

Identification of Novel 5' and 3' Translation Enhancers in Umbravirus-like Coat-Protein-Deficient RNA Replicons

Jingyuan Liu and Anne E. Simon*

Department of Cell Biology and Molecular Genetics

University of Maryland College Park

College Park, MD 20742

*Corresponding Author

Phone: 301-405-8975

Email: simona@umd.edu

Running Title: New type of 3'CITE

Keywords: RNA structure; 3'CITEs; Non-canonical translation; translation enhancer; eIF4G-binding structure

1 **Abstract**

2 Translation of plant plus-strand RNA viral genomes that lack a 5' cap frequently requires
3 the use of cap-independent translation enhancers (CITEs) located in or near the 3' UTR. 3'CITEs
4 are grouped based on secondary structure and ability to interact with different translation
5 initiation factors or ribosomal subunits, which assemble a complex at the 3' end that is nearly
6 always transferred to the 5' end via a long distance kissing-loop interaction between sequences in
7 the 3'CITE and 5' hairpins. We report here the identification of a novel 3'CITE in coat-protein-
8 deficient RNA replicons that are related to umbraviruses. Umbra-like associated RNAs
9 (ulaRNAs), such as citrus yellow vein-associated virus (CYVaV), are a new type of subviral
10 RNA that do not encode movement proteins, coat-proteins, or silencing suppressors, but can
11 independently replicate using their encoded RNA-dependent RNA polymerase. An extended
12 hairpin structure containing multiple internal loops in the 3' UTR of CYVaV is strongly
13 conserved in the most closely related ulaRNAs and structurally resembles an I-shaped structure
14 (ISS) 3'CITE. However, unlike ISS, the CYVaV structure binds to eIF4G and no long-distance
15 interaction is discernible between the CYVaV ISS-like structure and sequences at or near the 5'
16 end. We also report that the ~30 nt 5' terminal hairpin of CYVaV and related ulaRNAs can
17 enhance translation of reporter constructs when associated with either the CYVaV 3'CITE, the
18 3'CITEs of umbravirus PEMV2, and even independent of a 3'CITE. These findings introduce a
19 new type of 3'CITE and provide the first information on translation of ulaRNAs.

20

21

22

23

24

25 **Importance**

26

27 Umbra-like associated RNAs (ulaRNAs) are a recently discovered type of subviral RNA
28 that use their encoded RNA-dependent RNA polymerase for replication but do not encode any
29 coat proteins, movement proteins or silencing suppressors yet can be found in plants in the
30 absence of any discernable helper virus. We report the first analysis of their translation using
31 Class 2 ulaRNA citrus yellow vein associated virus (CYVaV). CYVaV uses a novel eIF4G-
32 binding I-shaped structure as its 3' cap-independent translation enhancer (3'CITE), which does
33 not connect with the 5' end by a long-distance RNA:RNA interaction that is typical of 3'CITEs.
34 ulaRNA 5' terminal hairpins can also enhance translation in association with cognate 3'CITEs or
35 those of related ulaRNAs, and to a lesser extent with 3'CITEs of umbraviruses, or even
36 independent of a 3'CITE. These findings introduce a new type of 3'CITE and provide the first
37 information on translation of ulaRNAs.

38

39

40

41

42

43

44

45

46

47

48

49

50 **Introduction**

51 Translation initiation in eukaryotes is a precisely controlled, conserved process that
52 requires the coordinated action of over 10 eukaryotic translation initiation factors (eIFs) (1).
53 Canonical cap-dependent translation initiation begins with eIF4 recognition of the
54 m⁷G(5')ppp(5')N cap structure at the 5' end of a mRNA, followed by scaffold protein eIF4G
55 binding to eIF4E to form the eIF4F complex (2). eIF4G bridges the mRNA 5' and 3' ends by also
56 interacting with poly(A)-binding protein that is bound to the 3' poly(A) tail, which is followed by
57 recruitment of the 43S preinitiation complex (PIC) (40S ribosomal subunit loaded with the eIF2-
58 tRNA_i^{met}-GTP complex and other eIFs) to the mRNA 5' end (3). Once loaded, the PIC scans
59 along the mRNA until recognition of a downstream start codon in a favorable initiation context.
60 At this point, the selected start codon base pairs with the tRNA_i^{met} anticodon followed by
61 dissociation of eIFs and joining of the 60S ribosomal subunit to form the 80S initiation complex
62 (4). The elongation phase then begins with entry of the correct aminoacyl-tRNA into the
63 ribosome A-site.

64 Many RNA plus-strand viral genomic (g)RNAs have no 5' cap or 3' poly(A) tail and thus
65 must attract the ribosomal machinery through non-canonical mechanisms that use *cis*-acting
66 elements such as 5' bound VPg or internal structured RNA elements like internal ribosome entry
67 sites. For plant viruses in this category, ribosome attraction commonly depends on cap-
68 independent translation enhancers (3'CITEs) located in the 3' region of the genome that facilitate
69 highly efficient translation initiation at the 5' end (5-7). This occurs when 3'CITEs bind to eIFs
70 that subsequently recruit ribosomal subunits (8) or bind directly to ribosomal subunits (9, 10),
71 which is usually followed by a long-distance interaction (LDI) between a CITE-associated
72 hairpin and 5' end sequences to transfer bound components to the 5' end for translation initiation

73 (5, 10-15).

74 3'CITEs have been identified in several plant virus families and are generally grouped
75 according to their secondary structure, presence of conserved nucleotides, and interaction with
76 specific translation components (5, 7, 16). For example, the CITE known as the “I-shaped
77 structure” (ISS) has been identified in viruses from four genera in the *Tombusviridae* (zeavirus,
78 aureusvirus, tombusvirus, and carmovirus) (5, 7, 16, 17). ISS are composed of a single stem-
79 loop with one or two internal loops and binds efficiently to eIF4F through a direct interaction
80 with the eIF4E subunit (18). Nearly all ISS share 16 conserved residues around the internal loop
81 region, and some of these bases are required for binding to eIF4F (18). Residues in the ISS 5 to 8
82 nt apical loop engage in a long-distance kissing-loop interaction with 5' proximal hairpins in the
83 gRNA and subgenomic (sg)RNA, assisted by eIF4F (19). Subsequent binding of the 40S
84 ribosomal subunit to the ISS leads to a transfer of the complex to the 5' proximal initiation site
85 where translation begins (19).

86 Coat protein-deficient RNA replicons (CdRr) are viruses or virus-like RNAs that can
87 replicate autonomously using their encoded RdRp but are dependent on a helper virus for at least
88 encapsidation and vector transmission. CdRr include members of the umbravirus genus within
89 the *Tombusviridae*, which encode two replication-required proteins (ORF1 and ORF2) and two
90 movement proteins (ORF3 and ORF 4). Umbraviruses lack encoded capsid proteins or RNA
91 silencing suppressors, which must be supplied by a helper virus that is usually a virus from the
92 polerovirus or enamovirus genera (20, 21). Umbraviruses are unusual in containing multiple
93 3'CITEs, most commonly a barley yellow dwarf-like translation enhancer (BTE) in the central
94 region of their long (~700 nt) 3' UTR that binds to eIF4G (12, 22-24) and a 3'TSS located near
95 the 3' end that binds to 60S ribosomal subunits and 80S ribosomes (10, 25). BTE participate in

96 long-distance kissing-loop interactions with 5' proximal hairpins in the gRNA and sgRNA and
97 similar connections between 3'TSS and viral RNA 5' ends are absent. The umbravirus PEMV2
98 contains three 3'CITEs, two of which are required for efficient translation of the gRNA, and all
99 three are needed for efficient translation of the sgRNA (26). The two used by both gRNA and
100 sgRNA are: (i) the kissing-loop T-shaped structure (kl-TSS), which binds to 80S ribosomes and
101 ribosomal subunits and participates in LDIs with 5' proximal hairpins in the gRNA and sgRNA
102 (10, 27); and (ii) the panicum mosaic virus-like translation enhancer (PTE), whose internal
103 pseudoknot is postulated to form an eIF4E-binding pocket (10, 28, 29). The third 3'CITE, the
104 3'TSS, is exclusively used for sgRNA translation (26).

105 Members of a recently recognized type of CdRr known as umbra-like associated
106 (ula)RNAs have been suggested to be progenitors of umbraviruses based on: (i) related RdRps
107 that contain an umbravirus-specific motif (A.E.Simon, unpublished); (ii) RdRp that are
108 synthesized by-1 programmed ribosomal frameshifting (-1PRF) just upstream of the stop codon
109 for the 5' proximal replication-required protein (30, 31); and (iii) similar 5' and 3' terminal
110 structures. ulaRNAs range in size from 2.7 to 4.6 kb, and, like umbraviruses, do not encode any
111 capsid proteins or silencing suppressors [(30); Simon, Liu, and Gao, unpublished] (Fig. 1A).
112 However, in contrast with umbraviruses, most if not all ulaRNAs do not encode any known
113 movement proteins, and thus additionally do not require the umbravirus ORF3 long-distance
114 movement protein that also suppresses nonsense mediated decay of viral and cellular RNAs (32).
115 Furthermore, many ulaRNAs are found in symptomatic or asymptomatic plants in the absence of
116 any definable helper virus (33-37), unlike umbraviruses, which are always associated with a
117 helper virus in nature.

118 ulaRNAs have been divided into three classes based on phylogenetic relationships and

119 other features (30): Class 1 ulaRNAs only encode the two umbravirus-like replication-required
120 proteins and have an expansive 1.9 kb 3' UTR (35, 36, 38, 39); Class 2 ulaRNAs are the shortest
121 (2.7-3.1 kb), and all except citrus yellow vein associated virus (CYVaV) have an additional ORF
122 (ORF5) that overlaps with the 3' end of the RdRp ORF (30, 33, 34, 37, 40); the single member of
123 the Class 3 ulaRNAs also has an additional ORF in a similar but not identical location, and its
124 origin differs from the one found in Class 2 ulaRNAs.

125 We report here the identification of a 3'CITE in CYVaV that is strongly conserved in
126 other Class 2 ulaRNAs and structurally resembles an ISS. However, unlike ISS, the 3'CITE
127 binds to eIF4G and no LDI is discernible between the ISS-like structure and sequences at or near
128 the 5' end. We also report that the ~30 nt 5' terminal hairpin of CYVaV and related Class 2
129 ulaRNAs opuntia umbra-like virus (OULV) and fig umbra-like virus (FULV) enhance
130 translation of reporter constructs when associated with either the CYVaV 3'CITE, the 3'CITEs
131 of PEMV2, and even when independent of a 3'CITE. These findings thus introduce a new type of
132 3'CITE and provide the first information on translation regulation of ulaRNAs.

133

134 **Results**

135 **Conserved sequences and structures in CYVaV Domain 3**

136 The full-length structure of CYVaV gRNA was previously determined using SHAPE
137 (selective 2'-hydroxyl acylation analyzed by primer extension) structure probing, phylogenetic
138 comparisons, and assistance of computational algorithms and the RNA structure drawing
139 program RNA2Drawer (30, 41, 42). As shown in Figure 1B, the genome-length structure
140 subdivides into three domains, with Domain 1 (D1) containing the region from the 5' end to just
141 past the ribosome recoding site; D2 encompassing an extended central portion that includes a

142 portion of the 3' UTR and is flanked by long-distance base-paired bridging sequences (i.e., “the
143 bridge”); and D3, which includes only 3' UTR sequences. In Class 2 ulaRNAs that contain
144 ORF5, D3 constitutes the vast majority of 3' UTR sequence. Sequence and structure alignments
145 of ulaRNAs revealed that the absence of ORF5 in CYVaV was due to deletion of two extended
146 hairpins as well as the loss of the initiation codon and presence of multiple stop codons within
147 the analogous reading frame (30). Recent GenBank submissions of two Class 2 ulaRNA
148 sequences from cannabis share ~90% sequence identity with CYVaV and still contain ORF5
149 (MT893740 and MT893741), suggesting that CYVaV was derived from a ulaRNA that also
150 contained the additional ORF, with D3 then encompassing the majority of the 3'UTR.

