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KHOVANOV HOMOLOGY DETECTS SPLIT LINKS

ROBERT LIPSHITZ AND SUCHARIT SARKAR

Abstract. Extending ideas of Hedden-Ni, we show that the module structure on Khovanov
homology detects split links. We also prove an analogue for untwisted Heegaard Floer
homology of the branched double cover. Technical results proved along the way include two
interpretations of the module structure on untwisted Heegaard Floer homology in terms of
twisted Heegaard Floer homology and the fact that the module structure on the reduced
Khovanov complex of a link is well-defined up to quasi-isomorphism.
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1. Introduction

Since the Jones polynomial and Khovanov homology are somewhat mysterious invari-
ants, there has been substantial interest in understanding their geometric content. Much
progress along these lines has been finding detection results. Grigsby-Wehrli showed that
the Khovanov homology of nontrivial cables detects the unknot [GW10]. (See also [Hed09].)
Kronheimer-Mrowka showed that Khovanov homology itself detects the unknot [KM11]. So,
by work of Hedden-Ni, Khovanov homology also detects the 2-component unlink [HN10].
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2 ROBERT LIPSHITZ AND SUCHARIT SARKAR

Hedden-Ni went on to show that the module structure on Khovanov homology detects the
n-component unlink [HN13]. Batson-Seed refined this to show that Khovanov homology
as a bi-graded abelian group detects the unlink [BS15]. Recently, Baldwin-Sivek showed
that Khovanov homology detects the trefoils [BS] and Baldwin-Sivek-Xie showed that Kho-
vanov homology detects the Hopf links [BSX19]. Even more recently, Xie-Zhang classified
n-component links with Khovanov homology of dimension 2n [XZ].

The detection problem for Heegaard Floer homology has also received considerable at-
tention. Ozsváth-Szabó showed that knot Floer homology detects the genus (and Heegaard
Floer homology detects the Thurston norm) [OSz04a], and hence the unknot. Ghiggini
showed that knot Floer homology detects the trefoils and figure 8 knot [Ghi08]. Ni showed
that knot Floer homology detects fibered knots in general and Heegaard Floer homology de-
tects 3-manifolds that fiber over the circle with fiber of genus > 1 [Ni07,Ni09]. Ai-Peters and
Ai-Ni showed that twisted Heegaard Floer homology detects fibered 3-manifolds with genus
1 fibers [AP10, AN09]. Ni showed that Heegaard Floer homology detects the Borromean
knots [Ni14], and Hedden-Ni classified manifolds with small Heegaard Floer ranks [HN10].
Building slightly on these results, Alishahi-Lipshitz showed that bordered Heegaard Floer ho-
mology detects homologically essential compressing disks, bordered-sutured Heegaard Floer
homology detects boundary-parallel tangles, and twisted Heegaard Floer homology detects
homologically essential 2-spheres [AL19]. (This last detection theorem will be used below.)

Indeed, all of the detection results for Khovanov homology come from comparing Khovanov
homology to some gauge-theoretic invariant, like Heegaard Floer homology. This paper will
be no exception. Extending ideas of Hedden-Ni’s, we will use the fact that the branched
double cover of a link L is irreducible if and only if L is prime and non-split to show:

Theorem 1. Let L be a 2-component link in S3. Fix basepoints p, q on the two components

of L. Let K̃h(L;F2) be the reduced Khovanov homology of L with respect to the basepoint p,

viewed as an F2[X ]/(X2)-module with respect to the basepoint q. Then, K̃h(L;F2) is a free
module if and only if L is a split link.

More generally, for a link L with k components and basepoints p, q on L, there is a 2-sphere

in S3 \ L separating p from q if and only if K̃h(L;F2) is a free module over F2[X ]/(X2).

We give a refined version of Theorem 1, and a version for unreduced Khovanov homology,
below, after recalling some algebra.

Definition 1.1. Let C be a bounded chain complex over a ring R or, more generally, an
A∞-module over R. We say that C is quasi-free if C is (A∞) quasi-isomorphic to a bounded
chain complex of free R-modules.

Definition 1.2. Let F2[Y
−1, Y ]] denote the ring of Laurent series. Let (C, ∂C) be a differ-

ential F2[X ]/(X2)-module (e.g., a chain complex over F2[X ]/(X2)). By the unrolling of C
we mean the differential F2[Y

−1, Y ]]-module Cun = C ⊗F2
F2[Y

−1, Y ]] with differential

∂(z ⊗ Y n) = ∂C(z)⊗ Y n + zX ⊗ Y n+1.

This is a completion of the total complex of the bicomplex

· · ·
X
−→ C

X
−→ C

X
−→ C

X
−→ · · · .
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More generally, if C is a strictly unital A∞-module over F2[X ]/(X2) then the unrolled
complex of C is C ⊗F2

F2[Y
−1, Y ]] with differential

∂(z ⊗ Y n) =
∑

m≥0

µ1+m(z,

m︷ ︸︸ ︷
X, · · · , X)⊗ Y n+m.

This is an honest differential module over F2[Y
−1, Y ]]. (The notion of strict unitality is

recalled in Definition 2.6.)
We will refer to the homology of Cun, H∗(C

un), as the unrolled homology of C.

Theorem 2. Let L be a link in S3 and p, q ∈ L. Let C̃Kh(L;F2) be the reduced Khovanov
complex with respect to p, which is a module over F2[X ]/(X2) via the basepoint q. Then, the
following are equivalent:

(1) There is a 2-sphere in S3 \ L separating p from q.

(2) K̃h(L;F2) is a free module.

(3) C̃Kh(L;F2) is quasi-free.

(4) C̃Kh(L;F2)
un is acyclic.

Corollary 1.3. Let L be a link in S3 and p, q points in L. There is a 2-sphere in S3 \ L
separating p from q if and only if Kh(L;F2) is a free module over F2[W,X ]/(W 2, X2) where
the action of W corresponds to p and the action of X corresponds to q.

Remark 1.4. In Theorem 2, the implication (1) =⇒ (2) is a result of Shumakovitch [Shu14,
Corollary 3.2.B]; see Lemma 5.3. (This also follows from an argument in odd Khovanov ho-
mology [ORSz13, Proposition 1.8].) The implication (1) =⇒ (3) is obvious, modulo knowing
that the basepoint action is well-defined, up to quasi-isomorphism, on the reduced Khovanov
complex. The implication (2) =⇒ (4) follows from an easy spectral sequence argument. The
implication (3) =⇒ (4) is Lemma 2.12, which again follows from an easy spectral sequence
argument. Most of the work is in proving the implication (4) =⇒ (1), which uses the
Ozsváth-Szabó spectral sequence [OSz05], a nontriviality result for twisted Heegaard Floer
homology of Ozsváth-Szabó and Hedden-Ni, and a computation of the A∞ module struc-

ture on ĤF (Y ) in terms of the twisted Floer homology. In particular, the restriction to
characteristic 2 is because of the corresponding restriction for the Ozsváth-Szabó spectral
sequence.

As in Hedden-Ni’s work, the key to proving Theorem 2 is tracking the module structure

through the Ozsváth-Szabó spectral sequence K̃h(m(L)) ⇒ ĤF (Σ(L)). The Heegaard Floer

homology ĤF (Y ) is a module over the exterior algebra Λ∗(H1(Y )/tors) [OSz04c]. In the case
Y = Σ(L), the pair of points p, q ∈ L specifies an element X ∈ H1(Σ(L)) so, by restriction

of scalars, ĤF (Σ(L)) is a module over F2[X ]/(X2).
Proving Theorem 2 requires working at the chain level. As Hedden-Ni note, at the chain

level, the action of X on ĈF (Σ(L)) is only associative up to homotopy. In fact, ĈF (Σ(L)) is
naturally an A∞-module over F2[X ]/(X2); see Section 3. By homological perturbation the-

ory, ĤF (Σ(L)) inherits the structure of an A∞-module. Similarly, the action of F2[X ]/(X2)

on C̃Kh(L) induces an A∞-module structure on K̃h(L).
We have the following Heegaard Floer analogue of Theorem 2:
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Theorem 3. Let L ⊂ S3 be a link and p, q ∈ L. Consider the induced A∞-module structures

on ĈF (Σ(L);F2) and ĤF (Σ(L);F2) over F2[X ]/(X2). We can also view ĤF (Σ(L);F2) as
an ordinary module over F2[X ]/(X2), by forgetting the higher A∞ operations. Then, the
following are equivalent:

(1) There is a 2-sphere in S3 \ L separating p and q.

(2) ĤF (Σ(L);F2), viewed as an ordinary module over F2[X ]/(X2), is a free module.

(3) the A∞-module ĈF (Σ(L);F2) is quasi-free.

(4) ĈF (Σ(L);F2)
un is acyclic.

Note that, for Heegaard Floer homology with appropriate twisted coefficients, some of
these equivalences were essentially proved by Hedden-Ni [HN13, Corollary 5.2].

Remark 1.5. This project stems from thinking about Eisermann’s result [Eis09] that the
reduced Jones polynomial of a 2-component ribbon link is divisible by (q + q−1). Among
his prescient comments, Eisermann [Eis09, Section 7.3] notes that it is not true that the
reduced Khovanov homology of such a ribbon link is divisible by the Khovanov homology
of the unknot. We thought that perhaps, instead, the reduced Khovanov complex of a
ribbon link might be quasi-free over F2[X ]/(X2), which would recover Eisermann’s result
after decategorification. Theorem 2 shows that this is definitely not the case, at least in
characteristic 2. In fact, for Eisermann’s example L10n36, a 2-component ribbon knot, the
Khovanov complex is not quasi-free in any characteristic: the reduced Khovanov homology
of L10n36, as computed by sKnotJob [Sch], is:

q \h −5 −4 −3 −2 −1 0 1 2 3 4 5

9 Z

7 Z

5 Z

3 Z Z
2

1 Z
2

Z

−1 Z Z
2

−3 Z
2

Z

−5 Z

−7 Z

−9 Z

.

Considering the bi-gradings, this implies that the unrolled homology is nontrivial.

Remark 1.6. The restriction to F2-coefficients in Theorem 3 is presumably unnecessary. The
additional work required to generalize Theorem 3 to arbitrary field coefficients is adding
signs to Section 3.2.

Remark 1.7. An analogue of Corollary 1.3 for link Floer homology was recently proved by
Wang [Wan21].

This paper is organized as follows. In Section 2 we collect some algebraic definitions
and results. Section 3 recalls Heegaard Floer homology with twisted coefficients and the
(A∞) Λ∗(H1(Y )/tors)-module structure on Heegaard Floer homology, and relates them. The
relations are in Section 3.2; much of this works more generally for complexes over F2[t

−1, t]
and A∞-modules over F2[X ]/(X2), and may be of independent interest. Section 4 recalls
the module structure on the Khovanov complex and reduced Khovanov complex, and proves
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these are invariants up to quasi-isomorphism. Finally, Section 5 combines these ingredients
to prove the detection theorems.
Acknowledgments. We thank N. Dunfield, M. Hutchings, T. Lidman, Y. Ni, and R. Rouquier
for helpful conversations. We also thank the referee for further helpful corrections and
suggestions.

