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Abstract

Fractons are a new type of quasiparticle which are immobile in isolation, but can often move by
forming bound states. Fractons are found in a variety of physical settings, such as spin liquids and
elasticity theory, and exhibit unusual phenomenology, such as gravitational physics and localization.
The past several years have seen a surge of interest in these exotic particles, which have come to
the forefront of modern condensed matter theory. In this review, we provide a broad treatment of
fractons, ranging from pedagogical introductory material to discussions of recent advances in the
field. We begin by demonstrating how the fracton phenomenon naturally arises as a consequence
of higher moment conservation laws, often accompanied by the emergence of tensor gauge theories.
We then provide a survey of fracton phases in spin models, along with the various tools used to
characterize them, such as the foliation framework. We discuss in detail the manifestation of fracton
physics in elasticity theory, as well as the connections of fractons with localization and gravitation.
Finally, we provide an overview of some recently proposed platforms for fracton physics, such as
Majorana islands and hole-doped antiferromagnets. We conclude with some open questions and an

outlook on the field.
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I. INTRODUCTION

The field of condensed matter physics studies the complex and often surprising collective
behavior of systems containing many particles. One of the most striking examples of new
physics which arises in such many-body systems is the concept of an emergent quasiparticle.
Strong interactions between the microscopic particles can often drive the formation of emer-
gent quasiparticle excitations with vastly different properties from any known fundamental
particle. The concept of a quasiparticle dates back to Landau’s theory of Fermi liquids, in
which interactions between electrons lead to the formation of quasiparticle excitations with
the same charge as an electron, but with a different mass. A more dramatic example of
an emergent quasiparticle was later found in the context of fractional quantum Hall sys-

tems, where Laughlin quasiparticles carry only a fraction of the elementary electric charge.



FIG. 1. a) A single fracton cannot move freely in any direction. b) Fractons can sometimes move
by forming certain bound states, such as dipoles. c) It is also possible for a fracton to move at the

expense of creating new particles out of the vacuum.

Since then, a wide array of quasiparticles has been discovered, often possessing fractionalized

quantum numbers or anyonic quantum statistics.

Recently, however, a new type of emergent quasiparticle has been encountered which
differs from all previously known particles in an unusual way. Fractons are quasiparticles
which lack an ability previously assumed to be inherent to all particles: namely the ability
to move. A fracton is a quasiparticle which, in isolation, is unable to move in response to an
applied force [1H5]. However, depending on the details of the model, fractons can sometimes
move by combining to form certain bound states, as depicted in Figure [} Fracton models
are often classified as “type-1" if they possess stable mobile bound states, and as “type-II"
if all mobile bound states can decay directly into the vacuum [4]. Tt is also possible for an
individual fracton to move at the cost of creating new fractons out of the vacuum at each
step of its motion. However, in the absence of a constant energy input to sustain this particle
creation, an individual fracton will remain immobile. These unusual new particles were first
encountered in certain exactly-solvable three-dimensional spin and Majorana models [TH4] G-
8], but have since been shown to arise in contexts ranging from topological crystalline defects
[9] to plaquette-ordered paramagnets [10] (see also precursor work in Ref. [11]). Furthermore,
the restricted mobility of fractons causes them to exhibit a variety of unusual properties,
such as nonergodic behavior [12] [13] and even gravitational physics [14] [15]. At a practical
level, there is hope that the immobility of fractons may even be harnessed for the purposes

of quantum information storage [2l [16HI8].

The field of fractons has a somewhat complicated history, and we give only a brief

overview. It is generally agreed upon that the first manifestation of fracton behavior was
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encountered in a spin model exhibiting glassy dynamics constructed by Chamon [I], though
there is also important conceptual overlap between fractons and earlier work on kinetically
constrained models [I9-H21]. Later, Haah designed the paradigmatic type-II fracton model,
featuring a characteristic fractal structure, with the goal of creating a self-correcting quan-
tum memory [2]. However, the significance of these two models, often known as the Chamon
model and Haah’s code respectively, was not immediately appreciated. It was not until the
seminal work of Vijay, Haah, and Fu that it became clear that these models were only two
examples of a much larger class of fracton systems, representing a fundamentally new type
of phase of matter [3, [4]. Vijay, Haah, and Fu constructed several now-prototypical fracton
models in three dimensions, such as the X-cube model. Additionally, they recognized the
existence of several close cousins of fractons: particles which can only move along a one- or
two-dimensional subspace of a three-dimensional system. These particles have since come
to be known as lineons and planons respectively, or sometimes more generally as subdimen-

sional particles.

The next major advance in the understanding of fractons came with the realization by
one of the present authors (MP) that the restricted mobility of fractons can be naturally
understood in terms of a set of higher moment conservation laws, which often arise as
a consequence of an emergent symmetric tensor gauge theory [5, 22]. For example, the
simplest such gauge theories feature conservation of both charge and dipole moment, which
immobilizes individual charges but allows for motion of stable dipolar bound states. Building
on earlier work on symmetric tensor gauge theories [23H27], MP showed that these gauge
theories provide an effective description of a broad class of fracton phases featuring emergent
gapless gauge modes. It was later shown by Ma, Hermele, and Chen [28], and independently
by Bulmash and Barkeshli [29], that certain symmetric tensor gauge theories give rise to the
previously studied gapped fracton models via the Higgs mechanism. From this viewpoint,
various spin-1/2 fracton models can be understood as types of Zs symmetric tensor gauge
theories. In addition to shedding internal light on the field of fractons, the symmetric tensor
gauge theory formalism has also drawn unexpected connections between fractons and other
areas of physics, such as elasticity theory [9] and gravity [I4]. Due to their key role in the field
of fractons, we begin by discussing some basic aspects of symmetric tensor gauge theories

in Section LI}

Recently, there has been further significant progress on the understanding of fracton



phases in gapped spin models. Useful tools have now been developed for relating such frac-
ton phases to more familiar topological phases of matter. For example, it has been shown
how certain three-dimensional fracton phases can arise via strongly coupling together layers
of two-dimensional topological phases [30, 131]. Various schemes have also been proposed
for generalizing the string-net condensate picture for ordinary topological phases to fracton
phases [32], 33]. In Section E, we describe various aspects of fractons in spin models, begin-
ning with a description of some prototypical models, such as the X-cube model and Haah’s
code, and ending with a discussion of more recent developments. In Section [[V] we provide
a separate discussion of the important topic of the classification of gapped fracton phases,
with special emphasis on the well-developed foliation framework, as pioneered by Shirley,
Slagle, and Chen [34H39]. We also describe some other recent tools developed for charac-
terizing fracton phases, such as the Pai-Hermele theory of fusion and braiding in fracton
systems [40].

While much of the work on fractons takes place in the context of abstract spin models and
gauge theories, it is important to note that fracton physics has a very concrete realization
as the topological lattice defects of ordinary crystals. Specifically, the disclinations and dis-
locations of two-dimensional crystals exhibit the restricted mobility of fractons and lineons,
respectively. This connection is made precise via a duality transformation, often referred to
as “fracton-elasticity duality,” which maps the elasticity theory of crystals onto a symmetric
tensor gauge theory [9]. We discuss this duality in detail in Section , along with its vari-
ous generalizations [41H47]. For example, the duality can be extended to three-dimensional
elasticity theory, giving rise to the concept of fractonic lines, i.e line-like excitations without

the ability to move [41].

In the following sections, we discuss some of the phenomenology of fractons, which is
important for the detection of fracton behavior in experiments. As a first notable example,
the immobility of fractons serves as a significant impediment to thermalization. Fracton
physics generically causes systems to be slow to reach thermal equilibrium, in a manifestation
of glassy dynamics, as studied first by Chamon [I] and more systematically by Prem et al.
[12]. In certain cases, fracton systems can exhibit truly non-ergodic behavior, failing to
ever reach thermal equilibrium, as shown by Pai et al. [13]. In Section , we describe
these unusual thermodynamic aspects of fracton systems. Another unusual characteristic of

fracton systems is that, depending on the precise form of the conservation laws, fractons



can often exhibit gravitational behavior, in the sense of a universal attractive force between
particles which is encoded in an effective geometry [14]. We describe how this gravitational
physics arises out of the tensor gauge theory formalism in Section [VII]

In Section [VIII, we move on to discuss various other physical realizations of fractons.
This includes both artificially engineered fractons, for example built from Majorana islands
[48], and realizations of fractons in familiar condensed matter settings, such as plaquette
paramagnets [10] and hole-doped antiferromagnets [49]. Finally, in Section [IX] we conclude

with some open questions and an outlook on the field of fractons.

II. TENSOR GAUGE THEORIES AND HIGHER MOMENT CONSERVATION
LAWS

A. Basic Principles

While the restricted mobility of fractons may seem unusual at first glance, the basic
principles governing their phenomenology can be understood in terms of a remarkably simple
class of theories. Specifically, fracton behavior is seen to arise in gauge theories featuring
a symmetric tensor gauge variable. To illustrate the main idea, it is useful to focus on the
simplest type of symmetric tensor gauge theory in three dimensions, corresponding to a
generalized Maxwell theory in which the familiar vector potential Ais replaced by a rank-2
symmetric tensor potential A;; (where Roman indices refer to spatial coordinates) [5 22
24]. While this initial discussion may seem abstract, we will discuss in detail later how these
effective theories can arise from microscopic models, such as spin Hamiltonians.

To construct a symmetric tensor version of Maxwell theory, it is useful to first specify
the gauge transformation, which will largely dictate the form of the rest of the theory.
For Maxwell theory, the pure gauge sector is invariant under transformations of the form
A= A+ Va. (We will return later to the role of the scalar potential ¢, which becomes
important within the charge sector.) A natural (though not unique) choice for the tensor

Maxwell theory is to specify that the gauge sector must be invariant under:
Aij — Az’j + 8i8joz (1)

For reasons which will become clear later, this theory is typically known as the “scalar charge

theory” [B]. Given this gauge transformation, we now wish to construct gauge-invariant field
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operators, playing the role of electric and magnetic fields. To obtain an electric field, it
is simplest to work in the Hamiltonian formalism. In this case, we can simply define a
symmetric tensor electric field E;; as the canonical conjugate to A;;, in analogy with the

conjugate relationship between A and E in Maxwell theory. More precisely, we write:
[Aij (%), Exe(y)] = i(dindje + 6iedj1.)0(z — y) (2)

where the right-hand side has taken into account the symmetric property of the tensors.
To construct a magnetic field operator, we can simply take a curl on either of the indices
of A;; as follows:

Bij = €0 AY, (3)
where we are summing over repeated indices. (Furthermore, we work exclusively in flat space,
raising and lowering indices via the flat metric 6*/.) Note that, in contrast to A;; and E;;, the
magnetic field tensor B;; is neither symmetric nor antisymmetric in its indices, but does obey
the tracelessness condition B’ = O. As such, this theory does not have a natural duality
between the electric and magnetic sector. From its definition, we see that the magnetic tensor
obeys the divergence-free condition 9; B = 0. When the gauge theory is compact, such that
A;; is only defined mod 2, this condition relaxes to §;BY = j/, where p’ represents the
density of vector-flavored magnetic monopoles. Importantly, however, compactness does not
lead to instantons (i.e. flux slip events) in three spatial dimensions, which allows for the
existence of a stable deconfined phase [24]. (This is in contrast to two-dimensional compact
theories, which are destabilized by instantons.)

Using the gauge-invariant fields F;; and B;;, we can immediately write down a Maxwell-

7R

type Hamiltonian for this symmetric tensor gauge theory as:
I R g
"= /dsxﬁ(E”Eij + BYBy;) (4)

Note that we have neglected a potential trace term of the form (E!)?, which turns out to be
an irrelevant perturbation to this fixed point [5]. We have also restricted our attention to
rotationally invariant theories, whereas other terms may generically be present in systems
with a particular lattice symmetry. By calculating the equations of motion of this quadratic

Hamiltonian, it is a straightforward exercise to show that this model gives rise to five gapless

! While one could symmetrize the magnetic tensor as Bij = B;; + Bj;, doing so would fine-tune the theory

to a critical point, as discussed in Refs. 5] 22].



gauge modes with a linear dispersion, w ~ k. These gauge modes are simply the natural
tensor analogue of photons, which may also be regarded as “gravitons” in light of our later
discussion connecting with gravity. So far, there have been few surprising aspects to this
tensor Maxwell theory, which behaves very much like normal Maxwell theory with a few
extra indices.

