
Deep Learning on Mobile
Devices with Neural
Processing Units

Tianxiang Tan
Pennsylvania State University

Guohong Cao
Pennsylvania State University

Abstract—Neural Processing Units (NPUs) have been developed for accelerating deep learning
on mobile devices. Although the processing time of running DNNs on NPU can be substantially
reduced compared to CPU, its accuracy becomes lower. To address this problem, we point out
three research directions, i.e., model retraining, model partition, and computation offloading, to
improve the performance of running DNNs on mobile devices with NPU.

Deep Nerual Networks (DNNs) have enabled
many emerging artificial intelligence applications
such as augmented reality, virtual reality, google
translate, etc. and there is a tremendous demand
for running these applications on mobile devices.
However, DNNs are computationally intensive,
which creates many technical challenges for run-
ning DNNs on battery-powered mobile devices.

To address these challenges, many compa-
nies such as Qualcomm, Huawei, and Samsung
have developed AI accelerators called Neural
Processing Units (NPU). Different from tradi-
tional CPU which is good at processing serialized
instructions, NPU is designed to perform better
for parallel computations such as DNNs which
involve millions or even billions floating-point
computations. As a result, NPU can substantially
reduce the processing time of deep learning on
mobile devices. For example, on Mate 10 pro,
the running time of VGG model can be reduced
from 2600ms to 120ms by using NPU instead of
CPU. Moreover, the power consumption of NPU
is only 500mW which is about 83% lower than
that of CPU (3W).

However, NPU has some fundamental limita-
tions. First, different from CPU which uses 32-
bit floating-point numbers for computation and
storage, NPU uses 16-bit or 8-bit. Second, only
a limited number of operations are supported
by NPU, and hence some operations required in
deep learning models have to be approximated.
Finally, NPU has its own memory space, and the
DNNs must be loaded into NPU to be executed.
Since the memory space of NPU is small (about
200 MB in Mate 10 pro), most DNNs have to
be compressed to run on NPU. Due to these
limitations, the accuracy of running DNNs on
NPU may be reduced.

Both processing time and accuracy are critical
in many mobile applications. For example, a
flying drone needs to accurately detect nearby
obstacles in real time to avoid crashing, and many
VR/AR applications need to interact with users
through gestures and body posture recognition.
NPU can accelerate deep learning, but it incurs
accuracy loss. In this paper, to improve the per-
formance of running DNNs on mobile devices
with NPU, we identify the challenges, propose

IT Professional Published by the IEEE Computer Society © 2019 IEEE 1



solutions, and discuss future work along three
research directions, i.e., model retraining, model
partition, and computation offloading.

Understanding NPU
To have a better understanding of NPU,

we conducted experiments with three kinds of
phones: Pixel 6, Oneplus 7 and Mate 10 pro.
Similar to [1], the experiments are based on four
DNNs and their public data sets, VGG on the
LFW dataset, VocNet [2] on the VOC dataset [3],
ResNet-50 on the VOC dataset, and YOLO on the
MS COCO dataset.

Figure 1 compares the processing time of
running DNNs on CPU and NPU on different
mobile devices. As shown in the figure, NPU is
about 20 times faster than CPU on these three
mobile devices. For example, to run Yolo on Pixel
6, NPU takes about 110ms while CPU takes about
4100ms. However, as shown in Figure 2, NPU
suffers from accuracy loss and the loss varies
based on the deep learning model. For instance,
compared to CPU, using NPU on OnePlus 7 has
similar accuracy when running VGG and ResNet,
30% accuracy loss when running VocNet, and
79% accuracy loss when running YOLO.