2. Algebraic background

Throughout this section, for convenience and because it suffices for our application, we
work in characteristic 2. Many of the results have easy extensions to arbitrary characteristic.

2.1. Ungraded chain complexes. The Heegaard Floer complexes are cyclically graded.
Since the homological algebra of cyclically graded chain complexes behaves differently in some
cases, we note some properties that hold for ungraded chain complexes and, consequently,
for cyclically graded ones.

Definition 2.1. Let R be a ring. An ungraded chain complex over R or differential R-module
is an R-module C and a homomorphism ∂ : C → C with ∂2 = 0. The homology H(C, ∂) of
(C, ∂) is ker(∂)/ im(∂).

Given ungraded chain complexes (C, ∂C) and (D, ∂D) over R, an R-module homomorphism
f : C → D is a chain map if ∂D ◦ f = f ◦ ∂C . A chain map induces a map on homology. A
chain map is a quasi-isomorphism if the induced map on homology is an isomorphism.

We will also be interested in ungraded A∞-modules:

Definition 2.2. Let R be an F2-algebra. An ungraded A∞-module over R is an F2-vector
space M together with maps

µ1+n : M ⊗ R⊗n → M

satisfying

∑

i+j=n

µ1+i(µ1+j(z, a1, . . . , aj), aj+1, . . . , an) +

n−1∑

i=1

µn(z, a1, . . . , ai−1, aiai+1, . . . , an) = 0

for each n ≥ 0, z ∈ M , and a1, . . . , an ∈ R.
Given ungraded A∞-modules (M,µM) and (N, µN) over R, an A∞-module homomorphism

f : (M,µM) → (N, µN) is a collection of F2-vector space homomorphisms

f1+n : M ⊗R⊗n → N

satisfying
∑

i+j=n

f1+i(µ
M
1+j(z, a1, . . . , aj), aj+1, . . . , an) +

∑

i+j=n

µN
1+i(f1+j(z, a1, . . . , aj), aj+1, . . . , an)

+

n−1∑

i=1

fn(z, a1, . . . , ai−1, aiai+1, . . . , an) = 0

for each n ≥ 0, z ∈ M , and a1, . . . , an ∈ R. An A∞-module homomorphism f is a quasi-
isomorphism if the map f1 : (M,µM

1 ) → (N, µN
1 ) is a quasi-isomorphism.
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Given A∞ homomorphisms f, g : (M,µM) → (N, µN), a homotopy from f to g is a collec-
tion of F2-vector space homomorphisms k1+n : M ⊗ R⊗n → N so that for all n,

∑

i+j=n

k1+i(µ
M
1+j(z, a1, . . . , aj), aj+1, . . . , an) +

∑

i+j=n

µN
1+i(k1+j(z, a1, . . . , aj), aj+1, . . . , an)

+
n−1∑

i=1

kn(z, a1, . . . , ai−1, aiai+1, . . . , an) = f1+n + g1+n.

Given A∞ homomorphisms f : (M,µM) → (N, µN) and g : (N, µN) → (P, µP ), define
(g ◦ f) : M → P by

(g ◦ f)1+n =
∑

i+j=n

g1+i(f1+j(z, a1, . . . , aj), aj+1, . . . , an).

The identity homomorphism of M is defined by Id1(x) = x and Id1+n = 0 for n > 0.
An A∞ homomorphism f : M → N is a homotopy equivalence if there is an A∞ homo-

morphism g : N → M so that f ◦ g and g ◦ f are homotopic to the identity maps.

(Of course, these definitions generalize to the case that R is an A∞-algebra, but we will
not need this generalization.)

The universal coefficient theorem holds in the ungraded setting:

Lemma 2.3. Let R be a principal ideal domain, (C, ∂) an ungraded chain complex over R,
and M an R-module. Assume that C is a projective R-module. Then, there is a natural
short exact sequence

0 → H(C, ∂)⊗R M → H(C ⊗R M, ∂) → Tor1R(H(C, ∂),M) → 0

which splits (unnaturally).

Proof. From C, construct an ordinary, bounded below, Z-graded chain complex C̃ by setting

C̃n =

{
C n ≥ 0

0 n < 0.

and letting ∂n : C̃n → C̃n−1 be the map ∂ for all n ≥ 1. Then, for any i > 0, Hi(C̃) ∼= H(C).

Applying the usual universal coefficient theorem for homology to C̃ for any i > 0 gives the
result. �

Proposition 2.4. Let R be a principal ideal domain and let C be a free chain complex over
R. If C is graded, assume that C is finitely generated in each grading; if C is ungraded,
assume that C is finitely generated. View the homology H(C) as an honest R-module, i.e.,
with trivial higher operations µ1+n (n > 1). Then, there is a quasi-isomorphism of R-modules
f : C → H(C).

Proof. In the graded case, this is well-known; we observe that the proof also works for
ungraded complexes (C, ∂). Let K = ker(∂). We claim that C/K is a free module. Since
C/K is finitely generated, from the classification of modules over a PID it suffices to show
that C/K is torsion-free; but if [α] ∈ C/K satisfies r[α] = 0 for some r ∈ R then rα ∈ K so
either α ∈ K or r = 0.
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Hence, the short exact sequence 0 → K → C → C/K → 0 splits. So, we can extend an
ordered basis x1, . . . , xk for K to an ordered basis x1, . . . , xk, y1, . . . , yℓ for C. With respect
to this basis, the matrix for ∂ has the form[

0 A
0 0

]

where A is some k× ℓ matrix. By changing basis among the xi and yj we can assume A is in
Smith normal form. So, assume that A has entries r1, . . . , rj on the diagonal (j = min{k, ℓ})
and 0s off the diagonal. Then,

H(C) ∼= R/(r1)⊕ · · · ⊕R/(rj)

and the homomorphism C → H(C) sending xi to 1 ∈ R/(ri) and yj to 0 is a quasi-
isomorphism. �

Remark 2.5. In this paper, we make use of A∞-modules over F2[X ]/(X2) and chain complexes
of honest modules over F2[t

−1, t]. One might wonder why A∞-modules over F2[t
−1, t] do not

also make an appearance. This is because of Proposition 2.4, which shows that no interesting
A∞ operations over F2[t

−1, t] arise. (In particular, there are no interesting A∞ operations on

ĤF (Y ;F2[t
−1, t]).)

2.2. Further notions for A∞-modules. In this section, we recall a few more definitions
and results regarding A∞-modules.

Definition 2.6. LetR be a ring with unit 1. A (graded or ungraded) A∞-module (M, {µ1+i})
over R is strictly unital if:

• µ2(x, 1) = x for all x ∈ M , and
• µ1+n(x, a1, . . . , an) = 0 if n > 1 and some ai = 1.

Similarly, a morphism {f1+n : M⊗R⊗n → N} of strictly unital A∞-modules is strictly unital
if f1+n(m, a1, . . . , an) = 0 if some ai = 1.

Convention 2.7. Throughout this paper, all A∞-modules and maps are strictly unital.

Example 2.8. A strictly unital A∞-module over F2[X ]/(X2) is determined by the operations
µ1+n(·, X, . . . , X).

There are several advantages of working with A∞-modules; we highlight two (related)
ones. First, A∞-module structures transfer nicely under maps; results of this kind for A∞

objects are often called homological perturbation theory :

Proposition 2.9. Let R be an F2-algebra and (M,µM) an A∞-module over R. Let (N, µN
1 )

be a chain complex over F2 and f1 : (M,µM
1 ) → (N, µN

1 ) a homotopy equivalence of chain
complexes over F2. Then, there is an A∞ structure {µN

1+n} on N extending µN
1 and an A∞

homotopy equivalence f : (M,µM) → (N, µN) extending f1.
The corresponding statement also holds for A∞ (R, S)-bimodules.

See, e.g., Keller’s survey [Kel01, Section 4.3], or [LOT14, Lemma 9.6]. In particular, the
former reference has a nice description of the history of such results, and the latter does not
rely on gradings.

Second, for differential modules or chain complexes of modules, there is an important
distinction between homotopy equivalence and quasi-isomorphism. This distinction does
not exist for A∞-modules:
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Proposition 2.10. Let R be an algebra over F2, M and N A∞ modules over R, and f :
M → N a quasi-isomorphism. Then, f is a homotopy equivalence. Further, two ordinary
differential modules M , N over R are A∞ quasi-isomorphic (or homotopy equivalent) if and
only if M and N are quasi-isomorphic in the usual sense.

See, e.g., Keller’s paper [Kel01, Section 4.3], or [LOT15, Proposition 2.4.1]. (Again, the
latter reference does not rely on gradings.) The point is that the map from the bar resolution
of M to M is an A∞ homotopy equivalence, and the bar resolution is a projective module.
Hence, the quasi-isomorphism to the bar resolution is invertible up to homotopy, and hence
any quasi-isomorphism is invertible up to homotopy.

2.3. The unrolled homology. Recall that given an A∞-module C over F2[X ]/(X2), in
Definition 1.2 we defined the unrolled complex Cun of C.

Lemma 2.11. Let (C, {µC
1+n}) and (D, {µD

1+n}) be finitely generated, graded or ungraded
A∞-modules over S = F2[X ]/(X2). A homomorphism of A∞-modules f : C → D induces a
homomorphism F : Cun → Dun, and if f is a quasi-isomorphism then so is F .

Proof. Given a collection of maps f1+n : C ⊗F2
S⊗n → D define a map

F : Cun → Dun

by

F (z ⊗ Y n) =
∑

m≥0

f1+m(z,

m︷ ︸︸ ︷
X, · · · , X)⊗ Y n+m.

It is immediate from the construction that:

• If f is the identity map (i.e., f1 = Id and fn = 0 for n > 1) then the induced map F is
also the identity map.

• The map F associated to a collection of maps f = {f1+n} is well-defined. (In particular,
this uses the fact that we have completed with respect to Y .)

• The map F associated to a collection of maps f = {f1+n} is an F2[Y
−1, Y ]]-module homo-

morphism.
• If f = {f1+n} is an A∞-module homomorphism then F is a chain map. (In fact, F is a
chain map if and only if f is an A∞ module homomorphism.)

• If k is a homotopy between A∞-module homomorphisms f and g then the induced map
K is a chain homotopy between F and G.

• The map associated to g ◦ f is the composition of the maps G associated to g and F
associated to f .

It follows that homotopy equivalent A∞-modules have homotopy equivalent unrolled com-
plexes. Since by Proposition 2.10, quasi-isomorphism and homotopy equivalence agree for
A∞-modules (over an algebra over a field), this proves the result. �

Lemma 2.12. Let C be a (graded or ungraded) chain complex over F2[X ]/(X2), not neces-
sarily free. If C is quasi-free then Cun is acyclic.

Proof. By Lemma 2.11 it suffices to prove the result when C is a finite-dimensional free
module (with a differential).

As a warm-up, we start with the graded case when X has grading 0. Consider the spectral
sequence associated to the vertical filtration on Cun

∗ , where the d0-differential is multiplication
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by X . Since C∗ is free, this d
0-differential is exact. Hence, for this spectral sequence, E1 = 0.

Since C∗ is bounded, this implies that H∗(C
un
∗ ) = 0, as well. This proves the result.

