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Ground state degeneracy of the Ising cage-net model
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The Ising cage-net model, first proposed by Prem et al. [Phys. Rev. X 9, 021010 (2019)], is a representative
type I fracton model with nontrivial non-Abelian features. In this paper, we calculate the ground state degeneracy
of this model and find that, even though it follows a similar coupled layer structure as the X-cube model, the
Ising cage-net model cannot be “foliated” in the same sense as X-cube as defined in Shirley et al. [Phys. Rev. X
8, 031051 (2018)]. A more generalized notion of “foliation” is hence needed to understand the renormalization
group transformation of the Ising cage-net model. The calculation is done using an operator algebra approach
that we develop in this paper, and we demonstrate its validity through a series of examples.
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I. INTRODUCTION

The Ising cage-net model (“Ising cage-net” for short),
which was first proposed in Ref. [1], is an interesting fracton
model. Constructed by coupling intersecting stacks of (2 +
1)D doubled Ising string-net topological states via a mecha-
nism called “p-loop condensation”, the model was shown to
host non-Abelian fractional excitations that are free to move
only along a line. This feature sharply distinguishes Ising
cage-net from previously known fracton models like the X-
cube model proposed in Ref. [2], even though they are both of
type I (meaning that not all fractional excitations are immobile
and that the logical operators are nonfractal, unlike the cubic
code proposed by Haah [3]).

The X-cube model, and many of its Abelian type I cousins,
were found to have a nice property that we call “folia-
tion” [4]. That is, the system size of the model can be
increased/decreased [between Lx × Ly × Lz and Lx × Ly ×
(Lz + 1) for instance] by adding/removing decoupled (2 +
1)D topological layers and smooth deformation of the Hamil-
tonian near the layers. Here smooth deformation means slowly
varying the Hamiltonian without closing the gap or, equiv-
alently, applying a finite depth local unitary circuit. For the
X-cube model, the topological layer involved is the (2 + 1)D
toric code state. Many of the exotic properties of the X-cube
model follow immediately from the foliation structure. For
example, the ground state degeneracy grows by a factor of
4 when the system size grows by 1 in one direction. The
planon excitations – fractional excitations that are constrained
to move only in a 2D plane – are also inherited directly from
the toric code layers.

An interesting open question is whether Ising cage-net
fits into this foliation scheme. Ising cage-net and the X-cube
model are similar in many ways. In particular, both can be
constructed using the coupled layer construction: X-cube by

coupling toric code layers and Ising cage-net by coupling
doubled Ising layers. It is hence tempting to guess that Ising
cage-net is also foliated in the sense that its system size can be
increased/decreased by adding/removing decoupled doubled
Ising layers and smooth deformation.

In this paper, we show that this cannot be the case. In
particular, we calculate the ground state degeneracy (GSD)
of Ising cage-net and observe that the GSD does not grow by
integer factors when the system size increases in x, y, or z
directions. This contradicts with the foliation process where
adding a decoupled 2D layer changes the GSD by an integer
factor while smooth deformation keeps the GSD invariant.

As an exactly solvable model, the GSD of Ising cage-net
can in principle be explicitly determined, but the non-Abelian
nature of the model complicates the problem. We deal with
it, as shown below, by focusing on the operator algebra of the
logical operators in the ground space of the model. By logical
operators, we mean all possible operators acting on the ground
space. We use the fact that if the ground space has dimension
n, then the logical operators form the algebra Matn of all n × n
complex matrices, and a maximal, Abelian, diagonalizable
subset among all logical operators (a Cartan subalgebra; Defi-
nition 6) has dimension n. Hence the dimension of the ground
space can be determined from the dimension of either the full
algebra or the Cartan subalgebra of the logical operators.

To determine the dimension of the operator algebras, we
make use of the coupled layer condensation picture of the
model. In particular, we start from a straight-forward but
redundant operator algebra A, which is the tensor product of
operators algebras coming from the decoupled doubled Ising
layers. The layers are coupled through p-loop condensation.
Correspondingly, we take the commutant M ′ of the conden-
sate algebra M within A, obtaining the deconfined algebra.
Moreover, the deconfined algebra is further restricted by the
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FIG. 1. Procedure for determining the algebra of logical opera-
tors on the Ising cage-net ground space.

constraints coming from the Hamiltonian (cube terms in Ising
cage-net). When the set of both types of constraints is modded
out, we get a semisimple algebra PM ′, i.e., one with a block-
diagonal form. The full logical operator algebra A0 should be
a matrix algebra, i.e., containing a single block. This structure
will be recovered once we take into account the splitting of
certain logical operators after condensation. This process is
illustrated in Fig. 1.

Following this procedure, we find the GSD of an Lx × Ly ×
Lz Ising cage-net to be

GSD = 1
8 (E3 + E2 + 5E1 + 45), (1)

where E3 = 9Lx+Ly+Lz , E2 = 9Lx+Ly + 9Ly+Lz + 9Lz+Lx , and
E1 = 9Lx + 9Ly + 9Lz . Direct calculation shows that the GSD
does not grow by integer multiples when the system size
grows. For example, when Lx = Ly = Lz = 2, GSD = 69048;
when Lx = Ly = 2, Lz = 3, GSD = 614016. Therefore, Ising
cage-net cannot be foliated in the sense that its system size can
be increased/decrease by adding/removing decoupled doubled
Ising layers and smooth deformation.

In a separate paper [5], we show that the system size
of Ising cage-net can be changed by “condensing” / “un-
condensing” bosonic planon excitations near a 2D plane or,
correspondingly, through a linear depth circuit that scales
with the size of the plane. This constitutes what we call
the “generalized foliated scheme” for renormalization group
transformation.

The paper is organized as follows: In Sec. II, we review
Ising cage-net. In Sec. III, we introduce the operator algebra
approach to calculating GSD by studying the simple example
of the chiral Ising anyon model. The underlying mathematics
of the operator algebra approach is the theory of semisimple
algebras, and we discuss the structure of semisimple alge-
bras in Sec. IV. More mathematical details can be found
in Appendix A. The construction of Ising cage-net involves

FIG. 2. A square-octagon lattice. A vertex term Av and a pla-
quette term Bs

p are shown. The string operator W ψψ̄
l creates a ψψ̄

excitation on each of the two plaquettes bordering the edge l .

p-loop condensation, and we study boson condensation in
the operator algebra approach in Sec. V with the example
of a condensation transition in the doubled Ising string-net
model. We then use the operator algebra approach in Sec. VI
to study a more complicated (2 + 1)D topological order, the
one-foliated Ising cage-net model. This model is closely re-
lated to Ising cage-net – the main focus of this paper – but
is still a (2 + 1)D model so we can check the consistency of
the operator algebra approach with anyon counting. Also in
Sec. VI B, we present another method of computing the GSD
using a Cartan subalgebra. In Sec. VII, we put all of these
tools together and compute the GSD of Ising cage-net in two
ways. The correctness of our result (1) is further confirmed
in Appendix B with lattice calculation for the smallest sys-
tem size. Finally in Sec. VIII, we summarize our results and
present several open questions.

II. REVIEW OF THE MODEL

The building block of Ising cage-net is the doubled Ising
string-net model [6] (“doubled Ising” for short). As a string-
net model, doubled Ising can be realized on any 2D trivalent
lattice. For the purpose of constructing Ising cage-net later,
we choose a square-octagon lattice (Fig. 2). On each edge of
the lattice, we put a local Hilbert space of dimension 3, with
orthonormal basis vectors |0〉, |1〉, and |2〉. The labels {0, 1, 2}
are understood as values of “strings” located at the edges. We
also need a set of symbols (δi jk, ds, F i jm

kln ), where all indices
take values in {0, 1, 2}. For example, δi jk = 1 if i jk = 000,
011, 022, 112, or their permutations, and δi jk = 0 otherwise.

The Hamiltonian consists of a vertex term Av for each
vertex v and a plaquette term Bp for each plaquette p. The
vertex term is

which allows certain ways for the strings to “fuse” at a vertex
at low energy. The plaquette term is

Bp =
∑

s dsBs
p∑

s d2
s

,
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FIG. 3. A truncated cubic lattice built from intersecting layers of
the square-octagon lattice.

where the operator Bs
p involves the symbols F i jm

kln and essen-
tially acts by fusing an s-loop into the plaquette p; the precise
definition of Bs

p is not important here. The full Hamiltonian is
then

H = −
∑

v

Av −
∑

p

Bp.

This is a commuting projector Hamiltonian when restricted
to the low-energy subspace where Av = 1 for all v. It has
anyons 1, σ , σ̄ , ψ , ψ̄ , σψ̄ , ψσ̄ , σ σ̄ , and ψψ̄ , where ψ̄ is the
time-reversal of ψ but otherwise unrelated to ψ , and similarly
for σ̄ . In fact, doubled Ising can be viewed as the chiral Ising
anyon model [7] (more discussion in Sec. III), which has
anyons 1, σ , and ψ , stacked with its time reversal, which
has anyons 1, σ̄ , and ψ̄ . This is where the name “doubled”
Ising comes from. The fusion rules for σ and ψ are σ × σ =
1 + ψ , σ × ψ = σ , ψ × ψ = 1; similarly for σ̄ and ψ̄ . The
R symbols and string operators of the anyons can be found in
Ref. [6], and we mention some important ones here:

(i) The braiding of σ with ψ gives a phase −1, and ψ
braids trivially with ψ ; same for σ̄ and ψ̄ .

(ii) The operator W ψψ̄
l = (−1)n1(l ) creates a ψψ̄ excita-

tion on each of the two plaquettes bordering the edge l , where
n1(l ) = 1 if the state on the edge l is |1〉, and n1(l ) = 0
otherwise (Fig. 2). We can extend the blue dashed line to
obtain a string operator of ψψ̄ .

As a (2 + 1)D topological order, the GSD of doubled Ising
is equal to the number of anyons [8], i.e., GSD = 9.

To construct Ising cage-net [1], we first stack up layers
of doubled Ising in the x, y, and z directions. The resulting
lattice is a truncated cubic lattice (Fig. 3). In this lattice, an
edge lµ parallel to the µ direction for µ = x, y, or z is called
a principal edge. We will also distinguish the octagon and
square plaquettes, denoting them by po and ps, respectively.
On a principal edge lµ, the operator

Vlµ = W (ψψ̄ )ν

lµ
W (ψψ̄ )ρ

lµ
= (−1)nν

1 (lµ )(−1)nρ
1 (lµ ) (2)

creates a ψψ̄ particle-loop (“p-loop” for short) around the
edge (Fig. 4), where µ, ν, and ρ are distinct. To be precise,
aµ(i) denotes the anyon a in the ith plane orthogonal to the µ
direction, and we may omit the i label when it is clear from
context. For example, if µ = x then we can take ν = y, ρ = z,
and the ψψ̄ particles in the p-loop originate from the xz and xy

FIG. 4. A ψψ̄ p-loop shown in red. It is created by the operator
Vlµ , the green cylinder. Connecting the ψψ̄ particles with line seg-
ments orthogonal to their hosting plaquettes, we obtain the p-loop.

planes. We can condense these p-loops with the Hamiltonian

H0 − J
∑

µ

∑

lµ

Vlµ,

where H0 is the Hamiltonian for the decoupled layers of
doubled Ising, and J > 0 is a large coefficient enforcing the
condensation. This reduces the low-energy Hilbert space on
each edge to one of dimension 5, spanned by |00〉, |02〉, |20〉,
|22〉, and |11〉. If we apply perturbation theory with H0 as the
perturbation, the plaquette terms B1

po
must be assembled into

cube terms

Bc =
∏

po∈c

√
2

4
B1

po

for each cube c. The resulting Hamiltonian of Ising cage-net
is

H = −
∑

v,µ

Aµ
v −

∑

ps

Bps −
∑

po

1
4

(
1 + B2

po

)
−

∑

c

Bc, (3)

where Aµ
v is the vertex term at vertex v orthogonal to the µ

direction, and B2
po

is the plaquette term of the 2-loop (not the
square of an operator). The terms are shown in Fig. 5. This
is a commuting projector Hamiltonian when restricted to the
low-energy subspace where all vertex terms are satisfied.

