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Abstract: The Fusarium oxysporum species complex (FOSC) includes both plant and human pathogens

that cause devastating plant vascular wilt diseases and threaten public health. Each F. oxysporum

genome comprises core chromosomes (CCs) for housekeeping functions and accessory chromosomes

(ACs) that contribute to host-specific adaptation. This study inspects global transcription factor

profiles (TFomes) and their potential roles in coordinating CC and AC functions to accomplish

host-specific interactions. Remarkably, we found a clear positive correlation between the sizes of

TFomes and the proteomes of an organism. With the acquisition of ACs, the FOSC TFomes were

larger than the other fungal genomes included in this study. Among a total of 48 classified TF families,

14 families involved in transcription/translation regulations and cell cycle controls were highly

conserved. Among the 30 FOSC expanded families, Zn2-C6 and Znf_C2H2 were most significantly

expanded to 671 and 167 genes per family including well-characterized homologs of Ftf1 (Zn2-C6)

and PacC (Znf_C2H2) that are involved in host-specific interactions. Manual curation of characterized

TFs increased the TFome repertoires by 3% including a disordered protein Ren1. RNA-Seq revealed a

steady pattern of expression for conserved TF families and specific activation for AC TFs. Functional

characterization of these TFs could enhance our understanding of transcriptional regulation involved

in FOSC cross-kingdom interactions, disentangle species-specific adaptation, and identify targets to

combat diverse diseases caused by this group of fungal pathogens.

Keywords: Fusarium oxysporum species complex; transcription factors; TFome; accessory chromosome;

conservation; expansion

1. Introduction

The fungal species complex of Fusarium oxysporum (FOSC) has been used as a model
to study cross-kingdom fungal pathogenesis. Members within FOSC can cause devastating
fusarium wilt diseases among economically important crops [1–12] and is listed among the
top five most important plant pathogens [8]. With strong host specificity, plant pathogenic
F. oxysporum strains are further grouped as formae speciales [13]. For instance, tomato
pathogens are named F. oxysporum f. sp. lycopersici; cotton pathogens are F. oxysporum
f. sp. vasinfectum [11], and banana pathogens are F. oxysporum f. sp. cubense [10]. Recently,
members within FOSC have also been reported to be responsible for fusariosis, the top
emerging opportunistic mycosis [1,7,12], and fusarium keratitis, one of the major causes of
cornea infections in the developing world and the leading cause of blindness among fungal
keratitis patients [14,15].
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Comparative genomics studies on this cross-kingdom pathogen revealed that the
FOSC genomes, both human and plant pathogens, are compartmentalized into two com-
ponents: the core chromosomes (CCs) and accessory chromosomes (ACs). While CCs are
conserved and vertically inherited to execute essential housekeeping functions, horizon-
tally transmitted ACs are lineage- or strain-specific and are related to fungal adaptation
and pathogenicity [1,7,12].

To coexist and function within the same genome, ACs and CCs coordinate their gene
expression. One intriguing cross-regulation example, reported in the reference genome
of F. oxysporum f. sp. lycopersici Fol4287, includes transcription factors Sge1 (SIX Gene
Expression 1), Ftfs, and virulent factors SIX (Secreted in Xylem) proteins. Sge1 is a highly
conserved CC-encoding TF. By name definition, Sge1 regulates the expression of SIX
proteins [16,17]. The Fol4287 genome encodes an AC-encoding Ftf1 protein and one CC-
encoding Ftf2 (Ftf1 CC homolog) [17]. Constitutive expression of either Ftf1 or Ftf2 induced
the expression of effector genes [17]. Furthermore, it has been documented that DNA
binding sites of Sge1 and Ftf1 are enriched among the cis-regulatory elements of in planta
transcriptionally upregulated genes [17]. Another example of CC and AC cross-talking
is the alkaline pH-responsive transcription factor PacC/Rim1p reported in F. oxysporum
clinical strains [18]. In addition to the full-length PacC ortholog (PacC_O), located on a CC,
the clinical isolate NRRL32931 genome encodes three truncated PacC homologs, named
PacC_a, PacC_b, and PacC_c in ACs [18].

To thoroughly understand the coordination of the crosstalk between genome com-
partments and their contribution to the cross-kingdom fungal pathogenesis, this study
compared the repertoire of TFs (i.e., TFome) among 15 F. oxysporum and 15 other as-
comycete fungal genomes. Remarkably, we discovered a strong positive correlation
(y = 0.07264x − 190.9, r2 = 0.9361) between the number of genes (x) and TFome size (y)
of an organism. Primarily due to the acquisition of ACs, we observed increased TFome
sizes among the FOSC genomes. All TFs were organized into 48 families based on the
InterPro classification of proteins. Fourteen families involved in transcription/translation
regulations and cell cycle controls were highly conserved. Thirty families, accounting for
3/4 of all families, were expanded to various degrees among the FOSC genomes. Unique
TF expansions driven by ACs include members of the Zn2-C6 fungal-type (Zn2-C6) and
Zinc Finger C2H2 (Znf_C2H2) families. This comparative study highlighted conserved
regulatory mechanisms. The signature of conservation established the foundation to study
the various impacts of additional AC TFs on existing regulatory pathways. In combination
with the existing expression data, this study provides insights into the fine-tuning of envi-
ronmental adaptation performed by this group of diverse organisms in order to engage in
cross-kingdom interactions with different hosts.

2. Materials and Methods

2.1. Generation of Fungal TFomes

The annotation pipeline is briefly summarized in Figure S1A,B. The fungal proteomes
of 30 strains were downloaded from the JGI MycoCosm portal [19]. Protein annotation
was performed using InterProScan/5.38–76.0 (https://www.ebi.ac.uk/interpro/search/
sequence/, accessed on 7 February 2023) [20]. Annotations of proteins that putatively serve
as TFs were filtered out using a table containing InterPro terms related to transcriptional
regulatory functions summarized in the literature [21,22], with further addition by manual
curation (Table S1). Orthologous analysis was conducted with OrthoFinder 2.5.4 (https:
//github.com/davidemms/OrthoFinder, accessed on 7 February 2023) [23] to probe the
orthologs of functionally validated TFs (Tables S3 and S4) in Fusarium.