Essentially the same argument works in the general (ungraded) case. Choose an ordered
basis [e1, . . . , eN , f1, . . . , fN ] for C over F2, where Xei = fi. Write the differential on C as a
block matrix ( A D

B E ) where each block is N × N . Since ∂(fi) = X∂(ei), we have D = 0 and
A = E, so the differential actually has the form ( A 0

B A ).
The complex Cun is a vector space over F2[Y

−1, Y ]] with ordered basis [e1 ⊗ 1, . . . , eN ⊗
1, f1 ⊗ 1, . . . , fN ⊗ 1]. The differential on Cun has the form

(
A 0

B + IY A

)

where I denotes the N ×N identity matrix. Since ∂2 = 0, the differential on Cun has rank
at most N , so since

det(B + IY ) = Y N + lower order terms 6= 0,

(B + IY ) is invertible, the differential on Cun has rank equal N . Hence, since F2[Y
−1, Y ]] is

a field, Cun is acyclic, as claimed. �

The spectral sequence in the (graded case of the) proof of Lemma 2.12 is only well-
behaved under restrictive hypotheses: for unbounded chain complexes, convergence becomes

a problem. (Consider, for example, the chain complex 0 ← F2[X ]/(X2)
X
←− F2[X ]/(X2)

X
←−

· · · .) On the other hand, because we have completed with respect to Y , the horizontal
filtration of Cun

∗ , by the power of Y , induces a spectral sequence that is well-behaved even for
C∗ unbounded or ungraded. For this spectral sequence, the d0-differential is the differential
on C∗, the d

1-differential is the action ofX on the homology of C∗, and the higher differentials
are induced from the A∞ operations on the homology of C∗.

Remark 2.13. In the language of bordered Floer theory [LOT11, Section 8], there is a rank 1
type DD bimodule over F2[X ]/(X2) and F2[Y ] defined by P = 〈ι〉 and δ1(ι) = (X ⊗ Y )⊗ ι.
The bimodule P witnesses the Koszul duality between F2[X ]/(X2) and F2[Y ]. The unrolled
complex is obtained by taking the box tensor product with P , modulifying the result, and
extending scalars from F2[[Y ]] to F2[Y

−1, Y ]]. The appearance of power series in Y relates
to operational boundedness (cf. [LOT, Section 9]).

3. Two views of the module structure on Heegaard Floer homology

3.1. Geometry: holomorphic curves with point constraints. Fix a commutative ring
k.

Let Y be a closed, oriented 3-manifold and let H = (Σ,α,β, z) be a weakly admissible
pointed Heegaard diagram for Y . Given an abelian group G, a G-valued additive assignment
is a function A : π2(x, y) → G for each pair of points x, y ∈ Tα ∩ Tβ so that for all w, x, y ∈
Tα ∩Tβ , φ ∈ π2(w, x), and ψ ∈ π2(x, y), A(φ ∗ψ) = A(φ)+A(ψ). Given a G-valued additive
assignment A, there is an associated twisted Floer complex with coefficients in the group
ring F2[G],

ĈF (Y ;F2[G]A) = ĈF (H;F2[G]A) =
⊕

x∈Tα∩Tβ

F2[G],
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with differential
∂(x) =

∑

y∈Tα∩Tβ

∑

φ∈π2(x,y)
µ(φ)=1, nz(φ)=0

(
#Mφ(x, y)

)
tA(φ)y.

Here, we are writing elements of F2[G] as linear combinations
∑

nit
gi with ni ∈ F2 and

gi ∈ G, and Mφ(x, y) denotes the moduli space of holomorphic Whitney disks connecting
x to y in the homotopy class φ (modulo the action of R on the source), with respect to
a sufficiently generic family of almost complex structures. It turns out that there is a

universal, totally twisted coefficient Floer homology ĈF (Y ;F2[H2(Y )]A), where A is any
H2(Y )-valued additive assignment which is bijective on {φ ∈ π2(x, x) | nz(φ) = 0}, and any
other twisted Floer complex is obtained from the totally twisted coefficient Floer complex
by extension of scalars. (In particular, Ozsváth-Szabó originally defined Heegaard Floer
homology with twisted coefficients via the totally twisted Floer complex and extension of
scalars [OSz04b, Section 8].)

Recall that each homotopy class φ ∈ π2(x, y) is represented by a cellular 2-chain in (Σ,α∪
β), called its domain D(φ). Let ∂αD(φ) be the part of ∂D(φ) lying in the α-circles. Fix an
embedded, oriented 1-manifold ζ ⊂ Σ which intersects α transversely and is disjoint from
α ∩ β. There is a corresponding Z-valued additive assignment

φ 7→ ζ · ∂αD(φ),

the algebraic intersection number of ζ with ∂αD(φ). This additive assignment gives a twisted

coefficient complex ĈF (H;F2[t
−1, t]ζ) with differential

(3.1) ∂(x) =
∑

y∈Tα∩Tβ

∑

φ∈π2(x,y)
µ(φ)=1, nz(φ)=0

(
#Mφ(x, y)

)
tζ·∂αD(φ)y.

It is not hard to show that, up to quasi-isomorphism, the complex ĈF (H;F2[t
−1, t]ζ) depends

on ζ only through the homology class [ζ ] ∈ H1(Y )/tors = Hom(H2(Y ),Z) it represents.
Of course, there is also an untwisted Heegaard Floer homology group

ĈF (Y ;F2) = ĈF (H;F2) =
⊕

x∈Tα∩Tβ

F2

with differential

(3.2) ∂(x) =
∑

y∈Tα∩Tβ

∑

φ∈π2(x,y)
µ(φ)=1, nz(φ)=0

(
#Mφ(x, y)

)
y.

As Ozsváth-Szabó noted [OSz04c, Section 4.2.5], the untwisted Heegaard Floer complex

ĈF (Y ;F2) inherits an action of H1(Y )/tors via the formula

(3.3) ζ · x =
∑

y∈Tα∩Tβ

∑

φ∈π2(x,y)
µ(φ)=1, nz(φ)=0

(
#Mφ(x, y)

)(
ζ · ∂αD(φ)

)
y.

(The action of ζ lowers the Maslov grading by 1.) As they show, at the level of homology

this endows ĤF (Y ) with the structure of a module over the exterior algebra Λ∗(H1(Y )/tors).
(There is a tiny but relevant omission in Ozsváth-Szabó’s argument [OSz04c, Proof of Propo-
sition 4.17]: they dropped the homotopy term which is discussed below. See also [Lip06,
Proof of Proposition 8.6].)
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This statement can be refined slightly to make ĈF (H), and hence ĤF (H), into an A∞-
module over Λ∗(H1(Y )/tors). This is a special case of the quantum cap product in Floer
(co)homology, as sketched, say, by Seidel [Sei08, Section 8l] or Perutz [Per08, Section 3.9].
Rather than describe the general case, we will focus on the action by a single element of
H1(Y ), where tracking perturbations is less cumbersome; this is sufficient for our applica-
tions.

So, fix an oriented multicurve ζ ⊂ Σ representing an element of H1(Y ), such that ζ ⋔ α

and ζ ∩α ∩ β = ∅. Let A1 = ζ ∩α. The orientations of ζ and Σ induce a coorientation of
ζ ; let Ai ⊂ α be a small pushoff of A1 so that each point of Ai+1 is in the negative direction
of the coorientation of ζ from the corresponding point of Ai.

There are corresponding subsets

Ci = {(x1, . . . , xg) ∈ Tα | xk ∈ Ai for some k}

Ci,j = {(x1, . . . , xg) ∈ Tα | xk ∈ Ai, xℓ ∈ Aj for some k 6= ℓ}.

The sets Ci and Ci,j are finite unions of submanifolds of Tα, of codimension 1 and 2, respec-
tively.

Given integers i1, · · · , ik, consider the moduli space

(3.4) Mφ(x, y;Ci1, . . . , Cik)

of holomorphic Whitney disks

u : ([0, 1]× R, {1} × R, {0} × R) → (Symg(Σ), Tα, Tβ)

together with points (1, t1), . . . , (1, tk) ∈ {1} × R with t1 < · · · < tk with u(1, tj) ∈ Cij .
There is also a moduli space

(3.5) Mφ(x, y;Ci1, . . . , Ciℓ−1
, Ciℓ,iℓ+1

, Ciℓ+2
, . . . , Cik)

defined similarly except with u(1, tℓ) ∈ Ciℓ,iℓ+1
.

Choose ζ so that for every disk u with Maslov index 1, C1 ⋔ u|{1}×R. (This is possible
since there are finitely many disks u with Maslov index 1.) Let U be a neighborhood of
A1 = ζ ∩α small enough that for all Maslov index 1 disks u and all a ∈ U ,

{(x1, . . . , xg) ∈ Tα | xk = a for some k} ⋔ u|{1}×R.

Choose the perturbations Ai to be entirely contained in U . Then, these perturbations have
the following two properties:

(M-1) The moduli spaces in Equations (3.4) and (3.5) are transversely cut out.
(M-2) The moduli spaces Mφ(x, y;C1, . . . , Ck) and Mφ(x, y;Ci+1, . . . , Ci+k) are identified

for all i.

Now, define the operation

µ1+n : ĈF (H)⊗ F2[X ]/(X2)⊗n → ĈF (H)

by

(3.6) µ1+n(x,X, . . . , X) =
∑

y∈Tα∩Tβ

∑

φ∈π2(x,y)
µ(φ)=1, nz(φ)=0

(
#Mφ(x, y;C1, . . . , Cn)

)
y.

Define the operation µ1 to be the differential on ĈF (H). Observe that the operation µ2 is
the restriction of the H1(Y )/tors action.
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Lemma 3.1. The operations µ1+n satisfy the A∞ relations, so ĈF (H) inherits the structure
of an A∞-module.

Proof. Consider the boundary of the moduli space
⋃

φ∈π2(x,y)
µ(φ)=2, nz(φ)=0

Mφ(x, y;C1, . . . , Cn).

This moduli space has two kinds of boundary points: points in
⋃

w∈Tα∩Tβ

⋃

φ1∈π2(x,w),φ2∈π2(w,y)
µ(φi)=1, nz(φi)=0

Mφ1(x, w;C1, . . . , Ck)×Mφ2(w, y;Ck+1, . . . , Cn)

and points in ⋃

φ∈π2(x,y)
µ(φ)=2, nz(φ)=0

Mφ(x, y;C1, . . . , Cm,m+1, . . . , Cn).

By Condition (M-2), points of the first kind correspond to the term

µn−k+2(µk+1(x,X, . . . , X), X, . . . , X)

in the A∞ relation. Points in the second kind of terms come in pairs: An element u ∈
Mφ(x, y;C1, . . . , Cm,m+1, . . . , Cn) with u(1, tm) = v ∈ Cm,m+1 with vk ∈ Am ∩ αk and vℓ ∈
Am+1 ∩ αℓ is paired with a nearby u′ ∈ Mφ(x, y;C1, . . . , Cm,m+1, . . . , Cn) with u′(1, tm) =
v′ ∈ Cm,m+1 with v′k ∈ Am+1∩αk and v′ℓ ∈ Am∩αℓ, using the condition (M-2) on these types
of moduli spaces. This proves the result. �

We will show next that the counts of the moduli spaces Mφ(x, y;Ci1, . . . , Cik) are com-
pletely determined by the moduli spaces Mφ(x, y) and the homotopy classes φ. (A key point
is that the sets Ci ⊂ Tα have codimension 1.) As a first step, given a curve u ∈ Mφ(x, y),
let Nk(u) be the number of tuples t1 < t2 < · · · < tk so that u(1, ti) ∈ Ci or, equivalently, so
that u(1, ti) ∩Ai 6= ∅. Then

µ1+n(x,X, . . . , X) =
∑

y∈Tα∩Tβ

∑

φ∈π2(x,y)
µ(φ)=1, nz(φ)=0

∑

u∈Mφ(x,y)

Nn(u)y.

