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Abstract—Ubiquitous microphones on smart devices considerably raise users’ concerns about speech privacy. Since the microphones
are primarily controlled by hardware/software developers, profit-driven organizations can easily collect and analyze individuals’ daily
conversations on a large scale with deep learning models, and users have no means to stop such privacy-violating behavior. In this
paper, we propose UniAP to empower users with the capability of protecting their speech privacy from the large-scale analysis without
affecting their routine voice activities. Based on our observation of the recognition model, we utilize adversarial learning to generate
quasi-imperceptible perturbations to disturb speech signals captured by nearby microphones, thus obfuscating the recognition results
of recordings into meaningless contents. As validated in experiments, our perturbations can protect user privacy regardless of what
users speak and when they speak. The jamming performance stability is further improved by training optimization. Additionally, the
perturbations are robust against noise removal techniques. Extensive evaluations show that our perturbations achieve successful
jamming rates of more than 87% in the digital domain and at least 90% and 70% for common and challenging settings, respectively, in
the real-life chatting scenario. Moreover, our perturbations, solely trained on DeepSpeech, exhibit good transferability over other

models based on similar architecture.

Index Terms—Adversarial Examples, Speech Recognition, Privacy, Voice Assistants.

1 INTRODUCTION

ICROPHONE deployment is surging with the popu-

larity of smart devices. Meanwhile, the privacy im-
plication of pervasive microphones has been the center of
substantial debate [1], [2], [3]. Microphones are increasingly
equipped to support hands-free experience (e.g., voice con-
trol) and voice related functions. However, many of them
are out of users’ control, even worse, out of users’ aware-
ness. For example, Google integrates a dormant microphone
secretly in its home security device — Google Nest. No
one realized its existence until Google announced that its
voice assistant service would roll out to Nest [4]. These
ubiquitous sound receivers can easily record users’ daily
conversations in many situations (e.g., secretly recording or
voice call). Such large volumes of recordings, no longer con-
trolled by users, contain private user information attractive
to commercial companies. They are motivated to analyze the
speech contents from the recordings for various purposes,
such as algorithm enhancement, data trading and targeted
advertising as shown in Figure 1. In 2019 Google and Ama-
zon both admitted their analyses on the semantic contents
of consumers’ recordings for service improvement [5], [6]. A
large amount of these audio clips are unintended records [7].
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Fig. 1: Organizations collect and illegitimately analyze
speech contents for different purposes.

Users cannot fully control the recording behaviors of
nearby microphones and cannot stop the illegitimate col-
lection and analysis of their own speech signals. Such a con-
siderable privacy threat raises concerns from government,
industry and academia. Security and privacy compliance
obligations such as EU’s General Data Protection Regu-
lation (GDPR) [8] and California Consumer Privacy Act
(CCPA) [9] have been enacted to empower users with more
rights to autonomy over their personal data including voice
recordings. Companies are upgrading the privacy control
on their product. Google introduces a switch to disable all
apps” access to the microphones on Android 12 [10]. Lenovo
builds microphone mute switch on its laptops. In academia,
related studies focus on anti-eavesdropping techniques [7],
[11]. In short, communities have realized the privacy threat
of pervasive recording devices and illegitimate usage of
recordings, and they start to define measures from legal,

E Xplore. Restrictions apply.



This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3242292

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

policy, and technical perspectives.

The above approaches attempt to give users more con-
trol over their private data, but they have limitations.
The software can still access the microphone data even
though mute switches are activated [12]. Even worse, the
manufacturers/service providers may peep into the private
information for their interest (e.g., the case of Amazon and
Google). Users can only rely on their honesty and hope
the claimed software/hardware measures would work. The
anti-eavesdropping techniques [7], [11] are deployed at the
user side, but they require special hardware to facilitate
ultrasonic jamming, which is similar to [13], [14]. However,
they make devices deaf thus stopping normal voice activ-
ities (e.g., listeners cannot understand the jammed record-
ings in a video conference.). Furthermore, their constant
jamming induces health issues [15].

In this paper, we seek to answer the question: can users
proactively protect their speech content privacy while their voice
activities are not interfered? To this end, we propose a privacy-
preserving technique that supports normal voice recording
but stops the automatic analysis of the content of vast quan-
tities of speech. Since organizations generally use an Auto-
matic Speech Recognition (ASR) for such analysis otherwise
entailing too much human labor [16], we propose UniAP,
which fools the ASR recognition results into meaningless
texts without affecting human perception. Note that UniAP
needs not a microphone that induces extra privacy concerns.

