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Abstract
Two new umbravirus-like associated RNAs (ulaRNAs) were found, respectively, in maize and Johnsongrass samples from 
Ecuador. The complete sequences consist of 3,053 and 3,025 nucleotides, respectively, and contain four open reading frames 
(ORFs). Their genome sequences were 58% identical to each other and 28 to 60% identical to the most closely related 
viruses. Phylogenetic analysis using full genome sequences and amino acid sequence of the RNA-dependent-RNA poly-
merase (RdRp) placed both sequences in a clade sharing the most recent common ancestor with ulaRNAs from sugarcane 
and maize, suggesting that they belong to a monophyletic grass-infecting lineage. Their terminal regions exhibit features 
common to umbraviruses and ulaRNAs.

In the last decade, high-throughput sequencing (HTS) has 
enabled the discovery of a considerable number of plant 
viruses from different hosts [1, 2], contributing to under-
standing the evolutionary pathways of several taxonomic 
groups [3]. One of the groups for which several potential 
new members have been reported is the family Tombusviri-
dae, comprising 18 genera of single-stranded positive-sense 
RNA viruses (https://​talk.​ictvo​nline.​org/​taxon​omy/p/​taxon​
omy-​histo​ry?​taxno​de_​id=​20200​5192). The genome organ-
ization of tombusviruses differs across genera, except for 

open reading frame 2 (ORF2), the viral RNA-dependent-
RNA-polymerase (RdRp), which is translated through ribo-
somal readthrough of ORF1 in most cases, or a -1 riboso-
mal frameshift (FS) in umbra- and dianthoviruses [4, 5]. A 
major genomic distinction is made for members of the genus 
Umbravirus, which lack the gene for the coat protein (CP) 
and therefore depend on coinfecting viruses, typically mem-
bers of the genus Polerovirus in the family Solemoviridae, 
for genome encapsidation and plant-to-plant transmission 
by vectors [5].

In recent years, several viral RNAs sharing significant 
phylogenetic relationships with the RdRp of umbraviruses 
have been found in several plants. Although the absence of 
CP genes is a common characteristic of these viral RNAs, 
they have unique features that distinguish them from “true” 
umbraviruses. The term ‘umbra-like virus’ or ‘umbravirus-
like associated RNAs (ulaRNAs)’ was coined to group these 
viral RNA entities [6–11]. Three classes of ulaRNAs have 
been categorized based on RdRp analysis and genomic sec-
ondary structure prediction [12]. Class 1 includes ulaRNAs 
that are ~ 4.5 kb in length with unusually long 3ʹ untrans-
lated regions (UTRs). This class is typified by papaya virus 
Q (PpVQ), papaya meleira virus 2 (PMeV2), and babaco 
virus Q (BabVQ), which have been found in Ecuador (PpVQ 
and BabVQ) [13, 14], Brazil (PMeV2) [15], and Mexico 
(PMeV-Mx) [16]. Recently, an umbra-like virus, related to 
PpVQ and PMeV2, has been reported in papaya plantings 
from Australia [17]. Class 2 comprises smaller ulaRNAs 
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of ~ 2.7 to 3 kb that have been reported in opuntia (opuntia 
umbra-like virus, OULV), sugarcane (sugarcane umbra-like 
virus, SULV), fig (fig umbra-like virus, FULV), maize (Ethi-
opian maize associated virus, EMaV), and citrus (citrus yel-
low vein associated virus, CYVaV) [6, 8, 10, 11]. A recently 
proposed third class (class 3) is typified by strawberry virus 
A (StVA), a 3.2 kb-ulaRNA sharing a most recent ancestor 
with those in class 1 [9].

Here, we report the characteristics and complete genome 
sequences of two new class-2 ulaRNAs found in maize (Zea 
mays) and johnsongrass (Sorghum halepense). In August 
of 2021, leaf tissue samples showing mild-to-moderate 
mosaic were collected in Santa Ana, a representative maize 
production area in Manabí province of Ecuador (GPS coor-
dinates: -1.123533, -80.414250). Samples were collected 
from two commercial cultivars, a yellow type ‘Trueno’ and 
a white type ‘INIAP-543’, and from johnsongrass, which 
was the most prevalent grass weed in the area at the time 
of sampling.

