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Abstract. We construct a mixed invariant of nonorientable surfaces from the Lee and Bar-Natan
deformations of Khovanov homology and use it to distinguish pairs of surfaces bounded by the same
knot, including some exotic examples.
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1. Introduction

Ozsváth-Szabó’s Heegaard Floer homology associates Z[U ]-modules HF−(Y, s) and HF +(Y, s)
to a closed, connected, oriented 3-manifold Y and SpinC-structure s, and Z[U ]-module homomor-
phisms F±(W, t) : HF±(Y1, s1) → HF±(Y2, s2) to a SpinC-cobordism (W, t) : (Y1, s1) → (Y2, s2)
[OSz04, OSz06]. For a closed 4-manifold W with b+2 > 0, viewed as a cobordism from S3 to itself
by deleting two balls, the maps HF±(W, t) vanish. Using the proof of vanishing, Ozsváth-Szabó
define a Heegaard Floer-theoretic analogue of the Seiberg-Witten invariant, the Heegaard Floer
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mixed invariant, which is a map HF−(Y1, s1)→ HF +(Y2, s2) associated to a SpinC-cobordism with
b+2 sufficiently large.

The goal of this paper is to give an analogous construction in Khovanov homology, for smoothly
embedded surfaces in [0, 1]× S3 with crosscap number at least 3.

Following Finashin-Kreck-Viro [FKV87], call a pair of smoothly embedded surfaces F, F ′ ⊂
[0, 1]× S3 exotic if there is a self-homeomorphism of [0, 1]× S3 which is the identity on {0, 1}× S3

and takes F to F ′, but there is no such self-diffeomorphism of [0, 1] × S3. (See also Lemma 4.7
and Section 7.3.) At the time of writing, we believe no pairs of exotic closed, orientable surfaces in
[0, 1]×S3 are known. There are, however, exotic nonorientable surfaces in [0, 1]×S3, as first shown
by Finashin-Kreck-Viro using results from Donaldson theory [FKV88]. Recently, examples of exotic
orientable cobordisms in [0, 1] × S3 have also appeared, in work of Juhász-Miller-Zemke [JMZ21],
Hayden [Hay], and Hayden-Kjuchukova-Krishna-Miller-Powell-Sunukjian [HKK+], which use Hee-
gaard Floer homology to distinguish them, and Hayden-Sundberg [HS], which uses Khovanov ho-
mology.

Many question about exotic pairs of surfaces remain open. For example, Baykur-Sunukjian
introduced stabilization operations for surfaces, and showed that all known examples of exotic
pairs of closed surfaces become diffeomorphic after a single stabilization [BS16]; it is not known if
this holds in general. Building on these ideas, one can study the total stabilization distance between
two surfaces F , F ′, the minimum number of stabilizations or destabilizations needed to turn one
into the other [Miy86, MP19], or the max stabilization distance, the minimum over sequences
F = F0, F1, . . . , Fn = F ′, where Fi and Fi+1 are related by a stabilization, destabilization, or
taking the connected sum with a knotted 2-sphere, of max{|g(F1) − g(F )|, . . . , |g(Fn) − g(F )|}
(where g denotes the genus) [JZb]. (See also [Mel77, p. 6].) Another notion is the generalized total
stabilization distance, which is defined the same way as the total stabilization distance except that
if two surfaces differ by taking the connected sum with a 2-sphere then they are declared to be at
distance 0, so the generalized total stabilization distance, like the max stabilization distance, focuses
on global, rather than local, knotting [MP19]. By using the Alexander module, Miyazaki shows
there are pairs of embedded spheres in S4 with arbitrarily high total stabilization distance [Miy86],
and Miller-Powell show there are pairs of embedded disks with arbitrarily high generalized total
stabilization distance [MP19]. Juhász-Zemke use Heegaard Floer homology to give pairs of disks
with max stabilization distance at least 3 [JZb]. The analogous questions for exotic pairs are open.

A key strategy for distinguishing knotted closed surfaces in S4 has been to apply gauge theory,
like the Heegaard Floer mixed invariant, to their branched double covers. Ozsváth-Szabó showed
that the Heegaard Floer homology of the branched double cover of a knot K is closely related to
the Khovanov homology of K [OSz05]. So, it seems natural to look for an analogue of the Heegaard
Floer mixed invariant in Khovanov homology

In this paper, we give one such analogue. Khovanov homology admits a family of deforma-
tions [Kho06b]; we will focus on two particular ones, the Lee deformation [Lee05] and the Bar-
Natan deformation [Bar05]. Rasmussen showed that the map of Lee homologies associated to a
nonorientable cobordism vanishes [Ras10]. Viewing these deformations as modules over polynomial
algebras, analogous to the Heegaard Floer invariant HF−, Rasmussen’s result says that the map on
the analogue of HF∞ associated to a nonorientable cobordism vanishes. Using this, and a notion
of admissible cuts analogous to Heegaard Floer theory, we formulate a Khovanov mixed invariant
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ΦF of a surface F with crosscap number ≥ 3 in the Lee and Bar-Natan deformations of Khovanov
homology. Note that F having crosscap number ≥ 3 has no implication for b+2 , so the Khovanov
mixed invariant is defined for some surfaces F where the Heegaard Floer mixed invariant of Σ(F )
is not.

Verifying that the mixed invariant is well-defined (up to sign) has two steps: observing that the
map on (deformed) Khovanov homology associated to a nonorientable cobordism is well-defined
(up to sign), and verifying independence of the choice of admissible cut. The proof of the first
statement is a straightforward extension of the literature [Jac04, Kho06a, Bar05, MWW]; see
Section 3. (Unlike the orientable case, the sign ambiguity here is essential; see Remark 3.8.) To
prove independence of the admissible cut, we use arguments involving the one-sided curve complex
of a nonorientable surface; see Section 4.

It turns out that, unlike the Heegaard Floer mixed invariant, this Khovanov mixed invariant
does not distinguish closed, connected surfaces (Section 6.3), though the proof of this fact is some-
what intricate. (We do not know if the mixed invariant distinguishes some closed, disconnected
surfaces, and in particular have not generalized Gujral-Levine’s results [GL] to this setting.) On the
other hand, both the mixed invariant and the map on Khovanov homology associated to a nonori-
entable cobordism do distinguish pairs of nonorientable surfaces with common boundary. Indeed,
this was essentially already shown in computations of Sundberg-Swann [SS]: combined with the
functoriality result mentioned above, their computations show the following.

Theorem 1.1. There is a pair of connected surfaces F, F ′ with boundary on 31#m(31) with crosscap
number 3 and normal Euler number −6 which are not isotopic, and do not become isotopic after
taking the connected sum with any knotted 2-sphere. Further, F is not obtained from a connected

surface F ′′ by attaching a 1-handle, or by taking the connected sum with a standard RP2 or RP
2
.

Theorem 1.1 is proved in Section 7.2. The second half of the theorem uses the behavior of ΦF

under various local modifications to the surface, which are summarized in Theorem 6.18.
Hayden-Sundberg’s examples of exotic pairs of slice disks distinguished by Khovanov homology

can be enhanced to give exotic pairs of nonorientable surfaces distinguished by Khovanov homology.
In particular, we have:

Theorem 1.2. There is an exotic pair of surfaces with boundary 12n309, crosscap number 3, and
normal Euler number −6.

Theorem 1.2 is proved in Section 7.3. As far as we know, this is the first gauge theory-free
proof that there are pairs of exotic nonorientable surfaces.

This paper is organized as follows. We review the Lee and Bar-Natan deformations of Khovanov
homology in Section 2, in an algebraic framework parallel to Heegaard Floer homology. Section 3
shows that these deformed Khovanov complexes are functorial with respect to nonorientable cobor-
disms. For convenience later, we also allow our cobordisms to be decorated with stars (following
the notation of [KR22]). Section 4 formulates the notion of admissible cuts, and shows that for
surfaces with crosscap number ≥ 3 all admissible cuts are equivalent in a suitable sense. Section 5
defines the mixed invariant and proves it is well-defined. Section 6 gives basic properties of the
maps associated to nonorientable cobordisms and the mixed invariant, and Section 7 gives some
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computations and applications of these invariants, including proving Theorems 1.1 and 1.2, and
concludes with some questions.

Acknowledgments. We thank Ian Zemke for helpful comments on the first draft of this paper,
and the referee for further comments and corrections.

2. Background on the Lee and Bar-Natan deformations

Khovanov homology has two well-known deformations, the Lee deformation [Lee05] and the
Bar-Natan deformation [Bar05]. The two theories are similar, although they have some essential
differences as well. Most of the constructions and results of this paper work for either of the two
theories, so we will use the same notations for both the theories. When the two theories diverge,
we will explicitly mention that in the text.

Fix a commutative ring R with unit. All chain complexes and modules will be defined over R,
though we will often suppress R from the notation. If we are using the Lee theory, we assume 2 is
a unit in R.

Fix an oriented link diagram L with N crossings, N+ of which are positive and N− of which
are negative. Consider the Kauffman cube of resolutions of L. A Khovanov generator y is a
choice of vertex v and a labeling y(Z) ∈ {1, X} of each circle Z in the v-resolution. Denoting
the homological, quantum bigrading by (grh, grq), a Khovanov generator y lying over a vertex

v ∈ {0, 1}N has bigrading

grh(y) = −N− + |v|
grq(y) = N+ − 2N− + |v|+ #{Z | y(Z) = 1} −#{Z | y(Z) = X}.

The deformed Khovanov complex C−(L) is freely generated by these generators over a polyno-
mial algebra over R, and is obtained by feeding the cube of resolutions into a Frobenius algebra
over that polynomial algebra.

(1) In the Lee theory, the polynomial algebra is R[T ] with T in bigrading (0,−4), and the
Frobenius algebra is R[T,X ]/(X2 = T ), with co-multiplication given by

∆(1) = 1⊗X +X ⊗ 1 ∆(X) = X ⊗X + T1⊗ 1

and counit ε : R[T,X]/(X2 = T )→ R[T ] given by ε(1) = 0, ε(X) = 1.
(2) In the Bar-Natan theory, the polynomial algebra is R[H] with H in bigrading (0,−2), and

the Frobenius algebra is R[H,X]/(X2 = XH), with co-multiplication given by

∆(1) = 1⊗X +X ⊗ 1−H1⊗ 1 ∆(X) = X ⊗X

and counit ε : R[H,X]/(X2 = XH)→ R[H] given by ε(1) = 0, ε(X) = 1.

(In Khovanov’s paper [Kho06b], these are denoted F7 and F3, respectively.) In either theory, the
differential increases the bigrading by (1, 0). To keep the notation the same, let R[U ] denote the
polynomial algebra for either theory. That is, when discussing the Lee theory we take U = T (in
bigrading (0,−4)), and when discussing the Bar-Natan theory we take U = H (in bigrading (0,−2)).
In either case, the original non-deformed Khovanov complex is obtained by setting U = 0; in analogy
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with Heegaard Floer homology, we will denote the non-deformed complex Ĉ(L) = C−(L)/{U = 0}.
The homology Ĥ(L) of Ĉ(L) is ordinary Khovanov homology, often denoted Kh(L).

Continuing the analogy with Heegaard Floer homology, let

C∞(L) = U−1C−(L)

C+(L) = C∞(L)/C−(L),

where the notation U−1 denotes localization or, equivalently, tensoring over R[U ] with R[U−1, U ].
(These conventions are not exactly parallel to Heegaard Floer homology [OSz04, Section 4.1].)
Let H−(L), H∞(L), and H+(L) be the homologies of C−(L), C∞(L), and C+(L). See Figure 7.3
for an example of C∞(L) and its subcomplex C−(L) and quotient complex C+(L) (up to quasi-
isomorphism), and a comparison with the usual formulation of the Lee deformation.

There are short exact sequences

(2.1)

0 C−(L) C∞(L) C+(L) 0
ι π

0 C−(L) C−(L) Ĉ(L) 0
U π

0 Ĉ(L) C+(L) C+(L) 0.
ι U

and corresponding long exact sequences

(2.2)

· · · H−(L) H∞(L) H+(L) H−(L) · · · ,ι∗ π∗ ∂

· · · H−(L) H−(L) Ĥ(L) H−(L) · · · ,U π∗ ∂

· · · Ĥ(L) H+(L) H+(L) Ĥ(L) · · · .ι∗ U ∂

The homomorphisms U decrease the bigrading by (0, 2) for the Bar-Natan deformation and (0, 4)

for the Lee deformation, the homomorphism Ĥ(L) → H+(L) increases bigrading by (0, 2) for
the Bar-Natan deformation and (0, 4) for the Lee deformation, the connecting homomorphisms

H+(L) → H−(L) and H+(L) → Ĥ(L) increase the bigrading by (1, 0), the connecting homomor-

phism Ĥ(L) → H−(L) increases bigrading by (1, 2) for the Bar-Natan deformation and (1, 4) for
the Lee deformation, and the other maps preserve the bigrading.

Commutativity of the diagrams

0 C−(L) C∞(L) C+(L) 0

0 Ĉ(L) C+(L) C+(L) 0

ι π

ι U
π π◦U−1 Id and

0 C−(L) C−(L) Ĉ(L) 0

0 C−(L) C∞(L) C+(L) 0

U π

ι π
Id U−1◦ι ι

of short exact sequences and naturality of the snake lemma imply that the following diagrams
commute:

(2.3)
H+(L) Ĥ(L)

H−(L)

∂

∂ π∗
and

Ĥ(L) H−(L).

H+(L)

∂

ι∗ ∂
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For the empty link, H−(∅) ∼= R[U ], H∞(∅) ∼= R[U−1, U ], H+(∅) ∼= R[U−1, U ]/R[U ], and

Ĥ(∅) = R. More generally, for H∞ we have the following well-known result. (Recall that for the
Lee deformation we assume 2 is invertible in R.)

Proposition 2.1. In the Bar-Natan theory, there is a canonical isomorphism

(2.4) H∞(L) ∼=
⊕
o∈o(L)

R[H−1, H]

where o(L) is the set of orientations of L. In the Lee theory, after adding a formal square root of
T , there is a canonical isomorphism

(2.5) H∞(L)⊗R[T ] R[
√
T ] ∼=

⊕
o∈o(L)

R[T−
1
2 , T

1
2 ].

In each case, the summand corresponding to an orientation o is supported in homological grading
2lk(Lo, L \ Lo), where Lo is the sublink of L consisting of components whose original orientations
agree with o and lk is the linking number.

Proof. The proof is well-known (see [Lee05, BNM06, Tur20]), so we merely sketch it. The Bar-
Natan Frobenius algebra R[H−1, H][X]/(X2 = XH) has a basis {A ..= X, B ..= H − X} over
R[H−1, H], which diagonalizes it:

A2 = HA, B2 = HB, AB = 0

∆(A) = A⊗A, ∆(B) = −B ⊗B.