FIG. 5. Hamiltonian terms of Ising cage-net. The full Hamilto-
nian is given by (3).
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TABLE I. Elementary excitations in Ising cage-net. We have
µ '= ν in the lineon sector. The lineon σ x (i)σ y( j) moves in the z
direction; similarly for the other non-Abelian lineons.

Mobility Type Excitations

Planon Abelian ψµ(i), ψ̄µ(i)

Non-Abelian σµ(i)σµ( j), σ̄µ(i)σµ( j),
σµ(i)σ̄µ( j), σ̄µ(i)σ̄µ( j)

Lineon Abelian

Non-Abelian σµ(i)σ ν ( j), σ̄µ(i)σ ν ( j),
σµ(i)σ̄ ν ( j), σ̄µ(i)σ̄ ν ( j)

In order for an anyon to remain deconfined upon conden-
sation, its string operator must commute with Vlµ . In other
words, the anyon must braid trivially with the ψψ̄ p-loop.
For example, a σ planon in an xy plane has a braiding phase
−1 with a ψψ̄ p-loop created by some Vlx or Vly , and is
therefore confined. On the other hand, a σ planon in an xy
plane combines with a σ planon in an xz plane to form a lineon
that moves in the x direction, and this lineon is deconfined. We
summarize the deconfined excitations in Table I.

Although Ising cage-net is exactly solvable, it is not obvi-
ous how to calculate its GSD. In the following sections, we
will introduce a new way of calculating the GSD that applies
to Ising cage-net. We will start with some simple (2 + 1)D
topological orders, and work our way up to Ising cage-net.

III. GSD OF CHIRAL ISING

The chiral Ising anyon model [7] (“chiral Ising” for short)
is a (2 + 1)D topological order whose properties such as GSD
and anyon structure are well known. As explained in Sec. II,
we can use chiral Ising to construct doubled Ising and hence
Ising cage-net. In this section, we review chiral Ising and
calculate its GSD with an alternative method, namely the
operator algebra approach. While this approach may seem
overcomplicated for this relatively simple model, we aim to
set up the general formalism and present several useful math-
ematical statements, as this approach will be used in Sec. VII
for calculating the GSD of Ising cage-net.

There are three anyons in chiral Ising: 1, σ , and ψ . This
model can be obtained, e.g., by gauging the Z2 fermion parity
symmetry in a p + ip superconductor. In this context, 1 is the
vacuum, σ is the π gauge flux, and ψ is the gauge charge. The
fusion rules are σ × σ = 1 + ψ , σ × ψ = σ , ψ × ψ = 1.
The F and R symbols can be found in Ref. [9]. The GSD of
a (2 + 1)D topological order on a torus is equal to its number
of anyons, so the Ising anyon model has GSD = 3. This is
equivalent to saying that the algebra of logical operators is
A0 = Mat3. Here, Matn is the set of all n × n complex matri-
ces. In the operator algebra approach, which we will discuss
now, we treat A0 as the more fundamental object, design a
framework to compute A0 without knowledge of the ground
space H0, and view H0 as a representation space of A0.

The starting point of the operator algebra approach is a set
of logical operators. We require these operators to linearly
span the vector space of all logical operators, but we do
not require them to be linearly independent. For a (2 + 1)D

topological order on a torus, we take these to be operators of
the form

v(a, b, c) = a

b

a

b

c , (4)

where a, b, c are anyons consistent with the fusion rules (for
simplicity we assume no fusion multiplicity). We call such an
operator an elementary operator. If b = 1 then we must have
a = c, and we will sometimes use the short-hand notation
ax = v(a, 1, a); similarly by = v(1, b, b).

Of course, an elementary operator acts on the ground space
H0 and has a matrix representation, but our discussion here
does not rely on such a representation. Instead, we view the
elementary operators as abstract objects. We can form a com-
plex vector space A over the elementary operators, with formal
addition and formal scalar multiplication. The vector space A
has an additional operation called multiplication, defined for
a pair of elementary operators by stacking one operator on top
of the other and reducing the diagram to a sum of elementary
operators using F and R symbols,

v(a, b, c)v(a′, b′, c′) = a

b

a′

b′
c

c′

=
∑

f,g

√
dfdg

dada′dbdb′ c

c′
a′

a
b g

b′

f

b′

a′
b

a

=
∑

f,g,h

λ(f, g, h)v(f, g, h),

with some coefficients λ( f , g, h). Here f , g, and h are some
anyons, and da is the quantum dimension of a. Going from
the first line to the second line, we fused a with a′ to get f ,
and b with b′ to get g; going from the second line to the third
line, we used F and R moves to transform the diagrams into
elementary operators. In principle, we can compute λ( f , g, h)
for a general anyon theory, but in this paper we will only need
some simple cases. For example, in chiral Ising we have

ψxψy = v(ψ, 1,ψ )v(1,ψ,ψ ) = −v(ψ,ψ, 1),

where the minus sign comes from Rψ,ψ
1 = −1. The multi-

plication has an identity 1 = v(1, 1, 1). We say that A is
an algebra, which is a complex vector space equipped with
multiplication and a multiplicative identity (Definition 8 in
Appendix A 1 explains this concept more rigorously). If one
views the elements of A as operators on H0, then the addition,
scalar multiplication and multiplication are the usual matrix
operations. However, we stress again that we would like to
view A as a structure in its own right and not interpret it as a
matrix algebra acting on a Hilbert space just yet.
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For chiral Ising, we have 10 elementary operators

v(1, 1, 1), v(ψ, 1,ψ ),

v(1,ψ,ψ ), v(ψ,ψ, 1),

v(σ, 1, σ ), v(1, σ, σ ),

v(σ,ψ, σ ), v(ψ, σ, σ ),

v(σ, σ, 1), v(σ, σ,ψ ).

Therefore, dim(A) = 10. However, we know that the alge-
bra of logical operators should be A0 = Mat3, which has
dim(A0) = 9, so A is too large. This means that we need to
reduce the redundancy in A by modding out some relations.
Conveniently, this redundancy reduction turns out to be equiv-
alent to acting on A by a projector P, which kills the subspace
(1 − P)A and preserves its complement PA.

Before discussing where the relations come from, we want
to first answer a question: How do we know whether we have
found sufficiently many relations so that PA is small enough?
For a topological or fractonic order, its algebra of logical
operators should be Matn for some n. Conversely, a matrix
algebra Matn has the property that no more redundancy can
be modded out (Definition 10 and Lemma 11). Therefore,
the redundancy reduction stops if and only if PA is a matrix
algebra.

Furthermore, all of the algebras in the physical models
in this paper have the additional property of being so-called
semisimple.

Definition 1. An algebra A is semisimple if it can be written
as a direct sum

A = A1 ⊕ · · · ⊕ Am, (5)

where each Ai is a matrix algebra.
The redundancy reduction amounts to finding a projector

P that kills all but one Ai, and then the true algebra of logical

operators is this Ai. The kernel of P consists of operators that
we identify with 0, so we are taking a “quotient” of A (see
details in Appendix A 1).

Given A, its decomposition (5) can be performed system-
atically, but for the case of chiral Ising in this section, we will
first write down the result,

A = Mat3 ⊕ Mat1. (6)

A systematic derivation can be found in Sec. IV. In this de-
composition, we have

Mat3 = span{1 + ψx, 1 + ψy, 1 + r,

σx, σy, v(σ,ψ, σ ), v(ψ, σ, σ ),

v(σ, σ, 1), v(σ, σ,ψ )},
Mat1 = span{1 − r},

where

r = 1
2 (1 + ψx + ψy − ψxψy). (7)

The 9 spanning elements of Mat3 are not very important, but
the element r will be useful throughout this paper.

Given the decomposition (6), clearly we want to define
the projector P such that PA = Mat3. However, if we did
not know that A0 = Mat3 in the first place, then we would
need to justify this choice of P. To do so, we note that A is
obtained only using fusion rules, F symbols and R symbols,
while further information such as the topology of the torus
has not been fully utilized. Indeed, we can put a contractible
σ -loop “around the corners” of the torus, reduce it to a sum
of elementary operators on the one hand, and demand it be
equal to the quantum dimension

√
2 of σ on the other hand.

Using red lines for σ strings and blue lines for ψ strings, the
reduction to elementary operators is performed as follows:

1√
2

=
1√
2

=
1√
2

∑

a,b

√
dadb

d4
σ

a

b

=
1

2
√

2
+ + +

=
1

2
√

2
+ + +

=
1

2
√

2

(√
2 +

√
2ψx +

√
2ψy +

√
2v(ψ, ψ, 1)

)

=
1
2
(1 + ψx + ψy − ψxψy)

= r, (8)
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where we moved the
√

2 to the denominator. In this calcu-
lation, we first moved the σ strings close together, and then
fused the parallel σ strings to obtain four outcomes (second
line). The result is demanding r = 1. In other words, we
identify 1 − r with 0 by taking the projector P = (1 + r)/2,
which precisely kills 1 − r. The same relation was also found
in Ref. [10]. We can repeat the same calculation for a 1-loop or
a ψ-loop “around the corners”, but in the end we obtain tauto-
logical relations. Only non-Abelian anyons can give nontrivial
relations.

To conclude this section, we summarize the operator alge-
bra approach as follows:

Protocol 2. Suppose we have a topological or fractonic
order.

(1) We take a set of logical operators that span the space
of all logical operators but are not necessarily linearly inde-
pendent.

(2) We reduce the redundancy of these logical operators
with F and R moves as much as possible. Then we take the
formal algebra A over the remaining operators, which is a
semisimple algebra. In a (2 + 1)D topological order, if we
take the operators v(a, b, c) as in (4), then these operators have
no such redundancy and there is no need for this step.

(3) We find relations in A by physical argument. In a (2 +
1)D topological order, the relations are given by loops of (non-
Abelian) anyons “around the corners”. For Ising cage-net, we
will see that the relations are given by cage structures of non-
Abelian strings. We then mod out the relations by acting with
the corresponding projector P. If PA is a matrix algebra, then
the true algebra of logical operators is A0 = PA. In Sec. IV,
we will discuss a quick way to find P.