UniAP generates specially-designed perturbations to be
played by a commercial off-the-shelf (COTS) speaker (i.e.,
a jammer) completely controlled by a user. When a user
decides to protect speech privacy, he/she first activates
the jamming and then freely speaks or starts a video
conference with an app (i.e., Zoom). The jamming noises
along with speech signals will be captured by malicious
recording devices close to users or the same device hosting
the conference. Once the recordings are analyzed by an
ASR, resulting transcriptions would be meaningless texts.
Meanwhile, humans would not be bothered seriously by the
jamming noises, and the speech content is still intelligible
for the call receiver in the virtual conference. UniAP can be
a standalone device without sophisticated hardware or an
app on normal smart appliances.
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Fig. 2: Context dominates the transcribing process of LSTM-
based ASR. “you” is correctly output even if the input of
the current step is none, given the necessary information is
provided in the context component.

UniAP is a novel jamming technique utilizing non-
targeted adversarial examples (AEs) to obfuscate ASR sys-
tems. Our ultimate goal is to generate perturbations effec-
tive on commercial ASRs (black box), but as the first step
towards this direction, we first work on an open-source
ASR (white box) in this paper. The white-box setting is
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widely applied in speech AE works [17], [18], [19], [20],
[21]. Considering small business entities are likely to adopt
a well-known and open-source ASR rather than developing
one from scratch, we use one of the high-performing ASRs,
Deep Speech [22], as our jamming target. Deep Speech is
widely used in both academia [17], [20], [23] and in indus-
trial products such as voice assistants and online speech-
to-text (STT) platforms [20]. Its most popular open-source
implementation is named as DeepSpeech. We use “Deep-
Speech” to refer to both the model and the implementation
in this paper.

Generic AE methods cannot be directly applied to pre-
serve privacy due to several technical challenges. First, the
jamming signal should be input-agnostic to be effective re-
gardless of what the user speaks (i.e., universality). Second,
the jamming signal should be synchronization-free to be
effective regardless of when the user starts talking. Third,
the jamming performance of different perturbations should
be stable in practical usage, otherwise will harm users’ trust
in the approach. Fourth, the robustness of jamming noises
against denoising should be considered in practical use.
Most speech AE techniques [17], [18], [24], [25], [26], [27] fo-
cus on targeted attack and cannot satisfy the above require-
ments. Neekhara et.al [28] achieves universal AE but fails on
other requirements. Their AE generation algorithm, similar
to [29], is based on aggregating atomic perturbation vectors
that disturb specific data points to form a universal AE. In
comparison, we redesign the perturbation structure, opti-
mize the training process and induce randomness to satisfy
all four requirements. AdvPulse [21] and Vadillo et.al. [30]
focus on synchronization-free and universality respectively
on command classification models of dozens of words,
but the feasibility differs from fooling speech transcription
models (our case) [30]. Besides, we have not seen works
considering the impact of AE robustness against denoising
techniques. To our best knowledge, this paper takes the first
cut to apply AE to preserve speech privacy while addressing
these new challenges.

Targeting DeepSpeech as an example, the recognition
mechanism of Long Short Term Memory (LSTM)-based ASR
is studied. We experimentally find the dominating role of
context in the transcription process. Figure 2 shows the core
idea: even if the input is empty, “you” can be decoded if the
context part contains the relevant information and the role
of input is more about updating the context. Based on the
observation, we implement a practical jamming noise gener-
ation method to address the aforementioned challenges. We
utilize batch training and create a unique structure to make
our perturbation content-agnostic and synchronization-free.
We then optimize the training method to increase the jam-
ming stability and the perturbation robustness against noise
removal methods. Lastly, we consider over-the-air jamming
scenarios in real life and evaluate the transferability of our
noises across models with similar network structures. We
encourage readers to listen to our jammed audio samples at
the demo website!. Highlights of our original contributions
are summarized as follows:

1) To our best knowledge, we propose the first work
utilizing universal adversarial perturbations (UAPs)

1. https:/ / github.com/UniAP2022/UniAP
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2 PRELIMINARY

Because ASR is our fooling tar
concepts in this section. Especiall .
ings of LSTM-based ASRs as DeepSpeech belongs to this
category. Then necessary information about AEs and metrics
used in this paper are provided.

2.1 ASR Introduction
2.1.1 Function of an ASR

The task of an ASR is to transcribe an audio signal to
its corresponding semantic content. The speech recognition
process can be formulated as:

y = argmax p(y|z) ¢))
v

x is the audio signal, and ¥y are all possible transcription
candidates. ASR finds the most likely transcription given
the audio input. We simplify Equation 1 as y = f(z),
and formulate the process of an individual perceives the
x as fp(x), where fr(-) represents the human capability
of understanding speech. A good ASR should result in
f(z) ~ fu(z). With the advancement of deep learning
in recent years, ASRs based on neural networks achieve
cutting-edge performance and good usability. LSTM-based
ASRs are one of the mainstream learning-based ASRs.
DeepSpeech, one of the state-of-the-art models [20], is an
important representative of this category, primarily studied
in this paper. The findings on DeepSpeech are applicable to
other ASRs of the LSTM category.