The accuracy loss is due to the limitations of
NPU and it is also related to the complexity of
the deep learning model. More specifically, VGG
only compares the similarity between two feature
vectors extracted from the face images. They are
classified to the same person if the similarity
is above a predefined threshold. Although NPU
may introduce some small error to change values
in the feature vector, the relationship between
the similarity and the threshold does not change
too much, and thus maintaining similar level of
accuracy as CPU. However, YOLO is much more
complex than VGG and it uses more informa-
tion in the feature vectors to identify and locate
multiple objects in the images. Each value in
the feature vector represents the category, the
location, or the size of an object. A small error
introduced by NPU can change the prediction
completely, and hence significantly affecting the
accuracy.

Another observation is that the accuracy loss
is different for different mobile device. The accu-
racy of running VGG on NPU with OnePlus 7 is
about 40% higher than Pixel 6. This is because

manufacturers design their NPUs differently, and
use different toolkits to optimize the DNNs. As
a result, the accuracy loss varies for different
mobile devices.

Based on these experimental results, we ob-
serve that running DNNs on NPU may not always
be the best option especially when accuracy is
more important than processing time. To improve
the performance of running DNNs on mobile
devices with NPU, one research direction is to
retrain the model with lower precision floating-
point numbers since it is the most significant dif-
ference between NPU and CPU. Another research
direction is to leverage model partition techniques
to decompose DNN architecture into different
layers running on heterogeneous processors, i.e.,
NPU is used to reduce the processing time of
the computationally intensive layers while CPU is
used for maintaining higher accuracy. These two
research directions focus on accelerating DNNs
by exploiting heterogeneous processors on mobile
devices. The third research direction is to leverage
computation offloading techniques to determine
where to run DNNs based on the network con-
dition, the special characteristics of NPU, and
the optimization goal. In the following sections,
we identify the challenges and propose solutions
along these three research directions.

Model Retraining
The major difference between NPU and CPU

is the precision of the floating point numbers.
Advanced DNNs are trained and tested using 32-
bit floating point numbers on powerful desktop
CPU and GPU, and they are not designed for
running on NPU. To address this issue, one
solution is to retrain the DNNs, and there are a lot
of research focusing on training DNNs with low
precision numbers. For example, Wang et al. [4]
proposed to use 8-bit floating-point numbers to
train DNN models. Sun et al. [5] proposed gradi-
ent scaling and two-phase rounding techniques to
minimize the quantization errors during training
and they successfully used 4-bit floating-point
numbers to train a DNN for classification. Yang
et al. [6] modify the learning rate schedule to
reduce the low-precision training time. However,
these works focus on classification tasks with
small images (i.e., using CIFAR-100 dataset). In
contrast, there are other challenging tasks in the

2 IT Professional



VGG VocNet ResNet Yolo0

1000

2000

3000

4000

5000
Pr

oc
es

si
ng

 T
im

e 
(m

s)

CPU
NPU

(a) Pixel 6

VGG VocNet ResNet Yolo0

1000

2000

3000

4000

5000

Pr
oc

es
si

ng
 T

im
e 

(m
s)

CPU
NPU

(b) OnePlus 7

VGG VocNet ResNet Yolo0

500

1000

1500

2000

2500

3000

3500

Pr
oc

es
si

ng
 T

im
e 

(m
s)

CPU
NPU

(c) Mate 10 pro

Figure 1. Processing time of running DNNs on CPU and NPU.

VGG VocNet ResNet Yolo0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Original (CPU)
HUAWEI Mate 10 pro
OnePlus7
Pixel 6

Figure 2. Accuracy comparison of running DNNs on
CPU and NPU.

CPU NPU0

10

20

30

40

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

Original Model
Retrained Model

(a) Pixel 6

CPU NPU0

10

20

30

40

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

Original Model
Retrained Model

(b) OnePlus 7

Figure 3. Accuracy comparison of CPU and NPU
using Float16-retrained VocNet.

real world such as face recognition and object
detection which require more advanced DNNs,
and these techniques can not be directly applied
to retrain various advanced DNNs for NPU.

In this paper, we retrain VocNet using two dif-
ferent low-precision training strategies in the Ten-
sorflow framework: Float16 and Mixed Float16.
Float16 means that 16-bit floating point numbers

are used in both computation and data storage
during training. In mixed Float16, the compu-
tation is performed using 16-bit floating point
numbers, but the data and parameters are stored
using 32-bit.

