �1+r − 1

2�(m+1)(1+r)
,

βm[P(r)] = (1 + r)(�2+r − 1)

2(2 + r)�(m+1)(2+r)
. (38)

For � = 4M + 1, αm[P(r)] becomes identical to αm[C(4M +
1)] provided that

r = log(2M + 1)

log(4M + 1)
− 1 = DC(4M+1) − 1, (39)
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where DC(4M+1) is the fractal dimension of the 1/(4M + 1)
Cantor set given in Eq. (17). This choice also yields

βm[C(4M + 1)]

βm[P(r)]
= 2(M + 1)

4M + 3

[
1 + log(4M + 1)

log(2M + 1)

]
≡ a4M+1.

(40)

Examination of Eqs. (A2)–(A5) shows that the Wilson-
chain representations of the two hybridization functions must
satisfy tn[C(4M + 1)]/tn[P(r)] = a4M+1, an overall multi-
plicative factor that can be absorbed into rescaling of the
half-bandwidth D and the impurity parameters U , εd , and V .
In both cases, the hopping parameters satisfy

lim
n→∞ �n/2tn =

{
t∗ for n even,

t∗�−r/2 for n odd.
(41)

This is precisely the relation reported in Eq. (3.3) of Ref.
[7] for positive values of r describing a power-law vanishing
of the hybridization function at the Fermi energy—a case to
which Eqs. (38) also apply.

The preceding analysis of Wilson-chain coefficients leads
to the conclusion that a � = 4M + 1, z = 1 NRG treatment
of the 
C(4M+1) hybridization function will yield properties
equivalent to a � = 4M + 1, z = 1 NRG treatment of a con-
tinuous hybridization function 
P(DC(4M+1)−1). As a result, the
integrals α±

m and β±
m over bin m [see Eqs. (23)] acquire a sim-

ple power-law dependence on the index m. Appendix B shows
that the same equivalence exists between the � = 4M + 3,
z = 1 NRG treatments of 
C(4M+3) and 
P(DC(4M+3)−1), as well
as between the � = b, z = 1 NRG treatments of 
S(b) and

P(0) (i.e., a flat-top hybridization function).

2. Approaching the continuum limit � = 1

The equivalence between the � = 4M + 1, z = 1
NRG treatments of hybridization functions 
C(4M+1) and

P(DC(4M+1)−1) arises because this particular combination of �

and z perfectly aligns the logarithmic energy bins with the
self-similarity of the fractal hybridization function about the
Fermi energy. Each bin boundary ε̃m in Eq. (20) coincides
exactly with the top of a subband (see Fig. 3). Alignment of
the NRG bin boundaries with subband edges is disrupted by
a change in � and/or z. Thus, we expect such a change to
cause the NRG description of 
C(4M+1) to deviate from that
of 
P(DC(4M+1)−1).

Appendix B discusses the evolution of the Wilson-chain
hopping coefficients tn for the uniform 1/5 Cantor set as one
progresses through the sequence of discretizations specified
in Eq. (35). The Appendix also summarizes observations
concerning the tn coefficients for two other families of hy-
bridization functions. This analysis leads to the following
conclusions concerning the NRG discretization of any hy-
bridization function that (a) is particle-hole symmetric, i.e.,

̃(ε̃) = 
̃(−ε̃), and (b) satisfies the discrete self-similarity
property 
̃(ε̃) = 
̃(ε̃/b) = 
̃(ε̃/b2) = . . . for all |ε̃| below
some upper cutoff and for b taking some smallest value greater
than 1 (to exclude a constant hybridization):

(1) If � = b1/p with p being a positive integer, then 
̃(ε̃)
is nonzero for at least some energies within q > 0 of the p
NRG energy bins that cover each energy range b−z−m′

< ε̃ <

b1−z−m′
, with q taking the same value for all positive integers

m′. The scaled hopping coefficients ξn defined in Eq. (24) with
�̄ = b1/q ≡ �p/q satisfy limn→∞ ξn+2q = ξn, or equivalently

lim
n→∞ tn+2q/tn = 1/b. (42)

(2) For generic values of � that are not roots of b, the scaled
hopping coefficients ξn do not exhibit exact periodicity. We
conjecture that there exists a �̄ = bq1/q2 , where q1 and q2 are
positive integers, such that the scaled hopping coefficients ξn
defined in Eq. (24) remain within a bounded range, neither
diverging nor vanishing as n → ∞.

One can regard 2q as a measure of the complexity of
the hybridization function: the number of hopping coeffi-
cients required to faithfully describe 
̃(ε̃) over a factor of
b change in energy when coarse-graining with a discretiza-
tion parameter � = b1/p. As � → 1+ (i.e., p → ∞), one
expects 2q to diverge, reflecting the increasing structure of
the Cantor-set hybridization function when viewed with an
ever-finer energy resolution 
(log ε) = log �. In this way,
the fractal nature of the hybridization function is encoded in
the Wilson chain and thereby makes its way into physical
observables. By contrast, the Wilson-chain hopping coeffi-
cients for a power-law hybridization function obey Eq. (41),
or equivalently, limn→∞ tn+2/tn = 1/�, where the complexity
remains constant at 2q = 2 but the right-hand side approaches
1 in the continuum limit due to the absence of any intrinsic
self-similarity scale.

The remainder of Sec. IV explores manifestations of self-
similarity and fractality in thermodynamic properties. We
begin in Sec. IV B by analyzing the low-temperature limit,
while higher-temperature crossover phenomena will be the
focus of Sec. IV C.

B. Strong-coupling limit

The strong-coupling limit of the Anderson impurity model
is reached when V → ∞ for finite values of U and εd . In a
metallic host, the strong-coupling RG fixed point describes
the asymptotic low-temperature physics for any nonzero bare
value of the hybridizationV [82,83]. In a gapped host [84] or a
semimetal [7,9,12,73,85–87], strong coupling is reached only
if the bare value of V exceeds a critical value; otherwise, the
zero-temperature limit is described by a free-local-moment
RG fixed point at which the impurity retains an unquenched
spin-1/2 degree of freedom. The central goal of the present
paper is to understand the fate of an impurity spin in a fractal
or multifractal host.

We begin by focusing on situations exhibiting strict
particle-hole symmetry, where U = −2εd and 
̃(ε̃) =

̃(−ε̃). At strong coupling, the degrees of freedom in the
impurity level and on site 0 of the Wilson chain become
frozen out through some superposition of spin singlet forma-
tion (i) between two electrons in the impurity level with site
0 unoccupied, (ii) between two electrons on site 0 with an
empty impurity level, and (iii) between one electron each in
the impurity level and on chain site 0 [82]. The remainder
of the Wilson chain is effectively free, so the reduced NRG
Hamiltonian describing the strong-coupling limit is H̃ (SC)

N =∑
σ H̃1,N,σ with H̃1,N,σ defined in Eq. (22). Since H̃ (SC)

N is
quadratic, it is numerically straightforward (at least for N
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TABLE I. Comparison between oscillatory components of strong-coupling impurity thermodynamic properties [Eqs. (46)–(48)] for an
r = DC(5) − 1 � −0.3174 power-law hybridization function and a uniform 1/5 Cantor-set [or C(5)] hybridization function, both at half filling
(i.e., for Fermi energy εF = 0): Variation with NRG discretization � of the amplitudes AX (for NRG offset z = 1) and phases φX (z) (for
z = 1, 0.5) entering Eq. (48) for the magnetic susceptibility (X = Tχ ) and the entropy (X = S). The oscillations have base b = � for the
power law and b = 5 for the Cantor set. The phase difference 
φ(z) = φS (z) − φTχ (z) takes the same value for z = 1 and 0.5 to within the
uncertainty of estimates (which is ±1 or better in the last digit).

Power law r = DC(5) − 1 Cantor set C(5)

� ATχ AS φTχ (1) φTχ (0.5) 
φ ATχ AS φTχ (1) φTχ (0.5) 
φ

5 0.012002 0.12786 1.6338 4.7754 0.7104 0.012002 0.12786 0.2965 0.2965 0.7104
51/2 9.87 × 10−5 5.87 × 10−4 0.3122 3.4538 1.9724 0.012002 0.12786 0.2965 0.3548 0.7104
51/4 2.09 × 10−9 1.24 × 10−8 2.935 6.077 0.852 0.010227 0.10894 0.3548 0.4017 0.7104
51/8 0.009741 0.10377 0.4078 0.4252 0.7104
51/16 0.009540 0.10163 0.4268 0.4283 0.7104

up to a few hundred) to find its single-particle eigenvalues
η(1,N )
n , n = 1, 2, . . . ,N . The host by itself is described by

another quadratic NRG Hamiltonian H̃ (0)
N = ∑

σ H̃0,N,σ with
single-particle eigenvalues η(0,N )

n , n = 0, 1, 2, . . . ,N . One
can therefore compute the strong-coupling impurity contri-
bution to a thermodynamic property X for temperatures T �
D�̄−N/2 as

X (SC)
imp (T ) ≡ X (SC)

tot (T ) − X (0)
tot (T )

= X (1,N, 1/T ) − X (0,N, 1/T ), (43)

with the magnetic susceptibility of a Wilson chain consisting
of sites n0 through N being given by

Tχ (n0,N, β ) = 1

8

N∑
n=n0

sech2
(
βDη(n0,N )

n /2
)

(44)

and the corresponding entropy by

S(n0,N, β ) = 2
N∑

n=n0

{
ln

[
1 + exp

(
−βDη(n0,N )

n

)]

+βDη(n0,N )
n

[
exp

(
βDη(n0,N )

n

)
+ 1

]−1
}
. (45)

We have evaluated these strong-coupling properties for the
first five members of the sequence � = 51/2k in the NRG
treatment of the 
̃C(5)(ε̃) hybridization function as well as the
continuous, divergent 
̃P(DC(5)−1)(ε̃). For � = 5 and z = 1, as
discussed in Sec. IV A 1, the Wilson chains describing 
̃C(5)

and 
̃P(DC(5)−1) are related by tn[C(5)] = a5tn[P(r)], where
a5 � 1.409 is defined in Eq. (40). Since the Wilson chain
encodes all relevant information about the host, for the � = 5,
z = 1 discretization the strong-coupling thermodynamic prop-
erties for the uniform 1/5 Cantor set at temperature T must
be identical to those of the r = DC(5) − 1 power-law problem
at temperature a5T . In both cases, the properties have an
oscillatory temperature dependence

Ximp(T ) = X (SC, r)
imp + fX (�,T ), (46)

where

Tχ
(SC, r)
imp = r/8, S(SC, r)

imp = 2r ln 2 (47)

are the continuum-limit strong-coupling values for the power-
law hybridization function [81], while

fX (T ) � AX sin[2π logb(T/D) + φX ], (48)

with b to be defined shortly. For r < 0, Eq. (47) yields a
negative impurity entropy. The occurrence of Simp(T ) < 0
violates no fundamental thermodynamic principle; it just in-
dicates that at temperature T , the total entropy of the coupled
host-impurity system is less positive than the total entropy of
the host by itself.

