arXiv:1910.04246v2 [math.GT] 24 Feb 2022

KHOVANOV HOMOLOGY DETECTS SPLIT LINKS
ROBERT LIPSHITZ AND SUCHARIT SARKAR

ABSTRACT. Extending ideas of Hedden-Ni, we show that the module structure on Khovanov
homology detects split links. We also prove an analogue for untwisted Heegaard Floer
homology of the branched double cover. Technical results proved along the way include two
interpretations of the module structure on untwisted Heegaard Floer homology in terms of
twisted Heegaard Floer homology and the fact that the module structure on the reduced
Khovanov complex of a link is well-defined up to quasi-isomorphism.
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Since the Jones polynomial and Khovanov homology are somewhat mysterious invari-
ants, there has been substantial interest in understanding their geometric content. Much
progress along these lines has been finding detection results. Grigsby-Wehrli showed that
the Khovanov homology of nontrivial cables detects the unknot [GW10]. (See also [Hed09].)
Kronheimer-Mrowka showed that Khovanov homology itself detects the unknot [KM11]. So,
by work of Hedden-Ni, Khovanov homology also detects the 2-component unlink [HN10].
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Hedden-Ni went on to show that the module structure on Khovanov homology detects the
n-component unlink [HN13]. Batson-Seed refined this to show that Khovanov homology
as a bi-graded abelian group detects the unlink [BS15]. Recently, Baldwin-Sivek showed
that Khovanov homology detects the trefoils [BS] and Baldwin-Sivek-Xie showed that Kho-
vanov homology detects the Hopf links [BSX19]. Even more recently, Xie-Zhang classified
n-component links with Khovanov homology of dimension 2" [XZ].

The detection problem for Heegaard Floer homology has also received considerable at-
tention. Ozsvath-Szabd showed that knot Floer homology detects the genus (and Heegaard
Floer homology detects the Thurston norm) [OSz04a], and hence the unknot. Ghiggini
showed that knot Floer homology detects the trefoils and figure 8 knot [Ghi08]. Ni showed
that knot Floer homology detects fibered knots in general and Heegaard Floer homology de-
tects 3-manifolds that fiber over the circle with fiber of genus > 1 [Ni07,Ni09]. Ai-Peters and
Ai-Ni showed that twisted Heegaard Floer homology detects fibered 3-manifolds with genus
1 fibers [AP10, AN09]. Ni showed that Heegaard Floer homology detects the Borromean
knots [Nil4], and Hedden-Ni classified manifolds with small Heegaard Floer ranks [HN10].
Building slightly on these results, Alishahi-Lipshitz showed that bordered Heegaard Floer ho-
mology detects homologically essential compressing disks, bordered-sutured Heegaard Floer
homology detects boundary-parallel tangles, and twisted Heegaard Floer homology detects
homologically essential 2-spheres [AL19]. (This last detection theorem will be used below.)

Indeed, all of the detection results for Khovanov homology come from comparing Khovanov
homology to some gauge-theoretic invariant, like Heegaard Floer homology. This paper will
be no exception. Extending ideas of Hedden-Ni’s, we will use the fact that the branched
double cover of a link L is irreducible if and only if L is prime and non-split to show:

Theorem 1. Let L be a 2-component link in S3. Fiz basepoints p,q on the two components
of L. Let Kh(L;Fs) be the reduced Khovanov homology of L with respect to the basepoint p,
viewed as an Fy[X]/(X?)-module with respect to the basepoint q. Then, ﬁl(L; Fy) is a free
module if and only if L is a split link.

More generally, for a link L with k components and basepoints p, q on L, there is a 2-sphere

in S®\ L separating p from q if and only if Kh(L;Fs) is a free module over Fy[X]/(X?).

We give a refined version of Theorem 1, and a version for unreduced Khovanov homology,
below, after recalling some algebra.

Definition 1.1. Let C' be a bounded chain complex over a ring R or, more generally, an
As-module over R. We say that C' is quasi-free if C' is (As) quasi-isomorphic to a bounded
chain complex of free R-modules.

Definition 1.2. Let Fo[Y ! Y]] denote the ring of Laurent series. Let (C,dc) be a differ-

ential Fo[X]/(X?)-module (e.g., a chain complex over Fy[X]/(X?)). By the unrolling of C

we mean the differential Fy[Y ™!, Y]]-module C*™ = C' ®p, Fo[Y !, Y]] with differential
zRY™") =00(2) @Y™+ 2X @ Y"1,

This is a completion of the total complex of the bicomplex
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More generally, if C' is a strictly unital A,-module over Fy[X]/(X?) then the unrolled
complex of C'is C ®p, Fo[Y ! Y]] with differential

m

—
(9(2 ® Yn) = Zlu“l-i-m(zaX> e >X) ® ynem,

m>0

This is an honest differential module over Fy[Y ™1 Y]]. (The notion of strict unitality is
recalled in Definition 2.6.)
We will refer to the homology of C™, H,(C"™), as the unrolled homology of C'.

Theorem 2. Let L be a link in S* and p,q € L. Let 5Kh(L;IF2) be the reduced Khovanov
complex with respect to p, which is a module over Fo[X|/(X?) via the basepoint q. Then, the
following are equivalent:

(1) There is a 2-sphere in S®\ L separating p from q.
(2) ]f(vh(L;Fg) is a free module.

(3) Cyn(L;Fy) is quasi-free.

(4) Cxn(L;F2)™ is acyclic.

Corollary 1.3. Let L be a link in S® and p,q points in L. There is a 2-sphere in S3\ L
separating p from q if and only if Kh(L;Fs) is a free module over Fo[W, X]/(W?2, X?) where
the action of W corresponds to p and the action of X corresponds to q.

Remark 1.4. In Theorem 2, the implication (1) = (2) is a result of Shumakovitch [Shul4,
Corollary 3.2.B]; see Lemma 5.3. (This also follows from an argument in odd Khovanov ho-
mology [ORSz13, Proposition 1.8].) The implication (1) = (3) is obvious, modulo knowing
that the basepoint action is well-defined, up to quasi-isomorphism, on the reduced Khovanov
complex. The implication (2) = (4) follows from an easy spectral sequence argument. The
implication (3) = (4) is Lemma 2.12, which again follows from an easy spectral sequence
argument. Most of the work is in proving the implication (4) = (1), which uses the
Ozsvath-Szabd spectral sequence [OSz05], a nontriviality result for twisted Heegaard Floer
homolog&f Ozsvath-Szabé and Hedden-Ni, and a computation of the A, module struc-
ture on HF(Y) in terms of the twisted Floer homology. In particular, the restriction to
characteristic 2 is because of the corresponding restriction for the Ozsvath-Szabd spectral
sequence.

As in Hedden-Ni’s work, the key to proving Theorem 2 is tracking the module structure
through the Ozsvath-Szabé spectral sequence Kh(m(L)) = ﬁ(E(L)) The Heegaard Floer
homology ?IF(Y) is a module over the exterior algebra A*(H,(Y")/tors) [OSz04c|. In the case
Y = ¥(L), the pair of points p,q € L specifies an element X € H;(X(L)) so, by restriction
of scalars, W(E(L)) is a module over Fo[X]/(X?).

Proving Theorem 2 requires working at the chain level. As Hedden-Ni note, at the chain

level, the action of X on ﬁ(E(L)) is only associative up to homotopy. In fact, ﬁ(E(L)) is
naturally an A,-module over Fy[X]/(X?); see Section 3. By homological perturbation the-

ory, EF(Z(L)) inherits the structure of an A,-module. Similarly, the action of Fo[X]/(X?)

on Cgp(L) induces an A,-module structure on ﬁL(L)
We have the following Heegaard Floer analogue of Theorem 2:
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Thegem 3. Let L C f’\be a link and p,q € L. Consider the induced Aoo—nloilule structures
on CF(X(L);Fy) and HF (X(L);Fy) over Fo[X]/(X?). We can also view HF(X(L);Fy) as
an ordinary module over Fy[X]/(X?), by forgetting the higher A operations. Then, the
following are equivalent:

(1) There is a 2-sphere in S®\ L separating p and q.

(2) ﬁ(Z(L); Fy), viewed as an ordinary module over Fo[X]/(X?), is a free module.
(3) the As-module E’F(Z(L); Fy) is quasi-free.

(4) ﬁ(E(L);Fg)““ is acyclic.

Note that, for Heegaard Floer homology with appropriate twisted coefficients, some of
these equivalences were essentially proved by Hedden-Ni [HN13, Corollary 5.2].

Remark 1.5. This project stems from thinking about Eisermann’s result [Eis09] that the
reduced Jones polynomial of a 2-component ribbon link is divisible by (¢ + ¢~!). Among
his prescient comments, Eisermann [Eis09, Section 7.3] notes that it is not true that the
reduced Khovanov homology of such a ribbon link is divisible by the Khovanov homology
of the unknot. We thought that perhaps, instead, the reduced Khovanov complex of a
ribbon link might be quasi-free over Fo[X]/(X?), which would recover Eisermann’s result
after decategorification. Theorem 2 shows that this is definitely not the case, at least in
characteristic 2. In fact, for Eisermann’s example L10%;, a 2-component ribbon knot, the
Khovanov complex is not quasi-free in any characteristic: the reduced Khovanov homology
of L10%,, as computed by sKnotJob [Sch], is:
lg\P[| 5] 4] -3[-2[-1[0]1]2[3[4]5]

9 Z
Z

7?7

-3 7’| Z

—7 /
91 Z
Considering the bi-gradings, this implies that the unrolled homology is nontrivial.

Remark 1.6. The restriction to Fao-coefficients in Theorem 3 is presumably unnecessary. The
additional work required to generalize Theorem 3 to arbitrary field coefficients is adding
signs to Section 3.2.

Remark 1.7. An analogue of Corollary 1.3 for link Floer homology was recently proved by
Wang [Wan21].

This paper is organized as follows. In Section 2 we collect some algebraic definitions
and results. Section 3 recalls Heegaard Floer homology with twisted coefficients and the
(Aso) A*(H1(Y')/tors)-module structure on Heegaard Floer homology, and relates them. The
relations are in Section 3.2; much of this works more generally for complexes over Fy[t™!, ]
and A,.-modules over Fy[X]/(X?), and may be of independent interest. Section 4 recalls
the module structure on the Khovanov complex and reduced Khovanov complex, and proves
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these are invariants up to quasi-isomorphism. Finally, Section 5 combines these ingredients
to prove the detection theorems.

Acknowledgments. We thank N. Dunfield, M. Hutchings, T. Lidman, Y. Ni, and R. Rouquier
for helpful conversations. We also thank the referee for further helpful corrections and
suggestions.

2. ALGEBRAIC BACKGROUND

Throughout this section, for convenience and because it suffices for our application, we
work in characteristic 2. Many of the results have easy extensions to arbitrary characteristic.

