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RNAcanvas: interactive drawing and exploration of nucleic acid
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ABSTRACT

Two-dimensional drawing of nucleic acid structures, particularly RNA structures, is fundamental to the
communication of nucleic acids research. However, manually drawing structures is laborious and
infeasible for structures thousands of nucleotides long. RNAcanvas automatically arranges residues
into strictly shaped stems and loops while providing robust interactive editing features, including click-
and-drag layout adjustment. Drawn elements are highly customizable in a point-and-click manner,
including colours, fonts, size and shading, flexible numbering, and outlining of bases. Tertiary
interactions can be drawn as draggable, curved lines. Leontis-Westhof notation for depicting non-
canonical base-pairs is fully supported, as well as text labels for structural features (e.g., hairpins).
RNAcanvas also has many unique features and performance optimizations for large structures that
cannot be correctly predicted and require manual refinement based on the researcher’s own analyses
and expertise. To this end, RNAcanvas has point-and-click structure editing with real-time
highlighting of complementary sequences and motif search functionality, novel features that greatly
aid in the identification of putative long-range tertiary interactions, de novo analysis of local structures,
and phylogenetic comparisons. For ease in producing publication quality figures, drawings can be

exported in both SVG and PowerPoint formats. URL: https://rnacanvas.app
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INTRODUCTION

In nucleic acids research, particularly RNA research, structures are commonly drawn in 2-dimensional
(2D) format (1-3). Conventions such as the Leontis-Westhof notation (4) are also important for
denoting various types of canonical and non-canonical base-pairs and interactions in RNA structures.
Since manually creating 2D structure drawings is laborious for large structures (5-7), a variety of
software programs have been developed to facilitate this process.

2D nucleic acid structure drawing programs can be roughly separated into two categories: 1)
programs that offer flexible, force-based adjustment of drawing layouts; and 2) programs that
generally apply stricter layout conventions to drawings. Programs in the first category, including forna
(8) and RiboSketch (9), allow click-and-drag editing of drawings and use force-based methods (8) to
help maintain the arrangement of residues into stems and loops in response to dragging. The
interactivity features in this class of programs make editing drawings intuitive, and their use of force-
based methods allow for great flexibility in how a drawing is arranged. These programs, however,
require increased effort to (for example): 1) precisely align stems emanating from a junction or that
are stacked; 2) flatten or evenly round regions of unpaired residues; and 3) align stems with the flat
base of a drawing.

Programs in the second category, including VARNA (10), XRNA
(http://rna.ucsc.edu/rnacenter/xrna/xrna_fag.html), PseudoViewer (11), RnaViz (12), jViz.RNA (13),
RNAView (14), RNApuzzler (15), R2R (16), R2DT (17), and RNA-rtist
(https://github.com/fjossinet/RNArtist), generally produce drawings in a more regimented, publication-

friendly manner that can more efficiently communicate secondary structure and facilitate phylogenetic
comparisons (2, 15-18). Importantly, programs in this category have greater functionality for
precisely arranging stems and loops in a strict manner (e.g., perfectly round or flattened loops),
making them preferred for the drawing of large structures, which benefit from stricter layout
organization (15, 17). These programs also introduce additional methods for specifying the aspects
of a drawing, such as program-specific input file formats (e.g., R2R, RNArtist) and layout templates
(e.g., R2DT), and also tend to offer greater customization of individual drawing elements including
bases and bond notations (e.g., Leontis-Westhof). On the other hand, features for interactivity, such
as click-and-drag editing of residue layout and the shapes of tertiary interaction lines, are often
lacking or limited in functionality. This category of programs may also lack point-and-click editing of
base-pairs and other drawing elements, thus requiring input files or application forms for edits, where
bases and other elements are specified by numeric position making editing drawings cumbersome
and less intuitive.

Nucleic acid structure drawings are rarely static but change as substructures are confirmed
using biochemical methods or through phylogenetic comparisons, and thus drawings should also be
easily editable to reflect a researcher’s current knowledge. Towards this goal, RNAcanvas was
designed to combine some of the best features of both types of structure drawing programs, merging
the interactivity functions of the first category (e.g., click-and-drag layout adjustments) with the orderly
layouts (e.g., residues maintained in strictly shaped stems and loops) and detailed drawing

customizations of the second category. Furthermore, RNAcanvas provides extensive point-and-click
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editing features for individual components of the drawing, such as base letters, lines of bonds, and
base outlines and numberings. RNAcanvas is also one of the few programs to fully support Leontis-
Westhof notation for depicting canonical and non-canonical RNA base-pairs and interactions.
RNAcanvas has been optimized to function smoothly with large structures, and contains unique
features such as real-time highlighting of complementary sequences, motif search, and export of
drawings in both scalable vector graphics (SVG) and PowerPoint (PPTX) formats, which greatly
facilitates the creation of figures for scientific presentations. Exported SVG and PPTX drawings are
also formatted such that individual objects (e.g., base letters, bond lines) can be altered in vector
graphics editors such as Adobe lllustrator or PowerPoint. RNAcanvas was formerly named

RNA2Drawer, which was initially available only in a download format (19).