The unusual aspects of this theory arise when we consider the electric charge sector of the
theory. From the gauge transformation A;; — A;; +0,0;c, as well as the canonical conjugate
relationship between A;; and E;j, we can immediately deduce that the electric field obeys
the constraint 9;0; EY = 0 within the pure gauge theory. (One way to see this is to note that
0;0,E"Y effectively acts as the generator of the gauge transformation.) This constraint serves
as the source-free Gauss’s law of the theory. Naturally, we can then loosen this constraint

by introducing a charge density p, leading to the full Gauss’s law:

which is the single most important equation of the entire theory. While this tensor Gauss’s
law may look only mildly different from the familiar vector one, it leads to a dramatic
consequence for the mobility of charges, as encoded in the conservation laws of the theory.
As in ordinary Maxwell theory, the Gauss’s law immediately dictates that charge is locally

conserved. Formally, one can write the charge within some region of space as:

where in the final step we have rewritten the integral of a divergence as a flux through the
boundary. This equation tells us that the charge in any region of space can only change
via the flux of charge in or out through the boundary. In other words, charge is a locally
conserved quantity in the bulk of the system. While the conservation of charge is to be
expected, this theory also contains a second type of conservation law with no analogue in
ordinary Maxwell theory. Specifically, let us consider the dipole moment associated with the

charge in some region of space:
P = /dga: px’ = /d3x 7' 0;0, F7* = j{dnk (z'0; E/F — E™) (7)

where we have integrated by parts and taken advantage of divergences to arrive at a boundary

term. We see that, just like charge, the dipole moment of this theory can also be written in



terms of a flux through the boundary. This indicates that dipole moment is also a locally
conserved quantity in the bulk of the system.

This local conservation of dipole moment immediately leads to the fracton phenomenology
illustrated in Figure [I} An isolated charge is incapable of moving, since any motion will
change the dipole moment of the system. Meanwhile, a dipolar bound state is free to move,
so long as it preserves the magnitude and orientation of its dipole moment. It is also possible
for a single fracton to move alongside the simultaneous creation of an additional dipole,
such that the total dipole moment remains invariant. However, such a process requires
a large input of energy to create the new dipole. To maintain constant motion via this
mechanism, a fracton require a constant input of energy in order to create new dipoles at
every step. We therefore conclude that the charges of this symmetric tensor gauge theory
are the prototypical example of fracton excitations.

This tensor gauge theory has other important features, such as a full set of tensor Maxwell
equations. We will also see later how this gauge theory draws unexpected connections be-
tween fractons and topics such as elasticity and gravity. For now, however, we conclude this
overview of tensor gauge theories by briefly mentioning a second type of theory with slightly
different properties. In addition to the “scalar charge” tensor gauge theory we have been dis-
cussing, it is also possible to write down a “vector charge” tensor gauge theory governed by
a different type of gauge transformation, A;; — A;; + 0,0+ 0,0y, along with a corresponding
vector-flavored Gauss’s law:

EY = p (8)
As in the scalar charge theory, these vector charges will have restricted mobility due to an
unusual set of conservation laws. This theory exhibits both conservation of vector charge,
Q= [ &z p, and conservation of the angular charge moment, M = [ &z (px ). This set
of conservation laws leads to the restriction that each vector charge can only move along
the direction of its charge vector, while motion in the transverse directions is prohibited. We
therefore refer to the charges of this second type of tensor gauge theory as one-dimensional
particles, or lineons. Through further modifications to the tensor gauge field, e.g. by adding
additional indices or imposing tracelessness conditions, it is possible to get other types of
particles with restricted mobility, such as two-dimensional particles or fractons exhibiting
a conserved quadrupole moment. While the precise nature of the restricted mobility varies

from one theory to another, such restrictions appear to be a generic feature of symmetric
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tensor gauge theories.

B. Advances in Tensor Gauge Theory

Having established the basic physical principles of tensor gauge theories, we now provide
a brief overview of some recent advances in this area of study. The casual reader interested
mainly in a broad introduction to fractons may wish to only skim this subsection on a first

reading.

1. Fracton Field Theories

Throughout this section, we have shown how fractons naturally arise in tensor gauge
theories. In the continuum limit, these gauge fields are governed by a tensor Maxwell theory,
serving as a field theory description for the gauge sector. However, we have so far not
discussed how one can write down a field theory for the actual fractons themselves. To
illustrate how this can be done, we will work with the simplest case of a theory obeying
conservation of charge and dipole moment. We will first show how to write a field theory
consistent with charge and dipole conservation, then show how that theory can be gauged to
yield the scalar charge tensor gauge theory [50]. Similar considerations can then be applied
to other types of fractons and subdimensional particles, leading to different types of tensor
gauge theories.

We start by writing a complex scalar field ® to describe fracton matter, and we assume
our theory is invariant under global phase rotations, ® — ¢’®, corresponding to conserva-
tion of charge. However, we also stipulate that the theory is invariant under linear phase
rotations, & — NP for constant X, corresponding to conservation of dipole moment [50].
To construct a Lagrangian invariant under this transformation, it is useful to first con-
struct covariant operators, transforming only via a phase factor. In contrast to ordinary
field theories, however, this theory does not possess any covariant operators featuring spa-
tial derivatives acting on only a single ® operator. Rather, the lowest order covariant spatial

derivative operator contains two factors of ®, taking the form:

00,0, — 0,90, (9)
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which can be checked to transform covariantly. Using the covariant operators, we can then

write down a lowest order Lagrangian for this theory as:

which takes a characteristically non-Gaussian form. (Such a non-Gaussian field theory was
also encountered earlier in a field-theoretic treatment of the X-cube model [51].) Very little
is currently known about the properties of this field theory. Can one explicitly calculate the
correlators of this model, perhaps via a perturbative diagrammatic method? Can the dipole
dispersion be directly extracted from the Lagrangian? Is there some useful renormalization
group scheme which can be applied to this theory? These all remain interesting open ques-
tions. At present, the one thing which is known about this theory is how to gauge it. Let
us now stipulate that our theory must be invariant under phase rotations with arbitrary
spacetime dependence, ® — ¢"*@H®. Under such a transformation, our previously covari-
ant operator transforms as ©9,0;® — 9,99;® — **[09;0;P — 9;,00;P + (i9;0;a)P?]. We
can then construct a gauge-covariant derivative operator by introducing a gauge field A;;

transforming as A;; — A;; + 0;0;a, which enters the derivative operator as:
09;0;® — 9;00;® — i A;; P (11)

We see that the gauge tranformation of the tensor gauge field is precisely that of the scalar
charge theory, and indeed this gauge-covariant derivative can be used to write down a field
theory describing both the matter and gauge sectors of the scalar charge theory.

A natural generalization of this scalar chage theory is developed in Ref. [52] with a class
of generalized U(1) gauge theories whose charge excitations exhibit fractal structure akin to
type-II fracton models [2]. We note that there have also been many other recent developments
regarding fractons and field theories, and we refer the interested reader to the literature for

details [33], (53-59].

2. Generalized U(1) Symmetry and the Multipole Algebra

Motivated by the aforementioned fracton gauge principle perspective [50], a generalized
fracton theory can be acquired by gauging a charged matter field with generalized U(1)

symmetry and conserved multipole moment. This approach can be systematically tackled in
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terms of the notion of a multipole algebra which is a natural generalization of the symmetry
algebras generated by the polynomial shift symmetries in Ref. [60].

In Ref. [61], the author demonstrated that upon gauging the generalized U(1) symmetry
one finds the symmetric tensor gauge theories, as well as the generalized gauge theories
discussed recently in the literature [52]. The outcome of the gauging procedure depends on
the choice of the multipole algebra. Such generalized U(1) symmetries with conserved mul-
tipole moment cannot be regarded as “internal” because they do not commute with spatial
translations and rotations. Upon a unique gauging procedure with proper UV regularization
depending on the choice of the multipole algebra, one eventually reaches symmetric tensor
gauge theories akin to the recently discussed generalized gauge theories.

On a parallel and alternative search, one can show that fractonic matter naturally ap-
pears in vector gauge theories enriched by global U(1) and translational symmetries, via the
mechanism of ‘anyonic spin-orbital’ coupling [62]. Namely, if the global symmetry quantum
number is changed upon the translation of a quasiparticle, then moving the charged par-
ticles out of the submanifold is clearly forbidden when the global symmetry is present. If
the global symmetry is then gauged, the restricted particles become fractons as moving a
fracton breaks gauge invariance. More generally, the relation between symmetry restrictions
on the mobility of quasiparticles and symmetry-enriched topological orders relies on the
fact that the actions of translation and global symmetries on quasiparticle excitations do
not commute. This line of thinking opens a new page to connect fracton phases of matter
and spatial symmetry enriched topological ordered phases and identifies new specimens of

fractonic matter in these settings.

3. Tensor Chern-Simons Theories

Given the power of Chern-Simons gauge theory to study topological orders in 2 dimen-
sions, it is natural to ask whether there is a class of fractonic Chern-Simons theories which
capture fractonic behavior. Clearly, such field theories must be both similar to, and quali-
tatively different from, TQFTs—in which the details of the underlying lattice (or regular-
ization) are unimportant, and universal topological physics emerges. A number of possible
approaches to this challenge have been discussed in the literature thus far from the spirit

of BF-type theory [5, 28H30] 42| 51], 52, 61, [63H66]. These BF theories, with proper lattice
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regularization, can be viewed as the U(1) limit of all CSS quantum stabilizer codes.

However, other non-CSS stabilizer codes, such as the Chamon code [1I], do not admit
such a BF description. In Ref. [67], the authors proposed a lattice version of the fractonic
Chern-Simons theory inspired by the spirit of flux attachment. By imposing a constraint
binding charge to the flux of a higher-rank gauge field, the fractonic gauge flux is decorated
with a gauge charge with similar subdimensional mobility. Such a fractonic flux attachment
procedure introduces a non-commutative gauge structure and thus creates a deconfined U (1)
fracton theory. Although such fractonic Chern-Simons theories are clearly not TQFTs, they
share several important features of the chiral 2+1D Chern-Simons theories. First, the frac-
tonic Chern-Simons term creates self-statistical interactions between charged excitations.
Second, the fractonic Chern-Simons action is gauge invariant only up to a boundary term,
implying that their boundaries host gapless surface states that cannot be realized in 2 dimen-
sions with subsystem symmetry. These are closely related to the surface states of subsystem-
symmetry protected models described in Ref. [66]. We also note that chiral two-dimensional
tensor Chern-Simons theories can occur at the boundary of certain three-dimensional fracton
phases [64].

The starting point to construct a tensor Chern-Simons term is to seek a symmetry struc-
ture with 2 spatial gauge fields A; and A,, which will allow us to obtain a fully gapped

Chern-Simons theory with a single constraint. Consider gauge transformations of the form
Al — Al + D« s A2 — AQ + Do (12)

where D; and D, are differential operators, whose form we will leave unspecified for now.

Since we only have 2 gauge fields, the magnetic field defined has a single componentf]
B = DyA; — DA, . (13)
The gauge-invariant electric fields have the form
E; = 0,A; — D;Ag (14)
where we have introduced the usual time component of the gauge field, which transforms as

AO — Ao + atOé (15)

2 Note that the magnetic field is always gauge invariant; however it is not necessarily the most relevant
gauge invariant magnetic field that we can write down. If Dy and Dy share a common factor 9y, the

operator 0, !B is also gauge invariant.
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under gauge transformations.

The generalized Chern-Simons action has the form,
s
ECS - E (A1E2 - A2E1 - (—1)nAOB) (16)

where 7 = 1 if the D; contain only even numbers of derivatives, and n = 2 if they contain
only odd numbers of derivatives. Under gauge transformations,

s
4z
- i(DlaﬁtAz + (~1)"9aD1 Ay

5,605 = (DloéEz — DQO&El — (—1)”8,5053)

—(DgaatAl + (—l)natozDgAl)
+D20&D1A0 - DlOéDQAo) (17)

In the absence of boundaries, one may freely integrate by parts, to obtain:
0Lcos:Buk = 0 (18)

The boundary terms in general do not vanish, implying the existence of gapless boundary
modes, whose precise nature depends on the choice of D;.

Irrespective of the choice of D;, the Chern-Simons action has several commonalities
with the standard vector Chern-Simons theory in 2 + 1 dimensions. First, in the absence of
sources the constraint simply sets B = 0. Since there is only one component of the magnetic
field, this one constraint is sufficient to eliminate the possibility of any propagating gauge
degrees of freedom, leading to a gapped theory whose physics is entirely determined by
operators describing pure gauge degrees of freedomﬁ In ordinary Chern-Simons theory these
are the holonomies, or gauge-invariant Wilson lines along non-contractible curves. We will
discuss the analogue of Wilson line operators for specific examples of D; in detail presently;
these have the general form e’/s 4 with the submanifold s chosen to ensure the operator is
gauge invariant.

Second, irrespective of the choice of D;, the gauge fields A; and A, are canonically
conjugate. If both gauge fields are compact, this implies that a generalized Wilson operator

of the form e’/s 4 must be discrete as well as compact. Thus each of the generalized Wilson

3 This only applies to the case where Dy, Dy do not share any common factor. Otherwise, even though the
magnetic flux fluctuation is fixed, there might exist some local operator with lower order exhibiting a

dispersive gapless mode.
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operators can take on only a finite, discrete set of values, which fully specify the states
allowed in the absence of sources. On closed manifolds this can give either a finite or a
countable ground state degeneracy.