Recall that given integers m,n with n ≥ 0 there is an integer
(
m
n

)
= m(m − 1) · · · (m −

n+ 1)/n! ∈ Z, which reduces to an element
(
m
n

)
∈ F2.

Lemma 3.2. The A∞ operation µ1+n from Formula (3.6) is given by

µ1+n(x,X, . . . , X) =
∑

y∈Tα∩Tβ

∑

φ∈π2(x,y)
µ(φ)=1, nz(φ)=0

(
ζ · ∂αD(φ)

n

)(
#Mφ(x, y)

)
y.

where ζ · ∂αD(φ) denotes the algebraic intersection number of ζ with the part of ∂D(φ) lying
in α.

Proof. Consider a holomorphic curve u ∈ Mφ(x, y) so that (u|{1}×R)
−1(C1) consists of a+ b

points, a of which are positive and b of which are negative. (In other words, the boundary of
u, viewed as a smooth 1-chain in Σ, intersects ζ a times positively and b times negatively.)
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We claim that Nn(u) ≡
(
a−b
n

)
(mod 2). In particular, this implies that Nn(u) depends only

on the intersection number a− b of ∂αD(φ) and ζ :

Nn(u) ≡

(
a− b

n

)
=

(
ζ · ∂αD(φ)

n

)
(mod 2).

This, then, will immediately imply the result.
To see that Nn(u) ≡

(
a−b
n

)
(mod 2), suppose that

(u|{1}×R)
−1(C1) = {(1, t1), (1, t2), . . . , (1, tℓ)}

where t1 < · · · < tℓ. (In the notation of the previous paragraph, ℓ = a+b.) Let si ∈ {±1} be
the sign of (1, ti) ∈ (u|{1}×R)

−1(C1), with respect to the coorientation of ζ and the orientation
of {1}×R. The inverse function theorem implies that there are small, positive real numbers
ǫ2,1, . . . , ǫn,ℓ so that

(u|{1}×R)
−1(C2) =

{
(1, t1 − s1ǫ2,1), (1, t2 − s2ǫ2,2), . . . , (1, tℓ − sℓǫ2,ℓ)

}

(u|{1}×R)
−1(C3) =

{(
1, t1 − s1(ǫ2,1 + ǫ3,1)

)
,
(
1, t2 − s2(ǫ2,2 + ǫ3,2)

)
, . . . ,

(
1, tℓ − sℓ(ǫ2,ℓ + ǫ3,ℓ)

)}

(u|{1}×R)
−1(C4) =

{(
1, t1 − s1(ǫ2,1 + ǫ3,1 + ǫ4,1)

)
, . . . ,

(
1, tℓ − sℓ(ǫ2,ℓ + ǫ3,ℓ + ǫ4,ℓ)

)}

and so on. In particular, suppose j < k. The preimage (1, ti) of C1 gives preimages of
Cj and Ck that occur in order if si < 0 and out of order if si > 0. It follows that Nn(u)
is the number Nn(a, b) of ways of choosing n points among the a + b intersection points,
possibly with repetitions, subject to the restriction that positive intersection points cannot
be repeated

It remains to prove that Nn(a, b) ≡
(
a−b
n

)
(mod 2). The number Nn(a, b) is the coefficient

of sn in (1+ s)a(1+ s+ s2+ · · · )b: the a (1+ s) factors represent the a positive intersections,
which can be chosen 0 or 1 times, and the the b (1 + s + s2 + · · · ) factors represent the b
negative intersections, which can be chosen any number of times. Since 1 + s + s2 + · · · ≡
1−s+s2−· · · ≡ (1+s)−1 (mod 2), this equals (1+s)a(1+s)−b = (1+s)a−b =

∑
n∈N

(
a−b
n

)
sn,

and so Nn(a, b) ≡
(
a−b
n

)
(mod 2), as desired. �

Theorem 3.3. Up to quasi-isomorphism, the A∞-modules ĈF (H) and ĤF (H) over the
ring F2[X ]/(X2) are independent of the multi-curve ζ representing [ζ ] ∈ H1(Y )/tors, the
perturbations, the Heegaard diagram, and the almost complex structure in their construction.

Proof. This is a simple adaptation of the usual invariance proof for Heegaard Floer ho-
mology [OSz04c], and is left to the reader. The result also follows from invariance of

ĤF (Y ;Z[t−1, t]ζ) and Theorem 3.12 below (whose proof does not depend on this theo-
rem). �

Remark 3.4. We have suppressed Spinc-structures from the discussion above. All of the
complexes decompose as direct sums over the Spinc-structures on Y , and the A∞ action
respects this decomposition.

3.2. Algebra: twisted coefficients and Koszul duality. Michael Hutchings pointed

out to the first author around 2004 that one can recover the H1/tors-action on ĤF (Y ) from

ĈF (Y ). As he may also have explained, this extends to the A∞-module structure. In this
section, we give two formulations of this construction.

To motivate the first formulation, consider the relations between Equations (3.1), (3.2),
and (3.3): the operation ∂ is obtained from ∂ by setting t = 1, while the operation ζ · is
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obtained from ∂ by differentiating once with respect to t and then setting t = 1. (Compare
the operators Φw and Ψz [Sar15, Zem17].) Of course, the second derivative vanishes in
characteristic 2, but the right generalization of this relation was introduced by Hasse and
Schmidt [SH37]:

Definition 3.5. Let k be a commutative ring with unit and let k[t−1, t] be the ring of
Laurent polynomials over k. Given m,n ∈ Z, n ≥ 0, the element

(
m
n

)
∈ Z induces an

element
(
m
n

)
=

(
m
n

)
1 ∈ k. The nth Hasse derivative Dn : k[t−1, t] → k[t−1, t] is the k-linear

map which satisfies

Dn(tm) =

(
m

n

)
tm−n.

Over a field of characteristic 0,

Dn =
1

n!

dn

dtn
.

Proposition 3.6. The Hasse derivatives satisfy the Leibniz rule

Dn
(
fg

)
=

n∑

i=0

(
Di(f)

)(
Dn−i(g)

)
.

Further, for any Laurent polynomial p(t) and any a 6= 0, if (Dip(t))|t=a = 0 for all i then
p(t) = 0.

Proof. For a proof of the first statement, see, for example, Conrad [Con00, Section 4].
For the second, suppose (Dip(t))|t=a = 0 for all i. By the first statement, we also have
(Di(tNp(t)))|t=a = 0 for all i, so we may assume that p(t) ∈ k[t]. If the highest degree term
in p(t) is bnt

n, bn 6= 0, then Dn(p(t))|t=a = bn. �

See Jeong [Jeo11] for a recent, more thorough discussion of what is known about Hasse
derivatives, and further references.

Corollary 3.7. Let A and B be m×n and n×p matrices over k[t−1, t], respectively. Define
Dj(A) to be the result of taking the jth Hasse derivative of each entry of A. Then,

Dn(AB) =
n∑

i=0

(
Di(A)

)(
Dn−i(B)

)
.

Proof. This is immediate from Proposition 3.6 and the formula for matrix multiplication. �

Definition 3.8. Let (C∗, ∂) be a (graded or ungraded) freely generated chain complex over
F2[t

−1, t], with a choice of distinguished basis. View F2 as an F2[t
−1, t]-algebra via the

homomorphism sending t 7→ 1 and let Ct=1
∗ = C∗⊗F2[t−1,t]F2. Define an A∞-module structure

on Ct=1
∗ over F2[X ]/(X2),

µ1+n : C
t=1
∗ ⊗F2

(F2[X ]/(X2))⊗n → Ct=1
∗ ,

by declaring that:

• µ1(c) is the differential on C∗, with t evaluated at 1, and
• µ1+n(c,X, . . . , X) =

(
Dn∂(c)

)
|t=1. Here, c is the image of c under the inclusion Ct=1

∗ →֒ C∗

induced by the inclusion F2 →֒ F2[t
−1, t] as the constant polynomials.

We will say that (Ct=1
∗ , {µ1+n}) is the A∞-module induced by C∗.
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Note that the Hasse derivatives of ∂(c) here depend on the choice of basis for C∗ over
F2[t

−1, t], used to represent ∂(c) as a vector or ∂ as a matrix. The Leibniz rule (Propo-
sition 3.6) also implies a Leibniz rule for matrix multiplication. In particular, this Hasse
derivative is respected by changing basis by a matrix over F2 (i.e., consisting of constant
polynomials), though we will not use this fact directly.

Lemma 3.9. Let (C∗, ∂) be a freely generated chain complex over F2[t
−1, t], with a distin-

guished basis. Then the A∞-module induced by C∗ satisfies the A∞ relations. Further, if
f : C∗ → E∗ is a quasi-isomorphism of freely generated chain complexes over F2[t

−1, t] then
there is an induced quasi-isomorphism of A∞-modules F : Ct=1

∗ → Et=1
∗ .

Proof. This follows from Corollary 3.7. For the first statement, we need to check that

(3.7)
∑

i+j=n

µ1+i(µ1+j(c,X, . . . , X), X, . . . , X) = 0

for all n and all c. Consider the nth Hasse derivative of the matrix equation ∂2 = 0. By
Corollary 3.7, this gives ∑

i+j=n

Di(∂) ◦Dj(∂) = 0.

Setting t = 1 gives Equation (3.7).
For the second statement, define

F1+n : C
t=1
∗ ⊗F2

(F2[X ]/(X2))⊗n → Et=1
∗

by

F1+n(c,X, . . . , X) =
(
Dnf(c)

)
|t=1.

To see that F is an A∞ homomorphism, we need to check that
∑

i+j=n

F1+i(µ1+j(c,X, . . . , X), X, . . . , X) + µ1+i(F1+j(c,X, . . . , X), X, . . . , X) = 0.

This follows from the equation f ◦∂+∂ ◦ f = 0 by taking the nth Hasse derivative and using
Corollary 3.7. Now, it follows from the universal coefficient theorem (see Lemma 2.3 above
for the ungraded case) and the 5-lemma that F is a quasi-isomorphism: the map F1 is just
the map f ⊗ Id : C∗ ⊗F2[t−1,t] F2 → E∗ ⊗F2[t−1,t] F2 induced by f , and we have

0 // H(C∗)⊗F2[t−1,t] F2

∼=

��

// H(Ct=1
∗ )

(F1)∗

��

// Tor1
F2[t−1,t](H(C∗),F2)

∼=
��

// 0

0 // H(E∗)⊗F2[t−1,t] F2
// H(Et=1

∗ ) // Tor1
F2[t−1,t](H(E∗),F2) // 0.