For the Lee case, after adding a formal square root of T , the Frobenius algebra R[T−
1
2 , T

1
2 ][X]/(X2 =

T ) has a basis {A ..=
√
T +X, B ..=

√
T −X}, which diagonalizes it:

A2 = 2
√
TA, B2 = 2

√
TB, AB = 0

∆(A) = A⊗A, ∆(B) = −B ⊗B.

In the Lee case, note that the homology of C∞(L)⊗R[T ] R[
√
T ] is isomorphic to H∞(L)⊗R[T ] R[

√
T ],

since R[
√
T ] is free over R[T ].

For any vertex v ∈ {0, 1}N in the cube of resolutions, let Lv be the corresponding complete
resolution of the link diagram L. With respect to the above basis, the chain group C∞(L) is freely

generated (over R[H−1, H] in the Bar-Natan case or R[T−
1
2 , T

1
2 ] in the Lee case) by all possible

labelings of the circles of Lv by {A,B}, for all v. Call two such generators equivalent if one can be
obtained from the other by changing the resolutions at some crossings (0 to 1 or 1 to 0) so that
the circles have consistent labelings before and after the change. That is, given resolutions Lv and
Lw, there is a cobordism Σv,w from Lv to Lw consisting of saddles at the crossings where v and w
differ; a generator over v and a generator over w are equivalent if for each component Σ of Σv,w,
all circles in the boundary of Σ have the same label.

Since the basis {A,B} diagonalizes the Frobenius algebra, the complex C∞(L) decomposes as a
direct sum along equivalence classes. Moreover, in each equivalence class, the complex is isomorphic

to the tensor product of some number of copies of the two-step complex R[H−1, H]
Id−→ R[H−1, H]
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in the Bar-Natan case or R[T−
1
2 , T

1
2 ]

Id−→ R[T−
1
2 , T

1
2 ] in the Lee case. These complexes are acyclic,

unless the tensor product is over zero copies, that is, the equivalence class contains just a single
element. Therefore, the homology H∞(L) is generated by equivalence classes containing a single
element, which are generators where every crossing connects two circles in the resolution with
different labels.

Such generators, in turn, are in canonical correspondence with orientations of L, as follows.
For any resolution Lv, consider the checkerboard coloring of R2 \ Lv where the unbounded region
is colored white. For any generator over v, orient each circle in Lv as the boundary of the black
(respectively, white) region if it is labeled A (respectively, B). This orientation of Lv induces an
orientation of L precisely for the above type of generators. The statement about the homological
gradings is straightforward from the description of the generators above. �

3. Behavior under (possibly nonorientable) cobordisms

We will study the maps induced on these deformed Khovanov complexes and their homologies
by a (possibly nonorientable) cobordism F ⊂ [0, 1] × S3 from an oriented link L0 ⊂ {0} × S3 to
an oriented link L1 ⊂ {1} × S3. Throughout the paper, all link cobordisms will be assumed to be
products near the boundary.

Recall the definition of the normal Euler number. Pick Seifert surfaces for the Li and take a
transverse pushoff F ′ of F so that the pushoff of Li is in the direction of its Seifert surface. (It
follows from the Mayer-Vietoris theorem applied to the decomposition S3 = nbd(Li)∪(S3\Li) that
these pushoffs are independent of the choice of Seifert surfaces.) Then, the normal Euler number e
of F is the signed count of intersection points between F and F ′, where the signs come from picking
a local orientation of F near each intersection point and using the induced local orientation of F ′.
This number is independent of the choice of pushoff. The normal Euler number is zero for oriented
cobordisms from L0 to L1 and is some even number in general.

We will consider compact link cobordisms decorated with finitely many marked points which,
to be consistent with Khovanov-Robert [KR22], we will call stars. So, an elementary cobordism
between link diagrams is one of the following moves:

(EC-1) A planar isotopy of the diagram.
(EC-2) A Reidemeister move.
(EC-3) A birth or death of an unknot disjoint from the rest of the diagram.
(EC-4) No change to the link diagram but a choice of a distinguished point (star) in the interior of

an arc of the diagram; we interpret this as the identity cobordism with a single star in its
interior, lying over this distinguished point.

(EC-5) A planar saddle.
(EC-6) The identity cobordism from a link L to the same link with a different orientation on some

components.

Associated to each elementary cobordism is a map of the Khovanov complexes. For Reidemeister
moves, these are the maps from the proof of invariance of these theories. Specifically, Bar-Natan
associates particular picture-world maps to each Reidemeister move [Bar05], and feeding these pic-
tures into the Lee or Bar-Natan Frobenius algebra gives the map of deformed Khovanov complexes.
The map associated to a birth is the unit 1 and associated to a death is the counit ε. The map
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associated to a saddle is obtained by applying the corresponding multiplication m or comultipli-
cation ∆ to each resolution. The map associated to the identity cobordism with a star on some
arc A multiplies the label of A, in each resolution, by 2X for the Lee deformation and 2X −H for
the Bar-Natan deformation (compare [KR22, Formula (16)]). This map depends only on the arc
containing the star, not the location of the star on that arc. The map associated to the identity
cobordism with inconsistent orientations is the identity map.

Suppose F is a (possibly nonorientable) cobordism from L0 to L1, with a finite number of
marked stars in the interior of F . If F is represented by a movie of elementary cobordisms, then
there is an induced map C−(F ) : C−(L0)→ C−(L1), obtained by composing the maps associated to
elementary cobordisms. This induces maps on all the four versions C• of the Khovanov complexes,
• ∈ {+,−,∞, }̂, as well as their homologies H•.
Lemma 3.1. The maps C•(F ) : C•(L0) → C•(L1), • ∈ {+,−,∞, }̂, induce maps H• : H(L0) →
H(L1), and the long exact sequences from Formula (2.2) are natural with respect to these maps.

Proof. This is immediate from the definitions. �

Assuming the link diagrams are oriented coherently before and after the move, for planar
isotopies and Reidemeister moves, the maps preserve the bigrading, and for births and deaths, the
maps preserve grh and increase grq by 1. The map associated to a star preserves grh and decreases
grq by 2. The behavior of saddles is more complicated.

Lemma 3.2. Let F be a planar saddle from an oriented link diagram L0 to an oriented link diagram
L1, which is not necessarily orientable coherently with the orientations of L0 and L1. Let e be its
normal Euler number. Then, the map C−(F ) : C−(L0)→ C−(L1) decreases grh by e/2 and decreases
grq by 1 + 3e/2.

Proof. Ozsváth-Stipsicz-Szabó show that the normal Euler number e of the planar saddle F is
w(L0)−w(L1), where w(Li) = N+(Li)−N−(Li) is the writhe of the link diagram Li [OSS17, Proof
of Lemma 4.3]. They write their proof only for knots but, as we sketch in the next paragraph, it
works equally well for links.

Fix any normal direction to the plane of projection of the link diagrams and consider a small
pushoff of Li in this normal direction; call this the blackboard pushoff. Since the total linking
number of Li with its blackboard pushoff is the writhe w(Li) while the total linking number of Li
with its Seifert pushoff is zero, the identity cobordism from Li to Li has a pushoff which intersects
itself w(Li) times, so that the pushoff restricts to the Seifert pushoff at one end and the blackboard
pushoff at the other. The planar saddle also has a (similarly defined) blackboard pushoff without
any self-intersection, and it restricts to the blackboard pushoffs of L0 and L1 at the two ends.
Putting these pieces together, we get a pushoff with w(L0) − w(L1) self-intersections connecting
the Seifert pushoffs of L0 and L1.

Let N be the total number of crossings in either L0 or L1. Recall that the complex C−(Li)
is obtained from the total complex of a cube-shaped diagram—call it C′(Li)—by increasing grh
by −N−(Li) = (w(Li) − N)/2 and grq by N+(Li) − 2N−(Li) = (3w(Li) − N)/2. The saddle F
induces a map C′(L0)→ C′(L1) that preserves the homological grading and decreases the quantum
grading by 1. Therefore, after the grading shifts, the map C−(F ) : C−(L0)→ C−(L1) decreases grh
by (w(L0)− w(L1))/2 = e/2 and decreases grq by 1 + 3(w(L0)− w(L1))/2 = 1 + 3e/2. �
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Corollary 3.3. (Compare [Bal, Proposition 4.7]) The map associated to a cobordism with Euler
characteristic χ, normal Euler number e, and s stars decreases grh by e/2 and increases grq by
χ− 3e/2− 2s.

Proof. Consider a movie decomposition into elementary cobordisms (EC-1)–(EC-6). Choose orien-
tations of all the link diagrams that appear in the movie, so that link diagrams before and after each
of the moves (EC-1)–(EC-4) are oriented coherently. (We may choose the orientations inductively,
starting with the given orientation of L0, and by using a move (EC-6) if necessary, we may ensure
that the chosen orientation of L1 agrees with the given orientation of L1.)

We now check that the statement holds for each of the elementary cobordisms. The elementary
cobordisms (EC-1)–(EC-3) have e = s = 0, and the associated maps increase the bigrading by
(0, χ) = (−e/2, χ − 3e/2 − 2s). The elementary cobordism (EC-4) has e = χ = 0 and s = 1, and
the associated map increases the bigrading by (0,−2) = (−e/2, χ − 3e/2 − 2s). The elementary
cobordism (EC-5) has χ = −1 and s = 0, and by Lemma 3.2, the associated map increases the
bigrading by (−e/2,−1 − 3e/2) = (−e/2, χ − 3e/2 − 2s). Finally, for cobordisms of type (EC-6),
we have χ = s = 0, and the associated identity map increases the bigrading by (−e/2,−3e/2) =
(−e/2, χ − 3e/2 − 2s) as well. (The proof is similar to, but easier than, the proof of Lemma 3.2.)
Since e, χ, and s are additive, the composition of these maps also increases the bigrading by
(−e/2, χ− 3e/2− 2s). �

Remark 3.4. The corollary suggests that another natural grading is grγ = grq − 3grh: the map
associated to any cobordism (possibly nonorientable) increases grγ by the Euler characteristic of
the cobordism minus twice the number of stars.

We also recall a well-known result of Rasmussen’s [Ras10]. Given a link L, let o(L) be the set of
orientations of L. Similarly, given a cobordism F from L0 to L1, let o(F ) be the set of orientations
of F . There are restriction maps o(L0) ← o(F ) → o(L1); that is, o(F ) is a correspondence from
o(L0) to o(L1). (Here, we choose orientation conventions so that if F = [0, 1]× L then o(F ) is the
identity correspondence of o(L).)

Proposition 3.5. Given a cobordism F from L0 to L1, for the Bar-Natan and Lee theories, re-
spectively, we have commutative diagrams

H∞(L0) H∞(L1)

⊕
o∈o(L0)

R[H−1, H]
⊕

o∈o(L1)

R[H−1, H]

H∞(F )

F∗

∼= ∼=

H∞(L0)⊗R[T ] R[
√
T ] H∞(L1)⊗R[T ] R[

√
T ]

⊕
o∈o(L0)

R[T−
1
2 , T

1
2 ]

⊕
o∈o(L1)

R[T−
1
2 , T

1
2 ]

H∞(F )⊗ Id

F∗

∼= ∼=
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where the vertical arrows are from Proposition 2.1, and the bottom arrow is some map F∗ that refines
the correspondence o(L0)← o(F )→ o(L1). That is, for i ∈ {0, 1} and for any orientation oi ∈ o(Li)
and any generator gi of the R[H−1, H] (respectively, R[T−

1
2 , T

1
2 ]) summand corresponding to oi,

the coefficient of g1 in F∗(g0) is a sum
∑

o∈o(F ), o|Li
=oi

eo, where each eo is a unit in R[H−1, H]

(respectively, R[T−
1
2 , T

1
2 ]). In particular, if F is nonorientable, then in either theory, the map

H∞(F ) : H∞(L0)→ H∞(L1) is zero.

Proof. For the first part, Rasmussen proved [Ras10] the result for Lee’s deformation with R = Q
using a change of basis that diagonalized Lee’s Frobenius algebra (after adding a square root of T ).
The change of basis from the proof of Proposition 2.1 diagonalizes the Frobenius algebra, both for
the Bar-Natan theory (over any ring R) and the Lee theory (over any ring R with 2 invertible, and
after adding a square root of T ). Using this diagonalized basis, Rasmussen’s proof goes through
without any essential changes. (For an elementary star cobordism, the map is multiplication by
A − B, which sends each orientation to itself with coefficient ±1, and hence fits into Rasmussen’s
framework.)

The last assertion is automatic for the Bar-Natan theory. For the Lee theory, note that
if the map H∞(F ) ⊗ Id : H∞(L0) ⊗R[T ] R[

√
T ] → H∞(L1) ⊗R[T ] R[

√
T ] is zero, then the map

H∞(F ) : H∞(L0) → H∞(L1) must be zero as well. This follows from commutativity of the dia-
gram

H∞(L0)⊗R[T ] R[
√
T ] H∞(L1)⊗R[T ] R[

√
T ]

H∞(L0) H∞(L1)

H∞(F )⊗ Id

H∞(F )

and noting that the rightmost vertical map

H∞(L1)→ H∞(L1)⊗R[T ] R[
√
T ] ∼= H∞(L1)⊗R[T ]

(
R[T ]⊕

√
TR[T ]

) ∼= H∞(L1)⊕
√
TH∞(L1)

is the inclusion as the first factor, and therefore is injective. �

Finally, we confirm well-definedness of the cobordism maps. Before stating the main result, we
note some relations involving elementary star cobordisms (cobordisms of type (EC-4)).

Lemma 3.6. Up to sign, the map on C− associated to an elementary star cobordism commutes
with the map associated to any elementary cobordism disjoint from the star, and commutes with
planar isotopies in general in the obvious sense. If p and q are points on opposite sides of a crossing
then the map associated to the elementary star cobordism at p is chain homotopic to −1 times the
map associated to the elementary star cobordism at q; in particular, these two maps also agree up
to homotopy and sign.

Proof. The first statement is straightforward from the definitions. The second is immediate from a
lemma of Hedden-Ni’s [HN13, Lemma 2.3] in the Lee case and a lemma of Alishahi’s [Ali19, Lemma
2.2] in the Bar-Natan case. �

Well-definedness of the cobordism maps is the following:
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Proposition 3.7. Let F ⊂ [0, 1]× S3 be a (possibly nonorientable) cobordism from L0 to L1. For
• ∈ {+,−,∞, }̂, the induced map C•(F ) : C•(L0)→ C•(L1) in the homotopy category of complexes
over R[U ] is well-defined up to sign, and invariant under isotopy of F in [0, 1]× S3 rel. boundary.
In fact, if Φ: [0, 1]× S3 → [0, 1]× S3 is a diffeomorphism which is the identity near the boundary,
then C•(F ) and C•(Φ(F )) are chain homotopic.