For hybridization functions that are featureless near the
Fermi energy, log T oscillations are known (20) to be artifacts
of the NRG discretization [71] that have (a) base b = �, (b)
an amplitude AX ∝ exp(−π2/�), and (c) a phase φX (z) =
φX (0) + 2πz that allows removal of the oscillations by aver-
aging over the offset parameter z entering Eq. (20). Similar
characteristics hold for power-law hybridization functions
from the class defined in Eq. (37). Table I lists parameters
of the oscillatory term in the magnetic susceptibility and the
entropy for the r = DC(5) − 1 � −0.3174 power law. The am-
plitudes ATχ and AS entering Eq. (48) fall off rapidly as � is
reduced, with the oscillations becoming almost undetectable
for � � 51/4. The table also shows that the phase φTχ differs
by π for offset parameters z = 1 and z = 0.5, allowing the os-
cillations to be largely removed, even for � = 5, by averaging
each property over just these two z values.

Table I demonstrates that the thermodynamics for 
̃C(5)(ε̃)
evolve very differently along the sequence �k defined in
Eq. (35). With increasing k, (a) the oscillation period remains
pinned at base b = 5, (b) the amplitudes ATχ and AS appear
to approach nonzero limiting values, and (c) the phases φTχ

and φS approach the same values for z = 1 and 0.5, pre-
cluding elimination of the oscillations by averaging over z.
(The equivalence between the � = 5 Wilson chains for 
̃C(5)

and 
̃P(DC(5)−1 ) holds only for z equal to an integer. For any
noninteger value of z, the two hybridization functions have
very different Wilson-chain coefficients.) Even though there
is some change of φTχ with � and z, φS − φTχ varies very
little. These observations indicate that the log T oscillations
are not merely artifacts of the NRG technique, but intrinsic
features of the fractal strong-coupling fixed point that survive
in the continuum limit � → 1.

The uniform Cantor-set hybridization functions

̃C(4M+3)(ε̃) discussed in Appendix B 2 are self-similar
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under an energy rescaling ε̃ → ε̃/(4M + 3). We have
verified that the case M = 1 leads to sinusoidal oscillations
of strong-coupling impurity thermodynamic properties as
functions of logb T with base 4M + 3 = 7 about average
values corresponding to a power-law hybridization function
with r = DC(7) − 1 � −0.4354. The oscillations appear to
approach a nonzero amplitude in the continuum limit � → 1.
The amplitude of the C(7) oscillations for � = 71/16 is
approximately twice the amplitude of the C(5) oscillations
for � = 51/16.

We have also determined numerically that the nonfractal
self-similar hybridization function 
̃S(b) defined in Eq. (19)
has strong-coupling impurity thermodynamic properties that
oscillate as functions of logb T about average values of zero.
For b = 5 and 7 with � = b1/16, the S(b) oscillation ampli-
tudes are approximately 90% of those for C(b). Strikingly,
the phase difference φS − φTχ is the same for S(b) and C(b).
Analysis of S(b) over the range 2 � b � 7 suggests that the
amplitudes go as AX ∝ exp(−const./b2).

So far, this section has focused on strong-coupling prop-
erties under conditions of strict particle-hole symmetry. In a
metallic host—which can be thought of as corresponding to a
power-law hybridization function with exponent r = 0—there
is not a single strong-coupling fixed point, but rather a line of
them described by a family of effective Hamiltonians

H̃SC
N (V ) =

∑
σ

(
H̃0,N,σ + ṼK,eff f

†
0σ f0σ

)
(49)

parameterized by an effective potential scattering at the im-
purity site that can take any value −∞ � ṼK,eff � ∞ [82].
Different degrees of particle-hole symmetry in the bare
problem—tuned, for instance, by the impurity level asym-
metry 2εd +U and/or the position of the Fermi energy
εF—result in flow to different strong-coupling fixed points.
The particle-hole-symmetric fixed point H̃SC

N introduced ear-
lier in the section corresponds to ṼK,eff = ±∞ plus a shift
of ∓1 in the total charge quantum number. By contrast, in
a host that has a power-law-divergent hybridization function

̃r<0, particle-hole asymmetry is irrelevant in the strong-
coupling regime (so long as the hybridization divergence
remains pinned to the Fermi energy) [81].

For Cantor-set hybridization functions 
̃C(b) with b =
4M + 1 or 4M + 3, we find that particle-hole asymmetry,
particularly as controlled by the location of the Fermi energy,
plays a role different from that for r = 0 and r < 0. Most
importantly, for all cases studied where εF lies at a point in the
Cantor set, we find Simp and Tχimp to exhibit logb T oscilla-
tions about the values expected for an r = DF − 1 power-law
hybridization function. The amplitude of the oscillations is
greatest when εF lies at a high-symmetry point corresponding
to the center of one of the retained intervals in all approximant
hybridization functions 
̃l ′ (ε̃) for l ′ � l , in which case 
̃(ε̃)
is particle-hole symmetric for |ε̃| < 3b−l . The oscillation am-
plitude is smallest when εF lies at the upper/lower edge of an
interval in some 
̃l (ε̃), where 
̃(ε̃) exhibits a gap spanning
0 < ±ε̃ < 2b−l but has an integrated weight of (2M + 1)−l

over 0 � ∓ε̃ � 2b−l . Cases where εF lies at a more generic
point in the Cantor set lead to oscillations of intermediate
amplitude. Both the amplitude AX and phase φX entering

Eq. (48) seem to take the same values for all locations of εF
corresponding to a given type (interval center, interval edge,
or other location) but to differ between types. At this stage,
we cannot rule out further subdivision of one or more of these
three types of location. However, we have found no sign of
any variation in either the oscillation period or the average
values about which the oscillations occur.

The results reported in this section point to the existence
of a fractal strong-coupling fixed point for fractal hybridiza-
tion functions having an exact self-similarity about the Fermi
energy: 
̃(ε̃) = 
̃(ε̃/b) for all |ε̃| smaller than some upper
cutoff and for b having some smallest value greater than 1.
At this fixed point, the impurity contributions to the mag-
netic susceptibility and entropy vary periodically in logb T
around negative average values. These oscillations, whose
amplitude grows with increasing b, can be attributed to the
self-similarity of the hybridization function. The negative av-
erage values result from a coarse-grained equivalence between
a hybridization with fractal dimension DF < 1 and a power-
law hybridization function with a negative exponent

r = DF − 1. (50)

These features of the strong-coupling thermodynamic prop-
erties serve as a signature of host fractality in Anderson and
Kondo problems.

C. NRG results

Having resolved the strong-coupling thermodynamic prop-
erties of an Anderson impurity in a host with a uniform
Cantor-set hybridization function via analysis of quadratic
fixed-point Hamiltonians, we now turn to the full tempera-
ture dependence obtained via NRG many-body solutions of
Eqs. (21) and (22).

Figures 5(a) and 5(b) respectively plot Tχimp and Simp

as functions of temperature for the uniform 1/5 Cantor-
set hybridization 
C(5) with fixed impurity parameters U =
−2εd = D, V = 0.05D, and the band discretizations � =
51/2k , k = 0, 1, 2, 3 discussed in Sec. IV A 2. With de-
creasing temperature, the system crosses over around T ∼ U
from a free-impurity regime characterized by Tχimp � 1/8,
Simp � ln 4 to a local-moment regime in which Tχimp � 1/4
and Simp � ln 2. Upon further decrease in the temperature,
there is a second crossover to the strong-coupling regime
analyzed in Sec. IV B, in which the properties oscillate about
the values Tχimp � −0.040 and Simp � −0.44 correspond-
ing to Eqs. (47) for a power-law hybridization function with
r = DC(5) − 1 � −0.3174. The insets to Figs. 5(a) and 5(b)
show the data over the lowest temperature range on a magni-
fied scale. With increasing k, one observes a convergence of
the full NRG results at low temperatures toward the strong-
coupling properties (solid black lines) calculated within the
single-particle analysis of Sec. IV B.

Figures 5(c) and 5(d) show impurity thermodynamic prop-
erties for the same case U = −2εd = D, but with fixed � =
51/4 and a range of different hybridizations V . With increas-
ing V , the high-temperature crossover from free-impurity to
local-moment behavior at first becomes less pronounced, with
Tχimp not rising as close to 1/4 and Simp showing a less
pronounced plateau near ln 2; there remain clear signs of a
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FIG. 5. Temperature dependence of impurity thermodynamic
properties for an Anderson impurity with U = −2εd = D and a
uniform 1/5 Cantor-set hybridization function: (a) Magnetic suscep-
tibility Tχimp and (b) entropy Simp for hybridization V = 0.05D and
different NRG discretizations � = 5 (equivalent to 51/2), 51/4, and
51/8, retaining up to 1000, 15 500, and 31 000 many-body eigenstates,
respectively. Solid-black curves plot strong-coupling fixed point
properties computed via Eq. (43) with � = 51/16, while dashed-black
lines represent the local-moment value Simp = ln 2 and the strong-
coupling values [Eqs. (47)] for a power-law hybridization [Eq. (37)]
with exponent r given in Eq. (39). Insets show the low-temperature
properties on a magnified scale. (c) Tχimp and (d) Simp for � = 51/4

and V/D spanning 0.05 (top curve) to 1.6 (bottom). Black lines are
as in (a) and (b).

second crossover, representing Kondo screening of an impu-
rity moment, with a Kondo scale that can be defined through
Eq. (31). For larger hybridizations, by contrast, signatures of
a local-moment regime disappear, to be replaced by a direct
crossover from the free-impurity regime to strong coupling. In
all cases, however, the asymptotic low-temperature behavior
is the strong-coupling regime analyzed in Sec. IV B.