IV. STRUCTURE OF SEMISIMPLE ALGEBRA

The correctness of the decomposition (6) can be checked
by hand, but this is far from systematic. At the same time, we
also do not have a systematic method for converting relations
to projectors. In this section, we resolve these two issues by
discussing the structure of a semisimple algebra, and provide
an efficient way to compute projectors. Several statements in
this section will be used in the calculations in later sections.

In the decomposition (5) of a semisimple algebra A, each
component Ai has its own multiplicative identity Pi, called a
primitive central projector of A.

Definition 3. An element x ∈ A is central if [x, y] = 0 for
all y ∈ A. The set of all central elements of A is the center of
A, written as Z (A). A central element x ∈ Z (A) is a central
projector if x2 = x. A central projector x is primitive if for all
central projector y ∈ A, we have xy = 0 or x.

The primitive central projectors Pi have the property that
every central projector Q can be written as

Q =
∑

i

λiPi,

where λi = 0 or 1. If we represent A as block-diagonal matri-
ces, then a central projector is the identity of several blocks,
and a primitive one occupies exactly one block. It behaves like
a projector in the usual sense when acting on A by left mul-
tiplication (equivalent to right multiplication and conjugation
since Q is central).

In principle, given a basis {vα} of A and structure constants
f γ
αβ defined by

vαvβ =
∑

γ

f γ
αβvγ , (9)

the central projectors are the solutions to the equations

[x, vα] = 0 for all α,

x2 = x. (10)

If the solutions are {Qk}, then the primitive ones form the
subset {Pi} ⊂ {Qk} of maximal size such that PiPj = 0 for all
i '= j. We then obtain the decomposition (5) where Ai = PiA.

Next, we discuss the conversion of relations into projectors.
In this paper, the relations obtained from physical argument
happen to all be central in A. It also happens that a simply
linear rescaling is enough to convert all the relations into
central projectors, e.g., the rescaling of 1 − r into (1 − r)/2
for chiral Ising. Suppose that we have relations Q1, . . . , Qm
where each Qk is a central projector. Then the overall projector
is

P = (1 − Q1) · · · (1 − Qm). (11)

Such a projector can also be constructed without the assump-
tion that Qk is central, and this construction is discussed in
Appendix A 1.

Following this procedure, we find the primitive central
projectors of chiral Ising to be

P1 = 1
2 (1 + r), P2 = 1

2 (1 − r).

Applying (11) with Q = P2, we find

PA = (1 − P2)A = P1A = Mat3,

which is the matrix algebra we want.
In the remaining sections, (11) will be used constantly for

computing projectors.

V. DOUBLED ISING AND CONDENSATION

Ising cage-net is obtained via p-loop condensation, an
example of Bose-Einstein condensation. In this section, we
discuss the topic of condensation in the operator algebra ap-
proach by studying the simple example of condensation in
doubled Ising.

As explained in Sec, II, doubled Ising is a stack of two
copies of chiral Ising, whose anyons are 1, σ , ψ and 1, σ̄ ,
ψ̄ , respectively. Now suppose we want to condense the boson
ψψ̄ . For an anyon to remain deconfined upon condensation, it
must braid trivially with ψψ̄ . Such anyons are 1 = ψψ̄ , ψ =
ψ̄ and σ σ̄ . Furthermore, σ σ̄ is no longer a simple particle,
but instead “splits” into two anyons σ σ̄ = e + m. To see why,
note that σ σ̄ is the fusion product of two Majorana modes and
hence a (complex) fermion mode. The parity p of this fermion
mode can be 0 (unfilled) or 1 (filled), and braiding with σ or
σ̄ switches the value of p, so p is not a good quantum number
in doubled Ising. However, if ψψ̄ is condensed then both σ
and σ̄ are confined, and therefore p becomes a good quantum
number that distinguishes the unfilled fermion mode (anyon
e) from the filled (anyon m). The resulting topological order
is the toric code [11].
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It turns out that the operator algebra approach provides a
nice description of condensation and, in particular, the “split-
ting” of anyons. To begin with, we follow Steps 1 and 2 of
Protocol 2 to obtain a semisimple algebra A with dim(A) =
100. Since doubled Ising is two copies of chiral Ising, we can
find the decomposition of A by taking a tensor product,

A = (Mat3 ⊕ Mat1)⊗2

= Mat9 ⊕ Mat3 ⊕ Mat3 ⊕ Mat1. (12)

The quantum dimensions of σ and σ̄ give us two relations
r = 1 and r̄ = 1, where

r = 1
2 (1 + ψx + ψy − ψxψy),

r̄ = 1
2 (1 + ψ̄x + ψ̄y − ψ̄xψ̄y).

By (11), these relations give rise to a projector

P = 1
4 (1 + r)(1 + r̄),

and PA = Mat9 is the correct (ground space) operator algebra
of doubled Ising. Of course, σ σ̄ is also a non-Abelian anyon,
and it gives a relation rr̄ = 1, but we do not need to consider
this relation separately because r = 1 = r̄ already implies
rr̄ = 1.

To condense ψψ̄ , we want to identify ψxψ̄x and ψyψ̄y with
1 and understand the consequence of doing so. Let M be the
subalgebra of A generated by ψxψ̄x and ψyψ̄y. M is an Abelian
subalgebra since we have [x, y] = 0 for all x, y ∈ M. Upon
condensation, the logical operators that remain “deconfined”
are those that commute with M. Such deconfined operators
form the commutant of M, which is a semisimple subalgebra
of A defined as

M ′ = {x ∈ A | [x, y] = 0 for all y ∈ M}.

Since M is Abelian, we have M ⊂ M ′. To be precise, M ′ is
spanned by elementary operators v(a, b, c) where a and b take
values in {1,ψ, ψ̄,ψψ̄, σ σ̄ }. A straightforward calculation
shows dim(M ′) = 28. By analyzing the primitive central pro-
jectors of M ′ using (10), we can decompose M ′ as

M ′ = (Mat3 ⊕ 3Mat2) ⊕ 3Mat1 ⊕ 3Mat1 ⊕ Mat1, (13)

where 3Mat2 means Mat2 ⊕ Mat2 ⊕ Mat2, etc. Here, the sum-
mands are organized in correspondence with the summands in
(12), i.e., (Mat3 ⊕ 3Mat2) is a subalgebra of the Mat9 in (12),
the first 3Mat1 is a subalgebra of the first Mat3 in (12), and
so on.

Next, we need to mod out all relations we know. Firstly, we
have the quantum dimension of σ σ̄ , which demands rr̄ = 1.
By (11), this gives a projector

P12 = 1
2 (1 + rr̄).

We chose the notation P12 for consistency with the discussion
in Sec. VI. Now we note that

P12A = Mat9 ⊕ Mat1,

since r and r̄ both act as +1 on Mat9, and both act as −1 on
Mat1. Therefore, by restricting the action of (1 + rr̄)/2 to M ′,
we have

P12M ′ = (Mat3 ⊕ 3Mat2) ⊕ Mat1.

Secondly, we have the condensation, which demands ψxψ̄x =
1 and ψyψ̄y = 1. Again by (11), these two relations give a
projector

Pc = 1
4 (1 + ψxψ̄x )(1 + ψyψ̄y),

where the subscript “c” stands for “condensation”. Thus the
overall projector is

P = PcP12,

and we need to check the action of Pc on (Mat3 ⊕ 3Mat2)
and on Mat1. The latter is straightforward: Mat1 is spanned
by (1 − r)(1 − r̄), and explicit calculation shows

Pc(1 − r)(1 − r̄) = (1 − r)(1 − r̄).

Therefore, Mat1 is in PM ′. On the other hand, let Q0 = (1 +
r)(1 + r̄)/4 be the central projector that projects A onto Mat9.
Since both Pc and Q0 are central projectors, so is PcQ0, and
we also claim that PcQ0 is primitive. This is a consequence of
the following lemma:

Lemma 4. Let B be a matrix algebra, N an Abelian sub-
algebra of B, and N ′ the commutant of N . Then we have
Z (N ′) = N .

It is easy to see that N ⊂ Z (N ′), and Lemma 4 says that
the two are actually equal. Technically, N must satisfy an-
other condition, and Lemma 13 in Appendix A 1 explains this
point more rigorously. Applying Lemma 4 with B = Q0A and
N = Q0M, we know that Z (Q0M ′) is generated by ψxψ̄xQ0
and ψyψ̄yQ0. It is then straightforward to use the prescription
in Sec. IV to find the primitive projectors from the central
elements, and indeed PcQ0 is one of them. Thus we know that
PcQ0M ′ is a matrix algebra, and we need to determine whether
it is Mat3 or one of the three copies of Mat2. For this purpose,
we note that for any operator x ∈ A, we can represent xQ0 as
a 9 × 9 matrix ρ9(xQ0), or ρ9(x) for short. The subscript l in
ρl indicates the matrix dimension. A systematic way to de-
termine this representation ρ9 can be found in Appendix A 3,
but here we will start with a 3 × 3 matrix representation ρ3 of
operators in chiral Ising,

ρ3(ψx ) =




1

1
−1



, ρ3(σx ) =




0

√
2 0√

2 0 0
0 0 0



,

ρ3(ψy) =




1

−1
1



, ρ3(σy) =




0 0

√
2

0 0 0√
2 0 0



.

(14)

The correctness of this representation can be confirmed by
hand or by following the discussion in Appendix A 3. The
operators in Mat9 can be obtained by tensoring the above
matrices. In particular, ρ9(Q0) is the 9 × 9 identity, and we
find ρ9(PcQ0) to be a diagonal matrix

ρ9(PcQ0) = diag(1, 0, 0, 0, 1, 0, 0, 0, 1). (15)

Since tr(ρ9(PcQ0)) = 3, we have PcQ0M ′ = Mat3. To summa-
rize, we have

PM ′ = Mat3 ⊕ Mat1, (16)
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where the projector P accounts for deconfined anyons and the
condensation condition.

The bottom line of (16) is that even after modding out all
the relations we know, we still do not obtain a matrix algebra.
However, we know that the algebra of logical operators must
be a matrix algebra, so we need to do something to PM ′.
For this purpose, we visualize PM ′ as block-diagonal matrices
embedded in Mat4,

PM ′ = . (17)

We have the following observation: The splitting of σ σ̄ pre-
cisely “fills the blanks” in (17) to turn Mat3 ⊕ Mat1 into Mat4.

To justify this observation, we will work out a 4 × 4 matrix
representation ρ4 of, say, ex and compare it with the known re-
sult from the toric code. By (15), the Mat3 block of an element
x ∈ PM ′ is obtained by taking rows and columns 1, 5 and 9
from ρ9(x). On the other hand, the Mat1 block of x ∈ PM ′

is determined by its action on the generator (1 − r)(1 − r̄) of
Mat1. For example,

ψx(1 − r)(1 − r̄) = −(1 − r)(1 − r̄),

σxσ̄x(1 − r)(1 − r̄) = 0.

Using this method, we find the ρ4 representations of some
operators in PM ′ to be

ρ4(ψx )=





1
1

−1
−1



, ρ4(σxσ̄x )=





0 2 0 0
2 0 0 0
0 0 0 0
0 0 0 0



,

ρ4(ψy)=





1
−1

1
−1



, ρ4(σyσ̄ y)=





0 0 2 0
0 0 0 0
2 0 0 0
0 0 0 0



.