Figure 3 shows the accuracy of the retrained
VocNet using Float16. The figure does not show
the processing time since the retrained model
does not change the processing time. As can be
seen from the figure, the accuracy of running
retrained VocNet on CPU is about 28% lower
than that of running the original model on CPU.
This is because the VocNet is sensitive to the
floating-point number precision. When the model
converges, the loss of the retrained model is
higher than the original model. Therefore, the
accuracy of the retrained model is lower on CPU.
Compared to the original model, the accuracy
of the retrained model is higher on NPU. This
is because Float16 emulates the floating-point
number precision used on NPU, and the retrained
VocNet is better adapted to NPU than the original
model.

CPU NPU0

10

20

30

40

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

Original Model
Retrained Model

(a) Pixel 6

CPU NPU0

10

20

30

40

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

Original Model
Retrained Model

(b) OnePlus 7

Figure 4. Accuracy comparison of CPU and NPU
using VocNet retrained with Mixed-Float16.

Figure 4 shows the accuracy of the retrained

May/June 2019 3



VocNet using Mixed Float16. Compared to Fig-
ure 3, the retrained model can achieve similar
accuracy as the original model on CPU. This
is because Mixed Float16 uses 32-bit for data
storage and the impact of numerical instability is
much lower. As shown in the figure, the accuracy
of running retrained VocNet on NPU is about 7%
higher on Pixel 6 and 5% higher on OnePlus 7,
but it is still much lower than that on CPU. This
is because Mixed Float16 only performs com-
putations using 16-bit floating-point numbers but
store the data with 32-bit floating-point numbers.
Different from CPU, NPU uses 16-bit floating-
point numbers for both data storage and opera-
tions. Such difference may lead to the numerical
instability on NPU and thus running the retrained
model on NPU cannot achieve similar accuracy
as that on CPU.

From the experiment, we can see that model
retraining cannot improve the accuracy too much.
Since NPU only supports 16-bit floating-point
number or 8-bit integers, floating-point numbers
may underflow or overflow when running some
DNNs on NPU.

Model Partition
The basic idea of model partition is to de-

compose the DNN architecture into different lay-
ers running on heterogeneous processors, i.e.,
NPU is used to reduce the processing time of
computationally intensive layers while CPU is
used for maintaining higher accuracy. The model
partition technique has been leveraged to reduce
the computation time. For example, DeepX [7]
divides the DNNs into different blocks which can
be efficiently run on CPU or GPU. Neurosurgeon
[8] optimizes energy by running the first few
layers of the DNNs on local devices to reduce
the data size and offloading the remaining part to
the server for processing. Mao et al. [9] proposed
to reduce the processing time by distributing the
partitioned DNN models across mobile devices.
Teerapittayanon et al. [10] proposed to reduce
the processing time by adding early exit points
to the DNNs, where a few layers are inserted
into the DNNs to estimate the accuracy of the
result. When the accuracy is above a certain
threshold, the DNN execution will be stopped and
the result will be returned. However, none of them
considers the low accuracy problem introduced by

NPU.
There are two important factors in model

partition, accuracy loss and layer processing time.
To measure them, we randomly selected 4000
images from the MS COCO dataset and run
YOLO model for object detection using Mate 10
pro. We run one layer of Yolo on NPU while
the remaining layers are run on CPU. As shown
in Figure 5, running layer P2 (a pooling layer)
on NPU while other layers are run on CPU can
reduce the processing time by 6% and incur 4%
accuracy loss. Intuitively, a layer, for example C6

