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Abstract

Fractons are a new type of quasiparticle which are immobile in isolation, but can often move by

forming bound states. Fractons are found in a variety of physical settings, such as spin liquids and

elasticity theory, and exhibit unusual phenomenology, such as gravitational physics and localization.

The past several years have seen a surge of interest in these exotic particles, which have come to

the forefront of modern condensed matter theory. In this review, we provide a broad treatment of

fractons, ranging from pedagogical introductory material to discussions of recent advances in the

field. We begin by demonstrating how the fracton phenomenon naturally arises as a consequence

of higher moment conservation laws, often accompanied by the emergence of tensor gauge theories.

We then provide a survey of fracton phases in spin models, along with the various tools used to

characterize them, such as the foliation framework. We discuss in detail the manifestation of fracton

physics in elasticity theory, as well as the connections of fractons with localization and gravitation.

Finally, we provide an overview of some recently proposed platforms for fracton physics, such as

Majorana islands and hole-doped antiferromagnets. We conclude with some open questions and an

outlook on the field.
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I. INTRODUCTION

The field of condensed matter physics studies the complex and often surprising collective

behavior of systems containing many particles. One of the most striking examples of new

physics which arises in such many-body systems is the concept of an emergent quasiparticle.

Strong interactions between the microscopic particles can often drive the formation of emer-

gent quasiparticle excitations with vastly di↵erent properties from any known fundamental

particle. The concept of a quasiparticle dates back to Landau’s theory of Fermi liquids, in

which interactions between electrons lead to the formation of quasiparticle excitations with

the same charge as an electron, but with a di↵erent mass. A more dramatic example of

an emergent quasiparticle was later found in the context of fractional quantum Hall sys-

tems, where Laughlin quasiparticles carry only a fraction of the elementary electric charge.
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FIG. 1. a) A single fracton cannot move freely in any direction. b) Fractons can sometimes move

by forming certain bound states, such as dipoles. c) It is also possible for a fracton to move at the

expense of creating new particles out of the vacuum.

Since then, a wide array of quasiparticles has been discovered, often possessing fractionalized

quantum numbers or anyonic quantum statistics.

Recently, however, a new type of emergent quasiparticle has been encountered which

di↵ers from all previously known particles in an unusual way. Fractons are quasiparticles

which lack an ability previously assumed to be inherent to all particles: namely the ability

to move. A fracton is a quasiparticle which, in isolation, is unable to move in response to an

applied force [1–5]. However, depending on the details of the model, fractons can sometimes

move by combining to form certain bound states, as depicted in Figure 1. Fracton models

are often classified as “type-I” if they possess stable mobile bound states, and as “type-II”

if all mobile bound states can decay directly into the vacuum [4]. It is also possible for an

individual fracton to move at the cost of creating new fractons out of the vacuum at each

step of its motion. However, in the absence of a constant energy input to sustain this particle

creation, an individual fracton will remain immobile. These unusual new particles were first

encountered in certain exactly-solvable three-dimensional spin and Majorana models [1–4, 6–

8], but have since been shown to arise in contexts ranging from topological crystalline defects

[9] to plaquette-ordered paramagnets [10] (see also precursor work in Ref. [11]). Furthermore,

the restricted mobility of fractons causes them to exhibit a variety of unusual properties,

such as nonergodic behavior [12, 13] and even gravitational physics [14, 15]. At a practical

level, there is hope that the immobility of fractons may even be harnessed for the purposes

of quantum information storage [2, 16–18].

The field of fractons has a somewhat complicated history, and we give only a brief

overview. It is generally agreed upon that the first manifestation of fracton behavior was
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encountered in a spin model exhibiting glassy dynamics constructed by Chamon [1], though

there is also important conceptual overlap between fractons and earlier work on kinetically

constrained models [19–21]. Later, Haah designed the paradigmatic type-II fracton model,

featuring a characteristic fractal structure, with the goal of creating a self-correcting quan-

tum memory [2]. However, the significance of these two models, often known as the Chamon

model and Haah’s code respectively, was not immediately appreciated. It was not until the

seminal work of Vijay, Haah, and Fu that it became clear that these models were only two

examples of a much larger class of fracton systems, representing a fundamentally new type

of phase of matter [3, 4]. Vijay, Haah, and Fu constructed several now-prototypical fracton

models in three dimensions, such as the X-cube model. Additionally, they recognized the

existence of several close cousins of fractons: particles which can only move along a one- or

two-dimensional subspace of a three-dimensional system. These particles have since come

to be known as lineons and planons respectively, or sometimes more generally as subdimen-

sional particles.

The next major advance in the understanding of fractons came with the realization by

one of the present authors (MP) that the restricted mobility of fractons can be naturally

understood in terms of a set of higher moment conservation laws, which often arise as

a consequence of an emergent symmetric tensor gauge theory [5, 22]. For example, the

simplest such gauge theories feature conservation of both charge and dipole moment, which

immobilizes individual charges but allows for motion of stable dipolar bound states. Building

on earlier work on symmetric tensor gauge theories [23–27], MP showed that these gauge

theories provide an e↵ective description of a broad class of fracton phases featuring emergent

gapless gauge modes. It was later shown by Ma, Hermele, and Chen [28], and independently

by Bulmash and Barkeshli [29], that certain symmetric tensor gauge theories give rise to the

previously studied gapped fracton models via the Higgs mechanism. From this viewpoint,

various spin-1/2 fracton models can be understood as types of Z2 symmetric tensor gauge

theories. In addition to shedding internal light on the field of fractons, the symmetric tensor

gauge theory formalism has also drawn unexpected connections between fractons and other

areas of physics, such as elasticity theory [9] and gravity [14]. Due to their key role in the field

of fractons, we begin by discussing some basic aspects of symmetric tensor gauge theories

in Section II.

Recently, there has been further significant progress on the understanding of fracton
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phases in gapped spin models. Useful tools have now been developed for relating such frac-

ton phases to more familiar topological phases of matter. For example, it has been shown

how certain three-dimensional fracton phases can arise via strongly coupling together layers

of two-dimensional topological phases [30, 31]. Various schemes have also been proposed

for generalizing the string-net condensate picture for ordinary topological phases to fracton

phases [32, 33]. In Section III, we describe various aspects of fractons in spin models, begin-

ning with a description of some prototypical models, such as the X-cube model and Haah’s

code, and ending with a discussion of more recent developments. In Section IV, we provide

a separate discussion of the important topic of the classification of gapped fracton phases,

with special emphasis on the well-developed foliation framework, as pioneered by Shirley,

Slagle, and Chen [34–39]. We also describe some other recent tools developed for charac-

terizing fracton phases, such as the Pai-Hermele theory of fusion and braiding in fracton

systems [40].

While much of the work on fractons takes place in the context of abstract spin models and

gauge theories, it is important to note that fracton physics has a very concrete realization

as the topological lattice defects of ordinary crystals. Specifically, the disclinations and dis-

locations of two-dimensional crystals exhibit the restricted mobility of fractons and lineons,

respectively. This connection is made precise via a duality transformation, often referred to

as “fracton-elasticity duality,” which maps the elasticity theory of crystals onto a symmetric

tensor gauge theory [9]. We discuss this duality in detail in Section V, along with its vari-

ous generalizations [41–47]. For example, the duality can be extended to three-dimensional

elasticity theory, giving rise to the concept of fractonic lines, i.e line-like excitations without

the ability to move [41].

In the following sections, we discuss some of the phenomenology of fractons, which is

important for the detection of fracton behavior in experiments. As a first notable example,

the immobility of fractons serves as a significant impediment to thermalization. Fracton

physics generically causes systems to be slow to reach thermal equilibrium, in a manifestation

of glassy dynamics, as studied first by Chamon [1] and more systematically by Prem et al.

[12]. In certain cases, fracton systems can exhibit truly non-ergodic behavior, failing to

ever reach thermal equilibrium, as shown by Pai et al. [13]. In Section VI, we describe

these unusual thermodynamic aspects of fracton systems. Another unusual characteristic of

fracton systems is that, depending on the precise form of the conservation laws, fractons
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can often exhibit gravitational behavior, in the sense of a universal attractive force between

particles which is encoded in an e↵ective geometry [14]. We describe how this gravitational

physics arises out of the tensor gauge theory formalism in Section VII.

In Section VIII, we move on to discuss various other physical realizations of fractons.

This includes both artificially engineered fractons, for example built from Majorana islands

[48], and realizations of fractons in familiar condensed matter settings, such as plaquette

paramagnets [10] and hole-doped antiferromagnets [49]. Finally, in Section IX, we conclude

with some open questions and an outlook on the field of fractons.

II. TENSOR GAUGE THEORIES AND HIGHER MOMENT CONSERVATION

LAWS

A. Basic Principles

While the restricted mobility of fractons may seem unusual at first glance, the basic

principles governing their phenomenology can be understood in terms of a remarkably simple

class of theories. Specifically, fracton behavior is seen to arise in gauge theories featuring

a symmetric tensor gauge variable. To illustrate the main idea, it is useful to focus on the

simplest type of symmetric tensor gauge theory in three dimensions, corresponding to a

generalized Maxwell theory in which the familiar vector potential ~A is replaced by a rank-2

symmetric tensor potential Aij (where Roman indices refer to spatial coordinates) [5, 22–

24]. While this initial discussion may seem abstract, we will discuss in detail later how these

e↵ective theories can arise from microscopic models, such as spin Hamiltonians.

To construct a symmetric tensor version of Maxwell theory, it is useful to first specify

the gauge transformation, which will largely dictate the form of the rest of the theory.

For Maxwell theory, the pure gauge sector is invariant under transformations of the form

~A ! ~A + ~r↵. (We will return later to the role of the scalar potential �, which becomes

important within the charge sector.) A natural (though not unique) choice for the tensor

Maxwell theory is to specify that the gauge sector must be invariant under:

Aij ! Aij + @i@j↵ (1)

For reasons which will become clear later, this theory is typically known as the “scalar charge

theory” [5]. Given this gauge transformation, we now wish to construct gauge-invariant field
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operators, playing the role of electric and magnetic fields. To obtain an electric field, it

is simplest to work in the Hamiltonian formalism. In this case, we can simply define a

symmetric tensor electric field Eij as the canonical conjugate to Aij, in analogy with the

conjugate relationship between ~A and ~E in Maxwell theory. More precisely, we write:

[Aij(x), Ek`(y)] = i(�ik�j` + �i`�jk)�(x� y) (2)

where the right-hand side has taken into account the symmetric property of the tensors.

To construct a magnetic field operator, we can simply take a curl on either of the indices

of Aij as follows:

Bij = ✏ik`@
kA`

j
(3)

where we are summing over repeated indices. (Furthermore, we work exclusively in flat space,

raising and lowering indices via the flat metric �ij.) Note that, in contrast to Aij and Eij, the

magnetic field tensor Bij is neither symmetric nor antisymmetric in its indices, but does obey

the tracelessness condition Bi

i
= 0.1 As such, this theory does not have a natural duality

between the electric and magnetic sector. From its definition, we see that the magnetic tensor

obeys the divergence-free condition @iBij = 0. When the gauge theory is compact, such that

Aij is only defined mod 2⇡, this condition relaxes to @iBij = ⇢̃j, where ⇢̃j represents the

density of vector-flavored magnetic monopoles. Importantly, however, compactness does not

lead to instantons (i.e. flux slip events) in three spatial dimensions, which allows for the

existence of a stable deconfined phase [24]. (This is in contrast to two-dimensional compact

theories, which are destabilized by instantons.)

Using the gauge-invariant fields Eij and Bij, we can immediately write down a Maxwell-

type Hamiltonian for this symmetric tensor gauge theory as:

H =

Z
d3x

1

2
(EijEij +BijBij) (4)

Note that we have neglected a potential trace term of the form (Ei

i
)2, which turns out to be

an irrelevant perturbation to this fixed point [5]. We have also restricted our attention to

rotationally invariant theories, whereas other terms may generically be present in systems

with a particular lattice symmetry. By calculating the equations of motion of this quadratic

Hamiltonian, it is a straightforward exercise to show that this model gives rise to five gapless

1 While one could symmetrize the magnetic tensor as B̃ij = Bij + Bji, doing so would fine-tune the theory

to a critical point, as discussed in Refs. [5, 22].

8



gauge modes with a linear dispersion, ! ⇠ k. These gauge modes are simply the natural

tensor analogue of photons, which may also be regarded as “gravitons” in light of our later

discussion connecting with gravity. So far, there have been few surprising aspects to this

tensor Maxwell theory, which behaves very much like normal Maxwell theory with a few

extra indices.

The unusual aspects of this theory arise when we consider the electric charge sector of the

theory. From the gauge transformation Aij ! Aij+@i@j↵, as well as the canonical conjugate

relationship between Aij and Eij, we can immediately deduce that the electric field obeys

the constraint @i@jEij = 0 within the pure gauge theory. (One way to see this is to note that

@i@jEij e↵ectively acts as the generator of the gauge transformation.) This constraint serves

as the source-free Gauss’s law of the theory. Naturally, we can then loosen this constraint

by introducing a charge density ⇢, leading to the full Gauss’s law:

@i@jE
ij = ⇢ (5)

which is the single most important equation of the entire theory. While this tensor Gauss’s

law may look only mildly di↵erent from the familiar vector one, it leads to a dramatic

consequence for the mobility of charges, as encoded in the conservation laws of the theory.

