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ABSTRACT
Deep neural network (DNN) services have been widely deployed in
many different domains. For instance, a client may send its private
input data (e.g., images, texts and videos) to the cloud for accu-
rate inferences with pre-trained DNN models. However, significant
privacy concerns would emerge in such applications due to the po-
tential data or model sharing. Secure inferences with cryptographic
techniques have been proposed to address such issues, and the sys-
tem can perform secure two-party inferences between each client and
cloud. However, most of existing cryptographic systems only focus
on DNNs for extracting 2D features for image inferences, which
have major limitations on latency and scalability for extracting
spatio-temporal (3D) features from videos for accurate inferences.
To address such critical deficiencies, we design and implement the
first cryptographic inference system, Crypto3D, which privately
infers videos on 3D features with rigorous privacy guarantees. We
evaluate Crypto3D and benchmark with the state-of-the-art sys-
tems on privately inferring videos in the UCF-101 and HMDB-51
datasets with C3D and I3D models. Our results demonstrate that
Crypto3D significantly outperforms existing systems (substantially
extended to inferences with 3D features): execution time: 186.89× vs.
CryptoDL (3D), 63.75× vs. HEANN (3D), 61.52× vs. MP-SPDZ (3D),
45× vs. E2DM (3D), 3.74× vs. Intel SGX (3D), and 3× vs. Gazelle
(3D); accuracy: 82.3% vs. below 70% for all of them.
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Table 1: Comparison of secure inferences (HE: Homomorphic
Encryption, GC: Garbled Circuits, SS: Secret Sharing, TEE:
Trusted Execution Environment, Mix: Mixed MPC).

Method 3D Spatial Temporal
CryptoNets [3], CryptoDL[5] HE ✗ ✓ ✗

MiniONN [8], DeepSecure [12] GC ✗ ✓ ✗

PSA [16] SS ✗ ✓ ✗

MLCapsule[4] TEE ✗ ✓ ✗

Visor [11] TEE ✗ ✓ ✓

Gazelle [7], Delphi [9] Mix ✗ ✓ ✗

GALA [15], PPVC [10] Mix ✗ ✓ ✗

Crypto3D (Ours) Mix ✓ ✓ ✓

1 INTRODUCTION
Recently deep neural networks (DNNs) have been increasingly
deployed by the cloud to provide services for object detection, image
and video classification, anomaly detection, etc. The client may send
its data to the cloud for accurate classification and prediction using
the pre-trained DNN models. However, severe privacy concerns
may occur between the client and cloud. In video inferences, the
users’ videos involve considerable amounts of sensitive information
(e.g., human face, identities, activities, and workspace). Directly
disclosing them to the cloud would compromise the privacy of users.
Indeed, the pre-trained DNN model should also be considered as
the proprietary information for the cloud, which cannot be shared.

To eliminate such privacy risks, cryptographic protocols [1, 8]
are designed for secure inferences (as summarized in Table 1). A
secure inference protocol allows the client to send its private in-
put data (encrypted), and privately obtain the learning result from
the cloud. Neither party can learn anything regarding the model
weights and private inputs from each other. Many existing works
[8] use one or more cryptographic techniques such as Fully Ho-
momorphic Encryption (FHE) [1], Garbled Circuits (GC) [14] and
Secret Sharing (SS) [8] to compose the protocols. FHE can pro-
vide higher privacy guarantees, but it brings expensive computa-
tional overheads. Moreover, some non-polynomial functionalities
(e.g., Non-linear Activation Functions ReLU) cannot be supported.
Garbled circuits support arbitrary functionality, but it results in
significant computation and communication overheads. Trusted
Execution Environment (TEE) [4] provides secure enclave for the
isolated sensitive computation with attestation. It ensures data pri-
vacy and integrity without provable guarantees. Moreover, current
TEEs are not scalable enough for processing large amounts of data.
Thus, directly using such systems are not ideal for secure DNN
inferences. The Delphi system [9] was recently proposed as one
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of the state-of-the-art efficient cryptographic inference systems. It
outperforms other protocols in both latency and communication
cost for image DNN with a hybrid cryptographic protocol. Unfor-
tunately, securely inferring images based on 2D features by Delphi
(the state-of-the-art) is far from enough for video-based applica-
tions. Compared with the 2D, most 3D ConvNets have to infuse the
temporal information of the videos after each convolution/pooling
operations. Performing 3D convolution and pooling operations are
supposed to deliver temporal information across all the neural net-
work layers to the end. Integrated with both spatial and temporal
information in each feature, 3D ConvNets have proven to be more
accurate on video inferences than 2D ConvNets [2, 13]. However,
to our best knowledge, cryptographic inferences on 3D features for
video DNNs have not been studied yet in literature.1