We want to use physical argument to find ρ4(ex ). We have
equations

ρ4(ex )† = ρ4(ex ),

(1 + ρ4(ψx ))ρ4(ex ) = ρ4(σxσ̄x ),

ρ4(ex )ρ4(ψy) = −ρ4(ψy)ρ4(ex ),

ρ4(ex )2 = 1.

Line 1 says that e is its own antiparticle; line 2 comes from
ψ × e = m and σ σ̄ = e + m; line 3 says that e and ψ braid
with a −1 phase; line 4 comes from the fusion rule of e. The
most general solution is

ρ4(ex ) =





0 1
1 0

0 eiθ

e−iθ 0



.

As expected, ρ4(ex ) has entries e±iθ in the “blank” areas of
(17). There is no way to fix θ , since conjugation by

U =





1
1

1
eiφ





acts trivially on Mat3 ⊕ Mat1 but nontrivially on Mat4, map-
ping θ to θ ± φ. Without loss of generality, we choose θ = 0.
This gives

ρ4(ex ) =





0 1
1 0

0 1
1 0



, ρ4(mx )=





0 1
1 0

0 −1
−1 0



.

Using the same method while demanding ρ4(ey) commute
with ρ4(ex ), we find

ρ4(ey) =





0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0



, ρ4(my)=





0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0



.

One may check that these indeed obey the (ground space)
operator algebra of the toric code. Moreover, they generate
matrices such as





0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0




= 1

4
ρ4(σxσ̄x )[ρ4(ey) − ρ4(my)],

and hence all other matrices with entries in the “blank” areas
of (17).

To conclude this section, we summarize condensation in
the operator algebra approach as follows:

Protocol 5. Let A be the semisimple algebra of a topolog-
ical or fractonic order, and suppose that {a} is a set of bosons
to be condensed.

(1) We define M as the subalgebra of logical operators of
{a}. If {a} can be condensed simultaneously, then M is always
Abelian.

(2) Let M ′ be the commutant of M. We define P as the
projector due to the condensation condition, relations due to
deconfined anyons as well as relations from other physical
arguments. For Ising cage-net, the physical arguments will
come from the plaquette and cage terms of the Hamiltonian
(3). We then take the algebra PM ′.

(3) If the semisimple algebra

PM ′ = Matd1 ⊕ · · · ⊕ Matdm

has more than one component, then certain operators must
split. The result of splitting is a matrix algebra

A0 = Matd1+···+dm ,

which is obtained by “filling the blanks” in the matrix rep-
resentation of PM ′. The correctness of this operation can
be confirmed manually for all the (2 + 1)D models in this
paper, and we conjecture that this holds for all topological or
fractonic orders.
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FIG. 6. 1-F Ising obtained from layers of doubled Ising on a
square-octagon lattice, similar to the construction of Ising cage-net.
Each plane is a layer of doubled Ising. The product of Vlx on the
green edges [the set Sx in (18)] creates a pair of ψψ̄ in each xy plane.
If we condense the - particles created this way, then we obtain 1-F
Ising together with decoupled layers of doubled Ising in the yz and
zx planes.

VI. GSD OF ONE-FOLIATED ISING CAGE-NET

We will discuss one more (2 + 1)D topological order in
this section before going to Ising cage-net in Sec. VII. In
particular, we will show a method of computing the GSD
using a Cartan subalgebra, which is very convenient when
applied to Ising cage-net.

The model we want to discuss is called the one-foliated
Ising cage-net model (“1-F Ising” for short), which is con-
structed as follows: We take a stack of 2L copies of chiral
Ising, and condense the boson - = ψ (1) × · · · × ψ (2L),
where ψ (k) is the ψ particle from the kth layer. The chirality
of these copies of chiral Ising does not affect the GSD. The
condensation of doubled Ising into the toric code in Sec. V is
a special case of this construction with L = 1.

In the limit L → ∞, 1-F Ising can be viewed as a fracton
model, whose partially mobile excitations are planons. It is
related to Ising cage-net as follows: In Ising cage-net, let Sx be
a set of principal edges lx related to each other by translation
in the z direction (green edges in Fig. 6). Then the operator

∏

lx∈Sx

Vlx , (18)

where Vlx is a condensation operator defined in (2), creates
a pair of ψψ̄ anyons in each xy plane. Therefore, - in the
xy plane is part of the condensate in Ising cage-net. So are
- in the yz and zx planes. In this sense, 1-F Ising is the
“one-foliated” version of Ising cage-net, while Ising cage-net
is “three-foliated”.

A. GSD from anyon counting

Since the 1-F Ising is a (2 + 1)D topological order, its
GSD can be obtained by counting anyons. In order for an
anyon to be deconfined upon condensation, it must contain
an even number of σ ′s in order to braid trivially with - = ψ1
× · · · × ψ2L. The only such particles are ones where there are
an even number of layers with σ . Additionally, we can attach
ψ to any layer where there is no σ , since that does not affect
the braiding with -. The condensation of - identifies some

pairs of anyons with each other, which reduces the number of
distinct anyons. Finally, the anyon . = σ (1) × · · · × σ (2L)
splits into two simple particles . = e + m since the overall
fermion parity of . is a good quantum number. Another
way to see this is to note that . × . = 1 + - + · · · , so the
presence of two identity channels implies that . splits into
two particles. These conditions give constraints on a label
a(1) × · · · × a(2L) of an anyon.

We now count the number of such labelings. If we choose
2k layers i1, . . . , i2k to attach σ to, where k = 0, . . . , L − 1,
then there are (2L − 2k) places left to attach ψ . It would
seem, therefore, that there are 22L−2k inequivalent ways to
attach ψ to the layers. However, - = 1 reduces the number of
distinct labelings by a factor of 2. For example, consider the
case where L = 4. Here, the particles σ1σ2ψ3 and σ1σ2ψ4 are
equivalent, since σ1σ2ψ3 = σ1σ2 × ψ1ψ2ψ3 = σ1σ2 × ψ4 us-
ing - = ψ1ψ2ψ3ψ4 = 1. This generalizes straightforwardly
to an arbitrary number of layers and σ ’s, halving the number
of anyons in the theory. Therefore, there are

(2L
2k

)
22L−2k−1

inequivalent ways to choose 2k layers to place σ and attach 1’s
or ψ’s to the remaining layers. The case where k = L needs to
be considered separately. In this case, the anyon of interest is
., which splits into e and m. Thus the total number of anyons
in the theory (equal to the GSD) is

GSD =
L−1∑

k=0

(
2L
2k

)
22L−2k−1 + 2

=
L∑

k=0

(
2L
2k

)
22L−2k−1 + 2 − 1

2
,

where the +2 accounts for the k = L case. To evaluate this,
we use the binomial theorem

(1 + x)2L + (1 − x)2L =
2L∑

j=0

(
2L
j

)
(x2L− j + (−x)2L− j )

= 2
L∑

k=0

(
2L
2k

)
x2L−2k .

This can be used to find the GSD,

GSD =
L∑

k=0

(
2L
2k

)
22L−2k−1 + 2 − 1

2

= 1
4

(1 + 2)2L + 1
4

(1 − 2)2L + 3
2

= 1
4

(
9L + 7

)
. (19)

The same result was obtained by Slagle, Aasen, Williamson,
and Shirley [12].

B. GSD from Cartan subalgebra

We now try to reproduce (19) using the operator algebra
approach. Protocol 5 is based on the full algebra of 1-F Ising,
but we delay this calculation to Sec. VI C. Instead, here we
will compute the GSD using a so-called Cartan subalgebra of
the full algebra.
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Definition 6. A subalgebra C of an algebra A is a Cartan
subalgebra if it is Abelian and maximal. Abelian means that
[x, y] = 0 for all x, y ∈ C; maximal means that if any subal-
gebra C′ ⊂ A is Abelian and C ⊂ C′, then C′ = C.

Note that this definition is not entirely rigorous mathemat-
ically: There is another condition on C, which we did not
mention, and this condition holds for the choice of C that
we will use later. Definition 15 in Appendix A 1 explains this
extra condition.

A Cartan subalgebra is related to the GSD by the following
lemma:

Lemma 7. Let A0 be a matrix algebra, C0 ⊂ A0 a Cartan
subalgebra. Then dim(C0)2 = dim(A0). In particular, if A0 is
a (ground space) operator algebra, then GSD = dim(C0).

To understand this lemma with an example, take C0 to be
the set of diagonal matrices in A0. The lemma is obvious in
this case.

For 2L copies of chiral Ising with semisimple algebra

A = (Mat3 ⊕ Mat1)⊗2L,

we have a convenient choice of a Cartan subalgebra C, which
is spanned by the elementary operators with no σ . To compute
the GSD, we want to understand the transition from C to C0.
Our approach will be similar to Steps 1 and 2 of Protocol
5, although we will adapt these steps to fit with the Cartan
subalgebra. Let M be the subalgebra of A generated by -x
and -y (the condensate). In the commutant M ′ of M, we have
central projectors

Pc = 1
4 (1 + -x )(1 + -y) (20)

due to condensation, and

Pi j = 1
2 (1 + r(i)r( j)) (21)

due to deconfined anyons σ (i)σ ( j), where 1 ! i < j ! 2L
and

r(i) = 1
2 (1 + ψx(i) + ψy(i) − ψx(i)ψy(i)).

Although there are also non-Abelian anyons consisting of
more than two σ ’s and possibly ψ’s, for the purpose
of constructing projectors it suffices to only consider pairs
of σ ’s. This is because, e.g., σ (1)σ (2)σ (3)σ (4) gives a re-
lation r(1)r(2)r(3)r(4) = 1, but this is already implied by
r(1)r(2) = 1 and r(3)r(4) = 1.

From this point on, we will focus only on the Cartan sub-
algebra. Importantly, in this specific case we have C ⊂ M ′,
and the central projectors Pc and Pi j all map C to C since
they also contain no σ . Meanwhile, we can argue physically
that splitting does not enlarge the Cartan subalgebra. This is
because the braiding of . with, e.g., ψ (1) gives a −1 phase
and thus the same holds for the anyons e and m split from ..
Therefore, the entirety of C0 can be obtained by projection on
C. In other words, we have C0 = PC, where

P = Pc

∏

i< j

Pi j . (22)

Since P is a projector, we have

GSD = dim(PC) = tr(P).

We stress that the underlying vector space here is C, and that
we are taking the trace of the action of P on C.

To find tr(P), we note that in principle, we can write

P =
∑

a,b

µ(a, b)v(a, b, a × b), (23)

where neither a nor b contains any σ (and hence a × b is
unique), and µ(a, b) are some coefficients. We then observe
that when v(c, d, c × d ) ∈ C is multiplied by v(a, b, a × b)
in (23), the result

±v(a × c, b × d, a × b × c × d )

is never proportional to v(c, d, c × d ) unless a = b = 1. As
a result, only v(1, 1, 1) contributes to tr(P), so we only need
to find the coefficient µ(1, 1). For this purpose, we need to
expand (22). Firstly, we use r(i)2 = 1 to obtain

∏

i< j

Pi j = 1
22L−1

L∑

k=0

∏

i1<···<i2k

r(i1) · · · r(i2k )

= 1
22L

[
2L∏

i=1

(1 + r(i)) +
2L∏

i=1

(1 − r(i))

]

.