This proves the result. �

A priori, the isomorphism type of the A∞-module Ct=1
∗ depends on the basis for C∗ we

are working with. Lemma 3.9 implies that this dependence is superficial:

Corollary 3.10. Up to quasi-isomorphism, the A∞-module Ct=1
∗ is independent of the choice

of basis for C∗. That is, if C∗ is isomorphic to E∗ then Ct=1
∗ is quasi-isomorphic to Et=1

∗ .
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(In fact, inspecting the proof a little more shows that the corollary holds up to isomorphism
of A∞-modules, not just quasi-isomorphism.)

Let R = F2[t
−1, t]. An element ζ ∈ H1(Y )/tors induces a homomorphism F2[H2(Y )] → R,

making R into an F2[H2(Y )]-algebra. When thinking of R as an F2[H2(Y )]-algebra, we will
denote it Rζ . When we only want to think of R as a ring, we will drop the subscript ζ .

Proposition 3.11. Let Y be a closed 3-manifold and ζ ∈ H1(Y )/tors. Let ĈF (Y ;Rζ) be the

twisted Floer complex of Y with respect to ζ and ĈF (Y ) the untwisted Floer complex, with
A∞-module structure over F2[X ]/(X2) induced by ζ. Then, there is a quasi-isomorphism of
A∞-modules

ĈF (Y ) ≃ ĈF (Y ;F2[t
−1, t]ζ)

t=1.

Proof. This is immediate from Formula (3.1) and Lemma 3.2. �

Theorem 3.12. Let ĤF (Y ;Rζ) be the Heegaard Floer homology of Y with (twisted) coeffi-
cients in Rζ . As R-modules, let

ĤF (Y ;Rζ) ∼= Rm ⊕ R/(p1(t))⊕ · · · ⊕ R/(pn(t))

where each pi(t) 6= 0. Assume that p1(1), . . . , pk(1) = 0 and pk+1(1), . . . , pn(1) 6= 0. Then,
there is an isomorphism of strictly unital A∞-modules over F2[X ]/(X2)

ĤF (Y ) ∼= F
m
2 ⊕ F2〈z1, . . . , zk, w1, . . . , wk〉

where

• The A∞-module structure on F
m
2 and on F2〈w1, . . . , wk〉 is trivial, i.e., for y ∈ F

m
2 ⊕

F2〈w1, . . . , wk〉 and any n ≥ 0,

µ1+n(y,X, . . . , X) = 0.

• We have
µ1+n(zi, X, . . . , X) =

(
Dnpi(t)

)
|t=1wi.

Proof. First, observe that ĈF (Y ;Rζ) decomposes as a direct sum of 1-step and 2-step com-

plexes. That is, we can find a basis b1, · · · , bp, c1, . . . , cp, d1, . . . , dm for ĈF (Y ;Rζ) so that
∂(bi) = qi(t)ci and ∂(ci) = ∂(di) = 0. That such a basis exists follows from the proof of
Proposition 2.4. Further, we can arrange that qi(t) = pi(t) for i ≤ n and qi(t) is a unit for
i > n.

By Corollary 3.10, ĈF (Y ;Rζ)
t=1 can be computed using this basis, and by Proposi-

tion 3.11, ĈF (Y ;Rζ)
t=1 ≃ ĈF (Y ), as A∞-modules. So, it suffices to consider a single

summand di or bi
qi(t)
−→ ci of ĈF (Y ;Rζ)

t=1.
It is immediate from the definitions that the summand generated by di gives a summand

R of ĤF (Y ;Rζ) and a summand F2 of ĈF (Y ;Rζ)
t=1.

A summand of the form bi
qi(t)
−→ ci gives a copy of R/(qi(t)) of ĤF (Y ;Rζ) (which is trivial

if qi(t) is a unit). From Definition 3.8, a summand of the form bi
qi(t)
−→ ci gives a summand of

ĈF (Y ;Rζ)
t=1 with trivial homology if qi(1) 6= 0. If qi(1) = 0 then the corresponding sum-

mand of ĈF (Y ;Rζ)
t=1 is 2-dimensional, generated by zi and wi, say, has trivial differential,

and has
µ1+n(zi, X, . . . , X) =

(
Dnpi(t)

)
|t=1wi,
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as claimed. �

Corollary 3.13. With notation as in Theorem 3.12, the unrolled homology of ĈF (Y ) is
isomorphic to F2[Y

−1, Y ]]m.

Proof. Since the unrolled homology is invariant under A∞ quasi-isomorphism, the unrolled

homology of ĈF (Y ) is isomorphic to the unrolled homology of ĤF (Y ). Clearly, the F
m
2 ⊂

ĤF (Y ) survives to give a copy of F2[Y
−1, Y ]]m in the unrolled homology. It remains to see

that the other summands of ĤF (Y ) do not contribute to the unrolled homology.

Consider the summand of ĤF (Y ) generated by zi and wi. By Proposition 3.6, since
pi(t) 6= 0, there is some integer k ≥ 1 so that

(
Dkpi(t)

)
|t=1 6= 0. Let k be the first such integer.

Consider the spectral sequence computing the unrolled homology of ĤF (Y ), associated to the
horizontal filtration. Then, on this summand, the first nontrivial differential in this spectral
sequence is dk(zi) = αY kwi, where α =

(
Dkpi(t)

)
|t=1. The homology of this summand with

respect to this differential vanishes. �

Corollary 3.14. If ĤF (Y ;Rζ) has an F2[t
−1, t]-summand then the unrolled homology of

ĈF (Y ) with respect to the action by ζ is nontrivial.

Corollary 3.15. The unrolled homology of ĈF (Y ) is isomorphic to the completed twisted

coefficient homology ĤF (Y ;F2[t
−1, t]]).

Proof. This is immediate from Corollary 3.13, which computes the unrolled homology in

terms of ĤF (Y ;Rζ), and the universal coefficient theorem, which says that

ĤF (Y ;F2[t
−1, t]]) ∼= ĤF (Y ;Rζ)⊗R F2[t

−1, t]].

(Recall that F2[t
−1, t]] is flat over F2[t

−1, t].) �

While we will not need it for our application, we conclude this section by noting a more
homological-algebraic interpretation of Proposition 3.11. View F2 as an R = F2[t

−1, t]-
module in the usual way, by letting t act by 1. Then, F2 has a 2-step free resolution over
R:

R
1−t
−→ R.

From this, it is straightforward to compute that ExtR(F2,F2) ∼= F2[X ]/(X2) (and, in fact,
RHomR(F2,F2) is quasi-isomorphic to F2[X ]/(X2)).

For any chain complex C∗ over R, there is an A∞ action of ExtR(F2,F2) on TorR(C∗,F2).
Explicitly, TorR(C∗,F2) is the homology of the total complex of the bicomplex

(3.8) 0 −→ C
1−t
−→ C −→ 0.

The element X shifts this bicomplex one unit to the right, i.e., sends the first copy of C to
the second by the identity map and sends the second copy of C to 0. So, this total complex is
a differential module over F2[X ]/(X2), and its homology TorR(C∗,F2) inherits the structure
of an A∞-module over F2[X ]/(X2).

Theorem 3.16. For any finitely generated, free chain complex C∗ over R, there is a quasi-
isomorphism of A∞-modules over F2[X ]/(X2)

Ct=1
∗ ≃ TorR(C∗,F2).
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In particular, as A∞-modules over F2[X ]/(X2),

ĤF (Y ) ≃ TorF2[t−1,t](ĤF (Y ),F2).

Proof. As in the proof of Theorem 3.12, it suffices to prove the result when C∗ consists of a

single generator d or a pair of generators b, c with differential b
p(t)
−→ c. In the first case, it is

straightforward to see that both Ct=1
∗ and TorR(C∗,F2) are isomorphic to F2 with trivial A∞-

module structure. In the second case, if p(1) 6= 0 then Ct=1
∗ is acyclic and TorR(C∗, R) = 0.

So, it remains to verify the second case under the assumption that p(1) = 0.
Let E∗ be the total complex of the bicomplex (3.8). We will construct an A∞ quasi-

isomorphism f : Ct=1
∗ → E∗.

To fix notation, write E∗ = C ⊗ F2[X ]/(X2), with differential
[
∂C (1− t)
0 ∂C

]
.

That is, the complex E∗ is the total complex of the square

R
1−t

//

p(t)
��

R

p(t)
��

R
1−t

// R.

=

R〈b〉
1−t

//

p(t)
��

R〈Xb〉

p(t)
��

R〈c〉
1−t

// R〈Xc〉.

Define Laurent polynomials qn(t) inductively by

q1(t) = p(t)/(1− t)

qn+1(t) = (qn(1)− qn(t))/(1− t).

The fact that q1(t) is a Laurent polynomial follows from the restriction that p(1) = 0.
We claim that

qn(1) =
(
Dnp(t)

)
|t=1.

By induction, we have

p(t) = (t− 1)q1(1) + (t− 1)2q2(1) + · · ·+ (t− 1)n−1qn−1(1) + (t− 1)nqn(t)

(cf. Taylor’s theorem). Hence,

Dnp(t) = (Dn(t− 1)n)qn(t) + (t− 1)r(t) = qn(t) + (t− 1)r(t).

Evaluating at 1 verifies the claim.
Now, define:

f1(c) = Xc

f1+n(c,X, . . . , X) = 0 n > 0

f1(b) = Xb+ q1(t)c

f1+n(b,X, . . . , X) = qn+1(t)c n > 0.

It is straightforward to see that f1 is a quasi-isomorphism. We claim that the fi satisfy the
A∞ homomorphism relations; this finishes the proof. We must check that for y ∈ {b, c},

∑

i+j=n

µE
1+i(f1+j(y,X, . . . , X), X, . . . , X) + f1+i(µ

Ct=0

1+j (y,X, . . . , X), X, . . . , X) = 0.
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Recall that µE
1+i = 0 for i > 1. In the case y = c, each term in the equation vanishes. For

y = b and n = 0, the left side of the equation is

∂E(f1(b)) + f1(∂
Ct=0

(b)) = ∂E(Xb+ q1(t)c) = (p(t) + (1− t)q1(t))Xc = 0.

For y = b and n > 0, the left side is equal to

∂E(f1+n(b,X, . . . , X) + µE
2 (fn(b,X, . . . , X), X) +

∑

i+j=n

f1+i((D
jp(t))|t=1c,X, . . . , X)

= ∂E(qn+1(t)c) + µE
2 (qn(t)c,X) + (Dnp(t))|t=1Xc

= qn+1(t)(1− t)Xc+ qn(t)Xc+ qn(1)Xc

= (qn(1)− qn(t) + qn(t) + qn(1))Xc

= 0,

as desired. �

Remark 3.17. Presumably, one can give a direct proof of Theorem 3.16, without relying on
the classification of finitely generated modules over a PID, but the computations required
seem involved.

Remark 3.18. For simplicity, we have worked in characteristic 2 and focused on the action
of a single element ζ ∈ H1(Y )/tors , but we expect that the results in this section generalize
to the entire A∞-module structure over Λ∗H1(Y )/tors over Z (though some of the proofs do
not).