2.1. Ungraded chain complexes. The Heegaard Floer complexes are cyclically graded.
Since the homological algebra of cyclically graded chain complexes behaves differently in some
cases, we note some properties that hold for ungraded chain complexes and, consequently,
for cyclically graded ones.

Definition 2.1. Let R be aring. An ungraded chain complex over R or differential R-module
is an R-module C' and a homomorphism 9: C — C with 8% = 0. The homology H(C,d) of
(C,0) is ker(9)/im(0).

Given ungraded chain complexes (C, d¢) and (D, dp) over R, an R-module homomorphism
f: C — D is a chain map if Op o f = fodc. A chain map induces a map on homology. A
chain map is a quasi-isomorphism if the induced map on homology is an isomorphism.

We will also be interested in ungraded A.,-modules:

Definition 2.2. Let R be an Fs-algebra. An ungraded A..-module over R is an Fs-vector
space M together with maps

Pisn: M @ R — M
satisfying

n—1
E /~L1+z‘(,u1+j(27 ai, ... 7%)7 Ajt1y--- 7%) + E Mn(Z, A1y e oy i1, QiQiq 1y - - -y an) =0
i+j=n i=1

foreachn >0,z € M, and a4,...,a, € R.
Given ungraded A,-modules (M, ™) and (N, ) over R, an A-module homomorphism
fo (M, M)y — (N, ) is a collection of Fy-vector space homomorphisms

Fian: M ®R®" — N

satisfying
M N
Z Srei(piy; (201,00 a5), a4, an) + Z i (fieg (2 an, . oosag), agans o ag)
i+j=n itj=n
n—1
+ Z fn(Z, Aty ..., A1, aiai—i-lu R an) == O
i=1
foreach n > 0, z € M, and a4,...,a, € R. An A,-module homomorphism f is a quasi-

isomorphism if the map fi: (M, u}t) — (N, YY) is a quasi-isomorphism.
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Given A, homomorphisms f,g: (M, u™) — (N, uY), a homotopy from f to g is a collec-
tion of Fo-vector space homomorphisms ki,,: M ® R®" — N so that for all n,

Z k1+i(ﬂﬁj(2,a1,---,aj)>aj+1, ) F Z Mﬁ-i(kl-i-j(zaala ), @iy )
i+j=n i+j=n

n—1
+ E ]{?n(Z, Ay vy i1, AiQ5a1y . - - an) = fl—l—n + J14n-
i=1

Given A,, homomorphisms f: (M, pM) — (N,uV) and g: (N, pu) — (P,p), define
(go f): M — P by

(g © f)l—l—n = Z gl+i(f1+j(z7 ai, .. -, aj)7 Ajy1y--- 7an)-
i+j=n
The identity homomorphism of M is defined by Id;(z) = = and Id;.,, = 0 for n > 0.
An A, homomorphism f: M — N is a homotopy equivalence if there is an A, homo-
morphism g: N — M so that f o g and go f are homotopic to the identity maps.

(Of course, these definitions generalize to the case that R is an A -algebra, but we will
not need this generalization.)
The universal coefficient theorem holds in the ungraded setting:

Lemma 2.3. Let R be a principal ideal domain, (C,0) an ungraded chain complex over R,
and M an R-module. Assume that C' is a projective R-module. Then, there is a natural
short exact sequence

0— H(C,0)®r M — H(C ®p M,0) — Tory(H(C,), M) — 0
which splits (unnaturally).

Proof. From C', construct an ordinary, bounded below, Z-graded chain complex C by setting

0 n<0.

and letting 0, : C, — C,_; be the map O for all n > 1. Then, for any i > 0, Hz(é) =~ H(C).
Applying the usual universal coefficient theorem for homology to C' for any i > 0 gives the
result. O

Proposition 2.4. Let R be a principal ideal domain and let C' be a free chain complex over
R. If C is graded, assume that C' is finitely generated in each grading; if C' is ungraded,
assume that C' is finitely generated. View the homology H(C') as an honest R-module, i.e.,
with trivial higher operations p1y, (n > 1). Then, there is a quasi-isomorphism of R-modules
f:C— H(C).

Proof. In the graded case, this is well-known; we observe that the proof also works for
ungraded complexes (C,0). Let K = ker(d). We claim that C'//K is a free module. Since
C'/K is finitely generated, from the classification of modules over a PID it suffices to show
that C'/K is torsion-free; but if (o] € C'/K satisfies r[a] = 0 for some r € R then ra € K so
either « € K or r = 0.
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Hence, the short exact sequence 0 - K — C' — C/K — 0 splits. So, we can extend an

ordered basis x1, ...,z for K to an ordered basis x1,...,xg, y1,. ..,y for C. With respect
to this basis, the matrix for 0 has the form

0 A

0 0
where A is some k x ¢ matrix. By changing basis among the x; and y; we can assume A is in
Smith normal form. So, assume that A has entries 71, ..., r; on the diagonal (j = min{k, (})

and 0s off the diagonal. Then,
H(C)= R/(r) &--- & R/(r;)

and the homomorphism C' — H(C) sending z; to 1 € R/(r;) and y; to 0 is a quasi-
isomorphism. O

Remark 2.5. In this paper, we make use of A.,-modules over Fo[X]/(X?) and chain complexes
of honest modules over Fy[t™!, #]. One might wonder why A..,-modules over Fy[t~!, ¢] do not
also make an appearance. This is because of Proposition 2.4, which shows that no interesting
A, operations over Fy[t~! ¢] arise. (In particular, there are no interesting A, operations on

HE(Y;Fot™,1]).)

2.2. Further notions for A, -modules. In this section, we recall a few more definitions
and results regarding A.,-modules.

Definition 2.6. Let R be aring with unit 1. A (graded or ungraded) A..-module (M, {114,})
over R is strictly unital if:

o Ls(z,1) =z for all z € M, and

e i1n(x,a1,...,a,) =0if n > 1 and some a; = 1.

Similarly, a morphism {fi,,,: M ® R®" — N} of strictly unital A,-modules is strictly unital
if fiin(m,aq,...,a,) =0 if some a; = 1.

Convention 2.7. Throughout this paper, all A,-modules and maps are strictly unital.

Example 2.8. A strictly unital A,-module over Fy[X]/(X?) is determined by the operations
/J“l-i-n(')Xa SRS X)

There are several advantages of working with A..-modules; we highlight two (related)
ones. First, A,-module structures transfer nicely under maps; results of this kind for A,
objects are often called homological perturbation theory:

Proposition 2.9. Let R be an Fy-algebra and (M, u™) an A..-module over R. Let (N, uy)
be a chain complex over Fy and fi: (M, M) — (N,ud) a homotopy equivalence of chain
complezes over Fy. Then, there is an Ao structure {ul,,} on N extending Y and an A
homotopy equivalence f: (M, u™) — (N, u") extending fi.

The corresponding statement also holds for A (R, S)-bimodules.

See, e.g., Keller’s survey [Kel01, Section 4.3], or [LOT14, Lemma 9.6]. In particular, the
former reference has a nice description of the history of such results, and the latter does not
rely on gradings.

Second, for differential modules or chain complexes of modules, there is an important
distinction between homotopy equivalence and quasi-isomorphism. This distinction does
not exist for A,-modules:
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Proposition 2.10. Let R be an algebra over Fo, M and N A, modules over R, and f:
M — N a quasi-isomorphism. Then, f is a homotopy equivalence. Further, two ordinary
differential modules M, N over R are A, quasi-isomorphic (or homotopy equivalent) if and
only if M and N are quasi-isomorphic in the usual sense.

See, e.g., Keller’s paper [Kel01, Section 4.3], or [LOT15, Proposition 2.4.1]. (Again, the
latter reference does not rely on gradings.) The point is that the map from the bar resolution
of M to M is an A,, homotopy equivalence, and the bar resolution is a projective module.
Hence, the quasi-isomorphism to the bar resolution is invertible up to homotopy, and hence
any quasi-isomorphism is invertible up to homotopy.

2.3. The unrolled homology. Recall that given an A,-module C' over Fo[X]/(X?), in
Definition 1.2 we defined the unrolled complex C"" of C.

Lemma 2.11. Let (C,{u{,,}) and (D,{uf.,}) be finitely generated, graded or ungraded
Ago-modules over S = Fo[X]/(X?). A homomorphism of As-modules f: C — D induces a
homomorphism F: C"™ — D", and if f is a quasi-isomorphism then so is F'.

Proof. Given a collection of maps fi,: C ®p, S®" — D define a map
. "™ — D™
by

n ~ n+m
F(z®y):Zfl-l-m(quv"'vX)@Y .
m>0
It is immediate from the construction that:

o If f is the identity map (i.e., fi = Id and f,, = 0 for n > 1) then the induced map F is
also the identity map.

e The map F associated to a collection of maps f = {fi1,} is well-defined. (In particular,
this uses the fact that we have completed with respect to Y.)

e The map F associated to a collection of maps f = {fi,,} is an Fy[Y !, Y]]-module homo-
morphism.

o If f ={fi1n} is an A, -module homomorphism then F is a chain map. (In fact, F' is a
chain map if and only if f is an A,, module homomorphism.)

e If k£ is a homotopy between A.,-module homomorphisms f and ¢ then the induced map
K is a chain homotopy between F and G.

e The map associated to g o f is the composition of the maps G associated to g and F
associated to f.

It follows that homotopy equivalent A..-modules have homotopy equivalent unrolled com-
plexes. Since by Proposition 2.10, quasi-isomorphism and homotopy equivalence agree for
As-modules (over an algebra over a field), this proves the result. O

Lemma 2.12. Let C be a (graded or ungraded) chain complex over Fo|X]/(X?), not neces-
sarily free. If C is quasi-free then C'"™ 1is acyclic.

Proof. By Lemma 2.11 it suffices to prove the result when C' is a finite-dimensional free
module (with a differential).

As a warm-up, we start with the graded case when X has grading 0. Consider the spectral
sequence associated to the vertical filtration on C'™, where the d°-differential is multiplication

*
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by X. Since C, is free, this d°-differential is exact. Hence, for this spectral sequence, E' = 0.
Since C\ is bounded, this implies that H.(C™) = 0, as well. This proves the result.

Essentially the same argument works in the general (ungraded) case. Choose an ordered
basis [e1,...,en, fi,..., fn] for C over Fy, where Xe; = f;. Write the differential on C' as a
block matrix (4 £) where each block is N x N. Since 9(f;) = X9(e;), we have D = 0 and
A = E, so the differential actually has the form (4 9).