To fill this gap, we design and implement the first cryptographic
inference system (namely “Crypto3D”) that privately infers videos
based on 3D spatial-temporal features (both C3D [13] and I3D [2]).
Also, we further boost the system efficiency with optimized matrix
operations and ciphertext packing technique.

Cloud Service 
Provider

DNN Model

Input Video Streams Crypto3D

Secure Video 
Inference Protocol 

Client

Result

…

…

Figure 1: Crypto3D Framework

2 CRYPTOGRAPHIC PROTOCOL
Threat Model. In Crypto3D, each client holds its video streams
and it expects not to disclose the content of video to the cloud or
other video analytics services. We assume that computing the 3D
and the DNN architecture are known to the public (i.e., dimensions
and type of each layer in the neural networks), except the parameter
of model weights. Based on the proposed cryptographic protocols,
the privacy of input video and model weights are guaranteed.
Ciphertext Packing. Our Crypto3D contains offline

∏
SecureOFL

and online inference/predication
∏

SecureONL phase. Assume that
the pre-trained DNN model from the server will not be changed
and updated. The offline phase is supposed to be independent of the
input data from the client. Once the offline

∏
SecureOFL is completed,

the input data given by the client will be sent to the cryptographic
protocol for executing the online phase. However, the arithmetic
operations of the encrypted matrices are involved and it leads to
the inefficiency for the high-dimensional data tensors computation.

To mitigate this issue, Crypto3D utilized the optimized matrix
permutation [6] to efficiently perform the operation of matrix com-
putation with the ciphertext packing and parallelism. The opera-
tion of the matrix multiplication can be considered as the sum of
component-wise products with the specific permutations of the
matrices themselves. Assume that there are two square matrices
1Visor [11] provides confidentiality for analyzing video streams via a hybrid TEE
system. However, it still privately infers data (e.g., object detection and tracking) based
on 2D features. PPVC [10] preserves privacy in video classification based on MPC, but
it still utilizes the 2D ConvNets without fully preserving temporal information.

with size 𝑛 × 𝑛, the 𝑛 permutations of the matrix 𝐴 via the follow-
ings symmetric permutations: 𝜎 (𝐴)𝑖, 𝑗 = 𝐴𝑖,𝑖+𝑗 , 𝜏 (𝐴) = 𝐴𝑖+𝑗, 𝑗 and
𝜙 (𝐴) 𝑗, 𝑗 = 𝐴𝑖, 𝑗+1, 𝜓 (𝐴) = 𝐴𝑖+1, 𝑗 , where 𝜙 and 𝜓 are denoted as
the shifting functions for column and row, respectively. Then, the
multiplication of two matrices (we denote 𝐴 and 𝐵) with the order
𝑑 can be computed as: 𝐴 · 𝐵 =

∑𝑑−1
𝑘=1 (𝜙

𝑘 ⊙ 𝜎 (𝐴)) × (𝜓𝑘 ⊙ 𝜏 (𝐵))
where ⊙ refers to the component-wise product and 𝑘 is used to
represent the number of times for perturbation. As such, we can
efficiently compute the two matrix multiplications. In Crypto3D,
we utilize the function Permu(·) to represent the computation of
the𝑛 permutation operations. To boost the efficiency, we also utilize
the vectorable homomorphic encryption “Ciphetext packing”. We
use the Encode(·) to refer to the matrix transformations, which
transforms a matrix into a plaintext vector with encoding map
functions. Our Crypto3D uses the optimized matrix multiplication
and ciphertext packing [6] for the efficiency improvement. Since
we can pack all the inputs into a single ciphertext and perform
layer computation (e.g., convolutions) in parallel, we can enable
the SIMD parallelism with the ciphertext packing.