4. The module structure on Khovanov homology and the Ozsváth-Szabó

spectral sequence

4.1. Definition and invariance of the basepoint action on Khovanov homology.

Fix a link diagram L and a basepoint q ∈ L not at any of the crossings. (From here
on, basepoint means “basepoint not at a crossing.”) The Khovanov complex CKh(L) of L
inherits the structure of a module over F2[X ]/(X2) as follows. A generator of CKh(L) is a
complete resolution of L and a decoration of each component of the resolution by 1 or X .
Multiplication by X on a generator of CKh(L):

• is zero if the generator labels the circle containing q by X and
• changes the label on the circle containing q toX , if the generator labels the circle containing
q by 1.

It is straightforward to check that multiplication by X is a chain map. The action of X
preserves the homological grading and decreases the quantum grading by 2.

Given two basepoints p, q ∈ L, the actions at p and q commute, and hence make CKh(L)
into a differential bimodule over F2[W ]/(W 2) and F2[X ]/(X2) or, equivalently, a differential
module over F2[W,X ]/(W 2, X2). Note that while CKh(L) is free over F2[X ]/(X2), it is
typically not free over F2[W,X ]/(W 2, X2).

Let Σa,b denote shifting the homological grading up by a and the quantum grading up by
b.

Given a basepoint p on L, the reduced Khovanov complex C̃Kh(L) is the subcomplex of
Σ0,1CKh(L) where the circle containing p is labeled X or, equivalently, the quotient complex
of Σ0,−1CKh(L) where the circle containing p is labeled 1. Given a second basepoint q on L,

C̃Kh(L) inherits a module structure over F2[X ]/(X2).
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We will use the following lemma, to avoid writing the same proof twice in Theorem 4.2.

Lemma 4.1. Let L be a link and p, q basepoints on L. Write CKh(L)p,q for the Khovanov
complex CKh(L) viewed as a bimodule over F2[W ]/(W 2) and F2[X ]/(X2) via the basepoints

p and q. Write C̃Kh(L)p,q for the reduced Khovanov complex, reduced at p and viewed as a
module over F2[X ]/(X2) via the basepoint q. View F2 as a module over F2[W ]/(W 2) where
W acts by 0. Then, there is a chain isomorphism of F2[X ]/(X2)-modules

C̃Kh(L)p,q ∼= Σ0,−1CKh(L)p,q ⊗F2[W ]/(W 2) F2.

Further, CKh(L) is a free module over F2[W ]/(W 2), so C̃Kh(L) is quasi-isomorphic to the A∞

tensor product of the A∞-bimodule Kh(L) and the F2[W ]/(W 2) module F2.

Proof. The first statement is immediate from the definitions. The second follows from the
facts that the A∞ tensor product is invariant under A∞ homotopy equivalence and that any
A∞-(bi)module is A∞ homotopy equivalent to its homology (Proposition 2.9). �

Theorem 4.2. Let L be a link and p, p′, q, q′ points on L so that p, p′ lie on the same
component of L and q, q′ lie on the same component of L.

(1) Write CKh(L)p,q (respectively CKh(L)p′,q′) for the Khovanov complex CKh(L) viewed as
a module over F2[W,X ]/(W 2, X2) via the basepoints p, q (respectively p′, q′). Then,
CKh(L)p,q is quasi-isomorphic to CKh(L)p′,q′.

(2) Write C̃Kh(L)p,q (respectively CKh(L)p′,q′) for the reduced Khovanov complex CKh(L), re-
duced at p (respectively p′), and viewed as a module over F2[X ]/(X2) via the basepoint

q (respectively q′). Then, C̃Kh(L)p,q is quasi-isomorphic to C̃Kh(L)p′,q′.

The fact that the Khovanov homology has a well-defined structure of a bimodule appears
in Hedden-Ni [HN13, Proposition 1], via a similar argument. The fact that the action of
Z[X ]/(X2) at a single basepoint is well-defined is due to Khovanov [Kho03, Section 3], by a
different argument which apparently does not generalize.

Proof. For the first half of the theorem, by Proposition 2.10, it suffices to show that moving q
past a crossing C gives an A∞ quasi-isomorphic bimodule over F2[W ]/(W 2) and F2[X ]/(X2).
An A∞-bimodule map from M to N consists of maps

fm,1,n : (F2[W ]/(W 2))⊗m ⊗M ⊗ (F2[X ]/(X2))⊗n → N.

Our quasi-isomorphism f will have f0,1,0 = Id and fm,1,n = 0 if m > 0 or n > 1. To define
f0,1,1, we need some more notation.

Write a generator of the Khovanov complex as a pair (v, x) where v ∈ {0, 1}c (where c is
the number of crossings of L) and x is a labeling of the circles of the v-resolution Lv by 1 or
X . That is, x ∈ {1, X}π0(Lv). Let |v| =

∑
v be the height of the vertex v, and let ≤ denote

the partial order on the cube {0, 1}c. Given v, w with |v| − |w| = ±1 and v < w or w < v;
x ∈ {1, X}π0(Lv); and y ∈ {1, X}π0(Lw), let nx,y be 1 if the following conditions are satisfied:

• For Z ∈ Lv ∩ Lw, x(Z) = y(Z);
• If there are two circles Z1, Z2 in Lv which are merged into a circle Z in Lw then y(Z) =
x(Z1)x(Z2) (where the multiplication is in F2[X ]/(X2)); and

• If there is one circle Z in Lv which is split into two circles Z1, Z2 in Lw then y(Z1)⊗y(Z2) =
∆(x(Z)) where ∆: F2[X ]/(X2) → F2[X ]/(X2)⊗ F2[X ]/(X2) is the comultiplication

∆(1) = 1⊗X +X ⊗ 1 ∆(X) = X ⊗X.



KHOVANOV HOMOLOGY DETECTS SPLIT LINKS 21

CKh

( )•
p

•
q

=

1

X

1⊗ 1

1⊗X

X ⊗ 1

X ⊗X

CKh

( )•
p

•
q

=

1

X

1⊗ 1

1⊗X

X ⊗ 1

X ⊗X

f

Figure 4.1. Example of the map f . The solid arrows are the differential,
the dashed arrows are the action of W , the dotted arrows are the action of X ,
the double arrows are the map f0,1,0, and the dashed double arrows are the
map f0,1,1(·, X). The A∞ relations correspond to certain ways of getting from
one vertex to another in two steps.

Define nx,y = 0 otherwise. Then, the Khovanov differential is

δ(x, v) =
∑

(y,w)|w≥v, |v|+1=|w|

nx,y · (y, w).

Define the map f0,1,1 by

f0,1,1((y, w), X) =
∑

(x,v)|w≥v, |v|+1=|w|, v(C)6=w(C)

ny,x · (x, v).

Equivalently, f0,1,1 comes from performing the differential at C backwards. That is, if C is
the opposite crossing to C then f0,1,1 is the part of the differential associated to changing C.
(Compare [HN13, Lemma 2.3], [BS15, Section 2.2].) See Figures 4.1 and 4.2.

The nontrivial A∞ relations to verify are the following:

µ0,1,0(f0,1,0((v, x))) + f0,1,0(µ0,1,0((v, x))) = 0(4.1)

µ1,1,0(W, f0,1,0((v, x))) + f0,1,0(µ1,1,0(W, (v, x))) = 0(4.2)

µ0,1,1(f0,1,0((v, x)), X) + f0,1,0(µ0,1,1((v, x), X))

+µ0,1,0(f0,1,1((v, x), X)) + f0,1,1(µ0,1,0((v, x)), X) = 0
(4.3)

µ1,1,0(W, f0,1,1((v, x), X)) + f0,1,1(µ1,1,0(W, (v, x)), X) = 0(4.4)

µ0,1,1(f0,1,1((v, x), X), X) + f0,1,1(µ0,1,1((v, x), X), X) = 0(4.5)
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CKh

( )•
p

•
q

=

1

X

1⊗ 1

1⊗X

X ⊗ 1

X ⊗X

CKh

( )•
p

•
q

=

1

X

1⊗ 1

1⊗X

X ⊗ 1

X ⊗X

f

Figure 4.2. A second example of the map f . Notation is the same as in Figure 4.1.

All other A∞ relations are automatically satisfied because all of the terms vanish. In these
equations, we have dropped terms which automatically vanish, like µ0,1,0(f1,1,0(W, (v, x))),
to keep the expressions shorter.

Since f0,1,0 is the identity map, Equations (4.1) and (4.2) are obviously satisfied. Equa-
tion (4.3) was checked in Hedden-Ni’s paper [HN13, Equation (1)]. For Equation (4.4), let
L′ be the result of replacing the crossing C in L by the opposite crossing C ′; then, the
equation follows from the fact that the differential on the Khovanov complex of L′ respects
the F2[W ]/(W 2)-module structure.

For Equation (4.5), consider the coefficient of (w, y). For the coefficient to be non-zero, v
must be obtained from w by changing the entry corresponding to C from 0 to 1. Suppose
first that two circles Z1, Z2 in Lw merge into one circle Z in Lv. Note that one circle, say
Z1, must contain q and the other circle Z2 must contain q′. Then, recording only the labels
of the circles Z1, Z2, and Z, µ0,1,1(f0,1,1((v, x), X), X) is given by

1 7→ 1⊗X +X ⊗ 1 7→ X ⊗X

X 7→ X ⊗X 7→ 0,

while f0,1,1(µ0,1,1((v, x), X), X) is given by

1 7→ X 7→ X ⊗X

X 7→ 0 7→ 0.

So, these two terms cancel. Next, suppose that one circle Z in Lw splits into two circles
Z1, Z2 in Lv, where Z1 contains q and Z2 contains q

′. Then, µ0,1,1(f0,1,1((v, x), X), X) is given
by

1⊗ 1 7→ 1 7→ X 1⊗X 7→ X 7→ 0

X ⊗ 1 7→ X 7→ 0 X ⊗X 7→ 0 7→ 0
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while f0,1,1(µ0,1,1((v, x), X), X) is given by

1⊗ 1 7→ X ⊗ 1 7→ X 1⊗X 7→ X ⊗X 7→ 0

X ⊗ 1 7→ 0 7→ 0 X ⊗X 7→ 0 7→ 0.

So, again, these two terms cancel. These two cases are illustrated in Figures 4.1 and 4.2.
(An alternative way to view this identity is as follows: The map f0,1,1 : CKh(Lv) → CKh(Lw)
is induced by an elementary saddle cobordism, while the X-actions on CKh(Lv) and CKh(Lw)
are induced by identity cobordisms decorated with a single ‘dot’; then, either term of Equa-
tion (4.5) corresponds to an elementary saddle cobordism decorated with a single dot on the
saddle component.)

This proves the first half of the theorem. The second half of the theorem follows from
the first and Lemma 4.1 (and the fact that the A∞ tensor product is invariant under A∞

quasi-isomorphisms). �

Corollary 4.3. Let L be a link and p, p′, q, q′ points on L so that p, p′ lie on the same
component of L and q, q′ lie on the same component of L. Up to A∞-isomorphism, the

A∞-modules Kh(L)p and Kh(L)p′ (respectively K̃h(L)p,q and K̃h(L)p′,q′) over F2[X ]/(X2)
are isomorphic. In fact, the isomorphism classes of these A∞-modules are invariants of the
isotopy classes of the triple (L, p) and (L, p, q), respectively.