2.2. RNA-Seq Analysis

The RNA-Seq datasets were previously described [24,25] and deposited by those
authors to the NCBI Short Read Archive with accession number GSE87352 and to the
ArrayExpress database at EMBL-EBI (www.ebi.ac.uk/arrayexpress, accessed on 7 Febru-

https://www.ebi.ac.uk/interpro/search/sequence/
https://www.ebi.ac.uk/interpro/search/sequence/
https://github.com/davidemms/OrthoFinder
https://github.com/davidemms/OrthoFinder
www.ebi.ac.uk/arrayexpress
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ary 2023) under accession number E-MTAB-10597, respectively. For data reprocessing, reads
were mapped to reference genomes of Arabidopsis [annotation version Araport11 [26]],
Fo5176 [27], Fo47 [28], and Fol4287 [29] using HISAT2 version 2.0.5 [30]. Mapped reads
were used to quantify the transcriptome by StringTie version 1.3.4 [31], at which step TPM
(transcript per million) normalization was applied. Normalized read counts were first
averaged per condition, transformed by log2 (normalized read count + 1) and Z-scaled.
This was then visualized in pheatmap (version 1.0.12).

2.3. Genome Partition

The genome partition results for chromosome-level assemblies were retrieved from
previous reports for Fol4287 [29], FoII5 [32], Fo5176 [27], and Fo47 [28]. Fo47 has a clear
genome partition with 11 core chromosomes and one accessory chromosome, therefore
serving as the reference for the genome partition of other F. oxysporum genomes. MUM-
mer/3.22 was applied to align scaffolds of genome assemblies against 11 core chromosomes
of the reference genome Fo47 using default parameters. The scaffolds aligned to the core
chromosomes of Fo47 with a coverage larger than 5% were annotated as core scaffolds. The
rest of the scaffolds were partitioned as accessory scaffolds. Genes residing on the core and
accessory scaffolds were annotated as the core and accessory genes, respectively.

2.4. Phylogenetics Analysis

Protein sequences were aligned via MAFFT/7.313 [33]. The iqtree/1.6.3 [34,35] was
run on the sequence alignment to generate the phylogeny (by maximum likelihood method
and bootstrapped using 1000 replicates) [36]. Visualization was conducted via the Inter-
active Tree of Life [37] to produce the phylogram. OrthoFinder 2.5.4 [23] was used for
orthogroup determination. To build a species phylogram, 500 randomly selected conserved
proteins (single-copy orthologs) were aligned first. The alignment was then concatenated,
and the phylogeny was determined and visualized using the above methods.

2.5. Expansion Index Calculation

To understand genome regulation among FOSC, we developed two expansion index
scores. The first uses two yeast lineages as the baseline (EIy):

EIy =
Average number o f TFs in FOSC + 1

Average number o f TFs in yeasts + 1

In the second index score (EIf), we directly compared F. oxysporum with its Fusarium
relatives to calculate the expansion index as follows:

EI f =
Average number o f TFs in FOSC + 1

Average number o f TFs in FOSC sister species + 1

3. Results

3.1. FOSC TFome Expansion Resulted from the Acquisition of ACs

We compared 30 ascomycete fungal genomes (Figure 1 and Table 1) including 15 strains
within the FOSC, nine sister species close to F. oxysporum, two yeast genomes (Saccharomyces
cerevisiae and Schizosaccharomyces pombe), and four other filamentous fungal species (Neu-
rospora crassa, Aspergillus nidulans, Aspergillus acristatulus, and Magnaporthe oryzae). To
maintain consistency, the protein sequences for all of these genomes were retrieved from
the MycoCosm portal [19].
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Figure 1. Phylogeny of fungal genomes included in this study. Both left and right phylograms

were constructed by the concatenated alignment of randomly selected 500 single-copy orthologous

proteins, followed by the maximum likelihood method with 1000 bootstraps. Left shows a phylogram

of FOSC (represented by the reference genome Fol4287) together with the other 15 ascomycetes. The

right shows a phylogram of members within FOSC, rooted by F. verticillioides (not shown). Only

bootstrap values not equal to 100 are shown.

Table 1. Fungal genomes used in this study.

Fungal Species or Strains MycoCosm Identifier Genome Size (MB) No. of Genes TFome Size Host Reference

Saccharomyces cerevisiae Sacce1 12.07 6575 284 [38]

Schizosaccharomyces pombe Schpo1 12.61 5134 228 [39]

Aspergillus nidulans Aspnid1 30.48 10,680 635 [40]

Aspergillus acristatulus Aspacri1 32.59 11,221 666 [41]

Neurospora crassa Neucr2 41.04 9730 447 [42]

Magnaporthe oryzae Magor1 40.49 12,673 520 Rice [43]

Fusarium solani Fusso1 52.93 17,656 1137 broad hosts [44]

F. pseudograminearum Fusps1 36.33 12,395 627 Wheat [45]

F. graminearum Fusgr1 36.45 13,321 608 Wheat [46]

F. venenatum Fusven1 37.45 12,845 802 [44]

F. tricinctum Fustr1 43.69 14,106 925 Broad hosts [44]

F. verticillioides Fusve2 41.78 15,869 917 Corn [29]

F. fujikuroi Fusfu1 43.83 14,813 901 Broad hosts [47]

F. redolens Fusre1 52.56 17,051 1098 Broad hosts [44]

F. commune Fusco1 48.37 15,731 1012 Broad hosts [44]

F. oxysporum f. sp. cubense (II5) FoxII5 49.43 16,048 1047 Banana [32]

F. oxysporum f. sp.
radicis-lycopersici (CL57)

Fusoxrad1 49.36 18,238 1151 Tomato [48]

F. oxysporum Fo47 (Fo47) FusoxFo47_2 50.36 16,207 1082 [28]

F. oxysporum f. sp. lycopersici
(MN25)

Fusoxlyc1 48.64 17,931 1119 Tomato [48]

F. oxysporum NRRL26365
(NRRL26365)

Fox26365_1 48.46 16,047 1036 Human [49]

F. oxysporum f. sp. melonis
(FoMelon)

Fusoxmel1 54.03 19,661 1219 Melon [2]
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Table 1. Cont.