151 Based on the location of 3'CITEs in umbravirus 3'UTRs, it was likely that translation
152 elements in CYVaV were also located in D3. Examination of the RNA structures in CYVaV D3,
153 and comparing them with structures previously identified for umbravirus PEMV2, revealed
154 similar hairpins only near the 3' ends (Fig. 1C). PEMV2 and six additional umbraviruses contain
155 hairpins H4a, H4b, and H5, along with two pseudoknots (ψ_2 and ψ_3) that altogether fold into the
156 3'TSS 3'CITE (12, 25). In addition, all umbraviruses, except for groundnut rosette virus and
157 ixeridium yellow mottle virus 2, contain 3' terminal hairpin Pr and pseudoknot ψ_1 , which forms
158 between the penultimate H5 hairpin apical loop and the 3' terminal four bases downstream of Pr
159 (Fig. 1C). CYVaV D3 contains hairpins in identical locations as H4a, H4b, H5, and Pr in
160 addition to pseudoknot ψ_1 . ψ_2 and ψ_3 are not discernable, suggesting that a TSS 3'CITE does not
161 form in this location.

162 At the 5' end of D3 are three small hairpins (H_a, H_b, and H_c) followed by an extended
163 unbranched hairpin originally designated as Structure (S)14, which contains a long stem-loop
164 with multiple internal loops (Fig. 1C) (30). Most D3 structures are well-conserved in Class 2

165 ulaRNAs despite poor sequence conservation. Noted exceptions are the absence of H4a in
166 OULV and an insert in FULV2 that folds into two hairpins just downstream of S14 (33). As with
167 CYVaV, the other Class 2 ulaRNAs have ψ_1 , but lack discernible ψ_2 and ψ_3 (Fig. 1C).

168

169 **Mapping regions important for translation in the CYVaV 3' UTR**

170 To aid in determining locations of translation element(s) in CYVaV, stepwise deletions
171 were generated from both ends of the complete 3' UTR in a construct containing full-length
172 CYVaV cDNA (Fig. 2), and *in vitro* synthesized transcripts were subjected to translation in
173 wheat germ extracts (WGE). As shown for translation of full-length CYVaV, the -1PRF event is
174 unusually efficient, with a recoding rate of nearly 30% (Fig. 2B lane 1) (30). This implies that
175 any deletions or other alterations that primarily affect -1PRF could result in additional
176 ribosomes terminating at the p21 stop codon, thereby increasing levels of p21. If levels of p21
177 remain constant or decrease when -1PRF levels are substantially reduced, this suggests that the
178 alteration may also be affecting translation from the 5' end.

179 When the entire 3' UTR was deleted (O1, Δ 2162-2692), translation of p21 decreased to
180 33% of full-length CYVaV and the -1PRF product p81 was not detectable (Fig. 2). This suggests
181 that the CYVaV 3' UTR contains elements that facilitate both translation initiation and -1PRF.
182 Deletion of just Structures 12 (S12) and 13 (S13) at the 5' end of the 3' UTR (O2, Δ 2162-2294
183 [see Fig. 1B for location of the structures]) decreased p21 levels to 45% of full length and p81
184 levels to 14% of full-length. While suggestive that a translation element is impacted by this
185 deletion, multiple small hairpins and unstructured sequences subsequently inserted into this
186 region significantly affected RNA structure throughout CYVaV (but especially proximal to the 3'

187 end), and caused comparable reductions in translation of p21 and p81 (E.Carino and A.E.Simon,
188 unpublished). This suggests that structural disruptions distal to the deletion and not necessarily
189 structures directly impacted by the deletion could be negatively affecting translation. Deletion
190 O3 extended into the bridge sequence (Δ 2162-2374) and still allowed for 5% of full-length p81
191 levels, while deletions further downstream into the beginning of D3 and beyond (O4-O6)
192 eliminated detectable p81. This suggests the presence of a possible -1PRF element at the
193 beginning of D3, which is proximal to the upstream frameshifting site due to the long-distance
194 bridge. This element will be the subject of another report (E. Carino, J. Liu, F. Gao and A.E.
195 Simon, manuscript in preparation).

196 Deletions were also generated from the CYVaV 3' end towards the 5' end of the 3' UTR.
197 Deleting the 3' terminal region (CSacI, Δ 2600-2692 and CD8, Δ 2578-2692) eliminated p81
198 synthesis while increasing p21 levels by 2.5 to 3.5-fold (Fig. 2B). Loss of -1PRF was likely
199 caused by deletion of the sequence between H5 and Pr that is complementary to the apical loop
200 of the recoding stimulatory element (RSE), as a LDI between the RSE and 3' end has been
201 identified for many members of the *Tombusviridae* (31,43-45). When the deletion was extended
202 into S14 (CD7, Δ 2537-2692), p81 translation remained undetectable and p21 levels were reduced
203 by 8.6-fold. Extending the deletions further upstream (CD2, CNheI, CD4, CD5, CD6) yielded
204 similar results as CD7. These results suggested that the 3' border of a translation element might
205 be between positions 2537 and 2577, which correlates with the 3' end of S14.

206

207 **CYVaV S14 is important for translation of p21 and p81 in vitro**

208 Since S14 was a possible 3'CITE, a sequence alignment for eight Class 2 ularRNAs
209 (CYVaV, CYVaV-RioBlanco, CYVaV-Delta, FULV1, FULV2, OULV, Ethiopian maize

210 associated virus 1 [EMaV1] and 2 [EMaV2]) was generated using ClustalW, and bases that were
211 invariant or found in all but one of the ulaRNAs are shown in Figure 3A (dark green and light
212 green residues, respectively). All Class 2 S14 consist of a long stem-loop containing (from top to
213 bottom) (i) an apical hairpin region with an asymmetrical internal loop consisting of mainly
214 variable bases; (ii) a C-rich internal loop; (iii) a six base-pair central stem with covariations in
215 the upper portion; (iv) a highly conserved region just below the central stem containing two
216 asymmetrical internal loops (B1 and B2); and (v) a lower stem with mainly variable base-pairs.

217 To investigate the importance of specific sequences and features within CYVaV S14,
218 site-directed mutations were engineered throughout the element (Fig. 3B) and WT and mutant
219 CYVaV transcripts were subjected to *in vitro* translation using WGE. Alteration of residues on
220 both sides of the central stem (m1 and m2, positions 2486-2490 and 2526-2530) reduced p21
221 translation by 76% and 89%, respectively, and virtually eliminated p81. Combining the two sets
222 of mutations (m1m2), which were designed to be compensatory, restored p21 and p81 levels to
223 100% and 88% of WT, respectively. These results support S14 as being critical for translation
224 with the central stem as a necessary feature. Interestingly, the reduction in translation caused by
225 m1 and m2 was comparable or greater than translation reductions caused by deletions that
226 eliminated S14 (see O5, O6 and CNheI, Fig. 2B). This suggests that destabilizing the S14 central
227 stem while maintaining the rest of the S14 sequence has an enhanced repressive effect on
228 translation. This is similar to results obtained for PEMV2, where translation was repressed more
229 when the PTE was maintained but the LDI was disabled, compared with deletions that removed
230 the PTE and the LDI (26).

231 Mutations located in the C-rich internal loop adjacent to the central stem that extended
232 the central stem by two C:G base-pairs (**CC2524-2525GG**) reduced p21 and p81 levels by 59%

233 and 55%, respectively. However, mutations on both sides of the C-rich loop that did not lead to
234 additional base pairing enhanced translation of both p21 and p81 by 45% and 34%, respectively,
235 for **C2492G/C2496G**, and 54% and 84%, respectively, for **C2524U**. This suggests that this
236 region of S14 may harbor a translation repressor. **C2498A**, located in a C-rich asymmetric loop
237 sequence just above the C-rich internal loop, also increased p81 translation (by 36%). However
238 **G2518C**, located on the opposite side of this alteration, decreased p21 and p81 levels by 34%
239 and 35%, respectively, suggesting that this mutation had a negative effect on translation of p21
240 that led to reduced synthesis of p81. These results suggest that the putative repressor region in
241 the S14 translation element may extend beyond the C-rich loop, but only on the 5' side of the
242 hairpin that is also C-rich. We also altered residues in the S14 apical loop since most 3'CITEs
243 participate in a LDI with 5' sequences, and the pairing residues are frequently in the apical loop
244 of a CITE-associated hairpin,. Surprisingly, **GGA2509-2511CCU** in the apical loop (and upper
245 stem) and **C2505G/U2508A** in the apical loop did not substantially affect p21 and p81 levels in
246 WGE.

247 One of the defining features of S14 are the two asymmetric internal loops on opposite
248 sides of the structure (B1 and B2), located just below the central stem. Both asymmetric loops
249 have invariant residues that extend an additional 5 or 6 bases downstream (B1:
250 GAUAGCACUGU; B2:AGAUUUGUGAA). Despite strict sequence conservation, **U2479C**
251 within B1 did not notably affect p21 or p81 levels *in vitro*. Mutating the two unpaired adenylates
252 on the opposite side of B1 (**AA2540-2541UU**) also did not negatively impact p21 levels while
253 reducing p81 synthesis by 45%. Mutations in B2 just upstream of the adenylates (**AU2533-**
254 **2534UA and U2536C**) also reduced p81 synthesis by 31% and 45% respectively without
255 negatively impacting levels of p21. **GG2472-2473CC**, located in the lower stem, led to a similar

256 41% decrease in p81 synthesis with p21 levels remaining essentially unchanged. These results
257 suggest that B2 and the adjacent lower stem may play a role in suppressing -1PRF. Despite the
258 significant conservation of the B1 and B2 segments in Class 2 ulaRNA S14, neither S14 nor
259 these conserved elements are discernable in Class 1 or Class 3 ulaRNAs.

260

261 **S14 is important for accumulation of CYVaV *in vivo***

262 Since CYVaV accumulates efficiently in *Arabidopsis thaliana* protoplasts in the absence
263 of any helper virus (30), selected S14 mutants were also assayed for accumulation in protoplasts.
264 Mutations m1 and m2 that disrupted either side of the central stem and were detrimental for
265 translation *in vitro* reduced CYVaV accumulation in protoplasts to 18% of WT levels. Mutation
266 m1m2, which re-established the stem, restored both *in vitro* translation and accumulation in
267 protoplasts to near WT levels. All mutations below the central stem, regardless of their effect on
268 *in vitro* translation (if any), reduced CYVaV accumulation to between 16% and 30% of WT
269 levels *in vivo*. Notable was **U2479C** within B1, which did not discernibly affect translation *in*
270 *vitro* yet reduced accumulation *in vivo* to 28% of WT, a level identical to disruption of the
271 central stem. Mutations in the C-rich loop, which either reduced or enhanced *in vitro* translation,
272 were detrimental *in vivo*, reducing accumulation to 10 to 20% of WT. Apical loop mutations
273 **GGA2509-2511CCU**, which had no notable effect on p21 or p81 levels *in vitro*, never-the-less
274 reduced CYVaV accumulation in protoplasts to 24% of WT. These results indicate that
275 mutations throughout S14, which had varying effects on translation *in vitro*, were important for
276 efficient accumulation of the ulaRNA *in vivo*. All together, these results strongly suggest that
277 S14 is a translation element essential for efficient accumulation *in vivo* and translation *in vitro*.

278

279 **S14 is a 3'CITE that interacts with eIF4G**

280 When fragments containing 3'CITEs are added *in trans* to WGE, most inhibit translation
281 of viral templates by sequestering limited translation factors (24, 45, 46). To determine if
282 CYVaV S14 can inhibit translation *in trans*, *in vitro* synthesized transcripts containing either the
283 entire 3' UTR, the complete S14 (fragment ISSLS; 2452-2559) or just the apical portion of S14
284 (ISSLS_{ΔB}; 2484-2532; see Fig. 3B) were added to *in vitro* translation reactions containing full-
285 length WT CYVaV, and levels of p21 synthesized were determined. Addition of the CYVaV 3'
286 UTR fragment at a 10- or 25-fold excess decreased translation by the same 92%, indicating that
287 one or more translation factor(s) present in a limiting amount was likely being sequestered by
288 one or more elements in the 3' UTR. Addition of 10- or 25-fold excess ISSLS fragment similarly
289 decreased translation by 84% and 96%, respectively. In contrast, addition of 10- or 25-fold
290 ISSLS containing mutation m1 decreased translation by only 34% and 40%, respectively.
291 Similarly, addition of 10- or 25-fold ISSLS_{ΔB} decreased translation by only 17% and 32%,
292 respectively. These results suggest that the complete S14 inhibits translation *in trans* in WGE
293 with similar efficiency as the complete 3' UTR, and thus likely comprises a 3'CITE.