(a convolutional layer), should be executed on
NPU if the processing time can be substantially
reduced with little or no accuracy loss. A layer
(e.g., C17) should be executed on CPU if execut-
ing it on NPU has much higher accuracy loss but
little processing time reduction. However, most
layers (e.g., C23) are not in these two extreme
cases, and hence it is hard to determine where
to run them. When considering the overlapping
effects of running multiple layers, the decision is
harder. For instance, the accuracy loss of running
C6 and C22 on NPU while other layers on CPU
is 0.08 which is not equivalent to the sum of
their accuracy loss (i.e., 0.04). The accuracy loss
of running the DNN with a layer combination
depends on many factors, such as the number of
additions and multiplications performed in each
layer and the memory space occupied by the
input/output data. Due to complex relationship
between the accuracy loss and these factors, it
is difficult to derive an equation to estimate the
accuracy of running the DNN model with a layer
combination.

For a DNN model with n layers, there are 2n

model partition decisions. For an advanced DNN
model, there are usually dozens or even hundreds
of layers and hence it is impossible to use brute
force methods to find the best solution.

To address this problem, we propose heuris-
tic based algorithms to find layer combinations
which satisfy the application requirements on
processing time and accuracy [11]. For example,
in a flying drone application, detecting obstacles
accurately with short processing time (in real
time) is critical to avoid crashing. For these ap-
plications, maximizing the accuracy under some
time constraint is more important, and we propose
a Max-Accuracy algorithm to solve it. The basic

4 IT Professional



C1 P1 C2 P2 C3 C4 C5 C6 P6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 P16 C17 C18 C19 C20 C21 C22 C23 C24 F25 F26 F27

Layer

0.00

0.02

0.04

0.06

0.08

0.10
P

ro
ce

ss
in

g
T

im
e

R
ed

u
ct

io
n

0.0

0.1

0.2

0.3

0.4

0.5

0.6

A
cc

u
ra

cy
L

os
s

Processing Time Reduction

Accuracy Loss

Figure 5. Processing time Reduction and accuracy loss when running one layer of Yolo on NPU while the
remaining layers are run on CPU

idea is to move layers with higher accuracy loss
from NPU to CPU as following.
(a) Initially, all layers are run on NPU.
(b) Sort them in descending order based on their

accuracy loss.
(c) Starting from the first layer, move it from

NPU to CPU until the processing time con-
straint is not satisfied.

For applications such as unlocking a smart-
phone, making payment through face recognition,
accuracy is more important than the processing
time. For these applications, we solve the problem
of minimizing the processing time while ensuring
the accuracy is above a certain threshold, by
proposing a Min-Time Algorithm. The basic idea
is to move layers with longer processing time
from CPU to NPU as following.
(a) Initially, all layers are run on CPU.
(b) Sort them in the descending order based on

their processing time.
(c) Starting from the first layer, move it from

CPU to NPU until the accuracy requirement
is not satisfied.

200 300 400 500 600 700 800 900 1000
Time Requirement (ms)

20

30

40

50

60

70

A
cc
u
ra
cy

(%
)

All-NPU

Max-Acc

(a) Max Accuracy Algorithm

10 20 30 40 50 60 70
Accuracy Requirement (%)

0

500

1000

1500

2000

2500

3000

3500

T
im

e
(m

s)

All-CPU

All-NPU

Min-Time

(b) Min Time Algorithm

Figure 6. Performance comparisons for running
YOLO on Mate 10 pro

To evaluate the performance of Max-Accuracy

and Min-time, we compare them with All-CPU
(i.e., the DNN model is always run on CPU)
and All-NPU (i.e., the DNN model is always
run on NPU). The experiment was conducted on
HUAWEI Mate 10 pro, which is equipped with
NPU. Its CPU is based on Octa-core (4 little cores
and 4 big cores). The results are shown in Figure
6. In Figure 6(a), we did not draw the All-CPU
approach since the processing time of running
YOLO on CPU takes about 3.4s which is longer
than the time requirement. As the time require-
ment increases, Max-Accuracy can improve the
accuracy by moving more computations to CPU,
but the All-NPU approach has the same accuracy.
As shown in Figure 6(b), Min-Time outperforms
All-NPU and All-CPU. Note that All-NPU can
only reach the accuracy of 29%, and then it is
not drawn after the accuracy requirement reaches
30%. Our proposed algorithms can significantly
improve the performance compared to All-CPU
and All-NPU by running computationally inten-
sive layers on NPU to save time and running
precision sensitive layers on CPU to maintain
high accuracy.