The complex C"™ is a vector space over Fy[Y ™! Y]] with ordered basis [e; ® 1,...,exy ®
1, fi®l,..., fy ®1]. The differential on C"™ has the form
A 0
B+1Yy A

where I denotes the N x N identity matrix. Since 9% = 0, the differential on C*™® has rank
at most IV, so since

det(B + 1Y) = YV + lower order terms # 0,

(B + 1Y) is invertible, the differential on C'"™ has rank equal N. Hence, since F5[Y ™! Y]] is
a field, C'"™ is acyclic, as claimed. O

The spectral sequence in the (graded case of the) proof of Lemma 2.12 is only well-
behaved under restrictive hypotheses: for unbounded chain complexes, convergence becomes

a problem. (Consider, for example, the chain complex 0 < Fa[X]/(X?2) < Fo[X]/(X?2) -

-.) On the other hand, because we have completed with respect to Y, the horizontal
filtration of C'™, by the power of Y, induces a spectral sequence that is well-behaved even for
O, unbounded or ungraded. For this spectral sequence, the d°-differential is the differential
on C,, the d'-differential is the action of X on the homology of C,, and the higher differentials

are induced from the A, operations on the homology of C..

Remark 2.13. In the language of bordered Floer theory [LOT11, Section 8], there is a rank 1
type DD bimodule over Fy[X]/(X?) and F,[Y] defined by P = {¢) and (1) = (X ®Y) @ .
The bimodule P witnesses the Koszul duality between Fy[X]/(X?) and Fy[Y]. The unrolled
complex is obtained by taking the box tensor product with P, modulifying the result, and
extending scalars from Fo[[Y]] to Fo[Y !, Y]]. The appearance of power series in Y relates
to operational boundedness (cf. [LOT, Section 9]).

3. TWO VIEWS OF THE MODULE STRUCTURE ON HEEGAARD FLOER HOMOLOGY

3.1. Geometry: holomorphic curves with point constraints. Fix a commutative ring
k.

Let Y be a closed, oriented 3-manifold and let H = (X, e, 3, z) be a weakly admissible
pointed Heegaard diagram for Y. Given an abelian group G, a G-valued additive assignment
is a function A: me(z,y) — G for each pair of points z,y € T, N T so that for all w,z,y €
ToNTp, ¢ € mo(w,z), and ¢ € mo(z,y), A(p*1)) = A(¢) + A(y). Given a G-valued additive
assignment A, there is an associated twisted Floer complex with coefficients in the group
I‘iIlg IE?2 [G]>

CE(Y;F3[Gla) = CE(H;F2[Gla) = €D Fa[G],

ZBETaﬂTﬁ
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with differential

> > (#MO(z,y)) "y,

y€TaNTp pemT(T,Y)
w(@)=1, nz(¢)=0

Here, we are writing elements of Fy[G] as linear combinations Y n;t% with n; € Fy and
gi € G, and M?(z,y) denotes the moduli space of holomorphic Whitney disks connecting
x to y in the homotopy class ¢ (modulo the action of R on the source), with respect to
a sufficiently generic family of almost complex structures. It turns out that there is a
universal, totally twisted coefficient Floer homology CF(Y;Fy[H3(Y)|a), where A is any
Hy(Y)-valued additive assignment which is bijective on {¢ € my(x,z) | n.(¢) = 0}, and any
other twisted Floer complex is obtained from the totally twisted coefficient Floer complex
by extension of scalars. (In particular, Ozsvath-Szabé originally defined Heegaard Floer
homology with twisted coefficients via the totally twisted Floer complex and extension of
scalars [OSz04b, Section 8§].)

Recall that each homotopy class ¢ € m(x,y) is represented by a cellular 2-chain in (3, aU
B3), called its domain D(¢). Let 9,D(¢) be the part of 0D(¢) lying in the a-circles. Fix an
embedded, oriented 1-manifold {( C > which intersects a transversely and is disjoint from
a N B. There is a corresponding Z-valued additive assignment

¢ = C ' aOcD(¢)>
the algebraic intersection number of ¢ with 0, D(¢). This additive assignment gives a twisted
coefficient complex CF(H;Fa[t™!, t];) with differential

(3.1) oz)= > S (#MO(z,y)) POy,

y€TaNTs  ¢ema(z,y)
/J(d)):lv Nz (¢) =0

It is not hard to show that, up to quasi-isomorphism, the complex @(7—[, Fo[t™, t]¢) depends
on ¢ only through the homology class [(] € H,(Y)/tors = Hom(H(Y'),Z) it represents.
Of course, there is also an untwisted Heegaard Floer homology group

CF(Y;Fy) = CF(H;F2) = (P Fe

r€Ty I'_]TB
with differential

(32) o)=Y > (FEMOay)y.

y€TaNTy pem(2,Y)
w(@)=1, nz(¢)=0

As Ozsvath-Szabd noted [0Sz04c, Section 4.2.5], the untwisted Heegaard Floer complex
CF(Y;Fy) inherits an action of Hy(Y")/tors via the formula

(3.3) o= ) > (#MOz,y)) (¢ 0.D(0))y.
yETaNTy pem2(2,Y)
H($)=1, ns($)=0
(The action of ¢ lowers the Maslov grading by 1.) As they show, at the level of homology

this endows ﬁ(Y) with the structure of a module over the exterior algebra A*(Hy(Y')/tors).
(There is a tiny but relevant omission in Ozsvath-Szabd’s argument [OSz04c¢, Proof of Propo-
sition 4.17]: they dropped the homotopy term which is discussed below. See also [Lip06,
Proof of Proposition 8.6].)
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This statement can be refined slightly to make E’F(’H), and hence ?IF(H), into an A.-
module over A*(H(Y')/tors). This is a special case of the quantum cap product in Floer
(co)homology, as sketched, say, by Seidel [Sei08, Section 8l] or Perutz [Per08, Section 3.9].
Rather than describe the general case, we will focus on the action by a single element of
H,(Y), where tracking perturbations is less cumbersome; this is sufficient for our applica-
tions.

So, fix an oriented multicurve { C ¥ representing an element of H;(Y'), such that ¢ M «
and (NanNB=a. Let Ay = (N a. The orientations of ¢ and X induce a coorientation of
(; let A; C a be a small pushoff of A; so that each point of A;,; is in the negative direction
of the coorientation of  from the corresponding point of A;.

There are corresponding subsets

Ci={(x1,...,24) € Ty, | x, € A; for some k}
Ci;=A{(x1,...,2y) € Ty, | 2 € A;, xy € Aj for some k # (}.
The sets C; and C; ; are finite unions of submanifolds of Ty, of codimension 1 and 2, respec-
tively.
Given integers iy, - - - , i, consider the moduli space
(34) Md)(x,y;Cil,...,Cik)
of holomorphic Whitney disks
w: ([0,1] x R, {1} x R, {0} x R) — (Sym?(X), T,,Ts)
together with points (1,%1),...,(1,%) € {1} x R with #; < --- < #; with u(1,t;) € Cj,.
There is also a moduli space
(35) M¢(zay;ci1a"'>c

i1, Ci C; Ci)

05410 g2y
defined similarly except with u(1,t,) € Cj, 4.,

Choose (¢ so that for every disk w with Maslov index 1, Ci M u|gyxr. (This is possible
since there are finitely many disks v with Maslov index 1.) Let U be a neighborhood of

A; = ( N a small enough that for all Maslov index 1 disks v and all a € U,

{(@1,...,2y) € Ty | v = a for some k} M u|y«r.
Choose the perturbations A; to be entirely contained in U. Then, these perturbations have
the following two properties:

(M-1) The moduli spaces in Equations (3.4) and (3.5) are transversely cut out.
(M-2) The moduli spaces M?(z,y;Cy,...,C) and M®(z,y; Ciy1,...,Cisx) are identified
for all 4.

Now, define the operation
fin: CF(H) ® Fo[X]/(X2)®" — CF (H)
by
(36) @ X X) = S S (EMOy G Gy

y€TaNTp peT2(,Y)
w(@)=1, nz(¢)=0

Define the operation p; to be the differential on E’F(’H) Observe that the operation pus is
the restriction of the H;(Y')/tors action.
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Lemma 3.1. The operations 1., satisfy the Ay, relations, so E’F(’H) inherits the structure
of an A..-module.

Proof. Consider the boundary of the moduli space
U MOz, y; O,y .., C).

pET2 (:E,y)
M(¢):27 nz (¢) =0

This moduli space has two kinds of boundary points: points in

U U M¢1(x7w;clu"'7ck) XM¢2(w,y;Ck+1,...,Cn)
weTaNTp ¢1Em2(z,w),p2E€m2 (w,y)
w(#i)=1, n:(¢:i)=0
and points in

U Md)(l’,y;cl,...,Cm7m+1,...,Cn).

pem2(2,Y)
w(@)=2, nz(¢)=0

By Condition (M-2), points of the first kind correspond to the term
,U/n—k+2(,uk+1(x7 X7 cee 7X)7 X7 cee 7X)

in the A, relation. Points in the second kind of terms come in pairs: An element u €
M?(z,y;Ch, .o, Conmsts - - -, Cn) with u(1,¢,) = v € Cpynyr with v, € A, Nay and vy €
Amy1 N ayg is paired with a nearby v € M?(z,y;Cy, ..., Crimit, ..., Cp) with u/(1,t,,) =
v € Crmy1 With vy, € A1 Nay and v, € Ay, Nay, using the condition (M-2) on these types
of moduli spaces. This proves the result. O

We will show next that the counts of the moduli spaces M?(x,y;C;,,...,C;, ) are com-
pletely determined by the moduli spaces M®(z,y) and the homotopy classes ¢. (A key point
is that the sets C; C T, have codimension 1.) As a first step, given a curve u € M?(z,y),
let Nyi(u) be the number of tuples t; < ty < --- < t so that u(1,t;) € C; or, equivalently, so

that u(1,t;) N A; # &. Then

fian(z, X, .., X)) = Z Z Z N, (u)y.

yeTaNTy pemT2(2,Y) ueEM®(z,y)
wu(e)=1, nz(¢)=0

Recall that given integers m,n with n > 0 there is an integer (') = m(m —1)---(m —

n+ 1)/n! € Z, which reduces to an element (') € Fs.