Fungal Species or Strains MycoCosm Identifier Genome Size (MB) No. of Genes TFome Size Host Reference

F. oxysporum f. sp. lycopersici
(Fol4287)

Fusox2 61.36 20,925 1292 Tomato [29]

F. oxysporum NRRL32931
(NRRL32931)

Fusox32931 47.91 17,280 1072 Human [18]

F. oxysporum MRL8996
(MRL8996)

FoxMRL8996 50.07 16,631 1057 Human [18]

F. oxysporum f. sp. matthiolae
(PHW726)

FoxPHW726_1 57.22 17,996 1157 Brassica [50]

F. oxysporum f. sp. vasinfectum
(FoCotton)

Fusoxvas1 52.91 19,143 1189 Cotton [48]

F. oxysporum f. sp. pisi
(HDV247)

Fusoxpis1 55.19 19,623 1229 Pea [51]

F. oxysporum f. sp. raphani
(PHW815)

Fusoxrap1 53.5 19,306 1132 Brassica [48]

F. oxysporum f. sp. conglutinans
(PHW808)

Fusoxcon1 53.58 19,854 1142 Brassica [48]

F. oxysporum Fo5176 (Fo5176) FoxFo5176 67.98 19,130 1236 Arabidopsis [27]

For a comprehensive TFome annotation, we used InterProScan (IPR) terms associ-
ated with fungal transcriptional regulation [21,22] and curated a mapping with updated
IPR classification (interproscan version: 5.38–76.0) [52]. In addition, we searched the IPR
classification of the protein families and obtained all other terms related to the transcrip-
tional regulation activity. This resulted in 234 TF-related IPR terms (Table S1). Since most
terms were initially defined in the mammalian systems, fungal genomes included in this
study were associated with 71 out of the 234 TF-related IPR terms (Table S1, Materials
and Methods, and Figure S1A,B for the annotation pipeline). After removing 13 terms
for redundancy (two terms describing the identical domain) and 10 terms for minimal
presentation (<4 among the 30 genomes), this comparative TFome study focused on 48 IPR
terms in 27,967 TFs (Tables S1 and S2). Notably, a quarter of these terms were not reported
to be affiliated with fungal transcriptional regulation by either Park et al. (2008) [21] or
Shelest (2017) [22] (Table S1).

Comparing the total number of protein-coding genes (x) and the total number of TFs
(y) within the same genome, we observed a strong positive correlation (y = 0.07264x − 190.9,
r2 = 0.9361) (Figure 2A). FOSC TFomes were larger than other genomes included in this
study, with an average of 1144 TFs per genome (Figure 2A, Table 1). After partitioning each
FOSC genome into core and accessory regions (see Section 2.3 for details), we observed
a positive correlation between the number of TFs encoded in the accessory chromosomal
region of each strain (defined as accessory TFs hereafter) with the size of the accessory
genomes (Mb) (y = 17.239x + 3.553) (Figure S2). This suggests that accessory chromosomes
contribute directly to the expanded TFome.
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Figure 2. TFome conservation and variation among ascomycete fungi: baseline description. (A) There

is a positive correlation between the number of protein-coding genes and TFome size of an organism.

JGI fungal genome identifiers were used as labels. (B) Histogram illustrates the distribution of

expansion indices among different families. (C) Average number of TFs of the two most drastically

expanded families (Znf_C2H2 and Zn2-C6) within each genome set. Genome Set 1 (G1) includes

two yeast genomes (S. cerevisiae and S. pombe). Genome Set 2 (G2) includes four filamentous fungal

species (N. crassa, A. nidulans, A. acristatulus, and M. oryzae). Genome Set 3 (G3) includes nine sister

species close to F. oxysporum. Genome Set 4 (G4) includes 15 FOSC genomes.

To understand the genome regulation among the FOSC, we developed an expansion
index score using two yeast lineages as the baseline (EIy):

EIy =
Average number o f TFs in FOSC + 1

Average number o f TFs in yeasts + 1

Based on this index value, we classified TF families into three major groups (Tables 2 and S1).
Group 1 contained 14 TF families with an expansion score of 1, indicating high conservation.
Group 2 included four families with an index score below 1, reflecting some level of gene family
contraction. Group 3 contained 30 families with an expansion index greater than 1, indicating
gene expansion.
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Table 2. Expansion index (EIy) of 48 TF families.

IPR Term EIy

Group 1

IPR000814 TBP 1

IPR003228 TFIID_TAF12 1

IPR004595 TFIIH_C1-like 1

IPR006809 TAFII28 1

IPR042225 Ncb2 1

IPR008570 Vps25 1

IPR008895 Vps72/YL1 1

IPR007196 CNOT1 1

IPR005612 CBF 1

IPR001289 NFYA 1

IPR018004 APSES-type HTH 1

IPR003150 RFX 1

IPR033896 MADS_MEF2-like 1

IPR018501 DDT 1

Group 2

IPR006856 MATalpha_HMGbox 0.8

IPR039515 NOT4 0.9

IPR033897 MADS_SRF-like 0.95

IPR000232 HSF 0.98

Group 3

IPR003163 Tscrpt_reg_HTH_APSES-type 1.04

IPR001766 Fork_head 1.05

IPR011016 Znf_RING-CH 1.11

IPR001965 Znf_PHD 1.11

IPR009071 HMG_box 1.12

IPR004181 Znf_MIZ 1.24

IPR001606 ARID 1.25

IPR000679 Znf_GATA 1.3

IPR001005 SANT/Myb 1.32

IPR000818 TEA/ATTS 1.33

IPR003120 Ste12 1.33

IPR003958 CBFA_NFYB 1.35

IPR001083 Cu_fist 1.37

IPR000967 Znf_NFX1 1.4

IPR006565 Bromodomain 1.52

IPR001387 Cro/C1-type_HTH 1.6

IPR001841 Znf_RING 1.64

IPR000571 Znf_CCCH 1.74

IPR001878 Znf_CCHC 1.83
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Table 2. Cont.

IPR Term EIy

IPR010666 Znf_GRF 2

IPR018060 HTH_AraC * 2

IPR001356 Homeobox 2.28

IPR007604 CP2 * 2.73

IPR007396 PAI2 3.42

IPR024061 NDT80 3.47

IPR011598 bHLH 3.48

IPR007889 HTH_Psq * 3.53

IPR013087 Znf_C2H2 4.15

IPR004827 bZIP 5.8

IPR001138 Zn2-C6 15.09

* Indicates the families without a presence in yeasts.