The first line is a sum of all products of an even number of
r(i)’s; the second line can be interpreted as forcing the r(i)’s
to be all +1 or all −1, which is a consequence of forcing each
pair of the r(i)’s to be both +1 or both −1 due to {Pi j}. Thus

P = 1
4

(1 + -x + -y + -x-y)

× 1
22L

[
2L∏

i=1

(1 + r(i)) +
2L∏

i=1

(1 − r(i))

]

.

Now since

1 + r(i) = 3
2 + 1

2ψx(i) + 1
2ψy(i) − 1

2ψx(i)ψy(i),

1 − r(i) = 1
2 − 1

2ψx(i) − 1
2ψy(i) + 1

2ψx(i)ψy(i),

the only four terms in the expansion of
∏

i (1 + r(i)) that
combines with one of 1, -x, -y, and -x-y to contribute to
µ(1, 1) are

(
3
2

)2L

,
∏

i

(
1
2
ψx(i)

)
,

∏

i

(
1
2
ψy(i)

)
,

and
∏

i

(
−1

2
ψx(i)ψy(i)

)
.

Summing these up, we find that the contribution of the∏
i (1 + r(i)) part to µ(1, 1) is (9L + 3)/24L+2. Similarly, the

contribution of the
∏

i (1 − r(i)) part is 4/24L+2. Combining
these together, we obtain

GSD = tr(P) = 24Lµ(1, 1) = 1
4 (9L + 7),

where we used the fact that dim(C) = 24L.
This calculation is almost entirely combinatorial and

straightforward. However, it is also highly specific to simple
examples such as Ising – it relies on a nice Cartan subalgebra,
which is fixed by the central projectors and cannot be enlarged
by splitting due to physical arguments.
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C. GSD from full algebra

Finally for the discussion of 1-F Ising, we compute its GSD
using Protocol 5.

Again, we take M to be the subalgebra of A generated by
-x and -y, and M ′ the commutant of M. We want to find PM ′

where P is given by (22). We will not try to decompose M ′

into matrix algebras like we did for doubled Ising in Sec. V,
since most of the components of A will be killed by the central
projectors Pi j , just like the two copies of Mat3 in (12). Instead,
we will first discuss the action of Pi j on A, and then apply Pc.
To start with, we have

∏

i< j

Pi jA = B0 ⊕ B1,

where B0 = Mat9L and B1 = Mat1. This is because {Pi j}
forces the r(i)’s to be all +1 or all −1. As a result, we have

∏

i< j

Pi jM ′ ⊂ B0 ⊕ B1,

so we need to find the action of Pc on (B0 ⊕ B1) ∩ M ′.
For the B1 ∩ M ′ part, we know that B1 ⊂ Z (A) since B1 is a

1 × 1 block. Thus B1 ∩ M ′ = B1. Each of ψx(i) and ψy(i) acts
on B1 as −1, so Pc preserves B1. We conclude that Pc(B1 ∩
M ′) = Mat1.

For the B0 ∩ M ′ part, we will repeat what we did in Sec. V
for Mat3 ⊕ 3Mat2, and use a matrix representation of Pc to
determine its action. Let

Q0 = 1
22L

∏

i

(1 + r(i))

be the central projector that projects onto B0. By Lemma 4,
the central projector PcQ0 is primitive, and hence the algebra
PcQ0M ′ is a matrix algebra. On B0, the action of operators
such as Pc has representation ρ9L . Thus we have PcQ0M ′ =
Matn where n = tr(ρ9L (PcQ0)). To find n, we use

n = dim (eigenspace ρ9L (Pc) = 1)

= dim (eigenspace ρ9L (-x ) = ρ9L (-y) = +1).
Let Dst

2L, where s, t can be + or −, be the dimension of
the common eigenspace {w} of ρ9L (-x ) and ρ9L (-y) where
ρ9L (-x )w = sw and ρ9L (-y) = tw (i.e., ±w). From the rep-
resentation ρ3 of ψx and ψy in (14), we find

D++
2L = 1

4 (9L + 3),

D+−
2L = D−+

2L = D−−
2L = 1

4 (9L − 1). (24)

We will show the calculation of D+−
2L as an example. Let

{u1, u2, u3} be the standard basis for C3, and

w = u⊗k1
1 ⊗ u⊗k2

2 ⊗ u⊗k3
3 .

In order for ρ9L (-x )w = +w and ρ9L (-y)w = −w, accord-
ing to (14), we must have k3 odd, k2 even, and hence k1
odd. The number of such combinations of (k1, k2, k3) satis-
fying k1 + k2 + k3 = 2L can be found using the multinomial
theorem:

D+−
2L = 1

4 [(1 + 1 + 1)2L − (1 + 1 − 1)2L

+ (1 − 1 + 1)2L − (1 − 1 − 1)2L

= 1
4 (9L − 1).

cy
cz

ay
z

by
x

az
x

bz
y

cx
ax

y

bx
z

x
y

z

FIG. 7. Constituents vx (ax
y, bx

z, cx ), vy(ay
z , by

x, cy ), and
vz(az

x, bz
y, cz ) of an elementary operator in Ising cage-net. Arrows

are not drawn since in Ising cage-net, every particle is its own
antiparticle.

Using (24), we find tr(ρ9L (PcQ0)) = D++
2L = (9L + 3)/4. Al-

though here we only made use of D++
2L , the other D’s will be

used in Sec. VII B.
Putting the B0 ∩ M ′ and B1 ∩ M ′ parts together, we con-

clude that

PM ′ = Mat(9L+3)/4 ⊕ Mat1.

This is a semisimple algebra. Similar to what we did in Sec. V
for condensation in doubled Ising, we can also find matrix
representations of ex, mx, ey and my and confirm that they
have nonzero entries in the “blank” areas of PM ′, but we omit
this calculation here. The semisimple algebra then turns into
a matrix algebra

A0 = Mat(9L+7)/4,

and GSD = (9L + 7)/4 as expected.

VII. GSD OF ISING CAGE-NET

In this section, we compute the GSD of Ising cage-net, first
using a Cartan subalgebra, and then using the full algebra.

We consider a system where we stack Lx, Ly, and Lz layers
of doubled Ising in the x, y and z directions, respectively. The
elementary operators here are products of the (2 + 1)D ele-
mentary operators vx(ax

y, bx
z, cx ) in the yz planes, vy(ay

z , by
x, cy )

in the zx planes, and vz(az
x, bz

y, cz ) in the xy planes (Fig. 7).
We will also use notations such as ψx

y (i) to denote the string
operator of ψ from the ith plane orthogonal to the x direction
(i.e., a yz plane) traversing the y direction. To obtain Ising
cage-net from these decoupled layers, we need to condense
ψψ̄ p-loops as discussed in Sec. II. Since our approach uses
the operator algebra on the ground space, we need to combine
the condensation operators Vlµ defined in (2) into a logical
operator (of the decoupled layers). An example of such a
logical operator is shown in Fig. 8(a), which looks like a “net”
orthogonal to the z direction. We call it a --net and denote it
by -z. Explicitly, if T z is a set of principal edges lz related to
each other by translation in the x and y directions (red edges
in Fig. 9), then

-z =
∏

lz∈T z

Vlz =
Lx∏

i=1

(ψψ̄ )x
y(i)

Ly∏

j=1

(ψψ̄ )y
x( j). (25)

Different choices of T z at different xy planes give the same -z

when acting on the ground space. Similarly, we can define -x

and -y.
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FIG. 8. Net-shaped logical operator -z defined in (25), which is
to be condensed in Ising cage-net. In (a), each plane is a layer of
doubled Ising, and the red strings are (ψψ̄ )x

y (i) and (ψψ̄ )y
x ( j). In (b),

equivalently, each plane is a layer of chiral Ising, and the red strings
are ψ x

y (i) and ψ y
x ( j).

If we take the net shape of Fig. 8(a) but replace all ψψ̄’s
with σ σ̄ ’s, then we obtain an operator, which we call a .-net,
or .z in this case, to be more precise. Each .α splits into two
operators .α = eα + mα of the same net shape. In the case of
.z, the operators ez and mz are distinguished by the parity pz

of the fermion mode
Lx∏

i=1

(σ σ̄ )x(i)
Ly∏

j=1

(σ σ̄ )y( j),

which is a good quantum number. This is because anyons
such as σ x(i), which can change pz by braiding with .z are
confined.

The semisimple algebra of the decoupled layers is

A = (Mat3 ⊕ Mat1)⊗2(Lx+Ly+Lz ).

Besides the condensation condition, we need to quotient A by
relations due to deconfined excitations. Since Ising cage-net
has deconfined fractons, lineons and planons, it is not obvious
where exactly the relations come from. Therefore, we return
to the Hamiltonian (3) and construct the relations from the
Hamiltonian terms.

FIG. 9. Action on the lattice degrees of freedom of the operator
-z, which is to be condensed in Ising cage-net. The product of Vlz on
the red edges [the set T z in (25)] is the net-shaped logical operator -z

shown in Fig. 8(a). Note that (25) shown here is a logical operator,
whereas (18) shown in Fig. 6 creates excitations.

y
x

z

FIG. 10. Cage term Bc of Ising cage-net placed “around the cor-
ner edges”. The red, green, and blue strings are 1-loops in the xy, yz,
and zx planes, respectively.

Firstly, the Hamiltonian (3) contains the doubled Ising
plaquette terms B0

p = 1 and B2
p, so a ground state must satisfy

the projector

1
2

(
1 + B2

p

)
= 1

2

(
B1

p

)2
(26)

In the string-net model of doubled Ising, a 1-loop on a (small-
est) plaquette can be viewed as a σ -loop or, equivalently, a
σ̄ -loop. Here, we interpret (26) as creating a loop of σ σ̄ at a
plaquette. Suppose that this plaquette term is placed “around
the corner edges” like

1
2

B1
p

)2 = .

This simplifies to the relation

rα (i)r̄α (i) = 1 (27)

in each layer i orthogonal to the α direction, where, e.g.,

rx(i) = 1
2

(
1 + ψx

y (i) + ψx
z (i) − ψx

y (i)ψx
z (i)

)
,

and similarly for r̄α (i).
Secondly, we can also place a cage term Bc “around the

corner edges” (Fig. 10). This term involves 1-loops in the xy,
yz, and zx planes. In the setup of Fig. 10, we can bring the
1-loops closer together by enlarging the cube c to size Lx ×
Ly × 1. The result is a flat, degenerate cuboid, some of whose
edges coincide with each other. This enlargement is allowed
since the 1-loops can be deformed individually in each layer
of doubled Ising and the enlarged cage term commutes with
the condensation terms Vlµ . We can then simplify this large
cage term. The red strings give

x

y

= 2rz(i)rz(i + 1),

where the two 1-loops are in different xy planes but drawn
in the same plane for illustration, and we draw the degenerate
cuboid as a large yet nondegenerate one. We chose to interpret
the two 1-loops as two σ -loops; other interpretations such as
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one σ -loop and one σ̄ -loop are all equivalent due to (27). The
green strings give

y

z

= 2,

Note that this simplification uses only the fusion rules, F sym-
bols and R symbols. Similarly, the blue strings simplify to a
constant 2. Therefore, Fig. 10 gives a relation rz(i)rz(i+1)=1.