To summarize Sec. IV, the low-temperature behavior of a
magnetic impurity coupled to a uniform Cantor-set hybridiza-
tion function is governed by a fractal strong-coupling fixed
point with properties that reflect both the self-similarity and
the fractal dimension of the host spectrum. Self-similarity of
the spectrum under multiplicative rescaling ε − εF → (ε −
εF )/b manifests in periodic oscillations of impurity thermo-
dynamic quantities with logb T , while the fractal dimension
DF < 1 causes these oscillations to occur about negative mean
values identical to those for a power-law hybridization func-
tion [Eq. (37)] with an exponent given by Eq. (50).

Self-similarity under multiplicative rescaling is a general
feature of fractals, suggesting that the results of this sec-
tion extend, at least qualitatively, to other fractal hosts. We
next consider an Anderson impurity coupled to DOS of the
critical AA model, which has a fractal form that can be
described by a nonuniform subdivision rule, and show that
in this case too the low-temperature physics is described by
fractal strong coupling (both at and away from particle-hole
symmetry).

V. FRACTAL SPECTRUM OF THE AUBRY-ANDRÉ MODEL

This section presents results for the Anderson impurity
model with a hybridization function 
AA(ε) set by the global
DOS of a critical AA model defined in Eq. (2) with Q =
(
√

5 − 1)/2 and λ = 2t . The spectrum for this critical AA
model can be reproduced by iterated nonuniform subdivision
of the bandwidth according to rules [52] that (i) are consider-
ably more complicated than those that generate 
C(4M+1) and

C(4M+3) treated in Sec. IV and (ii) reveal self-similarity of
the DOS under rescaling of energies by a factor b = 13.74.

Figure 6 show numerical results based on exact diagonal-
ization of Q = (

√
5 − 1)/2, λ = 2t AA chains up to length

L = 2 × 104. These box-counting data lead to the conclusion,
via Eq. (16), that the spectrum has fractal dimension DAA =
0.5000 ± 0.0015. Therefore, study of 
AA(ε) provides a nat-
ural bridge between the fractal “toy” models investigated in
Sec. IV and the full AAA model (to be treated in Sec. VI)
that has a distribution of fractal dimensions due to sampling
of multifractal wave functions by the LDOS.

Whereas in Sec. IV it was possible to obtain the Wilson-
chain coefficients analytically or via relatively straightforward
computation, for 
AA we must rely on numerically intensive
methods. We employ the KPM+NRG approach described
in Sec. III A and Appendix A to compute the hybridization
function in Eq. (7) for a system size of L = 106, sufficiently
large that the lowest temperature that can be reached is set
not by the level spacing � 4t/L but rather by the KPM energy
resolution [Eq. (28)] associated with the finite expansion order
NC = 105. Since the global density of states is unaffected by
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FIG. 6. Box-counting for the Aubry-André spectrum at the crit-
ical point λ = 2t : Number N of nonoverlapping boxes required to
cover the spectrum vs box width ε for fixed φ = 0, based on exact
diagonalization for various lattice sizes L labeled in the legend. The
dashed line marks linear regression of the L = 2 × 104 data over the
range between the red stars, with a slope −0.5000 ± 0.0015.

the random phase of the potential it suffices to consider a
single phase choice φ = 0. We consider both a particle-hole-
symmetric band corresponding to filling [Eq. (10)] nc = 1/2
as well as an asymmetric case nc = 0.309. It should be noted
that the half-bandwidth D defined in Eq. (11) depends on λ

and also on nc. Throughout this section and Sec. VI we omit
plots of Tχimp vs T because the magnetic susceptibility data
do not add materially to the physical understanding that can
be drawn just from Simp.

Figure 7(a) plots the temperature dependence of Simp for
U = −2εd = D, nc = 0.5, and a range of different hybridiza-
tions V , while Fig. 7(b) shows its nc = 0.309 counterpart.
In each case, Simp approaches its value at the fractal strong-
coupling fixed point, oscillating about the negative value given
by Eq. (47) with r = DAA − 1 = −0.5. The oscillations are
approximately sinusoidal in logT with a period log b that
reflects the self-similarity of the AA spectrum under rescaling
of energies by a multiplicative factor b = 13.72 [52]. The
oscillation amplitude is greater than seen for the 1/5 Cantor
set in Fig. 5, for which the self-similarity factor is b = 5. This
is consistent with our finding for the models studied in Sec. IV
that the amplitude grows with increasing self-similarity fac-
tor. While the amplitude and period of the strong-coupling
oscillations is the same to within our numerical resolution
for nc = 0.5 and nc = 0.309 (respectively at and away from
particle-hole symmetry), the phase differs between the two
cases, reminiscent of the sensitivity to the location of the
Fermi energy discussed in Sec. IV B.

Figure 7 shows that with decreasing hybridization strength,
the fractal strong-coupling fixed point is approached at ever
lower temperatures. We estimate the effective Kondo tem-
perature for this crossover from the local spin susceptibility
χloc, which (as mentioned in Sec. III B) tends to have a sim-
pler temperature variation in fractal hosts than χimp. Figure 8
shows Tχloc vs T for different values of V , both for hy-
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FIG. 7. Impurity entropy Simp vs T for an Anderson impurity
havingU = −2εd = D hybridizing with the global DOS of a critical
Aubry-André chain consisting of L = 106 sites at filling (a) nc =
0.5 with half-bandwidth D = 2.60t , (b) nc = 0.309 with D = 4.53t .
KPM+NRG results for V/D spanning 0.06 (top curve) to 1.58
(bottom) with NC = 105, � = 3, and Ns = 47. Horizontal-dashed
lines mark the strong-coupling value in Eqs. (47) for a power-law
hybridization given by Eq. (37) with exponent r = DAA − 1 = −0.5.

bridization function 
C(5) from Sec. IV and for the critical AA
hybridization function at half-filling. Figure 2(b) plots values
of TK determined via Eq. (32) for the uniform 1/5 Cantor-set
hybridization function and for the critical AA DOS at fillings
nc = 0.5 and 0.309. In each case, the Kondo temperature for
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FIG. 8. Local susceptibility Tχloc vs T/D for an Anderson impu-
rity interacting with a uniform 1/5 Cantor-set [C(5)] hybridization
function or with the global DOS of a critical Aubry-André chain
at nc = 0.5, calculated for U = −2εd = D = 2.60t , L = 106, NC =
105, � = 5, Ns = 6000, and matrix elementsV/D spanning 0.06 (top
curves) to 1.58 (bottom). The horizontal-dashed line marks the value
Tχloc = 0.0701 used to define TK .

165123-14



AUBRY-ANDRÉ ANDERSON MODEL: MAGNETIC … PHYSICAL REVIEW B 106, 165123 (2022)

small JK has a power-law dependence

TK ∼ Jα(DF )
K , α(DF ) = 1

1 − DF
. (51)

This is precisely the behavior that should be expected based
on the coarse-grained equivalence between a fractal hybridiza-
tion function and a power-law hybridization described by
Eqs. (37) and (50), given that the latter obeys TK ∼ J−1/r

K [81].
Our results have been obtained for a specific choice Q =

(
√

5 − 1)/2 of the wave number entering Eq. (2). The AA
model has a delocalization-localization transition with a frac-
tal spectrum at the same λc = 2t for all irrational values of
Q [41,65]. We believe, therefore, that for any such Q, the
low-temperature physics of an Anderson impurity hybridizing
with the global DOS of a critical AA model will be described
by a fractal strong-coupling fixed point. However, it is quite
possible that the quantitative details of the fixed point will
depend on the specific value of Q. For example, there are open
conjectures that for any irrational value of Q, the fractal di-
mension satisfies DAA = 1/2 [88], DAA < 1/2 [89] or DAA �
1/2 [90]. Variation of DAA with Q will lead to differences in
the low-temperature-averaged value of thermodynamic prop-
erties, while variation of the self-similarity factor will change
the periodicity of log T oscillations in those properties about
the averages. We leave the detailed exploration of the effect of
varying Q on the fractal strong-coupling fixed point for future
work.

VI. AUBRY-ANDRÉ ANDERSON IMPURITY MODEL

Sections IV and V treated Anderson impurity models in
which the impurity hybridization function is determined by
the global DOS of a fractal host. The current section addresses
hybridization functions 
AAA determined by the LDOS at the
impurity site in an Aubry-André host. As was the case for

AA considered in Sec. V, 
AAA requires a fully numerical
treatment using the KPM+NRG method. We first present
results exploring the Kondo physics in the host’s delocalized
(λ < 2t) and Anderson-localized (λ > 2t) phases. We then
turn to the impurity problem at the critical point λc = 2t of
the AA model, where the hybridization function reflects not
only the fractal spectrum but also the multifractal nature of
the wave functions.

A. Delocalized phase

In the delocalized phase of the AA model (accessed for
0 < λ < λc = 2t), the spectrum is broken into minibands sep-
arated by hard gaps. We are interested in situations where
the Fermi energy lies within a miniband, guaranteeing that
the AAA model ultimately flows to its strong-coupling RG
fixed point. In an RG picture, the flow to strong coupling
begins at high temperatures of order the half-bandwidth D as
one integrates out electronic excitations having energies much
greater than T . As the temperature decreases through a gap,
however, one expects a temporary reversal of the RG flow
to instead head toward the local-moment fixed point. Flow
toward strong coupling resumes once the thermal scale further
decreases into a miniband.
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FIG. 9. Impurity properties in the AAA model at λ = t (in the
delocalized phase). An impurity havingU = −2εd = D = 3.57t hy-
bridizes with the local DOS at the middle of an Aubry-André chain
consisting of L = 106 sites at filling nc = 0.309. Data obtained using
the KPM+NRG method with NC = 103, � = 3, and Ns = 5000.
(a) Impurity entropy Simp vs T/2t for a single realization with φ = 0
and matrix elementsV/D spanning 0.11 (top curve) to 2.83 (bottom).
(b) Kondo temperature TK/2t extracted from the local magnetic
susceptibility via Eq. (32) plotted vs 2t/JK for the φ = 0 sample
as well as five randomly chosen values of φ. For TK/2t � 10−2,
each curve exhibits the relation logTK ∼ −1/JK characteristic of the
Kondo effect in metals.