As in ordinary Maxwell theory, the Gauss’s law immediately dictates that charge is locally

conserved. Formally, one can write the charge within some region of space as:

Q =

Z
d3x ⇢ =

Z
d3x @i@jE

ij =

I
dnj @iE

ij (6)

where in the final step we have rewritten the integral of a divergence as a flux through the

boundary. This equation tells us that the charge in any region of space can only change

via the flux of charge in or out through the boundary. In other words, charge is a locally

conserved quantity in the bulk of the system. While the conservation of charge is to be

expected, this theory also contains a second type of conservation law with no analogue in

ordinary Maxwell theory. Specifically, let us consider the dipole moment associated with the

charge in some region of space:

P i =

Z
d3x ⇢xi =

Z
d3x xi@j@kE

jk =

I
dnk (x

i@jE
jk � Eik) (7)

where we have integrated by parts and taken advantage of divergences to arrive at a boundary

term. We see that, just like charge, the dipole moment of this theory can also be written in
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terms of a flux through the boundary. This indicates that dipole moment is also a locally

conserved quantity in the bulk of the system.

This local conservation of dipole moment immediately leads to the fracton phenomenology

illustrated in Figure 1. An isolated charge is incapable of moving, since any motion will

change the dipole moment of the system. Meanwhile, a dipolar bound state is free to move,

so long as it preserves the magnitude and orientation of its dipole moment. It is also possible

for a single fracton to move alongside the simultaneous creation of an additional dipole,

such that the total dipole moment remains invariant. However, such a process requires

a large input of energy to create the new dipole. To maintain constant motion via this

mechanism, a fracton require a constant input of energy in order to create new dipoles at

every step. We therefore conclude that the charges of this symmetric tensor gauge theory

are the prototypical example of fracton excitations.

This tensor gauge theory has other important features, such as a full set of tensor Maxwell

equations. We will also see later how this gauge theory draws unexpected connections be-

tween fractons and topics such as elasticity and gravity. For now, however, we conclude this

overview of tensor gauge theories by briefly mentioning a second type of theory with slightly

di↵erent properties. In addition to the “scalar charge” tensor gauge theory we have been dis-

cussing, it is also possible to write down a “vector charge” tensor gauge theory governed by

a di↵erent type of gauge transformation, Aij ! Aij+@i↵j+@j↵i, along with a corresponding

vector-flavored Gauss’s law:

@iE
ij = ⇢j (8)

As in the scalar charge theory, these vector charges will have restricted mobility due to an

unusual set of conservation laws. This theory exhibits both conservation of vector charge,

~Q =
R
d3x ~⇢, and conservation of the angular charge moment, ~M =

R
d3x (~⇢ ⇥ ~x). This set

of conservation laws leads to the restriction that each vector charge can only move along

the direction of its charge vector, while motion in the transverse directions is prohibited. We

therefore refer to the charges of this second type of tensor gauge theory as one-dimensional

particles, or lineons. Through further modifications to the tensor gauge field, e.g. by adding

additional indices or imposing tracelessness conditions, it is possible to get other types of

particles with restricted mobility, such as two-dimensional particles or fractons exhibiting

a conserved quadrupole moment. While the precise nature of the restricted mobility varies

from one theory to another, such restrictions appear to be a generic feature of symmetric
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tensor gauge theories.

B. Advances in Tensor Gauge Theory

Having established the basic physical principles of tensor gauge theories, we now provide

a brief overview of some recent advances in this area of study. The casual reader interested

mainly in a broad introduction to fractons may wish to only skim this subsection on a first

reading.

1. Fracton Field Theories

Throughout this section, we have shown how fractons naturally arise in tensor gauge

theories. In the continuum limit, these gauge fields are governed by a tensor Maxwell theory,

serving as a field theory description for the gauge sector. However, we have so far not

discussed how one can write down a field theory for the actual fractons themselves. To

illustrate how this can be done, we will work with the simplest case of a theory obeying

conservation of charge and dipole moment. We will first show how to write a field theory

consistent with charge and dipole conservation, then show how that theory can be gauged to

yield the scalar charge tensor gauge theory [50]. Similar considerations can then be applied

to other types of fractons and subdimensional particles, leading to di↵erent types of tensor

gauge theories.

We start by writing a complex scalar field � to describe fracton matter, and we assume

our theory is invariant under global phase rotations, � ! ei↵�, corresponding to conserva-

tion of charge. However, we also stipulate that the theory is invariant under linear phase

rotations, � ! ei
~�·~x� for constant ~�, corresponding to conservation of dipole moment [50].

To construct a Lagrangian invariant under this transformation, it is useful to first con-

struct covariant operators, transforming only via a phase factor. In contrast to ordinary

field theories, however, this theory does not possess any covariant operators featuring spa-

tial derivatives acting on only a single � operator. Rather, the lowest order covariant spatial

derivative operator contains two factors of �, taking the form:

�@i@j�� @i�@j� (9)
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which can be checked to transform covariantly. Using the covariant operators, we can then

write down a lowest order Lagrangian for this theory as:

L = |@t�|2 �m2|�|2 � g|�@i@j�� @i�@j�|2 � g0�⇤2(�@i@j�� @i�@j�) (10)

which takes a characteristically non-Gaussian form. (Such a non-Gaussian field theory was

also encountered earlier in a field-theoretic treatment of the X-cube model [51].) Very little

is currently known about the properties of this field theory. Can one explicitly calculate the

correlators of this model, perhaps via a perturbative diagrammatic method? Can the dipole

dispersion be directly extracted from the Lagrangian? Is there some useful renormalization

group scheme which can be applied to this theory? These all remain interesting open ques-

tions. At present, the one thing which is known about this theory is how to gauge it. Let

us now stipulate that our theory must be invariant under phase rotations with arbitrary

spacetime dependence, � ! ei↵(x,t)�. Under such a transformation, our previously covari-

ant operator transforms as �@i@j� � @i�@j� ! e2i↵[�@i@j� � @i�@j� + (i@i@j↵)�2]. We

can then construct a gauge-covariant derivative operator by introducing a gauge field Aij

transforming as Aij ! Aij + @i@j↵, which enters the derivative operator as:

�@i@j�� @i�@j�� iAij�
2 (11)

We see that the gauge tranformation of the tensor gauge field is precisely that of the scalar

charge theory, and indeed this gauge-covariant derivative can be used to write down a field

theory describing both the matter and gauge sectors of the scalar charge theory.

A natural generalization of this scalar chage theory is developed in Ref. [52] with a class

of generalized U(1) gauge theories whose charge excitations exhibit fractal structure akin to

type-II fracton models [2]. We note that there have also been many other recent developments

regarding fractons and field theories, and we refer the interested reader to the literature for

details [33, 53–59].

2. Generalized U(1) Symmetry and the Multipole Algebra

Motivated by the aforementioned fracton gauge principle perspective [50], a generalized

fracton theory can be acquired by gauging a charged matter field with generalized U(1)

symmetry and conserved multipole moment. This approach can be systematically tackled in
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terms of the notion of a multipole algebra which is a natural generalization of the symmetry

algebras generated by the polynomial shift symmetries in Ref. [60].

In Ref. [61], the author demonstrated that upon gauging the generalized U(1) symmetry

one finds the symmetric tensor gauge theories, as well as the generalized gauge theories

discussed recently in the literature [52]. The outcome of the gauging procedure depends on

the choice of the multipole algebra. Such generalized U(1) symmetries with conserved mul-

tipole moment cannot be regarded as “internal” because they do not commute with spatial

translations and rotations. Upon a unique gauging procedure with proper UV regularization

depending on the choice of the multipole algebra, one eventually reaches symmetric tensor

gauge theories akin to the recently discussed generalized gauge theories.

On a parallel and alternative search, one can show that fractonic matter naturally ap-

pears in vector gauge theories enriched by global U(1) and translational symmetries, via the

mechanism of ‘anyonic spin-orbital’ coupling [62]. Namely, if the global symmetry quantum

number is changed upon the translation of a quasiparticle, then moving the charged par-

ticles out of the submanifold is clearly forbidden when the global symmetry is present. If

the global symmetry is then gauged, the restricted particles become fractons as moving a

fracton breaks gauge invariance. More generally, the relation between symmetry restrictions

on the mobility of quasiparticles and symmetry-enriched topological orders relies on the

fact that the actions of translation and global symmetries on quasiparticle excitations do

not commute. This line of thinking opens a new page to connect fracton phases of matter

and spatial symmetry enriched topological ordered phases and identifies new specimens of

fractonic matter in these settings.

3. Tensor Chern-Simons Theories

Given the power of Chern-Simons gauge theory to study topological orders in 2 dimen-

sions, it is natural to ask whether there is a class of fractonic Chern-Simons theories which

capture fractonic behavior. Clearly, such field theories must be both similar to, and quali-

tatively di↵erent from, TQFTs—in which the details of the underlying lattice (or regular-

ization) are unimportant, and universal topological physics emerges. A number of possible

approaches to this challenge have been discussed in the literature thus far from the spirit

of BF-type theory [5, 28–30, 42, 51, 52, 61, 63–66]. These BF theories, with proper lattice
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regularization, can be viewed as the U(1) limit of all CSS quantum stabilizer codes.

However, other non-CSS stabilizer codes, such as the Chamon code [1], do not admit

such a BF description. In Ref. [67], the authors proposed a lattice version of the fractonic

Chern-Simons theory inspired by the spirit of flux attachment. By imposing a constraint

binding charge to the flux of a higher-rank gauge field, the fractonic gauge flux is decorated

with a gauge charge with similar subdimensional mobility. Such a fractonic flux attachment

procedure introduces a non-commutative gauge structure and thus creates a deconfined U(1)

fracton theory. Although such fractonic Chern-Simons theories are clearly not TQFTs, they

share several important features of the chiral 2+1D Chern-Simons theories. First, the frac-

tonic Chern-Simons term creates self-statistical interactions between charged excitations.

Second, the fractonic Chern-Simons action is gauge invariant only up to a boundary term,

implying that their boundaries host gapless surface states that cannot be realized in 2 dimen-

sions with subsystem symmetry. These are closely related to the surface states of subsystem-

symmetry protected models described in Ref. [66]. We also note that chiral two-dimensional

tensor Chern-Simons theories can occur at the boundary of certain three-dimensional fracton

phases [64].

The starting point to construct a tensor Chern-Simons term is to seek a symmetry struc-

ture with 2 spatial gauge fields A1 and A2, which will allow us to obtain a fully gapped

Chern-Simons theory with a single constraint. Consider gauge transformations of the form

A1 ! A1 +D1↵ , A2 ! A2 +D2↵ (12)

where D1 and D2 are di↵erential operators, whose form we will leave unspecified for now.

Since we only have 2 gauge fields, the magnetic field defined has a single component2

B = D2A1 �D1A2 . (13)

The gauge-invariant electric fields have the form

Ei = @tAi �DiA0 (14)

where we have introduced the usual time component of the gauge field, which transforms as

A0 ! A0 + @t↵ (15)

2 Note that the magnetic field (13) is always gauge invariant; however it is not necessarily the most relevant

gauge invariant magnetic field that we can write down. If D1 and D2 share a common factor @`, the

operator @�1
` B is also gauge invariant.
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under gauge transformations.

The generalized Chern-Simons action has the form,

LCS =
s

4⇡
(A1E2 � A2E1 � (�1)⌘A0B) (16)

where ⌘ = 1 if the Di contain only even numbers of derivatives, and ⌘ = 2 if they contain

only odd numbers of derivatives. Under gauge transformations,

�LCS =
s

4⇡
(D1↵E2 �D2↵E1 � (�1)⌘@t↵B)

=
s

4⇡
(D1↵@tA2 + (�1)⌘@t↵D1A2

�(D2↵@tA1 + (�1)⌘@t↵D2A1)

+D2↵D1A0 �D1↵D2A0) (17)

In the absence of boundaries, one may freely integrate by parts, to obtain:

�LCS;Bulk = 0 (18)

The boundary terms in general do not vanish, implying the existence of gapless boundary

modes, whose precise nature depends on the choice of Di.

Irrespective of the choice of Di, the Chern-Simons action (16) has several commonalities

with the standard vector Chern-Simons theory in 2 + 1 dimensions. First, in the absence of

sources the constraint simply sets B = 0. Since there is only one component of the magnetic

field, this one constraint is su�cient to eliminate the possibility of any propagating gauge

degrees of freedom, leading to a gapped theory whose physics is entirely determined by

operators describing pure gauge degrees of freedom.3 In ordinary Chern-Simons theory these

are the holonomies, or gauge-invariant Wilson lines along non-contractible curves. We will

discuss the analogue of Wilson line operators for specific examples of Di in detail presently;

these have the general form ei
R
s Ai with the submanifold s chosen to ensure the operator is

gauge invariant.

Second, irrespective of the choice of Di, the gauge fields A1 and A2 are canonically

conjugate. If both gauge fields are compact, this implies that a generalized Wilson operator

of the form ei
R
s Ai must be discrete as well as compact. Thus each of the generalized Wilson

3 This only applies to the case where D1, D2 do not share any common factor. Otherwise, even though the

magnetic flux fluctuation is fixed, there might exist some local operator with lower order exhibiting a

dispersive gapless mode.
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operators can take on only a finite, discrete set of values, which fully specify the states

allowed in the absence of sources. On closed manifolds this can give either a finite or a

countable ground state degeneracy.