294 The ISS 3'CITE, which is structurally similar to S14, binds proficiently to eIF4F through
295 its eIF4E subunit, but binds inefficiently to eIF4E and eIF4G individually (18, 19). To determine
296 which factors bind the CYVaV S14, electrophoretic mobility shift assays (EMSA) combined
297 with UV cross-linking were conducted using radiolabeled ISSLS and ISSLS_{ΔB} fragments and
298 wheat eIF4F, eIF4G, and eIF4E that were expressed in *E.coli* and purified by affinity
299 chromatography (47). Since the BTE 3'CITE is known to bind to eIF4G, and the PTE 3'CITE
300 binds to eIF4E (28, 29), opium poppy mosaic virus (umbravirus) BTE and PEMV2 PTE

301 fragments were used as positive controls.

302 As expected, retarded migration in gels was found for the OPMV BTE fragment bound to
303 eIF4G and eIF4F, and the PEMV2 PTE bound to eIF4E and eIF4F (Fig. 3D). Migration of the
304 ISSLS fragment was retarded only in the presence of eIF4G and eIF4F, with no detectable
305 binding to eIF4E. Truncated ISSLS_{AB} did not bind detectably to any of these proteins,
306 suggesting that the upper portion of S14 by itself does not interact with eIF4G or eIF4F. Purified
307 eIF4G and eIF4F were also added back to the *trans*-inhibition assays to determine if sequestering
308 eIF4G and/or eIF4F was responsible for the inhibitory activity of fragment ISSLS. As shown in
309 Figure 4, supplementing extracts with 200/400 nM eIF4G or eIF4F substantially restored BTE-
310 inhibited translation, consistent with previous findings using the BYDV BTE (24). In contrast,
311 translation that was inhibited 84% with addition of the ISSLS improved only slightly when
312 supplemented with 400 nM eIF4G or eIF4F. The ISSLS_{AB} fragment did not negatively impact
313 translation of WT CYVaV in the presence and absence of translation factors. These results
314 suggest that in addition to binding to eIF4G and eIF4F, the CYVaV ISSLS may sequester
315 additional factors or interact in a negative manner with the CYVaV gRNA. Altogether, these
316 results support the designation of S14 as a unique 3'CITE, which we have named an ISS-like
317 structure or ISSLS.

318

319 **The CYVaV 5' terminal S1 hairpin is required for efficient translation of reporter
320 constructs *in vivo***

321 Most 3'CITEs, including all ISS, require a LDI with a 5' terminal sequence to enhance
322 translation (5, 7, 16, 17). The 5' ends of all Class 2 uRNAs contain two small hairpins
323 followed by a large extended stem-loop [Structures (S)1, 2 and 3; Fig. 1B and Fig. 5A) (30). To

324 investigate the importance of these structures in translation enhancement by the ISSLS, firefly
325 luciferase (F-Luc) reporter constructs were generated containing different lengths of CYVaV 5'
326 sequence upstream of the F-Luc ORF, followed by the full length CYVaV 3' UTR. Construct
327 C5'33+C3'U contained positions 1 to 33, encompassing S1; construct C5'60+C3'U contained
328 positions 1 to 60, encompassing S1 and S2; and construct C5'201+C3'U contained positions 1 to
329 201, encompassing S1, S2 and a portion of S3 that included its apical hairpin (Fig. 5B). The
330 PEMV2 5'89 nt with the CYVaV 3' UTR (P5'89+C3'U) was used as a negative control (Fig. 5A
331 and B).

332 *In vitro* synthesized transcripts of the reporter constructs were transfected into *A. thaliana* protoplasts and luciferase activity was measured 18 h after transfection. Translation of
333 C5'33+C3'U was 5.3-fold higher than P5'89+C3'U, suggesting that S1 enhanced translation of
334 the reporter *in vivo*. Extending the length of the 5' end to include Structure 2 (construct
335 C5'60+C3'U) did not further improve luciferase activity levels. Construct C5'201+C3'U
336 produced 3.8-fold less luciferase activity than P5'89+C3'U, indicating that this extension of 5'
337 sequence was inhibitory.

339 To determine if translation enhancement mediated by S1 requires the CYVaV 3' UTR,
340 the 3' UTR in construct C5'33+C3'U was replaced with 250 nt of vector-derived sequence
341 (C5'33+V). C5'33+V luciferase activity was 3-fold lower than that of C5'33+C3'U, suggesting
342 that the CYVaV 3' UTR was contributing to elevated luciferase activity of C5'33+C3'U. Taken
343 together, these results suggest that CYVaV S1 facilitates *in vivo* translation of the reporter gene
344 by interacting directly or indirectly with the CYVaV 3' UTR. However, it should be noted that
345 luciferase activity of C5'33+C3'U was 23-fold lower than that of P5'89+P3'U, a previously
346 generated construct containing the 5' 89 nt and 3' UTR of PEMV2 (10). Since CYVaV and

347 PEMV2 full-length gRNAs generated similar levels of ORF1 protein in WGE (30), C5'33+C3'U
348 is likely missing sequences that are necessary for full translation activity.

349

350 **Specific residues within CYVaV S1 are important for translation of reporter constructs *in***
351 ***vivo***

352 Since translation did not improve significantly with inclusion of 5' downstream
353 sequences, the parental construct used for mutagenesis was C5'33+C3'U. To determine if the
354 sequence of CYVaV S1 contributes to translation enhancement, most of the unpaired residues in
355 S1 were altered generating construct C5'33mp+C3'U (Fig. 5C and D). Luciferase levels of
356 C5'33mp+C3'U were 52% lower than C5'33+C3'U but still 2.5-fold higher than P5'89+C3'U,
357 suggesting that unpaired residues are not the only feature of S1 contributing to translation. Single
358 bases in the apical loop were important for translation as A13U and A13G reduced luciferase
359 activity of the parental construct by 2.3-fold and 3.6-fold, respectively (Fig. 5C and D). C15U
360 also reduced translation by a similar 3.2-fold, suggesting that the apical loop of S1 is important
361 for translation of reporter constructs *in vivo*.

362

363 **CYVaV ISSLS apical bases are not likely involved in a LDI with S1**

364 In many plant viruses, at least four residues in apical loops of 3'CITE hairpins and apical
365 loops of 5' proximal hairpins are involved in a LDI (5, 7). In CYVaV, only three consecutive
366 residues in the apical loops of S1 and the ISSLS are capable of Watson-Crick pairing: the UCC
367 at positions 14-16 in S1 and GGA at positions 2509-2511 in the ISSLS (Fig. 6A). As shown
368 above, mutation of this ISSLS GGA (GGA2509CCU) did not negatively impact translation of
369 the gRNA *in vitro* but reduced accumulation of full-length CYVaV to basal levels in protoplasts

370 (Fig. 3B). Addition of these same ISSLS alterations to the parental reporter construct
371 [C5'33+C3'U(**GGA2509CCU**] reduced translation to below the level of a random 3' sequence
372 (5C5'33+V), suggesting that these residues play a key role in ISSLS translation enhancement
373 (Fig. 6B). Mutating the complementary residues in the S1 apical loop [construct
374 C5'33(**UCC14AGG**)+C3U] reduced translation by 53%. Combining both sets of mutations,
375 which were designed to be compensatory, did not improve translation efficiency, which
376 remained at background (C5'33+V) levels. These results suggest either that the ISSLS apical
377 bases are not base pairing with S1, or that residues involved in the LDI are sequence specific. To
378 help distinguish between these possibilities, two single mutations were individually generated in
379 the S1 (positions 14 and 15) and ISSLS apical loops (positions 2510 and 2511). The individual
380 S1 mutations reduced translation by 76% and 68% and ISSLS mutations reduced translation by
381 60% and 75% (Fig. 6B). Combining mutations to re-establish base-pairing did not improve
382 translation. While the possibility remains that a very sequence-specific LDI is forming, these
383 results did not provide evidence for a LDI connecting S1 and the ISSLS 3'CITE.

384

385 **Other Class 2 ulaRNA S1 enhance translation more effectively than CYVaV S1 in the**
386 **presence of the CYVaV 3' UTR**

387 Sequences in the S1 stems of OULV and FULV2 are mainly well conserved with the
388 CYVaV S1, but apical loops are not conserved (Fig. 7A). As with CYVaV, FULV2 and OULV
389 lack Watson Crick pairing of four or more nucleotides between their S1 and ISSLS apical loops.
390 To investigate whether S1 of OULV and FULV2 are capable of facilitating translation in the
391 context of the CYVaV 3' UTR (in the absence of discernable base pairing), CYVaV S1 in
392 construct C5'33+C3'U was replaced with S1 of OULV and FULV2, generating constructs

393 O5'39+C3'U and F5'34+C3'U, respectively. Surprisingly, O5'39+C3'U and F5'34+C3'U
394 generated 2.2-fold and 5.5-fold more luciferase activity, respectively, than C5'33+C3'U (Fig.
395 7B). These results support a lack of LDI between ISSLS and S1 in CYVaV.

396 To determine whether increased translation associated with O5'39+C3'U and F5'34+C3'U
397 (compared with C5'33+C3'U) was inherent in the S1 hairpins or whether these hairpins
398 interacted more efficiently with the CYVaV 3' UTR, the CYVaV 3' UTR in constructs
399 O5'39+C3'U and F5'34+C3'U was replaced with the 250 nt vector-derived sequence, generating
400 constructs O5'39+V and F5'34+V. As shown in Figure 7B, luciferase activities of O5'39+V and
401 F5'34+V were 2-fold and 2.5-fold higher than that of C5'33+V, suggesting that increased
402 translation in constructs containing the CYVaV 3' UTR was at least partially due to stronger S1
403 inherent enhancer activity.

404 To examine whether S1 can enhance translation when associated with different 3'CITEs,
405 the 3' portions of C5'33+C3'U, O5'39+C3'U and F5'34+C3'U were replaced with the PEMV2 3'
406 UTR, generating constructs C5'33+P3'U, O5'34+P3'U and F5'39+P3'U (Fig. 7B). C5'33+P3'U,
407 O5'34+P3'U and F5'39+P3'U generated 1.5-, 1.9- and 2.9-fold more luciferase activity compared
408 with C5'33+V, O5'34+V and F5'39+V, respectively. These results suggest that all S1 can
409 enhance translation when associated with heterologous 3'CITEs, but to a lesser extent than with
410 the CYVaV ISSLS.

411 To examine the functionality of the FULV2 S1 hairpin in a more natural setting, the 5'
412 33 bases in the full-length CYVaV gRNA construct was replaced with the FULV2 S1 sequence
413 (construct CYVaV_{FS-1}). As shown in Figure 7C, CYVaV_{FS-1} was functional in this context,
414 although accumulation levels were unusually variable and reduced by an average of about 50%
415 compared with WT CYVaV. This result supports the findings from the reporter assays that

416 heterologous pairings of S1 and the ISSLS are still functional despite a lack of discernable
417 pairing sequences.

418

419 **Strength of S1 in promoting translation of reporter constructs correlates with ability to**
420 **inhibit translation *in trans***

421 CYVaV, OULV, and FULV2 S1 transcripts were added to WGE to determine their
422 capacity to reduce WT CYVaV translation. As shown in Figure 8A, 10-fold and 25-fold molar
423 excess of CYVaV S1 reduced translation by 35% and 39%, respectively. In contrast, 10-fold
424 excess FULV2 S1 reduced translation by 42%, which increased to 82% using a 25-fold molar
425 excess. Similarly, 10-fold excess OULV S1 reduced translation by 15% whereas a 25-fold
426 excess reduced translation by 81%. To determine if OULV and FULV S1 repressed translation
427 by sequestering eIF4F and/or eIF4G, eIF4F and eIF4G (200 nM or 400 nM each) were added to
428 *in vitro* translation reactions containing full-length WT CYVaV along with CYVaV, OULV, or
429 FULV2 S1 transcripts at a 25-fold molar excess. As shown in Figure 8B, there was little or no
430 enhancement of translation with the addition of either concentration of eIF4G and eIF4F. This
431 suggests that translation inhibition by OULV and FULV2 S1 is through sequestering other
432 translation factors or interacting directly with the CYVaV template RNA.