Finally, in the presence of matter fields, the Chern-Simons action has the effect of
binding charge to flux. To see this, we add matter fields to our Chern-Simons action in the

standard way, by adding a term
Ltatter = Aop — A (19)
where the currents obey the conservation law:
D;J" = Oip (20)

Depending on the specific form of the differential operator D;, the theory might contain
additional subsystem charge conservation laws and charge multipole conservation [61]. In

the presence of sources the Chern-Simons constraint is

2
B = D2A1 — D1A2 = —’Np (21)

s
which binds the generalized magnetic flux to charge. One might anticipate that a generalized
Aharonov-Bohm effect may endow these charge-flux bound states with fractional statistics.
Indeed, as gauge invariant operators involving A; do not commute with gauge-invariant
operators involving As, we will usually find at least some excitations with nontrivial mutual

statistics.

4. Generalized Witten Effect

In Maxwell theory, the axion term OF - B is a total derivative which has no effect on
the gapless photon, but has two important, closely related consequences: attaching electric
charge to magnetic monopoles (the Witten effect) and leading to a Chern-Simons theory on
the boundary. A similar story[64] holds in the higher rank U(1) gauge theories which admit
generalized axion terms which intertwine higher rank electric field with tensor gauge flux.
Such axion terms have no effect on the gapless gauge mode, but bind together electric and
magnetic charges (both of which are generally subdimensional) in specific combinations, in

a manifestation of the Witten effect. In particular, the axion term could have quantized 6
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value provided time-reversal invariance is imposed. In addition, these axion terms in tensor
U(1) gauge field imply a non-trivial boundary structure with a Chern-Simons-like action in
both chiral and non-chiral settings.

The search for topological 6 terms in fractonic phases of matter can generate a rich
sequence of new fractionalized fracton theories whose intrinsic features still remain to be
unlocked. For example, the fractonic # term also exists in 2D characterizing a topological
quadrupolarization with fractional corner charge. On the more down-to-earth side of things,
it would be highly useful to find concrete lattice models which demonstrate the properties
of these 6 terms explicitly as a complement to the field-theoretic approach. In addition,
more investigation is required regarding how to measure the topological 6 coefficient or
fractonic Witten effect, which will be important for experimental detection of these fracton
phases. The axion electrodynamics in tensor gauge theory suggest various directions and
open questions for future study. An interesting corrolary of the fractonic Witten effect is
that the 6 term in tensor gauge theory can also delineate a topological multipole moment
or quantized dipolar Hall effect which characterize a rich class of higher order topological
phases[68]. The field theory and topological implications of fractonic axion electrodynamics

still remain unclear and thus are worth pursuing further.

ITII. FRACTONS IN SOLVABLE SPIN MODELS

Some of the most important fracton models were discovered in exactly solvable lattice spin
models as quantum error-correcting codes. In this section, we review some of the paradig-
matic examples of solvable spin models exhibiting fracton behavior, such as the X-cube
model and Haah’s code, along with their relationship to tensor gauge theories. We then
give an overview of more recent developments in the area of fracton spin models, such as
various geometric constructions. We conclude this section by discussing progress towards

constructing more realistic spin models for fractons, such as a proposed fracton spin ice.

A. Prototypical Examples

Two of the most representative fracton spin models are the X-cube model and Haah’s

code, which are the prototypical examples of type-I and type-II fracton models, respectively.
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We review the basic features of each of these models in turn. Some of the basic properties

of the X-cube model and Haah’s code are summarized in Table [ for comparison.

X-cube Model Haah’s Code
log(GSD) 2L, +2L,+2L, -3 fluctuating, upper bounded by 4L
Fractional excitations fractons, lineons, planons fractons only
Logical operators string and membrane no string, all fractal shaped
Sub-region entanglement entropy|Area law + linear correction| Area law + linear correction

TABLE I. Basic properties of the X-cube model and Haah’s code. ‘GSD’ stands for ground state
degeneracy. The system size for the X-cube model is taken to be L, x L, x L, and for Haah’s code

L x L x L.

1. Type-I Fracton Model: X-cube

The X-cube model, as first discussed in Ref. [4], is defined on a cubic lattice with qubit
degrees of freedom on the edges. The Hamiltonian

H=- (Al+Ay+A)-> B. (22)

v
contains two types of terms (Fig.: cube terms B, which are products of the twelve Pauli
X operators around a cube ¢, and cross terms A which are products of the four Pauli Z
operators at a vertex v in the plane normal to the u-direction where u = x,y, or z. These
terms mutually commute and their energies can be minimized simultaneously.

On a L, x L, x L, cubic lattice with periodic boundary conditions, the log of the ground

state degeneracy (GSD) scales linearly with the size of the system in all three directions:
log, GSD = 2L, + 2L, + 2L, — 3. (23)

Fractional excitations can be made by applying string and membrane operators. A prod-
uct of Z operators over links on a rectangular membrane geometry on the dual lattice
anti-commutes with the cube Hamiltonian terms at its corners. See Fig.[3|a). Applying such
a membrane operator hence generates four cube excitations at a time and individually the
cube excitations cannot move, forming a ‘fracton’ excitation. A pair of such fracton exci-

tations at adjacent corners may be viewed as a single dipole-like object which is itself a
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FIG. 2. (a) A cube operator of the X-cube model is a product of X operators of 12 spins on the
edges of a cube; (b) A cross operator is a product of Z operators of 4 coplanar spins touching a

vertex.

a) b)

FIG. 3. Visualization of particle creation operators. a) The red links correspond to a membrane
geometry on the dual lattice. The product of Z operators over these edges excites four fractons (the
darkened cube operators at the corners); b) The product of X operators over the links comprising

the straight open blue string creates two lineon excitations at its endpoints (black dots).

dimension-2 particle and is mobile in the plane normal to the edges connecting the two
corners.

A product of X operators over links along a straight line anti-commutes with vertex
Hamiltonian terms at the endpoints (Fig.[3| b)). The vertex excitations are hence created
in pairs and can be separated using string operators. But their motion is restricted to one
direction only, because the X string operator in different directions anti-commute with a
different set of vertex terms, hence creating different excitations. They are called the ‘lineon’

or dimension-1 particles. A pair of lineons separated in the x, y or z direction is a dimension-2
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particle and is mobile in the plane normal to the edges connecting the two lineons.

In the ground state, the entanglement entropy of a sub-region also contains a linear term.
That is, if we take out a sub-region, say of size R x R x R, and calculate its entanglement
entropy, we would find an area law term which scales as R? and a sub-leading linear term
which scales as R [69H72]. (One must take care to avoid any potential spurious contributions

to the entanglement entropy, however [73].)

2. Type-1I Fracton Model: Haah’s Code

1z 71 IX 7

Z1 X1

ZZ I1

, 1z », IX

1z ZI IX X1

FIG. 4. The Hamiltonian of Haah’s code is a sum of two types of cube terms. Recall that there are
two qubits per vertex, so ZZ represents a Pauli Z acting on each of the two qubits, for example.

(Figure adapted from Ref. [2].)

We now turn to the paradigmatic example of a type-II fracton model, constructed by
Haah in Ref. [2], which has since come to be known as Haah’s code. This model is defined
on a cubic lattice, with two qubits on every vertex of the lattice. The Hamiltonian can be

written as the sum of two commuting types of cube terms:

H=-) A-) B (24)

where A, is a particular product of Z operators touching a cube and B, is a similar product
of X operators, as defined pictorially in Figure {4} Unlike the X-cube model, Haah’s code
possesses a self-duality between the two types of cube terms, so it is sufficient to study
either sector of the theory to obtain a full understanding of its excitation spectrum. In

either sector, application of a single spin operator creates four quasiparticles at the corners
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of a tetrahedron. Repeated application of spin operators in a specific pattern can separate
these particles to the four corners of a fractal operator, as indicated schematically in Figure
bl However, there is no string operator which can move these particles individually around
the system, so these are immobile fractons. It can further be proved that there are no string
logical operators in the theory whatsoever [2], indicating that all nontrivial bound states of

the fractons are also immobile, making this a type-II fracton model.

FIG. 5. In Haah’s code, fractons are created at the corners of fractal operators.

Like the X-cube model, Haah’s code also exhibits a subextensive ground state degeneracy,
albeit with a more complicated dependence on system size. For a 3-torus of size L x L x L, the
ground state degeneracy is upper-bounded by log, GSD < 4L. However, at certain special
system sizes, the degeneracy can be far less [2]. In contrast, the entanglement entropy of
Haah’s code has a much simpler dependence on subsystem size. For a subsystem of linear

size R, the entanglement entropy obeys an area law with a linear subleading correction, just

as for the X-cube model [70].

B. Higgsing

The spin fracton models are very different from the U(1) tensor gauge theories. They are
gapped and formulated as lattice models rather than field theories. On the other hand, they
share the crucial property of hosting fractional excitations with restricted motion. A natural
question to ask is whether they are related in some ways. For example, could the spin model
be a ‘Higgsed’ version of the U(1) tensor gauge theory such that only a discrete subgroup

of U(1) is preserved? It was found that, this is indeed the case sometimes, but whether or
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not a U(1) tensor gauge theory gives rise to a fracton spin model upon Higgsing depends
sensitively on the form of the conservation law of the U(1) theory [28, 29]. For example, the
scalar charge theory becomes non-fractonic once Higgsed while a modified ‘hollow’ tensor
gauge theory remains fractonic even upon Higgsing. For the following discussion, we take,
WLOG, the Higgsed gauge group to be Z, and the gauge charges live on the cubic lattice
sites r = (z,y, z), with lattice spacing a = 1.

The result of Higgsing can be directly studied through its effect on the conservation laws:
charge conservation, dipole conservation, etc. Suppose we start with a U(1) gauge theory
with charge conservation. That is the total charge () in a region cannot be changed by acting
with local operators within that region. Upon Higgsing the theory to Z,, charge-2 objects
can appear from and be absorbed into the condensate. Therefore @) is now well-defined only

modulo 2, but the conservation of Z, charge puts no constraints on the mobility of charges.

A (a) A (b)

m
@
—
*
=

A\ 4
A\ 4

FIG. 6. Local U(1) charge configuration with zero total charge and zero total dipole (a) reduces to

charge pair creation / hopping; (b) when the U(1) gauge theory is Higgsed to Zs.

What about the conservation of dipole moment? In the U(1) theory, the dipole moment
d of some region V is given by d = ) _, rn,, and is conserved in the sense that it cannot
be changed locally. Higgsing to Zs simply means that d mod N is conserved, i.e. each
component of d is separately conserved modulo V. As we set the lattice constant to one;
then charge 4+2 objects appearing from the condensate can change each component of d by
integer multiples of 2.

To understand the effects of the Higgsed dipole conservation law, it is useful to consider
locally creatable charge configurations. With both charge conservation and dipole conser-
vation, the configuration shown in Fig.[6] (a) can be locally created in a U(1) theory. Upon
Higgsing, it reduces to pair creation / hopping of Zs charges. Therefore, upon Higgsing,
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the dipole conservation law no longer localizes the gauge charges. The gauge charges can
hop in any direction, albeit at distance two at a time. Similar conclusions can be drawn
for general Zy gauge theories and for general lattice. Therefore, the scalar charge theory
become non-fractonic upon Higgsing.

To retain the fractonic nature of the U(1) gauge theory upon Higgsing, stronger conser-
vation laws are needed, for example planar conservation laws. If the charge on every lattice
plane is separately conserved, then clearly single charges will not be able to move. This is
the case for the ‘hollow” U(1) gauge field with gauge components E,,, E, ., E., but not the

diagonal ones. The Gauss’s law is given by
A A B + AN B, + AN B, = py, (25)

which implies that the total charge on every x, y, z planes are conserved. Upon Higgsing, it

becomes the X-cube model discussed in the previous section.

C. Geometric Aspects

Unlike spin models with topological order, such as Toric Code, the fracton spin models
seem to care not just about the topology of the underlying manifold, but also the geometry
of the underlying lattice. For example, in Ref.51 it was noticed that spatial curvature can
induce a stable ground state degeneracy for the X-cube model. In the following sections,
we review the coupled layer approach and the cage net and string-membrane net approach
which not only help to elucidate the geometric nature of these models, but also lead to the

construction of new models.

1. Coupled Layer Constructions

In Ref.1300 and 31], it was noticed that the X-cube model can be obtained by taking the
2D Toric code model (Fig.[7] (a)), make three intersecting stacks in zy, yz and zz planes
respectively, and couple them along intersection lines where the edges overlap with a Z ®
Z coupling term (Fig.[7] (b)). When the coupling terms become large, the coupled model
becomes effectively the X-cube model.