Lemma 3.2. The Ay operation pii, from Formula (3.6) is given by

- 0o D
yETNTp pem2(2,Y)
w(d)=1, n:(¢)=0
where (- 0,D(¢p) denotes the algebraic intersection number of ¢ with the part of 0D(¢) lying
m o

Proof. Consider a holomorphic curve u € M?(z,y) so that (u|qyxr) " (Ch) consists of a + b
points, a of which are positive and b of which are negative. (In other words, the boundary of
u, viewed as a smooth 1-chain in Y, intersects ¢ a times positively and b times negatively.)
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We claim that N, (u) = (“;b) (mod 2). In particular, this implies that N, (u) depends only
on the intersection number a — b of 9,D(¢) and (:

N, (u) = (“;b) - (C 0aD (¢>) (mod 2).

n

This, then, will immediately imply the result.
To see that N, (u) = (“;b) (mod 2), suppose that

(u‘{l}XR)_l(Cl> = {(17 tl)v (17 t2)7 SR (17 tf>}

where t; < --- < t,. (In the notation of the previous paragraph, ¢ = a+b.) Let s; € {£1} be
the sign of (1,¢;) € (u|pyxr) " (C1), with respect to the coorientation of ¢ and the orientation
of {1} x R. The inverse function theorem implies that there are small, positive real numbers
€21, - -, €ny S0 that

(u|{1}><R)_1(C2) = {(Ltl — s1€21), (1, to — S2€29), ..., (1,8 — Seﬁz,e)}
(ulgiyxr) "1 (Cs) = { (1.t — s1(e21 +€31)), (L t2 — sa(eza + €32)), .., (Lt — seleae + €30)) }
(u|{1}><R)_1(C4) = {(1, t1 — s1(eg1 + €31+ 64,1)), ceey (1, te — sp(€20 + €30+ 64,@))}

and so on. In particular, suppose j < k. The preimage (1,t;) of Cy gives preimages of
C; and Cj that occur in order if s; < 0 and out of order if s; > 0. It follows that N, (u)
is the number N, (a,b) of ways of choosing n points among the a + b intersection points,
possibly with repetitions, subject to the restriction that positive intersection points cannot
be repeated

It remains to prove that N, (a,b) = (“;b) (mod 2). The number N, (a,b) is the coefficient
of s™ in (1+8)%(1+s5+4s2+---)b the a (1+ s) factors represent the a positive intersections,
which can be chosen 0 or 1 times, and the the b (1 + s+ s? + - --) factors represent the b
negative intersections, which can be chosen any number of times. Since 1+ s+ 524 --- =
l1—s+s2—-- = (1+s)! (mod 2), this equals (1+5)?(1+s) 0 = (1+s) 0 =3,  (“°)s"
and so N, (a,b) = (") (mod 2), as desired.

0.

Theorem 3.3. Up to quasi-isomorphism, the A..-modules 6’1?(7-[) and ?IF(’H) over the
ring o[ X]/(X?) are independent of the multi-curve ¢ representing [(] € Hy(Y)/tors, the
perturbations, the Heegaard diagram, and the almost complex structure in their construction.

Proof. This is a simple adaptation of the usual invariance proof for Heegaard Floer ho-
mology [OSz04c], and is left to the reader. The result also follows from invariance of
HF(Y;Z[t™',];) and Theorem 3.12 below (whose proof does not depend on this theo-
rem). O

Remark 3.4. We have suppressed Spin®-structures from the discussion above. All of the
complexes decompose as direct sums over the Spin‘-structures on Y, and the A, action
respects this decomposition.

3.2. Algebra: twisted coefficients and Koszul duality. Michael Hutchig\gs pointed
out to the first author around 2004 that one can recover the H;/tors-action on HF (Y') from
@(Y) As he may also have explained, this extends to the A,-module structure. In this
section, we give two formulations of this construction.

To motivate the first formulation, consider the relations between Equations (3.1), (3.2),
and (3.3): the operation 0 is obtained from @ by setting ¢ = 1, while the operation (- is
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obtained from @ by differentiating once with respect to ¢ and then setting ¢ = 1. (Compare
the operators ®,, and U, [Sarl5, Zeml17].) Of course, the second derivative vanishes in
characteristic 2, but the right generalization of this relation was introduced by Hasse and
Schmidt [SH37]:

Definition 3.5. Let k be a commutative ring with unit and let k[t ] be the ring of
Laurent polynomials over k. Given m,n € Z, n > 0, the element (77’:) € Z induces an
element (™) = (™)1 € k. The n Hasse derivative D": k[t™',t] — k[t™',1] is the k-linear

map which satisfies
m
= (")

Over a field of characteristic 0,
. 1d
Copldn
Proposition 3.6. The Hasse derivatives satisfy the Leibniz rule

n

D"(fg) =Y _(D'()(D"(g)).

i=0
Further, for any Laurent polynomial p(t) and any a # 0, if (D'p(t))|i=a = 0 for all i then
p(t) = 0.

Proof. For a proof of the first statement, see, for example, Conrad [Con00, Section 4].
For the second, suppose (D'p(t))|i—a = O for all i. By the first statement, we also have
(D (tNp(t)))|t=a = 0 for all 4, so we may assume that p(t) € k[t]. If the highest degree term
in p(t) is b,t™, b, # 0, then D™ (p(t))|i=q = bn. O

See Jeong [Jeoll] for a recent, more thorough discussion of what is known about Hasse
derivatives, and further references.

Corollary 3.7. Let A and B be m xn and n x p matrices over k[t™',t], respectively. Define
DI(A) to be the result of taking the ™ Hasse derivative of each entry of A. Then,

n

D"(AB) =) (D'(4))(D"(B)).

i=0
Proof. This is immediate from Proposition 3.6 and the formula for matrix multiplication. [

Definition 3.8. Let (C,, d) be a (graded or ungraded) freely generated chain complex over
Fo[t~1,¢], with a choice of distinguished basis. View Fy as an Fy[t™!, t]-algebra via the
homomorphism sending ¢ — 1 and let C*=! = C, ®p, it-1,4F2. Define an A,-module structure
on C=! over Fy[X]/(X?),

pant C7F ®p, (F2[X]/(X7)*" — €7,

by declaring that:

e 11(c) is the differential on C,, with t evaluated at 1, and
o fiisn(c, X, ..., X) = (D"9(¢))|i=1. Here, is the image of c under the inclusion C!=! — C,
induced by the inclusion Fy — Fy[t~!, ¢] as the constant polynomials.

We will say that (Ct=!, {g14,}) is the Ay-module induced by C.,.
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Note that the Hasse derivatives of d(¢) here depend on the choice of basis for C, over
Fo[t™!, ], used to represent d(¢) as a vector or d as a matrix. The Leibniz rule (Propo-
sition 3.6) also implies a Leibniz rule for matrix multiplication. In particular, this Hasse
derivative is respected by changing basis by a matrix over Fy (i.e., consisting of constant
polynomials), though we will not use this fact directly.

Lemma 3.9. Let (C.,0) be a freely generated chain complex over Folt™' t], with a distin-
guished basis. Then the As-module induced by C, satisfies the A, relations. Further, if
f: C. — E, is a quasi-isomorphism of freely generated chain complezes over Fo[t™1 t] then
there is an induced quasi-isomorphism of As-modules F': C'=! — E=1,

Proof. This follows from Corollary 3.7. For the first statement, we need to check that
(37) Z ,ul-l-i(,ul-l-j(C?Xv’”7X)7X7"'7X>:O
i+j=n

for all n and all ¢. Consider the n'® Hasse derivative of the matrix equation 9> = 0. By
Corollary 3.7, this gives

Setting t = 1 gives Equation (3.7).
For the second statement, define

by
F1+n(C>Xa s >X) = (an(é))h:l
To see that F' is an A, homomorphism, we need to check that
Z Fl-i-i(:ul-l-j(can">X)aX>-"aX)+,ul+i(F1+j(C>Xa'-->X)aX>"'>X) = 0.
i+j=n

This follows from the equation fod+ do f = 0 by taking the n'" Hasse derivative and using
Corollary 3.7. Now, it follows from the universal coefficient theorem (see Lemma 2.3 above
for the ungraded case) and the 5-lemma that F is a quasi-isomorphism: the map F} is just
the map f ®Id: C, ®p,pp-1.49 F2 — E, ®p,;p-14 F2 induced by f, and we have

0 —— H(C.) @pypp-1,49 Fo — H(CIT') —— Torg, ;1 y(H(C.),Fy) —— 0
gl (Fl)*J/ gl
0 —— H(E.) Qg1 Fo — H(E!T') —— Torg, ;1 4 (H(E,), F2) — 0.
This proves the result. [

A priori, the isomorphism type of the A, -module C*=! depends on the basis for C, we
are working with. Lemma 3.9 implies that this dependence is superficial:

Corollary 3.10. Up to quasi-isomorphism, the As-module Ct=1 is independent of the choice
of basis for C,. That is, if C, is isomorphic to E, then C=! is quasi-isomorphic to E=1.
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(In fact, inspecting the proof a little more shows that the corollary holds up to isomorphism
of As-modules, not just quasi-isomorphism.)

Let R = Fy[t™!,t]. An element ¢ € H,(Y')/tors induces a homomorphism Fo[Hy(Y)] — R,
making R into an Fo[H,(Y')]-algebra. When thinking of R as an Fy[Hy(Y')]-algebra, we will
denote it k.. When we only want to think of R as a ring, we will drop the subscript (.

Proposition 3.11. Let Y be a closed 3-manifold and ¢ € H,(Y)/tors. Let CE(Y; R;) be the

twisted Floer complex of Y with respect to ( and CF(Y') the untwisted Floer complex, with
Aoo-module structure over Fo[X]/(X?) induced by (. Then, there is a quasi-isomorphism of
Aqo-modules

CP(Y) ~ CE(Y;Fyft ™", )"
Proof. This is immediate from Formula (3.1) and Lemma 3.2. O

Theorem 3.12. Let @(Y; R;) be the Heegaard Floer homology of Y with (twisted) coeffi-
cients in R¢. As R-modules, let

HF(Y;R:) = R™ ® R/(p1(1)) ® - ® R/ (pa(t))

where each p;(t) # 0. Assume that py(1),...,p(1) = 0 and pr1(1),...,pn(1) # 0. Then,
there is an isomorphism of strictly unital A -modules over Fo[X]/(X?)

EF(Y) =FY B Fo(zy, ..., 25, w1, ..., wg)
where
o The As-module structure on F3' and on Folwy, ..., wy) is trivial, i.e., for y € F &
Folwy, ..., w) and any n > 0,
ran(y, X, ..., X)=0.
e We have
Pian(zi, X, .., X) = (D"pi(t)) |i=1w;.

Proof. First, observe that @(Y; R¢) decomposes as a direct sum of 1-step and 2-step com-
plexes. That is, we can find a basis by, -+, by, c1,...,¢p,d1,...,dy for CE(Y; R;) so that
A(b;) = ¢i(t)c; and J(c;) = 9(d;) = 0. That such a basis exists follows from the proof of
Proposition 2.4. Further, we can arrange that ¢;(t) = p;(¢) for ¢ < n and ¢,;(t) is a unit for
1> n.

By Corollary 3.10, CF CF(Y; Rg)t ! can be computed using this basis, and by Proposi-

tion 3.11, C’F(Y R ~ CF( ), as As-modules. So, it suffices to consider a single
summand d; or b; u®) ¢; of Q(Y; R¢)=1

It is immediate from the definitions that the summand generated by d; gives a summand
R of HF(Y; R;) and a summand Fy of CF(Y; R;)*=".

A summand of the form b; a0\ ¢; gives a copy of R/(q;(t)) of @(Y; R¢) (which is trivial

if ¢;(t) is a unit). From Definition 3.8, a summand of the form b; “ ¢; gives a summand of
CF(Y; R;)'™=! with trivial homology if ¢;(1) # 0. If ¢;(1) = 0 then the corresponding sum-
mand of CF(Y; R;)'=" is 2-dimensional, generated by z; and w;, say, has trivial differential,
and has

firan (26, X, ., X) = (D"pi(t)) [i=1ws,
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as claimed. O

Corollary 3.13. With notation as in Theorem 3.12, the unrolled homology of E’F(Y) 18
isomorphic to Fo[Y =1 YV]|™.