2.1 Protocol Design
As shown in Figure 1, Crypto3D secures the two-party inference
between the client and the cloud service provider. The Crypto3D by
extending the design inDELPHI [9]: the neural network is processed
with linear and non-linear layer one after the other, and the output
will be delivered as input for the next layer.
Offline Phase (

∏
SecureOFL). Our Crypto3D provides the offline

phase execution, which can be executed before the input is known.
First, (pk, sk) can be fetched via the KGen algorithm. The input
value x is independent of the offlinePhase() execution. We denote
⟦𝑟𝑖⟧ ← R𝑛, 𝑖 ∈ [1, .., 𝑙] and ⟦𝑠𝑖⟧ ← R𝑛, 𝑖 ∈ [1, .., 𝑙] as the ran-
dom masking vectors for the 𝑖-th layer. In the linear layer,the
Enc(pk, ⟦𝑟𝑖⟧) is sent to the server by the client. With the Eval
procedure, the server computes the Enc(𝑝𝑘, (𝒫𝑖 · ⟦𝑟𝑖⟧ − ⟦𝑠𝑖⟧)) and
send its back to the client. Then, the client decrypts and obtains
decrypted value for all layers. Thus, the additive secret sharing of
𝒫𝑖 · ⟦𝑟𝑖⟧ is held by both the client and the server before the online
phase execution. Regarding the non-linear layer execution, the ex-
ecution of activation function depends on what type of function.
The garbled circuit is constructed via GC schemes. It helps to solve
the ReLu function by exchanging the labels for input wires with
⟦𝑟𝑖+1⟧ and 𝒫𝑖 · ⟦𝑟𝑖⟧ − ⟦𝑠𝑖⟧. On the other hand, the Beaver’s triples
protocol is used for the polynomial approximation functions.
Online Phase (

∏
SecureONL). Given the input x, the server receives

x−⟦𝑟1⟧. At this time, the additive secret shares of x are held by the
client and server, respectively. At the beginning of the 𝑖-th layer
evaluation, x𝑖 can be fetched from the first (𝑖 − 1) layers of the
neural network. The client holds ⟦𝑟𝑖⟧ while server holds 𝑥𝑖 − ⟦𝑟𝑖⟧.
For the evaluation of the linear layer(s), the server computes 𝒫𝑖 ·
(x𝑖 −⟦𝑟𝑖⟧), which ensures that the additive shared secrets of 𝒫𝑖 · x𝑖
are held by the client and server, respectively. Once the linear layer
is completed, 𝒫𝑖 · (x𝑖 − ⟦𝑟𝑖⟧) + ⟦𝑠𝑖⟧ and 𝒫𝑖 · ⟦𝑟𝑖⟧ − ⟦𝑠𝑖⟧ are held
by the server and client, respectively. Similarly, we use the garbled
circuits and Beaver’s multiplication for evaluating the non-linear
layers. For the Garbled Circuits evaluation, the client receives the
garbled labels from the server, which is corresponding to the 𝒫𝑖 ·
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Table 2: Comparison with the state-of-the-art systems (significantly extended from 2D to 3D) on the UCF101 dataset with C3D
model. The execution time of Crypto3D is over 186.89×, 63.75×, 61.52×, 45× 3.74× and 3× faster than CrytoDL (3D), HEANN (3D),
MP-SPDZ (3D), E2DM (3D), Intel SGX (3D) and Gazelle (3D), respectively. PPVC [10] uses 2D CNN Network.