3.2. Conserved TF Families That Are Primarily Associated with General/Global
Transcription Factors

Fourteen TF families accounted for 30% of our annotated TF families. Most of these
fourteen families had a single ortholog in all genomes included in this study (Figure 2B;
Tables 2 and S1), suggesting their functional conservation across the Ascomycota. These
30% conserved TF families accounted for less than 2% of the total TFomes. Annotation
based on S. cerevisiae and other model organisms suggested their involvement in transcrip-
tion/translation regulation and cell cycle control.

3.2.1. Transcription/Translation Regulation

Nine TF families were annotated to be related to transcription and translational
regulation including TATA box-binding protein (TBP), TBP-associated factors (TAFs), RNA
polymerase II elongation regulator Vps25, and CCAAT-binding factors (CBFs) related to
ribosomal biogenesis.

One of the most conserved TF families, transcription initiation TBP binds directly to the
TATA box to define the transcription start and initiate transcription facilitated by all three
RNA polymerases. In fact, the function of TBP is so conserved that the yeast homolog can
complement TBP mutations in humans [53,54]. Seven conserved TF families are classified
as transcription positive/negative regulators, and transcription elongation factors. TAF12
and TAFII28 are parts of the transcription factor TFIID complex. Interacting with TBP, TAFs
form the TFIID complex and positively participate in the assembly of the transcription
preinitiation complex [55]. Similarly, TFIIH works synergistically with TFIID to promote
the transcription [56]. In contrast, negative cofactor 2 (Ncb2) inhibits the preinitiation
complex assembly [57]. Other factors include the CNOT1, a global regulator involved in
transcription initiation and RNA degradation [58], and Vps72/YL1, which contributes
to transcriptional regulation through chromatin remodeling, as reported in yeast [52,59].
Vps25 is a subunit of the ESCRT-II complex, which binds to the RNA polymerase II
elongation factor to exert transcriptional control in mammalian systems [60]. One TF family
is suggested to be involved in translational regulation. CCAAT box is a common cis-acting
element found in the promoter and enhancer regions of genes in the eukaryotes [61,62].
CBFs are necessary for 60S ribosomal subunit biogenesis and are therefore involved in
translational control [63–65]. This family including Noc3, Noc4, and Mak21 in S. cerevisiae
had three members in each genome, and a clear single-copy orthologous relationship could
be observed for each member (Figure S3A).
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3.2.2. Cell Cycle Control

Five TF families were related to cell cycle control including cell cycle progression,
DNA repair, and machinery/cell integrity maintenance.

One conserved TF family, APSES-type HTH, was reported to be involved in cell
cycle control and crucial to development [66]. Every genome included in this study
encoded four copies of the APSES-type HTH gene (Figure S3B) that formed four clades
of single-copy orthologs in all genomes except yeasts. Genes in Clade 1 included StuA
homologs. As a target of the cyclic AMP (cAMP)-dependent protein kinase A (PKA) signal
transduction pathway, StuA was reported to be involved in dimorphic switch [67,68],
fungal spore development, and the production of secondary metabolites [69]. Genes in
Clade 2 and Clade 3 included S. cerevisiae Swi4 and Swi6, which were reported to form a
protein complex regulating cell cycle progression from G1 to the S phase [70] as well as
meiosis [71]. Genes in Clade 4 included homologs of S. pombe Bqt4, anchoring telomeres to
the nuclear envelope [72].

The conserved TF family, DTT, represented by the S. cerevisiae homolog Itc1, is recog-
nized as a subunit of the ATP-dependent Isw2p-Itc1p chromatin remodeling complex and
is required for the repression of early meiotic gene expression during mitotic growth [73].

The other conserved TF family, RFX, was reported to be involved in DNA repair. Each
strain encoded two orthologous copies, except for F. venenatum encoding two copies within
the RFX1 clade (Figure S3C). Being a major transcriptional repressor of DNA-damage-
regulated genes in S. cerevisiae, Rfx1 functions in DNA damage repair and replication
checkpoint pathways [74]. In F. graminearum, Rfx1 was reported to be essential in main-
taining the genome integrity [75]. The other copy, Rsc9 in S. cerevisiae, was reported to
be a member of the chromatin structure-remodeling complex RSC, which is involved in
transcription regulation and nucleosome positioning [76,77].

The conserved TF family NFYA was reported to bind to the CCAAT box. All strains
maintained a single copy of this family. Its yeast homolog, Hap2, has been reported to
induce the expression of mitochondrial electron transport genes [78] and its F. verticillioides
homolog NFYA Hap2 was reported to be essential for fungal growth and the virulence on
maize stalks [79].

The MADS MEF2-like TF family including S. cerevisiae Rlm1 was reported to be a
component of the protein kinase C-mediated MAP kinase pathway involved in main-
taining cell integrity [80]. Having a paralog from the whole genome duplication in S.
cerevisiae, Rlm1 was detected as a single copy gene in all filamentous fungi included in this
study. Its member in F. verticilioides, Mef2 has been reported to play a vital role in sexual
development [81].

3.3. Gene Family Contractions in FOSC Partially Caused by Whole Genome Duplication in Yeast

We detected an expansion score of less than 1 for four TF families, MATalpha_HMGbox,
NOT4, MADS_SRF-like, and HSF (heat shock factor), reflecting some level of gene family
contraction among members of FOSC compared to the two yeast genomes (Figure S4).

TF family MATalpha_HMGbox including S. cerevisiae mating type protein alpha 1
has been reported to be a transcription activator that activates mating-type alpha-specific
genes [82]. Reflecting the potential heterothallic mating strategy, all F. oxysporum Mat1-1
type strains contained this TF, but not the Mat1-2 strains, even though sexual reproduction
has not been observed in FOSC [83].

TF family NOT4 was reported to be a component of the multifunctional CCR4-NOT
complex, a global transcriptional repressor of the RNA polymerase II transcription [84]. Most
genomes included in this study encoded one copy of this TF family, but some filamentous
fungal genomes including A. nidulans, F. redolens, F. oxysporum strains NRRL26365, MRL8666,
and PHW726 lost it. The functional implication of this loss remains to be discovered.