433

434 **Discussion**

435 **Identification and characterization of a 3'CITE in Class 2 ulaRNAs**

436 Many plant RNA viruses lacking 5' caps have evolved 3'CITEs that attract translation

437 components such as eIFs or ribosomal subunits to compete effectively with host cap-dependent
438 translation. 3'CITEs have been divided into seven major classes based on their secondary
439 structure and association with specific translation factors (5, 7, 16, 17). However, there are
440 likely far more classes of these elements as none of the currently identified 3'CITEs are
441 discernable in a number of carmoviruses and umbraviruses, while other members of these genera
442 contain BTE, PTE, TSS, ISS, and TED 3'CITEs (Simon, A.E., unpublished). ulaRNAs, which
443 are newly discovered subviral RNA replicons that are clearly related to umbraviruses (30), are
444 expected to also contain one or more 3'CITEs in their 3' UTRs. However, despite exhaustive
445 searching, none of the ulaRNAs contain the conserved sequences or signature structures found in
446 known 3'CITEs.

447 To gain information on how these replicons are translated, we studied CYVaV, an
448 unusual Class 2 ulaRNA that only encodes two replication-related proteins (30, 34). Using a
449 deletion analysis of the 3'UTR, the 3' border of a translation element was mapped to the 3' end of
450 an extended hairpin previously known as S14 and now referred to as an ISS-like structure or
451 ISSLS. The ISSLS, which is conserved in all Class 2 ulaRNAs, is currently proposed to form an
452 unbranched hairpin with four internal loops, three of which are composed of conserved or mostly
453 conserved residues. Most of the CYVaV ISSLS residues were important for translation *in vitro*
454 and/or accumulation *in vivo*, suggesting that the overall 3-D conformation is likely critical for
455 function. Based on the results of the mutagenesis study, several portions of the ISSLS are of
456 particular interest for further investigation. For example, mutations in the C-rich internal loop
457 above the central stem that did not extend the length of the stem enhanced translation of both p21
458 and p81 (Fig. 3B). This suggests that the C-rich region acts as a repressor, possibly through
459 base-pairing with G-rich sequences *in cis* or proteins *in trans* to suppress the functioning of the

460 ISSLS, which may be required to inhibit translation and allow replication to take place. Another
461 observation requiring further exploration is the number of alterations, including in the apical loop
462 and in invariant B1, that did not negatively impact translation of CYVaV in WGE yet reduced
463 accumulation of CYVaV or translation of reporter constructs to basal levels *in vivo*. This
464 difference could be attributed to the optimized translation environment provided by WGE, in
465 which negative effects of mutations on translation might be compensated, at least partially, by
466 increased abundance of translation factors compared with the cellular environment.
467 Alternatively, these alterations could have unexpected effects on replication or stability. A third
468 observation requiring future study is the relatively weak translation of the reporter constructs
469 containing CYVaV 5' sequences and 3' UTR. Extension of the 5' sequences to include
470 downstream elements either had no effect or were strongly negative for translation, unlike
471 similar extensions for PEMV2, where translation improved ~20-fold by allowing the LDI to take
472 place with a coding region hairpin (10). Weak translation of the CYVaV reporter constructs
473 suggests either (i) additional translation elements may exist in the coding region that remain to
474 be identified; and/or (ii) that using the exact 3' UTR, which disrupts S12 and eliminates
475 substantial downstream base-pairing between 3' UTR and coding region sequences (see Fig. 1B)
476 likely affects RNA structure throughout the remainder of the 3' UTR, which in turn may be
477 detrimental for translation.

478

479 **CYVaV ISSLS represents a novel class of 3'CITE**

480 The ISS 3'CITE also adopts an unbranched hairpin structure, but with fewer and smaller
481 internal loops than the ISSLS. ISSLS and ISS have different conserved nucleotides within their
482 most prominent internal loops (Fig. 9) and interact with different translation factors. The ISSLS

483 interacts with eIF4G/eIF4F (Fig. 3D) whereas the ISS interacts with eIF4F and inefficiently with
484 eIF4E and eIF4G (18, 19, 48). ISSLS conserved sequences have not been identified in other
485 eIF4G-binding 3'CITEs such as the BTE and thus the interaction between ISSLS and eIF4G or
486 eIF4F is likely mediated by a specific tertiary fold, as postulated for the PEMV2 PTE interaction
487 with eIF4E (28, 29), and the turnip crinkle virus (TCV) TSS with 60S ribosomal subunit (9, 49,
488 50). Since *trans*-inhibition assays with supplemental eIF4G and eIF4F did not restore translation
489 that was repressed by addition of the ISSLS, the ISSLS may also be interacting directly or
490 indirectly with other translation factors present in limited quantities or may directly interfere
491 with the translated template. Altogether, these observations strongly suggest that the CYVaV
492 ISSLS represents a new class of 3'CITE that differs from the previously reported ISS.

493

494 **CYVaV S1 likely supports translation in a manner that does not involve direct RNA:RNA**
495 **interaction with the ISSLS through a LDI**

496 LDI involving four or more base-pairs are commonly associated with 3'CITEs (5, 7) to
497 enhance the number of templates selected for translation (51), and many LDIs connect 3'CITEs
498 with 5' terminal hairpins. Only three consecutive residues can form Watson-Crick base pairs
499 between the apical loops of any ulaRNA ISSLS and their 5' terminal hairpins (S1), which were
500 sufficient for optimal translation activity in the reporter constructs (Fig. 5). Mutating these three
501 residues in either the ISSLS or S1 reduced reporter gene translation *in vivo*, however single and
502 three base compensatory mutations did not restore efficient translation (Fig. 6). In addition,
503 reporter constructs containing OULV and FULV S1 enhanced translation when associated with
504 both the CYVaV 3' UTR and the heterologous 3' UTR from PEMV2 (Fig. 7), despite lacking
505 discernable base-pairing with PEMV2 3'CITEs. Similar synergy in the absence of base-pairing

506 between a 5' translation element and CITE-containing 3' UTR was previously reported for TCV,
507 whose pyrimidine-rich 5' UTR was functionally replaceable with that of related carmovirus
508 cardamine chlorotic fleck virus (52). FULV2 and OULV S1 also stimulated reporter gene
509 translation in the absence of any 3'CITE (Fig. 7), suggesting that S1 may independently attract
510 translation factors, similar to the TCV 5' translation enhancing element that binds to 40S
511 ribosomal subunits (52). For TCV, the proposal was made that 60S subunits binding to the
512 3'TSS connect with 40S subunits binding to the 5' end, thus circularizing the template.
513 Interestingly, the CYVaV S1 apical portion contains the same putative 18S rRNA-
514 complementary sequence in the BYDV BTE (GGAUCCU) (8), and other Class 2 ulaRNAs S1
515 also have potential pairing sites of six consecutive bases or more in the identical region. These
516 postulated interactions remain to be verified, and whether some type of protein bridge connects
517 the ends of Class 2 ulaRNAs for translation initiation remains to be investigated.

518

519 **Conclusions**

520 We have identified two translation enhancers in Class 2 ulaRNAs: the 5' terminal hairpin
521 and the ISSLS 3'CITE. Class 1, 2 and 3 ulaRNAs share similar structures at their 5' ends
522 extending hundreds of bases upstream into their recoding sites (30), and additionally at their 3'
523 ends beginning with the penultimate hairpin. Abrupt sequence and structural divergence among
524 the classes of ulaRNAs correlates with the beginning of the additional ORF near the end of the
525 RdRp ORF found in nearly all Class 2 ulaRNAs (and a different inserted ORF in the Class 3
526 ulaRNA). This is likely due to different recombination events leading to different classes of
527 ulaRNAs, with the event giving rise to Class 2 ulaRNAs including the ISSLS 3'CITE (30).
528 Whether Class 1 and 3 ulaRNAs also harbor one or more unique 3'CITE will be the subject of

529 future investigations.

530

531 **Materials and Methods**

532

533 **Plasmid construction**

534 Full-length CYVaV (Genbank accession number JX101610) was generated in vector pET17b
535 downstream of a T7 promoter by Biomatik (Wilmington, Delaware) and was kindly provided by
536 Georgios Vidalakis (UC Riverside) (30). CYVaV mutants were constructed using one-step site-
537 directed mutagenesis PCR (53) using the appropriate DNA oligonucleotides (IDT, Coralville,
538 Iowa). The F-Luc construct with PEMV2 1-89 and the PEMV2 3' UTR was constructed
539 previously (10). F-Luc constructs were generated by addition of a *Bgl*II restriction site at the 5'
540 end of the Luc ORF and a *Swa*I restriction site at the 3' end. 3'UTRs were added using ligation-
541 independent cloning (56) with a *Pme*I site added at the 3' terminus for plasmid linearization. All
542 constructs and mutations were verified by sequencing (Eurofins Genomics, LLC). Plasmids were
543 linearized and used as templates for *in vitro* transcription with T7 RNA polymerase.

544

545 ***In vitro* translation in WGE**

546 Uncapped RNAs synthesized by *in vitro* transcription were purified using Monarch RNA
547 Cleanup Kit (New England Biolabs) and subjected to translation in a 10 μ l WGE reaction mix
548 (Promega) in the presence of 35 S-methionine and reagents according to the manufacturer's
549 instructions. Translation reactions were incubated at 25°C for 45 min. 2X SDS loading buffer
550 (90 mM Tris-HCl at pH 6.8, 2% SDS, 20% glycerol, 0.1% bromophenol blue, 200 mM DTT)

551 was added and the mixture separated on 10% SDS-polyacrylamide gels, which were then dried
552 and exposed to a phosphorimaging screen followed by scanning using a Typhoon image analyzer
553 (Amersham). Radioactive bands were quantified using GelQuantNET software. For *trans-*
554 inhibition assays, excess competitor RNAs or eIF4G or eIF4F were added to WGE prior to the
555 incubation. eIF4G and eIF4F were expressed in *E. coli* and purified (47). Translation initiation
556 factors were a kind gift from Karen Browning (UT Austin).

557

558 **Protoplasts preparation and transfection**

559 Arabidopsis protoplasts were prepared and transfected as described previously (10). Briefly,
560 protoplasts were prepared from seed-started callus cultures of *A. thaliana* (Col-0). Protoplasts
561 (4×10^5) were transfected with 4 μ g of purified *in vitro* transcribed RNA using a polyethylene
562 glycol-mediated transformation method as previously described (10). Cells were collected at 18
563 h post-transfection and luciferase activity was assayed with a Dual-Luciferase Reporter Assay
564 System (Promega) using a Modulus microplate multimode reader (Turner Biosystems).

565

566 **EMSA cross-linking assay**

567 RNAs that were internally labeled with α -³²P-CTP (2 nM) by *in vitro* transcription and purified
568 were incubated with eIF4G or eIF4F (200 or 400 nM each) in 4F binding buffer (28 mM
569 HEPES-KOH at pH 7.6, 57 mM KCl, 2.3 mM MgAc₂, 0.114 mg/ml BSA, 85 μ g/ml yeast tRNA,
570 2.8% glycerol, 2.4 mM DTT) in a 15 μ l mixture and incubated at 30°C for 15 min. Samples were
571 then divided in two, with one subjected to 254 nm UV light at a distance of 8 cm for 15 min
572 using a Spectrolin UV crosslinker. Samples were then mixed with 2X SDS loading buffer and
573 subjected to 8% or 10% SDS-PAGE, the gels then dried and subsequently exposed to a

574 phosphorimaging screen.

575 **RNA structure drawing**

576 All RNA structures were drawn using the RNA2drawer online drawing tool at

577 <https://rna2drawer.app/> (42).

578

579 **Acknowledgements**

580 We thanks Georgios Vidalakis for the CYVaV full-length construct and Karen Browning for the
581 wheat translation initiation factors. This work was supported by the National Science
582 Foundation (MCB-1818229) and USDA NIFA Emergency Citrus Disease Research and
583 Extension Program 2020-08455 to AES.