Proof. The first statement is immediate from Theorem 4.2 and homological perturbation
theory. For the second statement, it suffices to verify invariance under Reidemeister moves
disjoint from the basepoints and moving a strand across a basepoint. Invariance under
Reidemeister moves disjoint from the basepoints was proved by Khovanov [Kho00], and
invariance under moving a strand across a basepoint is a special case of the first half of the
corollary. �

4.2. The Ozsváth-Szabó spectral sequence respects the A∞-module structure. Let
L be a link in S3 and p, q ∈ L. Choose an arc γ ⊂ S3 \ L from p to q. The preimage
ζ ⊂ Σ(L) of γ is a simple closed curve, representing an element of H1(Σ(L)). The homology
class represented by ζ is independent of the choice of γ since isotoping γ across L changes ζ
by the preimage of a meridian of L, which bounds a disk in Σ(L).

The homology class [ζ ] makes ĈF (Σ(L);F2) into a module over F2[X ]/(X2), as described
in Section 3. (Of course, if [ζ ] ∈ H1(Σ(L)) is torsion—for example, if p and q lie on the
same component of L or if Σ(L) is a rational homology sphere—then this module structure
is trivial.)

In the following proposition, by a filtration we mean a descending filtration, i.e., a sequence
of submodules C = F 0 ⊃ F 1 ⊃ F 2 ⊃ · · · .

Proposition 4.4. Let L be a link in S3 and p, q points on L. There is an ungraded, filtered
A∞-module (C, {µn}) over F2[X ]/(X2) with the following properties:

(1) Forgetting the filtration, C is quasi-isomorphic to ĈF (Σ(L)) as an A∞-module over
F2[X ]/(X2).

(2) The differential µ1 on C strictly increases the filtration.

(3) There is an isomorphism of F2-modules g : C
∼=

−→ C̃Kh(m(L)), taking the filtration on C

to the homological grading on C̃Kh(m(L)).
(4) To first order, µ1 agrees with the Khovanov differential. That is,

µ1 − g−1 ◦ ∂CKh
◦ g
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increases the filtration by at least 2.
(5) To zeroth order, the operation µ2(·, X) on C agrees with the action of X on the Khovanov

complex. That is,

y 7→ µ2(y,X)− g−1(g(y) ·X)

increases the filtration by at least 1. (Note that the Khovanov multiplication actually
respects the homological grading.)

Proof. This is essentially Hedden-Ni’s refinement [HN13, Theorem 4.5] of Ozsváth-Szabó’s
construction of the spectral sequence for a branched double cover [OSz05, Theorem 6.3].
The only additional assertions are that there is an A∞-module structure on C and the quasi-

isomorphism between C and ĈF (Σ(L)) extends to an A∞ homomorphism. So, we will only
explain the additional steps required to adapt Hedden-Ni’s proof, and will adopt much of
their notation without re-introducing it.

Throughout this proof, Floer complexes are with F2-coefficients (which we suppress from
the notation).

Let c be the number of crossings of L and, given I ∈ {0, 1,∞}c, let

HI = (Σ,α,βI , z)

be the Heegaard diagram considered by Ozsváth-Szabó and Hedden-Ni. Fix

• a curve ζ in Σ representing the homology class of a lift of an arc from p to q,
• small pushoffs A2, A3, . . . of A1 = ζ ∩α as in Section 3.1, and
• a collection of sufficiently generic almost complex structures.

Given a sequence I0 < I1 < · · · < Im of immediate successors in {0, 1,∞}c and an integer
n ≥ 0, define a map

µI0<···<Im
1+n (·,

n︷ ︸︸ ︷
X, · · · , X) : ĈF (HI0) → ĈF (HIm)

by counting rigid holomorphic (m+ 2)-gons in the Heegaard multi-diagram

(Σ,α,βI0 , . . . ,βIm , z)

with point constraints along the α-boundary coming from A1, . . . , An and corners at some
generator x ∈ Tα ∩ TβI0 , some generator y ∈ Tα ∩ TβIm , and the top generators Θ1, . . . ,Θm

for (βI0,βI1), . . . , (βIm−1 ,βIm).
Let

µ1+n :
⊕

I∈{0,1,∞}c

ĈF (HI)⊗
(
F2[X ]/(X2)

)n
→

⊕

I∈{0,1,∞}c

ĈF (HI)

be

µ1+n(·, X, . . . , X) =
∑

I0<···<Im

µI0<···<Im
1+n (·,

n︷ ︸︸ ︷
X, · · · , X).

Note that in the special case n = 0, µ1 is the map D introduced by Ozsváth-Szabó, and in
the case n = 1, µ2(·, X) is the map aζ introduced by Hedden-Ni.

We claim that the µ1+n make M =
⊕

I∈{0,1,∞}c ĈF (HI) into an A∞-module. This follows
by considering the ends of the 1-dimensional moduli spaces of polygons with point con-
straints. With notation as in the rigid case discussed above, the ends of the 1-dimensional
moduli spaces are:
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• Ends where the polygon degenerates as a polygon on (α,β0, . . . ,βk) with p point con-
straints and a polygon on (α,βk, . . . ,βm) with n − p point constraints. These degenera-
tions correspond to the terms

µ1+n−p(µ1+p(·, X, . . . , X), X, . . . , X)

in the A∞ relation. (This uses the fact that the pushoffs Ai are chosen consistently, as
in Section 3.1, so that the count of curves constrained by A1, . . . , An−p and the count of
curves constrained by Ap+1, . . . , An are the same.)

• Ends where the polygon degenerates as a polygon on (α,β0, . . . ,βi,βj, . . . ,βk) with n
point constraints and a polygon on (βi,βi+1, . . . ,βk). These contributions vanish because
the count of rigid polygons on (βi,βi+1, . . . ,βk) with corners at the Θi is zero [OSz05,
Lemma 4.5].

• Ends where a pair of constrained points collide. These cancel in pairs, as in the proof of
Lemma 3.1

(Compare [OSz05, Section 4.2], [HN13, Theorem 3.4 and Lemma 4.4].)
By construction, given a crossing C0 of L, M is the mapping cone of an A∞-module

homomorphism
⊕

{I∈{0,1,∞}c|I(C0)∈{0,1}}

ĈF (HI) →
⊕

{I∈{0,1,∞}c|I(C0)=∞}

ĈF (HI),

and the surgery exact triangle for ĤF implies that this homomorphism is an isomorphism.
So, it follows from the same inductive argument as in Ozsváth-Szabó’s case [OSz05, Proof
of Theorem 4.1] that

C̃ :=
⊕

{I∈{0,1}c}

ĈF (HI)

is quasi-isomorphic, as an A∞-module, to

ĈF (H∞,∞,...,∞) = ĈF (Σ(L)).

Let

C :=
⊕

{I∈{0,1}c}

ĤF (HI).

The complex C is filtered by |I| =
∑

I, the cube filtration. That is,

F i =
⊕

{I∈{0,1}c||I|≥i}

ĤF (HI).

Choose a homotopy equivalence, over F2, between each ĈF (HI) and ĤF (HI), so that

the composition ĤF (HI) → ĈF (HI) → ĤF (HI) is the identity map. These homotopy

equivalences induce maps f : C → C̃ and g : C̃ → C with g ◦ f = IdC . Define the operation
µ1 on C by

µ1(x) = g(µ1(f(x))).

By homological perturbation theory (Proposition 2.9), C inherits the structure of an A∞-

module over F2[X ]/(X2). (Equivalently, C is obtained from C̃ by canceling all differentials
which do not change the cube filtration.) Further:

• The operations µn on C all respect the cube filtration.
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• The differential µ1 on C increases the cube filtration by at least 1. Further, by construction,
µ1 agrees with the differential on Ozsváth-Szabó’s cube [OSz05, Proposition 6.2], and hence
the first-order part of µ1 agrees with the Khovanov differential.

• The zeroth-order part of µ2 is induced by the H1/tors-action on the groups ĤF (HI) =

ĤF (#k(I)(S2 × S1)). Hence, by Hedden-Ni [HN13, Theorem 4.5] (or inspection), the
zeroth-order part of µ2 agrees with the X-action on Khovanov homology.

This completes the proof. �

5. Proof of the detection theorems

We will use the following:

Proposition 5.1. [HN10, Proposition 5.1] Let L be a link in S3. If L = L1#L2 then
Σ(L) = Σ(L1)#Σ(L2). If L = L1 ∐ L2 then Σ(L) = Σ(L1)#Σ(L2)#(S2 × S1). If L is
a non-split prime link then Σ(L) is irreducible. If L is a non-split link then Σ(L) has no
homologically essential 2-spheres (i.e., no S2 × S1 summands).

Corollary 5.2. Let L be a link in S3 and p, q points in L. Let γ be a path in S3 from p
to q with the interior of γ disjoint from L, and let ζ ⊂ Σ(L) be the preimage of γ. If there

is an embedded sphere S̃ ⊂ Σ(L) so that γ · S̃ is nonzero then there is an embedded sphere
S ⊂ S3 \ L separating p and q.

Proof. This follows from the same argument used to prove Proposition 5.1, but we can also
deduce it from Proposition 5.1.

We will prove the contrapositive. Assume there is no sphere separating p and q. Write
L = L1 ∐ · · · ∐ Lk as a (split) disjoint union of links, so that each Li is non-split. Let
B1, . . . , Bk be disjoint balls around L1, . . . , Lk.

Reordering the Li, suppose that p, q ∈ L1. As shown in Section 4.2, the homology class
of ζ is independent of the choice of γ. So, we can assume that γ is contained in B1. By
Proposition 5.1 we have

Σ(L) = Σ(L1)# · · ·#Σ(Lk)#(S2 × S1)#(k−1),

and each Σ(Li) has no homologically essential 2-spheres. The curve γ lies in Σ(L1), so is
disjoint from all of the homologically essential 2-spheres. This proves the result. �

5.1. Khovanov homology of split links.

Lemma 5.3. Let L be a link and p, q points on L. Write C̃Kh(L)p,q for the reduced Khovanov
complex of L, reduced at p and viewed as a module over F2[X ]/(X2) via the basepoint q. If

there is a 2-sphere in S3 \ L separating p and q then K̃h(L;F2) is a free module.

Proof. By Corollary 4.3, we may assume that we are computing K̃h(L;F2) from a split
diagram, i.e., the disjoint union of a link diagram L1 containing p and a link diagram L2

containing q. Then, K̃h(L;F2) ∼= K̃h(L1;F2) ⊗ Kh(L2;F2) as F2[X ]/(X2)-modules. By a

result of Shumakovitch [Shu14, Corollary 3.2.B], Kh(L2;F2) is a free module, so K̃h(L;F2)
is, as well. �
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5.2. Detection of split links by Khovanov homology. Let Λ denote the universal
Novikov field over F2, consisting of formal sums

∑
i fit

ri where the fi ∈ F2, ri ∈ R, and
limi→∞ ri = ∞. An element ω ∈ H2(Y ;R) induces a map H2(Y ;Z) → R and hence a ring
homomorphism F2[H2(Y ;Z)] → Λ. This makes Λ into a module Λω over F2[H2(Y ;Z)].