In summary, the Hamiltonian (3) implies that the product
of rα (i) or r̄α (i) with any other rα ( j) or r̄α ( j) should be 1,
where i and j may or may not be equal. We observe that for
the purpose of writing down relations, there is no difference
between anyons with and without bars. Therefore, from now
on we will consider the system as 2Lx, 2Ly, and 2Lz layers of
chiral Ising. The names of operators change accordingly, e.g.,

-z =
2Lx∏

i=1

ψx
y (i)

2Ly∏

j=1

ψy
x ( j),

as shown in Fig. 8(b). Let M be the subalgebra of A generated
by -x, -y, and -z, and M ′ the commutant of M. Inside M ′,
the relations amount to central projectors

Pc = 1
8 (1 + -x )(1 + -y)(1 + -z ) (28)

due to condensation, and

Pα
i j = 1

2 (1 + rα (i)rα ( j)) (29)

due to deconfined planons and cage terms. Their product is

P = Pc

∏

α

∏

i< j

Pα
i j . (30)

With the above setup, we are ready to calculate the GSD.

A. GSD from Cartan subalgebra

Following Sec. VI B, we calculate the GSD of Ising cage-
net using a Cartan subalgebra. The semisimple algebra A has
a Cartan subalgebra C spanned by the elementary operators
with no σ . Just like in Sec. VI B, it happens that C ⊂ M ′, and
the central projectors Pc and Pα

i j all map C to C. We also have
the splitting of the .-nets, but this does not enlarge the Cartan
subalgebra. This is because every .α (and hence eα and mα)
braids nontrivially with some ψ operator. Therefore, we have
GSD = tr(P), where the underlying vector space is C. Again
using the argument in Sec. VI B, if P is expanded into a linear
combination of elementary operators, then only the constant
term µ0 = µ(1, 1, 1, 1, 1, 1) [which is called µ(1, 1) for 1-F
Ising] contributes to tr(P).

To compute µ0, we need to expand (30). This is very
similar to the calculation in Sec. VI B. Firstly, we have

∏

i< j

Pα
i j = 1

22Lα

[
2Lα∏

i=1

(1 + rα (i)) +
2Lα∏

i=1

(1 − rα (i))

]

.

Thus

P = 1
8 (1 + -x + -y + -z

+ -y-z + -z-x + -x-y + -x-y-z )

×
∏

α

1
22Lα

[
2Lα∏

i=1

(1 + rα (i)) +
2Lα∏

i=1

(1 − rα (i))

]

.

We need to find terms in the expansion of
∏

α (· · · ) that com-
bines with one of the eight terms 1,-x, . . . ,-x-y-z to give
a constant term. Now, for example, the only four terms in the
expansion of

∏
i (1 + rz(i)) that can possibly contribute to µ0

are
(

3
2

)2Lz

,
∏

i

(
1
2
ψ z

x (i)
)

,
∏

i

(
1
2
ψ z

y (i)
)

,

and
∏

i

(
−1

2
ψ z

x (i)ψ z
y (i)

)
.

Therefore, we can write

P = 1
8

(1 + -x + -y + -z + -y-z + -z-x + -x-y + -x-y-z )

× 1
24Lx

[

(9Lx + 1) + 2
∏

i

ψx
y (i) + 2

∏

i

ψx
z (i) + 2

∏

i

ψx
y (i)ψx

z (i)

]

× 1
24Ly



(9Ly + 1) + 2
∏

j

ψy
z ( j) + 2

∏

j

ψy
x ( j) + 2

∏

j

ψy
z ( j)ψy

x ( j)





× 1
24Lz

[

(9Lz + 1) + 2
∏

k

ψ z
x (k) + 2

∏

k

ψ z
y (k) + 2

∏

k

ψ z
x (k)ψ z

y (k)

]

+ · · · ,

where “· · · ” means terms that cannot possibly contribute to µ0. Up to permutation of x, y, and z, the pairing of the terms works
as follows:

1 ⇐⇒ (9Lx + 1)(9Ly + 1)(9Lz + 1),

-z ⇐⇒ (9Lz + 1)2
∏

i

ψx
y (i)2

∏

j

ψy
x ( j),
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-x-y ⇐⇒ 2
∏

i

ψx
z (i)2

∏

j

ψy
z ( j)2

∏

k

ψ z
x (k)ψ z

y (k),

-x-y-z ⇐⇒ 2
∏

i

ψx
y (i)ψx

z (i)2
∏

j

ψy
z ( j)ψy

x ( j)2
∏

k

ψ z
x (k)ψ z

y (k),

where “ ⇐⇒ ” indicates the pairing. Combining these to-
gether, we obtain

GSD = 24(Lx+Ly+Lz )µ0

= 1
8 [(9Lx + 1)(9Ly + 1)(9Lz + 1)

+ 4(9Lx + 1) + 4(9Ly + 1) + 4(9Lz + 1)

+ 8 + 8 + 8 + 8]

= 1
8 (E3 + E2 + 5E1 + 45),

where E3 = 9Lx+Ly+Lz , E2 = 9Lx+Ly + 9Ly+Lz + 9Lz+Lx , and
E1 = 9Lx + 9Ly + 9Lz . In Appendix B, we confirm this result
for the smallest system size Lx = Ly = Lz = 1 with a lattice
calculation independent of the operator algebra approach.

B. GSD from full algebra

To conclude our discussion of Ising cage-net, we calcu-
late its GSD using the full semisimple algebra, as we did in
Secs. V and VI C.

Similar to 1-F Ising, the central projectors Pα
i j defined in

(29) kill most of the components of the semisimple algebra
M ′. This is because for each α, projection by Pα

i j forces the
rα (i)’s to be all +1 or all −1. We have

∏

α

∏

i< j

Pα
i jA =

(
Bx

0 ⊕ Bx
1

)
⊗

(
By

0 ⊕ By
1

)
⊗

(
Bz

0 ⊕ Bz
1

)
,

where Bα
0

∼= Mat9Lα and Bα
1

∼= Mat1. We can define central
projectors

Qsxsysz =
∏

α

[
1

22Lα

2Lα∏

i=1

(1 + (−1)sα rα (i))

]

,

where sα = 0 or 1, which project onto the components

Bsxsysz =
⊗

α

Bα
sα

.

We need to find the action of Pc defined in (28) on
[
⊗

α

(Bα
0 ⊕ Bα

1 )

]

∩ M ′.

This intersection has eight components, which are B000 ∩ M ′

and so on. Up to permutation of x, y, and z, we have four cases,
and we discuss them in ascending order of difficulty:

(1) On B111 ∩ M ′ = B111, every ψα
β (i) acts as −1, so

PcQ111M ′ = B111 = Mat1.
(2) On B110 ∩ M ′, each of ψx

y (i), ψx
z (i), ψ

y
z ( j), and ψ

y
x ( j)

acts as −1, while each of ψ z
x (k) and ψ z

y (k) has the rep-
resentation ρ3 given by (14). By Lemma 4, the central
projector PcQ110 is primitive. To determine the matrix algebra
PcQ110M ′, we need the representation ρl of Mat1 ⊗ Mat1 ⊗
Mat9Lz where l = 9Lz . More precisely, we need the common

eigenspace {w} such that ρl (-α )w = +w for all α. Now
we already have ρl (-z )w = +w because ψx

y (i) = −1 and
ψ

y
x ( j) = −1. To ensure, e.g., ρl (-x )w = +w, we must have

[
⊗

k

ρ3[ψ z
y (k)]

]

w = +w, (31)

since ψ
y
z ( j) = −1. Similarly, we must also have

[
⊗

k

ρ3[ψ z
x (k)]

]

w = +w. (32)

The dimension of the eigenspace that satisfies (31) and
(32) is precisely D++

2Lz
defined in (24). Therefore, we have

PcQ110M ′ = Mat(9Lz +3)/4.
(3) On B001 ∩ M ′, each of ψ z

x (k) and ψ z
y (k) acts as −1,

while each of ψx
y (i), ψx

z (i), ψ
y
z ( j), and ψ

y
x ( j) has the repre-

sentation ρ3. To determine the matrix algebra PcQ001M ′, we
need the common eigenspace {w} such that ρl (-α )w = +w
in the representation ρl of Mat9Lx ⊗ Mat9Ly ⊗ Mat1 where
l = 9Lx+Ly . From ρl (-x )w = ρl (-y)w = +w and ψ z

x (k) =
ψ z

y (k) = −1 we obtain

[
⊗

i

ρ3[ψx
z (i)]

]

w =




⊗

j

ρ3[ψy
z ( j)]



w = +w.

Meanwhile, ρl (-z )w = +w implies two possibilities
[
⊗

i

ρ3[ψx
y (i)]

]

w =




⊗

j

ρ3[ψy
x (i)]



w = ±w. (33)

If we take the +w in (33), then we obtain a subspace of
dimension D++

2Lx
D++

2Ly
. On the other hand, if we take the −w

in (33), then we obtain a subspace of dimension D−+
2Lx

D+−
2Ly

.
Overall, we have PcQ001M ′ = Mat(9Lx+Ly +9Lx +9Ly +5)/8.

(4) On B000 ∩ M ′, every ψα
β (i) has the representation ρ3. To

determine the matrix algebra PcQ000M ′, we need the common
eigenspace {w} such that ρl (-α )w = +w in the representa-
tion of Mat9Lx ⊗ Mat9Ly ⊗ Mat9Lz where l = 9Lx+Ly+Lz . This
gives the equations




⊗

j

ρ3
[
ψy

z ( j)
]


w =
[
⊗

k

ρ3
[
ψ z

y (k)
]
]

w = ±w, (34)

[
⊗

k

ρ3
[
ψ z

x (k)
]
]

w =
[
⊗

i

ρ3
[
ψx

z (i)
]
]

w = ±w, (35)

[
⊗

i

ρ3
[
ψx

y (i)
]
]

w =




⊗

j

ρ3
[
ψy

x (i)
]


w = ±w. (36)

Depending on the choice of ±w in these equations, we
have eight possibilities. For example, we can choose −w in
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(34) and (35) and +w in (36), which has a contribution of
D+−

2Lx
D−+

2Ly
D−−

2Lz
to the dimension of the common eigenspace.

The total dimension is

D++
2Lx

D++
2Ly

D++
2Lz

+
(
D−+

2Lx
D+−

2Ly
D++

2Lz
+ perm.

)

+
(
D+−

2Lx
D−+

2Ly
D−−

2Lz
+ perm.

)
+ D−−

2Lx
D−−

2Ly
D−−

2Lz

= 1
8 (E3 + E1 + 4),

where “perm.” means permutations of x, y, and z. Since
D+−

2L = D−+
2L , only cyclic permutations are included. There-

fore, we have PcQ000M ′ = Mat(E3+E1+4)/8.
Summarizing all four cases, we have

PM ′ = Mat(E3+E1+4)/8

⊕
(
Mat(9Lx+Ly +9Lx +9Ly +5)/8 ⊕ perm.