The contractions of the other two TF families, MADS SRF-like and HSF, were primarily
caused by the whole genome duplication in yeast. In contrast to the contraction at the
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global scale, both TF families expanded among some FOSC strains when compared to other
filamentous fungi (Figure S4).

As reported in M. oryzae, MADS SRF-like TF, essential for the transcriptional regulation
of growth-factor-inducible genes [85], is important for microconidium production and
virulence in host plants [86]. Due to the event of whole genome duplication, the S. cerevisiae
genome contained two copies of this TF family, while all filamentous genomes encoded a
single copy. However, we detected an average of 2.73 copies among the phytopathogenic
FOSC strains. There were six copies in the genome of Fo5176, a pathogen of Brassicaceae
plants including A. thaliana (Table S1).

TF family HSF has been reported to activate the production of heat shock proteins that
prevent or mitigate protein misfolding under abiotic/biotic stresses [87]. The S. cerevisiae
genome contained five copies of the HSF TF family, while all non-FOSC filamentous
fungi had three copies. Members of FOSC exhibited some level of expansion to four
or five copies (Fo47:4, Fol4287: 5, II5: 4, HDV274: 4, and Fo5176: 4), with 1–2 copies
encoded in ACs. Phylogenetically, all HSF TFs were clustered into three major clades,
named as Skn7, Sfl1, and Hsf1 (Figure 3A,B). All AC-encoding HSFs were phylogenetically
close to Hsf1 (Figure 3A). Based on the study in M. oryzae, the family Sfl1 is essential for
vegetative growth, conidiation, sexual reproduction, and pathogenesis [88]. Based on a
study in F. graminearum, the family Skn7 is involved in regulating the oxidative stress
response and is essential for pathogenicity [89]. Our expression data generated during
the plant colonization [24] supported the involvement of all three core genes during plant
colonization (Figure 3C). However, the Hsf1 accessory copies of these two strains were
distinct, as the Fo47 AC-encoding Hsf1 was upregulated and the Fo5176 AC-encoding Hsf1
was downregulated, post inoculation (Figure 3C), suggesting that their distinct regulatory
function is involved in these two distinct interactions.

 

Figure 3. Evolutional trajectory of heat shock factors (HSFs) suggests genome expansion and adapta-

tion. (A) Phylograms of HSFs were constructed by the maximum likelihood method with 1000 boot-

straps. Branches of Fusarium HSFs are colored in yellow. Accessory HSFs of FOSC are shaded in red.

(B) Number of accessory HSFs in some FOSC genomes. (C) Expression of HSF genes during plant

colonization (hpi indicates hours post inoculation) compared to axenic growth. Transcriptome data

were previously described in Guo et al. 2021 [24]. See Section 2 for details of the data reprocessing

and visualization.



J. Fungi 2023, 9, 359 11 of 23

3.4. Significant FOSC TFome Expansion Driven by a Few Exceedingly Expanded TF Families

3.4.1. Gain-of-Function among Filamentous Ascomycete Fungi

Three TF families, CP2 (EIy = 2.73), HTH_AraC (EIy = 2), and HTH_Psq (EIy = 3.53),
were absent in both yeast genomes, suggesting a gain of function among filamentous
ascomycete fungi (Table S1). TF family CP2 was studied in animal and fungal kingdoms
with a function related to differentiation and development [90]. Both HTH_AraC and
HTH_Psq are part of the helix-turn-helix (HTH) superfamily. HTH_AraC was first reported
in bacteria as a positive regulator regulating the arabinose operon [91–93]. HTH_Psq, as
part of the eukaryotic Pipsqueak protein family, has been reported in vertebrates, insects,
nematodes, and fungi to regulate processes involved in cell death [94]. Most FOSC genomes
encoded a single copy of HTH_AraC, while the number of HTH_Psq-containing proteins
ranged from 0 to 9 in the FOSC and 0 to 3 in other Fusarium genomes. Since the HTH_Psq
domain also exists in transposases [94], and ACs in FOSC are transposon-rich, it remains to
be studied whether proteins containing the Psq domain are bona fide TFs.

3.4.2. Seven Exceedingly Expanded TF Families

Among the families containing minimally one yeast ortholog, seven TF families had
expansion indices greater than 2 (Table 2 and Figure 2B) including Zn2-C6 (EIy = 15.09),
bZIP (EIy = 5.80), Znf_C2H2 (EIy = 4.15), Homeobox (EIy = 2.28), PAI2 (EIy = 3.42), NDT80
(EIy = 3.47), and bHLH (EIy = 3.48). Based on the number of increments, the most signifi-
cantly expanded TF families were Zn2-C6 (44 in yeasts versus 671 in FOSC) and Znf_C2H2
(40 in yeasts versus 167 in FOSC) (Figure 2C and Table S1). Because of their large expansion,
these seven families accounted for more than 75% of the total TFome. All seven families
exhibited a gradual expansion, following the pattern yeasts < non-Fusarium filamentous
fungi < non-FOSC Fusarium < FOSC (Table S1). Annotating large TF families could be
challenging. Here, we described some examples based on the literature.

Zn2-C6, a fungal TF family [95], was detected as the most significant expanded TF
family, reaching over 600 members among the FOSC genomes and accounting for more
than half of the total TFome. Able to form a homodimer, this group of TFs are also able
to bind to the specific palindromic DNA sequence through direct contact with the major
groove of the double-stranded DNA molecules [95]. The versatility of this group of TFs
can be achieved by domain shuffling and by changing the nucleotide binding specificity.
In addition to the well-documented Ftf1 [17,96–99], five additional TFs within this family
were reported in F. oxysporum including Ctf1 [100], Ctf2 [100], Fow2 [101], XlnR [102] and
Ebr1 [103]. Their functions were reported to be involved in the development, metabolism,
stress response, and pathogenicity.

Znf_C2H2 was reported to be the most common DNA-binding motif found in the eu-
karyotic transcription factors [104]. Five reported F. oxysprum TFs are Czf1 [105], Con7-1 [106],
PacC [18,107], ZafA [108], and St12 [109,110]. Classified in the Znf_C2H2 family, PacC has
been linked to the fungal virulence in both plant and human hosts [18,107].