MATERIALS AND METHODS

Versions of software tools used for RNAcanvas are currently the most recent (2023), however
continuous enhancements to the program to provide additional functionality and updating of tools will

continue.
Programming Languages and General Tools

RNAcanvas is a single-page web application created with HTML/CSS/JavaScript. Babel v7.16.10 is
used to compile JavaScript code to the ECMAScript 2009 (ES5) standard. The application is built
using the webpack module bundler v4.46.0. TypeScript v3.9.10 is used to add type annotations over
JavaScript code. All JavaScript application code to be received by the user is written with TypeScript
type annotations. Unit testing is performed on the Node.js runtime environment v16.18.1 and using
the Jest framework v24.9.0. The uuid library v8.3.2 is used to generate universally unique identifiers
(UUIDs), which are assigned to a variety of components (e.g., text elements of bases) to simplify

retrieval in the application code.

Interactive Drawing

Within the application, the drawing itself is a scalable vector graphics (SVG) document, which is a
type of element that web browsers can render. Web browsers provide built-in methods for detecting
user interaction with SVG documents (e.g., mouse clicks, hovering and dehovering of elements within
the SVG document). This allows user interaction with the drawing to be programmed in an event-
driven manner. The SVG specification is mature and extensive, allowing additional customization of
drawings. The SVG.js library v3.1.1 is also used to simplify code for manipulating the drawing and

managing user interactions.

Peripheral Ul Elements
Peripheral user interface (Ul) elements, such as the top menu, bottom information bar, and right-side
forms are built using the React framework v16.14.0. The react-color library v2.19.3 is used for the

colour picker Ul element. The react-select library v3.2.0 is used for the Ul element for picking fonts.
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The React Testing Library v9.5.0 and the enzyme library v3.11.0 are used for unit testing of peripheral

Ul elements.

Exporting Drawings

The SVG.js library v3.1.1 is used to produce SVG files of drawings. (SVG files contain the textual
representation of an SVG document, such as the drawing of the application.) To produce PowerPoint
files of drawings, the PptxGenJsS library v3.9.0 is used. Rather than convert all the SVG elements of
a drawing to their nearest PowerPoint object counterpart, many drawing elements (e.g., the curved
lines of tertiary bonds) are included in PPTX files as individual SVG image elements. Because of this,
exported PPTX files require PowerPoint version 2016 or later. SVG image elements in exported
PPTX files can still be manipulated as though they were PowerPoint objects and can often be

converted to corresponding PowerPoint objects using the PowerPoint “Convert to Shape” feature.

RESULTS

RNAcanvas offers extensive options to customize drawings of nucleic acid secondary structures and
tertiary interactions based on graphical user interaction, with drawings edited using “tools” and forms.
Tools control how the user interacts with the drawing itself. For example, different tools allow the user
to drag elements of the drawing, select element(s) for editing, or pair and unpair bases. Forms pop-
up on the right-side of the application and allow properties of selected elements (or the drawing as a
whole) to be directly edited through text and numeric inputs and various picker components and
toggles (e.g., fonts of bases, colours of bonds, base numbering). All structure drawing figures in this

report were produced entirely within the RNAcanvas web app (unless stated otherwise).
Layout Flexibility

Using the Dragging Tool, the layout of a drawing can be adjusted by dragging with the mouse (Fig. 1).
Stems can be dragged around loops and the outermost loop can be dragged to rotate the drawing
with the arrangement of bases into stems and loops strictly maintained. Using the Flattening Tool,
individual loops can be flattened (or reverted to unflattened). When flattened, the outermost loop is
entirely flat (Fig. 1B, a-c), and inner loops with more than one child stem assume a triangular shape
(Fig. 1B, d-g). Flattening inner loops with multiple child stems often helps to condense a drawing and
highlight conserved branching patterns in structures. Flattening an inner loop with only one child stem
(Fig. 1B, h and i) aligns the child stem with the parent stem, effectively “straightening” the two stems.
Using the Flipping Tool, individual stems can be flipped across their parent loops (Fig. 1B, j-m).
RNAcanvas also has a Layout form in which the rotation of the drawing can be precisely specified.
The Layout form also has a field for specifying the termini gap of the drawing, which is the distance
between the first and last bases when the outermost loop of a drawing is round (Fig. 1B, label n and
dashed line). The termini gap can be set to zero (for a fully circular outermost loop) or to larger

values (e.g., for a semicircle outermost loop).