The qualitative expectations laid out in the preceding para-
graph are tested in Fig. 9(a), which plots the temperature
dependence of the impurity entropy for λ = t , deep within
the delocalized phase, and for a range of hybridization matrix
elements V . Since the LDOS is nonvanishing and feature-
less near the Fermi energy, it suffices to work at a relatively
low KPM expansion order NC = 103. Values V � D cause
the system to fully enter the local-moment regime, with the
impurity entropy decreasing from Simp = ln 4 in the high-
temperature free-orbital regime to plateau at Simp � ln 2 over
an intermediate temperature window before falling smoothly
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at lower temperatures toward metallic strong coupling
(Simp = 0). Larger V values initially set the system on course
for a direct crossover from the free-orbital regime to strong
coupling, while extremely large hybridizations even create a
window of negative impurity contributions (meaning that the
combined host-impurity system has lower total susceptibility
and total entropy than the host by itself). However, what
would in a simple metallic host (e.g., the AAA model with
λ = 0) be a rapid approach to strong coupling is interrupted
by the presence for λ = t of several hard spectral gaps around
Fermi energy. We note in particular that all curves show
Simp � ln 2 at T/2t � 0.04, suggesting that at this thermal
scale, any impurity screening that took place at higher tem-
peratures has been completely reversed. Nonetheless, with
further decrease in temperature, all curves eventually ap-
proach the strong-coupling limit.

Figure 9(b) plots Kondo temperatures for the AAA model
at λ = t . TK is extracted from Tχloc vs T via Eq. (32) for
the φ = 0 realizations shown in Fig. 9(a) as well as for five
randomly chosen values of φ. All samples exhibit the small-
JK dependence logTK ∼ −1/[ρR(εF )JK ] expected in a metal.
Each impurity location has a different LDOS ρR(εF ), which
changes the slope of the log-linear plot of TK vs 1/JK .

B. AA localized phase

In the localized phase of the AA model (reached for λ >

λc = 2t), all eigenstates are spatially localized. An impurity
coupled to a typical site R hybridizes with only a discrete
subset of band states |εk〉 such that |εk − εF | has a minimum
value εgap(R) > 0. Since the hybridization function vanishes
for |ε − εF | < εgap(R), one expects there to be a threshold
value of V [or of the Kondo exchange JK given in Eq. (9)]
for the system to reach the strong-coupling RG fixed point,
while for subthreshold couplings, the ground state instead has
a decoupled impurity spin degree of freedom.

Figure 10 shows the temperature variation of the impurity
entropy for a number of different V values at λ = 3t . The
finite energy resolution of the KPM expansion [Eq. (28)]
restricts the physical validity of the results to T � TKPM =
πD/NC � 9 × 10−5(2t ). Data for Ṽ ∈ [0.06, 0.79] (red lines
in Fig. 10) show no sign of Kondo screening down to TKPM,
and can be presumed to approach the local-moment fixed
point. By contrast, the results for Ṽ ∈ [0.94, 1.58] (blue lines
in Fig. 10) are indicative of crossover to strong coupling
around a Kondo temperature much greater than TKPM. Some-
where between V = 0.79D and 0.94D must lie a critical
hybridization Vc such that TK vanishes as V approaches Vc
from above. The finite KPM resolution [Eq. (28)] prevents
evaluation ofVc to high accuracy, and in any case, this quantity
will be sample (i.e., φ) dependent.

C. AA critical point

At the critical potential strength λc = 2t , the AA model ex-
hibits a fractal spectrum with spatially inhomogeneous wave
functions. These features combine to produce an LDOS at
the impurity site whose energy variation is encoded in the
NRG Wilson-chain coefficients as described in Appendix C.
As the Wilson-chain coefficients vary strongly from iteration
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FIG. 10. Impurity entropy Simp vs T/2t for the AAA model at
λ = 3t (in the localized phase). An impurity having U = −2εd =
D = 5.78t hybridizes with the local DOS at the middle site of a
single realization φ = 0 of an Aubry-André chain consisting of L =
106 sites at filling nc = 0.309. Data obtained using the KPM+NRG
method with NC = 103, � = 3, and Ns = 6000. Matrix elements
V/D from 0.06 to 0.79 (red lines) yield flow to the local-moment
fixed point (Simp → ln 2) while higher values from 0.94 to 1.58
produce flow to strong coupling (Simp → 0).

to iteration we retain up to Ns = 47 = 16 384 many-body
eigenstates for convergence that is demonstrated by Tχimp

and Simp varying only slightly on reducing � from 5 to 3.
All plots of Simp vs T present � = 3, Ns = 47 data, but to
reduce computational time we have used � = 8, Ns = 5000
when constructing distributions of Kondo temperatures over
large numbers of samples.

We begin our discussion of KPM+NRG results for the
critical AAA model by focusing on a single realization φ = 0.
Figure 11 plots the temperature dependence of the impurity
entropy for a wide range of hybridization matrix elements
V , keeping all other parameters constant. The oscillatory be-
havior and negative values attained at low temperatures by
Simp (and also by Tχimp, not shown) echo the corresponding
results for the hybridization function 
AA based on the global
DOS of a critical AA chain (see Fig. 7). Comparison with
the dashed curve in Fig. 11, which reproduces the largest-V
results from Fig. 7(b), shows the spacing between turning
points along the logT axis to be very similar for hybridization
with the global DOS and hybridization with the LDOS at
the middle site. However, the oscillations for the full AAA
problem do not become truly periodic over the temperature
range accessible in our KPM+NRG calculations. We attribute
the more complicated temperature dependence to the LDOS
sampling the fractal critical spectrum of the AA chain with
different weights that depend on the amplitude of each energy
eigenstate at the impurity site. This should result in the system
effectively exhibiting not a single fractal dimension, but in-
stead a distribution of fractal dimensions, each holding within
its own energy window. With decreasing temperature, the sys-
tem samples different fractal dimensions, each having its own
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FIG. 11. Impurity entropy Simp vs T/2t for a single realization
of the critical AAA model. An impurity having U = −2εd = D =
4.53t hybridizes with the local DOS at the middle site of an Aubry-
André chain consisting of L = 106 sites at filling nc = 0.309 with
phase φ = 0. KPM+NRG data for matrix elements V/D spanning
0.06 (lightest curve) to 1.58 (darkest) with NC = 105, � = 3, and
Ns = 47. The dashed line reproduces the largest-V results for hy-
bridization function 
AA from Fig. 7(b).

strong-coupling fixed point characterized by log T oscillations
of thermodynamic properties about different average values.

The scenario of LDOS multifractality suggests strong sam-
ple dependence of the physical properties. Figure 12 confirms
this to be the case for the impurity entropy computed at a
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FIG. 12. Impurity entropy Simp vs T/2t for multiple realizations
of the critical AAA model. An impurity having U = −2εd = D =
4.53t hybridizes with matrix elementV = 1.58D with the local DOS
at the middle site of an Aubry-André chain consisting of L = 106

sites at filling nc = 0.309. Blue curves represent single-sample re-
sults for five different randomly chosen phases φ, while the red curve
plots the mean Simp over 100 different random phases. The dashed
line reproduces the largest-V results for hybridization function 
AA

from Fig. 7(b). All data obtained using the KPM+NRG method with
NC = 105, � = 3, and Ns = 47.
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FIG. 13. Sample-mean impurity entropy Simp vs T/2t for the
critical AAA model. An impurity having U = −2εd = D = 4.53t
hybridizes with the local DOS at the middle site of an Aubry-André
chain consisting of L = 106 sites at filling nc = 0.309. KPM+NRG
data for matrix elements spanning 0.06 (top curve) to 1.58 (bottom)
with NC = 105, � = 3, and Ns = 47, averaging over 100 randomly
chosen values of φ. Black horizontal-dashed lines mark the local-
moment value Simp = ln 2 and the strong-coupling values in Eqs. (47)
for a power-law hybridization given by Eq. (37) with exponent r =
DAA − 1 = −0.5. The red-horizontal-dashed line marks the strong-
coupling value for r = −1/α = −0.236 based on the median Kondo
temperature data in Fig. 2(c).

large, fixed hybridization matrix element V = 1.58D for each
of five randomly chosen phases φ. Both the extremal values of
Simp and the temperatures at the extrema occur show wide dis-
persion across samples. By contrast, the mean Simp over 100
randomly chosen phases (red curve) has turning points at very
similar temperatures to the highest-V data for hybridization
function 
AA [reproduced from Fig. 7(b) as dashed curves
in Fig. 12]. However, it is also clear that the oscillations of
the sample-averaged properties are about values that are less
negative than their counterparts for 
AA. These observations
suggest that sample averaging over the LDOS restores the
self-similarity of the global DOS under energy rescaling (the
feature that underlies the log T oscillations in the thermo-
dynamic properties), while failing to reproduce the fractal
dimension DAA = −0.5 (which determines the temperature-
averaged values).

Figure 13 plots the sample-averaged impurity entropy Simp

vs T for a wide range of values of the hybridization matrix
element V . With decreasing T , Simp appears to approach a
strong-coupling limit with logT oscillations about a negative
average value. However, the crossover from local-moment
behavior (Simp � ln 2) is more gradual than in the pure-fractal
problems studied in Secs. IV and V, and even the curve for the
largest-V appears still to be drifting downward at the lower
limit T = πD/NC of reliability of our results. At the lowest
temperature, the sample-averaged results show slow flow to
the negative strong-coupling regime. This suggests that the
distribution of Kondo temperatures with exchange coupling
JK may be different from the behavior found for pure fractal
models [see Fig. 2(b)].
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FIG. 14. Cumulative distribution F (TK ) of the Kondo temper-
ature TK in the critical AAA model for various values of the
hybridization matrix V (expressed in the legend as a multiple of
D). Each distribution of TK values is extracted via Eq. (32) for 500
random samples, using the KPM+NRG method with nc = 0.309,
U = −2εd = D = 4.53t , NC = 105, � = 8, and Ns = 5000.