The other five families were bZIP, Homeobox, PAI2, Ndt80, and bHLH. The bZIP
domain contains a region for sequence-specific DNA binding followed by a leucine zip-
per region required for dimerization [111]. Three F. oxysporum bZIP TFs were reported
including Atf1 [112], Hapx [113], and MeaB [114], all of which are important for fungal
pathogenicity. Homeobox is a DNA binding motif with a helix-turn-helix structure. In
S. pombe, a homeobox-domain containing protein Phx1 was reported to be a transcriptional
coactivator involved in yeast fission. In M. oryzae, the homeobox-domain containing pro-
tein Hox played roles in conidiation and appressorium development [115]. The TF family
PAI2 is involved in the negative regulation of protease synthesis and sporulation of the
Bacillus subtilis [116]. The TF family Ndt80 is essential for completing meiosis in S. cere-
visiae [117,118] and Ustilago maydis [119] by promoting the expression of sporulation genes
for the fulfillment of meiotic chromosome segregation [120]. The TF family bHLH forms a
superfamily of transcriptional regulators found in almost all eukaryotes and is involved
in diverse developmental processes [121]. In F. graminearum, a bHLH-domain containing
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protein Gra2 was reported to regulate the biosynthesis of phytotoxin gramillin [122], while
a bHLH-domain containing protein SreA in Penicillium digitatum is required for anti-fungal
resistance and full virulence in citrus fruits [123].

3.4.3. Other Families

The other 20 TF families (expanded but with EIy ≤ 2) accounted for 20% of the TFome,
with an average 9.6 copies in each genome examined (Table S1).

Four TF families were functionally linked to chromatin remodeling including Bro-
modomain (EIy = 1.52), CBFA_NFYB (EIy = 1.35), Znf_RING-CH (EIy = 1.11), and ARID
(EIy = 1.25). The TF family Bromodomain contained Spt7. As a crucial part of the SAGA
complex in yeast, Spt7 has been reported to recognize the acetylated lysines of histones and
eventually lead to chromatin unwinding [124]. The CBFA_NFYB domain was found in pro-
teins (e.g., S. cerevisiae Dls1) that regulate RNA polymerase II transcription by controlling the
chromatin accessibility (e.g., telomeric silencing) [125]. The TF family Znf_RING-CH also
had a functional connection to chromatin modification (e.g., S. cerevisiae Rkr1) [126]. The
domain ARID, a 100 amino acid motif, has been found in many eukaryotic TFs [127] such
as Swi1 in S. cerevisiae, playing an important role in chromatin remodeling. This domain is
also required to transcribe a diverse set of genes including some retrotransposons [128,129].

TFs belonging to the Ste12 family are only found in the fungal kingdom. Except for S.
pombe, every genome encodes one copy. Binding to a DNA motif that mediates pheromone
response, Ste12 TFs were reported to regulate fungal development and pathogenicity [130]
and are involved in mating and pseudohyphae formation [131]. In F. oxysporum, Ste12,
downstream of the Fmk1-mediated MAPK cascade, is involved in the control of invasive
growth and fungal virulence [110].

Among the others, the Znf_NFX1 domain has been found in NK-X1, a repressor of
the human disease-associated gene HLA-DRA [132]. The HMG_box (high mobility group
box) in S. cerevisiae is seen in three proteins: Spp41, which is involved in the negative
expression regulation of spliceosome components [133]; Nhp6a, which is required for the
fidelity of some tRNA genes [134]; and Ixr1, a transcriptional repressor that regulates
hypoxic genes [135]. Fep1, an example of Znf_GATA, was reported to be a transcrip-
tional repressor involved in the regulation of some iron transporter genes under high iron
concentrations [136]. S. cerevisiae Mbf1, belonging to Cro/C1-type HTH, is a transcrip-
tional coactivator [137].

3.5. Orthologous Survey of TF Families That Were Manually Curated

To further understand expanded TFs and their impacts on transcriptional regulation,
we curated a list of 102 TFs reported in the literature focusing on F. oxysporum, F. gramin-
earum, and other phytopathogenic fungi (Table S3 and examples as described in the previous
section). Compared to this list of curated TFs using Orthofinder, we defined 80 orthologous
groups among the Fusarium genomes (Table S4). Sixty-two out of the 80 orthogroups were
identified using the above IPR-annotated pipeline including 17 in Zn2C6, nine in Znf_C2H2,
and one containing both the Znf_C2H2 and Zn2-C6 domains (Table S4). This helps add to
the functional annotation of these large TF families while also adding additional annotation
to 18 TF families (Table S4), accounting for 32 genes per genome (3% of average Fusarium
TFome size). These newly annotated TFs include homologs of those without a domain
annotation (e.g., disordered proteins F. oxysporum Ren1 [138], M. oryzae Som1 [139], and
homologs of those with noncanonical TF domains such as Ankyrin_rpt and WD40_repeat).

We then directly compared F. oxysporum with its Fusarium relatives to calculate the
expansion index as follows:

EIf =
Average number o f TFs in FOSC + 1

Average number o f TFs in FOSC sister species + 1

The EIf ranged from the highest score of 3.54 (Fug, AreA_GATA) to the lowest score of
0.5 (Fox1, Fork_head) (Table S4). Among these 80 orthogroups, 36 groups were conserved
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(EIf = 1), with one gene per genome. Ten of these conserved groups were functionally
validated in F. oxysporum (Table S4). Twenty four groups had scores less than 1, while
20 groups had a score greater than 1 (Table 3 and Table S4). Expanded groups included
Fug1 (AreA_GATA, EIf = 3.54), Cos1 (Znf_C2H2, EIf = 2.8), Ftf1/Ftf2 (Zn2-C6, EIf = 2.7),
Ebr1/Ebr2 (Zn2-C6, EIf = 2.5), and Ren1 (disordered, EIf = 2). We also identified PacC
(EIf = 1.57) as the second most expanded group within the highly expanded Znf_C2H2
family. We will further discuss these six groups (Table 3).