Customization of Drawing Elements
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The following customizations can be accomplished using the Editing Tool:

Base customizations. Fonts, font sizes and base colours can be personalised (Fig. 2A). Bases can
be outlined, and outlines can be adjusted for size, line thickness and line and fill colours and
transparencies. Chemical probing data such as SHAPE data (20) can be easily incorporated into the
structure through base and/or outline colouring. A “dots” style drawing, in which only the colour-
coded outlines of bases are shown, is an effective way to communicate chemical probing data (Fig.
2B) and dots can be easily suppressed to reveal the underlying bases. RNAcanvas has a dedicated
form to help with styling bases according to a set of data. This form allows the user to progressively
select and style bases within different data ranges (e.g., low, moderate, and high SHAPE reactivities).
Base letters can be directly edited, and bases can subsequently be inserted, appended, and removed.
A substructure can be specified when inserting/appending a subsequence of bases. The numbering

of bases can also be specified via the offset, increment and anchor properties in the Numbering form,

with text and lines customizable in terms of fonts, colour, dimensions, etc. (Fig. 2A). Individual bases
can also be manually numbered regardless of what numbers are assigned to other bases in the

drawing.

Bond customizations. In a drawing, consecutive bases are linked by a primary bond. Most primary
bonds are not visible (by default) when a structure is initially drawn. Secondary bonds join base-pairs
in the secondary structure of a drawing and affect the layout of the drawing. Tertiary bonds
communicate base-pairs/interactions that do not affect the layout of the drawing. All bonds have a
line that connects the two bases in the bond. Primary and secondary bonds have straight lines.
Tertiary bonds have curved lines that can be dragged with the mouse to adjust their shape. The lines
of bonds can be customized in terms of colour and thickness, as well as base padding, which is the
distance between the end of a bond line and the base connected by the bond (Fig. 2C). Bond lines
can be dashed and their ends rounded.

Elements such as rectangles, circles, triangles, and text can be “strung” onto (associated with)
any bond (Fig. 2C). This attachment of elements to specific bonds allows for the full Leontis-Westhof
notation (4) for canonical and non-canonical base-pairs and interactions to be depicted on secondary
and tertiary bonds. As with other drawing elements, strung elements can be customized in terms of
colour, transparencies, dimensions, line dashing, fonts, etc. Strung elements can be dragged with the
mouse and displaced from their parent bond, which adds versatility to their usage. For example,
when dragged next to nearby bases, strung elements can mark the location with additional
information (Fig. 2D) or can be used to shade hairpins. Text strung elements can be used to name
structural features as well as the 5' and 3' termini (Fig. 2D). All strung elements maintain their position

and orientation relative to their parent bond when the layout of the drawing is adjusted.

Shading a series of bases and outlining structures. Highlighting a selection of bases can be
accomplished by: i) setting primary bond base paddings to zero; ii) making primary bonds sufficiently
thick to encompass the font size of the bases; iii) setting the line end caps of the primary bonds to
round; and iv) sending the shading below the bases (Fig. 2E). Tertiary pairings can also be denoted

by shading the two interacting sequences and connecting one base of each sequence with a single
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tertiary bond (Fig. 2E, in orange). It is also possible to outline structures in a drawing by shading

bases using this technique and then sending base letters below the shading (Fig. 2F).

“Stick-and-ball” drawings. “Stick-and-ball” drawings (Fig. 2G) can be created by making base letters
invisible (e.g., by assigning them the background colour), increasing the base padding of secondary
bonds to shorten them, and making secondary bonds sufficiently thick to overlap with each other (thus
forming the “stick” portion). The “ball” portion is composed of circle strung elements that are dragged

over the loops in the structure and sized to match the sizes of the loops.
Structure Editing and Large Structure Exploration

Structures thousands of nucleotides long, such as the structures of positive-strand RNA virus
genomes, are increasingly studied as a whole (5, 6, 21). Such large structures cannot be predicted
directly (5) and require manual refinement by RNA researchers based on phylogenetic comparisons,
experimental results, and the researcher’s own expertise. RNAcanvas has optimized performance for

editing large structures, e.g., when dragging to adjust the layout.