Figure 14 presents F (TK ), the cumulative distribution of
the Kondo temperature in the critical AAA model, calculated
for a number of different values of the hybridization matrix
element V based on 500 random phases φ. F (TK ) has an
initial value at TK = TKPM = πD/NC � 3 × 10−5D equal to
the fraction of samples that do not have a solution of Eq. (32)
for TK � TKPM, the lowest temperature that the KPM+NRG
method can reliably access. For very small V , the proba-
bility distribution P(TK ) = dF/dTK presumably has a long
tail extending to very small TK values, as a result of which
F (TKPM) � 0.5.

Curves such as those in Fig. 14 can be used to calculate
the V -dependence of various representative values for the TK
distribution. One such is the mean TK , which for a P(TK )
having significant support across many decades of TK is en-
tirely dominated by the upper end of the range. The mean
is thus little affected by our lack of knowledge of P(TK )
for TK < TKPM. This absence of information does rule out
calculating the geometric mean exp ln TK , a quantity that is
more strongly affected than the mean by the presence of
very low TK values. However, for values of V sufficiently
large that F (TKPM) < 0.5, we can instead consider the median
med(TK ). Figure 2(c) shows the variation of TK and med(TK )
with 1/JK . For JK � 2t , both measures vary as Jα

K , similar to
the behavior seen in Fig. 2(b) when a impurity couples to a
fractal hybridization function. However, the fitted exponents
α = 1.54 for TK and 4.23 for med(TK ) show that the latter
quantity is much more sensitive to changes in the hybridiza-
tion matrix element. Moreover, the presence of a tail towards
vanishing TK as seen in F (TK ), strongly affects the median
and not the mean. Equation (51) can be applied to convert α

values to effective fractal dimensions DF = 1 − 1/α = 0.35
and 0.76 for TK and med(TK ), respectively. However, the
impurity entropy in Fig. 13 appears to approach neither the

fractal strong-coupling average value Simp = −0.90 expected
for DF = 0.35 nor its DF = 0.76 counterpart Simp = −0.33
(red dashed line in Fig. 13). These effective DF values reflect
not only geometric self-similarity, but also probability mea-
sures from critical wave functions, as well as statistics from
random locations, that cannot be fully characterized by the
original definition of a fractal dimension.

VII. DISCUSSION AND CONCLUSION

In this paper we have investigated Anderson impurity prob-
lems where the host electronic degrees of freedom have a
fractal energy spectrum. We have studied three classes of
models. Models in the first two classes—cases (1) and (2)
for which results appear in Secs. IV and V, respectively—are
simpler and ignore the effects of wave-function amplitudes
on the hybridization function, but they admit an asymptot-
ically exact solution that reveals the existence of a fractal
strong-coupling fixed point. A main conclusion in this limit
is that the thermodynamic response of the quantum impurity
is controlled by the fractal dimension of the host spectrum,
which at a coarse-grained level can be reproduced by a model
with a hybridization function diverging in a power-law fashion
at the Fermi energy. Thermodynamic properties exhibit logT
oscillations due to contributions from minibands and gaps
alternating as a function of energy.

The third class of studied models—case (3) treated in
Sec. VI—corresponds to the physically more relevant case of
a quantum impurity in a quasicrystal. Here, the hybridization
function acquires contributions from both the fractal spectrum
and the multifractal wave functions, which can be charac-
terized by a distribution of fractal dimensions. To solve this
class of problems, we have introduced a numerical approach
(dubbed KPM+NRG) that integrates the power of Wilson’s
NRG with the efficiency of Chebyshev expansion techniques
to describe inhomogeneous host spectra in arbitrary dimen-
sions in an efficient and accurate manner without the need
to perform any diagonalization or numerical integration. This
paper has focused on the case of one-dimensional quasicrys-
tals, realized through the AA model at its critical point.

Our numerical results for the Aubry-André Anderson im-
purity model demonstrate that while the fractal nature of the
density of states is divergent towards the Fermi level, wave-
function-induced fluctuations produce a broad distribution of
Kondo temperatures. Oscillations remain in the impurity ther-
modynamic properties but they are not simply set by a single
fractal dimension. The strong-coupling nature of the fixed
point survives, and the impurity remains Kondo-screened at
the lowest energies. Exploration of the manifestations of frac-
tality in dynamical responses will be the topic for future work.
Going beyond the AA model, it will be interesting to incor-
porate other quasiperiodic models that have mobility edges
[69,91–94] and critical phases [95–97].

In the low-energy limit, we have found that local mo-
ments are Kondo-screened both in fractal and quasicrystalline
hosts. In the former setting, the Kondo temperature TK has a
power-law dependence on the Kondo coupling JK , consistent
with hosts at a Van Hove singularity and in stark contrast
to the exponential dependence in conventional metals. In the
studied quasicrystals, the sample-mean and median Kondo
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temperatures also vary with powers of JK . The mean TK has
an exponent α = 1.54 that is quantitatively quite close to the
value α = 2 found at the fractal strong-coupling fixed point
for a model using the global DOS of the AA model. The
higher exponent α = 4.23 that governs the median TK reflects
a broad distribution of Kondo temperatures with long tails
towards vanishing Kondo coupling.

It will be fascinating to explore similar effects in qua-
sicrystals in higher dimensions. In particular, we expect that
the KPM+NRG approach can be combined with dynamical
mean-field theory to describe the YbAlAu quasicrystal. Even
before implementing such an approach, we can apply insights
from the present study of impurity models to suggest why
the YbAlAu quasicrystal is critical without tuning. We have
shown that the hybridization function of a fractal host is
equivalent, on a coarse-grained level, to that of host at a Van
Hove singularity, a situation that has been shown in the con-
text of the Kondo lattice to produce a critical thermodynamic
response [98,99]. We therefore speculate that the critical prop-
erties without tuning in the YbAlAu quasicrystal are due to
the singular hybridization function at fractal strong-coupling
fixed points. This also raises an interesting connection be-
tween YbAlAu and β-YbAlB4, another material that is critical
without tuning [100]. It will be interesting in future work to
fully understand the role of the fractal strong-coupling fixed
point in the context of a Kondo lattice.

It will also be interesting to see if physical realizations
can be identified of the idealized models of a magnetic im-
purity coupled to a hybridization function corresponding to
the global DOS of a fractal host. Possible avenues for in-
vestigation include (i) systems possessing symmetries that
constrain amplitudes of the host eigenstates at the impurity
site, (ii) impurities coupled to tight-binding models on tree-
like structures that could appear in electrical systems with
dendritic growth [101,102], and (iii) nonlocal “impurities” of
the type mentioned in Sec. II B. Finally, we foresee impactful
applications of the KPM+NRG approach to treat impurities
in other systems that lack translational symmetry, such as thin
films, moiré materials, and magnetic alloys.
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Gabriel Kotliar, Johann Kroha, Andrew Millis, Qimiao Si,
and Romain Vasseur for useful discussions. We are grateful
to Lucy Reading-Ikkanda for creating the schematic dia-
grams in Fig. 1. A.W. and J.H.P. are partially supported
by National Science Foundation (NSF) CAREER Grant No.
DMR-1941569 and the Alfred P. Sloan Foundation through a
Sloan Research Fellowship. S.G. acknowledges support from
NSF Grant No. DMR-2103938. K.I. acknowledges support
from Grant No. DMR-1508122. S.G., K.I., and J.H.P. ac-
knowledge hospitality by the Aspen Center for Physics where
part of this work was completed, and which is supported
by NSF Grant No. PHY-1607611 [103]. The authors ac-
knowledge the following research computing resources: the
Beowulf cluster at the Department of Physics and Astronomy
of Rutgers University, and the Amarel cluster from the Office
of Advanced Research Computing (OARC) at Rutgers, The
State University of New Jersey.

APPENDIX A: THE KPM+NRG APPROACH

This Appendix presents a “KPM+NRG” approach for
solving models of quantum impurities coupled to hosts with-
out translational symmetry. The Appendix begins with a brief
review of the mapping of the host term in the Anderson
impurity Hamiltonian [i.e., Hhost entering Eq. (1)] to an ap-
proximate NRG description in terms of a tight-binding Wilson
chain whose on-site energies and nearest-neighbor hoppings
depend solely on moments of the hybridization function 
(ε)
over an (in principle) infinite set of energy bins spanning
ranges of equal width in log |ε − εF |.

Previous numerical investigations of quantum impurities
embedded in electronic systems that lack translational sym-
metry have relied upon obtaining the eigenenergies and
eigenstates using exact diagonalization (ED), an approach that
has restricted the studies to small system sizes (e.g., Refs.
[21,59]). An NRG treatment of quantum impurities in such
a host typically requires the ED energy levels to be artificially
broadened so that 
(ε) has nonvanishing moments in energy
bins arbitrarily close to the Fermi energy. This broadening
washes out any singular structure in the energy spectrum (such
as that expected, for example, in a fractal host) and ensures
that the NRG treatment reveals the low-energy Kondo physics
expected in a metallic host.

The KPM+NRG approach described in the remainder
of this Appendix avoids ED by writing the hybridization
function in terms of a KPM expansion that allows one to
reach large system sizes of order 106 sites, regardless of
the spatial dimensionality. The KPM representation combines
well with the NRG because it allows the parameters of the
Wilson tight-binding chain to be computed efficiently with-
out performing any numerical integration to find moments
of 
(ε). We validate this new technique through compar-
isons of (1) KPM+NRG Wilson-chain coefficients with those
obtained analytically or through other numerical means for
simple algebraic forms of the 
(ε), and (2) observables
involving impurity degrees of freedom with density-matrix
renormalization-group (DMRG) results for one-dimensional
host systems up to size L = 500.