Finally, in the presence of matter fields, the Chern-Simons action (16) has the e↵ect of

binding charge to flux. To see this, we add matter fields to our Chern-Simons action in the

standard way, by adding a term

LMatter = A0⇢� AiJ
i (19)

where the currents obey the conservation law:

DiJ
i = @t⇢ (20)

Depending on the specific form of the di↵erential operator Di, the theory might contain

additional subsystem charge conservation laws and charge multipole conservation [61]. In

the presence of sources the Chern-Simons constraint is

B = D2A1 �D1A2 =
2⇡

s
⇢ (21)

which binds the generalized magnetic flux to charge. One might anticipate that a generalized

Aharonov-Bohm e↵ect may endow these charge-flux bound states with fractional statistics.

Indeed, as gauge invariant operators involving A1 do not commute with gauge-invariant

operators involving A2, we will usually find at least some excitations with nontrivial mutual

statistics.

4. Generalized Witten E↵ect

In Maxwell theory, the axion term ✓ ~E · ~B is a total derivative which has no e↵ect on

the gapless photon, but has two important, closely related consequences: attaching electric

charge to magnetic monopoles (the Witten e↵ect) and leading to a Chern-Simons theory on

the boundary. A similar story[64] holds in the higher rank U(1) gauge theories which admit

generalized axion terms which intertwine higher rank electric field with tensor gauge flux.

Such axion terms have no e↵ect on the gapless gauge mode, but bind together electric and

magnetic charges (both of which are generally subdimensional) in specific combinations, in

a manifestation of the Witten e↵ect. In particular, the axion term could have quantized ✓
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value provided time-reversal invariance is imposed. In addition, these axion terms in tensor

U(1) gauge field imply a non-trivial boundary structure with a Chern-Simons-like action in

both chiral and non-chiral settings.

The search for topological ✓ terms in fractonic phases of matter can generate a rich

sequence of new fractionalized fracton theories whose intrinsic features still remain to be

unlocked. For example, the fractonic ✓ term also exists in 2D characterizing a topological

quadrupolarization with fractional corner charge. On the more down-to-earth side of things,

it would be highly useful to find concrete lattice models which demonstrate the properties

of these ✓ terms explicitly as a complement to the field-theoretic approach. In addition,

more investigation is required regarding how to measure the topological ✓ coe�cient or

fractonic Witten e↵ect, which will be important for experimental detection of these fracton

phases. The axion electrodynamics in tensor gauge theory suggest various directions and

open questions for future study. An interesting corrolary of the fractonic Witten e↵ect is

that the ✓ term in tensor gauge theory can also delineate a topological multipole moment

or quantized dipolar Hall e↵ect which characterize a rich class of higher order topological

phases[68]. The field theory and topological implications of fractonic axion electrodynamics

still remain unclear and thus are worth pursuing further.

III. FRACTONS IN SOLVABLE SPIN MODELS

Some of the most important fracton models were discovered in exactly solvable lattice spin

models as quantum error-correcting codes. In this section, we review some of the paradig-

matic examples of solvable spin models exhibiting fracton behavior, such as the X-cube

model and Haah’s code, along with their relationship to tensor gauge theories. We then

give an overview of more recent developments in the area of fracton spin models, such as

various geometric constructions. We conclude this section by discussing progress towards

constructing more realistic spin models for fractons, such as a proposed fracton spin ice.

A. Prototypical Examples

Two of the most representative fracton spin models are the X-cube model and Haah’s

code, which are the prototypical examples of type-I and type-II fracton models, respectively.
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We review the basic features of each of these models in turn. Some of the basic properties

of the X-cube model and Haah’s code are summarized in Table I for comparison.

X-cube Model Haah’s Code

log(GSD) 2Lx + 2Ly + 2Lz � 3 fluctuating, upper bounded by 4L

Fractional excitations fractons, lineons, planons fractons only

Logical operators string and membrane no string, all fractal shaped

Sub-region entanglement entropy Area law + linear correction Area law + linear correction

TABLE I. Basic properties of the X-cube model and Haah’s code. ‘GSD’ stands for ground state

degeneracy. The system size for the X-cube model is taken to be Lx⇥Ly ⇥Lz and for Haah’s code

L ⇥ L ⇥ L.

1. Type-I Fracton Model: X-cube

The X-cube model, as first discussed in Ref. [4], is defined on a cubic lattice with qubit

degrees of freedom on the edges. The Hamiltonian

H = �
X

v

(Ax

v
+ Ay

v
+ Az

v
)�

X

c

Bc (22)

contains two types of terms (Fig. 2): cube terms Bc which are products of the twelve Pauli

X operators around a cube c, and cross terms Aµ

v
which are products of the four Pauli Z

operators at a vertex v in the plane normal to the µ-direction where µ = x, y, or z. These

terms mutually commute and their energies can be minimized simultaneously.

On a Lx⇥Ly ⇥Lz cubic lattice with periodic boundary conditions, the log of the ground

state degeneracy (GSD) scales linearly with the size of the system in all three directions:

log2 GSD = 2Lx + 2Ly + 2Lz � 3. (23)

Fractional excitations can be made by applying string and membrane operators. A prod-

uct of Z operators over links on a rectangular membrane geometry on the dual lattice

anti-commutes with the cube Hamiltonian terms at its corners. See Fig. 3 a). Applying such

a membrane operator hence generates four cube excitations at a time and individually the

cube excitations cannot move, forming a ‘fracton’ excitation. A pair of such fracton exci-

tations at adjacent corners may be viewed as a single dipole-like object which is itself a
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FIG. 2. (a) A cube operator of the X-cube model is a product of X operators of 12 spins on the

edges of a cube; (b) A cross operator is a product of Z operators of 4 coplanar spins touching a

vertex.

FIG. 3. Visualization of particle creation operators. a) The red links correspond to a membrane

geometry on the dual lattice. The product of Z operators over these edges excites four fractons (the

darkened cube operators at the corners); b) The product of X operators over the links comprising

the straight open blue string creates two lineon excitations at its endpoints (black dots).

dimension-2 particle and is mobile in the plane normal to the edges connecting the two

corners.

A product of X operators over links along a straight line anti-commutes with vertex

Hamiltonian terms at the endpoints (Fig. 3 b)). The vertex excitations are hence created

in pairs and can be separated using string operators. But their motion is restricted to one

direction only, because the X string operator in di↵erent directions anti-commute with a

di↵erent set of vertex terms, hence creating di↵erent excitations. They are called the ‘lineon’

or dimension-1 particles. A pair of lineons separated in the x, y or z direction is a dimension-2
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particle and is mobile in the plane normal to the edges connecting the two lineons.

In the ground state, the entanglement entropy of a sub-region also contains a linear term.

That is, if we take out a sub-region, say of size R ⇥ R ⇥ R, and calculate its entanglement

entropy, we would find an area law term which scales as R2 and a sub-leading linear term

which scales as R [69–72]. (One must take care to avoid any potential spurious contributions

to the entanglement entropy, however [73].)

2. Type-II Fracton Model: Haah’s Code

FIG. 4. The Hamiltonian of Haah’s code is a sum of two types of cube terms. Recall that there are

two qubits per vertex, so ZZ represents a Pauli Z acting on each of the two qubits, for example.

(Figure adapted from Ref. [2].)

We now turn to the paradigmatic example of a type-II fracton model, constructed by

Haah in Ref. [2], which has since come to be known as Haah’s code. This model is defined

on a cubic lattice, with two qubits on every vertex of the lattice. The Hamiltonian can be

written as the sum of two commuting types of cube terms:

H = �
X

c

Ac �
X

c

Bc (24)

where Ac is a particular product of Z operators touching a cube and Bc is a similar product

of X operators, as defined pictorially in Figure 4. Unlike the X-cube model, Haah’s code

possesses a self-duality between the two types of cube terms, so it is su�cient to study

either sector of the theory to obtain a full understanding of its excitation spectrum. In

either sector, application of a single spin operator creates four quasiparticles at the corners
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of a tetrahedron. Repeated application of spin operators in a specific pattern can separate

these particles to the four corners of a fractal operator, as indicated schematically in Figure

5. However, there is no string operator which can move these particles individually around

the system, so these are immobile fractons. It can further be proved that there are no string

logical operators in the theory whatsoever [2], indicating that all nontrivial bound states of

the fractons are also immobile, making this a type-II fracton model.

FIG. 5. In Haah’s code, fractons are created at the corners of fractal operators.

Like the X-cube model, Haah’s code also exhibits a subextensive ground state degeneracy,

albeit with a more complicated dependence on system size. For a 3-torus of size L⇥L⇥L, the

ground state degeneracy is upper-bounded by log2 GSD < 4L. However, at certain special

system sizes, the degeneracy can be far less [2]. In contrast, the entanglement entropy of

Haah’s code has a much simpler dependence on subsystem size. For a subsystem of linear

size R, the entanglement entropy obeys an area law with a linear subleading correction, just

as for the X-cube model [70].

B. Higgsing

The spin fracton models are very di↵erent from the U(1) tensor gauge theories. They are

gapped and formulated as lattice models rather than field theories. On the other hand, they

share the crucial property of hosting fractional excitations with restricted motion. A natural

question to ask is whether they are related in some ways. For example, could the spin model

be a ‘Higgsed’ version of the U(1) tensor gauge theory such that only a discrete subgroup

of U(1) is preserved? It was found that, this is indeed the case sometimes, but whether or
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not a U(1) tensor gauge theory gives rise to a fracton spin model upon Higgsing depends

sensitively on the form of the conservation law of the U(1) theory [28, 29]. For example, the

scalar charge theory becomes non-fractonic once Higgsed while a modified ‘hollow’ tensor

gauge theory remains fractonic even upon Higgsing. For the following discussion, we take,

WLOG, the Higgsed gauge group to be Z2 and the gauge charges live on the cubic lattice

sites r = (x, y, z), with lattice spacing a = 1.

The result of Higgsing can be directly studied through its e↵ect on the conservation laws:

charge conservation, dipole conservation, etc. Suppose we start with a U(1) gauge theory

with charge conservation. That is the total charge Q in a region cannot be changed by acting

with local operators within that region. Upon Higgsing the theory to Z2, charge-2 objects

can appear from and be absorbed into the condensate. Therefore Q is now well-defined only

modulo 2, but the conservation of Z2 charge puts no constraints on the mobility of charges.

(a) (b)

FIG. 6. Local U(1) charge configuration with zero total charge and zero total dipole (a) reduces to

charge pair creation / hopping; (b) when the U(1) gauge theory is Higgsed to Z2.

What about the conservation of dipole moment? In the U(1) theory, the dipole moment

d of some region V is given by d =
P

r2V rnr, and is conserved in the sense that it cannot

be changed locally. Higgsing to Z2 simply means that d mod N is conserved, i.e. each

component of d is separately conserved modulo N . As we set the lattice constant to one;

then charge ±2 objects appearing from the condensate can change each component of d by

integer multiples of 2.

To understand the e↵ects of the Higgsed dipole conservation law, it is useful to consider

locally creatable charge configurations. With both charge conservation and dipole conser-

vation, the configuration shown in Fig. 6 (a) can be locally created in a U(1) theory. Upon

Higgsing, it reduces to pair creation / hopping of Z2 charges. Therefore, upon Higgsing,
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the dipole conservation law no longer localizes the gauge charges. The gauge charges can

hop in any direction, albeit at distance two at a time. Similar conclusions can be drawn

for general ZN gauge theories and for general lattice. Therefore, the scalar charge theory

become non-fractonic upon Higgsing.

To retain the fractonic nature of the U(1) gauge theory upon Higgsing, stronger conser-

vation laws are needed, for example planar conservation laws. If the charge on every lattice

plane is separately conserved, then clearly single charges will not be able to move. This is

the case for the ‘hollow’ U(1) gauge field with gauge components Exy, Eyz, Ezx but not the

diagonal ones. The Gauss’s law is given by

�x�yExy +�y�zEyz +�x�zExz = ⇢r, (25)

which implies that the total charge on every x, y, z planes are conserved. Upon Higgsing, it

becomes the X-cube model discussed in the previous section.

C. Geometric Aspects

Unlike spin models with topological order, such as Toric Code, the fracton spin models

seem to care not just about the topology of the underlying manifold, but also the geometry

of the underlying lattice. For example, in Ref. 51, it was noticed that spatial curvature can

induce a stable ground state degeneracy for the X-cube model. In the following sections,

we review the coupled layer approach and the cage net and string-membrane net approach

which not only help to elucidate the geometric nature of these models, but also lead to the

construction of new models.

1. Coupled Layer Constructions

In Ref. 30 and 31, it was noticed that the X-cube model can be obtained by taking the

2D Toric code model (Fig. 7 (a)), make three intersecting stacks in xy, yz and zx planes

respectively, and couple them along intersection lines where the edges overlap with a Z ⌦

Z coupling term (Fig. 7 (b)). When the coupling terms become large, the coupled model

becomes e↵ectively the X-cube model.

It was found that the coupling process induces a ‘particle-loop’ condensation, driving the

phase transition from a stack of 2D topological order to a 3D fracton order. In particular,
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(a) (b) (c)

FIG. 7. The coupled layer construction: (a) take 2D Toric Code model; (b) make three intersecting

stacks of them and couple strongly along the intersection line; (c) the coupling generates flux

particle loops which are condensed in the strongly coupled limit.

the Z ⇥ Z term creates one pair of flux particle in each of the intersecting planes. Taken

together, the four flux particles connect into a small loop. When the coupling term becomes

large, such small loops condense. The ground state wave function becomes a superposition

of ‘particle-loops’ of all shapes and sizes.

The change in quasi-particle type follows accordingly. As the flux particle loops now form

a condensate, individual flux particles are no longer excitations as long as they form a loop.