A virus discovery analysis was conducted by HTS on 
three total-RNA pools. Pooled samples (pool 1, yellow 
maize; pool 2, white corn; pool 3, johnsongrass) were a 
composite of 10 (pool 1) or six (pools 2 and 3) individual 
totalRNA preparations, mixed in equal amounts totaling 4 
µg per sample. After pooling, aliquots of each RNA sample 
were stored individually at -80 °C for later analysis. Total 
RNA was extracted from ~100 mg of fresh leaf tissue using 
a PureLinkTM RNA Mini Kit (Life Technologies). The three 
pooled samples were subjected to DNase treatment, depleted 
of the host ribosomal RNA fraction using an Illumina Ribo-
Zero Plant Kit and subjected to library preparation using 
an Illumina Nextera XT DNA Library Prep Kit. The librar-
ies were sequenced as paired-end reads (2 × 150 bp) on an 
Illumina NextSeq2000 instrument at the Leibniz Institute 
DSMZ. A total of 38.2, 64.8, and 42.1 million raw reads 
were obtained from RNA pools 1, 2, and 3, respectively.

Raw reads were analyzed in Geneious Prime v. 2022.0.1 
(Biomatters) using a bioinformatics pipeline developed in 
house to subtract host sequences and to assemble contigs, 
which were screened by BLASTn and BLASTp against a 
virus reference database for virus discovery, reconstruction 
of virus genome sequences, and taxonomic assignment.

Bioinformatics analysis revealed the presence of several 
virus contigs in each sample, most of which corresponded 
to previously reported viruses belonging to different gen-
era (Online resource 1). However, two contigs of 2,908 and 
2,746 nt in length, obtained from pools 1 and 3, respec-
tively, were distantly related to known ulaRNAs (NCBI 
BLAST analysis date: November 3, 2021). The closest hits 
included EMaV (accession no. MF415880), SULV (acces-
sion no. MN868593), FULV (accession no. MW480892-3), 
CYVaV (accession no. MT893741), OULV (accession no. 
MH579715), and strawberry virus A (StVA, accession no. 

MK211273-5), with amino acid (aa) identity values in the 
range of 38–65% for the RdRp (35-64 % protein coverage).

The 2,908-nt-long contig (pool 1) was assembled from 
a total of 2,040 reads, with an average sequencing depth 
of 106x, whereas the 2,746 nt-long contig (pool 3) was 
constructed from 972 reads, with an average sequencing 
depth of 54x (Fig. 1A). Pairwise alignments between the 
two contigs showed 58% identity at the nucleotide level 
and 60.5% identity when the deduced RdRp aa sequences 
were compared, indicating that the sequences represented 
two distinct ulaRNAs. Reverse transcription (RT)-PCR was 
used to confirm the presence of each ulaRNA in the original 
RNA preparations. Primers were designed using the con-
sensus sequence of each assembly from the region with the 
highest coverage (Fig. 1A). Amplicons of the expected size 
were detected in one RNA sample from each group (Online 
resource 2). The 5ʹ and 3ʹ ends of each contig were verified 
by rapid amplification of cDNA ends (RACE), using a 5ʹ/3ʹ 
RACE Kit, 2nd Generation (Roche, Germany) and specific 
primers designed based on the terminal genomic regions.

The complete genomic sequence of the ulaRNA assem-
bled from the yellow maize sample consists of 3,053 nt 
(GenBank accession no. OM937759), whereas the one 
from johnsongrass consists of 3,025 nt (accession no. 
OM937760). For consistency in ulaRNA naming, we will 
refer to the new ulaRNA from maize as maize umbra-like 
virus (MULV) and the one from johnsongrass as johnson-
grass umbra-like virus (JgULV).

The genomes of both viruses contain four ORFs organ-
ized in a similar manner, with minor variations in each ORF 
(Fig. 1A). ORF1 encodes a protein of 195 aa (22 kDa) for 
which no function was predicted. ORF2 is located after a 
stretch of 50 (MULV) or 170 (JgULV) nt downstream from 
ORF1. However, both contain the same heptameric ribo-
somal FS sequence (GGG​UUU​U), which is conserved in 
other class 2 ulaRNAs and in those of umbraviruses (con-
sensus: GGA​UUU​U) (Fig. 1C). In addition, both MULV 
and JgULV can form structures similar to those of CYVaV 
in this region, including a hairpin that has the capacity for a 
tombusvirid-wide long-distance RNA:RNA interaction with 
a sequence near the 3ʹ terminus (Fig. 1D). This strongly 
suggests that translation of ORF2 occurs via a -1 riboso-
mal FS. Interestingly, MULV and the previously identified 
EMaV have unique ORF1 termination codons (UAG) two 
codons upstream of the position of the termination codon 
found in all other class 2 ulaRNAs (UGA), including JgULV. 
Frameshifting would result in a fused protein of 717 aa (82.5 
kDa) and 674 aa (76.5 kDa) for MULV and JgULV, respec-
tively. The non-overlapping region of the fusion protein con-
tains conserved viral RdRp domains (pfam clan number: 
CL0027).