Figure 7 shows the processing time of each
approach. Since the proposed algorithm runs dif-
ferent parts of DNNs on heterogeneous proces-
sors, the data is moved between the main memory
and the NPU memory. The data transmission time
cannot be ignored because the NPU processing
time is short and a large amount of data is
transmitted between the main memory and NPU.
As can be seen in the figure, the data transmission
time occupies about 10% of the total processing
time in Max-Accuracy and Min-Time. Since this

May/June 2019 5



All-CPU All-NPU Min-Time
0

500

1000

1500

2000

2500

3000

3500

Ti
m

e 
(m

s)

NPU Processing Time
CPU Processing Time

Data Transmission Time
Accuracy

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

(a) Max Accuracy Problem

All-CPU All-NPU Max-Acc
0

500

1000

1500

2000

2500

3000

3500

Ti
m

e 
(m

s)

NPU Processing Time
CPU Processing Time

Data Transmission Time
Accuracy

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

(b) Min Time Problem

Figure 7. Details of the processing time comparisons
for running YOLO on Mate 10 pro

data transmission time is only a small fraction of
the total processing time, it does not change the
benefit of moving time-consuming layers from
CPU to NPU. Thus, even considering this data
transmission overhead, our proposed algorithms
still outperform All-CPU and All-NPU as shown
in Figure 6.

Computation Offloading
The aforementioned two techniques accelerate

deep learning by exploiting heterogeneous pro-
cessors on mobile devices. Such decision may be
due to the limited network connection, the lack
of server support, or privacy issues. For exam-
ple, some users prefer processing sensitive data
locally, and then many smart health applications
belong to this category. For many other mobile
apps such as augmented reality and cognitive
assistance [12], users may be willing to achieve
better performance by offloading the computation
to the edge server [13]–[15].

Since the server has more computation ca-
pacity, more advanced deep learning models with
high accuracy can be executed quickly. However,
when the network condition is poor or when
the data size is large which is usually true for
video analytics, the offloading approach may take
longer time because of the data transmission de-
lay. On the other hand, the NPU based approach
is faster, but with less accuracy. We propose
an offloading framework [1] to combine these
two approaches for real time video analytics on
mobile devices, with the goal of maximizing
accuracy under some time constraint.

In our offloading framework, the video frames
are first processed on NPU which is very fast with
negligible delay, and only the frames with low

classification accuracy are offloaded to the server
to improve accuracy. Thus, the key problem is
to determine the classification accuracy, and we
rely on the confidence score of running DNNs on
NPU, which is computed based on the extracted
feature vector of the DNN. If the confidence score
is higher than a threshold, the classification result
on NPU is most likely correct and can be directly
used; otherwise, the data should be offloaded for
further processing to improve accuracy.

0.0 0.2 0.4 0.6 0.8 1.0
Confidence Score

0.0

0.1

0.2

0.3

0.4

0.5

0.6

A
cc

u
ra

cy

(a) Original Confidence Score

0.0 0.2 0.4 0.6 0.8 1.0
Confidence Score

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

(b) Calibrated Confidence Score

Figure 8. Accuracy vs. confidence score.

The major challenge is that the confidence
score of many advanced DNNs cannot accurately
predict the classification results. To illustrate the
problem, we conduct an experiment in which
AlexNet is used to classify some video frames
randomly selected from the FCVID dataset. The
frames are divided into 10 bins with 10% con-
fidence interval. For each bin, we compute the
accuracy of running AlexNet on these frames.
The result is shown in Figure 8(a).