System Method Library Network Runtime w. GPU (Sec) Speedup (×) Amortized (Sec) Accuracy

Gazelle (3D) HE, GC, SS PALISADE C3D 1916.48 3.00× 2.48 > 49.4%
Intel SGX (3D) TEE - C3D 2387.77 3.74× 3.08 49.4%
PPVC [10] MPC, SS MP-SPDZ 2D CNN 511.64 (from [10]) - - 56%

MP-SPDZ (3D) MPC, SS MP-SPDZ C3D 39303.72 61.52× 50.78 > 56%
CryptoDL (3D) HE HELIB C3D 119388.28 186.89× 154.25 > 62%
HEANN (3D) HE HEANN C3D 40725.29 63.75× 52.62 > 62%
E2DM (3D) HE HEANN C3D 28747.26 45.00× 37.14 > 62%

Crypto3D (Ours) HE, GC, SS SEAL C3D 638.83 - 0.83 82.3%

(x𝑖 −⟦𝑟𝑖⟧) +⟦𝑠𝑖⟧. With these labels, the garbled circuit is evaluated
to return the output of one-time pad (OTP (𝑥𝑖+1 − ⟦𝑟𝑖+1⟧)) to the
server. The 𝑥𝑖+1 − ⟦𝑟𝑖+1⟧ is obtained by the server with one-time
pad key. On the other hand, the Beaver’s multiplication procedure is
executed for the polynomial approximation evaluation. The client
and sever will hold the [𝑥𝑖+1]1 and [𝑥𝑖+1]2, separately after the
Beaver’s multiplication procedure. At this time, the client sends the
results of the [𝑥𝑖+1]1 − ⟦𝑟𝑖+1⟧ to the server. The 𝑥𝑖+1 − ⟦𝑟𝑖+1⟧ will
be obtained by adding the [𝑥𝑖+1]2. Finally, the client learns the 𝑥𝑙 .

3 EVALUATION
Setting and Datasets. Our Crypto3D is implemented with Rust,
Python and C++. All the experiments are evaluated on a Ubuntu
20.04.2 LTS server with the NVIDIA-SMI 460.80 GPU. We evaluate
C3D and I3D features on the UCF-101 and HMDB-51 datasets.
Comparison with Existing Systems. We provide the perfor-
mance comparison of Crypto3D and other privacy-preserving frame-
works with 3D structure. As discussed in Section 1, all the bench-
mark systems cannot be directly applied to for video inferences
based on the C3D model. We significantly extend them by modify-
ing the 2D CNN network to embed with 3D architecture. With the
3D filters, the spatio-temporal features are able to be extracted. We
re-implement the following systems on the C3Dmodel: Gazelle (3D),
Intel SGX (3D), MP-SPDZ (3D), CryptoDL (3D), HEANN (3D) and
E2DM (3D). However, Delphi and GALA cannot be extended due
to the 2D structure or lack of source codes. Table 2 summarizes the
cryptographic method, library, total execution time, speedup and
amortized time. Crypto3D significantly outperforms all other bench-
marks. The execution time of Crypto3D is over 186.89×, 63.75×,
61.52×, 45× 3.74× and 3× faster than CrytoDL (3D), HEANN (3D),
MP-SPDZ (3D), E2DM (3D), Intel SGX (3D) and Gazelle (3D), re-
spectively. These results show that Crypto3D is much more effi-
cient in 3D privacy-preserving video input inference. Additionally,
Crypto3D only takes 0.83 sec on average to process the secure infer-
ence for each frame, while other HE-based frameworks take much
longer time because of the computational overhead. Note that the
accuracy of the all other benchmarks is only less than 70% while
Crypto3D can achieve the accuracy of 82.3%.

4 CONCLUSION
Many existing techniques are proposed to perform the secure two-
party inferences with the cryptographic schemes for the DNNs.
However, they cannot be directly applied to video inferences which
extracts spatio-temporal (3D) features for more accurate video

recognition. In this paper, we propose crypto3D, the first cryp-
tographic neural network inference based on 3D features, which
achieves significant performance by (i) privately inferring videos
on 3D spatial-temporal features; (ii) involving an optimized ma-
trix operations and ciphertext packing technique in Crypto3D for
efficiency boosting. In addition, we significantly modify most of
the state-of-the-art secure DNNs protocols (CryptoDL, HEANN,
MP-SPDZ, E2DM, Intel SGX, and Gazelle) to privately infer videos
with 3D features as the benchmarks. Finally, it can also guaran-
tee 82.3% accuracy on inferring videos with 3D features, which is
significantly more accurate than all of other benchmarks.
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