Proof. Since the maps on C+, C∞, and Ĉ are induced by the map on C−, it suffices to prove the
result for C− (compare Lemma 3.1). For isotopies of oriented cobordisms in [0, 1]×R3, this follows
from Bar-Natan’s result [Bar05, Theorem 4] since both the Lee perturbation and the Bar-Natan
perturbation can be obtained functorially from Bar-Natan’s diagrammatic invariants. His proof
works equally well for nonorientable cobordisms: any two movies representing isotopic nonorientable
cobordisms also differ by a sequence of Carter-Saito’s movie moves [CS93], every local movie move
(between sequences of tangles) can be given a consistent orientation, and the map induced by a
movie is independent of the choice of orientations. (In particular, we can suppress cobordisms
of type (EC-6) in these movies.) Finally, functoriality for starred cobordisms follows easily from
Lemma 3.6. (See, for instance, [Sar20, Lemma 2.1 and 4.1] for more details.)

To verify invariance under isotopies in [0, 1]×S3 we must also check invariance under Morrison-
Walker-Wedrich’s sweep-around move [MWW, Formula (1.1)]. Their proof works mutatis mutandis
for the Lee and Bar-Natan deformations [MWW, Remark 2.2]. Nevertheless, for the sake of com-
pleteness, we present their proof adapted to our setting below. We will mostly use their notation,
but a slightly different language.

Consider Morrison-Walker-Wedrich’s picture [MWW, Formula (3.1)]. The picture shows two
ways of moving a strand from top to bottom to get from a link diagram L to a link diagram L′: in the
first method, this strand moves in front of the rest of the link, while in the second, it moves behind.
Let Li+ (respectively, Li−) denote the link diagram at the ith stage in the first (respectively, second)

method. The two sequences of link diagram Li± produce two chain maps C−(L) → C−(L′) by
composing maps associated to Reidemeister moves. By choosing the Reidemeister maps carefully,
we will show that the two maps agree on the nose.

Recall that for any link diagram, the homological grading of any resolution is given by the
number of crossings that have been resolved as the 1-resolution minus the total number of nega-
tive crossings in the diagram. For the link diagrams that appear above, call a crossing external
(respectively, internal) if it involves (respectively, does not involve) the moving horizontal strand,
and define the external grading (respectively, internal grading) of any resolution to be the number
of external (respectively, internal) crossings that have been resolved as the 1 resolution minus the
total number of negative external (respectively, internal) crossings. The differential preserves or
increases the external grading.

For any of the above link diagrams, let C−0 denote the subgroup of the chain group that lives in
external grading 0. Note that C−0 (L) = C−(L) and C−0 (L′) = C−(L′) since these diagrams have no
external crossings. Also note that there is a natural isomorphism of groups C−0 (Li+) ∼= C−0 (Li−) since

any resolution of Li+ in external grading 0, when viewed as a resolution of Li−, is also in external
grading 0. (This uses the fact that Morrison-Walker-Wedrich start with a braid closure.)

The Reidemeister maps will be chosen in such a way that they will preserve or decrease the
external grading. Since the composition is a map C−0 (L)→ C−0 (L′), it is therefore enough to consider
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the portion of the maps that preserve the external grading, namely, the maps

C−(L)→ C−0 (L0
±)→ · · · → C−0 (Li±)→ · · · → C−0 (L`±)→ C−(L′).

(These individual maps are typically not chain maps; however, perhaps surprisingly, that is irrele-
vant to the proof.) Furthermore, these components of the maps will commute with the isomorphisms
C−0 (Li+) ∼= C−0 (Li−), that is, the following diagram will commute:

C−(L)

C−0 (L0
+)

C−0 (L0
−)

· · ·

· · ·

C−0 (Li+)

C−0 (Li−)

· · ·

· · ·

C−0 (L`+)

C−0 (L`−)

C−(L′)∼= ∼= ∼=

That will establish that the two compositions agree on the nose.
For the Reidemeister I and II moves at the beginning and end of the sequence, the above check is

almost automatic. The maps preserve the homological grading. Since all the crossings involved are
external, the maps also preserve the internal grading, and therefore preserve the external grading
as well.

The Reidemeister III move requires more care. The proof is illustrated in Figure 3.1. Assume
Li+1
± is obtained from Li± by moving the horizontal strand past an internal crossing, as shown in

the figure. The other Reidemeister III move is obtained by mirroring all the link diagrams, and the
proof in that case follows formally from the following proof by reversing all arrows.

The 3-dimensional cubes of resolution for the four link diagrams L∗±, ∗ ∈ {i, i+ 1}, are shown.
The two external crossings are numbered 1 and 2—left to right for L∗+ and right to left for L∗−—
and the internal crossing is numbered 3. The eight vertices in each cube of resolutions decompose
according to the local external grading, which is the sum of the first two coordinates of the vertices
(up to a shift); this is shown by boxing them with a dashed, solid, or dotted line. The differentials
are shown in light gray.

The Reidemeister maps go from the cube of resolution of Li± to the cube of resolution of Li+1
± .

The maps either preserve or decrease the external grading. We are only interested in the maps
which preserve the external grading, so we have drawn them in black, and the other maps in light
gray. The maps (and the differentials) are decorated with the cobordisms that induce them, with
s, b, d being shorthand for saddle, birth, and death, respectively.

The top row (corresponding to L∗+) is essentially a copy of Bar-Natan’s picture [Bar05, Figure
9]; we have merely rotated Bar-Natan’s tangle so that his vertical over-strand has become our
horizontal moving strand, and we have reordered the crossings as well, so our signs differ from
Bar-Natan’s. For example, the surface highlighted in Bar-Natan’s picture corresponds to our map
from the 010 vertex of Li+ to the 100 vertex of Li+1

− ; it is decorated −dssb, so it is the negative of
a death, followed by two saddles (which are easy to figure out from the diagrams), followed by a
birth.

The bottom row (corresponding to L∗−) is also obtained from Bar-Natan’s picture [Bar05, Figure
9]; this time we have rotated Bar-Natan’s tangle so that his northwest-to-southeast under-strand
has become our horizontal moving strand, and once again, we have reordered the crossings. The
diagram thus obtained is not quite the bottom row of our figure: it does not have the map from
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Figure 3.1. The Reidemeister III move during the proof of invariance under the
sweep-around move.
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the 100 vertex of Li− to the 100 vertex of Li+1
− , nor the map from the 101 vertex of Li− to the 101

vertex of Li+1
− , but instead has maps from the 001 vertex of Li− to the 100 vertex of Li+1

− and from

the 101 vertex of Li− to the 110 vertex of Li+1
− . The latter maps increase the external gradings, so

we modify the chain map by a null-homotopy ∂f + f∂ to get to our diagram, where f is the map
from the 101 vertex of Li− to the 100 vertex of Li+1

− corresponding to a birth.

The natural isomorphism C−0 (L∗+)
∼=−→ C−0 (L∗−) sends the dotted vertices to the dashed vertices

and vice-versa, and sends the solid vertices to the corresponding solid vertices. These isomorphisms
commute with the Reidemeister maps that preserve external gradings (which are the black arrows
in the figure). This gives invariance under the sweep-around move.

Finally, the proof that the map is invariant under diffeomorphisms follows from another argu-
ment of Morrison-Walker-Wedrich [MWW, Section 4.2]; we refer the reader there, though a key
point in the proof is quoted as Lemma 4.7, below. �

Remark 3.8. The Khovanov Frobenius algebra—the U = 0 specialization of the Lee and Bar-
Natan algebras—corresponds to a (1+1)-dimensional TQFT. It is natural to ask if this TQFT
extends to non-orientable cobordisms. TQFTs for oriented 1-manifolds but allowing non-orientable
cobordisms are called Klein TQFTs [AN06] or unoriented TQFTs [TT06]. Unoriented (1+1)-
dimensional TQFTs correspond to Frobenius algebras V with extra structure: an element θ ∈ V
corresponding to a Möbius band and an involution φ corresponding to the mapping cylinder of an
orientation-reversing involution of S1, satisfying the conditions that φ(m(θ, v)) = m(θ, v) for all
v ∈ V and

(
m ◦ (φ⊗ Id) ◦∆

)
(1) = m(θ, θ) [TT06, Proposition 2.9]. For the Khovanov TQFT, the

fact that φ respects the unit and counit implies that φ = Id, so the second identity implies that
m(θ, θ) = 2X which is impossible (cf. [TT06, Section 4.2]). It is possible to extend V to a projective
unoriented TQFT, by defining θ = 0, φ(1) = 1, and φ(X) = −X; the map φ only respects the
counit up to sign.

Imitating part of this argument, we can see that it is impossible to remedy the sign ambiguity in
for non-orientable surfaces (without equipping the surfaces with some extra data). There is a movie
which starts with a 0-crossing unknot, performs a Reidemeister I move on half of it, introducing
one crossing, then performs a Reidemeister I move on the other half eliminating the crossing. The
induced map V → V is either (1 7→ 1, X 7→ −X) or (1 7→ −1, X 7→ X). One can compute this
directly, but it is also forced by the fact that the invariant of a once-punctured Klein bottle is zero
(see the proof of Corollary 6.13): the map associated to a once-punctured Klein bottle factors as
a birth, then a split, then applying the map just described to one of the two circles, and then a
merge. (This is an embedded version of the proof of the relation

(
m ◦ (φ⊗ Id) ◦∆

)
(1) = m(θ, θ).)

However, following the first option by a death (counit) gives a cobordism isotopic to a death, but
sending X 7→ −1 instead of X 7→ 1; and preceding the second option by a birth gives a cobordism
isotopic to a birth, but sending 1 7→ −1.

(Note that, in the construction of the Khovanov cube, all the surfaces that arise are orientable;
in fact, a checkerboard coloring of the knot projection induces an orientation of them. So, to
construct the Khovanov cube one does not need the extension of the TQFT to non-orientable
surfaces. See also [TT06] for further discussion.)



A MIXED INVARIANT OF NONORIENTABLE SURFACES IN EQUIVARIANT KHOVANOV HOMOLOGY 15

Mikhail Khovanov informs us that Greg Kuperberg mentioned to him around 2003 that Kho-
vanov homology is functorial with respect to nonorientable cobordisms in [0, 1]×R3, up to a sign,
which is part of Proposition 3.7, above.

4. Admissible cuts

Any compact, connected, nonorientable surface F is diffeomorphic to (#gRP2)#(#kD2), where
k = |π0(∂F )| is the number of boundary components. The number g = 2− χ(F )− k is called the
crosscap number of F . For any surface F (not necessarily connected), define its crosscap number
to be the sum of the crosscap numbers of its nonorientable components.

Definition 4.1. Fix a small ε > 0. Let F ⊂ [0, 1] × S3 be a nonorientable cobordism from L0 to
L1, which is a product near the boundary. An admissible cut for F consists of the data (S, V, φ),
where:

• S ⊂ (0, 1)× S3 is a smoothly embedded 3-manifold;
• V ⊂ (0, 1)× S3 is a tubular neighborhood of S; and
• φ : V → (1

2 − ε,
1
2 + ε)× S3 is a diffeomorphism,

satisfying:

(AC-1) φ takes S to {1
2} × S

3 and F ∩ V to a product cobordism;

(AC-2) the intersection of F with each of the 2 components of ([0, 1]×S3)\S is nonorientable; and

(AC-3) there exists a diffeomorphism Φ: ([0, 1]× S3, V )
∼=−→ ([0, 1]× S3, (1

2 − ε,
1
2 + ε)× S3), which

is the identity near the boundary and agrees with φ on V .

Call a pair of admissible cuts (S, V, φ) and (S ′, V ′, φ′) for F elementary equivalent if V ∩ V ′ = ∅
and there is a diffeomorphism(

[0, 1]× S3, V, V ′
) ∼= ([0, 1]× S3, (1

3 − ε,
1
3 + ε)× S3, (2

3 − ε,
2
3 + ε)× S3

)
or(

[0, 1]× S3, V ′, V
) ∼= ([0, 1]× S3, (1

3 − ε,
1
3 + ε)× S3, (2

3 − ε,
2
3 + ε)× S3

)
,

(4.1)

which is the identity near the boundary and which agrees with φ and φ′ on V and V ′, respectively, af-
ter post-composition by a translation in the first factor. Call admissible cuts (S, V, φ) and (S ′, V ′, φ′)

for a pair of surfaces F and F ′ diffeomorphic if there is a diffeomorphism Ψ: ([0, 1]× S3, F, V )
∼=−→

([0, 1] × S3, F ′, V ′) which is the identity near the boundary and satisfies φ′ ◦ Ψ = φ on V . Call
admissible cuts (S, V, φ) and (S ′, V ′, φ′) for a pair of surfaces F and F ′ equivalent if they differ by
a sequence of elementary equivalences and diffeomorphisms.

Proposition 4.2. Suppose F is a cobordism (not necessarily connected) with crosscap number ≥ 2.
Then, F has an admissible cut. Further, if F has crosscap number ≥ 3, and if F ′ is obtained from
F by a self-diffeomorphism of [0, 1]×S3 which is the identity near the boundary, then any admissible
cut for F is equivalent to any admissible cut for F ′.

We recall some results about the curve complex of nonorientable surfaces before proving Propo-
sition 4.2.

Let F be a compact, nonorientable surface. Consider the long exact sequence for the pair
(F, ∂F ),

H̃0(∂F ;F2)→ H1(F, ∂F ;F2)→ H1(F ;F2)→ H1(∂F ;F2).
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The first Stiefel-Whitney class w1(TF ) ∈ H1(F ;F2) maps to zero in H1(∂F ;F2) (since TF |∂F is
orientable), hence is in the image of H1(F, ∂F ;F2). Call a closed curve α in the interior of F
complement-orientable if PD([α]) ∈ H1(F, ∂F ;F2) maps to w1(TF ); assuming α is embedded, this
is equivalent to the condition that F \α is orientable, since for any other curve β, 〈w1(TF ), β〉 = α·β
(mod 2). Call the other curves complement-nonorientable. Call a closed curve α ⊂ F one-sided if
〈w1(TF ), [α]〉 = 1; assuming α is embedded, this is equivalent to TF |α being a Möbius band.

Lemma 4.3. Let α ⊂ F be a complement-orientable, embedded circle. Then, F has a single
nonorientable component F0. Moreover, α is one-sided if and only if the crosscap number of F0

(equivalently, F ) is odd.