Ideally, the confidence score and the clas-
sification accuracy should follow similar distri-
bution. Then, the classification with confidence
score 0.9 is more likely to be correct than
that with a score of 0.5. However, as shown
in Figure 8(a), the accuracy remains to be 0.5
for frames with confidence score much higher
than 0.5 (e.g., 0.9). To address this problem, we
have to calibrate the confidence score. Suppose
the DNN model generates n different confidence
scores (x1, x2, . . . , xn), n logistic models will be
trained for calibration, and each model i is used to
calibrate a confidence score xi. More specifically,
model i takes the n confidence scores as input
and outputs a new confidence score xi. Figure
8(b) explains why calibrated confidence score is
more effective. As the confidence score increases
from 0 to 1, the accuracy increases from 0.11 to
1.

6 IT Professional



Offloading Scheduling
With the confidence score calibration, our

framework determines which frames should be
offloaded for further processing. Although there
are some existing works [10], [16] on this topic,
they relay on uncalibrated confidence score which
is not effective for some DNNs, and a fixed
confidence score threshold is used to determine
which frames should be offloaded. However, the
offloading decision depends on many factors,
such as network bandwidth and the data size of
the frames, and thus the fixed confidence score
threshold may not work well.

To address this issue, we propose a confi-
dence based offloading (CBO) algorithm. CBO
adaptively adjusts the confidence score threshold
based on the network condition, the data size
of video frames and the DNN. In CBO, the
frames with lower confidence score should be
offloaded to increase accuracy if there is available
bandwidth. CBO can also reduce the resolution
of the offloaded frames to upload more frames
with low confidence score. Suppose n frames
have been processed locally on NPU. If a frame i
with confidence score pi is offloaded to the server
in resolution ri, CBO computes the offloading
time Ti and the accuracy improvement A(pi, ri)
based on the frame data size, network condi-
tion and DNN accuracy information. Let f(i, T )
denote the maximum accuracy improvement by
offloading the first i frames within time T . Our
goal is to maximize f(n, T ). The overlapping
subproblems can be represented as f(i, T ) =
maxri(f(i−1, T −Ti)+A(pi, ri)). CBO solves
the problem using a dynamic programming algo-
rithm and selects a confidence score threshold to
make offloading decisions for these n frames.

Figure 9 compares the performance of Lo-
cal, Server, CBO and CBO-w/o under different
network conditions. In the Local approach, the
data is only processed on the local NPU and its
performance does not change with the network
condition. The Local approach has the same
accuracy as CBO when the bandwidth is low
since most frames have to be processed locally.
However, as the bandwidth increases, CBO out-
performs Local significantly because it can im-
prove the accuracy by offloading the misclassified
frames to the server for further processing. The
server approach offloads all data to the server for

0 15 30 45
Bandwidth (Mbps)

0.35

0.45

0.55

0.65

0.75

0.85

A
cc

u
ra

cy Local

Server

CBO-w/o

CBO

Figure 9. The performance of different approaches
under different network conditions.

processing. When the network condition is poor,
its performance is much worse than CBO. This
is because the frames have to be offloaded in
an extremely low resolution to satisfy the time
constraint, and running DNNs with low resolu-
tion frames cannot achieve high accuracy due to
the information loss. The CBO-w/o is the same
as CBO except that it uses uncalibrated confi-
dence score to make offloading decisions. As can
be seen, CBO outperforms CBO-w/o since the
uncalibrated confidence score cannot accurately
estimate the correctness of the classification result
on NPU.

Discussions and Future Work
In this paper, we point out three research

directions to accelerate deep learning on mobile
devices with NPU. There are still many important
issues for future research along these directions.

In model retraining, we leveraged the low-
precision retraining method Tensorflow frame-
work to retrain the VocNet. However, the result
shows that the accuracy cannot be improved sig-
nificantly after retraining. To address this issue,
one possible research direction is to normalize
the data and restrict the data range. For exam-
ple, BatchNorm layers can be added before or
after the activation layers to normalize the data.
Moreover, since NPU only supports a limited set
of operations, more research should be conducted
to design DNNs or retrain existing DNNs based
on these operations.