1. Wilson-chain mapping

This Appendix briefly reviews the NRG mapping of a dis-
cretized version of a host band Hamiltonian to a semi-infinite
tight-binding Wilson chain. As described, for instance, in Ref.
[56], this mapping transforms Eq. (5) to

H̃host =
∞∑
n=0

∑
σ

[
εn f

†
nσ fnσ + tn

(
f †
nσ fn+1,σ + H.c.

)]
. (A1)

The tight-binding coefficients are defined via a set of recursion
relations

εn =
∞∑
m=0

(
ε+
m u2

nm + ε−
m v2

nm

)
, (A2a)

tnun+1,m = (ε+
m − εn)unm + tn−1un−1,m, (A2b)

tnvn+1,m = (ε−
m − εn)vnm + tn−1vn−1,m, (A2c)

1 =
∞∑
m=0

(
u2
n+1,m + v2

n+1,m

)
, (A2d)
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where t−1 = 0 and

ε±
m = β±

m /α±
m (A3)

with α±
m and β±

m as defined in Eqs. (23). Equations (A2) are
iterated starting from n = 0 with

u0m = +
√

α+
m/A, v0m = +

√
α−
m/A, (A4)

where

A =
∑
m

(α+
m + α−

m ) =
∫ 1

−1
ε 
̃(ε̃) d ε̃, (A5)

a quantity that equals 1 if 
̃(ε̃) is unit-normalized as we have
assumed. Substituting Eqs. (A4) into Eq. (A2a) yields

ε0 = A−1
∑
m

(β+
m + β−

m ) = D2

πV 2

∫ 1

−1
ε̃ 
̃(ε̃) d ε̃. (A6)

The values of all other tight-binding coefficients εn and tn
depend on the band discretization parameter �. Truncating
the Wilson chain at N + 1 sites labeled 0 � n � N yields
the reduced Hamiltonian

∑
σ H0,N,σ with H0,N,σ defined in

Eq. (22).

2. KPM+NRG Formulation

In order to apply the NRG method, one needs to calculate
α±
m and β±

m defined in Eqs. (23), i.e., the zeroth and first
moments of 
̃(ε̃) over reduced energy bins ε̃m+1 < ±ε̃ < ε̃m
with ε̃m given in Eq. (20). Using Tn(x) = cos(n arccos x),
and defining θm = arccos ε̃m with 0 � θm � π/2 for m =
0, , 1, 2, . . ., one can show that

±
∫ ±ε̃m

±ε̃m+1

Tn(ε̃)√
1 − ε̃2

d ε̃ =
⎧⎨
⎩

θm+1 − θm for n = 0,

(±1)n

n
(sin nθm+1 − sin nθm) for n > 0,

(A7)

and

±
∫ ±ε̃m

±ε̃m+1

ε̃ Tn(ε̃)√
1 − ε̃2

d ε̃ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

±(sin θm+1 − sin θm) for n = 0,

1

4
(sin 2θm+1 − sin 2θm) + 1

2
(θm+1 − θm) for n = 1,

(±1)n−1

2(n − 1)
[sin(n − 1)θm+1 − sin(n − 1)θm]

+ (±1)n−1

2(n + 1)
[sin(n + 1)θm+1 − sin(n + 1)θm] for n > 1.

(A8)

Combining these results with Eqs. (23) and (25) yields

α±
m = 1

π

[
g0μ0(θm+1 − θm) + 2

NC−1∑
n=1

(±1)n

n
gnμn(sin nθm+1 − sin nθm)

]
(A9)

and

β±
m = 1

π

[
g1μ1(θm+1 − θm) +

NC−2∑
n=1

(±1)n

n
(gn−1μn−1 + gn+1μn+1) (sin nθm+1 − sin nθm)

+
NC∑

n=NC−1

(±1)n

n
gn−1μn−1(sin nθm+1 − sin nθm)

]
. (A10)

Equations (A9) and (A10) can be inserted into Eqs. (A2)–(A6)
to yield the Wilson-chain coefficients εn and tn. We note in
particular that ε0 = g1μ1 and A = g0μ0.

The KPM+NRG method has two distinct advantages over
other approaches. First, the KPM allows one to access much
larger system sizes than can be treated using ED and related
techniques. Second, hybridization function moments that fully
determine the Wilson-chain parameters can be expressed as
sums over KPM coefficients weighted by trigonometric func-
tions, without the need to perform numerical integration.
However, truncating the KPM expansion at NC terms broadens
spectral features located near the Fermi energy ε̃ = 0 over a
width δε̃ = π/NC (with a reduced broadening δε̃ = π/N3/2

C
near the band edges) [57]. Although this width is generally

much smaller than the one that must be applied to ED calcu-
lations to allow application of the NRG, it nonetheless limits
the length N of the Wilson chain for which the coefficients εn
and tn are faithfully reproduced, and thereby prevents access
to the physics on energy and temperature scales smaller than
of order D�̄−N/2.

3. Comparison with Wilson-chain coefficients from direct
integration

One way to benchmark the KPM+NRG approach is to
compare the Wilson-chain parameters it produces with ones
for the same hybridization function obtained via other means.
This section focuses on two examples, both of which involve
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TABLE II. Scaled Wilson-chain hopping coefficients 2�n/2tn/(1 + �−1) for a linear-pseudogapped hybridization function [Eq. (37) with
r = 1] discretized using � = 3 and z = 1. Columns labeled with values of NC contain hoppings obtained using the KPM+NRG approach
described in this Appendix. The last column contains directly obtained hoppings, adapted from Ref. [7] (where the quantity denoted tn in this
paper is instead written τn+1).

Scaled hopping coefficients

n NC = 103 NC = 104 NC = 105 Direct

0 1.0277400667 1.0277402378 1.0277402396 1.0277402396
1 0.5598430497 0.5598153019 0.5598150205 0.5598150205
2 1.0707215789 1.0707745240 1.0707750620 1.0707750620
3 0.6180681897 0.6177961120 0.6177933421 0.6177933421
4 1.0813785997 1.0818525992 1.0818574579 1.0818574579
5 0.6270738676 0.6246306973 0.6246054709 0.6246054709
6 1.0790024085 1.0831246862 1.0831683420 1.0831683420
7 0.6462189195 0.6255939031 0.6253674691 0.6253674693
8 1.0514730811 1.0829253734 1.0833149881 1.0833149885
9 0.7591242845 0.6274630575 0.6254521939 0.6254521995
10 0.9658350236 1.0799308710 1.0833312837 1.0833312949
11 0.9359363668 0.6425740552 0.6254616893 0.6254616147
12 0.9679116124 1.0567121630 1.0833331639 1.0833331068
13 0.9834174258 0.7411020836 0.6254629740 0.6254626609
14 0.9921226323 0.9725570448 1.0833303929 1.0833333082
15 0.9965841359 0.9258040504 0.6253929505 0.6254627771
16 0.9986021169 0.9645272603 1.0831458118 1.0833333305
17 0.9994498243 0.9811130281 0.6244860070 0.6254627900
18 0.9997890276 0.9908420551 1.0851426469 1.0833333330
19 0.9999205683 0.9959756211 0.6791323218 0.6254627914
20 0.9999705003 0.9983374119 0.9782897997 1.0833333333
21 0.9999891612 0.9993415615 0.9055070894 0.6254627916
22 0.9999960521 0.9997464420 0.9574932824 1.0833333333
23 0.9999985724 0.9999042423 0.9767188899 0.6254627916
24 0.9999994869 0.9999643537 0.9885773919 1.0833333333
25 0.9999998166 0.9999868784 0.9949382199 0.6254627916
26 0.9999999347 0.9999952133 0.9978956972 1.0833333333
27 0.9999999769 0.9999982669 0.9991632833 0.6254627916

particle-hole-symmetric hybridization functions and therefore
have vanishing on-site coefficients εn.

First we consider a flat-top hybridization function 
(ω) =

0�(D − |ε|), where �(x) is the Heaviside function. The re-
duced hybridization function, corresponding to Eq. (37) with
r = 0, has KPM moments

μn = 1

2

∫ 1

−1
cos(n arccos x) dx =

{
(1 − n2)−1 n even,

0 n odd.

(A11)
Substituting these values into Eqs. (A9) and (A10) yields
values of tn that differ from their exact counterparts [55,56]

tn = (1 + �−1)(1 − �−n−1)�−n/2

2
√

1 − �−2n−1
√

1 − �−2n−3
(A12)

by a fractional error of less than 10−5 for expansion order
NC = 102 and less than 10−9 for NC = 105.

A second example is the linear-pseudogapped hybridiza-
tion function 
(ω) = 
0|ω/D| �(D − |ε|) that serves as a
simplified model for two-dimensional Dirac semimetals such
as graphene. This case corresponds to Eq. (37) with r = 1. Its

KPM moments are

μn =
∫ 1

−1
|x| cos(n arccos x) dx

=
{

(4 − n2)−1 if n mod 4 = 0,

0 otherwise.
(A13)

Table II lists the scaled hopping coefficients 2�n/2tn/(1 +
�−1) for � = 3 and z = 1 obtained by substituting the KPM
moments into Eqs. (A9) and (A10) and truncating the sums
after NC = 103, 104, and 105 terms. Also listed are the co-
efficients determined via direct computation of the integrals
in Eqs. (23), which can be considered exact to the precision
shown. With increasing n, the KPM+NRG coefficients ini-
tially follow the alternating pattern of their exact counterparts
[see Eq. (41)] before crossing over for larger n to approach
2�n/2tn/(1 + �−1) = 1, the value characteristic of the flat-top
hybridization function discussed earlier in this section. The
crossover, which arises from the finite KPM energy resolution,
takes place around the n for which �−n/2 � π/NC or n �
2 log(π/NC )/ log �. The KPM scaled hoppings for NC = 105

differ from the exact values by less than 10−10 for all n � 6;
for n � 7, errors gradually grow, but the overall structure of
the exact coefficients is preserved until n � 18.
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This second example provides evidence that the
KPM+NRG accurately reproduces the Wilson-chain
description of a hybridization function having nontrivial
energy dependence down to the broadening energy scale
associated with truncation of the KPM expansion at finite
order NC .