It was found that the coupling process induces a ‘particle-loop’ condensation, driving the

phase transition from a stack of 2D topological order to a 3D fracton order. In particular,

23



r/

0= =0
|

77
. N / )&
@ |

(a) (b)

AN RN

FIG. 7. The coupled layer construction: (a) take 2D Toric Code model; (b) make three intersecting
stacks of them and couple strongly along the intersection line; (c¢) the coupling generates flux

particle loops which are condensed in the strongly coupled limit.

the Z x Z term creates one pair of flux particle in each of the intersecting planes. Taken
together, the four flux particles connect into a small loop. When the coupling term becomes
large, such small loops condense. The ground state wave function becomes a superposition
of ‘particle-loops’ of all shapes and sizes.

The change in quasi-particle type follows accordingly. As the flux particle loops now form
a condensate, individual flux particles are no longer excitations as long as they form a loop.
Instead, the end points of flux particle loops become excitations. As the flux particles always
appear in pairs, the end of particle loops always appear in a set of four and individually they
cannot move, hence becoming the fractons. On the other hand, individual charge particles of
the 2D topological order get confined because of its nontrivial statistics with the condensate.
A bound state of charge particles on intersecting planes remain deconfined, but can only
move along the intersection line of the two planes, hence becoming the lineon.

We note that recent progress has also been reported on coupled-layer constructions for

type-1I fracton models [74].

2. Cage-Net Models

The cage-net construction [32] generalizes the coupled layer construction discussed above

from stacks of Toric code to stacks of other string-net states. To accommodate more interest-
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ing string-net states, the square lattice in each layer is replaced by a tri-valent modification of
it (Fig.[8|(a)). When the intersecting stacks are put together, a similar coupling term is added
to condense particle loops. As a result, some 2D fractional excitations further fractionalize

into fractons while others (in intersecting perpendicular planes) bind into lineons.

AN

/

N

/ /
(a) P _~(b)

(c)

FIG. 8. The cage-net models: (a) take 2D string-net states on a decorated (trivalent) square lattice;
(b) make three intersecting stacks of them and couple strongly along the intersection line; (c) the
resulting wave-function is a superposition of cage-nets configurations, the simplest of which is

shown here.

The name ‘cage-net’ generalizes the idea of ‘string-net’[75] for 2D topological orders. In
2D, if the DOF in a certain basis are interpreted as representing different string types, then
a ‘string-net’ wave function is a superposition of all (branching) loop configurations on a 2D
graph satisfying a set of conditions. ‘String-net’ is a systematic way for constructing exactly
solvable lattice models for 2D non-chiral topological orders. In ‘cage-net’, as the strings on
perpendicular planes are bound together by the coupling term, they form ‘cage’-like shapes,
as shown in Fig. The ground state wave function is a superposition of all (branching) cage

configurations satisfying a set of conditions and host fracton order.

One of the most interesting ‘cage-net’” models is obtained by stacking 2D doubled Ising
models and couple them by binding the Ising strings on intersecting planes. The resulting
model has fracton and lineon excitations, and the interesting feature is that the lineon is
non-abelian. The non-abelian-ness of this model is intrinsically 3D, as it was shown in Ref.[32

it cannot come from nonabelian 2D models inserted into an otherwise abelian fracton model.
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3. String-Membrane-Net Construction

In Ref.33) a string-membrane-net picture was proposed and was shown to construct
models which are equivalent to most of the known foliated fracton models (discussed in the
next section) up to trivial degrees of freedom and local unitary transformations.

The idea is to have two sets of degrees of freedom, one on the plaquettes of a 3D lattice
(e.g. a cubic lattice) and the other on the edges of 2D lattices on sets of 2D layers (e.g. square
lattice on xy, yz, and zx planes). The 3D lattice and 2D lattices are arranged such that the
edges of the 3D lattice overlaps with edges on the 2D lattices on intersecting planes. The
degrees of freedom on the 2D layers form string-nets, as prescribed in Ref.[75. The degrees of
freedom on the 3D lattice form membranes. Moreover, they are coupled such that the edges
of the 3D membrane is attached to 2D strings. The ground state wave-function is then a

superposition of all such ‘string-membrane-net’ configurations, as shown in Fig.[9]

FIG. 9. Ground state wave-function of string-membrane-net models as a superposition of all allow-
able string-membrane-net configurations. Purple plaquettes belong to the membranes and the red,
blue, green edges belong to the string-nets in the xy, yz, zx planes respectively. The constraint is

that the edge of the membrane has to be attached to strings.

A local Hamiltonian can be written down to have this wave-function as the gapped ground
state. It was shown that by changing the number of sets of 2D layers and the type of string-net
or the type of membranes, it is possible to construct models which are equivalent to a variety
of known fracton models, including the X-cube model and its Zy generalization, stacks of
Toric Code, and the lineon model discussed in Ref.36l A particularly nice feature of the
string-membrane-net construction is that it readily gives rise to a field theory description of
the constructed models. In particular, a very important feature of such models — the foliation

structure discussed in more detail in Section [IV| - shows up nicely in this construction and
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allows natural field theory representation.

D. Towards Realistic Spin Models

Despite the exact-solvability of fracton models in quantum stabilizer codes, most of these
models require complicated spin-cluster interactions, which seems superficial and unreach-
able in real materials or cold atom system. To conquer the complexity of the aforementioned
fracton codes, the authors in Ref. [63] introduced and proposed a series of quantum spin
models in frustrated magnetism which only involves nearest-neighbor two-spin interactions.
Nevertheless, these frustrated spin systems, despite lack of exact solvability, still exhibits a
stable fracton phase.

In Ref. [76], the authors proposed a systematic route to construct realistic spin models
hosting fracton phases in terms of strongly coupled spin chains. Such coupled spin chain
constructions merely require stacking of 1d spin model with spin bilinear inter-chain in-
teractions, which is more amenable to a potential experimental implementation. Following
this spirit, Slagle and Kim [63] proposed a Kitaev type three-dimensional hyper honeycomb
lattice with frustrated spin bilinear coupling in different directional bonds. Amazingly, this
model, in different limits, displays either 3D fracton order or supports a Z, spin liquid phase.
Thanks to the rapid development of the Kitaev materials discovered in correlated spin or-
bital coupled system including NasIrOs, a-LisIrOs, a-RuCl3 and HsLilroOg, we expect
there may exist a material candidate for such a fracton phase. There have also been recent
simplifications to the Slagle-Kim construction which are promising for material realization
[77]. Additionally, synthetic quantum matter, such as AMO experiments, provide another
possible route to the experimental realization of fracton phases.

Apart from the gapped fracton topological ordered state represented by stabilizer codes,
there has also been a parallel search on gapless fracton phases whose low energy effec-
tive theory is characterized by tensor gauge theories. Such theories are generalizations of
emergent electrodynamics with a close connection to emergent gravity and holography. In
particular, Ref. [23] proposed a traceless rank-2 symmetric gauge theory from interacting
quantum rotors in 3D with soft graviton excitations. More recently, motivated by Yb-based
materials with a quantum spin ice-like structure, Ref. [78] proposed a materially—relevant

microscopic model which can potentially realize a traceless rank-2 symmetric gauge the-
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ory. Such Yb-based materials can be described by a spin-1/2 Hamiltonian with Heisenberg
antiferromagnetic interactions on a breathing pyrochlore lattice with weak Dzyaloshinskii-
Moriya (DM) interactions. In addition, such a fracton spin liquid state exhibits 4—fold pinch
point singularities in certain spin-spin correlation functions (Figure. [78] [79] which can

be verified in polarized neutron scattering experiments.

(c)

(a)

FIG. 10. Structure of pinch point singularities from Ref. [78] by measuring the correlation function

(Ery(q)Ezy(—q)).

Finally, we note that there have been numerous other constructions of fracton spin models

which we have not had space to discuss here [80-82].

IV. FOLIATION

In this section, we describe a set of powerful theoretical tools for characterizing different
types of fracton models. In particular, we focus on the foliation framework, which provides
important insights into understanding a variety of fracton phases. We conclude with a dis-

cussion of more recent developments in characterizing fracton systems.

A. Basic Idea

Among the type-I fracton models, it has been shown by Shirley, Slagle, and Chen that
many of them have a hidden ‘foliation’ structure and are said to have ‘foliated fracton order’
(FFO) [34] B5]. That is, starting from a model with a larger system size, we can apply
a finite depth local unitary transformation and map the model to a smaller system size
together with decoupled layers of 2D gapped states, as illustrated in Fig.[I1] As there should

be no fundamental change in the order of the system simply due to the change in system size,
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we should think of the 2D gapped states as free resources in the study of these 3D fracton
models even though the 2D gapped states can have highly nontrivial topological order of
their own. Correspondingly, we define two foliated fracton models to have the same ‘foliated
fracton order’ if they can be related through a finite depth local unitary transformation upon
the addition of decoupled stacks of 2D layers of gapped states, as shown in Fig.[12] According
to this definition, a stack of 2D topological states has trivial foliated fracton order because
it is equivalent to having nothing at all. A nontrivial foliated fracton model has a lot of 2D
layers hidden inside of it, yet it is not simply equivalent to a stack. (See also Ref. [83] for
a generalized notion of equivalence of fracton phases based on a bifurcating entanglement

renormalization scheme.)

Smooth

Co!nec’lon

Hypo(Ly, Ly, L Hywo(Lg, Ly, L

FIG. 11. A (type I) fracton model is said to have Foliated Fracton Order (FFO) if models with
different system sizes can be smoothly deformed into each other after attaching decoupled 2D
layers with topological order (TO). Here the smooth connection can be realized with finite depth

quantum circuit on the ground state.
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FIG. 12. Two foliated fracton models are said to have the same foliated fracton order if they can

+

be smoothly deformed into each other after attaching decoupled 2D layers with topological order.

Here the smooth connection can be realized with finite depth quantum circuit on the ground state.

This idea of ‘foliated fracton order’ generalizes the notion of topological order, which
captures a wide range of nontrivial phenomena in gapped systems in 2D and higher. A

model with topological order is ‘liquid’-like, in the sense that system size can grow by adding
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decoupled product states and smoothly deforming the model with a finite depth quantum
circuit[84]. A model is said to have trivial topological order if it is equivalent to a product
state under such deformation and two topological orders are said to be equivalent if they
can be deformed into each other after adding product states.

While definitions are accurate, they are not easy to use. For topological order, a set of
universal properties were found, such as ground state degeneracy, topological entanglement
entropy, fractional excitation and statistics, which helped to identify and compare topological
order in different models. In Section we are going to discuss a similar set of universal

properties for FFO and show how they can be used to compare models.

B. General Three-Dimensional Manifolds

One thing the foliation structure allows us to do is to write down exactly solvable models
for certain fracton models on different three dimensional manifolds. This is a natural thing to
do because for topological models, a great deal can be learned by putting models on different
manifolds and see how their ground state degeneracy changes with the change in topology.
In Ref.34 this was done for the X-cube model, from which we see that FFO models care
not only about the topology of the manifold but also about the foliation structure. On the
other hand, it is hard to use the ground state degeneracy as a universal characterization of
the order, for reasons explained below.

In particular, we construct a lattice by embedding a large number of transversely in-
tersecting surfaces, referred to as leaves, into the 3-manifold M. Vertices of the resulting
lattice lie at triple intersection points of leaves, while edges lie along the intersections of
pairs of leaves; a qubit is placed on each edge. We assume that the location of the leaves
are generic enough such that no three leaves intersect along the same line. The cubic lattice
on the 3-torus can be viewed in this way as three orthogonal stacks of toroidal leaves—the
xy, yz, and xz planes. Unlike the cubic lattice, the general construction may result in some
number of non-cubical cells. Crucially, however, every vertex in this type of lattice is locally
isomorphic to a cubic lattice vertex. This fact allows the X-cube Hamiltonian to be defined

as per Eq. , which we copy below

H=-) (A+AU+A) - B (26)

v Cc
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Similar to the cubic lattice, the three cross operators A# are products of Z operators over
the four edges emanating from v in the leaf labeled by p. The B, operator is in general a
product of X operators over all edges of the 3-cell c. The lattice geometry ensures that the
terms in the Hamiltonian are mutually commuting.

The structure of the excitation types and fusion properties carries over from the cubic
lattice version of the X-cube model. The notion of dimension-1 and dimension-2 particles is
revised in a natural way. In the general lattice construction, dimension-1 particles created
at the ends of open string operators are freely mobile along the intersection lines of pairs of
surfaces. Furthermore, dimension-2 particles, such as fracton dipoles, are free to move along
leaves that are orthogonal to the direction of the dipole moment.

The ground state degeneracy of the model was found to depend not only on the topology of
the manifold, but also on the foliation structure (their number, topology, etc). For example,
a spherical leaf does not contribute to ground state degeneracy while a torus leaf contributes
an additive part of 2 to the logarithm of ground state degeneracy. However, the ground state
degeneracy may not be stable against local perturbations because, unlike the cubic lattice in
3-torus where all non-contractible loops have infinite size, in other manifolds or with other
foliations it may happen that non-contractible loops have finite length. Under perturbation,
degeneracy coming from such loops will be lifted. Because of this, ground state degeneracy

cannot be used as a good quantum number to describe foliated fracton order.