Proof. By hypothesis, [α] = PD(w1(TF )). If F has multiple nonorientable components, then [α]
cannot be represented by a single curve. For the second part, we have to calculate 〈w1(TF ), [α]〉 =
〈w1(TF0)∪w1(TF0), [F0]〉 = α ·α (mod 2). By classification of surfaces and a direct computation,
this number equals the parity of the crosscap number of F0. �

The one-sided curve complex of F is the graph with vertices isotopy classes of embedded,
one-sided curves α in the interior of F and an edge from α to β if and only if there are disjoint
representatives of α and β. The restricted one-sided curve complex is the full sub-graph spanned by
the complement-nonorientable one-sided curves α. (By Lemma 4.3, if F has multiple nonorientable
components or if the crosscap number of F is even, then the restricted one-sided curve complex is
the same as the one-sided curve complex.)

Proposition 4.4. Let F be a compact, nonorientable surface (with boundary) of crosscap number
≥ 2. Then, the restricted one-sided curve complex of F is connected.

Proof. This is essentially due to Pieloch [Pie16, Proposition 2.7], and we follow his argument.
If F has more than one nonorientable connected component then the statement is obvious. So,

it suffices to prove the result when F is a connected surface with crosscap number ≥ 2.
Let θ be the one-sided curve shown in Figure 4.1 and let λ be any other complement-nonorientable

one-sided curve. From the classification of surfaces, there is a homeomorphism from F to itself send-
ing θ to λ. So, it suffices to show that the mapping class group of F takes the path component
of θ in the restricted one-sided curve complex to itself. For that, it suffices to show that a set of
generators for the mapping class group take this path component to itself, i.e., take θ to curves
which can be connected to θ in the restricted one-sided curve complex.

Here, we will not require homeomorphisms to be the identity on ∂F or to take boundary
components to themselves. In fact, since deleting ∂F has no effect on the restricted one-sided
curve complex, we can view F as a punctured surface and the homeomorphism as an element of
the mapping class group of the punctured surface F . This mapping class group was studied by
Korkmaz [Kor02], who denoted it Mg,n, where g is the crosscap number and n is the number of
punctures z1, . . . , zn.

In particular, Korkmaz gave a set of generators for this mapping class group [Kor02, Section
4]. There are three cases, depending on the crosscap number: crosscap number 2, 2k+ 1 for k ≥ 1,
or 2k for k > 1. In each case, the mapping class group is generated by a finite set of Dehn twists,
braid generators in the zi, one crosscap slide (see [Kor02, Section 2] and the references he gives for
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Figure 4.1. Generators for the mapping class group of a punctured sur-
face. The left column is the crosscap number 2 case, center is the crosscap number
2k + 1 (k ≥ 1) case, and right is the crosscap number 2k (k > 1) case. Crosscaps
are shaded, and hidden lines are gray. Top: the mapping class group is generated
by elementary braids in the zi, Dehn twists around the thin curves and the dashed
curve, boundary slides (push maps) along the dotted curves, and a crosscap slide.
In the left picture, the crosscap slide pulls one crosscap along the dashed curve. In
the other pictures, the crosscap slide occurs in the shaded region (a punctured Klein
bottle). Second row: the image of θ under the boundary slide that moves it. Third
row: the images of θ under the Dehn twist(s) that move it. Bottom row: the image
of θ under the crosscap slide. When f(θ) is neither disjoint from nor equal to θ, a
third curve η disjoint from both is shown (dash-dotted).
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the definition), and one or two boundary slides (again, see [Kor02, Section 2]); the generators are
shown in Figure 4.1. In each case, most of the generators fix θ. The remaining ones either take θ
to a curve disjoint from θ (up to isotopy) or to a curve f(θ) so that there is a third curve η disjoint
from both θ and f(θ). See Figure 4.1. So, in all cases, f(θ) lies in the same path component as θ,
as desired. �

We note an easier lemma:

Lemma 4.5. If F is a nonorientable surface of crosscap number > 1 (i.e., is not a punctured RP2

union an orientable surface) then the restricted curve complex has at least two points. If F has
crosscap number > 2 (i.e., is also neither a punctured Klein bottle nor a punctured RP2 q RP2,
union an orientable surface) then the restricted curve complex contains a 3-cycle.

Proof. This is straightforward from the classification of surfaces, and is left to the reader. �

Proposition 4.4 and Lemma 4.5 together imply the following.

Lemma 4.6. Let F be a compact, nonorientable surface with crosscap number > 2. For any
complement-nonorientable one-sided embedded curves α, β in F , there exists an even-length se-
quence α = γ0, γ1, . . . , γ2n = β of complement-nonorientable one-sided embedded curves connecting
α to β so that every pair of consecutive curves γi, γi+1 are disjoint.

Proof. Using Proposition 4.4, we may choose a walk in the restricted curve complex connecting α
to β. Using the 3-cycle from the second part of Lemma 4.5 if needed, we may ensure that the walk
has even length. Choose embedded curves representing the vertices of the walk to get a sequence
γ0, γ1, . . . , γ2m.

We may choose γ0 = α and we may choose γi inductively to ensure that it is disjoint from γi−1.
The final curve γ2m will be isotopic to β, but need not equal β. Let φt for t ∈ [0, 1] be an ambient
isotopy taking γ2m to β.

Using the first part of Lemma 4.5, choose a complement-nonorientable one-sided embedded
curve δ which is disjoint from γ2m. To finish the proof, we will construct a sequence γ2m, γ2m+1, . . . ,
γ2n = β of complement-nonorientable one-sided embedded curves with every consecutive pair dis-
joint, as follows:

γ2i = φ i−m
n−m

(γ2m), m ≤ i ≤ n γ2i+1 = φ i−m
n−m

(δ), m ≤ i < n.

Clearly, γ2i+1 is disjoint from γ2i, and by compactness, for n large enough, it will be disjoint from
γ2i+2 as well. For instance, fix a metric on F so that length of ∂

∂tφt is bounded above by 1; let
D = mint∈[0,1] dist(φt(γ2m), φt(δ)); then n > m+ (1/D) suffices. �

Finally we need the following analogue of a result of Morrison-Walker-Wedrich’s [MWW,
Lemma 4.7]:

Lemma 4.7. Let Σ ⊂ [0, 1]×S3 be a link cobordism and f : [0, 1]×S3 → [0, 1]×S3 a diffeomorphism
which is the identity near the boundary. Then, Σ is isotopic to f(Σ), and the isotopy may also be
assumed to be the identity near the boundary.
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Proof. This is proved by replacing R3 by S3 throughout Morrison-Walker-Wedrich’s proof [MWW,
Lemma 4.7], but for completeness, we sketch the proof below.

Let U be a collar neighborhood of {0, 1} × S3 on which f is the identity. Fix a point p ∈ S3 so
that [0, 1]× {p} is disjoint from Σ. By postcomposing f by an isotopy that takes f([0, 1]× {p}) to
[0, 1]×{p} (and is the identity on U), we may assume f is the identity on [0, 1]×{p}. Let B ⊂ S3

be a ball around p with [0, 1]× B disjoint from Σ. Let φ be a diffeomorphism of [0, 1]× S3 which
is the identity on U ∪

(
[0, 1]×

(
{p} ∪ (S3 \B)

))
, so that on the normal bundle of [0, 1]×{p} inside

[0, 1] × S3 (which is a trivial R3 bundle in an obvious way) dφ induces the non-trivial element of
π1(SO(3)). By post-composing f by φ if necessary, and a further small isotopy, we may assume f
is the identity on [0, 1] × B. Now let gt be an isotopy of [0, 1] × S3 which is the identity near the
boundary, so that g0 = Id and g1(Σ) ⊂ U ∪ ([0, 1]×B). Then, the isotopy gt takes Σ to g1(Σ) and
the isotopy f ◦ g1−t takes g1(Σ) = f(g1(Σ)) to f(Σ). �

Proof of Proposition 4.2. Let π : [0, 1]× S3 → S3 be projection. Given a curve γ ⊂ F , let

C≤γ = {(t, p) ∈ [0, 1]× S3 | ∃t′ ∈ [0, 1] so that (t′, p) ∈ γ and t ≤ t′}
C≥γ = {(t, p) ∈ [0, 1]× S3 | ∃t′ ∈ [0, 1] so that (t′, p) ∈ γ and t ≥ t′},

so π−1(π(γ)) = C≤γ ∪ C≥γ and if π|γ is injective then C≤γ ∩ C≥γ = γ.
For the first statement, that F has an admissible cut, choose disjoint one-sided embedded curves

γ, η ⊂ F ; this is possible by Lemma 4.5. Perturbing F slightly, we may assume:

(G-1) π|γ is injective,
(G-2) dπ restricted to TF |γ has rank 2 everywhere,
(G-3) F intersects C≤γ transversely away from γ,
(G-4) π|η is injective,
(G-5) dπ restricted to TF |η has rank 2 everywhere,
(G-6) F intersects C≥η transversely away from η, and
(G-7) π(γ) ∩ π(η) = ∅.

Let U≤γ , U≥η be tubular neighborhoods of C≤γ and C≥η with disjoint closures. Choose U≤γ small
enough that U≤γ ∩ F consists of a Möbius band around γ and disks around the other points in
C≤γ ∩ F . Choose U≥η similarly. Choose ε > 0 small enough that(

([0, ε]× S3) ∪ U≤γ
)
∩
(
([1− ε, 1]× S3) ∪ U≥η

)
= ∅.

Let

S≤γ = ∂
(
([0, ε]× S3) ∪ U≤γ

)
\ ({0} × S3), S≥η = ∂

(
([1− ε, 1]× S3) ∪ U≥η

)
\ ({1} × S3).

Then, after smoothing corners, both S≤γ and S≥η are admissible cuts for F , since either side of
either cut is nonorientable (containing one of the one-sided curves γ or η). The diffeomorphisms φ
from Definition 4.1 for S≤γ and S≥η are induced from the natural isotopies that take γ to {ε}×π(γ)
along C≤γ and η to {1− ε} × π(η) along C≥η.

For the second statement, fix admissible cuts S and S′ for F and F ′ and choose diffeomorphisms

Φ: ([0, 1]× S3, S)
∼=−→ ([0, 1]× S3, {1

2} × S
3) and Φ′ : ([0, 1]× S3, S′)

∼=−→ ([0, 1]× S3, {1
2} × S

3) as

in Definition 4.1. It is enough to show that the admissible cuts {1
2} × S

3 for Φ(F ) and Φ′(F ′) are
equivalent.
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Choose one-sided curves γ, η ⊂ Φ(F ) on the left and right side of {1
2} × S

3 and choose a one-

sided curve α ⊂ Φ′(F ′) on the left side of {1
2} × S

3. Consider the admissible cuts S≤γ and S≥η for

Φ(F ) as defined above. They are both elementary equivalent to the cut {1
2}×S

3 (as well as to each

other). Similarly the admissible cut S≤α for Φ′(F ′) is elementary equivalent to the cut {1
2}×S

3. In
particular, it is enough to show that the cut S≤γ for Φ(F ) is equivalent to the cut S≤α for Φ′(F ′).

Using Lemma 4.7, choose an ambient isotopy ψt : [0, 1]× S3 → [0, 1]× S3 which is the identity
near the boundary, with ψ0 = Id, and ψ1(Φ(F )) = Φ′(F ′). We may perturb the isotopy to
ensure that the genericity assumptions (G-1)–(G-7) hold for the curves ψt(γ), ψt(η) ⊂ ψt(Φ(F )),
except for finitely many t ∈ (0, 1) when exactly one of them fails. Choose non-exceptional points
0 = t0 < t1 < · · · < tm−1 < tm = 1 such that each interval [ti, ti+1] contains at most one such
exceptional point; call such an interval γ-good (respectively, η-good) if the genericity conditions (G-
1)–(G-3) (respectively, (G-4)–(G-6)) hold on the interval. Since at most one genericity condition
fails at each exceptional point, each of these intervals [ti, ti+1] is either γ-good or η-good (or both,
if (G-7) fails).

At non-exceptional t (such as t0, . . . , tm), both the cuts S≤ψt(γ) and S≥ψt(η) for ψt(Φ(F )) are
admissible, and they are elementary equivalent to each other. We need the following lemma.

Lemma 4.8. For any γ-good (respectively, η-good) interval [ti, ti+1], the cuts S≤ψti (γ) (respectively,

S≥ψti (η)) for ψti(Φ(F )) and S≤ψti+1 (γ) (respectively, S≥ψti+1 (η)) for ψti+1(Φ(F )) are diffeomorphic.

Proof. We will explain the γ-good case; the η-good case is similar. For notational convenience, let
a = ti, b = ti+1, Fa = ψa(Φ(F )), γa = ψa(γ), Fb = ψb(Φ(F )), and γb = ψb(γ). Note also that, in
the definition of S≤γa and S≤γb , up to diffeomorphism, we can choose the collar neighborhoods of
the boundary and the tubular neighborhoods of C≤γa and C≤γb to be as small as we like.

To construct the diffeomorphism

([0, 1]× S3, Fa, S≤γa)
∼=−→ ([0, 1]× S3, Fb, S≤γb)

we first construct an ambient isotopy θt, t ∈ [a, b], of [0, 1]×S3 which carries Fa∪C≤γa to Fb∪C≤γb .
The map ψt ◦ ψ−1

a restricts to an isotopy θFt from Fa to Fb, and the isotopy (ψt ◦ ψ−1
a )|γa

induces an isotopy θγt from C≤γa to C≤γb . (This uses conditions (G-1) and (G-2).) The isotopy
θγt will not be the identity on the boundary, but we can choose it so that, for all small s, it sends
C≤γa ∩ ({s} × S3) to C≤γt ∩ ({s} × S3) for each t. The maps θFt and θγt typically will not agree
on Fa ∩ C≤γa , but by Condition (G-3), for any t ∈ [a, b], θFt (Fa) and the interior of θγt (C≤γa)
intersect transversally in finitely many points, say Pt. So, we get one-parameter families of points
(θFt )−1(Pt) on Fa and (θγt )−1(Pt) on C≤γa . Let θ̃Ft be an isotopy of Fa which preserves it setwise,

is the identity near the boundary and near γa, and satisfies θ̃Ft (Pa) = (θFt )−1(Pt). Similarly, let θ̃γt
be an isotopy of C≤γa which preserves it setwise, is the identity near the boundary, and satisfies

θ̃γt (Pa) = (θγt )−1(Pt). On Fa, set θt = θFt ◦ θ̃Ft , and on C≤γa , set θt = θγt ◦ θ̃
γ
t . These two isotopies

do agree on Fa ∩ C≤γa , so let θt : Fa ∪ C≤γa → [0, 1]× S3, t ∈ [a, b], be their union. By the isotopy
extension lemma, we can extend θt to a smooth ambient isotopy θt of [0, 1]× S3. (This again uses
Conditions (G-2) and (G-3).) We can ensure that this extension preserves the slices {s} × S3 for
s ∈ [0, 2ε]∪ [1− 2ε, 1], for some sufficiently small ε; shrinking ε if necessary, we may assume that θt
is the identity on Fa ∩ ([0, 2ε] ∪ [1− 2ε, 1])× S3.
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The ambient isotopy θt is not the identity on the whole boundary, but θt|{0,1}×S3 is, of course,

isotopic to the identity. So, we can modify θt to a new isotopy θ′t so that:

• θ′t is the identity on a small collar neighborhood S3 × ([0, ε] ∪ [1− ε, 1]) of the boundary.
• θ′t preserves {s} × S3 for s ∈ [0, 2ε] ∪ [1− 2ε, 1].
• θ′t agrees with θt on [2ε, 1− 2ε]× S3.
• θ′t is the identity on Fa ∩ ([0, 2ε] ∪ [1− 2ε, 1])× S3. So, in particular, θ′b(Fa) = Fb.