4. Comparison with density-matrix renormalization-group
results

In this section, physical observables computed using the
KPM+NRG approach are compared with ones obtained via
the DMRG method. These numerical methods have different
strengths and weaknesses. KPM+NRG allows treatment of
large systems (up to L = 106 in this paper) but it is limited to
temperatures exceeding a scale set by the finite KPM energy
resolution [Eq. (28)] and is affected by the discretization and
truncation errors that are inherent to the NRG. The DMRG
is subject to none of the aforementioned limitations, but its
application is restricted to much smaller systems where the
finite level spacing imposes a lower bound on the temperatures
that can be reliably accessed. The comparisons reported in this
section were all made for Aubry-André chains of length L =
500.

The observables that we compare are ground-state expecta-
tion values of operators involving impurity degrees of freedom
[78]: the impurity spin z component

Simp,z = 1

2
(n̂d↑ − n̂d↓), (A14)

the local-moment fraction

fLM = p̂↑ + p̂↓ (A15)

where pσ = n̂dσ − p̂↑↓ with p̂↑↓ = n̂d↑n̂d↓, and the local en-
tanglement entropy

Sloc = −
∑

i=0,↑,↓,↑↓
p̂i ln p̂i (A16)

with p̂0 = 1 − p̂↑ − p̂↓ − p̂↑↓.
Figure 15 compares ground-state expectation values of

the above operators computed using the KPM+NRG with
� = 1.5 with ones obtained using the DMRG. The top-left
panel shows the variation of 〈Simp,z〉 with the local field h for
values of the AA potential strength λ = t (delocalized phase),
λ = 2t (critical point), and λ = 3t (localized phase), while
the remaining panels focus on the evolution of KPM+NRG
values with increasing KPM expansion order NC . As detailed
in the legend, the NRG results for NC = 2000 all lie within
1% of the DMRG values. This agreement provides evidence
for the efficacy of the KPM+NRG approach.

APPENDIX B: SELF-SIMILAR HYBRIDIZATION
FUNCTIONS

This Appendix presents some details of our analysis of the
uniform 1/5 Cantor-set hybridization function C(5) that are
referenced in Sec. IV A and also briefly discusses two other
classes of self-similar hybridization functions, one fractal and
the other nonfractal.

(a) (b)

(c) (d)

FIG. 15. Comparison between ground-state expectation values
for the AAA model calculated using the KPM+NRG and DMRG
methods. Data for an Anderson impurity having U = −2εd = D
hybridizing with the local DOS at the middle site of a single realiza-
tion φ = 0 of an Aubry-André chain consisting of L = 500 sites at
half filling. NRG results are for discretization � = 1.5. (a) Impurity
spin z component Simp,z as a function of applied field h for λ/t = 1
(delocalized), 2 (critical), and 3 (localized), with KPM+NRG results
being for NC = 103. (b)–(d) KPM+NRG expectation values vs KPM
expansion order NC at λ = 2t and different local magnetic fields
listed in the legend of the lower-right panel. At Nc = 2000, fractional
differences from DMRG values (dashed horizontal lines) are smaller
than 0.8% for Simp,z, 0.16% for fLM, and 0.02% for Sloc.

1. Wilson-chain mapping of the C(5) hybridization function

Section IV A 1 demonstrates an exact equivalence for
Fermi energy εF = 0 between the � = 4M + 1, z = 1 NRG
treatments of a uniform 1/(4M + 1) Cantor-set hybridization
function 
C(4M+1) having fractal dimension DC(4M+1) and a
continuous hybridization function 
P(r) that diverges at ε̃ = 0
according to a power r = DC(4M+1) − 1. As noted in Sec. IV
A 2, the equivalence arises due to a perfect alignment of
the NRG energy bins with the self-similarity of the fractal
hybridization function about the Fermi energy. This alignment
is broken when the NRG discretization � or the offset z is
changed.

In this section, we focus on the effect of reducing � toward
its continuum limit of 1 at fixed z = 1. For the purposes of
analysis, it is convenient to consider the sequence of dis-
cretizations �k defined in Eq. (35), where bin m for � = �k

is subdivided to form bins 2m and 2m + 1 for � = �k+1,
making it relatively simple to determine the l → ∞ limits of
αm and βm.

We illustrate the first few steps in the �k sequence for
M = 1 and z = 1. For � = �1 = 51/2, all bins numbered
m = 2m′ + 1 (with m′ a non-negative integer) fall entirely
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within a gap of 
̃C(5)(ε̃). This is reflected in

αm = 1

3m′+1
, βm = 4

15m′+1
m = 2m′,

αm = βm = 0 m = 2m′ + 1.

(B1)

Next consider � = �2 = 51/4. The integrated weight of

̃C(5) over each even-numbered �1 bin is divided in the
ratio 20:7 between �2 bins m = 4m′ and 4m′ + 1. Since odd-
numbered �1 bins fall entirely in gaps, so too do �2 bins
numbered m = 4m′ + 2 and m = 4m′ + 3. One finds

αm = 20

3m′+4
, βm = 10744

15m′+4
m = 4m′,

αm = 7

3m′+4
, βm = 2756

15m′+4
m = 4m′ + 1,

αm = βm = 0, otherwise.

(B2)

The last case we consider explicitly is � = �3 = 51/8,
where 5 bins out of every consecutive sequence of 8 lie
entirely within gaps. The integrated weight of 
̃C(5) over
�2 bin m = 4m′ is now split 3:2 between �3 bins m = 8m′
and 8m′ + 1, while the entire weight that falls in �2 bin
m = 4m′ + 1 is inherited by �3 bin m = 8m′ + 2. Then

αm = 12

3m′+4
, βm = 6960

15m′+4
m = 8m′,

αm = 8

3m′+4
, βm = 3784

15m′+4
m = 8m′ + 1,

αm = 7

3m′+4
, βm = 2756

15m′+4
, m = 8m′ + 2,

αm = βm = 0 otherwise.

(B3)

In the preceding examples and for still larger values of
k, for any m � 0 such that αm > 0, the ratios αm+2k/αm and
βm+2k/βm are identical to their k = 0 counterparts αm+1/αm

and βm+1/βm deduced from Eqs. (36). In this respect, k > 0
members of the sequence �k still reflect the power-law diver-
gence of the coarse-grained hybridization function that is so
readily apparent for k = 0. With increasing k, however, the
self-similar gap hierarchy of the fractal hybridization function
becomes increasingly apparent through αm and βm moments
that (a) for certain values of m mod 2k , vanish for every value
of m′ = �m/2k�, (b) where nonvanishing, have scaled values
3m

′
αm and 15m

′
βm that vary with m mod 2k .

One can apply Eqs. (A2)–(A5) to convert the set of bin
moments αm and βm into a set of Wilson-chain coefficients
tn and εn. The on-site energies εn necessarily vanish due to
the particle-hole symmetry of 
̃C(4M+1). Figure 16 plots the
scaled hopping coefficients ξn, defined through Eq. (24), for
the first four discretizations � = 51/2k , z = 1 of the C(5)
hybridization function. The figure legend specifies the value
of �̄ corresponding to each �. For � = 5, Eq. (41) implies
that

lim
n→∞ ξn+P = ξn (B4)

with �̄ = � and period P = 2. For � = 51/2, the hopping
parameters tn (as well as their scaled counterparts ξn) are
identical to those for � = 5. Formally, this conclusion follows

0 5 10 15 20
0.5

1

1.5

2

2.5

3

3.5

FIG. 16. Scaled Wilson-chain hopping parameters ξn = �̄n/2tn
for different NRG discretizations � = 51/2k , z = 1 of a uniform 1/5
Cantor-set hybridization function. The legend lists the value of �̄

corresponding to each �.

from (i) the structure of Eqs. (A2)–(A5), where α+
m = 0 leads

to umn = 0 and α−
m = 0 leads to vmn = 0, so bins with α±

m can
be completely disregarded in the computation of tn and εn,
and (ii) the fact that the nonzero moments in Eqs. (B1) can be
made identical to those in Eqs. (36) under a simple re-indexing
m → m/2. By contrast, support of 
̃C(5)(ε̃) within the energy
range �−(m′+1) < ε̃ < �−m′

spanned by one � = 5 energy
bin is split over q = 2 bins for � = 51/4. This imparts addi-
tional structure to the scaled hopping coefficients, which now
obey Eq. (B4) with �̄ = 51/2 and P = 4. The same pattern
holds for � = 51/8, with q = 3, �̄ = 51/3, and P = 6.

2. C(4M + 3) fractal hybridization functions

Section IV focuses on a reduced hybridization functions

C(4M+1)(ε) (M = 1, 2, . . .) describing uniform 1/(4M + 1)
Cantor sets. These hybridization functions can be constructed
by iteration of a finite subdivision rule prescribed in Sec. II B.

This section addresses properties of a class of uniform
1/(4M + 3) Cantor-set hybridization functions 
C(4M+3)(ε),
where M is a positive integer. These functions may be con-
structed by iteration of a finite subdivision rule in which each
energy range over which 
l−1(ε) > 0 is divided into 4M + 3
equal parts, labeled 1 through 4M + 3 in order of ascending
energy. In order that 
C(4M+3)(ε) has nonvanishing weight
arbitrarily close to ε = 0, one sets 
l (ε) = 0 throughout
each of the 2M + 2 odd-numbered intervals and sets 
l (ε) =
(4M + 3)(2M + 1)−1
l−1(ε) throughout the 2M + 1 even-
numbered intervals so that

∫ D
−D 
l (ε) dε = πV 2 for all l .

Figure 17 shows the first three iterations of this process for
the case M = 1. Whereas 
C(4M+1)(ε) illustrated in Fig. 3
retains the half-bandwidth D of its zeroth-order approximant,

C(4M+3)(ε) has a smaller half-bandwidth [1 − 2

∑∞
l=1(4M +

3)−l ]D = [2M/(2M + 1)]D. Nonetheless, there are close par-
allels between the two classes of hybridization function.