C. Universal Properties and Relation Between Models

The definition of FFO given in Section applies not only to exactly solvable models,
but to generic non-exactly solvable models as well. Based on this definition, one can find uni-
versal properties, including entanglement measures and properties of fractional excitations,
of the foliated fracton models that remain invariant under both finite depth quantum circuit
and the addition of 2D gapped layers. Because there are 2D layers intrinsically hidden in
the foliated fracton models, this also means that we need to define universal properties in a
way that mods out the contribution coming from 2D layers.

For example, Ref.[35 proposed an entanglement measure which cancels both the area law
and the sub-leading linear part of the entanglement entropy of a sub-region in a gapped

3D model and retains a constant term. The area law term is generic in a gapped system
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and depends on details of the model, hence non-universal. The sub-leading area law term
is indicative of the foliation structure hidden in the model — if we have a stack of decouple
2D topological layers, entanglement entropy of a sub-region would have a sub-leading linear
term coming from the constant topological entanglement entropy[85], 86] of each layer. The
constant term after canceling both is hence a characterization of the underlying FFO. To
achieve this, we take a ‘wire-frame’ sub-region whose shape is determined by the foliation
structure of the model. For example, for the X-cube mode with foliation layers in zy, yz,
and zz directions, a cubic wire-frame is used with A, B, C sub-regions (Fig.. The

entanglement measure is
Srro = Sa+ Sp+ Sc — Sap — Spc — Sac + Sasc (27)

This can be applied to various fracton models for comparison. For the X-cube model, Spro =

1.

(b)

FIG. 13. Universal properties of foliated fracton order: (a) Wire-frame structure used for calculating
entanglement measure as in Eq. ; (b) Fractional statistics is obtained by applying interferomet-
ric operators around a local excitation in region R (shape of the interferometric operator may differ

from that shown in the figure).

Besides entanglement entropy, we can also look at fractional excitations. Fractional ex-
citations in topological systems were sorted according to super-selection sectors — two exci-
tations are considered equivalent if they can change into each other by adding / removing
non-fractional local excitations. But this is too coarse for FFO models, as FFO models
host an infinite number of super-selection sectors. Instead, we define the notion of ‘quo-

tient super-selection setors’ by modding out not only non-fractional excitations but also
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dimension-2 fractional excitations which come from foliation layers. The number of sectors
is then greatly reduced. For example the X-cube model has one fracton sector and one lineon
sector in each direction. We further discussed fractional statistics which are invariant to the
addition of 2D layers by applying specially designed interferometric operators around a local
excitation (Fig. so that the resulting phase factor is independent of the attachment
of dimension-2 particles to the excitation.

With these universal properties defined, we can now compare different models and see if
they may potentially have the same foliated fracton order. In particular, we find that the
X-cube model, the semionic X-cube model[30] and the Majorana checkerboard model[3] all
have the same foliated order while the checkerboard model[4] is equivalent to two copies of
the X-cube model. The equivalence in the above universal properties is a necessary condition
for equivalence of FFO but may not be sufficient. To rigorously establish the equivalence,
we found the 2D layers that need to be inserted and explicit local unitary transformations

to map one model to another.

D. Twisted Phases

With many of the known type I models found to be in the same FFO phase as the X-cube,
it is natural to ask whether there exists models with a different FFO order. The answer is yes,
as shown in Ref.[39 where ‘twisted’ foliated fracton models were constructed. The models
are called ‘twisted’ in the same sense that the 2D double-semion model is called a twisted
Z5 gauge theory while the 2D Toric code is an un-twisted Zs gauge theory. The X-cube
model can be interpreted as the gauge theory of trivial paramagnet with subsystem planar
symmetries[4], while the twisted models are gauge theories of non-trivial paramagnets with
subsystem planar symmetries. Similarly, Haah’s code is closely associated with a gauged
fractal symmetry [87].

One of the twisted FFO models is constructed using the coupled layer construction dis-
cussed in Section [[IT C I with layers of 2D twisted Z; x Z5 gauge theory models. The coupling
binds the corresponding Z; flux strings from intersecting plane together; the resulting model
is similar to the X-cube model in that it is has foliation layers in zy, yz, zx directions and
there are fracton, lineon (dimension-1), and dimension-2 particles. On the other hand, it was

shown to host a different foliated fracton order.
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The twisted model actually behaves in the same way in terms of the entanglement measure
and quotient super-selection sector defined in Section m (indicating that these indeed do
not form a complete list of universal properties). Their difference shows up in the dimension-
2 particles. To see the difference, we compactify the model from 3D to 2D (by making the
z direction finite) so that only dimension-2 particles in the zy plane remain as fractional
excitations. By studying their fusion and braiding statistics and compare with what we get
from the X-cube model with the same process, we can show that the two sets of dimension-2
particles cannot be mapped into each other by adding 2D layers and local unitary transfor-
mation, hence establishing the difference in FFO for the original non-compactified models.
See also Ref. [88] for a discussion of calculating invariants for fracton phases based on com-

pactification.

E. New Approaches to Characterizing Fracton Systems

As we have established, foliation is a powerful tool for characterizing fracton phases,
providing many important insights. However, the notion that two fracton phases are equiva-
lent up to the addition of two-dimensional topological phases is slightly more coarse-grained
than the traditional notion of phases of matter, allowing for the possibility that two dis-
tinct fracton phases may look identical within the foliation framework. It is therefore useful
to consider other characterizations which capture the more detailed distinctions between
fracton phases. One promising idea along these lines is to characterize fracton phases in
terms of their quasiparticle context, along with their associated fusion theory and statisti-
cal processes, in direct analogue to the data characterizing more conventional topological
phases.

In Reference [40], Pai and Hermele constructed a fusion theory capable of describing the
quasiparticle content of fracton phases, along with various examples of nontrivial statistical
processes. The key idea in this fusion theory is to consider the action of translation on the
superselection sectors of the theory, which encodes the mobility of quasiparticles. However,
the number of superselection sectors in a fracton theory is infinite, so one must find some
organizing principle for these sectors in order to yield a useful fusion theory. The necessary
structure is provided by the conservation laws of the theory, which are in direct correspon-

dence with superselection sectors and can be regarded as an additive group. For example,
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the X-cube model is characterized by conservation of charge (mod 2) on every plane normal
to a cardinal direction. There is then an injective mapping 7 : S — P from the group of
superselection sectors S into the group of plane charges P. (Note, however, that the mapping
is not surjective since not all combinations of plane charges can be consistently realized.)

Similar considerations hold for other types of fracton theories.

Armed with this description of S in terms of the conservation laws, we now consider the
action of translations on the superselection sectors. Specifically, we consider the action of a
discrete lattice translation, t, € T = Z3, where t, is a translation by lattice vector a. We
can construct a mapping 7' x S — S which serves as a group action of 7" on 5, satisfying
various physical assumptions. For example, we can stipulate that t,(s; + s2) = t451 + taS2,
reflecting the fact that it does not matter whether we fuse two particles then translate
them, or translate them first and then fuse them. Furthermore, there is a natural action of
Z[T) (the group ring of translations with integer coefficients) on S, which makes S into a
Z|T)-module. (Integer multiplication can be defined via 2t,s = t,s + t,s, and so on.) This
formulation neatly encodes the mobility of quasiparticles as follows. For a given s, one can
identify the subgroup of translations T, C T for which T,s = s. If translations in a particular
direction leave a particle’s superselection sector invariant, then the particle is mobile in that
direction. A particle with T, = T is fully mobile, while a particle with trivial T, is an
immobile fracton. Similarly, T, = Z and T, = Z? indicate lineons and planons, respectively.
It can readily be checked that this formalism correctly captures the immobility of fractons
and two-dimensional nature of dipoles in the X-cube model [40]. Furthermore, this logic can
even be extended to construct fusion theories of gapless fracton models, such as the U(1)

gauge theories.

In addition to fusion, this framework can be used to study various statistical processes
in fracton theories, which in general cannot be associated with braiding between two quasi-
particle types, but rather must be thought of in terms of a more general sequence of local
moves (see also Ref. [89] for a discussion of statistical processes in fracton systems with a
boundary, and Ref. [90] for an approach based on a generalized S-matrix.). For example,
in the X-cube model, there is a nontrivial statistical phase factor associated with the pro-
cess shown in Figure [I4] involving a lineon and multiple fractons. An analysis of similar
statistical processes can be used to demonstrate that the standard X-cube model and its

semionic variant represent two separate phases, a distinction which is not captured by the
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FIG. 14. The X-cube model possesses a nontrivial statistical process of fractons and lineons, in

which a lineon pierces a fracton membrane operator. (Figure taken from Ref [40].)

foliation framework. However, it remains an open question how one can attach a complete

set of statistical data to a given fusion theory to fully characterize a fracton model.

V. REALIZATION IN ELASTICITY THEORY
A. Fracton-Elasticity Duality

While the models we have considered so far have taken the form of complicated spin
models, without an immediate connection to material realization, it is important to note
that fractons have a much more down-to-earth physical realization as the topological lattice
defects of ordinary two-dimensional solids. This connection between fractons and lattice
defects can be seen by studying the conventional elasticity theory of two-dimensional crystals,
which turns out to have an exact duality mapping with the scalar charge fracton tensor gauge
theory (enriched by an extra global symmetry) [9, [46]. Within this duality, disclination
defects play the role of immobile fractons, while dislocation defects act as dipoles exhibiting
one-dimensional motion. Meanwhile, the phonons of the crystal map onto the gapless gauge
modes of the symmetric tensor gauge theoryﬁ The details of this duality are summarized in
Figure [15]

This duality mapping can be derived through a few simple algebraic manipulations, pro-

ceeding as a natural tensor analogue of the more-familiar particle-vortex duality. The starting

4 Importantly, the resulting tensor gauge theory is noncompact, which allows it to maintain stability even

in two spatial dimensions.
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FIG. 15. Summary of the duality between elasticity of crystals and a fracton tensor gauge theory.
Fractons and dipoles map to disclinations and dislocations, respectively, while the gapless gauge

modes map onto acoustic phonons. (Figure taken from Reference [9].)

point is the usual elastic description of a crystal in terms of a displacement vector field w;(z),
characterizing the displacement of atoms away from their equilibrium positions [91H93]. To
lowest order in derivatives, the most general low-energy effective action for a crystal can be
written as:

S = /d%dt% ((&ui)Q — Cijkzuijukg) (28)
where u;; = £ (duj+0;u;) is the symmetric strain tensor. Note that the antisymmetric strain
€ 0;u;, representing the local rotation of the crystal, does not appear to lowest order in the
action. This is a consequence of the underlying spontaneously broken rotational symmetry,
which dictates that there is no energy cost associated with rotating the crystal as a whole.
(This can also be seen more explicitly in an alternative formulation of elasticity theory [46]
[54].) This action describes the behavior of two gapless modes, corresponding to transverse
and longitudinal phonons. Additionally, a crystal hosts disclination defects which serve as a

source for the symmetric strain tensor via:
ek 00pui; = p (29)

where p is the disclination density. Besides these fundamental topological defects, a crys-

tal also hosts stable dipolar bound states of disclinations, which correspond to dislocation
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defects. The stability of these dipolar states is an important clue in making the connection
with fracton physics.

The mapping onto fracton physics can be accomplished through what is essentially a
simple Hubbard-Stratonovich transformation [9]. To this end, we introduce the variables m;
and o;;, corresponding to the lattice momentum and stress tensor, in terms of which we

write the action as:
2 1 -1 _ij ke 1 i o~ (s) ig (= (s)
S = | dxdt §C'ijk£0 oF = 5T =0 (Ostj + w;;") + 70 (s + ;") (30)

(s)

where %; is the smooth piece of ;, while w;” is the piece corresponding to topological defects.
This action is now linear in the smooth piece ;. Integrating out u; and changing variables
to B! = €’r; and EY = €*elloy,, some straightforward algebra [9] yields an action of the
form:

S = / d*xdt E@;QEUE“ - %BiBZ- — po— J7 A (31)
where we have taken advantage of the fact that Newton’s equation of motion, 9,7’ —9;0% = 0,
maps onto a tensor Faraday’s equation, 9,B" + €;;0’ E* = 0, which allows us to write the

fields E% and B' in a potential formulation as:
EY = —9,AY —0'0’¢ B' = ¢;,07 AV (32)

We now see that the dual gauge formulation of elasticity theory is precisely the scalar charge
tensor gauge theory discussed in detail in Section [[I} In particular, Equation 29| defining the
disclination density maps onto a Gauss’s law given by 9;0,EY = p, which implies that
disclinations exhibit restricted mobility via the conservation of dipole moment. We can
therefore immediately conclude that the disclination defects of two-dimensional crystals
behave as fractons.