584

585 **Figure legends**

586 **FIG 1** Structures in CYVaV Domain 3. (A) Genome organization of umbravirus PEMV2 and
587 three Class 2 ulaRNAs. ORF1 and the -1PRF extension of OR1 (ORF2) encode replication-
588 required proteins including the p81 RdRp. OULV and FULV2 contain an additional ORF
589 (ORF5) that contains motifs found in some movement proteins (30). CYVaV has two deletions
590 in the analogous ORF5 region that along with additional changes, eliminate translation of the
591 ORF. (B) Structure of full-length CYVaV. The three domains (D1, D2, and D3) are indicated.
592 Green asterisk denotes location of the start codon for the p21 ORF1 and the two red asterisks
593 denote locations of stop codons for ORF1 and ORF2. The bridge stem at the base of D2 that
594 juxtaposes D1 and D3 is indicated. Numbers are from (30) and refer to specific secondary
595 structure elements. (C) Structure and sequence of CYVaV D3. Residues are colored according
596 to their SHAPE reactivity (30). Pseudoknot 1 (ψ_1) is shown. Names of other structures are from
597 (30). Line drawings at right are the putative structures for the same region in FULV2 and

598 OULV determined by comparative modeling based on the CYVaV D3 structure. An extra
599 segment in FULV2 D3, which is not found in other Class 2 ulaRNAs, is bracketed. Inset at right
600 is the 3' end of PEMV2. The three hairpins and two pseudoknots that comprise the 3'TSS
601 3'CITE are shown.

602

603 **FIG 2** Effect on translation of CYVaV 3' UTR deletions. Names of deletion mutants and the
604 deleted regions are shown. The positions of RNA structures in CYVaV D3 are indicated on top.
605 Portions included in the constructs are denoted by dark grey lines. (B) *In vitro* translation of full-
606 length and deletion mutants of CYVaV in WGE. Positions of p21 and p81 are shown. Average
607 values and standard deviations of p21 and p81 translation levels were obtained from three
608 independent experiments and are normalized to WT p21 and p81 levels.

609

610 **FIG 3** S14 is a eIF4G-binding 3'CITE. (A). Base conservation in Class 2 ulaRNA S14.
611 Conserved residues are indicated, with dark green and light green denoting conservation in eight
612 or seven ulaRNAs, respectively. The ulaRNAs used for this alignment were: CYVaV
613 [JX101610]; CYVaV-Delta [MT893741]; CYVaV-RioBlanco [MT893740]; OULV
614 [MH579715]; FULV1 [MW480892]; FULV2 [MW480893]; Ethiopian maize associated virus 1
615 and 2 [EMaV1/2, MF415880 and MN715238]. Features referred to in the text are indicated. (B)
616 Mutation analysis of CYVaV S14. Full-length CYVaV WT and mutant templates (mutations in
617 red) were subjected to *in vitro* translation in WGE. Numbers in black denote levels of p21 and
618 p81 obtained in WGE. Selected constructs were also assayed for accumulation in protoplasts (in
619 green; A, accumulation). For both assays, values are presented as a percentage of WT with

620 standard deviations obtained from three independent experiments. End points of the ISSLS_{ΔB}
621 fragment used in C and D are indicated. (C) *Trans*-inhibition assay. Wild-type and mutant S14
622 fragments (ISSLS: positions 2452-2559, ISSLS_{ΔB}: positions 2484-2532) were added in a 10- or
623 25-fold molar excess along with full-length CYVaV gRNA template to WGE. Values are a
624 percentage of the levels of p21 and p81 obtained in the reaction with no added fragments (lane -)
625 from three independent experiments with standard deviations. (D) EMSAs using 2 nM
626 radiolabeled RNA fragments. OPMV BTE (binds to eIF4G and eIF4F) and PEMV2 PTE (binds
627 to eIF4E and eIF4F) were included as controls. Fragments were incubated with 200 nM BSA or
628 200/400 nM wheat eIF4F, eIF4G, or eIF4E at 30°C for 15 min and then exposed to UV light for
629 15 min. 8% SDS-PAGE was used for ISSLS and OPMV BTE, and 10% SDS-PAGE was used
630 for ISSLS_{ΔB} and PEMV2 PTE.

631

632 **FIG 4** ISSLS inhibition of translation *in trans* is not restored by addition of eI4G or eIF4F.
633 CYVaV gRNA template and 10-fold excess OPMV BTE, CYVaV ISSLS, or ISSLS_{ΔB} fragments
634 were added to WGE with and without 200/400 nM eIF4G or eIF4F. p21 levels are averages with
635 standard deviations obtained from three independent experiments and are presented as a
636 percentage of that obtained with no added RNA fragments or proteins (lane -).

637

638 **FIG 5** CYVaV S1 promotes translation in the presence of the CYVaV 3' UTR. (A) Secondary
639 structure of CYVaV positions 1-60 and the PEMV2 5' 89 nt. Start codons are in green. (B)
640 Luciferase reporter construct ORFs are indicated by colored bars. Blue, CYVaV; green, PEMV2.
641 UTRs are open rectangles the same color as the corresponding ORFs. Vector-derived sequence is

642 denoted by a black bar. Relative luciferase activities were obtained from at least three
643 experiments. (C) Mutations incorporated into S1 in construct C5'33+C3'U. (D) Reporter
644 constructs containing the mutations shown in (C) were assayed for translation in protoplasts as
645 described in (B).

646

647 **FIG 6** No LDI is discernible between the terminal loops of CYVaV S1 and ISSLS. (A) Base
648 alterations in CYVaV S1 (left) and ISSLS (right) terminal loops. Mutated bases are in red and
649 base numbers are indicated. (B) Luciferase reporter constructs used to assay translation of
650 reporter constructs in protoplasts. See legend to Fig. 5 for details.

651

652 **FIG 7** Class 2 ulaRNA S1 are translation enhancers. (A) OULV and FULV2 S1. Bases
653 conserved with CYVaV S1 are in red. (B) Luciferase constructs containing S1 of CYVaV,
654 OULV or FULV2 upstream of F-luc reporter gene and either the CYVaV 3' UTR (C3'), PEMV2
655 3' UTR (P3') or vector-derived sequence (V). Data represent mean \pm standard deviation from at
656 least three independent experiments. (C) Northern blot analysis of WT CYVaV and CYVaV with
657 S1 from FULV2 (CYVaV_{F-S1}) at 18 h post inoculation. Each lane represents RNA extracted from
658 different plants.

659

660 **FIG 8** OULV and FULV SI can inhibit translation in WGE. (A) *Trans*-inhibition assay using
661 CYVaV gRNA template and 10- or 25-fold molar excess of CYVaV, FULV2 or OULV S1. (B)
662 *Trans*-inhibition assay using CYVaV gRNA template and 25-fold molar excess of CYVaV,
663 FULV2 or OULV S1 with and without 200/400 nM of eIF4G or eIF4F. p21 translation levels

664 are averages with standard deviations of values obtained from at least three independent
665 experiments and are presented as a percentage of that obtained with no added RNA fragments or
666 proteins (lane -).

667

668 **FIG 9** Structural alignments between some Class 2 ulaRNAs ISSLS (left) and previously
669 reported ISS (boxed, right). EMaV, Ethiopian maize associated virus; MNSV, maize necrotic
670 streak virus; MWLMV, maize white line mosaic virus; MNSV-264, melon necrotic spot virus.
671 Bases conserved with CYVaV are in red. Circled residues denote ISS-conserved sequences.
672 Bases in ISS that engage in long-distance pairing with 5' sequences are shaded in blue.

673

674 **References**

675

- 676 1. Jackson RJ, Hellen CU, Pestova TV. 2010. The mechanism of eukaryotic translation
677 initiation and principles of its regulation. *Nat Rev Mol Cell Biol* 11:113-27.
- 678 2. Hinnebusch AG, Lorsch JR. 2012. The mechanism of eukaryotic translation initiation:
679 new insights and challenges. *Cold Spring Harbor Perspect Biol* 4: a011544.
- 680 3. Sesma A, Castresana C, Castellano MM. 2017. Regulation of translation by TOR, eIF4E
681 and eIF2 alpha in plants: current knowledge, challenges and future perspectives. *Front Plant Sci*
682 8: 644.
- 683 4. Pestova TV, Lorsch JR, Hellen CUT. 2007. The mechanism of translation initiation in
684 eukaryotes, p 87-128. In Mathews MB, Sonenberg N, Hershey JWB (ed), *Translational Control*
685 in Biology and Medicine. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
- 686 5. Simon AE, Miller WA. 2013. 3' Cap-independent translation enhancers of plant viruses.
687 *Annu Rev Microbiol* 67:21-42.
- 688 6. Jaafar ZA, Kieft JS. 2019. Viral RNA structure-based strategies to manipulate translation.
689 *Nature Rev Microbiol* 17:110-123.
- 690 7. Miras M, Miller WA, Truniger V, Aranda MA. 2017. Non-canonical translation in plant
691 RNA viruses. *Front Plant Sci* 8:494.

692 8. Das Sharma S, Kraft JJ, Miller WA, Goss DJ. 2015. Recruitment of the 40S ribosomal
693 subunit to the 3'-untranslated region (UTR) of a viral mRNA, via the eIF4 complex, facilitates
694 cap-independent translation. *J Biol Chem* 290:11268-11281.

695 9. Stupina VA, Meskauskas A, McCormack JC, Yingling YG, Shapiro BA, Dinman JD,
696 Simon AE. 2008. The 3' proximal translational enhancer of Turnip crinkle virus binds to 60S
697 ribosomal subunits. *RNA* 14:2379-2393.

698 10. Gao F, Kasprzak W, Stupina VA, Shapiro BA, Simon AE. 2012. A ribosome-binding, 3'
699 translational enhancer has a T-shaped structure and engages in a long-distance RNA-RNA
700 interaction. *J Virol* 86:9828-9842.

701 11. Guo L, Allen EM, Miller WA. 2001. Base-pairing between untranslated regions
702 facilitates translation of uncapped, nonpolyadenylated viral RNA. *Mol Cell* 7:1103-1109.

703 12. Ilyas M, Du Z, Simon A. 2021. Opium poppy mosaic virus has an Xrn-resistant,
704 translated subgenomic RNA and a BTE 3' CITE. *J Virol* 9: e02109-20

705 13. Nicholson BL, White KA. 2014. Functional long-range RNA-RNA interactions in
706 positive-strand RNA viruses. *Nat Rev Microbiol* 12:493-504.

707 14. Blanco-Perez M, Perez-Canamas M, Ruiz L, Hernandez C. 2016. Efficient translation of
708 pelargonium line pattern virus RNAs relies on a TED-Like 3'-translational enhancer that
709 communicates with the corresponding 5'-region through a long-distance RNA-RNA interaction.
710 *PLoS One* 11:e0152593.

711 15. Chattopadhyay M, Shi K, Yuan X, Simon AE. 2011. Long-distance kissing loop
712 interactions between a 3' proximal Y-shaped structure and apical loops of 5' hairpins enhance
713 translation of saguaro cactus virus. *Virology* 417:113-25.

714 16. Truniger V, Miras M, Aranda MA. 2017. Structural and functional diversity of plant
715 virus 3'-cap-independent translation enhancers (3'-CITEs). *Front Plant Sci* 8: 2047.

716 17. Nicholson BL, White KA. 2011. 3' Cap-independent translation enhancers of positive-
717 strand RNA plant viruses. *Curr Opin Virol* 1:373-380.

718 18. Nicholson BL, Wu B, Chevtchenko I, White KA. 2010. Tombusvirus recruitment of host
719 translational machinery via the 3' UTR. *RNA* 16:1402-19.

720 19. Liu Q, Goss DJ. 2018. The 3' mRNA I-shaped structure of maize necrotic streak virus
721 binds to eukaryotic translation factors for eIF4F-mediated translation initiation. *J Biol Chem*
722 293:9486-9495.

723 20. Yoo RH, Lee S-W, Lim S, Zhao F, Iggori D, Baek D, Hong J-S, Lee S-H, Moon JS. 2017.
724 Complete genome analysis of a novel umbravirus-poliovirus combination isolated from
725 *Ixeridium dentatum*. *Arch Virol* 162:3893-3897.