Choose the collar neighborhoods of the boundary, in the definition of S≤γa and S≤γb , to be ([0, 2ε]∪
[1 − 2ε, 1]) × S3. Then, for appropriate choices of tubular neighborhoods of C≤γa and C≤γb , the
map θ′b sends Fa to Fb and S≤γa to S≤γb , as desired. �

We can now conclude that for any interval [ti, ti+1], the cuts S≤ψti (γ) for ψti(Φ(F )) and S≤ψti+1 (γ)

for ψti+1(Φ(F )) are equivalent. If the interval is γ-good, then this follows from Lemma 4.8. On
the other hand, if the interval is η-good, then the cuts S≥ψti (η) for ψti(Φ(F )) and S≥ψti+1 (η) for

ψti+1(Φ(F )) are diffeomorphic, again by Lemma 4.8; however, the former is elementary equivalent
to S≤ψti (γ), while the latter is elementary equivalent to S≤ψti+1 (γ). Therefore, we get that the cut

S≤ψ0(γ) = S≤γ for ψ0(Φ(F )) = Φ(F ) and the cut S≤ψ1(γ) for ψ1(Φ(F )) = Φ′(F ′) are equivalent. So
all that remains is to show that the two cuts S≤ψ1(γ) and S≤α for Φ′(F ′) are equivalent.

Using Lemma 4.6, choose an even-length sequence α = δ0, δ1, . . . , δ2n = ψ1(γ) of complement-
nonorientable one-sided embedded curves on Φ′(F ′) so that every pair of consecutive curves are
disjoint. Perturbing slightly, we may assume that the genericity conditions (G-1)–(G-3) hold for
each of these curves, and the genericity condition (G-7) holds for each pair of consecutive curves.
Then, S≤δ0 , S≥δ1 , S≤δ2 , . . . , S≤δ2n is a sequence of admissible cuts connecting S≤α and S≤ψ1(γ) where
every consecutive pair is elementary equivalent. �

Remark 4.9. The proof that all admissible cuts are equivalent is inspired by the b+2 ≥ 3 case of
Ozsváth-Szabó’s argument [OSz06, Theorem 8.5]. Their argument is terse, so for comparison with
the proof of Proposition 4.2 we expand the b+2 ≥ 3 case of their argument here.

Given a compact, oriented, connected 4-dimensional cobordism W : Y0 → Y1, Yi connected, an
admissible cut for W is a decomposition W = W0 ∪N W1 along a closed, connected 3-manifold N
so that both b+2 (W0) > 0 and b+2 (W1) > 0 (and Yi ⊂Wi). Ozsváth-Szabó show that any 4-manifold
W with b+2 (W ) ≥ 2 has an admissible cut, as follows. Choose closed, connected, oriented surfaces
Σ0,Σ1 ⊂W with [Σ0]2, [Σ1]2 > 0 and [Σ0]·[Σ1] = 0. One can make Σ0 and Σ1 disjoint by repeatedly
performing embedded surgery on Σ0 to cancel pairs of points p, q ∈ Σ0 ∩Σ1 of opposite sign, along
an arc in Σ1 from p to q. Let W0 be a neighborhood of the union of Σ0, an arc from Σ0 to Y0, and
Y0. Choose the arc generically and its neighborhood small enough to be disjoint from Σ1, and let
W1 be the complement of the interior of W0. Then, W0 ∪W1 is an admissible cut for W .

Next, call admissible cuts W = W0 ∪N W1 = W ′0 ∪N ′ W ′1 elementary equivalent if N ∩ N ′ =
∅, and equivalent if they differ by a sequence of elementary equivalences. If b+2 (W ) ≥ 3 then
Ozsváth-Szabó argue that any two admissible cuts for W are equivalent. Fix admissible cuts
W = W0 ∪N W1 = W ′0 ∪N ′ W ′1. For convenience, assume that b+2 (W ′1) ≥ 2; the other case is

symmetric. Choose connected surfaces Σ0 ⊂ W̊0 with [Σ0]2 > 0 and Σ′1 ⊂ W̊ ′1 with [Σ′1]2 > 0,
and so that [Σ0] · [Σ′1] = 0 (this uses the assumption on b+2 (W ′1)). (This part of the argument is
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Figure 4.2. Equivalence of admissible cuts in Ozsváth-Szabó’s setting.
This is a schematic illustration of the surfaces and paths in Remark 4.9. The cuts
N and N ′ are dashed, the paths γ are dotted, the surface Σ′1 is thick, and the surface

Σ̃0 is thin. A key point is that Σ̃0 is disjoint from Σ1 and Σ′1.

illustrated schematically in Figure 4.2.) Performing surgery on Σ0 along arcs Γ in Σ′1 with interiors

disjoint from Σ0 gives a new surface Σ̃0 homologous to Σ0 and disjoint from Σ′1. Let Σ1 ⊂ W̊1 be

a surface with [Σ1]2 > 0. Since Σ0 ⊂ W̊0 and Σ1 ⊂ W̊1, Σ0 ∩ Σ1 = ∅. Perturbing Σ1 slightly, we

can assume that Σ1 is also disjoint from the arcs Γ, and hence from Σ̃0.

Choose an arc γ0 ⊂ W0 connecting Σ̃0 to Y0, disjoint from Σ′1; γ′1 ⊂ W ′1 connecting Σ′1 to Y1,

disjoint from Σ̃0 ∪ γ0; and γ1 ⊂W1 connecting Σ1 to Y1, disjoint from Γ. Let Ñ0 be the boundary

of a neighborhood of Y0 ∪ γ0 ∪ Σ̃0, N ′1 the boundary of a neighborhood of Y1 ∪ γ′1 ∪ Σ′1, and N1

the boundary of a neighborhood of Y1 ∪ γ1 ∪ Σ1. Observe that Ñ0, N1, and N ′1 are all admissible

cuts. Further, N is equivalent to N1, which is equivalent to Ñ0, which is equivalent to N ′1, which
is equivalent to N ′, proving the result.

5. The mixed invariant

Consider the long exact sequence · · · → H−(L)
ι∗−→ H∞(L)

π∗−→ H+(L)
∂−→ H−(L) → · · ·

from Formula (2.2). Define Hred(L) = ker(ι∗) ∼= coker(π∗), and give it the grading it inherits as a
submodule of H−(L); this is (1, 0) higher than its grading as a quotient module of H+(L). (This
is analogous to the reduced Heegaard Floer invariant HF red, and is not immediately related to
reduced Khovanov homology.)

Definition 5.1. Fix an admissible cut (S, V, φ) for a cobordism F ⊂ [0, 1] × S3, decomposing F
into F0 and F1. Let Φ be a diffeomorphism as in Condition (AC-3) of Definition 4.1. Given a movie
M0 representing Φ(F0) ⊂ [0, 1/2]× S3 (identified with [0, 1]× S3 in the obvious way) and a movie
M1 representing Φ(F1) ⊂ [1/2, 1] × S3, we say that the concatenated movie (M0,M1) is a movie
compatible with the admissible cut (S, V, φ).
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Lemma 5.2. Let F be a nonorientable cobordism in [0, 1] × S3 from L0 to L1. Then, the im-
age of the induced map H−(F ) : H−(L0) → H−(L1) lies in Hred(L1) ⊂ H−(L1), and the map
H+(F ) : H+(L0)→ H+(L1) descends to a map Hred(L0)→ H+(L1).

Proof. By Proposition 3.5, H∞(F ) : H∞(L0)→ H∞(L1) vanishes. So, both claims follow from the
first long exact sequence in Formula (2.2) and Lemma 3.1. �

Definition 5.3. Let F be a nonorientable cobordism from L0 to L1 with crosscap number ≥
3. Let S be an admissible cut for F , decomposing F as F1 ◦ F0 and [0, 1] × S3 as W1 ◦ W0.
Choose a movie compatible with the admissible cut, and let H±(Fi) be the induced maps. By
Lemma 5.2, the map H−(F0) induces a map H(F0) : H−(L0) → Hred(L) and H+(F1) descends to
a map H(F1) : Hred(L) → H+(L1). Define the mixed invariant ΦF : H−(L0) → H+(L1) to be the
composition H(F1) ◦ H(F0). That is, ΦF is is the composition of the two dashed arrows in the
following diagram:

(5.1)

H−(L0)

H∞(L0)

H∞(L)

H+(L)

H−(L)

H∞(L)

Hred(L)

H∞(L1)

H+(L1)

H∞(F0) = 0

H−(F0)

H(F0)

H(F1)

H∞(F1) = 0

H+(F1)

Remark 5.4. Definition 5.3 also makes sense if F has crosscap number 2, but the proof that ΦF

is independent of the choice of admissible cut (Theorem 5.5) requires crosscap number at least 3.
That is, in the case F : L0 → L1 has crosscap number 2, there is a map ΦF,S : H−(L0) → H+(L1)
which, as far as we know, depends on both the surface F and the admissible cut S.

Theorem 5.5. Let F be a cobordism from L0 to L1, with crosscap number ≥ 3. Then, the mixed
invariant ΦF : H−(L0)→ H+(L1) is independent of the choices in its construction, up to an overall
sign. Further, If F is isotopic to F ′ or, more generally, if there is a self-diffeomorphism of [0, 1]×S3

which is the identity on the boundary and sends F to F ′ then ΦF = ±ΦF ′ : H−(L0)→ H+(L1).

Proof. We will show (in order):

(1) Independence of the choice of movies compatible with a fixed admissible cut and, in par-
ticular, of isotopies of F0 and F1 rel boundary, and of the choice of diffeomorphism Φ in
Definition 5.1.

(2) Invariance under elementary equivalences of admissible cuts.
(3) Invariance under diffeomorphisms of surfaces and admissible cuts.

By Proposition 4.2, this implies the result.
Throughout the proof, “equal” or “homotopic” will mean equal or homotopic up to an overall

sign.



24 ROBERT LIPSHITZ AND SUCHARIT SARKAR

For point (1), by Proposition 3.7, difference choices of movies compatible with the same ad-
missible cut give chain homotopic maps C−(F0) and C−(F1). (For independence of Φ, this uses
the last statement in Proposition 3.7.) If C−(F0) ∼ C−(F ′0), then H−(F0) = H−(F ′0); similarly,
if C−(F1) ∼ C−(F ′1), then C+(F1) ∼ C+(F ′1), and hence H+(F1) = H+(F ′1). Notice that the lift
H(F0) : H−(L0) → Hred(L) of H−(F0) is canonical: Hred(L) is a canonical submodule of H−(L).
Similarly, the induced map H(F1) : Hred(L) → H+(L1) is canonical, since Hred(L) is a canonical
quotient module of H+(L). So, different choices of movies for F0 and F1 give the same mixed
invariant.

For point (2), if the admissible cuts (S, V, φ) and (S′, V ′, φ′) are elementary equivalent, let
L = φ(S ∩ F ) and L′ = φ′(S ∩ F ). Assume, without loss of generality, that we are in the first case
of Formula (4.1). Choose a movie for F compatible with this decomposition (in a sense analogous
to Definition 5.1), so L and L′ are frames in the movie. Then, it follows from commutativity of the
diagram

H+(L;R)

H−(L;R)

Hred(L;R)

H+(L′;R)

H−(L′;R)

Hred(L′;R)

(and point (1)) that the mixed invariants with respect to (S, V, φ) and (S ′, V ′, φ′) agree.
Finally, for point (3), suppose an admissible cut (S, V, φ) for F is diffeomorphic to an admissible

cut (S′, V ′, φ′) for F ′, via a diffeomorphism Ψ. Fix a movie for F compatible with (S, V, φ), with
respect to a diffeomorphism Φ extending φ. Then, the same movie is compatible with (S′, V ′, φ′),
via the diffeomorphism Φ ◦ Ψ. By points (1) and (2), we can compute the mixed invariants of F
and F ′ using these movies, so the mixed invariants agree. �

6. Properties

6.1. First observations. We start by noting the mixed invariant’s grading:

Lemma 6.1. The mixed invariant ΦF : H−(L0)→ H+(L1) increases the bigrading by (−1−e/2, χ−
3e/2− 2s), where χ is the Euler characteristic of F , e is the normal Euler number of F , and s is
the number of stars on F .

Proof. This follows immediately from Corollary 3.3. The additional downward grading shift by
(1, 0) comes from the identification of Hred(L) as a quotient module of H+(L). �

There is a simple condition guaranteeing the mixed invariant vanishes:

Lemma 6.2. If F has an admissible cut S so that the link L ⊂ S3 corresponding to S ∩ F has
Hred(L) = 0, then the mixed invariant ΦF vanishes.

Proof. This is immediate from Definition 5.3. �
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Remark 6.3. The analogue of Lemma 6.2 for Heegaard Floer homology is factoring through an
L-space. Note, however, that L-spaces seem to be much more common than links with vanishing
Hred.

The mixed invariant behaves simply with respect to (a particular kind of) mirroring. Let
F : L0 → L1 be a cobordism, so F is smoothly embedded in [0, 1]× S3. Applying the orientation-
preserving diffeomorphism [0, 1] × S3 → [0, 1] × S3, (t, x, y, z, w) 7→ (1 − t,−x, y, z, w) gives a new
cobordism m(F ) : m(L1)→ m(L0), where m(Li) denotes the mirror of Li.

The statement is a little simpler for the Lee deformation than the Bar-Natan deformation, so
we separate the two cases. Given an R[T ]-module M , HomR(M,R) inherits the structure of an
R[T ]-module, as well.