The Pairing Tool is used to pair and unpair bases (i.e., add and remove secondary and
tertiary bonds) in a point-and-click manner. The Pairing Tool also has the option of highlighting
sequences that are complementary to the selected sequence (Fig. 3, selected sequence highlighted
in yellow and complementary sequences highlighted in pink). The number of possible pairing
partners within the structure can be designated, and options are available to exclude G-U/G-T pairs
and permit partial mismatches between pairing partners. The Pairing Tool aids in refinement of
output by structure prediction programs such as Mfold (22) and RNAfold (23) and helps to identify
possible long-range base-pairings that cannot currently be predicted computationally (5). RNAcanvas
also has a form for finding input motifs (Eind Motifs form) (Fig. 3). Both complement highlighting

(using the Pairing Tool) and the Find Motifs form support partial mismatching and the use of IUPAC
single letter codes (24). Complement highlighting further supports a percentage cap on the G-U/G-T
base-pair composition of highlighted complements. The Find Motifs form can also treat an input motif

to search for as a regular expression (as defined in Computer Science).
Input and Output Formats

RNAcanvas accepts primary sequences (unstructured) as well as structures in dot-bracket notation
(also called Vienna format) and in Connectivity Table (CT) files. Input structures may contain
pseudoknots, which are drawn using tertiary bonds. RNAcanvas outputs drawings in SVG and
PowerPoint formats. SVG files can be opened in vector graphics editors such as Adobe lllustrator
and Inkscape. Drawings are exported such that all drawing elements (e.g., bases text, bond lines)
are exported as individual SVG or PowerPoint objects. For instance, base letters are exported as
SVG text elements or PowerPoint text boxes. This allows for further manipulation of exported
drawings in vector graphics editors and PowerPoint. A scaling factor may also be specified when
exporting a drawing. All elements in an exported drawing are individually scaled according to the

scaling factor. Scaling elements individually on export eases the manipulation of exported drawings
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compared to when exported drawings are scaled as a whole after export using a separate application
such as Adobe lllustrator. Additionally, RNAcanvas can save drawings in a file format unique to
RNAcanvas with “.rnacanvas” extension. Downloaded drawing files contain a complete
representation of a drawing, allowing drawings to be reopened at later times exactly as they were

when saved.

DISCUSSION

RNAcanvas has many enhancements over the free desktop-based RNA2Drawer predecessor (19).
Being web-based, RNAcanvas is easier for users to access and is still available for use at no cost.
The RNAcanvas web app also uses the SVG web standard to present drawings, which is expansive
and permits wide customization of drawings. Other improvements in the web app include unlimited
undo/redo functionality, greater layout flexibility (e.g., the ability to flatten and circularize loops
individually), the availability of strung elements on bonds, support for Leontis-Westhof notation, ability
to add text labels and base markers, enhanced flexibility in numbering bases, and the Find Motifs
form.

Although RNAcanvas offers flexible options to customize the layout of a drawing (Fig. 1), the
program does not currently support certain layout features. For instance, RNAcanvas cannot
currently incorporate pseudoknots into the layout of a drawing, unlike some programs such as
PseudoViewer (Table 1) (11). Certain types of structures such as frameshifting elements (25) are
often drawn such that pseudoknot(s) are conveyed via the layout of the drawing. The initial layouts of
drawings made by RNAcanvas (especially for large structures) can also contain overlapping regions
that need to be manually untangled by the user. While drawings produced by many programs often
contain overlapping regions (17), some programs such as RNApuzzler/RNAturtle have made
algorithmic advancements in the initial layout of an RNA drawing to avoid overlaps (15). R2DT has
also demonstrated the effectiveness of template-based drawing for a wide array of small and large
structures (17). Programs such as PseudoViewer, RNApuzzler and R2DT, however, do not provide
the expansive features of RNAcanvas for editing drawings, such as click-and-drag layout adjustment
and point-and-click editing of the structure and individual drawing elements, which allow structure
drawings to be moulded beyond their initial forms. RNAcanvas is also unique in its focus on the
extended exploration of structures and the continued editing of drawings that occurs as the
researcher’s knowledge of a structure grows.