Instead, the end points of flux particle loops become excitations. As the flux particles always

appear in pairs, the end of particle loops always appear in a set of four and individually they

cannot move, hence becoming the fractons. On the other hand, individual charge particles of

the 2D topological order get confined because of its nontrivial statistics with the condensate.

A bound state of charge particles on intersecting planes remain deconfined, but can only

move along the intersection line of the two planes, hence becoming the lineon.

We note that recent progress has also been reported on coupled-layer constructions for

type-II fracton models [74].

2. Cage-Net Models

The cage-net construction [32] generalizes the coupled layer construction discussed above

from stacks of Toric code to stacks of other string-net states. To accommodate more interest-
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ing string-net states, the square lattice in each layer is replaced by a tri-valent modification of

it (Fig. 8 (a)). When the intersecting stacks are put together, a similar coupling term is added

to condense particle loops. As a result, some 2D fractional excitations further fractionalize

into fractons while others (in intersecting perpendicular planes) bind into lineons.

(c)

FIG. 8. The cage-net models: (a) take 2D string-net states on a decorated (trivalent) square lattice;

(b) make three intersecting stacks of them and couple strongly along the intersection line; (c) the

resulting wave-function is a superposition of cage-nets configurations, the simplest of which is

shown here.

The name ‘cage-net’ generalizes the idea of ‘string-net’[75] for 2D topological orders. In

2D, if the DOF in a certain basis are interpreted as representing di↵erent string types, then

a ‘string-net’ wave function is a superposition of all (branching) loop configurations on a 2D

graph satisfying a set of conditions. ‘String-net’ is a systematic way for constructing exactly

solvable lattice models for 2D non-chiral topological orders. In ‘cage-net’, as the strings on

perpendicular planes are bound together by the coupling term, they form ‘cage’-like shapes,

as shown in Fig. 8. The ground state wave function is a superposition of all (branching) cage

configurations satisfying a set of conditions and host fracton order.

One of the most interesting ‘cage-net’ models is obtained by stacking 2D doubled Ising

models and couple them by binding the Ising strings on intersecting planes. The resulting

model has fracton and lineon excitations, and the interesting feature is that the lineon is

non-abelian. The non-abelian-ness of this model is intrinsically 3D, as it was shown in Ref. 32

it cannot come from nonabelian 2D models inserted into an otherwise abelian fracton model.
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3. String-Membrane-Net Construction

In Ref. 33, a string-membrane-net picture was proposed and was shown to construct

models which are equivalent to most of the known foliated fracton models (discussed in the

next section) up to trivial degrees of freedom and local unitary transformations.

The idea is to have two sets of degrees of freedom, one on the plaquettes of a 3D lattice

(e.g. a cubic lattice) and the other on the edges of 2D lattices on sets of 2D layers (e.g. square

lattice on xy, yz, and zx planes). The 3D lattice and 2D lattices are arranged such that the

edges of the 3D lattice overlaps with edges on the 2D lattices on intersecting planes. The

degrees of freedom on the 2D layers form string-nets, as prescribed in Ref. 75. The degrees of

freedom on the 3D lattice form membranes. Moreover, they are coupled such that the edges

of the 3D membrane is attached to 2D strings. The ground state wave-function is then a

superposition of all such ‘string-membrane-net’ configurations, as shown in Fig. 9

FIG. 9. Ground state wave-function of string-membrane-net models as a superposition of all allow-

able string-membrane-net configurations. Purple plaquettes belong to the membranes and the red,

blue, green edges belong to the string-nets in the xy, yz, zx planes respectively. The constraint is

that the edge of the membrane has to be attached to strings.

A local Hamiltonian can be written down to have this wave-function as the gapped ground

state. It was shown that by changing the number of sets of 2D layers and the type of string-net

or the type of membranes, it is possible to construct models which are equivalent to a variety

of known fracton models, including the X-cube model and its ZN generalization, stacks of

Toric Code, and the lineon model discussed in Ref. 36. A particularly nice feature of the

string-membrane-net construction is that it readily gives rise to a field theory description of

the constructed models. In particular, a very important feature of such models – the foliation

structure discussed in more detail in Section IV – shows up nicely in this construction and
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allows natural field theory representation.

D. Towards Realistic Spin Models

Despite the exact-solvability of fracton models in quantum stabilizer codes, most of these

models require complicated spin-cluster interactions, which seems superficial and unreach-

able in real materials or cold atom system. To conquer the complexity of the aforementioned

fracton codes, the authors in Ref. [63] introduced and proposed a series of quantum spin

models in frustrated magnetism which only involves nearest-neighbor two-spin interactions.

Nevertheless, these frustrated spin systems, despite lack of exact solvability, still exhibits a

stable fracton phase.

In Ref. [76], the authors proposed a systematic route to construct realistic spin models

hosting fracton phases in terms of strongly coupled spin chains. Such coupled spin chain

constructions merely require stacking of 1d spin model with spin bilinear inter-chain in-

teractions, which is more amenable to a potential experimental implementation. Following

this spirit, Slagle and Kim [63] proposed a Kitaev type three-dimensional hyper honeycomb

lattice with frustrated spin bilinear coupling in di↵erent directional bonds. Amazingly, this

model, in di↵erent limits, displays either 3D fracton order or supports a Z2 spin liquid phase.

Thanks to the rapid development of the Kitaev materials discovered in correlated spin or-

bital coupled system including Na2IrO3, ↵-Li2IrO3, ↵-RuCl3 and H3LiIr2O6, we expect

there may exist a material candidate for such a fracton phase. There have also been recent

simplifications to the Slagle-Kim construction which are promising for material realization

[77]. Additionally, synthetic quantum matter, such as AMO experiments, provide another

possible route to the experimental realization of fracton phases.

Apart from the gapped fracton topological ordered state represented by stabilizer codes,

there has also been a parallel search on gapless fracton phases whose low energy e↵ec-

tive theory is characterized by tensor gauge theories. Such theories are generalizations of

emergent electrodynamics with a close connection to emergent gravity and holography. In

particular, Ref. [23] proposed a traceless rank-2 symmetric gauge theory from interacting

quantum rotors in 3D with soft graviton excitations. More recently, motivated by Yb-based

materials with a quantum spin ice-like structure, Ref. [78] proposed a materially–relevant

microscopic model which can potentially realize a traceless rank-2 symmetric gauge the-
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ory. Such Yb-based materials can be described by a spin-1/2 Hamiltonian with Heisenberg

antiferromagnetic interactions on a breathing pyrochlore lattice with weak Dzyaloshinskii-

Moriya (DM) interactions. In addition, such a fracton spin liquid state exhibits 4–fold pinch

point singularities in certain spin-spin correlation functions (Figure. 10) [78, 79] which can

be verified in polarized neutron scattering experiments.

FIG. 10. Structure of pinch point singularities from Ref. [78] by measuring the correlation function

hExy(q)Exy(�q)i.

Finally, we note that there have been numerous other constructions of fracton spin models

which we have not had space to discuss here [80–82].

IV. FOLIATION

In this section, we describe a set of powerful theoretical tools for characterizing di↵erent

types of fracton models. In particular, we focus on the foliation framework, which provides

important insights into understanding a variety of fracton phases. We conclude with a dis-

cussion of more recent developments in characterizing fracton systems.

A. Basic Idea

Among the type-I fracton models, it has been shown by Shirley, Slagle, and Chen that

many of them have a hidden ‘foliation’ structure and are said to have ‘foliated fracton order’

(FFO) [34, 35]. That is, starting from a model with a larger system size, we can apply

a finite depth local unitary transformation and map the model to a smaller system size

together with decoupled layers of 2D gapped states, as illustrated in Fig. 11. As there should

be no fundamental change in the order of the system simply due to the change in system size,
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we should think of the 2D gapped states as free resources in the study of these 3D fracton

models even though the 2D gapped states can have highly nontrivial topological order of

their own. Correspondingly, we define two foliated fracton models to have the same ‘foliated

fracton order’ if they can be related through a finite depth local unitary transformation upon

the addition of decoupled stacks of 2D layers of gapped states, as shown in Fig. 12. According

to this definition, a stack of 2D topological states has trivial foliated fracton order because

it is equivalent to having nothing at all. A nontrivial foliated fracton model has a lot of 2D

layers hidden inside of it, yet it is not simply equivalent to a stack. (See also Ref. [83] for

a generalized notion of equivalence of fracton phases based on a bifurcating entanglement

renormalization scheme.)

Smooth

Connection

FIG. 11. A (type I) fracton model is said to have Foliated Fracton Order (FFO) if models with

di↵erent system sizes can be smoothly deformed into each other after attaching decoupled 2D

layers with topological order (TO). Here the smooth connection can be realized with finite depth

quantum circuit on the ground state.

+
Smooth

Connection

+H2D(0) H2D(1)

FIG. 12. Two foliated fracton models are said to have the same foliated fracton order if they can

be smoothly deformed into each other after attaching decoupled 2D layers with topological order.

Here the smooth connection can be realized with finite depth quantum circuit on the ground state.

This idea of ‘foliated fracton order’ generalizes the notion of topological order, which

captures a wide range of nontrivial phenomena in gapped systems in 2D and higher. A

model with topological order is ‘liquid’-like, in the sense that system size can grow by adding
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decoupled product states and smoothly deforming the model with a finite depth quantum

circuit[84]. A model is said to have trivial topological order if it is equivalent to a product

state under such deformation and two topological orders are said to be equivalent if they

can be deformed into each other after adding product states.

While definitions are accurate, they are not easy to use. For topological order, a set of

universal properties were found, such as ground state degeneracy, topological entanglement

entropy, fractional excitation and statistics, which helped to identify and compare topological

order in di↵erent models. In Section IVC, we are going to discuss a similar set of universal

properties for FFO and show how they can be used to compare models.

B. General Three-Dimensional Manifolds

One thing the foliation structure allows us to do is to write down exactly solvable models

for certain fracton models on di↵erent three dimensional manifolds. This is a natural thing to

do because for topological models, a great deal can be learned by putting models on di↵erent

manifolds and see how their ground state degeneracy changes with the change in topology.

In Ref. 34, this was done for the X-cube model, from which we see that FFO models care

not only about the topology of the manifold but also about the foliation structure. On the

other hand, it is hard to use the ground state degeneracy as a universal characterization of

the order, for reasons explained below.

In particular, we construct a lattice by embedding a large number of transversely in-

tersecting surfaces, referred to as leaves, into the 3-manifold M . Vertices of the resulting

lattice lie at triple intersection points of leaves, while edges lie along the intersections of

pairs of leaves; a qubit is placed on each edge. We assume that the location of the leaves

are generic enough such that no three leaves intersect along the same line. The cubic lattice

on the 3-torus can be viewed in this way as three orthogonal stacks of toroidal leaves—the

xy, yz, and xz planes. Unlike the cubic lattice, the general construction may result in some

number of non-cubical cells. Crucially, however, every vertex in this type of lattice is locally

isomorphic to a cubic lattice vertex. This fact allows the X-cube Hamiltonian to be defined

as per Eq. (22), which we copy below

H = �
X

v

(Ax

v
+ Ay

v
+ Az

v
)�

X

c

Bc (26)

30



Similar to the cubic lattice, the three cross operators Aµ

v
are products of Z operators over

the four edges emanating from v in the leaf labeled by µ. The Bc operator is in general a

product of X operators over all edges of the 3-cell c. The lattice geometry ensures that the

terms in the Hamiltonian are mutually commuting.

The structure of the excitation types and fusion properties carries over from the cubic

lattice version of the X-cube model. The notion of dimension-1 and dimension-2 particles is

revised in a natural way. In the general lattice construction, dimension-1 particles created

at the ends of open string operators are freely mobile along the intersection lines of pairs of

surfaces. Furthermore, dimension-2 particles, such as fracton dipoles, are free to move along

leaves that are orthogonal to the direction of the dipole moment.

The ground state degeneracy of the model was found to depend not only on the topology of

the manifold, but also on the foliation structure (their number, topology, etc). For example,

a spherical leaf does not contribute to ground state degeneracy while a torus leaf contributes

an additive part of 2 to the logarithm of ground state degeneracy. However, the ground state

degeneracy may not be stable against local perturbations because, unlike the cubic lattice in

3-torus where all non-contractible loops have infinite size, in other manifolds or with other

foliations it may happen that non-contractible loops have finite length. Under perturbation,

degeneracy coming from such loops will be lifted. Because of this, ground state degeneracy

cannot be used as a good quantum number to describe foliated fracton order.

C. Universal Properties and Relation Between Models

The definition of FFO given in Section IVA applies not only to exactly solvable models,

but to generic non-exactly solvable models as well. Based on this definition, one can find uni-

versal properties, including entanglement measures and properties of fractional excitations,

of the foliated fracton models that remain invariant under both finite depth quantum circuit

and the addition of 2D gapped layers. Because there are 2D layers intrinsically hidden in

the foliated fracton models, this also means that we need to define universal properties in a

way that mods out the contribution coming from 2D layers.