726 21. Taliantsky ME, Robinson DJ. 2003. Molecular biology of umbraviruses: phantom
727 warriors. *J Gen Virol* 84:1951-1960.

728 22. Wang DY, Yu CM, Liu SS, Wang GL, Shi KR, Li XD, Yuan XF. 2017. Structural
729 alteration of a BYDV-like translation element (BTE) that attenuates p35 expression in three mild
730 Tobacco bushy top virus isolates. *Sci Rep* 7: 4213.

731 23. Wang Z, Kraft JJ, Hui AY, Miller WA. 2010. Structural plasticity of Barley yellow dwarf
732 virus-like cap-independent translation elements in four genera of plant viral RNAs. *Virology*
733 402:177-186.

734 24. Treder K, Kneller ELP, Allen EM, Wang ZH, Browning KS, Miller WA. 2008. The 3'
735 cap-independent translation element of Barley yellow dwarf virus binds eIF4F via the eIF4G
736 subunit to initiate translation. *RNA* 14:134-147.

737 25. Gao F, Kasprzak WK, Szarko C, Shapiro BA, Simon AE. 2014. The 3' untranslated
738 region of Pea enation mosaic virus contains two T-shaped, ribosome-binding, cap-independent
739 translation enhancers. *J Virol* 88:11696-11712.

740 26. Gao F, Simon AE. 2017. Differential use of 3' CITEs by the subgenomic RNA of Pea
741 enation mosaic virus 2. *Virology* 510:194-204.

742 27. Gao F, Gulay SP, Kasprzak W, Dinman JD, Shapiro BA, Simon AE. 2013. The kissing-
743 loop T-shaped structure translational enhancer of pea enation mosaic virus can bind
744 simultaneously to ribosomes and a 5' proximal hairpin. *J Virol* 87:11987-12002.

745 28. Wang Z, Treder K, Miller WA. 2009. Structure of a viral cap-independent translation
746 element that functions via high affinity binding to the eIF4E subunit of eIF4F. *J Biol Chem*
747 284:14189-202.

748 29. Wang Z, Parisien M, Scheets K, Miller WA. 2011. The cap-binding translation initiation
749 factor, eIF4E, binds a pseudoknot in a viral cap-independent translation element. *Structure*
750 19:868-880.

751 30. Liu JY, Carino E, Bera S, Gao F, May JP, Simon AE. 2021. Structural analysis and
752 whole genome mapping of a new type of plant virus subviral RNA: umbravirus-like associated
753 RNAs. *Viruses* 13: 646.

754 31. Gao F, Simon AE. 2016. Multiple cis-acting elements modulate programmed -1
755 ribosomal frameshifting in Pea enation mosaic virus. *Nucleic Acids Res* 44:878-895.

756 32. May, JP, Johnson, PZ, Ilyas, M, Gao, F, and Simon, AE 2020. Disruption of nonsense-
757 mediated decay by the multifunctional long-distance movement protein of Pea enation mosaic
758 virus 2. *Mbio* 11:e00204-20. <https://doi.org/10.1128/mBio>

759 33. Wang, X., Olmedo-Velarde, A., Larrea-Sarmiento, A., Simon AE, Kong A, Borth, W.,
760 Suzuki, J.Y., Wall, M.M., Hu J, Mellzer, M. 2021. Genome characterization of fig umbra-like
761 virus. *Virus Genes* <https://doi.org/10.1007/s11262-021-01867-4>

762 34. Kwon SJ, Bodaghi S, Dang T, Gadhav KR, Ho T, Osman F, Al Rwahnih M, Tzanetakis
763 IE, Simon AE, Vidalakis G. 2021. Complete nucleotide sequence, genome organization, and

764 comparative genomic analyses of citrus yellow-vein associated virus (CYVaV). *Front Microbiol*
765 12: 1371.

766 35. Cornejo-Franco JF, Flores F, Mollov D, Quito-Avila DF. 2021. An umbra-related virus
767 found in babaco (*Vasconcellea x heilbornii*). *Arch Virol* 166: 2321–2324.

768 36. Cornejo-Franco JF, Alvarez-Quinto RA, Quito-Avila DF. 2018. Transmission of the
769 umbra-like Papaya virus Q in Ecuador and its association with meleira-related viruses from
770 Brazil. *Crop Protec* 110:99-102.

771 37. Felker P, Bunch R, Russo G, Preston K, Tine JA, Suter B, Mo XH, Cushman JC, Yim
772 WC. 2019. Biology and chemistry of an umbravirus like 2989 bp single stranded RNA as a
773 possible causal agent for *Opuntia* stunting disease (engrosamiento de cladodios) - A Review. *J*
774 *Profess Assoc Cactus Dev* 21:1-31.

775 38. Sa Antunes TF, Vionette Amaral RJ, Ventura JA, Godinho MT, Amaral JG, Souza FO,
776 Zerbini PA, Zerbini FM, Bueno Fernandes PM. 2016. The dsRNA virus papaya meleira virus
777 and an ssRNA virus are associated with papaya sticky disease. *PLoS One* 11: e0155240.

778 39. Quito-Avila DF, Alvarez RA, Ibarra MA, Martin RR. 2015. Detection and partial
779 genome sequence of a new umbra-like virus of papaya discovered in Ecuador. *Eur J Plant Path*
780 143:199-204.

781 40. Tahir MN, Bolus S, Grinstead SC, McFarlane SA, Mollov D. 2021. A new virus of the
782 family Tombusviridae infecting sugarcane. *Arch Virol* 166:961-965.

783 41. Zuker M. 2003. Mfold web server for nucleic acid folding and hybridization prediction.
784 *Nucleic Acids Res* 31:3406-3415.

785 42. Johnson PZ, Kasprzak WK, Shapiro BA, Simon AE. 2019. RNA2Drawer: geometrically
786 strict drawing of nucleic acid structures with graphical structure editing and highlighting of
787 complementary subsequences. *RNA Biol* 16:1667-1671.

788 43. Cimino PA, Nicholson BL, Wu B, Xu W, White KA. 2011. Multifaceted regulation of
789 translational readthrough by RNA replication elements in a tombusvirus. *PLoS Path* 7:e1002423.

790 44. Kuhlmann MM, Chattopadhyay M, Stupina VA, Gao F, Simon AE. 2016. An RNA
791 element that facilitates programmed ribosomal readthrough in Turnip crinkle virus adopts
792 multiple conformations. *J Virol* 90:8575-8591.

793 45. Newburn LR, Wu BD, and White KA. 2020. Investigation of novel RNA elements in the 3'
794 UTR of tobacco necrosis virus-D. *Viruses* 8: 856 <https://doi.org/10.3390/v12080856>

795 46. Nicholson BL, Zaslaver O, Mayberry LK, Browning KS, White KA. 2013. Tombusvirus
796 Y-shaped translational enhancer forms a complex with eIF4F and can be functionally replaced
797 by heterologous translational enhancers. *J Virol* 87:1872-1883.

798 47. Mayberry LK, Dennis MD, Allen ML, Nitka KR, Murphy PA, Campbell L, Browning
799 KS. 2007. Expression and purification of recombinant wheat translation initiation factors eIF1,

800 eIF1A, eIF4A, eIF4B, eIF4F, eIF(iso)4F, and eIF5. Translation Initiation: Reconstituted Systems
801 and Biophysical Methods 430:397-408.

802 48. Miras M, Truniger V, Querol-Audi J, Aranda MA. 2017. Analysis of the interacting
803 partners eIF4F and 3'-CITE required for Melon necrotic spot virus cap-independent translation.
804 Mol Plant Pathol 18:635-648.

805 49. Zuo XB, Wang JB, Yu P, Eyler D, Xu H, Starich MR, Tiede DM, Simon AE, Kasprzak
806 W, Schwieters CD, Shapiro BA, Wang YX. 2010. Solution structure of the cap-independent
807 translational enhancer and ribosome-binding element in the 3' UTR of turnip crinkle virus. Proc
808 Natl Acad Sci USA 107:1385-1390.

809 50. McCormack, J. C., Yuan, X., Yingling, Y. G., Zamora, R. E., Shapiro, B. A., and Simon,
810 A. E. 2008. Structural domains within the 3' UTR of Turnip crinkle virus. J Virol 82:8706-
811 8720.

812 51. Du Z, Alekhina OM, Vassilenko KS, Simon AE. 2017. Concerted action of two 3' cap-
813 independent translation enhancers increases the competitive strength of translated viral genomes.
814 Nucleic Acids Res doi: 10.1093/nar/gkx643.

815 52. Stupina VA, Yuan X, Meskauskas A, Dinman JD, Simon AE. 2011. Ribosome binding to
816 a 5' translational enhancer is altered in the presence of the 3' untranslated region in cap-
817 independent translation of turnip crinkle virus. J Virol 85:4638-53.

818 53. Liu H, Naismith JH. 2008. An efficient one-step site-directed deletion, insertion, single
819 and multiple-site plasmid mutagenesis protocol. BMC Biotechnol 8:91.

820 54. Jeong J-Y, Yim H-S, Ryu J-Y, Lee HS, Lee J-H, Seen D-S, Kang SG. 2012. One-step
821 sequence- and ligation-independent cloning as a rapid and versatile cloning method for
822 functional genomics studies. Appl Environ Microbiol 78:5440-5443.