Table 3. Ortholog copy number and expansion index (EIf) of the characterized and expanded TFs in

F. oxysporum.

TF Reported Species References Family Overlap * Average_Fo
Average_
Non-Fo

EIf

Ftf1/Ftf2 F. oxysporum [96] Zn2-C6 Yes 4.80 1.11 2.75

Ebr1/Ebr2 F. oxysporum [103] Zn2-C6 Yes 5.27 1.56 2.45

Znf1 M. oryzae [140] Zn2-C6 Yes 6.47 2.78 1.98

Ctf2 F. oxysporum [141] Zn2-C6 Yes 2.93 1.33 1.69

Fow2 F. oxysporum [101] Zn2-C6 Yes 2.07 1.00 1.53

Dep6 A. brassicicola [142] Zn2-C6 Yes 0.93 0.67 1.16

Pf2 A. brassicicola [143] Zn2-C6 Yes 1.20 1.00 1.10

Art1 F. verticilioides [144] Zn2-C6 Yes 1.00 0.89 1.06

Clta1 C. lindemuthianum [145] Zn2-C6 Yes 1.07 1.00 1.03

Fhs1 F. graminearum [146] Zn2-C6 Yes 1.07 1.00 1.03

Cos1 M. oryzae [112] Znf_C2H2 Yes 1.80 0.00 2.80

PacC F. oxysporum [107] Znf_C2H2 Yes 2.13 1.00 1.57

Fug1 F. verticillioides [147] AreA_GATA No 7.27 1.33 3.54

Ren1 F. oxysporum [138] disordered No 3.00 1.00 2.00

Tri10 F. graminearum [148] Fun_TF No 1.13 0.33 1.60

Ltf1 B. cinerea [149] Znf_GATA Yes 4.00 2.44 1.45

Ndt80 U. maydis [119] NDT80 Yes 1.73 1.11 1.29

Hap3p F. verticillioides [147] CBFA_NFYB Yes 1.33 1.00 1.17

Sod1 F. oxysporum [150] SOD_Cu_Zn No 1.47 1.22 1.11

Prf1 F. oxysporum [151] HMG_box Yes 1.07 1.00 1.03

* Column ‘Overlap’ indicates whether orthologous mapping probed families were already included in our
domain-based TF annotation.

Both Ftf1/Ftf2 and Ebr1/Ebr2, belonging to the Zn2-C6 family, contributes directly
to fungal virulence [3,17,97]. The deletion of AC-encoding Ftf1 reduced the pathogenicity
of F. oxysporum f. sp. phaseoli [97], highlighting the direct functional involvement of AC
TF in virulence. In Fol, deleting either Ftf1 (AC encoding) or Ftf2 (CC encoding) reduced
the fungal virulence [96,152]. Constitutive expression of either Ftf1 or Ftf2 induced the
expression of effector genes [17]. The core copy Ftf2 was conserved among all Fusarium
species, and the AC copy Ftf1 was only found in F. oxysporum and F. redolens (Figure 4).
Ebr1 had multiple homologs in F. oxysporum, but a single copy in F. graminearum [103]. The
F. oxysporum genome had three AC-encoding paralogs: Ebr2, Ebr3, and Ebr4. Interestingly,
these AC-encoding paralogs are regulated by core copy Ebr1 [103]. It is worth noting
that the Ebr2 coding sequence driven by the Ebr1 promoter was able to rescue the Ebr1
knockout mutation, indicating some functional redundancy of this family.
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Figure 4. Unique expansion of some TFs, driven by ACs, may provide clues to host-specific adapta-

tion. RNA-Seq data were previously described [24,25]. (A) Ftf1, the TF involved in tomato pathogenic-

ity was most significantly expanded (10 copies of accessory FTFs) in the tomato pathogen Fol4287

genome and the expression of eight out of 10 were induced during plant colonization. (B) Ren1

was the most significantly expanded (seven copies of accessory RENs) in the Arabidopsis pathogen

Fo5176 genome, and two of them were induced during plant colonization.

Both Cos1 and PacC are part of the Znf_C2H2 family. In M. oryzae, Cos1 was reported
to be involved in conidiophore development [112] and functions as a negative regulator
reducing fungal pathogenicity [153]. PacC has been reported as an important pH-responsive
TF in F. oxysporum [18,107]. This TF family was expanded in clinical strains, showing an
average accessory copy number of 3.7 of FOSC, whereas the non-clinical strains showed an
average accessory copy number of 0.5. All of the Fusarium relatives’ genomes examined
only contained a single copy of the core PacC. Our previous study using one F. oxysporum
clinical isolate revealed that the expression of all PacC genes can be induced with a pH
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shift from 5.0 to 7.4 (the mammalian physiological pH), indicating a potential role in
host adaptation [18]. Interestingly, the induction of AC-encoding PacC genes was CC-
encoding PacC gene-dependent as the induction disappeared in the CC-encoding PacC
knockout mutant, further supporting a cross-talk between the core and accessory TFs.
Similar to EBR1, the expression of the AC-encoding PacC genes was much lower than
that of the CC-encoding PacC gene, and knockouts of one AC PacC gene affected a small
subset of genes compared with the CC PacC knockout, which had a broader effect on the
cellular processes [49].

Fug1 has a role in pathogenicity (maize kernel colonization) and fumonisin biosynthe-
sis in F. verticillioides [147]. The deletion of Fug1 increased the sensitivity to the antimicrobial
compound 2-benzoxazolinone and to hydrogen peroxide, suggesting its role in mitigating
stresses associated with the host defense [147]. Neither CC nor AC-encoding copies of these
two genes were experimentally examined in FOSC. Ren1, a disordered protein without IPR
functional domain, was expanded with a EIf score of 2 among the FOSC. However, the only
reported study on its function is in F. oxysporum f. sp. melonis, regulating the development
of conidiation [138].

3.6. Transcriptome Analysis to Probe the Essential TFs during Host Colonization

To understand the functional importance of FOSC TFs, we took advantage of two
recently reported transcriptomics datasets [24,25] including pathogenic interactions (Fo5176
infecting Arabidopsis and Fol4287 infecting tomato) and endophytic interactions (Fo47
colonizing Arabidopsis) (Supplementary Dataset).