In model partition, we discussed how to de-
compose the DNN architecture into different lay-

May/June 2019 7



ers running on CPU and NPU so that application
requirements on accuracy and processing time
could be satisfied. Although our proposed Max-
Accuracy and Min-Time can outperform All-NPU
and All-CPU, they only try a few layer combina-
tions and select the best one based on heuristics.
Since there are many layer combinations for a
DNN, a better solution may exist. Since measur-
ing the accuracy of a layer combination is time
consuming, it is impractical to measure the ac-
curacy for a large number of layer combinations.
To efficiently search more layer combinations, the
major challenge is to build a model to estimate the
accuracy loss of a layer combination. This model
is non-linear and depending on many factors, such
as the accuracy loss of the layers, the number
of layers running on NPU and the parameter
size of the layers. As future research, machine
learning techniques can be leveraged to estimate
the accuracy loss and design algorithms to search
for better layer combinations.

Another research direction is to consider the
heterogeneity inside CPU such as the current
big.LITTLE core architecture, where the big
cores can provide better performance at the cost
of more energy consumption, and little cores are
slower with less power consumption. Considering
various application requirements on processing
time and energy, running all layers on either big
core or little core may not be the best option.
Therefore, instead of only using one type of core,
we will study the performance and energy trade-
offs of big and little cores on running DNN mod-
els and optimize the model partition algorithms
considering the big.LITTLE core architecture.

In computation offloading, we proposed a
confidence based offloading algorithm to maxi-
mize the accuracy by determining which frames
should be offloaded to the server for further pro-
cessing. The current offloading framework only
considers the tradeoff between processing time
and accuracy. However, running computationally
intensive DNNs on mobile devices also consumes
a large amount of energy. Based on our experi-
ment conducted on the HUAWEI Mate 10 pro, the
power consumption of NPU is 500mW which is
much less than the wireless interface. Offloading
based approach can achieve higher accuracy, but
it may cost more energy under poor network con-
dition. On the other hand, NPU-based approach

is energy efficient, but with less accuracy. There-
fore, one future research direction is to study the
tradeoffs among energy consumption, processing
time, and accuracy in computation offloading.

CONCLUSIONS
In this paper, we identified the special charac-

teristics of NPU, and proposed three techniques
(i.e., model retraining, model partition, and com-
putation offloading) to improve the performance
of running DNNs on mobile devices with NPU.
As the initial work on this new technology, we do
not expect to solve all the problems. In the future,
we will study how to retrain the DNNs based
on NPU supported operations to further improve
performance, to leverage machine learning tech-
niques to search for better layer combinations in
model partition, and to study the tradeoffs among
energy, delay, and accuracy in computation of-
floading.

Acknowledgments
This work was supported in part by the Na-

tional Science Foundation under grants CCF-
2125208 and CCF-2215043.

REFERENCES
1. T. Tan and G. Cao. Deep Learning on Mobile Devices

Through Neural Processing Units and Edge Computing.

IEEE INFOCOM, 2022.

2. S. Lapuschkin, A. Binder, G. Montavon, K.-R. Müller,

and W. Samek. Analyzing classifiers: Fisher vectors

and deep neural networks. IEEE CVPR, 2016.

3. M. Everingham, S. Eslami, L. Van Gool, C. Williams,

J. Winn, and A. Zisserman. The Pascal Visual Object

Classes Challenge: A Retrospective. Springer Interna-

tional Journal of Computer Vision (IJCV), 2015.

4. N. Wang, J. Choi, D. Brand, C. Chen, and K. Gopalakr-

ishnan. Training Deep Neural Networks with 8-bit Float-

ing Point Numbers. Advances in Neural Information

Processing Systems (NeurIPS), 2018.