823

824

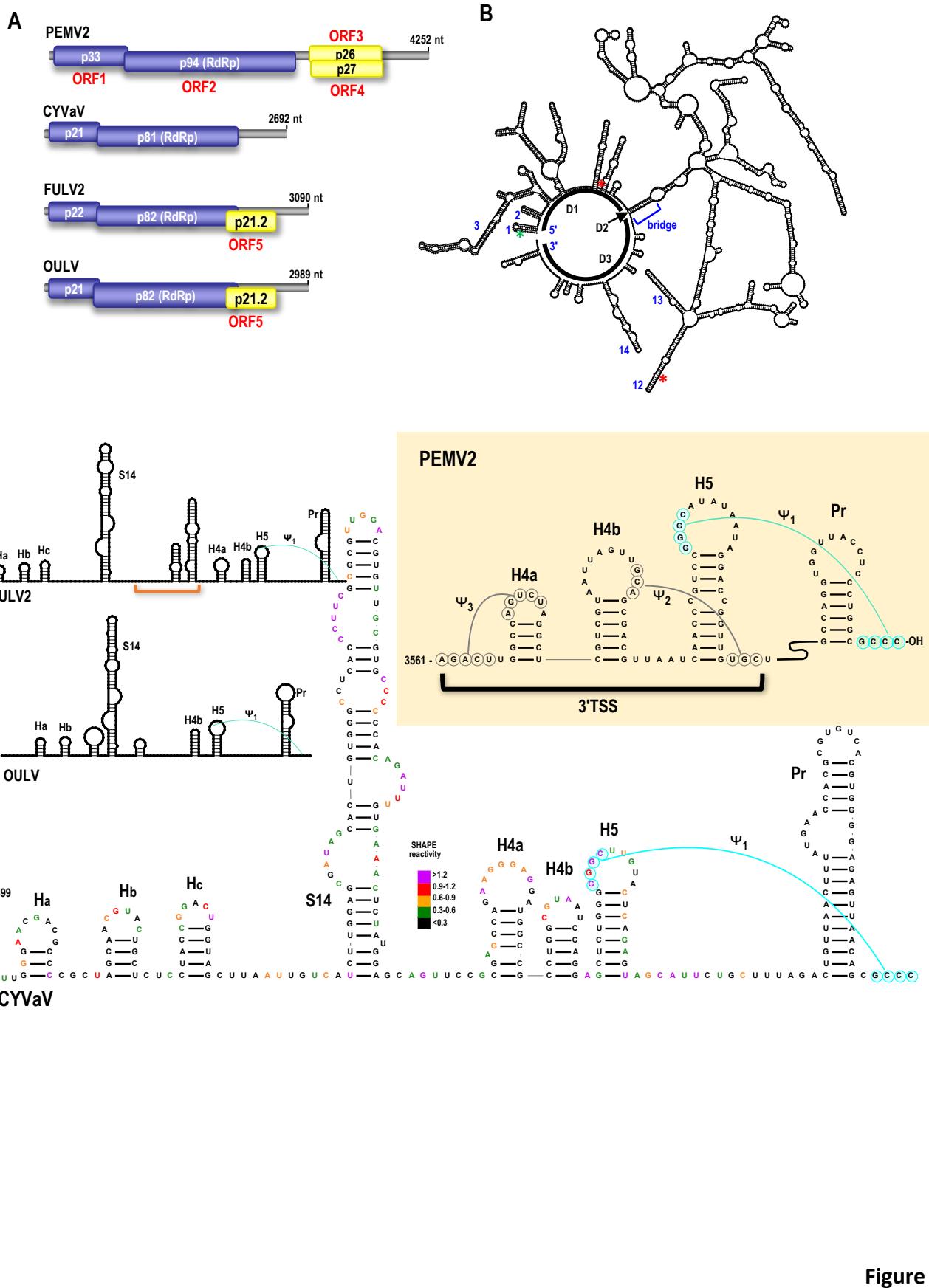
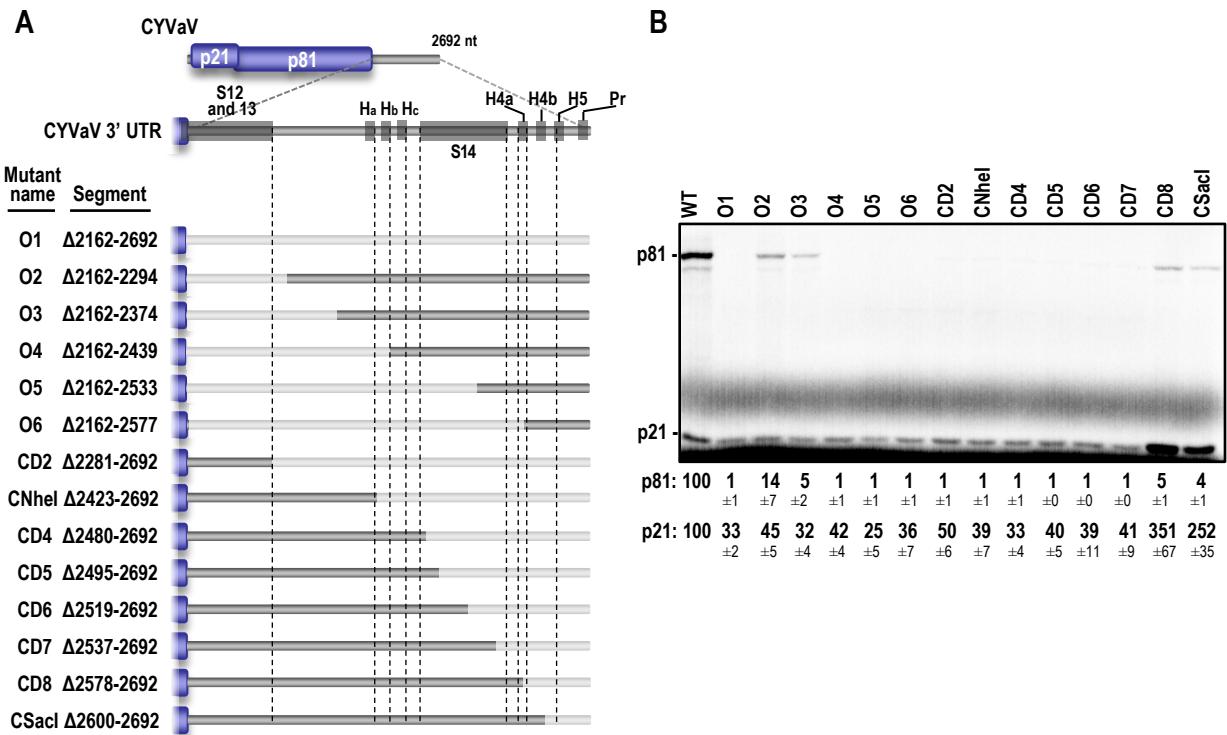



Figure 1

Figure 2

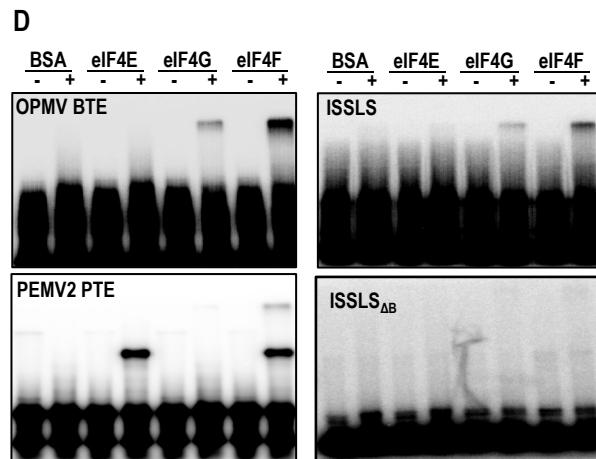
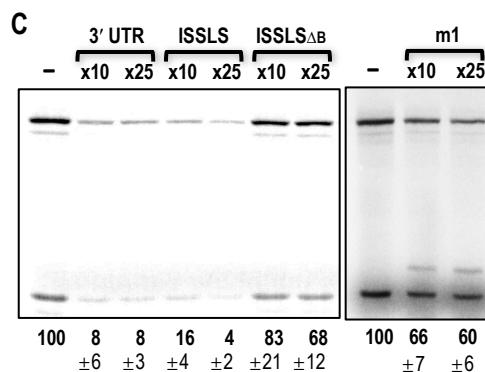
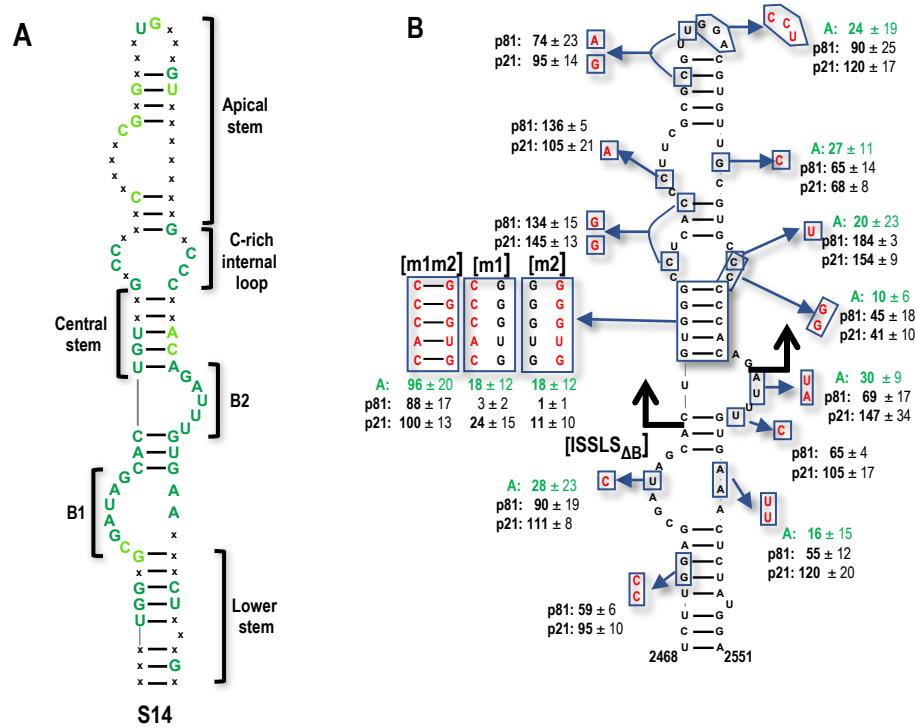
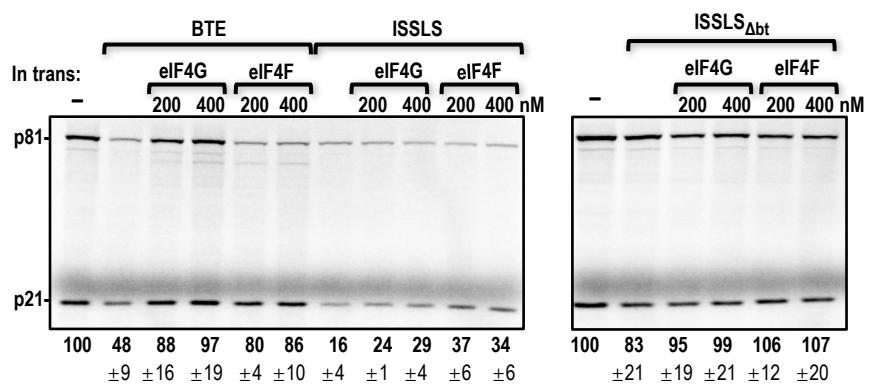