For example, Ref. 35 proposed an entanglement measure which cancels both the area law

and the sub-leading linear part of the entanglement entropy of a sub-region in a gapped

3D model and retains a constant term. The area law term is generic in a gapped system
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and depends on details of the model, hence non-universal. The sub-leading area law term

is indicative of the foliation structure hidden in the model – if we have a stack of decouple

2D topological layers, entanglement entropy of a sub-region would have a sub-leading linear

term coming from the constant topological entanglement entropy[85, 86] of each layer. The

constant term after canceling both is hence a characterization of the underlying FFO. To

achieve this, we take a ‘wire-frame’ sub-region whose shape is determined by the foliation

structure of the model. For example, for the X-cube mode with foliation layers in xy, yz,

and zx directions, a cubic wire-frame is used with A, B, C sub-regions (Fig. 13(a)). The

entanglement measure is

SFFO = SA + SB + SC � SAB � SBC � SAC + SABC (27)

This can be applied to various fracton models for comparison. For the X-cube model, SFFO =

1.

(a) (b)

FIG. 13. Universal properties of foliated fracton order: (a) Wire-frame structure used for calculating

entanglement measure as in Eq. (27); (b) Fractional statistics is obtained by applying interferomet-

ric operators around a local excitation in region R (shape of the interferometric operator may di↵er

from that shown in the figure).

Besides entanglement entropy, we can also look at fractional excitations. Fractional ex-

citations in topological systems were sorted according to super-selection sectors – two exci-

tations are considered equivalent if they can change into each other by adding / removing

non-fractional local excitations. But this is too coarse for FFO models, as FFO models

host an infinite number of super-selection sectors. Instead, we define the notion of ‘quo-

tient super-selection setors’ by modding out not only non-fractional excitations but also
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dimension-2 fractional excitations which come from foliation layers. The number of sectors

is then greatly reduced. For example the X-cube model has one fracton sector and one lineon

sector in each direction. We further discussed fractional statistics which are invariant to the

addition of 2D layers by applying specially designed interferometric operators around a local

excitation (Fig. 13(b)) so that the resulting phase factor is independent of the attachment

of dimension-2 particles to the excitation.

With these universal properties defined, we can now compare di↵erent models and see if

they may potentially have the same foliated fracton order. In particular, we find that the

X-cube model, the semionic X-cube model[30] and the Majorana checkerboard model[3] all

have the same foliated order while the checkerboard model[4] is equivalent to two copies of

the X-cube model. The equivalence in the above universal properties is a necessary condition

for equivalence of FFO but may not be su�cient. To rigorously establish the equivalence,

we found the 2D layers that need to be inserted and explicit local unitary transformations

to map one model to another.

D. Twisted Phases

With many of the known type I models found to be in the same FFO phase as the X-cube,

it is natural to ask whether there exists models with a di↵erent FFO order. The answer is yes,

as shown in Ref. 39 where ‘twisted’ foliated fracton models were constructed. The models

are called ‘twisted’ in the same sense that the 2D double-semion model is called a twisted

Z2 gauge theory while the 2D Toric code is an un-twisted Z2 gauge theory. The X-cube

model can be interpreted as the gauge theory of trivial paramagnet with subsystem planar

symmetries[4], while the twisted models are gauge theories of non-trivial paramagnets with

subsystem planar symmetries. Similarly, Haah’s code is closely associated with a gauged

fractal symmetry [87].

One of the twisted FFO models is constructed using the coupled layer construction dis-

cussed in Section III C 1 with layers of 2D twisted Z2⇥Z2 gauge theory models. The coupling

binds the corresponding Z2 flux strings from intersecting plane together; the resulting model

is similar to the X-cube model in that it is has foliation layers in xy, yz, zx directions and

there are fracton, lineon (dimension-1), and dimension-2 particles. On the other hand, it was

shown to host a di↵erent foliated fracton order.
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The twisted model actually behaves in the same way in terms of the entanglement measure

and quotient super-selection sector defined in Section IVC (indicating that these indeed do

not form a complete list of universal properties). Their di↵erence shows up in the dimension-

2 particles. To see the di↵erence, we compactify the model from 3D to 2D (by making the

z direction finite) so that only dimension-2 particles in the xy plane remain as fractional

excitations. By studying their fusion and braiding statistics and compare with what we get

from the X-cube model with the same process, we can show that the two sets of dimension-2

particles cannot be mapped into each other by adding 2D layers and local unitary transfor-

mation, hence establishing the di↵erence in FFO for the original non-compactified models.

See also Ref. [88] for a discussion of calculating invariants for fracton phases based on com-

pactification.

E. New Approaches to Characterizing Fracton Systems

As we have established, foliation is a powerful tool for characterizing fracton phases,

providing many important insights. However, the notion that two fracton phases are equiva-

lent up to the addition of two-dimensional topological phases is slightly more coarse-grained

than the traditional notion of phases of matter, allowing for the possibility that two dis-

tinct fracton phases may look identical within the foliation framework. It is therefore useful

to consider other characterizations which capture the more detailed distinctions between

fracton phases. One promising idea along these lines is to characterize fracton phases in

terms of their quasiparticle context, along with their associated fusion theory and statisti-

cal processes, in direct analogue to the data characterizing more conventional topological

phases.

In Reference [40], Pai and Hermele constructed a fusion theory capable of describing the

quasiparticle content of fracton phases, along with various examples of nontrivial statistical

processes. The key idea in this fusion theory is to consider the action of translation on the

superselection sectors of the theory, which encodes the mobility of quasiparticles. However,

the number of superselection sectors in a fracton theory is infinite, so one must find some

organizing principle for these sectors in order to yield a useful fusion theory. The necessary

structure is provided by the conservation laws of the theory, which are in direct correspon-

dence with superselection sectors and can be regarded as an additive group. For example,

34



the X-cube model is characterized by conservation of charge (mod 2) on every plane normal

to a cardinal direction. There is then an injective mapping ⇡ : S ! P from the group of

superselection sectors S into the group of plane charges P . (Note, however, that the mapping

is not surjective since not all combinations of plane charges can be consistently realized.)

Similar considerations hold for other types of fracton theories.

Armed with this description of S in terms of the conservation laws, we now consider the

action of translations on the superselection sectors. Specifically, we consider the action of a

discrete lattice translation, ta 2 T ⇠= Z3, where ta is a translation by lattice vector a. We

can construct a mapping T ⇥ S ! S which serves as a group action of T on S, satisfying

various physical assumptions. For example, we can stipulate that ta(s1 + s2) = tas1 + tas2,

reflecting the fact that it does not matter whether we fuse two particles then translate

them, or translate them first and then fuse them. Furthermore, there is a natural action of

Z[T ] (the group ring of translations with integer coe�cients) on S, which makes S into a

Z[T ]-module. (Integer multiplication can be defined via 2tas = tas + tas, and so on.) This

formulation neatly encodes the mobility of quasiparticles as follows. For a given s, one can

identify the subgroup of translations Ts ⇢ T for which Tss = s. If translations in a particular

direction leave a particle’s superselection sector invariant, then the particle is mobile in that

direction. A particle with Ts
⇠= T is fully mobile, while a particle with trivial Ts is an

immobile fracton. Similarly, Ts
⇠= Z and Ts

⇠= Z2 indicate lineons and planons, respectively.

It can readily be checked that this formalism correctly captures the immobility of fractons

and two-dimensional nature of dipoles in the X-cube model [40]. Furthermore, this logic can

even be extended to construct fusion theories of gapless fracton models, such as the U(1)

gauge theories.

In addition to fusion, this framework can be used to study various statistical processes

in fracton theories, which in general cannot be associated with braiding between two quasi-

particle types, but rather must be thought of in terms of a more general sequence of local

moves (see also Ref. [89] for a discussion of statistical processes in fracton systems with a

boundary, and Ref. [90] for an approach based on a generalized S-matrix.). For example,

in the X-cube model, there is a nontrivial statistical phase factor associated with the pro-

cess shown in Figure 14, involving a lineon and multiple fractons. An analysis of similar

statistical processes can be used to demonstrate that the standard X-cube model and its

semionic variant represent two separate phases, a distinction which is not captured by the
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FIG. 14. The X-cube model possesses a nontrivial statistical process of fractons and lineons, in

which a lineon pierces a fracton membrane operator. (Figure taken from Ref [40].)

foliation framework. However, it remains an open question how one can attach a complete

set of statistical data to a given fusion theory to fully characterize a fracton model.

V. REALIZATION IN ELASTICITY THEORY

A. Fracton-Elasticity Duality

While the models we have considered so far have taken the form of complicated spin

models, without an immediate connection to material realization, it is important to note

that fractons have a much more down-to-earth physical realization as the topological lattice

defects of ordinary two-dimensional solids. This connection between fractons and lattice

defects can be seen by studying the conventional elasticity theory of two-dimensional crystals,

which turns out to have an exact duality mapping with the scalar charge fracton tensor gauge

theory (enriched by an extra global symmetry) [9, 46]. Within this duality, disclination

defects play the role of immobile fractons, while dislocation defects act as dipoles exhibiting

one-dimensional motion. Meanwhile, the phonons of the crystal map onto the gapless gauge

modes of the symmetric tensor gauge theory.4 The details of this duality are summarized in

Figure 15.

This duality mapping can be derived through a few simple algebraic manipulations, pro-

ceeding as a natural tensor analogue of the more-familiar particle-vortex duality. The starting

4 Importantly, the resulting tensor gauge theory is noncompact, which allows it to maintain stability even

in two spatial dimensions.
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FIG. 15. Summary of the duality between elasticity of crystals and a fracton tensor gauge theory.

Fractons and dipoles map to disclinations and dislocations, respectively, while the gapless gauge

modes map onto acoustic phonons. (Figure taken from Reference [9].)

point is the usual elastic description of a crystal in terms of a displacement vector field ui(x),

characterizing the displacement of atoms away from their equilibrium positions [91–93]. To

lowest order in derivatives, the most general low-energy e↵ective action for a crystal can be

written as:

S =

Z
d2xdt

1

2

✓
(@tui)

2 � C ijk`uijuk`

◆
(28)

where uij =
1
2(@iuj+@jui) is the symmetric strain tensor. Note that the antisymmetric strain

✏ij@iuj, representing the local rotation of the crystal, does not appear to lowest order in the

action. This is a consequence of the underlying spontaneously broken rotational symmetry,

which dictates that there is no energy cost associated with rotating the crystal as a whole.

(This can also be seen more explicitly in an alternative formulation of elasticity theory [46,

54].) This action describes the behavior of two gapless modes, corresponding to transverse

and longitudinal phonons. Additionally, a crystal hosts disclination defects which serve as a

source for the symmetric strain tensor via:

✏i`✏jk@`@kuij = ⇢ (29)

where ⇢ is the disclination density. Besides these fundamental topological defects, a crys-

tal also hosts stable dipolar bound states of disclinations, which correspond to dislocation
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defects. The stability of these dipolar states is an important clue in making the connection

with fracton physics.

The mapping onto fracton physics can be accomplished through what is essentially a

simple Hubbard-Stratonovich transformation [9]. To this end, we introduce the variables ⇡i

and �ij, corresponding to the lattice momentum and stress tensor, in terms of which we

write the action as:

S =

Z
d2xdt


1

2
C�1

ijk`
�ij�k` � 1

2
⇡i⇡i � �ij(@iũj + u(s)

ij
) + ⇡i@t(ũi + u(s)

i
)

�
(30)

where ũi is the smooth piece of ui, while u
(s)
i

is the piece corresponding to topological defects.

This action is now linear in the smooth piece ũi. Integrating out ũi and changing variables

to Bi = ✏ij⇡j and Eij = ✏ik✏j`�k`, some straightforward algebra [9] yields an action of the

form:

S =

Z
d2xdt


1

2
C̃�1

ijk`
EijEk` � 1

2
BiBi � ⇢�� J ijAij

�
(31)

where we have taken advantage of the fact that Newton’s equation of motion, @t⇡i�@j�ij = 0,

maps onto a tensor Faraday’s equation, @tBi + ✏jk@jEki = 0, which allows us to write the

fields Eij and Bi in a potential formulation as:

Eij = �@tA
ij � @i@j� Bi = ✏jk@

jAki (32)

We now see that the dual gauge formulation of elasticity theory is precisely the scalar charge

tensor gauge theory discussed in detail in Section II. In particular, Equation 29 defining the

disclination density maps onto a Gauss’s law given by @i@jEij = ⇢, which implies that

disclinations exhibit restricted mobility via the conservation of dipole moment. We can

therefore immediately conclude that the disclination defects of two-dimensional crystals

behave as fractons.

At this point, we must resolve one important remaining issue with this duality. The scalar

charge tensor gauge theory of Equation 31 has immobile fracton excitations, which coincides

with the fact that disclination motion serves as a source for dislocations. However, the tensor

gauge theory also hosts dipole excitations which at first glance appear to be fully mobile, in

contrast to the fact that dislocations only move along their Burgers vector. To address this

tension, we must take into account some additional microscopic information about crystals.

Specifically, crystals are made up of atoms, and the number of atoms is exactly conserved

in all processes, corresponding to an underlying U(1) symmetry. Furthermore, dislocation
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“climb” (i.e. motion along the forbidden direction) can occur through emission of vacancy

or interstitial defects, corresponding to misplaced atoms in the crystal. If atom number

were not conserved, then a dislocation would be able to move freely in all directions. This

indicates that the mobility restrictions on dislocations are enforced by the presence of an

extra global U(1) symmetry in a manifestation of “symmetry-protected” fracton behavior

[43, 45]. This global symmetry remains present in the dual gauge theory, enforcing one-

dimensional behavior on the dipoles.