At this point, we must resolve one important remaining issue with this duality. The scalar
charge tensor gauge theory of Equation |31/ has immobile fracton excitations, which coincides
with the fact that disclination motion serves as a source for dislocations. However, the tensor
gauge theory also hosts dipole excitations which at first glance appear to be fully mobile, in
contrast to the fact that dislocations only move along their Burgers vector. To address this
tension, we must take into account some additional microscopic information about crystals.
Specifically, crystals are made up of atoms, and the number of atoms is exactly conserved

in all processes, corresponding to an underlying U(1) symmetry. Furthermore, dislocation
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“climb” (i.e. motion along the forbidden direction) can occur through emission of vacancy
or interstitial defects, corresponding to misplaced atoms in the crystal. If atom number
were not conserved, then a dislocation would be able to move freely in all directions. This
indicates that the mobility restrictions on dislocations are enforced by the presence of an
extra global U(1) symmetry in a manifestation of “symmetry-protected” fracton behavior
[43, 145]. This global symmetry remains present in the dual gauge theory, enforcing one-
dimensional behavior on the dipoles.

This duality sheds important light on the phase diagram of the fracton tensor gauge by
mapping onto the familiar problem of two-dimensional melting. As a two-dimensional crystal
is heated, it first partially melts into a hexatic phase via the proliferation of dislocation
defects, destroying translational order but maintaining rotational order. As the system is
heated further, the hexatic phase eventually melts into an ordinary isotropic liquid via
proliferation of disclination defects, destroying the rotational order. Via the duality mapping,
we can then conclude that this fracton tensor gauge theory will exhibit two thermal phase
transitions as the temperature is raised, corresponding to the proliferation of dipoles followed
by the proliferation of fractons. In turn, the duality allows the fracton formalism to shed
additional light on the phase diagram of two-dimensional crystals. For example, the duality
has been used to provide a simplified derivation of the Halperin-Nelson-Young theory of
two-dimensional melting [44]. It has also been proposed that the duality may aid in the

classification of interacting topological crystalline insulators [9, 46].

B. Extensions

While the original fracton-elasticity duality applies to simple two-dimensional crystals,
there are various extensions of this duality to other types of crystals, often with interest-
ing implications for fracton physics. We here describe some of the most prominent recent

developments in this area.

1. Three-Dimensional Crystals and Fractonic Lines

Since the topological defects of two-dimensional crystals behave as fractons, it is natural

to ask whether similar physics holds in three dimensions. However, one quickly encounters
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the complication that the topological defects of three-dimensional crystals are not point-
like, but rather take the form of line-like objects. Nevertheless, it has been shown that these
line-like objects exhibit the restricted mobility of fractons, and are therefore referred to as
“fractonic lines” [41]. These mobility restrictions are well-captured by a tensor gauge dual,
which in this case is written in terms of a rank-4 tensor gauge field A;;r, which is symmetric
under (ij) <> (kf) and antisymmetric under i <+ j and k <> ¢. In other words, this theory
combines the properties of symmetric tensor gauge theories (describing point-like fractons)
with those of higher form gauge theories (describing extended objects). A gauge dual effective

action for three-dimensional elasticity theory can then be written as:

ijklpqrs

1~ 3 1 3 3
S = /d%dt [§ —l  puktpgrears _ §B”Bz'j — pij — T Aijre (33)

where Fjjie is the conjugate electric field variable, B;; is a gauge-invariant magnetic field,
pij is the charge density of the line-like defects, and ¢;; and J;; are its potential energy and
current, respectively. The charge density p;; can be defined in terms of a Gauss’s law of the

form:

0,05 BT = pit (34)

which implies that the charge density obeys 9;p” = 0. This Gauss’s law can then be used
to derive various higher moment conservation laws of the theory. Importantly, however,
these are not the usual sort of conservation laws integrated over a three-dimensional region
of space. Rather, these are higher moment conservation laws on the fluz of p“ through
two-dimensional surfaces. In this sense, fractonic lines are governed by the natural higher
moment analogues of higher form symmetries [94] [95]. Since their introduction, various

generalizations of these extended fractonic objects have been proposed [96-98)].

2. Supersolids

As noted earlier, the one-dimensional behavior of dislocations in a crystal is closely tied
to the conservation of particle number. It then becomes an interesting question to think
about the interplay of crystalline order, with its associated fracton behavior, and superfluid
order. Indeed, since superfluids exhibit effective non-conservation of particle number (via
spontaneously broken U(1) symmetry), a system featuring coexisting crystalline and super-

fluid order (i.e. a supersolid) will host fully mobile dislocations [43] [45]. Fracton-elasticity
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duality therefore indicates the presence of two distinct fracton phases at zero temperature,
corresponding to the solid and supersolid phases, which are distinguished by the mobility
of their dipole excitations. Furthermore, the duality can be extended to include both the
crystalline and superfluid sectors, thereby combining fracton-elasticity and particle-vortex
dualities into one master bosonic duality. The resulting gauge dual of a two-dimensional
supersolid is written in terms of both a symmetric tensor gauge field A;; and a vector gauge

field a;, with an action given by [45]:

1 - . . -1 . . .
S = / dPaxdt [é(cijuEmEkZ — 7 'B'Bi+ K ee;—x ') — gBle; — ¢Eib+---| (35)
where the “---” represents all source terms for the gauge fields. The first two terms represent

the crystalline sector, the second two terms represent the superfluid sector, and the last two
terms represent coupling between the two types of order. This coupling leads to a subtle
interplay between crystalline defects and superfluid vortices, with important consequences
for the zero-temperature phase diagram of bosons. For example, any quantum melting tran-
sition of a solid will necessarily induce superfluid order in the resulting liquid phase, whether

or not superfluidity is present in the original solid.

VI. NON-ERGODIC BEHAVIOR IN FRACTON SYSTEMS

Now that we have firmly established several physical realizations of fractons, such as
excitations of spin models and topological crystalline defects, we now move on to discuss
some of the phenomenology of fracton systems. Perhaps most notably, the limited mobility of
fractons places severe restrictions on the ability of a fracton system to reach thermal equilib-
rium. Fracton systems generically exhibit slow, glassy dynamics, such that the time to reach
thermal equilibrium can become arbitrarily long at low temperatures, in a manifestation of
“asymptotic localization” [12]. In certain special cases, particularly in one dimension, frac-
tons can even exhibit truly non-ergodic behavior, failing to ever reach thermal equilibrium

[13]. We discuss each of these two situations in turn.

A. Glassy Dynamics of Fractons

Since a fracton cannot move in isolation, it is tempting to think that it is a trivially

localized excitation. At zero temperature, this is indeed the case, and a single fracton will
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remain localized at its initial location for infinitely long times. At finite temperature, how-
ever, the story becomes more complicated. We first focus on type-I fracton models, such as
the X-cube model or scalar charge theory, in which fractons can form stable mobile bound
states. While such a fracton cannot move by itself, it can move through the absorption of
an additional composite excitation, which we take to be a dipole for concreteness. At finite
temperature, there will be a thermally excited bath of dipoles throughout the system, and a
fracton can move by absorbing dipoles from this bath. As studied by Prem et al., a series of
such processes will generically allow a fracton to diffusively delocalize over the entire system,
thereby losing the memory of its initial conditions [12]. (See also some important precursor

work in References [1], [99].)

While such delocalization processes will generically occur, it is important to note that
they are limited by the number of thermally excited dipoles available for absorption by the
fracton. Assuming that there is an energy gap A to create dipoles, and the thermal bath of
dipoles is at temperature 7', then the density of dipoles available for absorption will scale as
exp(—A/T), which in turn sets the scale for the diffusion of fractons. It then follows that the
equilibration time for this system (i.e. the time necessary for an initially localized fracton
to disperse around the system) scales as exp(A/T"). While the system does eventually reach
equilibrium, the timescale for thermalization grows exponentially as the temperature is low-
ered. At the lowest temperatures, this timescale can be arbitrarily long (e.g. longer than the
age of the universe). Thus, in the low-temperature regime, such a system will be effectively
localized for all intents and purposes. Such a scenario is a manifestation of glassy dynamics,
or “asymptotic localization” [100]. For the U(1) theories, featuring long-range interactions
between fractons, this slow dynamics also manifests in a delayed onset of screening [101].
Unlike ordinary charges, which immediately have their long-range fields screened at finite-
temperature, fractons can exhibit long-range interactions for extraordinarily long times prior

to being fully screened.

Finally, we note that the situation is more complicated for type-II fracton models, such
as Haah’s code, in which there are no mobile bound states. In such models, fractons can
still move via the emission or absorption of additional composite excitations. However, these
composites are now also strictly immobile. As such, it is extremely difficult for the composites
to form a thermal bath from which the fracton can absorb excitations. In Reference [12], a

detailed study of thermalization in such models was undertaken, finding that they generically
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exhibit a much slower subdiffusive delocalization of charge. For these systems, the time
for relaxation to equilibrium scales as exp(A?/T?). This superexponential behavior of the
relaxation time indicates that type-II models remember their initial conditions for even

longer than their type-I counterparts.

B. Localization of Fractons in One Dimension

While dipole absorption can lead to thermalization at the longest timescales in generic
three-dimensional fracton models, the behavior of one-dimensional fracton systems can be a
bit more complicated, leading in some cases to truly non-ergodic behavior. Such a failure of
a one-dimensional fracton system to fail to thermalize at any timescale was first encountered
in the context of random unitary circuit dynamics [13]. Random unitary circuits provide,
in a certain sense, the most generic form of unitary time evolution, without the presence
of additional constraining conservation laws, such as energy conservation. These models
have provided a testing ground for ideas about the growth of quantum entanglement and
operator spreading [102-105]. In particular, operators generically exhibit ballistic spreading
of their support under Heisenberg time evolution. It is also possible to implement various
conservation laws in random unitary circuits, to study how they affect the behavior of
operator spreading. For example, it has been shown that the presence of charge conservation
leads to certain operators having a slow diffusively spreading piece, in addition to a ballistic
piece [106] 107].

In Reference [13], Pai et al. studied random unitary circuits subject to the two conserva-
tion laws of charge and dipole conservation, thereby implementing fracton behavior. (This
model takes fracton behavior as a starting point, in order to study its physical consequences,
as opposed to deriving fracton conservation laws from some underyling microscopic inter-
actions.) The authors constructed a minimal random unitary circuit model consistent with
these conservation laws, depicted in Figure[16] which consists of layers of local unitary gates
acting on a set of spins, where S, is regarded as the “charge,” as done in [106]. Notably,
in contrast to the circuits studied in previous work, this model requires the presence of
three-site gates (i.e. next-nearest-neighbor interactions) to observe any nontrivial dynamics,
since there are no nearest neighbor processes consistent with fracton conservation laws. This

circuit was then used to study the Heisenberg time evolution of a fracton number operator
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FIG. 16. A minimal random unitary circuit obeying fracton conservation laws: Blue blocks represent
unitary gates acting on sets of three adjacent spins. Each gate has a block diagonal structure within

sectors of fixed charge and dipole moment. (Figure taken from Reference [13].)

initially localized at site i:
Oi(t):UT(t)(---I®I®Sf®[®[---)U(t) (36)

where U(t) is the unitary defined by the circuit. By looking at the right weight of this
operator (a quantity which serves as a measure of its spatial support), it was determined
that an O(1) portion of the fracton charge remains localized around its initial position at
arbitrarily long times. Thus, this system exhibits non-ergodic behavior, never forgetting the
initial position of the fracton. Various other aspects of the dynamics were studied in [13],
such as an anomalous exponent in the “tail” of the ballistically spreading peak. It was also
shown that fractons could attract each other under random unitary evolution, consistent
with the gravitational analysis of Reference [14].

Reference [13] proposed a hydrodynamic explanation for the observed localization, which
correctly predicts various aspects of the dynamics, such as the anomalous tail exponent.
However, the generality of these hydrodynamic equations was called into question by later
work which showed that the presence of four-site gates (i.e. next-next-nearest neighbor in-

teractions) will eventually cause the fracton operator to almost completely delocalize [108].
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It remains an interesting open question how the coarse-grained hydrodynamic description
should be modified to account for this dependence on the range of interactions. Meanwhile,
Reference [108] proposed a more microscopic picture for this localization in terms of “frag-
mentation” of the Hilbert space, which implies the presence of “inert” localized states with
trivial time evolution. (See also parallel work in Ref. [109].) In turn, Reference [110] showed
how these localized states are intricately connected with the many-body scar paradigm, in
which a small number of non-thermal states exist in an otherwise thermal spectrum [111]. All
of this unexpected behavior, arising as a consequence of two simple conservation laws, has
led to numerous recent investigations into ergodicity breaking in fracton systems [112-117].