5. X. Sun, N. Wang, C. Chen, J. Ni, A. Agrawal, X. Cui,

S. Venkataramani, K. Maghraoui, V. Srinivasan, and

K. Gopalakrishnan. Ultra-low precision 4-bit training of

deep neural networks. Advances in Neural Information

Processing Systems (NeurIPS), 2020.

6. G. Yang, T. Zhang, P. Kirichenko, J. Bai, A. G. Wilson,

and C. De Sa. SWALP: Stochastic weight averaging

in low precision training. International Conference on

Machine Learning (PMLR), 2019.

8 IT Professional



7. N. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, L.

Jiao, L. Qendro, and F. Kawsar. DeepX: A Software

Accelerator for Low-Power Deep Learning Inference on

Mobile Devices. ACM IPSN, 2016.

8. Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge,

J. Mars, and L. Tang. Neurosurgeon: Collaborative

Intelligence Between the Cloud and Mobile Edge. ACM

SIGARCH Computer Architecture News, 45(1):615–

629, 2017.

9. J. Mao, Z. Yang, W. Wen, C. Wu, L. Song, K. Nixon, X.

Chen, H. Li, and Y. Chen. Mednn: A Distributed Mobile

System with Enhanced Partition and Deployment for

Large-Scale DNNs. IEEE International Conference on

Computer-Aided Design, 2017.

10. S. Teerapittayanon, B. McDanel and H. Kung. Dis-

tributed Deep Neural Networks Over the Cloud, the

Edge and End Devices. IEEE International Conference

on Distributed Computing Systems (ICDCS), 2017.

11. T. Tan and G. Cao. Efficient Execution of Deep Neural

Networks on Mobile Devices with NPU. ACM IPSN,

2021.

12. Z. Chen, L. Jiang, W. Hu, K. Ha, B. Amos, P. Pillai, A.

Hauptmann, and M. Satyanarayanan. Early Implemen-

tation Experience with Wearable Cognitive Assistance

Applications. ACM Workshop on Wearable Systems

and Applications, 2015.

13. E. Cuervo, A. Balasubramanian, D. Cho, A. Wolman,

S. Saroiu, R. Chandra, and P. Bahl. MAUI: Making

Smartphones Last Longer with Code Offload. ACM

Int’l Conf. on Mobile Systems Applications and Services

(MobiSys), 2010.

14. M. Gordon, D. Jamshidi, S. Mahlke, Z. Mao, and X.

Chen. COMET: Code Offload by Migrating Execution

Transparently. ACM USENIX Symposium on Operating

Systems Design and Implementation (OSDI), 2012.

15. L. Liu, H. Li, and M. Gruteser. Edge Assisted Real-

Time Object Detection for Mobile Augmented Reality.

ACM International Conference on Mobile Computing

and Networking, 2019.

16. C. Hu, W. Bao, D. Wang and F. Liu. Dynamic Adaptive

DNN Surgery for Inference Acceleration on the Edge.

IEEE Infocom, 2019.

Tianxiang Tan received the BE degree from Sun Yat-
sen University, the MS degree in computer science
from University of Southern California, and the PhD
degree in computer science from the Pennsylvania
State University. His research interests include mobile
cloud computing, edge computing and deep learning.
He is a student member of the IEEE. Contact him at

txt51@psu.edu.

Guohong Cao is a Distinguished Professor of
computer science and engineering at the Pennsyl-
vania State University. His research interests are
mobile computing, wireless networks, machine learn-
ing, wireless security and privacy, and Internet of
Things. Cao received a PhD in computer science
from the Ohio State University. He is a Fellow of
the AAAS and a Fellow of the IEEE. Contact him at
gcao@cse.psu.edu.

May/June 2019 9


	Understanding NPU
	Model Retraining
	Model Partition
	Computation Offloading
	Offloading Scheduling

	Discussions and Future Work
	CONCLUSIONS
	REFERENCES
	Biographies
	Tianxiang Tan
	Guohong Cao