This duality sheds important light on the phase diagram of the fracton tensor gauge by

mapping onto the familiar problem of two-dimensional melting. As a two-dimensional crystal

is heated, it first partially melts into a hexatic phase via the proliferation of dislocation

defects, destroying translational order but maintaining rotational order. As the system is

heated further, the hexatic phase eventually melts into an ordinary isotropic liquid via

proliferation of disclination defects, destroying the rotational order. Via the duality mapping,

we can then conclude that this fracton tensor gauge theory will exhibit two thermal phase

transitions as the temperature is raised, corresponding to the proliferation of dipoles followed

by the proliferation of fractons. In turn, the duality allows the fracton formalism to shed

additional light on the phase diagram of two-dimensional crystals. For example, the duality

has been used to provide a simplified derivation of the Halperin-Nelson-Young theory of

two-dimensional melting [44]. It has also been proposed that the duality may aid in the

classification of interacting topological crystalline insulators [9, 46].

B. Extensions

While the original fracton-elasticity duality applies to simple two-dimensional crystals,

there are various extensions of this duality to other types of crystals, often with interest-

ing implications for fracton physics. We here describe some of the most prominent recent

developments in this area.

1. Three-Dimensional Crystals and Fractonic Lines

Since the topological defects of two-dimensional crystals behave as fractons, it is natural

to ask whether similar physics holds in three dimensions. However, one quickly encounters
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the complication that the topological defects of three-dimensional crystals are not point-

like, but rather take the form of line-like objects. Nevertheless, it has been shown that these

line-like objects exhibit the restricted mobility of fractons, and are therefore referred to as

“fractonic lines” [41]. These mobility restrictions are well-captured by a tensor gauge dual,

which in this case is written in terms of a rank-4 tensor gauge field Aijk` which is symmetric

under (ij) $ (k`) and antisymmetric under i $ j and k $ `. In other words, this theory

combines the properties of symmetric tensor gauge theories (describing point-like fractons)

with those of higher form gauge theories (describing extended objects). A gauge dual e↵ective

action for three-dimensional elasticity theory can then be written as:

S =

Z
d3xdt


1

2
C̃�1

ijk`pqrs
Eijk`Epqrs � 1

2
BijBij � ⇢ij�ij � J ijk`Aijk`

�
(33)

where Eijk` is the conjugate electric field variable, Bij is a gauge-invariant magnetic field,

⇢ij is the charge density of the line-like defects, and �ij and Jij are its potential energy and

current, respectively. The charge density ⇢ij can be defined in terms of a Gauss’s law of the

form:

@i@kE
ijk` = ⇢j` (34)

which implies that the charge density obeys @i⇢ij = 0. This Gauss’s law can then be used

to derive various higher moment conservation laws of the theory. Importantly, however,

these are not the usual sort of conservation laws integrated over a three-dimensional region

of space. Rather, these are higher moment conservation laws on the flux of ⇢ij through

two-dimensional surfaces. In this sense, fractonic lines are governed by the natural higher

moment analogues of higher form symmetries [94, 95]. Since their introduction, various

generalizations of these extended fractonic objects have been proposed [96–98].

2. Supersolids

As noted earlier, the one-dimensional behavior of dislocations in a crystal is closely tied

to the conservation of particle number. It then becomes an interesting question to think

about the interplay of crystalline order, with its associated fracton behavior, and superfluid

order. Indeed, since superfluids exhibit e↵ective non-conservation of particle number (via

spontaneously broken U(1) symmetry), a system featuring coexisting crystalline and super-

fluid order (i.e. a supersolid) will host fully mobile dislocations [43, 45]. Fracton-elasticity
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duality therefore indicates the presence of two distinct fracton phases at zero temperature,

corresponding to the solid and supersolid phases, which are distinguished by the mobility

of their dipole excitations. Furthermore, the duality can be extended to include both the

crystalline and superfluid sectors, thereby combining fracton-elasticity and particle-vortex

dualities into one master bosonic duality. The resulting gauge dual of a two-dimensional

supersolid is written in terms of both a symmetric tensor gauge field Aij and a vector gauge

field ai, with an action given by [45]:

S =

Z
d2xdt


1

2
(Ĉijk`E

ijEk` � ⇢�1BiBi +K
�1
eiei � ��1b2)� gBiei � g0Ei

i
b+ · · ·

�
(35)

where the “· · ·” represents all source terms for the gauge fields. The first two terms represent

the crystalline sector, the second two terms represent the superfluid sector, and the last two

terms represent coupling between the two types of order. This coupling leads to a subtle

interplay between crystalline defects and superfluid vortices, with important consequences

for the zero-temperature phase diagram of bosons. For example, any quantum melting tran-

sition of a solid will necessarily induce superfluid order in the resulting liquid phase, whether

or not superfluidity is present in the original solid.

VI. NON-ERGODIC BEHAVIOR IN FRACTON SYSTEMS

Now that we have firmly established several physical realizations of fractons, such as

excitations of spin models and topological crystalline defects, we now move on to discuss

some of the phenomenology of fracton systems. Perhaps most notably, the limited mobility of

fractons places severe restrictions on the ability of a fracton system to reach thermal equilib-

rium. Fracton systems generically exhibit slow, glassy dynamics, such that the time to reach

thermal equilibrium can become arbitrarily long at low temperatures, in a manifestation of

“asymptotic localization” [12]. In certain special cases, particularly in one dimension, frac-

tons can even exhibit truly non-ergodic behavior, failing to ever reach thermal equilibrium

[13]. We discuss each of these two situations in turn.

A. Glassy Dynamics of Fractons

Since a fracton cannot move in isolation, it is tempting to think that it is a trivially

localized excitation. At zero temperature, this is indeed the case, and a single fracton will
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remain localized at its initial location for infinitely long times. At finite temperature, how-

ever, the story becomes more complicated. We first focus on type-I fracton models, such as

the X-cube model or scalar charge theory, in which fractons can form stable mobile bound

states. While such a fracton cannot move by itself, it can move through the absorption of

an additional composite excitation, which we take to be a dipole for concreteness. At finite

temperature, there will be a thermally excited bath of dipoles throughout the system, and a

fracton can move by absorbing dipoles from this bath. As studied by Prem et al., a series of

such processes will generically allow a fracton to di↵usively delocalize over the entire system,

thereby losing the memory of its initial conditions [12]. (See also some important precursor

work in References [1, 99].)

While such delocalization processes will generically occur, it is important to note that

they are limited by the number of thermally excited dipoles available for absorption by the

fracton. Assuming that there is an energy gap � to create dipoles, and the thermal bath of

dipoles is at temperature T , then the density of dipoles available for absorption will scale as

exp(��/T ), which in turn sets the scale for the di↵usion of fractons. It then follows that the

equilibration time for this system (i.e. the time necessary for an initially localized fracton

to disperse around the system) scales as exp(�/T ). While the system does eventually reach

equilibrium, the timescale for thermalization grows exponentially as the temperature is low-

ered. At the lowest temperatures, this timescale can be arbitrarily long (e.g. longer than the

age of the universe). Thus, in the low-temperature regime, such a system will be e↵ectively

localized for all intents and purposes. Such a scenario is a manifestation of glassy dynamics,

or “asymptotic localization” [100]. For the U(1) theories, featuring long-range interactions

between fractons, this slow dynamics also manifests in a delayed onset of screening [101].

Unlike ordinary charges, which immediately have their long-range fields screened at finite-

temperature, fractons can exhibit long-range interactions for extraordinarily long times prior

to being fully screened.

Finally, we note that the situation is more complicated for type-II fracton models, such

as Haah’s code, in which there are no mobile bound states. In such models, fractons can

still move via the emission or absorption of additional composite excitations. However, these

composites are now also strictly immobile. As such, it is extremely di�cult for the composites

to form a thermal bath from which the fracton can absorb excitations. In Reference [12], a

detailed study of thermalization in such models was undertaken, finding that they generically
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exhibit a much slower subdi↵usive delocalization of charge. For these systems, the time

for relaxation to equilibrium scales as exp(�2/T 2). This superexponential behavior of the

relaxation time indicates that type-II models remember their initial conditions for even

longer than their type-I counterparts.

B. Localization of Fractons in One Dimension

While dipole absorption can lead to thermalization at the longest timescales in generic

three-dimensional fracton models, the behavior of one-dimensional fracton systems can be a

bit more complicated, leading in some cases to truly non-ergodic behavior. Such a failure of

a one-dimensional fracton system to fail to thermalize at any timescale was first encountered

in the context of random unitary circuit dynamics [13]. Random unitary circuits provide,

in a certain sense, the most generic form of unitary time evolution, without the presence

of additional constraining conservation laws, such as energy conservation. These models

have provided a testing ground for ideas about the growth of quantum entanglement and

operator spreading [102–105]. In particular, operators generically exhibit ballistic spreading

of their support under Heisenberg time evolution. It is also possible to implement various

conservation laws in random unitary circuits, to study how they a↵ect the behavior of

operator spreading. For example, it has been shown that the presence of charge conservation

leads to certain operators having a slow di↵usively spreading piece, in addition to a ballistic

piece [106, 107].

In Reference [13], Pai et al. studied random unitary circuits subject to the two conserva-

tion laws of charge and dipole conservation, thereby implementing fracton behavior. (This

model takes fracton behavior as a starting point, in order to study its physical consequences,

as opposed to deriving fracton conservation laws from some underyling microscopic inter-

actions.) The authors constructed a minimal random unitary circuit model consistent with

these conservation laws, depicted in Figure 16, which consists of layers of local unitary gates

acting on a set of spins, where Sz is regarded as the “charge,” as done in [106]. Notably,

in contrast to the circuits studied in previous work, this model requires the presence of

three-site gates (i.e. next-nearest-neighbor interactions) to observe any nontrivial dynamics,

since there are no nearest neighbor processes consistent with fracton conservation laws. This

circuit was then used to study the Heisenberg time evolution of a fracton number operator
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FIG. 16. A minimal random unitary circuit obeying fracton conservation laws: Blue blocks represent

unitary gates acting on sets of three adjacent spins. Each gate has a block diagonal structure within

sectors of fixed charge and dipole moment. (Figure taken from Reference [13].)

initially localized at site i:

Oi(t) = U †(t)

✓
· · · I ⌦ I ⌦ Sz

i
⌦ I ⌦ I · · ·

◆
U(t) (36)

where U(t) is the unitary defined by the circuit. By looking at the right weight of this

operator (a quantity which serves as a measure of its spatial support), it was determined

that an O(1) portion of the fracton charge remains localized around its initial position at

arbitrarily long times. Thus, this system exhibits non-ergodic behavior, never forgetting the

initial position of the fracton. Various other aspects of the dynamics were studied in [13],

such as an anomalous exponent in the “tail” of the ballistically spreading peak. It was also

shown that fractons could attract each other under random unitary evolution, consistent

with the gravitational analysis of Reference [14].

Reference [13] proposed a hydrodynamic explanation for the observed localization, which

correctly predicts various aspects of the dynamics, such as the anomalous tail exponent.

However, the generality of these hydrodynamic equations was called into question by later

work which showed that the presence of four-site gates (i.e. next-next-nearest neighbor in-

teractions) will eventually cause the fracton operator to almost completely delocalize [108].

44



It remains an interesting open question how the coarse-grained hydrodynamic description

should be modified to account for this dependence on the range of interactions. Meanwhile,

Reference [108] proposed a more microscopic picture for this localization in terms of “frag-

mentation” of the Hilbert space, which implies the presence of “inert” localized states with

trivial time evolution. (See also parallel work in Ref. [109].) In turn, Reference [110] showed

how these localized states are intricately connected with the many-body scar paradigm, in

which a small number of non-thermal states exist in an otherwise thermal spectrum [111]. All

of this unexpected behavior, arising as a consequence of two simple conservation laws, has

led to numerous recent investigations into ergodicity breaking in fracton systems [112–117].

Notably, the non-ergodic behavior of fracton systems may prove to be one of the most

accessible features in near-term experiments. It was first noted in Reference [118] that the

conservation of dipole moment, and therefore fracton behavior, can be e↵ectively enforced

via the presence of a strong linear potential. (In this sense, fracton localization has close

ties to older studies on the Wannier-Stark localization of electrons moving in a strong uni-

form electric field [119].) By implementing linear potentials in ultra-cold atom systems, it

should be possible to impose fracton behavior “by hand,” without any corresponding mi-

croscopic gauge structure. For such a system, non-ergodic behavior will serve as the most

direct signature of fracton physics. Indeed, a recent cold-atom experiment has been able to

create a linear potential, though not yet of su�cient strength to enforce dipole conservation

[120]. Nevertheless, this system already exhibits slow subdi↵usive transport, which may be

a precursor to fracton behavior. By increasing the strength of the imposed linear potential,

it may eventually be possible to experimentally observe the non-ergodic behavior expected

for fractons.

VII. GRAVITATIONAL AND HOLOGRAPHIC BEHAVIOR

One of the more unusual properties exhibited by fractons is the fact that, in certain

models, fractons can exert a gravitational force on each other. This force is “gravitational”

in the sense that it is both universally attractive and encoded in an e↵ective geometry seen

by the fractons. This feature first became clear due to the relationship between fractons and

symmetric tensor gauge theories, which also play a central role in general relativity. Indeed,

fracton systems and general relativity share a similar set of conservation laws, leading directly
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to universal attraction [14]. We first go through the basic idea behind these gravitational

properties, followed by the more recent development that certain fracton models exhibit

holographic properties, leading to toy models for the AdS/CFT correspondence [15, 121,

122].