Notably, the non-ergodic behavior of fracton systems may prove to be one of the most
accessible features in near-term experiments. It was first noted in Reference [118] that the
conservation of dipole moment, and therefore fracton behavior, can be effectively enforced
via the presence of a strong linear potential. (In this sense, fracton localization has close
ties to older studies on the Wannier-Stark localization of electrons moving in a strong uni-
form electric field [119].) By implementing linear potentials in ultra-cold atom systems, it
should be possible to impose fracton behavior “by hand,” without any corresponding mi-
croscopic gauge structure. For such a system, non-ergodic behavior will serve as the most
direct signature of fracton physics. Indeed, a recent cold-atom experiment has been able to
create a linear potential, though not yet of sufficient strength to enforce dipole conservation
[120]. Nevertheless, this system already exhibits slow subdiffusive transport, which may be
a precursor to fracton behavior. By increasing the strength of the imposed linear potential,
it may eventually be possible to experimentally observe the non-ergodic behavior expected

for fractons.

VII. GRAVITATIONAL AND HOLOGRAPHIC BEHAVIOR

One of the more unusual properties exhibited by fractons is the fact that, in certain
models, fractons can exert a gravitational force on each other. This force is “gravitational”
in the sense that it is both universally attractive and encoded in an effective geometry seen
by the fractons. This feature first became clear due to the relationship between fractons and
symmetric tensor gauge theories, which also play a central role in general relativity. Indeed,

fracton systems and general relativity share a similar set of conservation laws, leading directly
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to universal attraction [14]. We first go through the basic idea behind these gravitational
properties, followed by the more recent development that certain fracton models exhibit
holographic properties, leading to toy models for the AdS/CFT correspondence [15] 121,
122].

A. Gravitation in Fracton Systems

Since many fracton models are formulated in the language of rank-2 symmetric tensor
gauge theories, it is natural to expect that these systems should have some similarities with
general relativity, in which the dynamical metric plays the role of a symmetric tensor gauge
field. In fact, the parallels between fracton theories and gravitational theories run much
deeper. To see this, it is useful to consider the behavior of linearized gravity, in which the
metric is expanded around a flat background as g,, = 1, + h,., where 7, is the Minkowski
metric and Ay, is a small perturbation. We also choose to work in a gauge which has only
the spatial components of the linearized metric, h;;. With these choices, the 00 component

of Einstein’s equations can be written as:
0;0;h7 — *h', = T (37)

which takes the form of a Gauss’s law, in which the energy density T acts as a source for
the metric. This equation should be compared directly with the Gauss’s law of the scalar

charge tensor gauge theory, which led directly to the conservation of dipole moment:
ROE" =p = /ddx (pZ) = constant (38)

Since general relativity also possesses a double-divergence Gauss’s law, we expect that it too
should exhibit some form of dipolar conservation law on its energy density. Indeed, such a
conservation law is found in general relativity in the form of conservation of center of mass

motion:

/ddx (Tz" — T"2°) = constant (39)

where 2 is the time coordinate. This equation, representing the conservation law associated
with boost symmetry, reflects the fact that the center of mass of a gravitational system must

move at a constant speed. If we choose a reference frame appropriately, we can eliminate the

46



a) b)

e _: —, e e<: :>e

Nee” o

o@

FIG. 17. a) Two fractons can push off each other via the exchange of a virtual dipole. b) Locality
of the model dictates that fractons move faster when they are nearby and slower when they are far

apart.

second term (representing overall motion of the system), leaving us with the conservation

of center of mass:

/ddx (T™Z) = constant (40)

This conservation law appears essentially identical to the dipolar conservation law governing
the scalar charge theory. We must then resolve the following puzzle: Why does such a con-
servation law seem to make fractons immobile, while still permitting gravitational particles
to move and attract each other?

The answer to this riddle lies in the fact that fractons do possess a certain limited amount
of mobility in the presence of other fractons. While it is not possible for a fracton to move
in isolation, it is possible for a fracton to move by “pushing off” a second fracton in such
a way that the total dipole moment is conserved, as indicated in Figure [[7h. While such a
process can allow two fractons to move, the locality of the underlying Hamiltonian dictates
that this process must occur via the propagation of some mediating particle between the two
fractons. Specifically, fractons push off of each other via the exchange of a virtual dipole.
The matrix element for this process is then proportional to the propagator of a dipole from
the location of one fracton to another. Importantly, such a propagator decays as a function
of the separation between two fractons, such that nearby fractons move more quickly than
well-separated ones, as shown in Figure [17p.

At this level, it can already schematically be seen that fractons exert an effective attraction
on each other, since a pair of fractons will slow down as they begin to move apart. This
logic can be placed on firmer footing by studying the semi-classical equations of motion of
the system, which indicate that a fracton moves along geodesic-like curves of an effective

geometry dictated by the positions of all other fractons in the system [14]. In this sense, the
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interaction between fractons is purely geometric, just as in general relativity. Another notable
fact about this interaction is that fractons do not strictly speaking exert force on each other,
in the sense of exchanging momentum. Rather, fractons “exert velocity” on each other via the
exchange of position (i.e. center of mass). In this language, the interaction between fractons
is automatically attractive, since locality dictates that well-separated fractons must exert
less velocity on each other than nearby fractons. It is also important to note that generic
fracton models, which mimic the behavior of linearized gravity, exhibit only a short-ranged
gravitational attraction due to the mass gap associated with dipoles. Only a fully nonlinear
theory of gravity will possess a power-law gravitational attraction. It is an interesting open
question whether a lattice fracton model can be imbued with this property.

Finally, we must resolve one seeming discrepancy between fracton theories and gravita-
tional physics. While the “pushing off” mechanism we have discussed allows fractons to move
in the vicinity of each other, well-separated fractons effectively become locked in place again,
in contrast to the expected behavior of a gravitational theory, in which well-separated parti-
cles carry an intrinsic mass. This difference disappears, however, upon adding a background
charge density to fracton models, which endows fractons with a finite mass and promotes
them to ordinary gravitational particles. In this sense, fractons exhibit an explicit example of
Mach’s principle, which dictates that inertia should be determined by a particle’s surround-
ings rather than being an intrinsic property. It remains to be seen whether this perspective

can shed new light on the structure of more familiar gravitational models.

B. Holography in a Fracton Model

Since fracton theories can provide toy models for gravity, it should not be surprising that
certain fracton models can even serve as toy models for holography [15] 121} [122]. In its
simplest incarnation, the holographic principle indicates that a gravitational theory defined
on anti-de Sitter (AdS) space (i.e. a space with constant negative curvature) has all of its
information encoded in a theory defined on its boundary, usually a conformal field theory.
While this duality between the bulk and boundary of a gravitational system was originally
encountered in the context of string theory [123], similar physics has since been observed
in much simpler settings. For example, toy models for holography have been encountered in

the context of spin models with quantum error-correcting behavior [124].
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FIG. 18. The hyperbolic fracton model permits Rindler reconstruction within the minimal convex

wedge (green) from the state along its boundary.

Recently, a new type of holographic toy model has been proposed by Yan in the form
of a classical fracton model defined on a two-dimensional hyperbolic lattice, mimicking the
properties of AdS space [15]. This model, which is closely related to the X-cube model, pos-
sesses subsystem symmetries on every geodesic of the lattice, resulting in immobile fracton
excitations. The model also obeys various properties expected of holographic theories. For
example, the mutual information between subregions obeys the expected Ryu-Takayanagi
formula. (Note that, since the model is classical, we must consider mutual information in-
stead of entanglement entropy.) Furthermore, knowledge of the state on a particular segment
of the boundary allows for reconstruction of the bulk state within the minimal convex wedge
bounded by that boundary segment, as a manifestation of Rindler reconstruction (see Figure
. Via a duality transformation, it can also be shown how this model provides an explicit
realization of the bit-thread formulation of holography [121] [125], which in turn hints at a

more general perspective on holographic toy models [122].

VIII. NEW CONDENSED MATTER PLATFORMS FOR FRACTONS

While a variety of exactly solvable fracton models have been proposed, there is a need
for more concrete platforms to realize them experimentally. In this section, we list several

experimental proposals and material fabrications for fracton phases of matter.
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A. Majorana Islands

The theoretical aspects of fracton phases were originally proposed in the context of quan-
tum stabilizer codes and exactly solvable spin models. However, the direct physical realiza-
tion of these models remains a key challenge as most stabilizer codes contain complicated
spin cluster interactions. Fortunately, a rich set of quantum spin models can emerge via Ma-
jorana quantum Lego whose building blocks are within experimental reach. Here, we briefly
mention that many known fracton stabilizer codes can be obtained from such Majorana
quantum Lego building blocks. The principal ingredients of Majorana quantum Lego are
Coulomb blockaded Majorana islands and weak inter-island Majorana hybridizations. Each
island contains some number of Majoranas, e.g., at the ends of semiconductor wires prox-
imity coupled to a superconductor [126, [127]. The island’s charging energy fixes its fermion
parity, corresponding to a multi-Majorana interaction.

We illustrate an explicit example proposed in Ref. [48] with a topological superconductor
on a body-centered cubic lattice. Each site contains eight Majoranas v!,...,+® which are
each hybridized with a Majorana on a nearest-neighbor site as shown in Fig. [I19] Thus, the

topological superconductor has the Hamiltonian
H = =ity (3iv] +9295 +75 +905) (41)
(i.3)

and can be thought of as built from crossing one-dimensional Kitaev chains along the
(£1,+£1,1) directions.

We now consider onsite interactions which couple quartets of Majoranas,

Hiwe = UV + viviad + vvieqd). (42)

These interactions suppress hopping of single Majoranas between sites. In the strong-U

limit, they project each site into the v'3v8y? = 3vlviv8 = v}y298~4]7 = —1 subspace.
The product of the three parity constraints also implies y2v}77v¢ = —1, constraining the

Majorana quartets associated with the four vertical faces of the red cube in Fig.

To implement this interaction in an experimental setup, we distribute the eight Majoranas
of each site over two adjacent superconducting islands (SCI) as shown in Fig. . Each
SCI could be made from two semiconductor quantum wires proximity coupled to the same

superconductor. The proximity-coupled quantum wires effectively realize open Kitaev chains
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FIG. 19. Construction for the planon-lineon code. a) Body-centered cubic lattice with eight MZM
on all corner (green) and center (red) sites. Majorana hybridization is illustrated by dashed lines.
b) Setup for realizing the Majorana quartet interaction in Eq. . Two Majorana quartets (red
dots) are placed on floating superconducting islands, fixing the corresponding fermion parities
via charging energy. The third quartet in Eq. is generated by the Majorana hybridizations
indicated by the dashed lines. ¢) The two types of octahedral cells which support the stabilizers of

the planon-lineon code.

with two Majorana zero modes localized at their ends, so that there are a total of four
Majoranas on each SCI. By virtue of their charging energy, each SCI can be tuned to have
even fermion parity, effectively implementing the interaction terms U (v}v273~? + viv29947)
in Eq. . To generate the remaining four-Majorana interaction in Eq. , we turn on
inter-island Majorana hybridization H; = it(y3y++%~") with amplitude ¢. These inter-island
hybridizations can in principle be implemented by direct tunnel coupling. Alternatively, and
perhaps more flexibly, one can bridge between the two Majorana islands using a coherent
link. Its two Majorana end states would then be tunnel coupled to the two Majoranas of
the Majorana islands which one wants to hybridize. Since the hybridization between the

Majoranas on the coherent link and the islands can be realized through gate controlled

tunnel junctions, the hybridization strength is tunable. In the limit of a large charging
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energy, which fixes the fermion parities of the SCI, a single Majorana tunneling between
the islands is suppressed and the lowest order processes involve pairs of Majorana tunneling
terms as Eq. .

Under such parity constraints driven by interaction, each site retains a single spin-1/2
degree of freedom. We can then choose the parities of the top and bottom faces as the
Pauli-Z operator 07 = y!v?y!9? and the product of two Majoranas associated with any
vertical edge as the Pauli-X operator o7, or vice versa. In the strong-U limit, we can treat
the Majorana hybridizations as a perturbation. The leading-order Hamiltonian involves 16-

Majorana terms for the octahedra shown in Fig. Writing the Hamiltonian in the spin

representation yields

H=- Y {Hagf+ Haf}. (43)

octahedra \ i€octa® icoctab

Here octa® and octa® refer to the two types of octahedra in Fig. with red (green) sites
at top and bottom and four green (red) sites in between. Thus, our construction exactly
reproduces the planon-lineon model [38] whose elementary quasiparticles are lineons and
planons with mobility restricted to the z-direction and the zz (yz)- planes, respectively.
This setting [48] produces a wide variety of fracton states and promises numerous oppor-

tunities for probing and controlling fracton phases experimentally.

B. Plaquette Paramagnets in Two Dimensions

The wide variety of proposals for fracton models calls for physically-realistic models
prone to yield such states. In Ref. [10], the authors suggest that some fractonic behaviour
can emerge in frustrated quantum paramagnets as a consequence of fluctuating plaquette
order or resonating cube order. Motivated by the precursor work on resonanting valence
plaqeutte[11] [128] crystal, in this section, we introduce the fractonic properties of topological
defects in valence plaquette solid (VPS) phases on square lattices. We show that the defects
of the VPS order parameter, in addition to possessing non-trivial quantum numbers, have
fracton mobility constraints deep in the VPS phase, which has been overlooked previously.