Proof. Since the unrolled homology is invariant under A., quasi-isomorphism, the unrolled
homology of ﬁ(Y) is isomorphic to the unrolled homology of ﬁ(Y) Clearly, the F7' C
?IF(Y) survives to give a copy of Fo[Y ™1 Y]]™ in the unrolled homology. It remains to see
that the other summands of ﬁ(Y) do not contribute to the unrolled homology.

Consider the summand of EF(Y) generated by z; and w;. By Proposition 3.6, since
pi(t) # 0, there is some integer k > 1 so that (D*p;(t)) ;=1 # 0. Let k be the first such integer.

Consider the spectral sequence computing the unrolled homology of fIF(Y), associated to the
horizontal filtration. Then, on this summand, the first nontrivial differential in this spectral
sequence is di(z;) = aY*w;, where o = (kai(t)) lt=1. The homology of this summand with
respect to this differential vanishes. O

Corollary 3.14. If @(Y;RC) has an Fy[t™! t]-summand then the unrolled homology of
CF(Y') with respect to the action by ¢ is nontrivial.

Corollary 3.15. The unrolled homology of E’F(Y) is isomorphic to the completed twisted
coefficient homology HE (Y ;Fy[t=1, t]]).

Proof. This is immediate from Corollary 3.13, which computes the unrolled homology in
terms of HE(Y'; R¢), and the universal coefficient theorem, which says that

HE(Y;F[t™,4]]) 2 HE(Y; Re) @ Faft ™", 1]].
(Recall that Fy[t™!,¢]] is flat over Fo[t™1,¢].) O

While we will not need it for our application, we conclude this section by noting a more
homological-algebraic interpretation of Proposition 3.11. View Fy as an R = Fy[t~! -
module in the usual way, by letting ¢t act by 1. Then, [F, has a 2-step free resolution over
R:

1t

R — R.

From this, it is straightforward to compute that Extg(Fy, Fy) & Fy[X]/(X?) (and, in fact,
RHompg(Fy, Fy) is quasi-isomorphic to Fy[X]/(X?)).

For any chain complex C, over R, there is an A, action of Extr(Fs,Fy) on Torg(C,, Fs).
Explicitly, Torg(C,, Fs) is the homology of the total complex of the bicomplex

(3.8) 0—C=o—o.

The element X shifts this bicomplex one unit to the right, i.e., sends the first copy of C' to
the second by the identity map and sends the second copy of C' to 0. So, this total complex is
a differential module over Fy[X]/(X?), and its homology Torg(C,,Fy) inherits the structure
of an A,-module over Fy[X]/(X?).

Theorem 3.16. For any finitely generated, free chain complex C, over R, there is a quasi-
isomorphism of As-modules over Fo[X]/(X?)

C'=! ~ Torg(C,,Fs).
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In particular, as As-modules over Fo[X]/(X?),
HE(Y) = Torg, 1 4(HE(Y), Fy).

Proof. As in the proof of Theorem 3.12, it suffices to prove the result when C, consists of a

single generator d or a pair of generators b, ¢ with differential b 2O, . In the first case, it is
straightforward to see that both C!=! and Torg(C,, F,) are isomorphic to Fy with trivial A-
module structure. In the second case, if p(1) # 0 then C'=! is acyclic and Torz(C,, R) = 0.
So, it remains to verify the second case under the assumption that p(1) = 0.

Let E, be the total complex of the bicomplex (3.8). We will construct an A, quasi-
isomorphism f: Ct=! — E,.

To fix notation, write £, = C' @ Fo[X]/(X?), with differential

do (1-1)
0 Jdo |’
That is, the complex F, is the total complex of the square
R =t p R(b) —% R(XD)
p(t)l lp(t) = p(t)l lp(t)
R - R. R{c) - R(Xc).

Define Laurent polynomials ¢, (t) inductively by
@ (t) =p@)/(1—1)
In+1(t) = (4a(1) = gu(t))/(1 = 1).

The fact that ¢;(¢) is a Laurent polynomial follows from the restriction that p(1) = 0.
We claim that

an(1) = (D"p(t))le=1-
By induction, we have
p(t) = (t = Dau(1) + (t = 1)*q2(1) + -+ + (¢ = 1)" gar (1) + (t = 1)"ga(t)
(cf. Taylor’s theorem). Hence,
Dp(t) = (D"(t = 1)")gu(t) + (¢ = Dr(t) = gu(t) + (£ = )r ().

Evaluating at 1 verifies the claim.

Now, define:
file) = Xec
fran(e, X, ..., X) =0 n >0
fi1(b) = Xb+qi(t)c
fron(b, X, ..., X) = ¢uya(t)c n > 0.

It is straightforward to see that fi is a quasi-isomorphism. We claim that the f; satisfy the
A, homomorphism relations; this finishes the proof. We must check that for y € {b, c},

Z Mf}‘f'i(fl"'j(y’X""’X)’X”"’X)_'_fl—l—i(,ulcijo(y’X?"'7X)’X""’X) =0.

i+j=n
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Recall that pf’,; = 0 for ¢ > 1. In the case y = ¢, each term in the equation vanishes. For
y =0band n = 0, the left side of the equation is

O (f1(b)) + F1(07T" (b)) = 0P (Xb+ qu(t)e) = (p(t) + (1 — t)qu (£)) Xc = 0.
For y = b and n > 0, the left side is equal to

8E(fl+n(b> Xv s >X) + :ug(fn(bv X> s >X)’ X) + Z f1+i((Djp(t))|t=10> Xa s >X)
= 0%(qns1(t)e) + 13 (gn(t)e, X) + (D"p(1))|e=1 Xc
= @1 (t)(1 —t) Xc+ ¢.(t) Xc+ g (1) Xc

= (qn(1) = qn(t) + gu(t) + gn(1)) Xc
=0,

as desired. O

Remark 3.17. Presumably, one can give a direct proof of Theorem 3.16, without relying on
the classification of finitely generated modules over a PID, but the computations required
seem involved.

Remark 3.18. For simplicity, we have worked in characteristic 2 and focused on the action
of a single element ¢ € Hi(Y)/tors, but we expect that the results in this section generalize
to the entire A.,-module structure over A*H;(Y")/tors over Z (though some of the proofs do
not).

4. THE MODULE STRUCTURE ON KHOVANOV HOMOLOGY AND THE OZSVATH-SZABO
SPECTRAL SEQUENCE

4.1. Definition and invariance of the basepoint action on Khovanov homology.
Fix a link diagram L and a basepoint ¢ € L not at any of the crossings. (From here
on, basepoint means “basepoint not at a crossing.”) The Khovanov complex Cgj (L) of L
inherits the structure of a module over Fo[X]/(X?) as follows. A generator of Cyp,(L) is a
complete resolution of L and a decoration of each component of the resolution by 1 or X.
Multiplication by X on a generator of Cy(L):

e is zero if the generator labels the circle containing ¢ by X and
e changes the label on the circle containing q to X, if the generator labels the circle containing

q by 1.

It is straightforward to check that multiplication by X is a chain map. The action of X
preserves the homological grading and decreases the quantum grading by 2.

Given two basepoints p,q € L, the actions at p and ¢ commute, and hence make Cgy, (L)
into a differential bimodule over Fy[W]/(W?) and Fo[X]/(X?) or, equivalently, a differential
module over Fo[W, X|/(W?2 X?). Note that while Cgy(L) is free over Fy[X]/(X?), it is
typically not free over Fo[W, X]/(W?, X?).

Let ¥%° denote shifting the homological grading up by a and the quantum grading up by
b.

Given a basepoint p on L, the reduced Khovanov complex 5Kh(L) is the subcomplex of
Y01Ckp (L) where the circle containing p is labeled X or, equivalently, the quotient complex
of X971Cy, (L) where the circle containing p is labeled 1. Given a second basepoint ¢ on L,
Crn(L) inherits a module structure over Fy[X]/(X?).
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We will use the following lemma, to avoid writing the same proof twice in Theorem 4.2.

Lemma 4.1. Let L be a link and p,q basepoints on L. Write Cxy(L),, for the Khovanov
complex Crp, (L) viewed as a bimodule over Fo[W|/(W?) and Fo[X]/(X?) via the basepoints
p and q. Write 5Kh(L)p7q for the reduced Khovanov complex, reduced at p and viewed as a
module over Fy[X]/(X?) via the basepoint q. View Fy as a module over Fo[W]/(W?) where
W acts by 0. Then, there is a chain isomorphism of Fy[X]/(X?)-modules

5Kh (L)pvq = Z0’_1CKh(L)p,q Qo [W1/(W2) .

Further, Cxn(L) is a free module over Fo[W1]/(W2), so Cxn(L) is quasi-isomorphic to the As
tensor product of the A -bimodule Kh(L) and the Fo[W]/(W?) module Fs.

Proof. The first statement is immediate from the definitions. The second follows from the
facts that the A, tensor product is invariant under A., homotopy equivalence and that any
Aso-(bi)module is A, homotopy equivalent to its homology (Proposition 2.9). O

Theorem 4.2. Let L be a link and p,p’,q,q points on L so that p,p’ lie on the same
component of L and q,q" lie on the same component of L.

(1) Write Crn(L),, (respectively Crn(L)y o) for the Khovanov complex Cyy (L) viewed as
a module over Fo[W, X|/(W?, X?) via the basepoints p,q (respectively p',q'). Then,
Cxn(L)p.q s quasi-isomorphic to Cxp(L)y 4 -

(2) Write Cxp(L)p. (respectively Cxp(L)y o) for the reduced Khovanov complex Cxp(L), re-
duced at p (respectively p'), and viewed as a module over IEE[X]/(XQ) via the basepoint

q (respectively q'). Then, Cxp(L), 4 is quasi-isomorphic to Cxp(L)y 4 -

The fact that the Khovanov homology has a well-defined structure of a bimodule appears
in Hedden-Ni [HN13, Proposition 1], via a similar argument. The fact that the action of
Z[X]/(X?) at a single basepoint is well-defined is due to Khovanov [Kho03, Section 3], by a
different argument which apparently does not generalize.

Proof. For the first half of the theorem, by Proposition 2.10, it suffices to show that moving ¢
past a crossing C' gives an A, quasi-isomorphic bimodule over Fo[W]/(W?) and Fo[X]/(X?).
An A_-bimodule map from M to N consists of maps

Fondn: (Fe[W]/ (W)™ @ M @ (Fo[X]/(X?)®" — N.

Our quasi-isomorphism f will have fo10 = Id and f,,1, = 0if m > 0 or n > 1. To define
fo,1,1, we need some more notation.