RNAcanvas is able to handle large (at least 3,000 nt) structures with only modest lag times,
making it significantly faster than other drawing platforms with similar click-and-drag layout adjustment.
The primary performance bottleneck of RNAcanvas is the re-rendering of base letters when the layout
of a drawing is changed. Note that among Chrome, Firefox and Safari, the Chrome web browser
currently has the best performance when handling large RNAcanvas structures. Many biological
transcripts, such as positive-strand RNA virus genomes and long noncoding RNAs, have lengths over

3 kb and thus future performance improvements will need to include new strategies for minimizing lag
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times when dragging portions of very large structures. Ultimately, RNAcanvas aspires to allow entire

structures of any size biological transcript to be effectively drawn and edited on personal devices.
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RNAcanvas web app: https://rnacanvas.app

RNAcanvas GitHub repository: https://github.com/pzhaojohnson/rnacanvas
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TABLE AND FIGURE LEGENDS

Figure 1. Various layout options for drawings in RNAcanvas. (A) The same input structure as in (B,
middle) before any layout adjustments save for being rotated 90°. (B) Labels a-n and dashed line
(lower left) added in PowerPoint. (a) Round outermost loop. (b) Flat outermost loop. (c) Rotated flat

outermost loop. (d, e) Round inner loops. (f, g) Flattened inner loops with multiple child stems. (h)
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Flattened inner loop with only one child stem that has been condensed. (i) Flattened inner loop with
only one child stem that has been stretched. (j-m) Flipped stems. (n) Termini gap of the round

outermost loop (indicated by dashed line).

Figure 2. Various customizations of drawing elements. (A) Fonts, font sizes and colours of bases
text are all customizable. Bases can be outlined with circles and numbered. Base outlines and
numberings are also customizable in terms of colours, dimensions, fonts, etc. This drawing has a
base numbering offset of -121 nt. (B) Drawing presented in “dots” style in which only colour-coded
outlines of bases are shown. Dots style is an effective way to communicate chemical probing data,
such as the example SHAPE data shown in this drawing. Dots colour legend added in PowerPoint.
(C) Various customizations of bond lines and “strung” elements. Entire Leontis-Westhof notation for
depicting canonical and non-canonical base-pairs and interactions is supported. (D) Text labels and
base markers. Hairpin H1, stem-loop SL2, linker region L3, the 5'end and the 3'OH were all labelled
within the program. Bases also can have various markers (i.e., coloured triangles, squares, circles)
associated with them. These text labels and base markers are “strung” elements of nearby primary
and secondary bonds that have been dragged to their current positions. Due to being strung
elements, these text labels and base markers maintain both their positions and orientations relative to
their parent bonds when the layout of the drawing is adjusted. (E) Shading sequences of bases.
Tertiary pairing connected by a single tertiary bond is shown (orange). (F) Drawing with portions

outlined. (G) Drawing with portions in the “stick-and-ball” style.

Figure 3. Screenshot showing highlighting of complementary sequences with the Pairing Tool and
the Find Motifs form. The 5’‘CAACC sequence highlighted in yellow is currently selected.
Complementary sequences 5’GGUUG found by the program are highlighted in pink. (Right) Find
Motifs form is open. Currently the options to match Us and Ts and to use IUPAC single letter codes
are toggled. The motif 5’CYRCVA (containing the IUPAC single letter codes Y, R and V) was
searched for and six matching motifs were found. The second matching motif from the bottom is
being hovered with the mouse cursor (highlighted in grey). Clicking on a matching motif will centre

the matching motif on the screen and flash its base letters.

Table 1. Comparison of programs for 2D drawing of nucleic acid structures. Solid dots indicate that a
feature is supported by a program, though the robustness of feature implementations may vary
between different programs. VARNA and jViz.RNA have hollow dots for web-based use since they
require a Java plugin for use in a web browser. Point-and-click structure editing refers to the ability to
add and remove base-pairs and interactions in the secondary and tertiary structures of a drawing
graphically using the mouse. Motif finding functionality refers to features similar to the Find Motifs
form in RNAcanvas. Point-and-click element editing is the ability to select individual or groups of
elements to edit by clicking on them and/or dragging a selecting box over them, rather than being
required to select elements by less direct means (e.g., by inputting numeric positions). Text labels for
structural features refer to the ability to place pieces of text next to structural features such as hairpins
and linker regions that name them. Flexible base numbering is the ability to assign any number to

any base regardless of what numbers are assigned to other bases. This is useful when a drawing
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contains two discontinuous portions of a larger sequence and the numbering for one portion must be
offset from the other. Granular output scaling refers to the ability to scale drawings at the level of
individual elements when exported, as opposed to scaling an exported drawing as a whole after
export. Drawing using input files and automated drawing are grouped together since the use of input
files can lend itself to automated drawing via the automated creation of input files. Automated
drawing also includes the ability to generate large numbers of structure drawings in an automated
way in general, such as by allowing other software written by the user to interface with the structure

drawing software, such as with VARNA.
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