Unlike class 2 dicot-infecting ulaRNAs, which have only 
a single ORF that partially overlaps with the end of the 
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Fig. 1   Characterization of two new umbravirus-like associated 
RNAs (ulaRNAs). (A) Genome organization of the new ulaRNAs 
maize umbra-like virus (MULV) and johnsongrass umbra-like virus 
(JgULV), showing the hypothetical proteins. Nucleotide positions are 
shown for each open reading frame (ORF). The slash (/) differentiates 
nt positions or protein molecular weight (kDa) for MULV or JgULV 
(MULV/JgULV). The predicted ribosomal frameshift (FS) sequence 
is highlighted (yellow) at the end of ORF1, with the corresponding 
deduced amino acid translation at the FS site. Arrows indicate primer 
sites for detection and amplification of terminal sequences. Graphi-
cal representations of the high-throughput sequencing depth for each 
viral contig and pairwise alignment between MULV and JgULV 
(green = highly conserved, yellow = less conserved areas) are shown 
below. (B) Phylogenetic relationship of ulaRNAs to 24 representative 
umbraviruses, betacarmoviruses, and tombusviruses and six tom-
busvirus-like associated RNAs (tlaRNAs). The maximum-likelihood 
phylogenetic tree was constructed based on amino acid sequences of 
the RNA-dependent RNA polymerase (RdRp) using the WAG with 
frequency substitution model previously inferred using jModelTest in 

MEGA X. Branch numbers indicate bootstrap support as a percent-
age of 1000 replicates. The scale bar denotes amino acid substitu-
tions per site. The tree is rooted at the midpoint. The name of each 
ulaRNA isolate is followed by an underscore and its accession num-
ber. (C) Structures at the 5ʹ end of citrus yellow vein associated virus 
(CYVaV) (determined by RNA structure probing) are also found 
in JgULV and MULV. Start codons are shaded yellow and the CCS 
(carmovirus consensus sequence) is shaded green. (D) Structures at 
the ribosome recoding site of CYVaV that are also found in JgULV, 
MULV, and all other class 2 ulaRNAs such as Ethiopian maize asso-
ciated virus (EMaV). The ribosome slippery site is shown in orange, 
stop codons are in yellow, and an H-type pseudoknot (AES, unpub-
lished) is in pink. Note that EMaV and MULV have an upstream 
UAG stop codon not found in any other class 2 ulaRNA. The 
sequence that participates in long-distance interaction (LDI) with the 
3ʹ end is shown in gray, and the interacting sequence is also found at 
the base of the hairpin (also in gray) and likely pairs with the terminal 
loop in an alternative structure (AES, manuscript in preparation).
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RdRp ORF (absent in CYVaV because of two deletions), 
MULV and JgULV have two additional putative ORFs 
(ORFs 3 and 4) arranged in an out-of-frame overlapping 
configuration similar to those of umbraviruses but without 
the intervening intergenic region (Fig. 1A). The hypotheti-
cal protein encoded by ORF3 consists of 178 aa (20.4 kDa) 
and 200 aa (22.6 kDa) in MULV and JgULV, respectively, 
sharing 25% aa sequence identity. BLAST alignments did 
not reveal any homologues to this protein. The hypotheti-
cal product of ORF4 is a protein of 212 aa (23.6 kDa) and 
207 aa (23 kDa), for MULV and JgULV, respectively, shar-
ing 48% aa sequence identity, and 44-48% identity with the 
single ORF orthologs of 21-22 kDa from FULV, SULV, 
OULV, and EMaV. The recently reported wheat umbra-like 
virus (WULV), a new ulaRNA of 3.5 kb [18], has one ORF 
overlapping at the end of ORF2 and is suggested to have an 
additional ORF starting 48-nt apart from the termination 
codon of the previous ORF. However, this second ORF is 
in frame, with no intervening termination codons, and thus, 
its identity as a separate ORF requires further examination. 
Interestingly, SULV also contains a fourth ORF that partially 
overlaps with the class 2 orthologue, similar to MULV and 
JgULV.

Maximum-likelihood phylogenetic trees, constructed 
in MEGA X [19] using the complete nucleotide (Online 
resource 3) or amino acid sequences (Fig. 1B) of the RdRp, 
showed that MULV and JgULV form a clade with the class 
2 ulaRNAs SULV and EMaV, suggesting a grass-infecting 
common ancestor for this lineage. A sister clade was formed 
by CYVaV, OULV, and FULV, within which CYVaV and 
FULV exhibit a closer relationship (Fig. 1B). Although 
demarcation criteria have not yet been established for ulaR-
NAs, the nucleotide and amino acid sequence identity values 
obtained when comparing MULV, JgULV, and their closest 
relatives strongly suggest that there are two distinct class 2 
ulaRNA lineages.