In quantum magnets with geometry or quantum fluctuations, a zoology of paramagnetic
states can emerge at low temperature. Beyond the well-know valence bond solid, another

widely observed paramagnetic crystalline phase is the VPS (valence plaquette solid) state
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which breaks Cy symmetry and lattice translation Ty, T}, for both directions. The VPS order
enlarges the unit cell into four plaquettes, so there are four distinct VPS patterns related

by site-centered C rotation, as shown in Fig.

RSN
- o

FIG. 20. Left: VPS order which enlarges the unit cell by 4. Right: The vortex connecting four

distinct VPS patterns carries a spinon.

In the plaquette crystalline phase, one can define the four distinct plaquette patterns as a
Z4 boson. During the quantum melting transition of VPS, the plaquette configuration tends
to become disordered and the Z, vortex defect proliferates in the meantime. The vortex
defect of the VPS which intersects the four distinct plaquette configurations carries a free
spinon as in Fig. As opposed to the VBS phase, where a spinon in the background of
dimers can hop among sites by reconstructing the local valence bond configuration, a spinon
in the background of plaquette order is frozen - it cannot move away from the original vortex

center without breaking additional plaquettes, as depicted in Fig. In contrast, a pair of

@
®

N

FIG. 21. The spinon inside the VPS vortex has restricted mobility. It cannot move without breaking

additional plaquettes.

spinons living on the link between adjacent sites can hop along the stripe perpendicular

to that link without breaking additional plaquettes, as depicted in Fig. [22] Such a spinon
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pair, which we refer to as a spinon dipole, is a 1d subdimensional particle which moves
transversely to the dipole’s orientation. Based on these observations, the topological defect
of the plaquette order displays restricted motion which exactly resembles the behavior of

fractons.

FIG. 22. A dipole can move along the stripe transverse to the dipole’s orientation by exchanging

position with a plaquette.

To make the connection between VPS defects and fractons precise, we introduce a higher
rank gauge theory description for the valence plaquette order on a square lattice. The pla-
quette order can be mapped to a rank-2 symmetric tensor electric field defined at the center

of each square as the following.
Eqy(r) = (=1)"P(r) (44)

where P = 1(0) corresponds to the valence plaquette occupancy (vacancy) on each square.
The index 7, is the same as defined before. As opposed to the VBS state, where dimers can
have two orientations corresponding to E, and E,, the plaquette electric field is a single-
component field, effectively a scalar. We can also define a conjugate variable A, satisfying
[Asy(7), Eby(r')] = 5=0, . The operator e**4+v creates/annihilates a valence plaquette. As
each spin on the site is only entangled with one of the four adjacent plaquette clusters, one

can define a Gauss’s law for the rank-2 electric field as,
0,0y By (1) = (1) (1 — g(r)) (45)

where ¢(r) is the number of unpaired spinon at site . As long as there is one plaquette
adjacent to a site, there is no free spinon on that site. If plaquettes are absent from all
four squares surrounding the site, then there exists a free spinon charge at the center. This

Gauss’s law is precisely the two-dimensional version of the Gauss’s law seen in the fracton
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phase of matter described by a hollow rank-2 symmetric tensor gauge theory [28] 29]. Due
to the particular double derivative in Eq. [45] the spinon number is conserved on each row

and column of the system, so the theory respects an emergent subsystem U(1) symmetry:

/dxq =1-—(-1)% / dz (—1)*0,0,E,, = const. (46)
A similar equation holds in the y-direction. Due to the emergent subsystem symmetry, single
spinon motion is prohibited. However, a pair of spinons, which we refer to as a dipole, can
hop only along the stripe perpendicular to its orientation.

These mobility constraints, while they persist, can potentially inhibit the condensation
of vortices and preclude a continuous transition from the VPS to the Néel antiferromagnet.
Instead, the VPS melting transition can be driven by proliferation of spinon dipoles. In
Ref. [10], it was demonstrated that a 2d VPS can melt into a stable gapless phase in the

form of an algebraic bond liquid with algebraic correlations and long range entanglement.

C. Hole-Doped Antiferromagnets

Another manifestation of fracton physics in a simple condensed matter system is in the
familiar context of hole-doped antiferromagnets [49]. To see this, consider the motion of a hole
through the background of an Ising antiferromagnet, as depicted in Figure As the hole
moves via a sequence of nearest-neighbor hopping processes, it necessarily creates a series of
misaligned spins, resulting in a large energetic barrier to motion. This is in close analogy to
the fact that a moving fracton must create energetically costly dipoles. Furthermore, a bound
state of two holes can move freely, without disturbing the antiferromagnetic background.
This provides an enticing hint that the physics of fractons is at play in the description of
holes doped into an antiferromagnet.

This idea can be given firmer support by performing a perturbative analysis on the
Hamiltonian for holes coupled to the antiferromagnetic background. This type of system
can be described by a form of boson affected hopping model, widely used in the theory of
polarons. In this type of model, hopping of one type of particle (which we typically assume
to be fermionic) must be accompanied by the emission/absorption of another type of particle
(which we take to be bosonic). Schematically, such models take the form:

H=g> flfi®l+b)—pup > flfi—m Y bl (47)
(ig) i i
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FIG. 23. Motion of a hole through an Ising antiferromagnet is impeded by the creation of energet-

ically costly spin misalignments.

where the first term represents the fact that hopping of a fermion requires either emission
of a boson on the departure site or absorption of a boson on the arrival site. (In the an-
tiferromagnet, the f particles would represent holes while the b particles would represent
magnon (i.e. spin-flip) excitations.) The fact that motion of a fermion is accompanied by
creation/absorption of a boson is closely analogous to the fact that motion of a fracton is
accompanied by the creation/absorption of an extra excitation (usually a dipole). Indeed,
by perturbatively integrating out the bosons through five orders in g/, the authors of Ref.

[49] showed that the effective Hamiltonian for the fermions takes the schematic form:

- _tz z+2+sz 1fT)fz+1fl+V (48)

which features only a pair-hopping kinetic term, while V' schematically represents all po-
tential /interaction terms. To this order, we see that holes in a doped antiferromagnet are
incapable of moving by themselves, but rather only move in pairs, in a manifestation of
fracton physics. A more precise analysis [49] indicates that this model actually exhibits con-
servation of an appropriately defined dipole moment. Furthermore, this conservation law
leads to the usual phenomenology associated with fracton systems, such as slow thermaliza-
tion and gravitational attraction. In this case, the gravitation corresponds to the well-known
magnon-mediated attraction between holes, which contributes to the formation of supercon-
ductivity [129] [130]. We therefore see that fracton phenomenology is on display in a very
familiar setting, potentially with applications to the study of high-temperature supercon-

ductivity.
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D. Subsystem Symmetry Protected Topological Phases

Symmetry plays a pivotal role in distinguishing phases of matter. The great majority of
the exotic quantum phases lies in the interplay between symmetry and entanglement, which
is known as ’symmetry protected topological phase’. Then what are the possible quantum
phases protected by subsystem symmetry? Do they exhibit similar protected gapless mode
and symmetry anomaly on the boundary? In this section, we list several prominent examples
of subsystem protected topological phase.

The toy model we introduce here is a subsystem symmetric topological state[131H136]
with gapless edge modes, which we refer to as topological plaquette Ising model (TPIM).
The Hilbert space consists of Ising spins on sites of the square lattice. For clarity, we will
separate these into two spin flavours, o and 7, located at the sites of the A and B sublattices,

respectively. The Hamiltonian is given by

S zZ zZ_ Z Z_T A A Ay A
Hrpiy = — E 0705 0R0[ T,y — g TETITRT O, (49)

ijklmeP, ijklme Py

where the sum is over all P4 (Pg), which refer to five-site clusters consisting of a site on

&b & &
- —

FIG. 24. The terms in the TPIM Hamiltonian. The Pauli spins 7,0 live on the red/blue sites.

The interaction o7osofofT" involves the four o spins on the blue plaquette and the 7, in the

middle. The interaction T TRT 0" involves the four 7, spins on the red plaquette and the o, in

the middle.

the A (B) sublattice and its four nearest neighbors, with each site labeled by ijkim as
illustrated in Fig[24] The first term is a sum over products of a 7* and its four surrounding

o”, and vice versa for the second. As all local cluster-operators commute with each other,
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the Hamiltonian contains extensively many conserved quantities and is exactly solvable.
Thus, the ground state of Hrppy can be described as a superposition of all possible {o*}
configurations, with the corners of each domain wall decorated with 7, = —1.
In addition, the model has Z5** symmetry, as the Hamiltonian commutes with the oper-
ators [ diag O and [ diag T which flips 0, — —o, or 7, = —7, along a particular diagonal.
Next we will show that the SSPT paramagnet similarly has non-dispersing gapless bound-
ary modes protected by the subsystem symmetry, which leads to a subextensive ground state

degeneracy in the presence of an edge.

.COSN-

FIG. 25. Red ovals show the physical spins that take part in the edge operators 7{*, and form a
spin-1/2 degree of freedom at the edge. The action of the subsystem symmetries (green lines) on
the ground state manifold may be expressed in terms of such 7{* operators. Near a corner of the
type shown here, the symmetry becomes a local symmetry, and the corresponding boundary modes

can be gapped out.

Consider an edge as shown in Fig. . We can pick two-spin clusters (red ovals in Fig ,
which create an effective spin 1/2 degree of freedom on each site along the edge. To see this,

we define the three edge operators for each cluster on even sites,

=01 1Y ="tV " =77 (50)
and likewise, for odd edge sites with ¢ spin at the surface, we have

™ =71%0" 7Y =T1%0Y,1° = 0° (51)

These operators satisfy the Pauli algebra on the surface, and commute with the bulk Hamilto-
nian Hrppy. By counting degrees of freedom, we can see that there exists a 2-fold degenerate

ground state manifold arising due to the presence of the edge of length L.
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This edge degeneracy in fact cannot be broken with local interaction while preserving all

subsystem symmetries, and leads to a completely flat-band dispersion along the edge.

IX. CONCLUSIONS AND OUTLOOK

In this review, we have given a bird’s eye perspective on the field of fractons, which
is an exciting new frontier for condensed matter physics. Fractons not only represent a
fundamentally new type of emergent quasiparticle with striking properties, but also draw
connections between a variety of seemingly unrelated topics, from gravity and elasticity to
higher-order topological insulators and hole-doped antiferromagnets. While we have covered
a wide range of topics, there have been many other exciting advances in the field which
we have not discussed here, and we refer the interested reader to the literature for more
information [135] [137H148].

Beyond established results, however, there are also numerous open questions in the field
of fractons, which has entered into a new stage of maturity. These open questions range
from the practical to the highly abstract. As always, one important line of research is the
search for more experimentally-relevant spin models which may be realized in actual materi-
als exhibiting frustrated magnetism. It will also be important to develop more experimental
signatures of fractons in spin systems, particularly for gapped models. However, recent de-
velopments have made it clear that fracton physics is a much broader paradigm than its
humble beginnings in exactly solvable spin models. Fractons are already known to be real-
ized in a diverse set of systems, such as elasticity theory, plaquette paramagnets, hole-doped
antiferromagnets, and more. As such, it is natural to ask what other platforms may host
fractons, and how fracton physics is concretely manifested in experimental signatures.

Given that fractons are on the cusp of physical realization, it is also important to ask what
we will do with fractons once we have them. How can we practically manipulate fractons in
some useful way? It has been widely suggested that the properties of fractons will be useful
for the purpose of quantum information storage [2, [16H18], but we lack any concrete roadmap
for the precise implementation of this proposal. Much more work will be required to figure
out how to usefully store and manipulate quantum information using a fracton system. It
is also unclear whether or not the mobility restrictions of fractons can be harnessed for

constructing any other sort of useful quantum devices.
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On the more abstract side of things, the number of open questions is still remarkably
large. One important line of research is a push towards a complete classification of fracton
systems, with a full characterization of all statistical processes. There has also been only
limited exploration of fractons in fermion systems, and the known models all have natural
analogues in boson systems. Are there examples of intrinsically fermionic fracton models?
For example, can fermion systems give rise to tensor gauge theories with half-integer higher-
spin gauge modes? Another interesting question is what we can learn about real gravitational
systems from the connection between fractons and gravity. Can fracton physics provide new
insights into more traditional gravitational theories? Can fracton models be used to simulate
more complicated gravitational phenomena, such as black holes?

This list of open questions is far from exhaustive, and new topics in fracton physics are
being discovered at a rapid pace. It seems fair to say that the field of fractons still has many
surprises in store over the coming years. We hope that this review will serve as a useful
introduction for the next generation of fracton researchers, who will surely take the field in

many exciting new directions.
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