Theorem 5.4. [AL19, Theorem 1.1] Let Y be a closed, oriented 3-manifold and ω ∈

H2(Y ;R). Then, ĤF (Y ; Λω) = 0 if and only if Y contains a 2-sphere S so that
∫
S
ω 6= 0.

Corollary 5.5. Suppose that ω ∈ Hom(H2(Y ;Z),Z), and let F2[t
−1, t]ω be F2[t

−1, t], viewed

as an F2[H2(Y ;Z)]-module via ω. Then, ĤF (Y ;F2[t
−1, t]ω) is a torsion F2[t

−1, t]-module if
and only if Y contains a 2-sphere S so that ω([S]) 6= 0.

Proof. In the case ω = 0, this is the well-known statement that ĤF (Y ) 6= 0 (see [AL19,
Theorem 1.2]). So, assume ω 6= 0.

Let F2(t) denote the field of rational functions in t; this is also the field of fractions of

F2[t, t
−1]. The module ĤF (Y ;F2[t

−1, t]ω) is torsion if and only if ĤF (Y ;F2[t
−1, t]ω)⊗F2[t−1,t]

F2(t) = 0. It follows from the universal coefficient theorem that

ĤF (Y ;F2(t)ω) ∼= ĤF (Y ;F2[t
−1, t]ω)⊗F2[t−1,t] F2(t)

ĤF (Y ; Λω) ∼= ĤF (Y ;F2(t)ω)⊗F2(t) Λ.

(Compare [AL19, Formula (2.1)].) So, since Λ and F2(t) are fields,

dimΛ ĤF (Y ; Λω) = dimF2(t) ĤF (Y ;F2(t)ω).

Hence, dimΛ ĤF (Y ; Λω) = 0 if and only if ĤF (Y ;F2[t
−1, t]ω) is torsion, so the result follows

from Theorem 5.4. �

Lemma 5.6. Let F2 be any field. If Y is a 3-manifold with H1(Y ) ∼= Z and no homologically

essential 2-spheres in Y then the unrolled homology of ĈF (Y ;F2) is nontrivial. More gen-
erally, for any 3-manifold Y , if ζ ∈ H1(Y ) is such that the intersection number ζ ·S = 0 for

all 2-spheres S ⊂ Y then the unrolled homology of ĈF (Y ;F2) with respect to ζ is nontrivial.

Proof. We prove the more general statement. Let ω ∈ Hom(H2(Y ),Z) be intersection with

ζ . By Corollary 5.5, ĤF (Y ;F2[t
−1, t]ω) has an F2[t

−1, t]-summand. So, by Corollary 3.14,

the unrolled homology of ĈF (Y ;F2) is nontrivial. �

Corollary 5.7. If L is a non-split, 2-component link then the unrolled homology of the

complex ĈF (Σ(L);F2) is nontrivial.
More generally, suppose L = L1 ∪ L2 is a union of two disjoint sublinks, p ∈ L1, and

q ∈ L2. Endow ĈF (Σ(L);F2) with the A∞-module structure over F2[X ]/(X2) coming from
a lift of a path from p to q (§4.2). If there is no 2-sphere separating L1 and L2 then the

unrolled homology of ĈF (Σ(L);F2) is nontrivial.

Here, if Σ(L) is a rational homology sphere then we view ĈF (Σ(L)) as a module over
F2[X ]/(X2) trivially, i.e., µ1+n(y, a1, . . . , an) = 0 if n > 1 or if n = 1 and a1 = X .

Proof. This is immediate from Lemma 5.6 and Proposition 5.1 (for the first statement) or
Corollary 5.2 (for the second statement). �



28 ROBERT LIPSHITZ AND SUCHARIT SARKAR

Proof of Theorem 2. (1) =⇒ (2) This is Lemma 5.3.
(1) =⇒ (3) By Theorem 4.2, we may assume the diagram for L is itself split. Then, the

reduced Khovanov complex is itself a complex of free modules.
(2) =⇒ (4) This follows by considering the horizontal filtration on Cun

Kh
. The E1-page

of the associated spectral sequence is the unrolled complex for K̃h(L;F2), and the unrolled
complex of a free module is acyclic.

(3) =⇒ (4) This is immediate from Lemma 2.12.

(4) =⇒ (1) Suppose that L is a link and p, q ∈ L are such that C̃Kh(L;F2)
un is acyclic.

Let C∗ be the complex from Proposition 4.4. By Lemma 2.11, the unrolled homology of C∗

is isomorphic to the unrolled homology of ĈF (Σ(m(L));F2). Let F be the sum of the cube
filtration on C∗ and the horizontal filtration on Cun

∗ . (That is, for an element x ∈ Cun
∗ , F(x)

is the sum of the horizontal filtration of x and the minimal cube filtration of any term in x.)
Consider the spectral sequence associated to the filtration F . Since µ1 strictly raises

the cube filtration, the d0-differential vanishes. The differential on the E1-page is the sum
of the first-order part of µ1 and the differential on the unrolled complex coming from the
zeroth order part of µ2(·, X). By Properties (4) and (5) in Proposition 4.4, this is exactly

the differential on C̃Kh(m(L))un. Hence, the E1-page is acyclic. Since the complex Cun
∗ is

complete in the filtration F , this implies that Cun
∗ ≃ ĈF (Σ(m(L));F2)

un is acyclic. Hence,
by Corollary 5.7, there is a 2-sphere in S3 \ L separating p an q. �

Proof of Theorem 1. This is immediate from the equivalence of parts (1) and (2) in Theo-
rem 2. �

Proof of Corollary 1.3. Suppose there is a sphere in S3 \ L separating p and q. By Theo-
rem 4.2, we may assume that Kh(L) is computed from a split diagram Lp ∐ Lq with p ∈ Lp

and q ∈ Lq. Then, Kh(L) ∼= Kh(Lp) ⊗F2
Kh(Lq) as a module over F2[W,X ]/(W 2, X2). As

in the proof of Lemma 5.3, Kh(Lp) is a free module over F2[W ]/(W 2) and Kh(Lq) is a free
module over F2[X ]/(X2). So, Kh(L) is a free module over F2[W,X ]/(W 2, X2), as desired.

Conversely, suppose that Kh(L) is a free module over F2[W,X ]/(W 2, X2). We claim that

K̃h(L) is a free module over F2[X ]/(X2). If we knew that all higher A∞ operations on Kh(L)
vanished then this would be immediate, since the reduced Khovanov homology is the A∞

tensor product of the (F2[W ]/(W 2),F2[X ]/(X2))-bimodule Kh(L) over F2[W ]/(W 2) with F2

(Lemma 4.1). In fact, the result follows from homological algebra nonetheless. The A∞

tensor product is

0 Kh(L) Kh(L) Kh(L) Kh(L) · · ·

where an arrow of length n comes from the operation m1+n(·,W, . . . ,W ). (More generally,
an A∞-bimodule operation µk,1,ℓ contributes an A∞-module operation µ1+ℓ which goes k
steps to the left.)

Consider the spectral sequence associated to the obvious horizontal filtration. (This is a
formulation of the universal coefficient spectral sequence.) Since Kh(L) is finitely generated
and the di differential changes the homological grading by i − 1, the spectral sequence



KHOVANOV HOMOLOGY DETECTS SPLIT LINKS 29

converges. The E2-page is

0 ←− Kh(L)/
(
W ·Kh(L)

)
←− 0 ←− 0 ←− 0 ←− · · ·

so the spectral sequence collapses. Thus, as an (ordinary) module, the E∞-page isKh(L)/
(
W ·

Kh(L)
)
. Further, the form of the E∞-page implies that the module structure on the E∞-page

is the same as the module structure on the homology of the total complex. So, the reduced
Khovanov homology is isomorphic to Kh(L)/

(
W · Kh(L)

)
, a free module over F2[X ]/(X2).

Hence, by Theorem 1, there is a sphere in S3 \ L separating p and q. �

Finally, we note that Hedden-Ni’s result that the Khovanov homology module detects the
unlink follows from Theorem 1 (and [KM11]). (Of course, the techniques we used to prove
Theorem 1 are similar to the ones they used.)

Theorem 5.8. [HN13, Theorem 2] Let L be an n-component link and U the n-component
unlink. If Kh(L) ∼= Kh(U) = F2[X1, . . . , Xn]/(X

2
1 , . . . , X

2
n), as modules over the ring

F2[X1, . . . , Xn]/(X
2
1 , . . . , X

2
n), then L ∼ U .

Proof. By Corollary 1.3, there is a sphere in S3 \ L separating each pair of components of
L. It follows that L is a disjoint union of n knots. By the Künneth theorem for Khovanov
homology, each of these knots has Khovanov homology F2[X ]/(X2). So, by Kronheimer-
Mrowka’s theorem [KM11] that Khovanov homology detects the unknot, each component is
an unknot, and so L is an n-component unlink. �

5.3. Detection of split links by Heegaard Floer homology.

Proof of Theorem 3. We will prove the properties stated in the theorem are equivalent to
the following two additional properties, as well:

(2a) ĤF (Σ(L);F2)
un is acyclic, where ĤF (Σ(L);F2) is viewed as an ordinary module over

the ring F2[X ]/(X2).

(2b) ĤF (Σ(L);F2)
un is acyclic, where ĤF (Σ(L);F2) is viewed as an A∞-module over the

ring F2[X ]/(X2).

The logic of the proof is:

(1) (2) (2a) (2b)

(3)

(4)

(1) =⇒ (2) By Proposition 5.1, there is a decomposition Σ(L) ∼= Σ(L1)#Σ(L2)#(S2×S1),
where the loop ζ induced by p and q intersects the 2-sphere S2×{pt} ⊂ S2×S1 algebraically

once. So, the result follows from the Künneth theorem for ĤF and a model computation of

the H1/tors action on ĤF (S2 × S1) [OSz04c].
(2) =⇒ (2a) This is immediate from the definition of the unrolled complex.
(2a) =⇒ (2b) This follows from the spectral sequence associated to the horizontal filtration

on ĈF (Σ(K))un: the E1-page is the unrolled complex for ĤF (Σ(K)) (viewed as an honest
module over F2[X ]/(X2)), which is acyclic by assumption.



30 ROBERT LIPSHITZ AND SUCHARIT SARKAR

(2b) =⇒ (4) This follows from invariance of the unrolled homology under A∞ quasi-
isomorphism (Lemma 2.11) and the fact that any A∞-module is quasi-isomorphic to its
homology.

(1) =⇒ (3) By Corollary 5.2, we can factor Σ(L) = (S2 × S1)#Y ′ where the loop ζ
induced by p and q is the circle {pt} × S1 in the S2 × S1. Choose a Heegaard diagram
H = H1#H2 which witnesses this splitting, where H1 is the standard Heegaard diagram for
S2×S1 and the connected sum happens in the region containing the basepoint z. Then, the

chain complex ĈF (H) is a free module over F2[X ]/(X2) (with trivial higher A∞-operations).
(3) =⇒ (4) This is immediate from Lemma 2.12.
(4) =⇒ (1) This is Corollary 5.7. �
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