The 5ʹ UTR in JgULV is 9 nt in length, including a 
canonical “carmovirus consensus sequence (CCS; G2-3A/
U4-9), found at the 5ʹ ends of all carmoviruses and nearly 
all ulaRNAs and umbraviruses. MULV has an extended 5ʹ 
UTR of 29 nt, which is unique among class 2 ulaRNAs, 
with the exception of FULV-1, which was reported to have 
a highly unusual 5ʹ UTR that requires additional verifica-
tion [8]. As with all class 2 ulaRNAs (with the exception 
of FULV-1), the 5ʹ region of both new ulaRNAs contains 
two short terminal hairpins and an extended downstream 
third structure, according to secondary structure predictions 
for CYVaV using a combination of Selective 2′ Hydroxyl 
Acylation analyzed by Primer Extension (SHAPE) struc-
ture probing, computational predictions, and phylogenetic 
analysis [20] (Fig. 1C).

MULV and JgULV have 306- and 302-nt 3ʹ UTRs, 
respectively, similar to other class 2 ulaRNAs. The 3ʹ regions 

of CYVaV and other members of the family Tombusviridae 
have been studied extensively, and different step-loop struc-
tures have been shown to play key roles in replication and 
translation. Virtually all members of the family Tombusviri-
dae have two 3ʹ-terminal hairpins (designated as H5 and Pr 
for carmoviruses and umbraviruses) that are connected by 
a four-nucleotide pseudoknot that includes the 3ʹ-terminal 
residues (Fig. 2) [20–22]. Many umbraviruses and carmovi-
ruses contain two hairpins just upstream of H5 (designated 
as H4a and H4b), which, along with H5 and two pseudo-
knots, form a TSS-type 3ʹ cap-independent translation 
enhancer (CITE) [10, 21, 23]. Most class 2 ulaRNAs, includ-
ing MULV and JgULV, contain similarly placed hairpins but 
lack the capacity to form pseudoknots. In CYVaV, the 3ʹ 
CITE was identified as a novel I-shaped structure (ISS)-like 
structure (ISSLS), with several critical stretches of perfectly 
conserved class 2 residues (Fig. 2, green with orange cir-
cles) that are also conserved in MULV and JgULV. Several 
regions of additional conservation among MULV, JgULV, 
and EMaV were also evident, especially in a lower support-
ing stem. Our findings evidence the diversity in genomic 
sequence, size, and organization of ulaRNAs, anticipating 
the existence of new classes of these RNA entities.

Lastly, an important biological feature of “true” umbravi-
ruses is their association with a capsid-assistor virus, typi-
cally a polerovirus, for genome encapsidation and plant-to-
plant transmission by vectors [5]. Poleroviruses have been 
found incidentally (e.g., no formal experiments have been 
conducted to demonstrate their capsid-lender nature) for 
SULV, OULV, CYVaV, and StVA [6, 9–11]. For the papaya-
infecting ulaRNAs, an unusual dsRNA totivirus-like virus 
has been shown to be the capsid assistor of PMeV-2 [15] 
(Quito-Avila, unpublished). In this study, we found the 
polerovirus maize yellow dwarf virus (MYDV) in sam-
ples from the three RNA pools. However, MYDV was not 
detected in the two samples in which MULV and JgULV 
were found. A possible explanation could be that the respec-
tive host cannot be systemically infected by the helper virus, 
while class 2 ulaRNAs are capable of independent systemic 
movement, which likely involves the use of host movement 
proteins (Liu et al., manuscript submitted). Further studies 
are needed to determine the natural transmission of MULV 
and JgULV and their potential involvement in disease.

It should be noted that, at the time this manuscript was 
being prepared, a nucleotide sequence recorded as Teo-
sinte-associated umbra-like virus (TULV) (accession no. 
OK018180) from Mexico became available in the NCBI 
GenBank database. The TULV sequence shares 99% nt 
sequence identity with MULV but is missing 5ʹ terminal 
residues and has additional sequence beyond the 3ʹ end 
sequence conserved with all other class 2 ulaRNAs. We 
propose that TULV represents a Mexican isolate of MULV. 
No formal publications about the discovery of TULV or 
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its molecular characterization were available at the time 
of submission.

Supplementary Information  The online version contains supplemen-
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