Lemma 6.4. Let C± denote the Lee deformation. Given a link L, there is an isomorphism
C+(m(L)) ∼= HomR(C−(L),R) of complexes over R[T ] so that for any cobordism F : L0 → L1,

C+(m(F )) : C+(m(L1)) ∼= HomR(C−(L1),R)→ HomR(C−(L0),R) ∼= C+(m(L0))

is the dual to the map C−(F ) : C−(L0)→ C−(L1).
Further, if F has crosscap number ≥ 3 and R is a field then the mixed invariant Φm(F ) is given

by the composition

H−(m(L1)) ∼= Hom(H+(L1),R)
Φ∗F−→ Hom(H−(L0),R) ∼= H+(m(L0)).

In particular, Φm(F ) vanishes if and only if ΦF does.

(Compare [Kho00, Proposition 32], [Kho06b, pp. 184–185], and [CMW09, Proposition 3.1].)

Proof. The isomorphism µ : Hom(C−(L),R) → C+(m(L)) is defined as follows. Given a generator
Tn(v, y) of C−(L) (over R), let [Tn(v, y)]∗ denote the dual generator of Hom(C−(L),R). The

isomorphism is given by µ
(
[Tn(v, y)]∗) = T−n−1(~1 − v, y∗) where ~1 − v = (1 − v1, . . . , 1 − vc) and

y∗ is the result of reversing the label of every circle. (That is, if y labels a circle Z by X then y∗

labels the corresponding circle by 1, and vice-versa.) It is straightforward to check that this defines
a chain isomorphism.

A movie for F induces a movie for m(F ) by mirroring each frame and reversing the order of
the frames. So, it suffices to check the second statement for a single elementary cobordism (pair of
adjacent frames in a movie). This is a straightforward case check.

For the statement about the mixed invariant, a choice of admissible cut for F , along some link
L, and movie compatible with it induce an admissible cut for m(F ), along m(L), and a movie
compatible with it. The map µ induces an isomorphism of short exacts sequences

0 Hom(C+(L),R) Hom(C∞(L),R) Hom(C−(L),R) 0

0 C−(m(L)) C∞(m(L)) C+(m(L)) 0
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so naturality of the snake lemma implies that the diagram

Hom(H−(L),R) Hom(H+(L),R)

H+(m(L)) H−(m(L))

Hom(Hred(L),R)

Hred(m(L))

∂∗

∂

∼= ∼=

commutes. Combining this with the definition of the mixed invariant in Diagram (5.1) gives the
result. �

For the analogous results for the Bar-Natan complex, there is an extra sign. There is a ring
automorphism σ : R[H ] → R[H] induced by σ(H) = −H. Given a module M over R[H ], let Mσ

be the result of restricting (or extending) scalars by σ. That is, Mσ is the same as M except
H acts on Mσ the way −H acts on M . Given another R[H ]-module N and a homomorphism
f : M → N , there is an induced homomorphism f : Mσ → Nσ (which, as a map of sets, is the same
as f : M → N).

Then, the following is the analogue of Lemma 6.4:

Lemma 6.5. Let C± denote the Bar-Natan deformation. Given a link L, there is an isomorphism
C+(m(L))σ ∼= HomR(C−(L),R) of complexes over R[H] so that for any cobordism F : L0 → L1,

C+(m(F )) : C+(m(L1))σ ∼= HomR(C−(L1),R)→ HomR(C−(L0),R) ∼= C+(m(L0))σ

is the dual to the map C−(F ) : C−(L0)→ C−(L1).
Further, if F has crosscap number ≥ 3 and R is a field then the mixed invariant Φm(F ), viewed

as a map of modules twisted by σ, is given by the composition

H−(m(L1))σ ∼= Hom(H+(L1),R)
Φ∗F−→ Hom(H−(L0),R) ∼= H+(m(L0))σ.

In particular, Φm(F ) vanishes if and only if ΦF does.

Proof. The isomorphism sends [Hn(v, y)]∗ to (−1)nH−n−1(~1 − v, y∗). The rest of the proof is a
straightforward adaptation of the Lee case. �

Remark 6.6. If R is a field, it follows from the classification of modules over a PID that there is a
(perhaps unnatural) isomorphism over R[H] between H+(m(L)) and Hom(H+(L),R).

Remark 6.7. There is another mirror one might consider: the map (t, x, y, z, w) 7→ (t,−x, y, z, w)
which mirrors each frame in the movie but does not reverse the order of the frames. Neither H−(F )
nor the mixed invariant seems to behave simply with respect to this operation, as the example in
Section 7.1 shows. (Gauge-theoretic invariants of the branched double cover also do not behave
well with respect to this operation.)

The mixed invariant also respects composition, as follows:
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Lemma 6.8. Let F0 : L0 → L1, F1 : L1 → L2, and F2 : L2 → L3 be cobordisms, so that F1 has
crosscap number ≥ 3. Then,

ΦF2◦F1 = H+(F2) ◦ ΦF1(6.1)

ΦF1◦F0 = ΦF1 ◦ H−(F0).(6.2)

The same result holds if F1 has crosscap number 2, as long as either F1 ◦ F0 and F2 ◦ F1 have
crosscap number ≥ 3, and we define ΦF1 with respect to any choice of admissible cut for F1 (compare
Remark 5.4).

Proof. This is immediate from the definitions. �

There is an easy criterion for the mixed invariant to be non-vanishing, in terms of the induced

map on ordinary Khovanov homology Ĥ:

Lemma 6.9. Let F : L0 → L1 be a cobordism with crosscap number ≥ 3. Then, the following
diagrams commute:

H−(L0) H+(L1)

Ĥ(L0) Ĥ(L1)

ΦF

Ĥ(F )

π∗ ∂ and

H−(L0) H+(L1).

Ĥ(L0) Ĥ(L1)

ΦF

Ĥ(F )

∂ ι∗

In particular, if Ĥ(F ) ◦ π∗ or ι∗ ◦ Ĥ(F ) is non-zero then the mixed invariant ΦF is also non-zero.

Proof. Let L be an admissible cut for F , decomposing F as F1 ◦F0. Define the map ∂ : Hred(L)→
Ĥ(L) to be the composition Hred(L)→ H−(L)

π∗−→ Ĥ(L). Using the first commutative triangle in

Formula (2.3), the map ∂ : H+(L) → Ĥ(L) is the composition H+(L) → Hred(L) → H−(L)
π∗−→

Ĥ(L), so is also the composition H+(L)→ Hred(L)
∂−→ Ĥ(L).

To see that ∂ ◦ ΦF = Ĥ(F ) ◦ π∗, consider the larger diagram

Ĥ(L0)

H−(L0)

H−(L)

Ĥ(L)

Hred(L)

H+(L)

Ĥ(L1)

H+(L1)

π∗

Ĥ(F0) Ĥ(F1)

H−(F0)

H(F0) H(F1)

π∗ ∂

H+(F1)

∂

∂

The middle triangles commute by the discussion above. The outer squares commute by naturality
of the long exact sequences (2.2), Lemma 3.1. The triangles at the top commute by the definition of
the dashed lifts. Since the map H+(L)→ Hred(L) is surjective, commutativity of the right square

and triangles implies that ∂ ◦H(F1) = Ĥ(F1) ◦ ∂ : Hred(L)→ Ĥ(L1). Commutativity of the square
and two triangles on the left then implies the result.
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The proof that ι∗ ◦ Ĥ(F ) = ΦF ◦ ∂ is similar, but instead uses the commutative diagram

Ĥ(L0)

H−(L0)

H−(L)

Ĥ(L)

Hred(L)

H+(L)

Ĥ(L1)

H+(L1)

∂

Ĥ(F0) Ĥ(F1)

H−(F0)

H(F0) H(F1)

∂ ι∗

H+(F1)

ι∗

and the fact that the map Hred(L)→ H−(L) is injective. �

Remark 6.10. Since π∗ : H−(∅) → Ĥ(∅) is surjective, it follows from Lemma 6.9 that if F is a

cobordism from ∅ to L and Ĥ(F ) 6= 0 then ΦF 6= 0, as well. Similarly, if F is a cobordism from L

to ∅ and Ĥ(F ) 6= 0 then ΦF 6= 0.

6.2. Stabilizations. Next, we turn to the behavior of the mixed invariant under various local
changes to the knot. For example, we will study the behavior under Baykur-Sunukjian’s stabiliza-
tions (attaching arbitrary 1-handles to a surface) and standard stabilizations (local connect sums
with a standard T 2) [BS16], crosscap stabilizations (taking local connected sums with a standard

RP2 or RP
2
), local knotting (taking a local connected sum with a knotted S2), and more general

local connected sums. The main results are summarized in Theorem 6.18, though some technical
results along the way (e.g., Corollaries 6.13 and 6.15) may also be of interest.

Most of the results in this section work for all four versions of Khovanov homology, H−, H+,

H∞, or Ĥ, so we will use the symbol H• to denote any of these four versions. The key technical
property we will use, as usual for these kinds of arguments, is a neck-cutting relation.

Proposition 6.11. Let F : L0 → L1 be a cobordism, and let A be an arc in [0, 1]×S3 with endpoints
on a single component F0 of F and interior disjoint from F . Let F∩ be the result of attaching a
1-handle to F along A and F ? the result of adding a star to F at one endpoint of A. If F0 is
orientable, assume that the 1-handle is attached in such a way that the resulting component is still
orientable. Then, H•(F∩) = H•(F ?).

Proof. For the Lee deformation, this was essentially shown by Levine-Zemke [LZ19, Proposition 7],
so we focus on the case of the Bar-Natan deformation and comment on the Lee deformation at the
end.

Let B be an arc in F connecting the endpoints of A, chosen so that the loop A ∪ B is two-
sided, i.e., so that TF∩|A∪B is trivial. (If F0 is orientable, any arc B has TF∩|A∪B trivial by the
assumption that orientability was preserved; if F0 is nonorientable, given any arc B connecting the
endpoints of A we can modify B by taking the connected sum with a one-sided loop to achieve this
property.) Let H = F∩ \ F denote the new 1-handle. Perform an isotopy to F∩ so that:

• The projection [0, 1] × S3 → [0, 1] restricts to a Morse function f on F∩, and induces a
movie decomposition of F∩.
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• The restriction f |H has two critical points, both of index 1, corresponding to a pair of
saddles in the movie.
• The two saddles corresponding to f |H in the movie are adjacent, happening at times t+ε, t+

2ε ∈ (0, 1), and there are no other elementary cobordisms between t− ε and t+3ε. Further,
these frames are obtained by gluing the following local model to the identity cobordism of
the rest of the link:

(6.3) −→ −→

• The arc B satisfies f(B) = t.

(To arrange this, first isotope F∩ so that H is small, then make H standard with respect to the
projection to [0, 1], and then isotope B to lie in the desired level set and use the isotopy extension
lemma to push the rest of F∩ out of the way.)

Given a dotted (not starred) cobordism, decomposed as a movie, there is a corresponding map
of Bar-Natan complexes, where the map associated to a dot is multiplication by X. Let F ,0 and
F ,1 be the result of placing a dot on F at each endpoint of A. Then, an easy local computation
shows that

(6.4) ±H•(F∩) = H•(F ,0) +H•(F ,1)−HH•(F ).

The surface F ,0 can be transformed into F ,1 by moving the dot along the arc B. Since B is
contained in a single level, this corresponds to moving the dot along an arc in a single link diagram
in the movie.

Let F ,(i) be the surface after we have moved the dot through i crossings. By Alishahi’s
lemma [Ali19, Lemma 2.2],

H•(F ,(i)) = HH•(F )−H•(F ,(i+1))

So, it suffices to show that the arc B has an even number of crossings on it: thenH•(F ,0) = H•(F ,1)
so the right side of Formula (6.4) is equal to H•(F ?).

This is where the assumption that A∪B is two-sided is used. Orient the arc B. This induces an
orientation of the arcs in the first frame of (6.3). The fact that TF∩|A∪B is trivial implies that this
orientation is compatible with the saddle cobordisms in (6.3); that is, B connects the bottom-left
endpoint to the bottom-right one, or the top-left endpoint to the top-right one. Without loss of
generality, assume B runs from the top-left endpoint to the top-right one. Choose a checkerboard
coloring of the left link diagram so that the region between the arcs shown is black. Then, B starts
with a black region to its right, and ends with a black region to its right. Each time B passes
through a crossing, the black region switches between the left and right side of B. So, B passes
through an even number of crossings, as claimed.

The proof for the Lee case is the same, except that the analogue of Equation (6.4) does not
have the HH(F ) term, and Alishahi’s lemma is replaced by Hedden-Ni’s [HN13, Lemma 2.3]. �
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The standard RP2 inside the 4-ball is the surface represented by the following movie:

(6.5) ∅ ∅−→b −→RI −→s −→RI −→d

The standard RP2 has e = −2. The standard RP
2

is the mirror of the above, and has e = 2. (Our
conventions are chosen to agree with [FKV88].) Define a crosscap stabilization to be the result of

taking the connected sum with a standard RP2 or RP
2
.

Lemma 6.12. If F⊗ is obtained from F by a crosscap stabilization then H•(F⊗) vanishes.

Proof. A movie for F⊗ is obtained from a movie for F by taking the disjoint union with the movie
in Formula (6.5) or its mirror, but replacing d with a saddle map between the unknot shown and
F . It is straightforward to see that the map on H• induced by s ◦ RI ◦ b vanishes (as does the
map associated to the mirror of this movie), so the map associated to the whole movie vanishes, as
well. �

Corollary 6.13. Let F : L0 → L1 be a cobordism, and suppose that some nonorientable component
F0 of F has a star on it. Then, H•(F ) = 0. Similarly, if F is obtained from another surface by
attaching a 1-handle to a nonorientable component then H•(F ) = 0.

Proof. For the first statement, let Ff be the result of taking the connected sum of F with a local
Klein bottle (with normal Euler number 0) at the star on F0, and forgetting the star. That is,
Ff is obtained from F by attaching a local 1-handle with both feet near the star, in a locally-
nonorientable way (and forgetting the star). By Proposition 6.11, H•(F ) = H•(Ff). On the other

hand, Ff is also obtained from F by taking the connect sum with RP2#RP
2

(and forgetting the
star). So, by Lemma 6.12, H•(Ff) vanishes.

The second statement follows from the first and Proposition 6.11. �

Adding an even number of stars has a predictable effect on the cobordism maps and the mixed
invariant:

Lemma 6.14. Let F : L0 → L1 be a cobordism, and let F ?? be the result of adding two stars to the
same component of F . Then,

H•(F ??) =

{
4TH•(F ) for the Lee deformation

H2H•(F ) for the Bar-Natan deformation.

Further, if the crosscap number of F is at least 3 then

ΦF ?? =

{
4TΦF for the Lee deformation

H2ΦF for the Bar-Natan deformation.