A. Gravitation in Fracton Systems

Since many fracton models are formulated in the language of rank-2 symmetric tensor

gauge theories, it is natural to expect that these systems should have some similarities with

general relativity, in which the dynamical metric plays the role of a symmetric tensor gauge

field. In fact, the parallels between fracton theories and gravitational theories run much

deeper. To see this, it is useful to consider the behavior of linearized gravity, in which the

metric is expanded around a flat background as gµ⌫ = ⌘µ⌫ +hµ⌫ , where ⌘µ⌫ is the Minkowski

metric and hµ⌫ is a small perturbation. We also choose to work in a gauge which has only

the spatial components of the linearized metric, hij. With these choices, the 00 component

of Einstein’s equations can be written as:

@i@jh
ij � @2hi

i
= T 00 (37)

which takes the form of a Gauss’s law, in which the energy density T 00 acts as a source for

the metric. This equation should be compared directly with the Gauss’s law of the scalar

charge tensor gauge theory, which led directly to the conservation of dipole moment:

@i@jE
ij = ⇢ )

Z
ddx (⇢~x) = constant (38)

Since general relativity also possesses a double-divergence Gauss’s law, we expect that it too

should exhibit some form of dipolar conservation law on its energy density. Indeed, such a

conservation law is found in general relativity in the form of conservation of center of mass

motion: Z
ddx (T 00xi � T 0ix0) = constant (39)

where x0 is the time coordinate. This equation, representing the conservation law associated

with boost symmetry, reflects the fact that the center of mass of a gravitational system must

move at a constant speed. If we choose a reference frame appropriately, we can eliminate the
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FIG. 17. a) Two fractons can push o↵ each other via the exchange of a virtual dipole. b) Locality

of the model dictates that fractons move faster when they are nearby and slower when they are far

apart.

second term (representing overall motion of the system), leaving us with the conservation

of center of mass:
Z

ddx (T 00~x) = constant (40)

This conservation law appears essentially identical to the dipolar conservation law governing

the scalar charge theory. We must then resolve the following puzzle: Why does such a con-

servation law seem to make fractons immobile, while still permitting gravitational particles

to move and attract each other?

The answer to this riddle lies in the fact that fractons do possess a certain limited amount

of mobility in the presence of other fractons. While it is not possible for a fracton to move

in isolation, it is possible for a fracton to move by “pushing o↵” a second fracton in such

a way that the total dipole moment is conserved, as indicated in Figure 17a. While such a

process can allow two fractons to move, the locality of the underlying Hamiltonian dictates

that this process must occur via the propagation of some mediating particle between the two

fractons. Specifically, fractons push o↵ of each other via the exchange of a virtual dipole.

The matrix element for this process is then proportional to the propagator of a dipole from

the location of one fracton to another. Importantly, such a propagator decays as a function

of the separation between two fractons, such that nearby fractons move more quickly than

well-separated ones, as shown in Figure 17b.

At this level, it can already schematically be seen that fractons exert an e↵ective attraction

on each other, since a pair of fractons will slow down as they begin to move apart. This

logic can be placed on firmer footing by studying the semi-classical equations of motion of

the system, which indicate that a fracton moves along geodesic-like curves of an e↵ective

geometry dictated by the positions of all other fractons in the system [14]. In this sense, the

47



interaction between fractons is purely geometric, just as in general relativity. Another notable

fact about this interaction is that fractons do not strictly speaking exert force on each other,

in the sense of exchanging momentum. Rather, fractons “exert velocity” on each other via the

exchange of position (i.e. center of mass). In this language, the interaction between fractons

is automatically attractive, since locality dictates that well-separated fractons must exert

less velocity on each other than nearby fractons. It is also important to note that generic

fracton models, which mimic the behavior of linearized gravity, exhibit only a short-ranged

gravitational attraction due to the mass gap associated with dipoles. Only a fully nonlinear

theory of gravity will possess a power-law gravitational attraction. It is an interesting open

question whether a lattice fracton model can be imbued with this property.

Finally, we must resolve one seeming discrepancy between fracton theories and gravita-

tional physics. While the “pushing o↵” mechanism we have discussed allows fractons to move

in the vicinity of each other, well-separated fractons e↵ectively become locked in place again,

in contrast to the expected behavior of a gravitational theory, in which well-separated parti-

cles carry an intrinsic mass. This di↵erence disappears, however, upon adding a background

charge density to fracton models, which endows fractons with a finite mass and promotes

them to ordinary gravitational particles. In this sense, fractons exhibit an explicit example of

Mach’s principle, which dictates that inertia should be determined by a particle’s surround-

ings rather than being an intrinsic property. It remains to be seen whether this perspective

can shed new light on the structure of more familiar gravitational models.

B. Holography in a Fracton Model

Since fracton theories can provide toy models for gravity, it should not be surprising that

certain fracton models can even serve as toy models for holography [15, 121, 122]. In its

simplest incarnation, the holographic principle indicates that a gravitational theory defined

on anti-de Sitter (AdS) space (i.e. a space with constant negative curvature) has all of its

information encoded in a theory defined on its boundary, usually a conformal field theory.

While this duality between the bulk and boundary of a gravitational system was originally

encountered in the context of string theory [123], similar physics has since been observed

in much simpler settings. For example, toy models for holography have been encountered in

the context of spin models with quantum error-correcting behavior [124].
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FIG. 18. The hyperbolic fracton model permits Rindler reconstruction within the minimal convex

wedge (green) from the state along its boundary.

Recently, a new type of holographic toy model has been proposed by Yan in the form

of a classical fracton model defined on a two-dimensional hyperbolic lattice, mimicking the

properties of AdS space [15]. This model, which is closely related to the X-cube model, pos-

sesses subsystem symmetries on every geodesic of the lattice, resulting in immobile fracton

excitations. The model also obeys various properties expected of holographic theories. For

example, the mutual information between subregions obeys the expected Ryu-Takayanagi

formula. (Note that, since the model is classical, we must consider mutual information in-

stead of entanglement entropy.) Furthermore, knowledge of the state on a particular segment

of the boundary allows for reconstruction of the bulk state within the minimal convex wedge

bounded by that boundary segment, as a manifestation of Rindler reconstruction (see Figure

18). Via a duality transformation, it can also be shown how this model provides an explicit

realization of the bit-thread formulation of holography [121, 125], which in turn hints at a

more general perspective on holographic toy models [122].

VIII. NEW CONDENSED MATTER PLATFORMS FOR FRACTONS

While a variety of exactly solvable fracton models have been proposed, there is a need

for more concrete platforms to realize them experimentally. In this section, we list several

experimental proposals and material fabrications for fracton phases of matter.
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A. Majorana Islands

The theoretical aspects of fracton phases were originally proposed in the context of quan-

tum stabilizer codes and exactly solvable spin models. However, the direct physical realiza-

tion of these models remains a key challenge as most stabilizer codes contain complicated

spin cluster interactions. Fortunately, a rich set of quantum spin models can emerge via Ma-

jorana quantum Lego whose building blocks are within experimental reach. Here, we briefly

mention that many known fracton stabilizer codes can be obtained from such Majorana

quantum Lego building blocks. The principal ingredients of Majorana quantum Lego are

Coulomb blockaded Majorana islands and weak inter-island Majorana hybridizations. Each

island contains some number of Majoranas, e.g., at the ends of semiconductor wires prox-

imity coupled to a superconductor [126, 127]. The island’s charging energy fixes its fermion

parity, corresponding to a multi-Majorana interaction.

We illustrate an explicit example proposed in Ref. [48] with a topological superconductor

on a body-centered cubic lattice. Each site contains eight Majoranas �1, . . . , �8 which are

each hybridized with a Majorana on a nearest-neighbor site as shown in Fig. 19. Thus, the

topological superconductor has the Hamiltonian

H = �it0
X

hi,ji

(�1
i
�7
j
+ �2

i
�8
j
+ �4

i
�5
j
+ �3

i
�6
j
) (41)

and can be thought of as built from crossing one-dimensional Kitaev chains along the

(±1,±1, 1) directions.

We now consider onsite interactions which couple quartets of Majoranas,

Hint = U(�1
i
�3
i
�8
i
�5
i
+ �3

i
�4
i
�7
i
�8
i
+ �4

i
�2
i
�6
i
�7
i
). (42)

These interactions suppress hopping of single Majoranas between sites. In the strong-U

limit, they project each site into the �1
i
�3
i
�8
i
�5
i
= �3

i
�4
i
�7
i
�8
i
= �4

i
�2
i
�6
i
�7
i
= �1 subspace.

The product of the three parity constraints also implies �2
i
�1
i
�5
i
�6
i
= �1, constraining the

Majorana quartets associated with the four vertical faces of the red cube in Fig. 19.

To implement this interaction in an experimental setup, we distribute the eight Majoranas

of each site over two adjacent superconducting islands (SCI) as shown in Fig. 19. Each

SCI could be made from two semiconductor quantum wires proximity coupled to the same

superconductor. The proximity-coupled quantum wires e↵ectively realize open Kitaev chains
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FIG. 19. Construction for the planon-lineon code. a) Body-centered cubic lattice with eight MZM

on all corner (green) and center (red) sites. Majorana hybridization is illustrated by dashed lines.

b) Setup for realizing the Majorana quartet interaction in Eq. (42). Two Majorana quartets (red

dots) are placed on floating superconducting islands, fixing the corresponding fermion parities

via charging energy. The third quartet in Eq. (42) is generated by the Majorana hybridizations

indicated by the dashed lines. c) The two types of octahedral cells which support the stabilizers of

the planon-lineon code.

with two Majorana zero modes localized at their ends, so that there are a total of four

Majoranas on each SCI. By virtue of their charging energy, each SCI can be tuned to have

even fermion parity, e↵ectively implementing the interaction terms U(�1
i
�3
i
�8
i
�5
i
+ �4

i
�2
i
�6
i
�7
i
)

in Eq. (42). To generate the remaining four-Majorana interaction in Eq. (42), we turn on

inter-island Majorana hybridizationHt = it(�3�4+�8�7) with amplitude t. These inter-island

hybridizations can in principle be implemented by direct tunnel coupling. Alternatively, and

perhaps more flexibly, one can bridge between the two Majorana islands using a coherent

link. Its two Majorana end states would then be tunnel coupled to the two Majoranas of

the Majorana islands which one wants to hybridize. Since the hybridization between the

Majoranas on the coherent link and the islands can be realized through gate controlled

tunnel junctions, the hybridization strength is tunable. In the limit of a large charging
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energy, which fixes the fermion parities of the SCI, a single Majorana tunneling between

the islands is suppressed and the lowest order processes involve pairs of Majorana tunneling

terms as Eq. (42).

Under such parity constraints driven by interaction, each site retains a single spin-1/2

degree of freedom. We can then choose the parities of the top and bottom faces as the

Pauli-Z operator �z

i
= �1

i
�2
i
�4
i
�3
i
and the product of two Majoranas associated with any

vertical edge as the Pauli-X operator �x

i
, or vice versa. In the strong-U limit, we can treat

the Majorana hybridizations as a perturbation. The leading-order Hamiltonian involves 16-

Majorana terms for the octahedra shown in Fig. 19. Writing the Hamiltonian in the spin

representation yields

H = �
X

octahedra

(
Y

i2octaa
�x

i
+

Y

i2octab
�z

i

)
. (43)

Here octaa and octab refer to the two types of octahedra in Fig. 19 with red (green) sites

at top and bottom and four green (red) sites in between. Thus, our construction exactly

reproduces the planon-lineon model [38] whose elementary quasiparticles are lineons and

planons with mobility restricted to the z-direction and the xz (yz)- planes, respectively.

This setting [48] produces a wide variety of fracton states and promises numerous oppor-

tunities for probing and controlling fracton phases experimentally.

B. Plaquette Paramagnets in Two Dimensions

The wide variety of proposals for fracton models calls for physically-realistic models

prone to yield such states. In Ref. [10], the authors suggest that some fractonic behaviour

can emerge in frustrated quantum paramagnets as a consequence of fluctuating plaquette

order or resonating cube order. Motivated by the precursor work on resonanting valence

plaqeutte[11, 128] crystal, in this section, we introduce the fractonic properties of topological

defects in valence plaquette solid (VPS) phases on square lattices. We show that the defects

of the VPS order parameter, in addition to possessing non-trivial quantum numbers, have

fracton mobility constraints deep in the VPS phase, which has been overlooked previously.

In quantum magnets with geometry or quantum fluctuations, a zoology of paramagnetic

states can emerge at low temperature. Beyond the well-know valence bond solid, another

widely observed paramagnetic crystalline phase is the VPS (valence plaquette solid) state
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which breaks C4 symmetry and lattice translation Tx, Ty for both directions. The VPS order

enlarges the unit cell into four plaquettes, so there are four distinct VPS patterns related

by site-centered C4 rotation, as shown in Fig. 20.

FIG. 20. Left: VPS order which enlarges the unit cell by 4. Right: The vortex connecting four

distinct VPS patterns carries a spinon.

In the plaquette crystalline phase, one can define the four distinct plaquette patterns as a

Z4 boson. During the quantum melting transition of VPS, the plaquette configuration tends

to become disordered and the Z4 vortex defect proliferates in the meantime. The vortex

defect of the VPS which intersects the four distinct plaquette configurations carries a free

spinon as in Fig. 21. As opposed to the VBS phase, where a spinon in the background of

dimers can hop among sites by reconstructing the local valence bond configuration, a spinon

in the background of plaquette order is frozen - it cannot move away from the original vortex

center without breaking additional plaquettes, as depicted in Fig. 21. In contrast, a pair of

FIG. 21. The spinon inside the VPS vortex has restricted mobility. It cannot move without breaking

additional plaquettes.

spinons living on the link between adjacent sites can hop along the stripe perpendicular

to that link without breaking additional plaquettes, as depicted in Fig. 22. Such a spinon
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pair, which we refer to as a spinon dipole, is a 1d subdimensional particle which moves

transversely to the dipole’s orientation. Based on these observations, the topological defect

of the plaquette order displays restricted motion which exactly resembles the behavior of

fractons.