Let us consider the NRG mapping of 
̃C(4M+3) for � =
4M + 1 and z = 1. Figure 17 shows that the bin boundary ε̃m
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FIG. 17. Reduced hybridization functions 
̃l (ε̃) approximating
a fractal 1/7 Cantor set: (a) Uniform initial hybridization function

̃0(ε̃). (b)–(d) First three approximants 
l (ε̃) formed by iteratively
dividing each interval into seven equal parts labeled 1 through 7 and
removing the four odd-numbered parts. The vertical red dashed lines
mark the lower bounds �−m, m = 1, 2 of the first two logarithmic
bins in the NRG discretization of the hybridization function for � =
7 and z = 1.

defined in Eq. (20) lies at the edge of a retained interval in
the l = m approximant but lies in a gap for all l > m. As a
consequence, the integrals αm = α±

m and βm = β±
m [Eq. (23)]

cease to change once l > m. Due to the self-similarity of

̃C(4M+3) under ε̃ → ε̃/(4M + 3), one can readily show that
for l → ∞ and for m � 0,

αm[C(4M + 3)] = M

(2M + 1)m+1
,

βm[C(4M + 1)] = 2M(M + 1)

[(2M + 1)(4M + 3)]m+1
.

(B5)

We note that αm[C(4M + 3)] is identical to αm[P(r)] in
Eqs. (38) for � = 4M + 3 provided that the power entering
Eq. (37) is chosen to be

r = log(2M + 1)

log(4M + 3)
− 1 = DC(4M+3) − 1, (B6)

where DC(4M+3) is the fractal dimension of C(4M + 3) given
in Eq. (18). This choice also yields

βm[C(4M + 3)]

βm[P(r)]
= 2M(M + 1)

4M2 + 5M + 1

[
1 + log(4M + 3)

log(2M + 1)

]

≡ a4M+3. (B7)

Following arguments presented in Sec. IV, we conclude that
the � = 4M + 3, z = 1 treatment of the Anderson impurity
model with a C(4M + 3) Cantor-set hybridization function
yields the same properties (up to a suitable rescaling of all

energy and temperature scales by the factor a4M+3) as the cor-
responding treatment of a power-law hybridization function

P(DC(4M+3)−1).

Now we consider the next few steps in the sequence � =
(4M + 3)1/k for M = 1, z = 1, and k = 1, 2, 3, . . .. For � =
71/2, all bins numbered m = 2m′ + 1 (with m′ a non-negative
integer) fall entirely within a gap of 
̃C(7)(ε̃), resulting in

αm = 1

3m′+1
, βm = 4

21m′+1
m = 2m′,

αm = βm = 0 m = 2m′ + 1.

(B8)

Equations (B8) imply that the Wilson-chain coefficients tn and
εn are identical for � = 7 and � = 71/2. This is analogous to
the equivalence of � = 5 and 51/2 in the NRG treatment of
the C(5) Cantor set considered in Sec. B 1.

For � = 71/3, bin boundary ε1 = �−1 falls in a gap of the
l = 2 approximant to 
̃C(7)(ε̃). The integrated weight of 
̃C(7)

over each � = 7 bin is divided for � = 71/3 in the ratio 2:1
between bins m = 3m′ and 3m′ + 1, while bins m = 3m′ + 2
inherit zero weight. In this case

αm = 2

3m′+2
, βm = 60

21m′+2
m = 3m′,

αm = 1

3m′+2
, βm = 24

21m′+2
m = 3m′ + 1,

αm = βm = 0, m = 3m′ + 2.

(B9)

The last case that we consider is � = 71/4. The weight that
falls in each even-numbered � = 71/2 bin is divided for � =
71/4 in the ratio 1:2 between bins m = 4m′ and 4m′ + 1. Since
odd-numbered � = 71/2 bins fall entirely in gaps, so too do
� = 71/4 bins numbered m = 4m′ + 2 and m = 4m′ + 3. One
finds

αm = 1

3m′+2
, βm = 32

21m′+2
m = 4m′,

αm = 2

3m′+2
, βm = 52

21m′+2
m = 4m′ + 1,

αm = βm = 0, otherwise.

(B10)

Figure 18 plots the scaled hopping coefficients ξn, defined
through Eq. (24), for the first four discretizations � = 71/k ,
z = 1 of the C(7) hybridization function. The figure legend
specifies the value of �̄ corresponding to each �. The values
of ξn satisfy Eq. (B4) with P = 2, 4, and 4 for � = 7 (equiv-
alent to 71/2), 71/3, and 71/4, respectively.

3. Nonfractal self-similar hybridization functions

In Sec. IV, we separate properties that can be attributed
to fractality of the hybridization function from ones that arise
purely due to self-similarity of 
̃(ε̃) under rescaling of ener-
gies about the Fermi energy: ε̃ → ε̃/b with b > 1.

To this end, it is instructive to study the family of hy-
bridization functions 
̃S(b)(ε̃) defined in Eq. (19). Given the
simple form of the hybridization function when viewed on a
logarithmic energy axis, it is natural to start by considering
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FIG. 18. Scaled Wilson-chain hopping parameters ξn = �̄n/2tn
for different NRG discretizations � = 71/k , z = 1 of a uniform 1/7
Cantor-set hybridization function. The legend lists the value of �̄

corresponding to each �.

the � = b, z = 1 NRG mapping, for which

αm = 1

2
(1 − b−1)b−m,

βm = 1

2
(1 + b−1/2) b−m αm

(B11)

for m = 0, 1, 2, . . .. The expression for αm is identical to
that for a flat-top hybridization function [i.e., 
̃P(0)(ε̃) defined
through Eq. (37) with r = 0] when discretized using � =
b, z = 1, while βm(S(b))/βm(P(0)) = (1 + b−1/2)/(1 + b−1).
We thus see that the � = b, z = 1 treatment of the Ander-
son impurity model with an energy-dependent but nonfractal
hybridization function that contains a discrete self-similarity
scale b > 1 yields the same properties (up to a suitable rescal-
ing of all energy and temperature scales) as the corresponding
treatment of an energy-independent (and therefore self-similar
under any rescaling) hybridization.

The continuum limit can be approached via a sequence of
NRG discretizations � = b1/2k , z = 1 for k = 1, 2, 3, . . .. The
support of 
̃S(b)(ε̃) is distributed among k out of a total of 2k
NRG bins that cover each energy interval b−(m′+1) < ε̃ � b−m′

(with m′ being a non-negative integer). It is straightforward to
show that

αm = 1

2
(1 + b−1/2) (1 − b−1/2k ) b−m/2k,

βm = 1

2
(1 + b−1/2k ) b−m/2k αm,

(B12)

for m such that 2m′k � m < (2m′ + 1)k with m′ = 0, 1, 2, . . .,
while αm = βm = 0 for (2m′ + 1)k � m < 2(m′ + 1)k.

These bin moments αm and βm can be processed through
Eqs. (A2)–(A5) to obtain Wilson-chain coefficients. Due to
the particle-hole symmetry of 
̃S(b)(ε̃), εn = 0 for all n.
The hopping coefficients, when scaled using Eq. (24) with
�̄ = �2 = b1/k , satisfy Eq. (B4) with P = 2k. As is the
case for the Cantor sets considered in Appendices B 1 and

B 2, the coarse-grained equivalence between a self-similar
hybridization function and a continuous power-law hybridiza-
tion function breaks down upon approach to the continuum
limit � = 1.

APPENDIX C: WILSON-CHAIN MAPPING OF THE
CRITICAL AUBRY-ANDRÉ ANDERSON MODEL

This Appendix contains details about the Wilson-chain
description of the full Aubry-André Anderson model, where
the impurity hybridizes with the LDOS at a particular site in
the host. We focus on the case of greatest interest, where the
AA model is at its critical point, λ = 2t .

Figure 19 shows the scaled hopping �n/2tn and scaled
onsite energy �n/2εn obtained in the KPM+NRG treatment
of an impurity hybridizing with the middle site of the φ = 0
realization of the AA model at potential strength λ = 2t and
band filling nc = 0.309. These scaled tight-binding coeffi-
cients are plotted for three different KPM expansion orders:
NC = 103, 104, and 105. For a given NC , the values of �n/2tn
initially fluctuate significantly as n increases from 0, rather
reminiscent of the behavior of the scaled hopping coefficients
for the fractal 1/5 Cantor-set hybridization function shown in
Fig. 16. For larger chain site indices n where �−n/2 � π/NC ,
�n/2tn approaches an constant value arising from the KPM
broadening of the hybridization function. Focusing on a filling
nc �= 0.5 in Fig. 19 allows εn to take nonzero values. The
scaled on-site energy �n/2εn also fluctuates with increasing n,
but unlike the scaled hopping coefficient, its value is apprecia-
ble only for 5 < n < 14, identifying the corresponding energy
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FIG. 19. Scaled Wilson-chain hopping coefficients (upper panel)
and scaled on-site energies (lower panel) vs site index n for an
Anderson impurity hybridizing with the middle site of a critical
Aubry-André chain. Data for λ = 2t , φ = 0, L = 106, nc = 0.309,
� = 3, and different KPM truncation orders NC specified in the
legend.
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range �−7 < |ε̃| < �−5/2 as the one in which particle-hole
asymmetry of the hybridization function plays the greatest
role. The fluctuations of both �n/2tn and �n/2εn grow with in-
creasing NC as structure in the hybridization function becomes
better resolved.

The presence of scaled tight-binding coefficients that fluc-
tuate widely in magnitude from one Wilson-chain site to
the next imposes an additional challenge for the NRG iter-
ative diagonalization of the discretized Hamiltonian, which
is based on the fundamental assumption that the addition of
site N + 1 creates a modest perturbation of the low-lying

eigensolution of a chain consisting of sites 0 � n � N . This
challenge can be overcome by retaining a larger number of
many-body eigenstates at the end of each iteration, but this
comes at additional the cost of additional computational time.
Retaining up to Ns = 47 many-body eigenstates, we find lit-
tle change in Tχimp and Simp on reducing � from 5 to 3.
We have used the latter value when computing Simp vs T or
Tχimp vs T curves, but have employed � = 5, or even � = 8,
and retained fewer than 47 eigenstates when calculating dis-
tributions of the Kondo temperature over large numbers of
samples.
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