)

⊕
(
Mat(9Lz +3)/4 ⊕ perm.

)
⊕ Mat1.

Using Protocol 5 with the conjecture of “filling the blanks”,
we obtain GSD = (E3 + E2 + 5E1 + 45)/8. In Appendix B,
we confirm this result for the smallest system size Lx = Ly =
Lz = 1 with a lattice calculation independent of the operator
algebra approach.

VIII. SUMMARY

In this paper, we have found the GSD of Ising cage-net to
be

GSD = 1
8 (E3 + E2 + 5E1 + 45),

where E3 = 9Lx+Ly+Lz , E2 = 9Lx+Ly + 9Ly+Lz + 9Lz+Lx , and
E1 = 9Lx + 9Ly + 9Lz . Based on this result, we have concluded
that the Ising cage-net model cannot have a foliation struc-
ture as defined in Ref. [4], because the GSD does not grow
by integer multiples as the system size grows. On the other
hand, we find that the foliation idea can be generalized to
accommodate the renormalization group transformation of the
Ising cage-net model. We discuss this generalized foliation in
a separate paper [5].

To compute the GSD, we have developed a collection
of mathematical tools, which we call the “operator alge-
bra approach”. In this approach, we view the ground space
operator algebra A0 of a topological or fractonic order as
more fundamental than the ground space H0, and write A0
as a semisimple algebra A quotienting out some relations.
In Protocols 2 and 5, we have outlined how this approach
can be used to find A0 and, with the operation of “filling
the blanks”, understand how boson condensation happens
within this framework. The validity of this approach has been
checked in some simple examples, namely chiral Ising in
Sec. III, doubled Ising condensed into the toric code in Sec. V,
and 1-F Ising in Sec. VI.

It may seem that the operator algebra approach is simply
a trick for computing the GSD and, in particular, that the
semisimple algebra A is just an intermediate step in the calcu-
lation of the matrix algebra A0. However, Protocol 5 suggests
that A has its own significance: When studying the condensa-
tion of ψψ̄ in doubled Ising (Sec. V), the components Mat9
and Mat1 of A are both important since they both intersect
nontrivially with M ′. If we focused only on the matrix algebra

X1

X2

Z1

Z2

X3

X4

Z3

Z4

FIG. 11. Two copies of the toric code and their logical operators.
We use the setup of Ref. [13] on a square lattice, which is not drawn
explicitly.

Mat9 of doubled Ising, then we would miss the Mat1. In an-
other perspective, when constructing A, only the relations due
to fusion rules, F symbols and R symbols are considered. Go-
ing from A to A0, we need to further quotient out the relations
due to deconfined anyons. Now when bosons are condensed,
certain anyons become confined. Such confinement reduces
the number of relations due to deconfined anyons, but does not
make any of the fusion rules, F symbols or R symbols invalid
– if they involve confined anyons then they do not affect M
or M ′ anyway. In this sense, the relations have a “hierarchy”,
with relations due to deconfined anyons being “less essential”
than relations due to fusion rules, F symbols, and R symbols.
Therefore, the operator algebra approach provides a new way
of understanding topological and fractonic orders.

In fact, we can identify three important algebras in the
operator algebra approach: A0, A and, in the context of con-
densation, PM ′. Among them, the most physical one is A0
since it is the actual algebra of logical operators. However,
A0 also contains the least information, since it can be derived
from A with the knowledge of operator relations, or from PM ′

by “filling the blanks”.
A direction for future work is to understand the operator

algebra approach more systematically. At this moment, we
can already see some advantages of this approach for studying
fracton models: It does not care about spatial dimension; it
handles logical operators of fully mobile particles, partially
mobile particles and even nonpoint excitations (e.g., mem-
brane operators) on equal ground; it also gives a very simple
description of boson condensation. However, it is too sim-
plistic to view the operator algebra approach as an abstract
semisimple algebra quotienting out some relations. For ex-
ample, suppose that we have two copies of the toric code
(Fig. 11). The ground space of each copy is two qubits, say
qubits 1 and 2 for the first copy, and qubits 3 and 4 for the
second copy. Qubit i has logical operators Xi and Zi, which
are Pauli matrices. If we condense X1 and X2, then we are left
with the second copy of the toric code. Now suppose, instead,
that we want to condense X1 and X4. On the one hand, this is
unphysical, since enforcing X1 = X4 = 1 leads to a nonrobust
ground space with infinite (i.e., extensive) degeneracy. This
degeneracy can be lifted by local perturbations, and an exam-
ple of such local perturbations is Pauli X ’s on the horizontal
edges of the first lattice and the vertical edges of the second
lattice. The result is the trivial topological order. On the other
hand, if U is the (nonlocal) unitary that swaps qubits 2 and 4,
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then

UX1U † = X1, UX2U † = X4.

Thus from a purely abstract perspective, the pair of operators
(X1, X2) is the same as the pair of operators (X1, X4). In other
words, Protocol 5 tells us how to condense certain operators
if we know that it is physical to do so, but it does not tell us
which operators can be condensed physically. Therefore, we
need to specify more information in the semisimple algebra A,
especially regarding locality, in order to set up the mathemat-
ical structure in a physical way.

To help with this effort, we ask the following questions:
(1) The matrix algebra A0 is obtained from the semisimple

algebra A by quotienting out relations. Where do the relations
come from in general? In Ising cage-net, we obtained the
relations from the Hamiltonian, and they essentially say that
a loop of a planon σα (i)σα ( j) should equal its quantum di-
mension. Alternatively, we can view the action of a cage term
Bc as lineon operators on the edges of a cube. However, if we
want to interpret the relations from a lineon perspective, then
it is unclear what analog of “quantum dimension” we should
assign to the other side of the relation, because lineons cannot
form contractible loops. For another example, in a (3 + 1)D
gauge theory, a point charge can form contractible loops in
the xy, yz, and zx planes, giving three relations. Is this a
general feature that depends on some notion of “codimension”
of an elementary operator? It will be interesting to understand
generally what kind of physical constraint we need to consider
to derive all the necessary relations in A.

(2) Does the conjecture of “filling the blanks” in Protocol
5 hold for condensation transitions in general? Can the oper-
ation of “filling the blanks” be characterized more abstractly,
e.g., by some universal property?

(3) How can the process of gauging, the opposite of con-
densation[14], be understood in this approach?

(4) How about foliation and other notions of RG? What is
an appropriate notion of equivalence here?

(5) Can we do reverse engineering, i.e., start with a matrix
algebra written as a quotient of a semisimple algebra with
some notion of locality, and construct a corresponding lattice
model? Or even construct the spatial manifold without speci-
fying it separately from the algebraic data?

We hope that the operator algebra approach will shed light
to the understanding of gapped orders of matter including
topological and fractonic orders. Given that topological orders
are characterized by modular tensor (higher) categories, if the
operator algebra approach can characterize fractonic orders
then it must be at least as sophisticated.
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APPENDIX A: SUPPLEMENTARY MATHEMATICS

In this Appendix, we discuss some mathematics supple-
mentary to the main text.

1. Some definitions and theorems

In this section, we list some definitions and theorems that
we glossed over in the main text. They can also be found in
mathematics textbooks such as Ref. [15].

Definition 8. An algebra is a complex vector space A
equipped with associative multiplication and a multiplicative
identity 1, such that

(x + y)z = xz + yz,

z(x + y) = zx + zy,

(λx)(µy) = (λµ)(xy),

for all x, y, z ∈ A, and λ, µ ∈ C. An involution is an antilinear
map x 1→ x∗ on A such that 1∗ = 1, x∗∗ = x, and (xy)∗ = y∗x∗

for all x, y ∈ A. The involution is positive if x∗x '= 0 for all
x '= 0.

For a semisimple algebra A in (2 + 1)D, the involution is
defined on elementary operators by replacing anyons a, b, c
with their respective antiparticles a∗, b∗, c∗, and extended to
A antilinearly, i.e., (λx)∗ = λ∗x∗ where λ ∈ C, x ∈ A and λ∗

is the complex conjugate of λ. In the examples in this paper,
all anyons are self-dual, so the involution acts trivially on the
elementary operators. We can check explicitly for chiral Ising
that this map is indeed an involution and is positive. Note that
this check is performed manually on elementary operators for
the definition of involution, and on an arbitrary operator for
positivity. We cannot trivialize this check by identifying the
operators with block-diagonal matrices, which would require
Theorem 12. Although the check is tedious, we do not know
an easier method.

In an algebra, the structures that can be quotiented out are
called ideals.

Definition 9. A subset I ⊂ A is an ideal if I is a vector
subspace of A and for all r ∈ I , x ∈ A, we have rx ∈ I , xr ∈ I .
In the presence of an involution, an ideal I ⊂ A is involutive if
it is closed under the involution.

Basically, an involutive ideal is a set of elements that can
be identified with 0 consistently, since if r is identified with
0 then so are r∗, rx, and xr for all x ∈ A. If I is an involutive
ideal, then the quotient algebra A/I is defined in the same way
as for quotients of vector spaces. If A is finite dimensional,
then A/I is also an algebra with positive involution (positivity
is a consequence of Theorem 12). When we reduced A to A0
in Sec. III, we found relations among the elementary oper-
ators from physical argument, generated an ideal I from the
relations, and then took the quotient A/I . Here, if / ⊂ A is
a subset, e.g., / = {ω1,ω2}, then the ideal generated by / is
written as

〈ω1,ω2〉id, A = {x1ω1y1 + x2ω2y2 | xi, yi ∈ A},
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where the subscript A indicates the overall algebra. In other
words, the ideal generated by / is the smallest ideal of A
containing /, as we need to multiply ωi on both the left and
the right, and then take linear combinations to make it an
ideal. In all of the physical examples in this paper, such ideals
happen to be involutive. When it is clear from context, we will
drop the word “involutive” and simply say “ideal”.

The fact that matrix algebras do not have nontrivial ideals
can be summarized as follows:

Definition 10. An algebra A0 is simple if its only (not nec-
essarily involutive) ideals are {0} and A0 itself.

Lemma 11. A finite dimensional algebra is simple if and
only if it is a matrix algebra.

Note that the notions of simplicity and semisimplicity
(Definition 1) do not rely on an involution. The following
theorem relates semisimple algebras to algebras with positive
involution:

Theorem 12. Let A be a finite dimensional algebra with
positive involution. Then A is semisimple, and can be written
in the form of (5) where the involution acts as Hermitian
conjugation of matrices.

This is why positivity of the involution is important, and
the theorem fails if the involution is not positive (see example
in Appendix A 2). The ideals of a semisimple algebra (5)
are of the form Ai1 ⊕ · · · ⊕ Aik where 1 ! i1 < · · · < ik ! m.
In other words, to write down an ideal I of A, we simply
throw away some of the summands in (5) and keep the rest.
Therefore, to make the quotient A/I simple, we need to throw
away precisely one Ai and put the rest into the ideal I , and A/I
is isomorphic to this Ai.

To generate an ideal from relations, we need to use the
primitive central projectors {Pi}. Suppose we want an ideal
I = 〈{xk}〉id, A where {xk} are some general elements. Let

S = {i | Pixk '= 0 for some k}.