Proof. Since the maps are invariant under isotopy of the cobordisms, we can arrange that the two
elementary star cobordisms are adjacent. Then, the result is immediate from the definition of the
map associated to an elementary star cobordism. �
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Corollary 6.15. If F is nonorientable then for the Lee deformation, 4TH•(F ) = 0, and for the
Bar-Natan deformation, H2H•(F ) = 0. If F has crosscap number at least 3 then additionally,
4TΦF = 0 and H2ΦF = 0 for the Lee and Bar-Natan deformations, respectively.

Proof. This is immediate from Corollary 6.13 and Lemma 6.14. �

We note a very mild extension of a result of Rasmussen [Ras] and Tanaka [Tan06]:

Lemma 6.16. If F ⊂ [0, 1]× S3 is a closed, connected, orientable surface of genus g with s stars
then H•(F ) is

• 0 if g + s is even,
• 2Hg+s−1 if g + s is odd and we are considering the Bar-Natan deformation, and

• 2g+sT
g+s−1

2 if g + s is odd and we are considering the Lee deformation.

If F ⊂ [0, 1]×S3 is a closed, connected, nonorientable surface (possibly with stars) then H•(F ) = 0.

(In both cases, the surface may be knotted.)

Proof. We start with the orientable case. Any such surface becomes isotopic to a standardly-
embedded one after attaching some number of 1-handles (see, e.g., [BS16, Theorem 1]). By adding
an extra one if necessary, we may assume the number of 1-handles added is even, say 2k. By
Proposition 6.11, adding these 1-handles has the same effect as adding the same number of stars
which, by Lemma 6.14, multiplies H•(F ) by (4T )k or H2k. Considering first H−(F ), multiplication
by (4T )k or H2k is an injective map R[H ]→ R[H] or R[T ]→ R[T ], so the element H−(F ) depends
only on g and s, not the embedding of F . Thus, the result for H−(F ) follows from an easy
model computation for a standardly-embedded surface (which can be made even easier by applying
Proposition 6.11 to trade the genus for stars and then applying Lemma 6.14). The results for

the other versions—H∞(F ), H+(F ), and Ĥ(F )—follow formally from the case of H−(F ) and the
natural long exact sequences (2.2).

The proof for the nonorientable case is essentially the same. By a result of Baykur-Sunukjian
[BS16, Theorem 6], after a finite number of stabilizations, F becomes isotopic to a connected sum

of copies of the standard RP2 and RP
2
. A straightforward model computation, or Lemma 6.12,

shows the map associated to a connected sum of copies of the standard RP2 or RP
2

vanishes, so
by Proposition 6.11 the map associated to F vanishes, as well. �

Given a link cobordism F : L0 → L1, a closed surface E ⊂ S4, and points p ∈ E and q ∈ F ,
there is a standard connected sum of F and E at q and p; this is the connected sum of pairs
([0, 1]× S3, F )#(S4, E).

Proposition 6.17. Let F : L0 → L1 be a cobordism and E ⊂ S4 a closed, connected surface with
no stars on it. Let F# ..= F#E be a standard connected sum of F and E, and let F ? be the result
of adding a star to F , on the component where the connect sum is occurring. Then,

(1) If E is an orientable surface of genus g > 0 then for the Lee deformation,

(6.6) H•(F#) =

{
(4T )

g
2H•(F ) g even

(4T )
g−1
2 H•(F ?) g odd
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while for the Bar-Natan deformation

(6.7) H•(F#) =

{
HgH•(F ) g even

Hg−1H•(F ?) g odd.

(2) If E is a nonorientable surface then H•(F#) = 0.

Proof. Let D be a small disk on E, so E\D is a cobordism from the empty set to the unknot U . We
will show that H•(E \D) is the same as the invariant of a disk with g stars in the orientable case,
and vanishes in the nonorientable case. The result then follows from Lemma 6.14 and functoriality,
since F# is obtained from F by replacing a small disk by E \D.

Consider first the version H− for the Lee deformation, for the case that E is orientable. Let
E? be the result of adding a star to E. Write

H−(E \D) = p(T )1 + q(T )X ∈ H−(U) = R[T ]〈1, X〉.

By Lemma 6.16 applied to E, q(T ) = 0 if g is even and q(T ) = 2gT
g−1
2 if g is odd. Also,

H−(E? \D) = 2p(T )X + 2q(T ),

so by Lemma 6.16 applied to E?, p(T ) = 0 if g is odd and p(T ) = 2gT
g
2 if g is even. So, H−(E \D)

is 2gT
g
2 times the invariant of a disk if g is even, and 2g−1T

g−1
2 times the invariant of a disk with

a star if g is odd. The results for the other versions—H∞, H+, and Ĥ—follow formally from the
case of H− since H−(U) is free over H−(∅).

The proof for the Bar-Natan deformation in the orientable case is similar.
Now, suppose E is nonorientable and again, for definiteness, consider the Lee deformation. We

can again write H−(E \ D) = p(T )1 + q(T )X, but now H−(E) = H−(E?) = 0. Consequently,
p(T ) = q(T ) = 0. �

To summarize, both the map H•(F ) and the mixed invariant ΦF obstruct surfaces being sta-
bilizations and crosscap stabilizations, and are independent of local knotting.

Theorem 6.18. Let F : L0 → L1 be a cobordism.

(1) If F has at least one star on some nonorientable component, then H•(F ) = 0; and if in
addition F has crosscap number ≥ 3 then ΦF = 0, as well.

(2) If F is a (possibly nonstandard) stabilization, obtained from another cobordism F ′ by at-
taching a handle to some nonorientable component of F ′, then H•(F ) = 0.

(3) If F is obtained from another cobordism F ′ by taking a standard connected sum with a
closed, nonorientable surface then H•(F ) = 0; if F ′ has crosscap number ≥ 2 then ΦF = 0,
as well. In particular, this applies if F is a crosscap stabilization of a surface (with crosscap
number ≥ 2 in the case of ΦF = 0).

(4) If F is obtained from another cobordism F ′ by taking a standard connected sum of some
nonorientable component of F ′ with a closed, orientable surface of genus g > 0, then
H•(F ) = 0; if F ′ has crosscap number ≥ 2 then ΦF = 0, as well. In particular, this
applies if F is a standard stabilization of a surface (with crosscap number ≥ 2 in the case
of ΦF ) at some nonorientable component.
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(5) If F is obtained from another cobordism F ′ by taking a standard connected sum with a
knotted 2-sphere then H•(F ) = H•(F ′); if in addition F has crosscap number ≥ 3 then
ΦF = ΦF ′.

Proof. For H•(F ), Points (1) and (2) are Corollary 6.13, Points (3) and (5) are Proposition 6.17,
while Point (4) is Proposition 6.17 together with Corollaries 6.13 and 6.15.

For ΦF , Points (3), (4), and (5) follow by the same methods, after isotoping the surface so
the connect sum happens entirely on one side of the admissible cut. For Point (1), choose disjoint
one-sided embedded curves γ, η ⊂ F so that η contains a star, and then consider the admissible cut
S≤γ , as in the proof of Proposition 4.2; then one side of the admissible cut contains a nonorientable
component with a star, and so ΦF vanishes by Corollary 6.13. �

We conclude the section by singling out one consequence of Point (5). Miller-Powell introduced
the notion of the generalized stabilization distance [MP19] (see also [Miy86, JZb]). In particular,
surfaces F and F ′ have generalized stabilization distance 0 if and only if they are related by taking
the connected sums with embedded 2-spheres. (See also [SS].) While they work in the topological
category, we will continue to assume all surfaces are smoothly embedded.

Corollary 6.19. If F and F ′ are cobordisms with H•(F ) 6= H•(F ′) or ΦF 6= ΦF ′ (and the cobor-
disms have crosscap number ≥ 3) then F and F ′ have generalized stabilization distance > 0.

Remark 6.20. There is also an obstruction to destabilizing orientable surfaces from Heegaard Floer
homology [JZa, Proposition 5.5].

6.3. Closed surfaces. The following shows that the mixed invariant is often zero for closed surfaces
(and is always zero for connected closed surfaces). By contrast, in Section 7 we will see that for
surfaces with boundary the mixed invariant does contain interesting information.

Theorem 6.21. Let F be a closed surface with crosscap number ≥ 3, normal Euler number e(F ),
Euler characteristic χ(F ), so(F ) stars on orientable components, and sn(F ) stars on nonorientable
components. If its mixed invariant ΦF is non-zero then e(F ) = −2, sn(F ) = 0, and χ(F ) =
1 + 2so(F ).

Corollary 6.22. If F is a closed, connected surface with crosscap number ≥ 3 then its mixed
invariant ΦF vanishes.

Proof of Theorem 6.21. By Theorem 6.18, sn(F ) = 0.
Since the mixed invariant ΦF is an R[U ]-module homomorphism R[U ] = H−(∅) → H+(∅) =

R[U−1, U ]/R[U ], ΦF may be viewed as an element of R[U−1, U ]/R[U ] (the image of 1). By
Lemma 6.1, ΦF is in bigrading (−1−e/2, χ−3e/2−2so). Since H+(∅) is supported in homological
grading 0, this forces e(F ) = −2.

In the Bar-Natan theory, by Corollary 6.15, ΦF (1) ∈ ker(H2) ⊂ R[H−1, H]/R[H ], which is
R〈H−1, H−2〉, supported in bigradings (0, 2) and (0, 4), which forces (χ − 2so) ∈ {−1, 1}. In the
Lee theory, again by Corollary 6.15, ΦF (1) ∈ ker(4T ) ⊂ R[T−1, T ]/R[T ], which is R〈T−1〉 (recall
that 2 is invertible in R), supported in bigrading (0, 4), forcing χ− 2so = 1.

Thus, the only case remaining to exclude is χ− 2so = −1. So, for the rest of the proof assume
e(F ) = −2, χ(F )− 2so(F ) = −1, and sn(F ) = 0. We need to show ΦF = 0. To settle this case, we
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will need to study the mixed invariants over various Frobenius algebras, so we will use superscripts
to denote the various Frobenius algebras that we are working over. We have already observed that

the mixed invariant in the Lee theory, Φ
R[T,X]/(X2=T )
F , vanishes for grading reasons over any ring

R (with 2 invertible).

Consider the Frobenius algebra R[
√
T ,X]/(X2 = T ) obtained from the Lee Frobenius algebra by

adjoining a formal square root of T , as in Proposition 2.1. Since R[
√
T ] is free over R[T ], all versions

of the Khovanov chain complexes and homologies over the Frobenius algebra R[
√
T ,X]/(X2 = T )

can be obtained from the corresponding versions over the Frobenius algebra R[T,X]/(X2 = T ) by

tensoring with R[
√
T ] over R[T ]; similarly, the maps over the Frobenius algebra R[

√
T ,X]/(X2 = T )

can be obtained from the maps over the Frobenius algebra R[T,X]/(X2 = T ) by tensoring with

R[
√
T ] over R[T ]. Therefore, the mixed invariant over this new Frobenius algebra, Φ

R[
√
T ,X]/(X2=T )

F ,

vanishes over any ring R (with 2 invertible). In particular, with R = Q, we get Φ
Q[
√
T ,X]/(X2=T )

F = 0.
Now consider the Bar-Natan Frobenius algebra over the rationals, Q[H,X]/(X2 = HX). This

is twist-equivalent to the above Frobenius algebra Q[
√
T ,X]/(X2 = T ), in the sense of Kho-

vanov [Kho06b]. Specifically, we have an isomorphism

φ : Q[
√
T ,X]/(X2 = T )→ Q[H,X]/(X2 = HX)

φ(1) = 1, φ(X) = 2X −H, φ(
√
T ) = H

which preserves the algebra structure, and twists the counit η and comultiplication ∆ by the
invertible element 2 ∈ Q:

η(φ(a)) = 2φ(η(a)) ∆(φ(a)) = 1
2φ(∆(a)) ∀a ∈ Q[

√
T ,X]/(X2 = T ).

Khovanov’s proof of invariance under twist equivalence [Kho06b, Proposition 3] works also for
H− (respectively, H+), and shows that the H− (respectively, H+) Khovanov homologies over

Q[
√
T ,X]/(X2 = T ) and Q[H,X]/(X2 = HX) are isomorphic. Moreover, the proof can be modi-

fied to see that for both versions, the maps induced by cobordisms agree over Q[
√
T ,X]/(X2 = T )

and Q[H,X]/(X2 = HX) up to multiplication by (possibly negative) powers of 2. Therefore,

Φ
Q[H,X]/(X2=HX)
F = 2kΦ

Q[
√
T ,X]/(X2=T )

F for some integer k, and hence is zero.

Finally, consider the Bar-Natan mixed invariant over the integers, Φ
Z[H,X]/(X2=HX)
F . Recall

its definition at the chain level. We choose an admissible cut and decompose the surface F into
two cobordisms F0 : ∅ → L and F1 : L → ∅, and choose movies M0 and M1 describing F0 and
F1. Consider the generator 1 ∈ C−(∅) = Z[H], and its image C−(F0)(1) ∈ C−(L) induced by
the movie M0. This is a boundary when viewed as a cycle in C∞(L); choose a chain c ∈ C∞(L)
with ∂c = C−(F0)(1). Let c̄ be the image of c in C+(L) obtained by removing all the terms with
non-negative powers of H, and consider its image C+(F1)(c̄) ∈ C+(∅) = Z[H−1, H]/Z[H ] induced
by the movie M1. Since we assumed e = −2, χ− 2so = −1, and sn = 0, C+(F1)(c̄) lies in bigrading
(0, 2), and so gives an element of Z (which is the grq = 2 part of Z[H−1, H]/Z[H ]); this is the mixed

invariant Φ
Z[H,X]/(X2=HX)
F (1).

For any ring R, if we tensor each step in the above chain-level description of the definition of

Φ
Z[H,X]/(X2=HX)
F (1) with R, we get a chain-level description of the definition of Φ

R[H,X]/(X2=HX)
F (1).
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So, the Bar-Natan mixed invariant Φ
R[H,X]/(X2=HX)
F (1), viewed as an element of R (which is the

grq = 2 part of C+(∅) = R[H−1, H]/R[H ]), can be obtained from the above element by tensoring

with R over Z. Since Φ
Q[H,X]/(X2=HX)
F (1) = 0 ∈ Q, we get Φ

Z[H,X]/(X2=HX)
F (1) = 0 ∈ Z, and

therefore, Φ
R[H,X]/(X2=HX)
F (1) = 0 ∈ R for all rings R. �

7. Computations, applications, and questions

Theorems 6.18 and 6.21 give many examples where the mixed invariant vanishes. In this section,
we use Lemma 6.9 to give some examples where it does not vanish, and note some corollaries.