FIG. 22. A dipole can move along the stripe transverse to the dipole’s orientation by exchanging

position with a plaquette.

To make the connection between VPS defects and fractons precise, we introduce a higher

rank gauge theory description for the valence plaquette order on a square lattice. The pla-

quette order can be mapped to a rank-2 symmetric tensor electric field defined at the center

of each square as the following.

Exy(r) = (�1)irP (r) (44)

where P = 1 (0) corresponds to the valence plaquette occupancy (vacancy) on each square.

The index ir is the same as defined before. As opposed to the VBS state, where dimers can

have two orientations corresponding to Ex and Ey, the plaquette electric field is a single-

component field, e↵ectively a scalar. We can also define a conjugate variable Axy, satisfying

[Axy(r), Exy(r0)] = i

2⇡�r,r0 . The operator e±iAxy creates/annihilates a valence plaquette. As

each spin on the site is only entangled with one of the four adjacent plaquette clusters, one

can define a Gauss’s law for the rank-2 electric field as,

@x@yExy(r) = (�1)ir(1� q(r)) (45)

where q(r) is the number of unpaired spinon at site r. As long as there is one plaquette

adjacent to a site, there is no free spinon on that site. If plaquettes are absent from all

four squares surrounding the site, then there exists a free spinon charge at the center. This

Gauss’s law is precisely the two-dimensional version of the Gauss’s law seen in the fracton
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phase of matter described by a hollow rank-2 symmetric tensor gauge theory [28, 29]. Due

to the particular double derivative in Eq. 45, the spinon number is conserved on each row

and column of the system, so the theory respects an emergent subsystem U(1) symmetry:
Z

dx q = 1� (�1)y
Z

dx (�1)x@x@yExy = const. (46)

A similar equation holds in the y-direction. Due to the emergent subsystem symmetry, single

spinon motion is prohibited. However, a pair of spinons, which we refer to as a dipole, can

hop only along the stripe perpendicular to its orientation.

These mobility constraints, while they persist, can potentially inhibit the condensation

of vortices and preclude a continuous transition from the VPS to the Néel antiferromagnet.

Instead, the VPS melting transition can be driven by proliferation of spinon dipoles. In

Ref. [10], it was demonstrated that a 2d VPS can melt into a stable gapless phase in the

form of an algebraic bond liquid with algebraic correlations and long range entanglement.

C. Hole-Doped Antiferromagnets

Another manifestation of fracton physics in a simple condensed matter system is in the

familiar context of hole-doped antiferromagnets [49]. To see this, consider the motion of a hole

through the background of an Ising antiferromagnet, as depicted in Figure 23. As the hole

moves via a sequence of nearest-neighbor hopping processes, it necessarily creates a series of

misaligned spins, resulting in a large energetic barrier to motion. This is in close analogy to

the fact that a moving fracton must create energetically costly dipoles. Furthermore, a bound

state of two holes can move freely, without disturbing the antiferromagnetic background.

This provides an enticing hint that the physics of fractons is at play in the description of

holes doped into an antiferromagnet.

This idea can be given firmer support by performing a perturbative analysis on the

Hamiltonian for holes coupled to the antiferromagnetic background. This type of system

can be described by a form of boson a↵ected hopping model, widely used in the theory of

polarons. In this type of model, hopping of one type of particle (which we typically assume

to be fermionic) must be accompanied by the emission/absorption of another type of particle

(which we take to be bosonic). Schematically, such models take the form:

H = g
X

hiji

f †
i
fj(b

†
j
+ bi)� µf

X

i

f †
i
fi � µb

X

i

b†
i
bi (47)
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FIG. 23. Motion of a hole through an Ising antiferromagnet is impeded by the creation of energet-

ically costly spin misalignments.

where the first term represents the fact that hopping of a fermion requires either emission

of a boson on the departure site or absorption of a boson on the arrival site. (In the an-

tiferromagnet, the f particles would represent holes while the b particles would represent

magnon (i.e. spin-flip) excitations.) The fact that motion of a fermion is accompanied by

creation/absorption of a boson is closely analogous to the fact that motion of a fracton is

accompanied by the creation/absorption of an extra excitation (usually a dipole). Indeed,

by perturbatively integrating out the bosons through five orders in g/µb, the authors of Ref.

[49] showed that the e↵ective Hamiltonian for the fermions takes the schematic form:

Hf = �t
X

i

(f †
i+1f

†
i+2 + f †

i�1f
†
i
)fi+1fi + V (48)

which features only a pair-hopping kinetic term, while V schematically represents all po-

tential/interaction terms. To this order, we see that holes in a doped antiferromagnet are

incapable of moving by themselves, but rather only move in pairs, in a manifestation of

fracton physics. A more precise analysis [49] indicates that this model actually exhibits con-

servation of an appropriately defined dipole moment. Furthermore, this conservation law

leads to the usual phenomenology associated with fracton systems, such as slow thermaliza-

tion and gravitational attraction. In this case, the gravitation corresponds to the well-known

magnon-mediated attraction between holes, which contributes to the formation of supercon-

ductivity [129, 130]. We therefore see that fracton phenomenology is on display in a very

familiar setting, potentially with applications to the study of high-temperature supercon-

ductivity.
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D. Subsystem Symmetry Protected Topological Phases

Symmetry plays a pivotal role in distinguishing phases of matter. The great majority of

the exotic quantum phases lies in the interplay between symmetry and entanglement, which

is known as ’symmetry protected topological phase’. Then what are the possible quantum

phases protected by subsystem symmetry? Do they exhibit similar protected gapless mode

and symmetry anomaly on the boundary? In this section, we list several prominent examples

of subsystem protected topological phase.

The toy model we introduce here is a subsystem symmetric topological state[131–136]

with gapless edge modes, which we refer to as topological plaquette Ising model (TPIM).

The Hilbert space consists of Ising spins on sites of the square lattice. For clarity, we will

separate these into two spin flavours, � and ⌧ , located at the sites of the A and B sublattices,

respectively. The Hamiltonian is given by

HTPIM = �
X

ijklm2PA

�z

i
�z

j
�z

k
�z

l
⌧x
m
�

X

ijklm2PB

⌧ z
i
⌧ z
j
⌧ z
k
⌧ z
l
�x

m
(49)

where the sum is over all PA (PB), which refer to five-site clusters consisting of a site on

FIG. 24. The terms in the TPIM Hamiltonian. The Pauli spins ⌧, � live on the red/blue sites.

The interaction �z

i
�z

j
�z

k
�z

l
⌧x involves the four �z spins on the blue plaquette and the ⌧x in the

middle. The interaction ⌧ z

i
⌧ z

j
⌧ z

k
⌧ z

l
�x involves the four ⌧z spins on the red plaquette and the �x in

the middle.

the A (B) sublattice and its four nearest neighbors, with each site labeled by ijklm as

illustrated in Fig 24. The first term is a sum over products of a ⌧x and its four surrounding

�z, and vice versa for the second. As all local cluster-operators commute with each other,
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the Hamiltonian contains extensively many conserved quantities and is exactly solvable.

Thus, the ground state of HTPIM can be described as a superposition of all possible {�z}

configurations, with the corners of each domain wall decorated with ⌧x = �1.

In addition, the model has Zsub

2 symmetry, as the Hamiltonian commutes with the oper-

ators
Q

diag �
x and

Q
diag ⌧

x which flips �z ! ��z or ⌧z ! �⌧z along a particular diagonal.

Next we will show that the SSPT paramagnet similarly has non-dispersing gapless bound-

ary modes protected by the subsystem symmetry, which leads to a subextensive ground state

degeneracy in the presence of an edge.

FIG. 25. Red ovals show the physical spins that take part in the edge operators ⇡↵

i
, and form a

spin-1/2 degree of freedom at the edge. The action of the subsystem symmetries (green lines) on

the ground state manifold may be expressed in terms of such ⇡↵

i
operators. Near a corner of the

type shown here, the symmetry becomes a local symmetry, and the corresponding boundary modes

can be gapped out.

Consider an edge as shown in Fig. [25]. We can pick two-spin clusters (red ovals in Fig 25),

which create an e↵ective spin 1/2 degree of freedom on each site along the edge. To see this,

we define the three edge operators for each cluster on even sites,

⇡x = �z⌧x, ⇡y = �z⌧ y, ⇡z = ⌧ z (50)

and likewise, for odd edge sites with � spin at the surface, we have

⇡x = ⌧ z�x, ⇡y = ⌧ z�y, ⇡z = �z (51)

These operators satisfy the Pauli algebra on the surface, and commute with the bulk Hamilto-

nianHTPIM. By counting degrees of freedom, we can see that there exists a 2L-fold degenerate

ground state manifold arising due to the presence of the edge of length L.
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This edge degeneracy in fact cannot be broken with local interaction while preserving all

subsystem symmetries, and leads to a completely flat-band dispersion along the edge.

IX. CONCLUSIONS AND OUTLOOK

In this review, we have given a bird’s eye perspective on the field of fractons, which

is an exciting new frontier for condensed matter physics. Fractons not only represent a

fundamentally new type of emergent quasiparticle with striking properties, but also draw

connections between a variety of seemingly unrelated topics, from gravity and elasticity to

higher-order topological insulators and hole-doped antiferromagnets. While we have covered

a wide range of topics, there have been many other exciting advances in the field which

we have not discussed here, and we refer the interested reader to the literature for more

information [135, 137–148].

Beyond established results, however, there are also numerous open questions in the field

of fractons, which has entered into a new stage of maturity. These open questions range

from the practical to the highly abstract. As always, one important line of research is the

search for more experimentally-relevant spin models which may be realized in actual materi-

als exhibiting frustrated magnetism. It will also be important to develop more experimental

signatures of fractons in spin systems, particularly for gapped models. However, recent de-

velopments have made it clear that fracton physics is a much broader paradigm than its

humble beginnings in exactly solvable spin models. Fractons are already known to be real-

ized in a diverse set of systems, such as elasticity theory, plaquette paramagnets, hole-doped

antiferromagnets, and more. As such, it is natural to ask what other platforms may host

fractons, and how fracton physics is concretely manifested in experimental signatures.

Given that fractons are on the cusp of physical realization, it is also important to ask what

we will do with fractons once we have them. How can we practically manipulate fractons in

some useful way? It has been widely suggested that the properties of fractons will be useful

for the purpose of quantum information storage [2, 16–18], but we lack any concrete roadmap

for the precise implementation of this proposal. Much more work will be required to figure

out how to usefully store and manipulate quantum information using a fracton system. It

is also unclear whether or not the mobility restrictions of fractons can be harnessed for

constructing any other sort of useful quantum devices.
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On the more abstract side of things, the number of open questions is still remarkably

large. One important line of research is a push towards a complete classification of fracton

systems, with a full characterization of all statistical processes. There has also been only

limited exploration of fractons in fermion systems, and the known models all have natural

analogues in boson systems. Are there examples of intrinsically fermionic fracton models?

For example, can fermion systems give rise to tensor gauge theories with half-integer higher-

spin gauge modes? Another interesting question is what we can learn about real gravitational

systems from the connection between fractons and gravity. Can fracton physics provide new

insights into more traditional gravitational theories? Can fracton models be used to simulate

more complicated gravitational phenomena, such as black holes?

This list of open questions is far from exhaustive, and new topics in fracton physics are

being discovered at a rapid pace. It seems fair to say that the field of fractons still has many

surprises in store over the coming years. We hope that this review will serve as a useful

introduction for the next generation of fracton researchers, who will surely take the field in

many exciting new directions.
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[139] M Mühlhauser, MR Reiss, KP Schmidt, et al., “Quantum robustness of fracton phases,”

arXiv preprint arXiv:1911.13117 (2019).

[140] Michael Pretko, “Electric circuit realizations of fracton physics,” (2019), arXiv:1908.08536

[cond-mat.str-el].

[141] Nathanan Tantivasadakarn and Sagar Vijay, “Searching for fracton orders via symmetry

defect condensation,” (2019), arXiv:1912.02826 [cond-mat.str-el].

[142] Yizhi You, “Non-abelian defects in fracton phase of matter,” arXiv preprint arXiv:1901.07163

(2019).

70

http://dx.doi.org/10.1038/nphys1180
http://dx.doi.org/%2010.1103/physrevb.90.041110
http://dx.doi.org/%2010.1103/physrevb.90.041110
http://arxiv.org/abs/1908.08536
http://arxiv.org/abs/1908.08536
http://arxiv.org/abs/1912.02826


[143] Daniel Bulmash and Maissam Barkeshli, “Gauging fractons: Immobile non-abelian quasi-

particles, fractals, and position-dependent degeneracies,” Physical Review B 100 (2019),

10.1103/physrevb.100.155146.

[144] Albert T. Schmitz, Sheng-Jie Huang, and Abhinav Prem, “Entanglement spectra of stabilizer

codes: A window into gapped quantum phases of matter,” Physical Review B 99 (2019),

10.1103/physrevb.99.205109.

[145] Han Ma and Michael Pretko, “Higher-rank deconfined quantum criticality at the lifshitz

transition and the exciton bose condensate,” Physical Review B 98 (2018), 10.1103/phys-

revb.98.125105.
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