Write a generator of the Khovanov complex as a pair (v, z) where v € {0,1}¢ (where c is
the number of crossings of L) and z is a labeling of the circles of the v-resolution L, by 1 or
X. That is, z € {1, X}™), Let |v| = 3 v be the height of the vertex v, and let < denote
the partial order on the cube {0,1}¢. Given v, w with |v| — |w| = £1 and v < w or w < v;
z € {1, X} and y € {1, X}&w) let n,, be 1 if the following conditions are satisfied:
e For Z € L,NLy,, x(Z) =y(2),

e If there are two circles Z;, Z; in L, which are merged into a circle Z in L,, then y(Z) =
x(Zy)x(Zy) (where the multiplication is in Fo[X]/(X?)); and

e If there is one circle Z in L, which is split into two circles Z;, Zs in L,, then y(Z;)®@y(Z,) =
A(z(Z)) where A: Fy[X]/(X?) — Fy[X]/(X?) @ Fo[X]/(X?) is the comultiplication

A)=10X+X®l A(X)=X®X.
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FI1GURE 4.1. Example of the map f. The solid arrows are the differential,
the dashed arrows are the action of W, the dotted arrows are the action of X,
the double arrows are the map fy1,0, and the dashed double arrows are the
map fo1.1(-, X). The Ay relations correspond to certain ways of getting from
one vertex to another in two steps.

Define n,, = 0 otherwise. Then, the Khovanov differential is
(S(LL’, U) = Z Ny - (y7 w)
(ysw)[w>v, |v[+1=|w]
Define the map fy11 by

fO,l,l((y7w>vX) = Z Ny (SL’,U).

(,0)[w2v, [vl+1=|w], v(C)Fw(C)

Equivalently, fo11 comes from performing the differential at C' backwards. That is, if C is
the opposite crossing to C' then fy;; is the part of the differential associated to changing C.
(Compare [HN13, Lemma 2.3], [BS15, Section 2.2].) See Figures 4.1 and 4.2.

The nontrivial A, relations to verify are the following:

(4.1) 110,1,0(fo.1.0((v,2))) + for0(010((v,2))) =0

4.2 1,1.0(W; foro((v,2))) + foro0(kr10(W, (v,2))) =0
(4.3) tto,1,1(fo1,0((v, ), X) + fo1,0(k0,1,1((v, ), X))

+110,1.0(fo.1,1((v, ), X)) + for1(po10((v,2)), X) =0

p1,1,0(W, fo,1((v,2), X)) + for1(r110(W, (v, 7)), X) =0

po,1,1(fo,r1((v, ), X), X) + for1(op1((v,2), X),X) =0
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FIGURE 4.2. A second example of the map f. Notation is the same as in Figure 4.1.

All other A, relations are automatically satisfied because all of the terms vanish. In these
equations, we have dropped terms which automatically vanish, like p1.0(f1,1.0(W, (v,2))),
to keep the expressions shorter.

Since fo10 is the identity map, Equations (4.1) and (4.2) are obviously satisfied. Equa-
tion (4.3) was checked in Hedden-Ni’s paper [HN13, Equation (1)]. For Equation (4.4), let
L' be the result of replacing the crossing C' in L by the opposite crossing C’; then, the
equation follows from the fact that the differential on the Khovanov complex of L’ respects
the Fo[IW]/(W?)-module structure.

For Equation (4.5), consider the coefficient of (w,y). For the coefficient to be non-zero, v
must be obtained from w by changing the entry corresponding to C' from 0 to 1. Suppose
first that two circles 7y, Z5 in L,, merge into one circle Z in L,. Note that one circle, say

771, must contain ¢ and the other circle Z, must contain ¢’. Then, recording only the labels
of the circles Zy, Zs, and Z, po11(fo1.1((v,x), X), X) is given by

11 X4+X®1—-X®X
X—=>X®X—0,
while fo1.1(p01.1((v,2),X), X) is given by
1l X—=X®X
X—=0—0.

So, these two terms cancel. Next, suppose that one circle Z in L,, splits into two circles
Zy, Zy in L, where Z; contains ¢ and Z contains ¢’. Then, o11(fo11((v,2), X), X) is given
by

1®l—=1—X 1 X—X—0

X®1—X—=0 X®X—=0—0
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while f071’1(/11071,1((’0,.ZL’),X),X) is given by
11— X®1— X 1 X > XX —0
X®1—=0—~0 X®X+—=0—0.

So, again, these two terms cancel. These two cases are illustrated in Figures 4.1 and 4.2.
(An alternative way to view this identity is as follows: The map fo11: Cxn(Ly) = Cxn(Luw)
is induced by an elementary saddle cobordism, while the X-actions on Cgy,(L,) and Cgp,(Ly,)
are induced by identity cobordisms decorated with a single ‘dot’; then, either term of Equa-
tion (4.5) corresponds to an elementary saddle cobordism decorated with a single dot on the
saddle component.)

This proves the first half of the theorem. The second half of the theorem follows from
the first and Lemma 4.1 (and the fact that the A tensor product is invariant under A,
quasi-isomorphisms). O

Corollary 4.3. Let L be a link and p,p’,q,q points on L so that p,p’ lie on the same
component of L and q,q lie on the same component of L. Up to Ax-isomorphism, the
A -modules Kh(L), and Kh(L), (respectively Kh(L),, and Kh(L), ) over Fo[X]/(X?)
are isomorphic. In fact, the isomorphism classes of these A-modules are invariants of the
isotopy classes of the triple (L,p) and (L, p,q), respectively.

Proof. The first statement is immediate from Theorem 4.2 and homological perturbation
theory. For the second statement, it suffices to verify invariance under Reidemeister moves
disjoint from the basepoints and moving a strand across a basepoint. Invariance under
Reidemeister moves disjoint from the basepoints was proved by Khovanov [Kho00], and
invariance under moving a strand across a basepoint is a special case of the first half of the
corollary. U

4.2. The Ozsvath-Szabd spectral sequence respects the A, -module structure. Let
L be a link in S and p,q € L. Choose an arc v C S®\ L from p to ¢. The preimage
¢ C X(L) of ~y is a simple closed curve, representing an element of Hq(X(L)). The homology
class represented by ( is independent of the choice of v since isotoping v across L changes ¢
by the preimage of a meridian of L, which bounds a disk in X(L).

The homology class [(] makes E’F(E(L); [Fy) into a module over Fy[X]/(X?), as described
in Section 3. (Of course, if [(] € Hi(X(L)) is torsion—for example, if p and ¢ lie on the
same component of L or if 3(L) is a rational homology sphere—then this module structure
is trivial.)

In the following proposition, by a filtration we mean a descending filtration, i.e., a sequence
of submodules C = FO D F1 D F?2 > ...,

Proposition 4.4. Let L be a link in S® and p, q points on L. There is an ungraded, filtered

A-module (C,{u,}) over Fo[X]/(X?) with the following properties:

(1) Forgetting the filtration, C' is quasi-isomorphic to ﬁ(Z(L)) as an As-module over
Fa[X]/(X?).

(2) The differential piy on C strictly increases the filtration.

(8) There is an isomorphism of Fa-modules g: C' — Cxp(m(L)), taking the filtration on C
to the homological grading on Cgp,(m(L)).

(4) To first order, py agrees with the Khovanov differential. That is,

H1 — g_l Oackh °g
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increases the filtration by at least 2.
(5) To zeroth order, the operation us(-, X) on C agrees with the action of X on the Khovanov
complex. That 1is,
y = 2y, X) — g7 (9(y) - X)
increases the filtration by at least 1. (Note that the Khovanov multiplication actually
respects the homological grading.)

Proof. This is essentially Hedden-Ni’s refinement [HN13, Theorem 4.5] of Ozsvath-Szabd’s
construction of the spectral sequence for a branched double cover [0Sz05, Theorem 6.3].
The only additional assertions are that there is an Aso-module structure on C' and the quasi-
isomorphism between C' and CF(X(L)) extends to an A, homomorphism. So, we will only
explain the additional steps required to adapt Hedden-Ni’s proof, and will adopt much of
their notation without re-introducing it.

Throughout this proof, Floer complexes are with Fy-coefficients (which we suppress from
the notation).

Let ¢ be the number of crossings of L and, given I € {0,1,00}¢, let

H = (S, a, 8, 2)
be the Heegaard diagram considered by Ozsvath-Szab6 and Hedden-Ni. Fix

e a curve ( in X representing the homology class of a lift of an arc from p to g,
e small pushoffs Ay, Asz,... of Ay = (N« as in Section 3.1, and
e a collection of sufficiently generic almost complex structures.

Given a sequence Iy < I} < --- < I, of immediate successors in {0, 1, 00} and an integer
n > 0, define a map
s — — —_—
s (X X)) CF(H™) — CF(H™)
by counting rigid holomorphic (m + 2)-gons in the Heegaard multi-diagram
(27a7ﬁ107 A '7/61m7z)

with point constraints along the a-boundary coming from A,,..., A, and corners at some
generator x € T, N Ty, some generator y € T, N T, and the top generators O1,..., 0,
for (8, 8"),...,(B™,8™).
Let
s @ P e (RIX)/(X))" > @ TR
I€{0,1,00}° I€{0,1,00}°
be
—
:ul—i-n( y <Xy Z :U’{?:n <Im X U 7X>
Io<-<Im

Note that in the special case n = 0, p; is the map D introduced by Ozsvath-Szabd, and in
the case n = 1, py(-, X) is the map a® introduced by Hedden-Ni.

We claim that the 4, make M = @16{071700}6 Z’F(HI) into an A..-module. This follows
by considering the ends of the 1-dimensional moduli spaces of polygons with point con-
straints. With notation as in the rigid case discussed above, the ends of the 1-dimensional
moduli spaces are:
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e Ends where the polygon degenerates as a polygon on (a,ﬁo, e ,ﬁk) with p point con-
straints and a polygon on (e, gk, ... ,B™) with n — p point constraints. These degenera-
tions correspond to the terms

U1+n—p(ul+p('aX> s ’X)>Xa . "X)

in the A, relation. (This uses the fact that the pushoffs A; are chosen consistently, as

in Section 3.1, so that the count of curves constrained by A,,...,A,_, and the count of
curves constrained by A, 1,..., A, are the same.)

e Ends where the polygon degenerates as a polygon on (o, 3°,..., 8", 3,...,8"%) with n
point constraints and a polygon on (8, 3", ..., 8). These contributions vanish because

the count of rigid polygons on (8, 8", ..., 3") with corners at the ©7 is zero [0Sz05,
Lemma 4.5].

e Ends where a pair of constrained points collide. These cancel in pairs, as in the proof of
Lemma 3.1

(Compare [0Sz05, Section 4.2], [HN13, Theorem 3.4 and Lemma 4.4].)
By construction, given a crossing Cy of L, M is the mapping cone of an A,-module

homomorphism
4 CF(H') — £ CF(H"),
{I€{0,1,00}¢|1(Co)e{0,1}} {T€{0,1,00}¢|T(Co)=00}
and the surgery exact triangle for HF implies that this homomorphism is an isomorphism.