7.1. A first direct computation. Let M denote the obvious Möbius band in S3 with boundary
the (right-handed) trefoil 31. View the boundary sum M\M\M as a cobordism from the empty
link to 31#31#31; explicitly, M\M\M is given by the following movie:

.

This movie corresponds to a cobordism with crosscap number 3 and normal Euler number
−18 (see the proof of Lemma 3.2, and perform one saddle at a time). We compute directly
that the mixed invariant, with respect to the Bar-Natan deformation, is non-vanishing, and then
observe that this also follows from Lemma 6.9. The frame 31 in the movie above is an admissible
cut, decomposing the cobordism as F1 ◦ F0. The normal Euler number of F1 is −6, so the map
H−(F0) : Z[H] = H−(∅) → H−(31) shifts the (grh, grq)-bigrading by (3, 9). The image of H−(∅)
at each stage of the movie F0 lies in the all-1 resolution, and a generator labels each circle 1:

(7.1)

.

The element H−(F0)(1) ∈ H−(31) is non-zero, but its image in H∞ is zero: the element
C−(F0)(1) is the boundary of the following element:
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.

(For computing the signs, we have ordered the crossings from left to right.) In particular, H−(F0)(1)
is an element of Hred(31), as expected. The element of C∞(L) shown with boundary C−(F0)(1) lies
in C+(L), so to compute the mixed invariant, we apply H+(F1) to this element. The result is:

We could compute directly that this is a nontrivial element of H+(L1), but it is slightly easier to

apply the connecting homomorphism to Ĥ(L1). The image under the connecting homomorphism
has a term

(7.2)

which is does not appear in the boundary of any element of Ĉ(L1). So, the mixed invariant, in
H+(L1), is nontrivial.

We can obtain the same result slightly more easily using Lemma 6.9. By that lemma, it suffices

to show that the image of the class 1 ∈ Ĥ(L0), under Ĥ(F ), is non-zero. A similar computation to

Formula (7.1) shows that Ĥ(F )(1) is the element in the all-1 resolution where every circle is labeled
1, i.e., the element shown in Formula (7.2). Since all maps into this resolution are split maps, this

is a nontrivial element of Ĥ(L1).
In particular, by Theorem 6.18, this cobordism is not obtained by taking the connected sum

of a crosscap-number 2 cobordism with RP2 or RP
2
. The fact that the cobordism does not split

off a copy of RP
2

also follows from the Gordon-Litherland formula [GL78]: if F = F ′#RP
2

then
F ′ is a surface with b1(F ′) = 2, e(F ′) = −20, and boundary 31#31#31, so σ(K) − e(F ′)/2 = 4
but such a surface violates the inequality |σ(K)− e(F ′)/2| ≤ b1(F ′). This inequality seems not to
obstruct splitting off a copy of RP2. This computation also provides a little more evidence that
the 4-dimensional crosscap number of 31#31#31 is 3, a conjecture which appears to be open.

By contrast, a similar direct computation to the above shows that the mixed invariant associated
to the mirror of this cobordism, from ∅ to m(31)#m(31)#m(31), vanishes. (Here, we mean a
different mirror from Section 6.1: the map (t, x, y, z, w) 7→ (t,−x, y, z, w).)

7.2. A more interesting example. Sundberg-Swann showed that the map on Khovanov ho-
mology distinguishes two slice disks for the knot 946. As we will see, their proof actually gives
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Figure 7.1. The knot 946. The slice disks ΣL and ΣR are obtained by attaching a
saddle at the left and right thick lines, respectively, to obtain a 2-component unlink.
The cobordism to 31#m(31) comes from attaching saddles at the three dotted lines.

Figure 7.2. The image of Ĥ(C ◦ΣR). Left: the diagram for 31#m(31) obtained

by performing three saddle moves to 946. Right: the element Ĥ(C ◦ ΣR) lies in the
all-1 resolution, and labels every circle by 1.

somewhat more: two distinct punctured RP2#RP2#RP2s with boundary 31#m(31) and normal
Euler number −6.

Recall that the knot 946 has two slice disks, corresponding to attaching saddles at two of the
handles shown in Figure 7.1; we will refer to these as the left and right slice disks ΣL and ΣR,
respectively. We will view ΣL and ΣR as cobordisms from ∅ to 946. There is also a cobordism
C from 946 to 31#m(31) with crosscap number 3 and normal Euler number −6, obtained by
attaching three saddles to 946; again, see Figure 7.1. (Attaching just one of these saddles gives 820,
and attaching two gives 61.)

Sundberg-Swann call each of these three saddles a trim cobordism. They show, by direct

computation, that the map Ĥ(C ◦ ΣL) = 0 while Ĥ(C ◦ ΣR) sends the generator 1 ∈ Ĥ(∅) to

the class in Ĥ(31#m(31)) shown in Figure 7.2 [SS, Proof of Theorem 6.3]. In particular, by
Proposition 3.7, the surfaces C ◦ ΣL and C ◦ ΣR are not smoothly isotopic.

By Lemma 6.9, the mixed invariant ΦC◦ΣR
is non-zero, as is ∂◦ΦC◦ΣR

. By contrast, ∂◦ΦC◦ΣL
=

0. The element ΦC◦ΣL
lies in bigrading (2, 7), and the generator in this bigrading is not in the

image of multiplication by U ; see Figure 7.3. So, from the long exact sequence (2.2), ∂ is injective
in this bigrading, so ΦC◦ΣL

= 0, as well.
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Figure 7.3. Computing H+(31#m(31)). Left: Ĥ as computed by knotkit [See],
with Q coefficients. Each letter is a basis element over Q. (This computation can also
be deduced from H(31), with a little work.) The arrows are the differentials in the
Lee spectral sequence, which one can deduce from knowing that the Lee homology
is Q ⊕ Q in bidegrees (0,±1), since s(31#m(31)) = 0. Right: the differentials
on H∞(31#m(31)), which one can read off from the top-left computation. The
subcomplex C− lies below the thick steps, and the quotient complex C+ lies above
the thick steps. The generator of H+ in bigrading (2, 7) is in bold; U−1 times
this generator is not a cycle in C+. The analogous computation for the Bar-Natan
deformation is similar, but the differential on the left has bi-degree (1, 2) instead of
(1, 4), and the variable H has bi-degree (0,−2).

In conclusion, both the map Ĥ and the the mixed invariant distinguish this pair of surfaces.
By Theorem 6.18, this implies that C ◦ ΣL and C ◦ ΣR do not differ by taking a connected sum

with a smoothly embedded 2-sphere. Further, non-vanishing of Ĥ(C ◦ ΣR) implies that C ◦ ΣR

is not obtained from another connected surface by attaching a 1-handle, and is not a crosscap
stabilization. Hence, we have proved Theorem 1.1.

Remark 7.1. Using one of the three dotted saddles in Figure 7.1 gives a pair of Möbius bands with
boundary 820 distinguished by Khovanov homology, and using two of them gives a pair of punctured
Klein bottles with boundary 61 distinguished by Khovanov homology.

7.3. An exotic pair of surfaces. Recall that a pair of surfaces F, F ′ ⊂ B4 with boundary
K ⊂ S3 is exotic if there is a homeomorphism φ : B4 → B4 so that φ|S3 = Id and φ(F ) = F ′, but
no diffeomorphism with these properties. (See also Remark 7.3.) Hayden-Sundberg give a family of
exotic pairs of surfaces [HS]. The simplest of their pairs is the pair of slice disks shown in Figure 7.4
for the knot J . The slice disk D (respectively D′) is obtained by attaching a saddle along the arc
b (respectively b′) shown there, and then capping the resulting 2-component unlink with disks.
The fact that these surfaces are distinct is witnessed by the map on Khovanov homology: for the
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Figure 7.4. An exotic pair. Top right: Hayden-Sundberg’s knot J and the two
saddles b and b′ giving an exotic pair of distinct slice disks for J , drawn as thick

line segments. Top-left: Hayden-Sundberg’s cycle φ in Ĉ(J) witnessing the fact that
these slice disks are distinct. Bottom-right: a diagram for 12n309 and three saddles

giving a nonorientable cobordism to J . Bottom-left: a cycle ψ in Ĉ(12n309) which
maps to Hayden-Sundberg’s cycle. As in Hayden-Sundberg’s figure, dotted lines
indicate which crossings had 0-resolutions.

element φ of Ĥ(J) shown in Figure 7.4, Ĥ(D′)(φ) = 0 (obvious) but Ĥ(D)(φ) = 1 ∈ Z = Ĥ(∅) [HS,
Figure 4].
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There is a cobordism C with crosscap number 3 and normal Euler number −6 from the knot

12n309 to J , so that φ = Ĥ(ψ) for an appropriate class ψ ∈ Ĥ(12n309): see Figure 7.4. So, Ĥ(D ◦
C)(ψ) = 1 while Ĥ(D′ ◦ C)(ψ) = 0. Thus, D ◦ C is not diffeomorphic to D′ ◦ C rel boundary. On
the other hand, since D is homeomorphic to D′ rel boundary, D ◦C is homeomorphic to D′ ◦C rel
boundary. Thus, we have proved Theorem 1.2.

By the second case of Lemma 6.9, the mixed invariant also distinguishes D ◦ C and D′ ◦ C
(compare Remark 6.10). The fact that the pair D ◦ C and D′ ◦ C are not diffeomorphic is, of
course, slightly stronger than the statement that D and D′ are not diffeomorphic.

Remark 7.2. Hayden-Sundberg’s example also immediately gives an exotic pair of crosscap number
3 surfaces with boundary 12n404, as well as exotic pairs of crosscap number 3 surfaces with boundary
on several links, by an easy adaptation of Figure 7.4.

Remark 7.3. Hayden-Sundberg take a slightly different definition of exotic than we have: they define
a pair of surfaces F, F ′ ⊂ B4 to be exotic if there is an ambient isotopy through homeomorphisms
taking F to F ′ but no ambient isotopy through diffeomorphisms (which are, in both cases, the
identity on S3). Since their surfaces are distinguished by the map on Khovanov homology, however,
by Proposition 3.7, their computation shows that there is no diffeomorphism from B4 to itself which
is the identity on the boundary and takes F to F ′ (even one which is not isotopic to the identity).
That is, their pairs of surfaces really are exotic in the sense described above.

7.4. Some questions. To put the results above in context, and in particular to acknowledge the
cases they do not cover, we conclude with some open questions.

In Corollary 6.22, we showed that the mixed invariant does not distinguish closed, connected
surfaces. By Proposition 3.5 for the nonorientable case and work of Gujral-Levine [GL] for the
orientable case, the map on H• also does not distinguish disconnected surfaces.

Question 1. Is there a pair F, F ′ ⊂ S4 of closed, disconnected surfaces with the same topology
and componentwise normal Euler numbers so that ΦF 6= ΦF ′?

If we are only considering surfaces without stars, by Theorem 6.21, these surfaces would have
to have (total) normal Euler number −2 and Euler characteristic 1. For example, perhaps F could

be a knotted copy of RP2 q (RP2#RP
2
) with total normal Euler number −2 and non-vanishing

mixed invariant, and F ′ the standard RP2 q (RP2#RP
2
), which has vanishing mixed invariant.

The Seiberg-Witten invariant is not just defined when b+2 ≥ 3, but also when b+2 = 2. As noted
in Remark 5.4, we can define a Khovanov mixed invariant when the crosscap number is 2, but we
do not know if it is well-defined.

Question 2. If F, F ′ are isotopic surfaces (rel boundary) with crosscap number 2 and admissible
cuts (S, V, φ) and (S ′, V ′, φ′), respectively, is the mixed invariant of F with respect to (S, V, φ) equal
to the mixed invariant of F ′ with respect to (S′, V ′, φ′)?

In the examples in Sections 7.2 and 7.3 of surfaces distinguished by their mixed invariants,

the surfaces were also distinguished by the induced maps on ordinary Khovanov homology Ĥ. By
Remark 6.10, for surfaces with connected boundary, the mixed invariant is at least as strong as the

map on Ĥ.
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Question 3. Is there a pair of surfaces with crosscap number ≥ 3 and the same topology and

normal Euler number which are distinguished by the mixed invariant but not by the map on Ĥ? Is
there such a pair not distinguished by the homotopy class of maps on C−? Is there an exotic pair
of surfaces with this property?

Lemma 6.9 and its proof give restrictions on what the Khovanov homology of such a pair must
look like, as does Corollary 6.15.

On a related point, by Theorem 6.18, the map on H• vanishes for stabilizations of surfaces,
so never distinguishes them. There is one case in which the mixed invariant could potentially
distinguish stabilized surfaces:

Question 4. Is there an exotic pair of Möbius bands F, F ′ ⊂ B4 so that the mixed invariant
distinguishes their stabilizations? That is, if F#T 2 denotes a standard stabilization of F , is there an
exotic pair of Möbius bands F, F ′ with boundary some knot K so that ΦF#T 2 6= ΦF ′#T 2 ∈ H+(K)?

The examples of nonorientable surfaces in Sections 7.2 and 7.3 came from pairs of slice disks.
Indeed, the nonorientable surfaces were apparent from the slice disks and class in Khovanov ho-
mology. Perhaps this phenomenon is general:

Question 5. Is it true that for every exotic pair of slice disks D,D′, for any knot K, there is a
nonorientable cobordism F from K to another knot K ′ so that F ◦D and F ◦D′ are also an exotic
pair? Can F be chosen to have crosscap number ≥ 3?

One can ask the same question, but for exotic pairs detected by Khovanov homology:

Question 6. Is it true that for every pair of slice disks D,D′, for a knot K such that Ĥ(D) 6= Ĥ(D′),

there is a nonorientable cobordism F from K to another knot K ′ so that Ĥ(F ◦D) 6= Ĥ(F ◦D′)?

One could also replace Ĥ by H• in the question, or require that F have crosscap number ≥ 3
and ask if ΦF◦D 6= ΦF◦D′ .

As noted in the introduction, our mixed invariant is inspired by Ozsváth-Szabó’s mixed invariant
in Heegaard Floer homology.

Question 7. Is there a precise relationship between the Khovanov mixed invariant of a surface F
and the Heegaard Floer mixed invariant of the branched double cover of F?

Note that having crosscap number ≥ 3 does not give an inequality for b+2 (consider the standard

RP
2
#RP

2
#RP

2
), nor does having b+2 (Σ(F )) ≥ 2 imply crosscap number ≥ 3 (consider RP2#RP2

or, for that matter, an orientable surface of genus g ≥ 2), so the two invariants are not defined in
exactly the same cases; perhaps this argues against a direct relationship.
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