By examining patterns of expression (Table S5), we found that almost all genes within
the conserved category (58 out of 60) (Group 1) were consistently expressed (TPM > 1
across all conditions), supporting their general roles in controlling life processes. Within
the expanded category (Group 3), the proportion of genes being consistently expressed
ranged from 41% to 59% for core TFs and only from 5% to 16% for AC-encoding TFs. With
a less strict filter (TPM > 1 at minimum 1 condition), we found that all genes within the
conserved category were expressed. Within the expanded category, 93% of core TFs and
between 49% and 67% of AC-encoding TFs were expressed. The significant increase in the
AC-encoding TFs with a lower stringency further supported their conditional involvement
in niche adaptation.

We further reviewed the expression patterns of the reported TFs in Fol4287 (Table S6).
Out of the 27 TFs encoded on the core genome, 18 were upregulated (defined by upregula-
tion under at least three out of four in planta conditions compared to the axenic growth)
during plant colonization, which is consistent with their reported roles in pathogenicity. The
AC-encoding Ftf1 has been reported to play essential functions in fungal pathogenicity [96].
Of the ten accessory Ffs, eight were upregulated during plant colonization.

Using a higher stringency filter, selecting TFs upregulated under all in planta condi-
tions, we searched for: (1) conserved core TFs that may be related to plant colonization and
(2) expanded AC TFs that could be related to host-specific pathogenicity. In the Fol4287,
Fo5176, and Fo47 genomes, 95, 62, and 44 core TFs were upregulated during plant colo-
nization, respectively. Among them, ten copies were highly conserved (Table S7) as they
were single-copy orthologs across all 15 F. oxysporum strains including Fow2 and Sfl1.
Fow2, a Zn2C6 TF, is required for full virulence but not hyphal growth and conidiation in
F. oxysporum f. sp. melonis [101]. Sfl1 was reported to be essential for vegetative growth,
conidiation, sexual reproduction, and pathogenesis in M. oryzae [88].

Fol4287, Fo5176, and Fo47 contained 29, 34, and nine upregulated accessory TFs,
respectively, including Ftf1 and Ren1 (Figure 4 and Table S8). Ftfs have been reported
to play an essential role in the pathogenicity in Fol4287, although their involvement in
other interactions has not. The Fol4287 genome encoded 10 accessory Ftf s and eight
were upregulated during plant colonization. The Fo5176 genome encoded six accessory
Ftf s, but only one copy was upregulated during plant colonization. Interestingly, eight
upregulated Fol4287 and one upregulated Fo5176 Ftf s were clustered together (Figure 4).
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The unique expansion with regulatory adaptation (i.e., fine-tuned expression regulation)
seemed to be restricted to Fol4287 and not the other pathogenic strain, Fo5176. In contrast,
the Fo5176 genome encoded seven accessory Ren1 TF and two were upregulated during
plant colonization (Figure 4), while the Fol4287 genome had only one accessory Ren1
not involved in host colonization. While functional validation is needed, strain-specific
expansion followed by fine-tuned expression regulation when infecting host species exists
and likely contributes to host-specific pathogenicity.

4. Discussion

For a soilborne pathogen with strong host specificity like FOSC, the adjustment of
growth and cell cycle control in response to environmental cues is likely to be essential
for survival. Expanded TF families likely contribute to the enhanced functions related to
niche adaptation as these TF families play important roles in transmitting external and
internal signals and regulating complex cellular signaling responses to the sensed stimuli.
Therefore, it is not surprising that the genomes of FOSC had larger TFome sizes than the
other fungi included in the study. The expansion of TFs among the FOSC resulted in a
positive correlation between the total number of proteins and the size of the fungal TFome,
which was also observed in other instances [22].

A total of 14 TF families that control the global transcriptional event such as TBP are
highly conserved within the ascomycete fungal lineages. Conserved regulatory mechanisms
revealed through this study suggest that the plant colonization process could be a common
process among FOSC strains regardless of their host-specific pathogenesis. This notion
is also supported by recent studies that highlighted the ability of FOSC strains as root
colonizers regardless whether of they cause disease or function as endophytes [25,154].

In contrast to these stable TFs, 30 families were expanded to various degrees, and
the most significant expansions occurred in the Zn2-C6 and Znf_C2H2 TF families among
the FOSC genomes. The number of Zn2-C6 TFs increased significantly (with the highest
expansion score) and made up most of the TFs (56.7%) found within the FOSC TFome.
For example, Ftf1, a TF belonging to Zn2-C6 and is involved in tomato pathogenicity, was
most significantly expanded to 10 copies of accessory Ftfs in the tomato pathogen Fol4287
genome. Eight out of 10 were induced during plant colonization.

The unique expansion of some TFs, driven by ACs, may provide clues as to host-
specific interactions. Acquiring additional TFs will modify existing regulatory pathways,
and this will require fine-tuning existing networks for this group of organisms to success-
fully adapt to different hosts under diverse environments. A previous survey of kinome
(the complete set of protein kinases encoded in an organism’s genome) among the FOSC
and other Ascomycetes also revealed a positive correlation between the size of the kinome
and the size of the genome [48], identical to what we reported here for TFomes. As kinases
and TFs are key regulators that modulate all important signaling pathways and are essential
for the proper functions of almost all molecular and cellular processes, strong correlations
between kinome and TFome suggest the ordered recruitment and establishment of ACs
among FOSC genomes.

This realization further emphasizes the importance of additional functional studies.
Reverse genetics is a powerful tool in defining the functional importance of a TF. For
example, TF Ren1, a disordered protein, was identified by genetic and molecular character-
ization [138]. This TF is most significantly expanded (seven copies of accessory Rens) in the
Arabidopsis pathogen Fo5176 genome and is involved in plant colonization. High through-
put approaches such as chromatin immunoprecipitation sequencing (CHIP-Seq) and DNA
affinity purification sequencing (DAP-Seq) [155] can be used to profile the cis-regulatory
elements globally for a better understanding of transcriptional regulation in the fungal
model F. oxysporum. Gene regulatory networks [156,157] can add more resolution to these
complex regulatory processes. However, the ultimate understanding of the regulatory roles
of each TF will come from careful molecular and biochemical characterization.
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Our study offers a comprehensive look at the regulation from the evolutionary per-
spective while also providing an easily implemented computational pipeline to compare
TFs and other functional groups in fungi. A better understanding of functions of TFs will
not only inform Fusarium biology [158], but can also be extrapolated to other filamentous
fungal systems.
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