So, it follows from the same inductive argument as in Ozsvath-Szabd’s case [0Sz05, Proof
of Theorem 4.1] that

C = @ CF(HY)
{1€{0,1}}
is quasi-isomorphic, as an A,-module, to

COF (1) = OF (S(L)).

Let -
C= @@ HFH).
{refo1}3}
The complex C' is filtered by |I| = > I, the cube filtration. That is,
Fl= @  HFH.

{1e{0,1}¢|[1] =4}

Choose a homotopy equivalence, over Fy, between each 6}(7{1 ) and EF(”HI ), so that
the composition HF (H!) — CF(#!) — HF(H') is the identity map. These homotopy
equivalences induce maps f: C' — C and g: C — C with go f =1Id¢. Define the operation
1 on C' by

() = g(pa(f ().
By homological perturbation theory (Proposition 2.9), C' inherits the structure of an A..-

module over Fy[X]/(X?). (Equivalently, C' is obtained from C by canceling all differentials
which do not change the cube filtration.) Further:

e The operations u, on C' all respect the cube filtration.
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e The differential 11 on C' increases the cube filtration by at least 1. Further, by construction,
1 agrees with the differential on Ozsvéath-Szabd’s cube [0Sz05, Proposition 6.2], and hence
the first-order part of p; agrees with the Khovanov differential.

e The zeroth-order part of uy is induced by the Hj/tors-action on the groups ﬁﬁ(?—ll ) =

HFE(#*1 (82 x S1)). Hence, by Hedden-Ni [HN13, Theorem 4.5] (or inspection), the
zeroth-order part of s agrees with the X-action on Khovanov homology.

This completes the proof. O

5. PROOF OF THE DETECTION THEOREMS

We will use the following:

Proposition 5.1. [HN10, Proposition 5.1] Let L be a link in S®. If L = Li#Ly then
Y(L) = S(L)#X(Ly). If L = Ly T Ly then (L) = S(L1)#X(Lo)#(S? x SY). If L is
a non-split prime link then X(L) is irreducible. If L is a non-split link then (L) has no
homologically essential 2-spheres (i.e., no S? x S* summands).

Corollary 5.2. Let L be a link in S and p,q points in L. Let v be a path in S* from p
to q with the interior of v disjoint from L, and let { C X(L) be the preimage of . If there
is an embedded sphere S C X(L) so that - S is nonzero then there is an embedded sphere
S c S3\ L separating p and q.

Proof. This follows from the same argument used to prove Proposition 5.1, but we can also
deduce it from Proposition 5.1.

We will prove the contrapositive. Assume there is no sphere separating p and ¢. Write
L =L, 11 -1 Ly as a (split) disjoint union of links, so that each L; is non-split. Let
By, ..., By be disjoint balls around L, ..., L.

Reordering the L;, suppose that p,q € L;. As shown in Section 4.2, the homology class
of ¢ is independent of the choice of 7. So, we can assume that 7 is contained in B;. By
Proposition 5.1 we have

S(L) = B(Ly)# - #D(Li)#(S? x §H)FEY,

and each »(L;) has no homologically essential 2-spheres. The curve ~ lies in ¥(L;), so is
disjoint from all of the homologically essential 2-spheres. This proves the result. O

5.1. Khovanov homology of split links.

Lemma 5.3. Let L be a link and p, q points on L. Write 5Kh(L)p,q for the reduced Khovanov
complex of L, reduced at p and viewed as a module over Fo[X]/(X?) via the basepoint q. If

there is a 2-sphere in S®\ L separating p and q then Kh(L;TFy) is a free module.

Proof. By Corollary 4.3, we may assume that we are computing EL(L;FQ) from a split
diagram, i.e., the disjoint union of a link diagram L; containing p and a link diagram Ly
containing q. Then, Kh(L;Fy) = Kh(Ly;Fy) @ Kh(Lo;Fy) as Fy[X]/(X?)-modules. By a
result of Shumakovitch [Shul4, Corollary 3.2.B|, Kh(Ly;F5) is a free module, so ﬁl(L;Fg)
is, as well. O
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5.2. Detection of split links by Khovanov homology. Let A denote the universal
Novikov field over [y, consisting of formal sums ). fit"* where the f; € Fy, r; € R, and
lim;_,o 7; = 00. An element w € H*(Y;R) induces a map Hy(Y;Z) — R and hence a ring
homomorphism Fy[H5(Y';Z)] — A. This makes A into a module A, over Fo[Ho(Y'; Z)].

Theorem 5.4. [AL19, Theorem 1.1] Let Y be a closed, oriented 3-manifold and w €
H?*(Y;R). Then, HF(Y;A,) = 0 if and only if Y contains a 2-sphere S so that [4w # 0.

Corollary 5.5. Suppose that w € Hom(Hy(Y;Z),Z), and let Fo[t™ 1], be Folt™1, t], viewed
as an Fo[Hy(Y'; Z)|-module via w. Then, HE (Y ;Fy[t™1t],) is a torsion Fo[t™!, t]-module if
and only if Y contains a 2-sphere S so that w([S]) # 0.

Proof. In the case w = 0, this is the well-known statement that EF(Y) # 0 (see [AL19,
Theorem 1.2]). So, assume w # 0.
Let Fa(t) denote the field of rational functions in ¢; this is also the field of fractions of

F,[t,t~!]. The module HF (Y;Fo[t~!,¢],) is torsion if and only if HE (Y;F,[t~1, t].,) R, [t-1,4]
Fy(t) = 0. It follows from the universal coefficient theorem that

HE(Y;Fa(t).) = HE(Y:Falt™", 1)) ®pyp-1. Fa()
HE(Y;A,) = HE(Y; Fa(t).) ®ry00 A
(Compare [AL19, Formula (2.1)].) So, since A and Fy(t) are fields,
dimy HE(Y; A,) = dimg, ) HE (Y Fo(t).,).

Hence, dimy @(Y; A,) = 0 if and only if @(Y; Fo[t~!,t],) is torsion, so the result follows
from Theorem 5.4. ]

Lemma 5.6. Let Fy be any field. IfY is a 3-manifold with H1(Y") = Z and no homologically

essential 2-spheres in'Y then the unrolled homology of E’F(Y;Fg) s nontrivial. More gen-
erally, for any 3-manifold Y, if ( € H(Y') is such that the intersection number ¢ - S =0 for

all 2-spheres S C'Y then the unrolled homology of ﬁ(Y; Fy) with respect to ¢ is nontrivial.

Proof. We prove the more general statement. Let w € Hom(Hy(Y'),Z) be intersection with
¢. By Corollary 5.5, HE(Y;Fy[t™1,t],) has an Fy[t~!, t]-summand. So, by Corollary 3.14,
the unrolled homology of CF(Y;Fy) is nontrivial. O

Corollary 5.7. If L is a non-split, 2-component link then the unrolled homology of the
complex E’F(Z(L);Fg) is nontrivial.

More generally, suppose L = Ly U Ly is a union of two disjoint sublinks, p € Ly, and
q € Ly. Endow EF(E(L);FQ) with the A -module structure over Fo[X]/(X?) coming from
a lift of a path from p to q (§4.2). If there is no 2-sphere separating Ly and Lo then the
unrolled homology of ﬁ(E(L); Fy) is nontrivial.

Here, if (L) is a rational homology sphere then we view E’F(Z(L)) as a module over
Fo[ X]/(X?) trivially, i.e., pi1n(y,a1,...,a,) =0ifn>1orif n=1and a; = X.

Proof. This is immediate from Lemma 5.6 and Proposition 5.1 (for the first statement) or
Corollary 5.2 (for the second statement). O
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Proof of Theorem 2. (1) = (2) This is Lemma 5.3.

(1) = (3) By Theorem 4.2, we may assume the diagram for L is itself split. Then, the
reduced Khovanov complex is itself a complex of free modules.

(2) = (4) This follows by considering the horizontal filtration on Ci%. The E'-page

of the associated spectral sequence is the unrolled complex for Kh(L;Fs), and the unrolled
complex of a free module is acyclic.

(3) = (4) This is immediate from Lemma 2.12.

(4) = (1) Suppose that L is a link and p,q € L are such that Cgp,(L;Fo)"™ is acyclic.
Let C, be the complex from Proposition 4.4. By Lemma 2.11, the unrolled homology of C\
is isomorphic to the unrolled homology of CF(3(m(L));Fy). Let F be the sum of the cube
filtration on C, and the horizontal filtration on C™. (That is, for an element = € C™, F(x)
is the sum of the horizontal filtration of x and the minimal cube filtration of any term in x.)

Consider the spectral sequence associated to the filtration F. Since p; strictly raises
the cube filtration, the dy-differential vanishes. The differential on the E'-page is the sum
of the first-order part of p; and the differential on the unrolled complex coming from the
zeroth order part of ps(-, X). By Properties (4) and (5) in Proposition 4.4, this is exactly
the differential on Cxy(m(L))*™. Hence, the E'-page is acyclic. Since the complex C™ is
complete in the filtration F, this implies that C/™ ~ E’F(Z(m(L)); Fy)" is acyclic. Hence,
by Corollary 5.7, there is a 2-sphere in S® \ L separating p an g. O

Proof of Theorem 1. This is immediate from the equivalence of parts (1) and (2) in Theo-
rem 2. O

Proof of Corollary 1.5. Suppose there is a sphere in S* \ L separating p and ¢. By Theo-
rem 4.2, we may assume that Kh(L) is computed from a split diagram L, II L, with p € L,
and ¢ € L,. Then, Kh(L) = Kh(L,) ®r, Kh(L,) as a module over Fo[W, X|/(W?, X?). As
in the proof of Lemma 5.3, Kh(L,) is a free module over Fo[IW]/(W?) and Kh(L,) is a free
module over Fy[X]/(X?). So, Kh(L) is a free module over Fy[W, X]/(W?2, X?), as desired.
Conversely, suppose that Kh(L) is a free module over Fo[W, X]/(W?, X?). We claim that

Kh(L) is a free module over Fy[X]/(X?). If we knew that all higher A, operations on Kh(L)
vanished then this would be immediate, since the reduced Khovanov homology is the A,
tensor product of the (Fy[W]/(W?), Fo[X]/(X?))-bimodule Kh(L) over Fy[W]/(W?) with Fy
(Lemma 4.1). In fact, the result follows from homological algebra nonetheless. The A,

tensor product is

0« Kh(L) «— Kh(L) «— Kh(L) — Kh(L) —— - -~

where an arrow of length n comes from the operation mq,(-, W, ..., W). (More generally,
an A.-bimodule operation ju 1, contributes an A.-module operation p;,, which goes k
steps to the left.)

Consider the spectral sequence associated to the obvious horizontal filtration. (This is a
formulation of the universal coefficient spectral sequence.) Since Kh(L) is finitely generated
and the d' differential changes the homological grading by i — 1, the spectral sequence
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converges. The E?-page is
04— Kh(L)/(W-Kh(L)) — 04— 04— 0¢— -

so the spectral sequence collapses. Thus, as an (ordinary) module, the E*°-page is Kh(L)/ (W
Kh(L)). Further, the form of the E°°-page implies that the module structure on the £*-page
is the same as the module structure on the homology of the total complex. So, the reduced
Khovanov homology is isomorphic to Kh(L)/(W - Kh(L)), a free module over F5[X]/(X?).