Figure 3

Figure 4

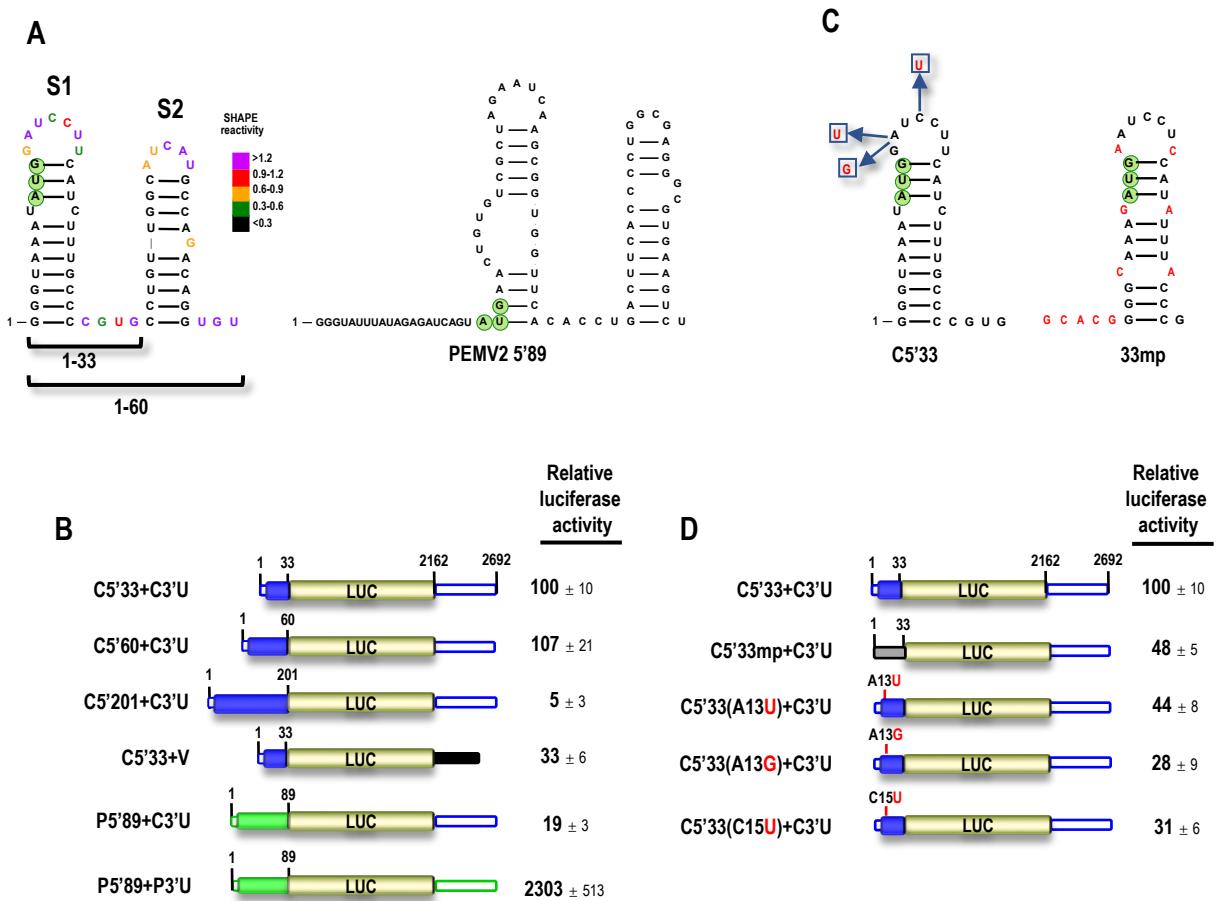
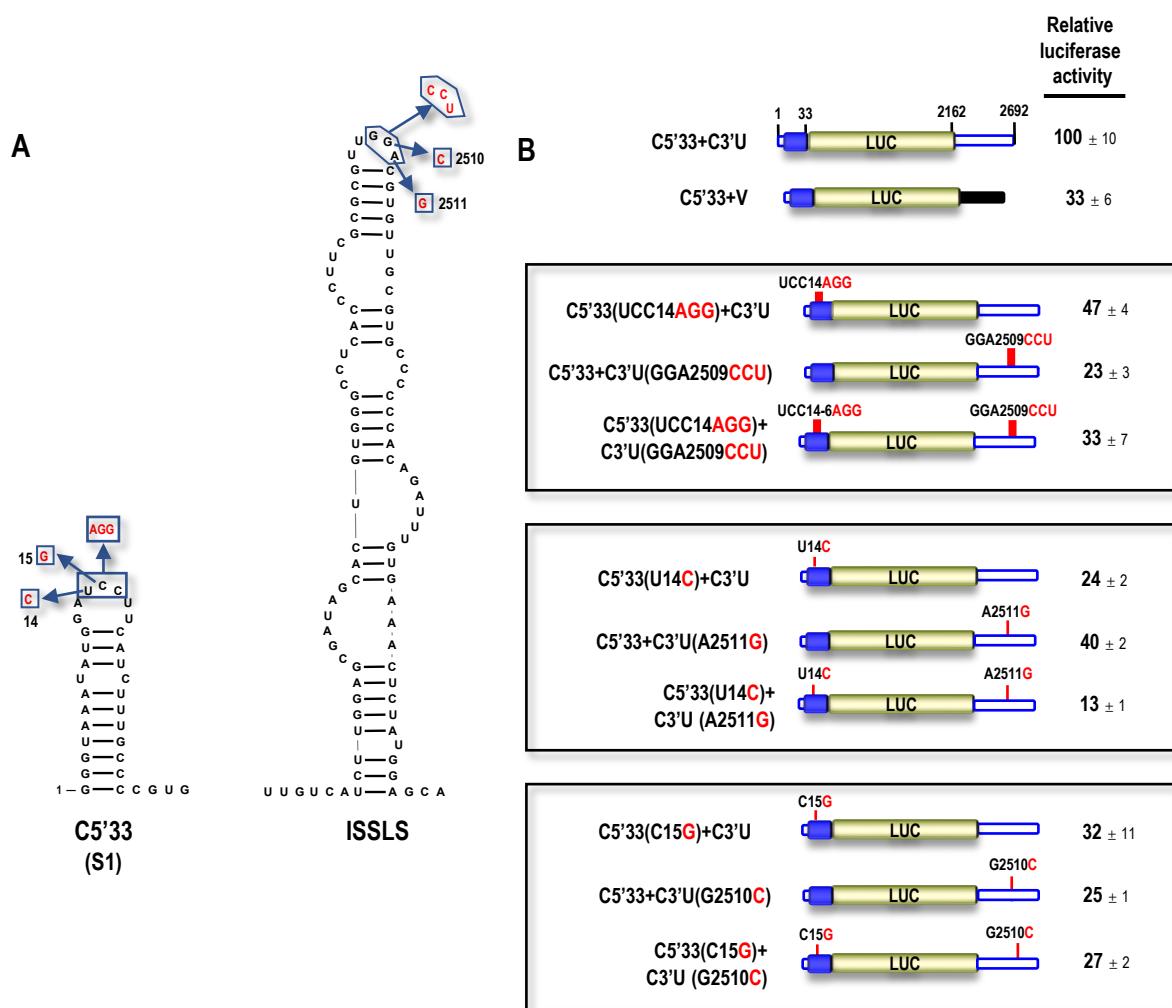
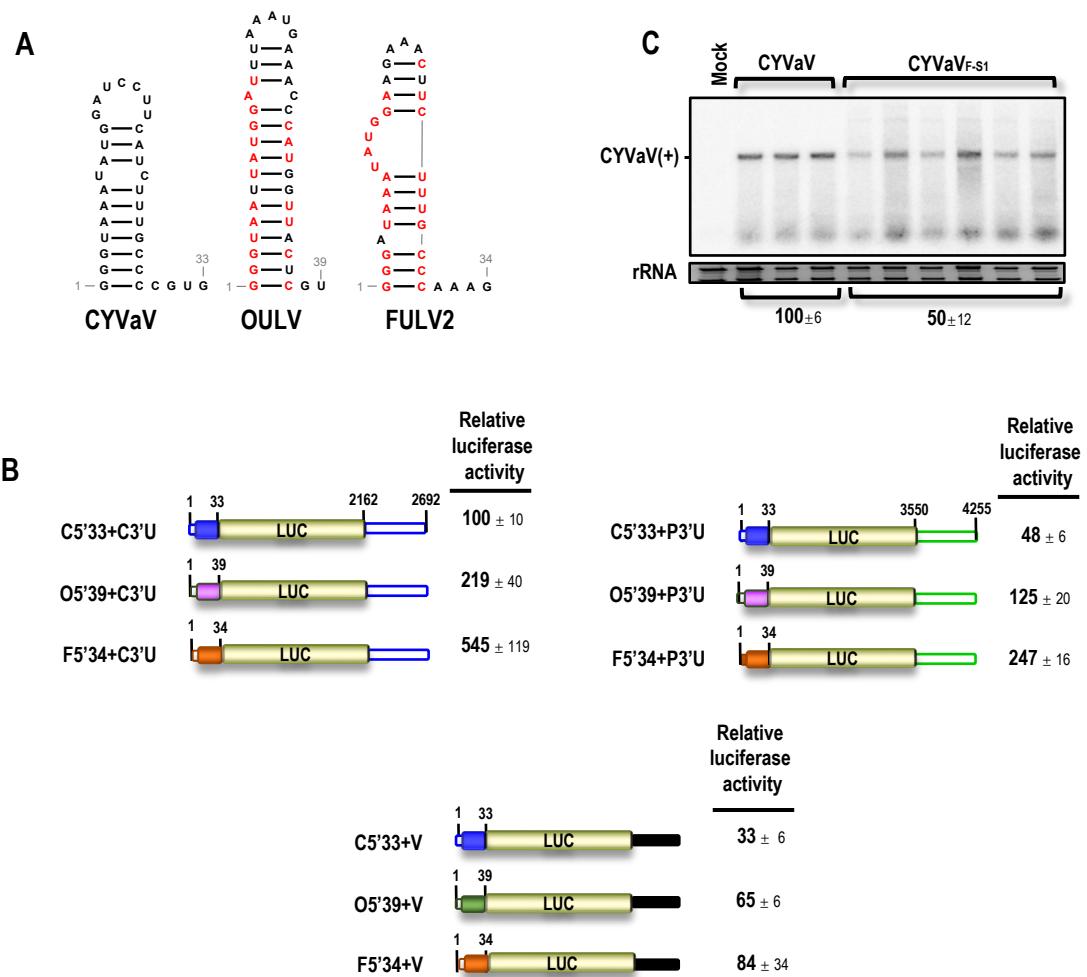
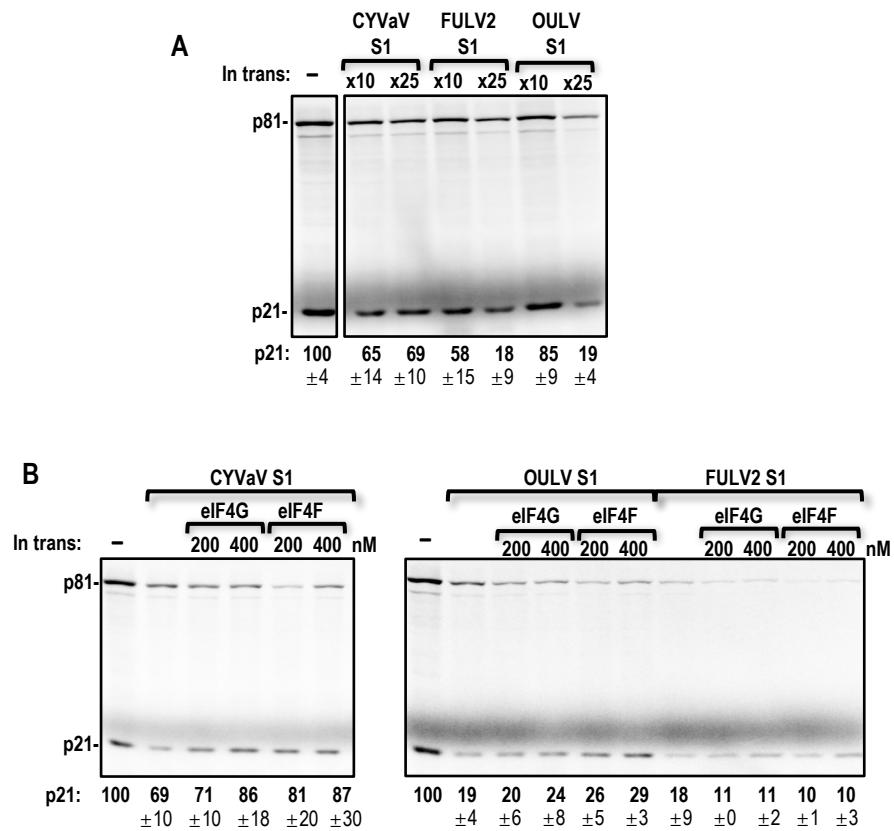


Figure 5

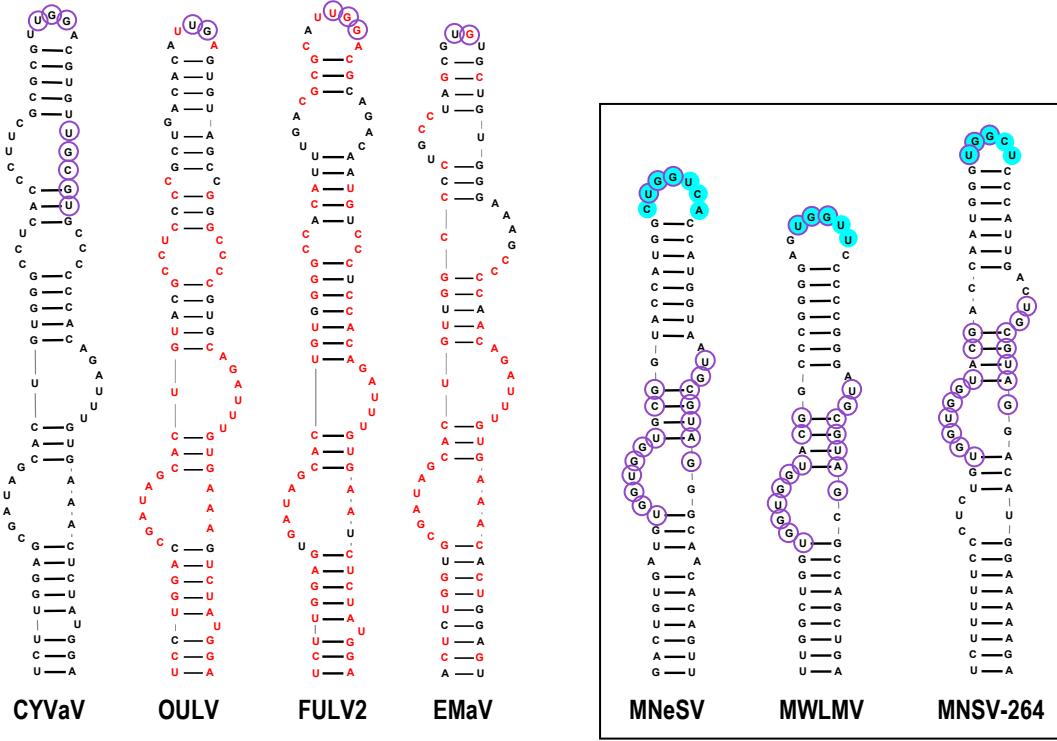

Figure 6

Figure 7

Figure 8