Then we have

I =
⊕

i∈S

Ai, A/I =
⊕

i/∈S

Ai =
(

∑

i/∈S

Pi

)

A.

The proof is straightforward, and the idea is that if xk has a
nontrivial component in some Ai, then the entirety of Ai must
be in I . We can view this statement as a more general version
of (11).

Finally, we have a more rigorous version of Lemma 4:
Lemma 13. Let B be a finite dimensional simple algebra

with positive involution, N an Abelian, involutive subalgebra
of B, and N ′ the commutant of N . Then we have Z (N ′) = N .

This can be derived from the so-called von Neumann bi-
commutant theorem:

Theorem 14. Let B, N and N ′ be as in Lemma 4, and N ′′

the commutant of N ′. Then we have N ′′ = N .
Using this theorem, we have N ′′ = N ⊂ Z (N ′) ⊂ N ′′, so

N = Z (N ′).
When discussing Definition 6, we mentioned that a Cartan

subalgebra must satisfy an extra condition. Here is a rigorous
definition of a Cartan subalgebra:

Definition 15. A subalgebra C of an algebra A is a Car-
tan subalgebra if it is Abelian, diagonalizable, and maximal.
Diagonalizable means that every x ∈ C is diagonalizable in

its (faithful) block-diagonal matrix representation; maximal
means that if any subalgebra C′ ⊂ A is Abelian and diago-
nalizable and C ⊂ C′, then C′ = C.

Diagonalizability can also be characterized intrinsically:
An element x ∈ A is diagonalizable if and only if its minimal
polynomial has distinct linear factors [16]. This statement can
be used to show that the Cartan subalgebras we chose for 1-F
Ising and Ising cage-net are indeed diagonalizable, since their
operators all satisfy the polynomial t2 − 1 = (t + 1)(t − 1),
which has distinct linear factors (t + 1) and (t − 1). Diag-
onalizability is needed for Lemma 7 to hold since, e.g., the
subalgebra of Mat4 consisting of elements of the form





a 0 b c
a d e

a 0
a





is Abelian, contains nondiagonalizable elements, and has di-
mension 5.

2. Examples of non-semisimple algebras

In this section, we give three examples of non-semisimple
algebras and thus highlight the premises of Theorem 12.

(1) Let A ⊂ Mat2 be the algebra of 2 × 2 upper triangular
matrices. Since dim(A) = 3, if A is semisimple then it must
be 3Mat1. However, this implies that A is Abelian, which is
false. Therefore, A is not semisimple. Intuitively, this can be
understood as due to the lack of an involution, since A is not
closed under Hermitian conjugation.

(2) Let A be the involutive algebra generated by two for-
mal elements 1 and a, where 1 is the multiplicative identity,
a2 = 0 and a∗ = a. This involution is not positive, so Theo-
rem 12 does not apply here. Indeed, since dim(A) = 2, if A
is semisimple then it must be 2Mat1. However, we have an
element a '= 0, a2 = 0, but there is no such element in 2Mat1.
Therefore, A is not semisimple.

(3) Let V be a complex vector space, possibly infinite
dimensional. The tensor algebra over V is

T (V ) =
∞⊕

k=0

V ⊗k,

where V ⊗0 = C. The multiplication is formal, i.e., if x ∈ V ⊗m

and y ∈ V ⊗n then xy ∈ V ⊗(m+n). The tensor algebra is always
infinite dimensional regardless of dim(V ), so Theorem 12 also
does not apply here. Indeed, A is semisimple if and only if
V = {0} (we allow infinite direct sum in Definition 1). Sup-
pose, for example, that V is spanned by a single element a.
Then the quotient

T (V )/
〈
a2〉

id, T (V )

is precisely the A in the previous example, which is not
semisimple. However, we know that a quotient of a semisim-
ple algebra is also semisimple. Therefore, T (V ) is not
semisimple. Since semisimplicity does not rely on an invo-
lution, here we do not need to assign an involution to T (V )
even though we could.

Incidentally, the finite dimensional semisimple algebra A in
the operator algebra approach discussed in this paper can also
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be viewed as a quotient T (V )/K of the tensor algebra. Here,
V is the formal vector space over the elementary operators,
and K is the ideal generated by multiplication rules, which
themselves are due to fusion rules, F symbols, and R symbols.

3. Matrix representation of simple algebra

In this section, we answer the following question: Given
an abstract finite dimensional simple algebra A0 with positive
involution, how do we find a matrix representation for it? Of
course we have an isomorphism ρn : A0 → Matn for some n,
such that the involution on A0 maps to Hermitian conjugation
on Matn. However, we want to determine ρn while only as-
suming knowledge of the structure constants f γ

αβ with respect
to some basis {vα}, as defined in (9), as well as the action
of the involution. This will lead to the representation (14) of
chiral Ising operators without prior knowledge.

In our construction of ρn, we will make several claims
without proof, and the proofs can be found in Ref. [15]. To
start with, we solve the following set of linear and quadratic
equations in the variables εα, λα ∈ C,

ε∗ = ε,

ε2 = 1,

εvαε = λαε for all α, (A1)

where ε =
∑

α εαvα . We claim that (A1) always has solutions.
In fact, if n > 1 then there are many solutions, in which case
we choose one solution. We can think of ε as the elementary
matrices whose only nonzero entry is the (1,1) entry, which is
1. The variables λα will be of no use for us.

Let V be the vector space spanned by {vαε}. We claim
that dim(V ) = n even though we defined it as the span of n2

elements. Clearly V is closed under left multiplication by A0,
and indeed it is the vector space that affords the representation
ρn of A0. Practically, we may reduce the overcomplete set
{vαε} to obtain a basis for V . We want an inner product 〈x, y〉
for all x, y ∈ V , which then defines Hermitian conjugation of
matrices. By the definition of V , there exist a, b ∈ A0 (not
unique) such that x = aε, y = bε. By (A1), we have

x∗y = εa∗bε = λε

for some λ ∈ C. Since ε '= 0, this λ does not depend on the
choice of a, b. We define 〈x, y〉 = λ, and we claim that this is
an inner product.

The Hermitian conjugation derived from this inner product
is compatible with the involution on A0. This is because for all
z ∈ A0 and x, y ∈ V , we have

〈x, z∗y〉ε = x∗z∗yε = (zx)∗yε = 〈zx, y〉ε =
〈
x, z†y

〉
ε,

which implies z∗ = z†. Therefore, the action of A0 on V by
left multiplication serves as a representation ρn.

APPENDIX B: GSD OF THE MINIMAL ISING CAGE-NET

In this Appendix, we use the Hamiltonian (3) to calculate
the GSD of Ising cage-net with system size Lx = Ly = Lz = 1
in terms of doubled Ising layers. This calculation does not
involve the operator algebra approach and therefore serves

aa

b

b

c
1

y

x

FIG. 12. A minimal trivalent lattice, a state vector |abc〉, and the
plaquette term B1

p (the blue 1-loop).

as an independent check of (1) for the minimal system size.
Indeed, we find GSD = 144 in agreement with (1).

We start with doubled Ising on a minimal trivalent lattice,
and then apply the results to Ising cage-net.

1. Doubled Ising on minimal lattice

The string-net model of doubled Ising can be written on a
minimal trivalent lattice (Fig. 12). State vectors are written as
|abc〉, where a, b, c = 0, 1 or 2. The subspace of the Hilbert
space that satisfies the vertex terms Av has dimension 10. It is
spanned by

w1 = |101〉, w2 = |011〉, w3 = |110〉,
w4 = |121〉, w5 = |211〉, w6 = |112〉,
w7 = 1

2 |000〉 + 1
2 |202〉 + 1

2 |022〉 − 1
2 |220〉,

w8 = 1
2 |000〉 − 1

2 |202〉 + 1
2 |022〉 + 1

2 |220〉,

w9 = 1
2 |000〉 + 1

2 |202〉 − 1
2 |022〉 + 1

2 |220〉,

w10 = − 1
2 |000〉 + 1

2 |202〉 + 1
2 |022〉 + 1

2 |220〉. (B1)

The only nontrivial plaquette term is B1
p (Fig. 12), which is a

1-loop that traverses each edge twice. It can also be viewed
as a σ -loop (or equivalently, a σ̄ -loop) placed “around the
corners”. Using the method of (8), we find B1

p =
√

2 r, whose
eigenvalues are ±

√
2. We then find

B1
pwi = +

√
2 wi for i = 1, . . . , 9,

B1
pw10 = −

√
2 w10.

The details of this calculation are not important and we omit it
here, as B1

p does not appear in the minimal Ising cage-net since
it does not commute with the condensation operators Vlµ . We
conclude that the ground space of the minimal doubled Ising
is spanned by w1, . . . ,w9.

2. The minimal Ising cage-net

The minimal Ising cage-net is obtained by condensing ψψ̄
p-loops in three copies of minimal doubled Ising which are
pairwise orthogonal. We label the states in, e.g., the doubled
Ising perpendicular to the z direction by |az

xbz
ycz〉, where az

x is
on the edge in the x direction, etc. The Hamiltonian consists
of condensation operators Vlµ , vertex terms Av and a single
cube term Bc, but with an important caveat: Bc acts on a
“degenerate” cube, whose opposite faces are identified. For
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example, its upper and lower faces are both proportional to

rz = 1
2

(
1 + ψ z

x + ψ z
y − ψ z

xψ
z
y

)
.

Since (rz )2 = 1, the product of these two faces is a constant.
Thus Bc is a constant and we can ignore it.

The subspace of the Hilbert space that satisfies the vertex
terms is spanned by wx

i ⊗ w
y
j ⊗ wz

k , where wα
i are given by

(B1) and i, j, k = 1, . . . , 10. According to (2), in order for a
state to satisfy the condensation operators Vlµ , we must have

(
az

x, by
x

)
,
(
ax

y, bz
y

)
,
(
ay

z , bx
z

)
= (1, 1) or contain no 1. (B2)

Therefore, we need to count the number of states wx
i ⊗ w

y
j ⊗

wz
k that satisfy (B2). Up to permutation of x, y, and z, we have

four cases:

(1) If none of the a’s or b’s (and hence c’s) is 1, then the
states are wx

i ⊗ w
y
j ⊗ wz

k where i, j, k = 7, 8, 9, or 10. There
are 4 × 4 × 4 = 64 possibilities.

(2) If (ay
z , bx

z ) = (1, 1) and (az
x, by

x ), (ax
y, bz

y) contain no 1,
then we can take i = 2 or 5, j = 1 or 4, and k = 7, 8, 9, or 10.
There are 2 × 2 × 4 = 16 possibilities.

(3) If (az
x, by

x ), (ax
y, bz

y) = (1, 1) and (ay
z , bx

z ) contains no 1,
then we can take i = 1 or 4, j = 2 or 5, and k = 3 or 6. There
are 2 × 2 × 2 = 8 possibilities.

(4) If all a’s and b’s are 1, then we can take i, j, k = 3 or 6.
There are 2 × 2 × 2 = 8 possibilities.

Summarizing these cases, we have

GSD = 64 + 3 × 16 + 3 × 8 + 8 = 144,

where the factors of 3 account for permutations of x, y, and z.
The result agrees with (1).
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