Hence, by Theorem 1, there is a sphere in S®\ L separating p and q. O

Finally, we note that Hedden-Ni’s result that the Khovanov homology module detects the
unlink follows from Theorem 1 (and [KM11]). (Of course, the techniques we used to prove
Theorem 1 are similar to the ones they used.)

Theorem 5.8. [HN13, Theorem 2] Let L be an n-component link and U the n-component
unlink. If Kh(L) = Kh(U) = FolXy,..., X,]/(X3,...,X2), as modules over the ring
Fo[ Xy, ..., X,/ (X2, ..., X?), then L ~ U.

Proof. By Corollary 1.3, there is a sphere in S%\ L separating each pair of components of
L. Tt follows that L is a disjoint union of n knots. By the Kiinneth theorem for Khovanov
homology, each of these knots has Khovanov homology Fo[X]/(X?). So, by Kronheimer-
Mrowka’s theorem [KM11] that Khovanov homology detects the unknot, each component is
an unknot, and so L is an n-component unlink. O

5.3. Detection of split links by Heegaard Floer homology.

Proof of Theorem 3. We will prove the properties stated in the theorem are equivalent to
the following two additional properties, as well:
(2a) ﬁf(E(L); Fy)™ is acyclic, where ?IF(Z(L); [Fy) is viewed as an ordinary module over
the ring Fy[X]/(X?).
(2b) HF (X(L);Fy)"™ is acyclic, where HF (X(L);Fy) is viewed as an A.-module over the
ring F5[X]/(X?).
The logic of the proof is:

(1) = (2) By Proposition 5.1, there is a decomposition X(L) = X( Ly )#X(Ly)#(S? x S1),
where the loop ¢ induced by p and ¢ intersects the 2-sphere S% x {pt} C S? x S! algebraically
once. So, the result follgv\vs from the Kiinneth theorem for HF and a model computation of
the Hy/tors action on HF(S? x S1) [0Sz04c].

(2) = (2a) This is immediate from the definition of the unrolled complex.

(2a) == (2b) This follows from the spectral sequence associated to the horizontal filtration
on E’F(Z(K ))": the E'-page is the unrolled complex for EF(Z(K )) (viewed as an honest
module over Fy[X]/(X?)), which is acyclic by assumption.
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(2b) = (4) This follows from invariance of the unrolled homology under A, quasi-
isomorphism (Lemma 2.11) and the fact that any A,-module is quasi-isomorphic to its
homology.

(1) = (3) By Corollary 5.2, we can factor (L) = (5% x S1)#Y”’ where the loop ¢
induced by p and ¢ is the circle {pt} x S in the S? x S*. Choose a Heegaard diagram
H = H1#H-> which witnesses this splitting, where H; is the standard Heegaard diagram for
S? x St and the/c\onnected sum happens in the region containing the basepoint z. Then, the
chain complex CF(H) is a free module over Fy[X]/(X?) (with trivial higher A,.-operations).

(3) = (4) This is immediate from Lemma 2.12.

(4) = (1) This is Corollary 5.7. O

REFERENCES

[AL19]  Akram Alishahi and Robert Lipshitz, Bordered Floer homology and incompressible surfaces, Ann.
Inst. Fourier (Grenoble) 69 (2019), no. 4, 1525-1573.

[AN09]  Yinghua Ai and Yi Ni, Two applications of twisted Floer homology, Int. Math. Res. Not. IMRN
(2009), no. 19, 3726-3746.

[AP10]  Yinghua Ai and Thomas D. Peters, The twisted Floer homology of torus bundles, Algebr. Geom.
Topol. 10 (2010), no. 2, 679-695.

[BS] John A. Baldwin and Steven Sivek, Khovanov homology detects the trefoils, arXiv:1801.07634.

[BSX19] John A. Baldwin, Steven Sivek, and Yi Xie, Khovanov homology detects the Hopf links, Math.
Res. Lett. 26 (2019), no. 5, 1281-1290.

[BS15] Joshua Batson and Cotton Seed, A link-splitting spectral sequence in Khovanov homology, Duke
Math. J. 164 (2015), no. 5, 801-841.

[Con00] Keith Conrad, The digit principle, J. Number Theory 84 (2000), no. 2, 230-257.

[Eis09]  Michael Eisermann, The Jones polynomial of ribbon links, Geom. Topol. 13 (2009), no. 2, 623-660.

[Ghi08]  Paolo Ghiggini, Knot Floer homology detects genus-one fibred knots, Amer. J. Math. 130 (2008),
no. 5, 1151-1169.

[GW10] J. Elisenda Grigsby and Stephan M. Wehrli, On the colored Jones polynomial, sutured Floer
homology, and knot Floer homology, Adv. Math. 223 (2010), no. 6, 2114-2165.

[Hed09] Matthew Hedden, Khovanov homology of the 2-cable detects the unknot, Math. Res. Lett. 16
(2009), no. 6, 991-994.

[HN10] Matthew Hedden and Yi Ni, Manifolds with small Heegaard Floer ranks, Geom. Topol. 14 (2010),
no. 3, 1479-1501.

[HN13] , Khovanov module and the detection of unlinks, Geom. Topol. 17 (2013), no. 5, 3027-3076.

[Jeoll]  Sangtae Jeong, Calculus in positive characteristic p, J. Number Theory 131 (2011), no. 6, 1089—
1104.

[Kel0l]  Bernhard Keller, Introduction to A-infinity algebras and modules, Homology Homotopy Appl. 3
(2001), no. 1, 1-35.

[Kho00] Mikhail Khovanov, A categorification of the Jones polynomial, Duke Math. J. 101 (2000), no. 3,
359-426.

[Kho03] , Patterns in knot cohomology. I, Experiment. Math. 12 (2003), no. 3, 365-374.

[KM11] P. B. Kronheimer and T. S. Mrowka, Khovanov homology is an unknot-detector, Publ. Math. Inst.
Hautes Etudes Sci. (2011), no. 113, 97-208.

[Lip06]  Robert Lipshitz, A cylindrical reformulation of Heegaard Floer homology, Geom. Topol. 10 (2006),
955-1097.

[LOT) Robert Lipshitz, Peter S. Ozsvath, and Dylan P. Thurston, Diagonals and A-infinity tensor prod-
ucts, arXiv:2009.05222.

[LOT11] Robert Lipshitz, Peter S. Ozsvéth, and Dylan P. Thurston, Heegaard Floer homology as morphism
spaces, Quantum Topol. 2 (2011), no. 4, 381-449.

, Computing HF by factoring mapping classes, Geom. Topol. 18 (2014), no. 5, 2547-2681.

, Bimodules in bordered Heegaard Floer homology, Geom. Topol. 19 (2015), no. 2, 525-724.

[LOT14]
[LOT15]




[Ni07]
[Ni09]

[Ni14]
[ORSz13]
[0Sz04a]
[0Sz04b)
[0Sz04c]
[0Sz05]
[Per08]
[Sar15]
[Sch
[SH37)
[Sei0s]
[Shul4]
[Wan21]
X7]

[Zem17]

KHOVANOV HOMOLOGY DETECTS SPLIT LINKS 31

Yi Ni, Knot Floer homology detects fibred knots, Invent. Math. 170 (2007), no. 3, 577-608.

, Heegaard Floer homology and fibred 3-manifolds, Amer. J. Math. 131 (2009), no. 4,
1047-1063.

, Homological actions on sutured Floer homology, Math. Res. Lett. 21 (2014), no. 5, 1177-

1197.
Peter S. Ozsvath, Jacob Rasmussen, and Zoltan Szabd, Odd Khovanov homology, Algebr. Geom.
Topol. 13 (2013), no. 3, 1465-1488.
Peter Ozsvath and Zoltén Szabd, Holomorphic disks and genus bounds, Geom. Topol. 8 (2004),
311-334.
, Holomorphic disks and three-manifold invariants: properties and applications, Ann. of
Math. (2) 159 (2004), no. 3, 1159-1245.

, Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math.
(2) 159 (2004), no. 3, 1027-1158.
, On the Heegaard Floer homology of branched double-covers, Adv. Math. 194 (2005), no. 1,

1-33.

Tim Perutz, Lagrangian matching invariants for fibred four-manifolds. II, Geom. Topol. 12 (2008),
no. 3, 1461-1542.

Sucharit Sarkar, Moving basepoints and the induced automorphisms of link Floer homology, Algebr.
Geom. Topol. 15 (2015), no. 5, 2479-2515.

Dirk Schiitz, sknotjob, http://www.maths.dur.ac.uk/~dmaOds/knotjob.html, v. 1.0.

F. K. Schmidt and H. Hasse, Noch eine Begriindung der Theorie der héheren Differentialquotienten
in einem algebraischen Funktionenkérper einer Unbestimmten. (Nach einer brieflichen Mitteilung
von F.K. Schmidt in Jena), J. Reine Angew. Math. 177 (1937), 215-237.

Paul Seidel, Fukaya categories and Picard-Lefschetz theory, Zurich Lectures in Advanced Mathe-
matics, European Mathematical Society (EMS), Ziirich, 2008.

Alexander N. Shumakovitch, Torsion of Khovanov homology, Fund. Math. 225 (2014), no. 1,
343-364.

Joshua Wang, Link Floer homology also detects split links, Bull. Lond. Math. Soc. 53 (2021), no. 4,
1037-1044.

Yi Xie and Boyu Zhang, Classification of links with Khovanov homology of minimal rank,
arXiv:1909.10032.

Tan Zemke, Quasistabilization and basepoint moving maps in link Floer homology, Algebr. Geom.
Topol. 17 (2017), no. 6, 3461-3518.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF OREGON, EUGENE, OR 97403
Email address: 1ipshitz@uoregon.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, LOS ANGELES, CA 90095
Email address: sucharit@math.ucla.edu


http://www.maths.dur.ac.uk/~dma0ds/knotjob.html
mailto:lipshitz@uoregon.edu
mailto:sucharit@math.ucla.edu

	1. Introduction
	2. Algebraic background
	2.1. Ungraded chain complexes
	2.2. Further notions for A-infinity modules
	2.3. The unrolled homology

	3. Two views of the module structure on Heegaard Floer homology
	3.1. Geometry: holomorphic curves with point constraints
	3.2. Algebra: twisted coefficients and Koszul duality

	4. The module structure on Khovanov homology and the Ozsváth-Szabó spectral sequence
	4.1. Definition and invariance of the basepoint action on Khovanov homology
	4.2. The Ozsváth-Szabó spectral sequence respects the A-infinity module structure

	5. Proof of the detection theorems
	5.1. Khovanov homology of split links
	5.2. Detection of split links by Khovanov homology
	5.3. Detection of split links by Heegaard Floer homology

	References