2.1.2 LSTM-based ASR

LSTMs are a special type of recurrent neural net-
works(RNNSs). It introduces the cell state C; (the top line of
an LSTM module shown in Figure 3) which runs through the
whole working chain of LSTMs to address the short-term
memory limitation of RNNs [31]. The input pair (x¢, hy_1)
is fed into the forget gate, input gate and output gate
respectively. The outputs of these three gates decide what
information is cast away from C;_;, how to update the
Ci—1, and the value h; to be output at current step.

In case of an LSTM-based ASR, the cell state C; keeps the
context information essential to a transcription task, and the
hidden state h; decides the result of current step. As Figure 4
illustrates, the input of DeepSpeech is a Mel-Frequency
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Fig. 3: The internals of the LSTM module.
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Fig. 4: The structure of DeepSpeech.

Cepstral Coefficient (MFCC) matrix which is the feature of
multiple speech frames. The layer highlighted with blue-
dashed box is a standard LSTM network. The remaining
networks are all feed-forward neural networks with output
hgl). A softmax layer outputs the probability distribution of
every token. Lastly, Connectionist Temporal Classification
(CTC) module removes repetitious and redundant symbols
and generates the final transcription.

2.2 Adversarial Perturbations/Examples

In the adversarial attack, an adversary adds a small derived
perturbation ¢ on x to generate 2’ = x 4+ §. Humans still
perceives z’ as the original transcription y, while the ASR
recognizes it as a different text ¢'. ' is usually called an
adversarial example (AE). There are two types of adversarial
attacks: targeted one and non-targeted one. Non-targeted
AE is not interested in what results would be decoded
by the ASR. The goal is achieved if a user perceives z’
different from the ASR does (f(x) # fu(z)). d is derived
by an optimization with the goal to increase the difference
(loss) between y' and original text y. Considering an ASR
as a white-box, gradient descent is used for calculating the
perturbations. In this paper, we seek to generate robust
acoustic perturbation ¢ as the jamming noise, where 2z’ is
a non-targeted AE and also the perturbed signal.

2.3 Metrics

CER and JSR. For untargeted adversarial attack, Character
Error Rate (CER) is a widely used metric to measure the
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Fig. 5: The system model.

difference between the false transcription 3’ and the original

transcription y: CER(y,y’) = %W. The edit

distance between two strings y and y’ is formulated as
EditDistance(y,y’) = (Nsub + Nins + Naer), where Ny is
the number of characters unmatched between the reference
y and y’, N, is the number of characters present in 3’ but
absent in y, and Ny is the number of characters which
appear in y but absent in y’. Lastly, length(y) equals to
Nycy that is the number of characters in y. An attack is
successful when the CER of an AE is big enough, such that
the original semantic content cannot be inferred. In a real
privacy-preserving scenario, the jamming is usually treated
as a success if a CER is equal to or greater than 50% [28].
Besides CER, the percentage of successful one (CER > 0.5)
in all jamming trials, named as Jamming Success Rate (JSR),
is applied to evaluate jamming performance. Word Error
Rate (WER) is also used occasionally Jamming Success Rate
(JSR) and it is similar to CER but on the word level.

SNR. The perturbation ¢ should be small enough to make
an AE quasi-imperceptible. We compare the speech signal
(jamming target) and our perturbation with signal-to-noise
Ratio (SNR) following relevant studies [18], [21]. It is defined
as 10log,, %. The larger the value of SNR, the less likely
the perturbation would be noticed by users. To provide
some context, the SNR of perturbed signal in Commander-
Song [18] ranges from 14 to 18.6 dB on the digital domain,
and all SNRs are below 2 dB in the over-the-air case. In
AdvPulse [21], the SNRs are 13.7 dB and 6 dB, respectively.

3 PROBLEM FORMULATION

In this section, we first introduce our system and threat
model, then present the design goals of our privacy-
preserving method. DeepSpeech is very likely chosen by
small companies as their STT engine integrated into prod-
ucts [20], [32], [33], thus it is the main study target in this
paper. And our privacy-preserving method shows transfer-
ability over other LSTM models. Notice that, although the
method allows voice activities like video conferencing, the
functioning of voice assistants is not included. We consider
it poses privacy risks because of continuous sound moni-
toring. Such behaviour should not be allowed when a user
would like to protect his/her privacy.

3.1 The System and Threat Model

Users cannot prevent organizations from automatically ex-
tracting their personal information with an ASR from voice
recordings, which raises severe privacy risks [34]. To address
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this issue, we propose to utilize a jammer that enables users
to protect their own speech privacy without relying on the
honesty of other parties. Figure 5 shows the system model,
including Users, Recording Devices and UniAP Jammer.

1) Users are individuals resting in their room. They
would have a conversation, a video conference or
a voice call at any moment, and they don’t want
their conversation content to be analyzed without
their permission.

2) Recording Devices are common smart gadgets
equipped with built-in microphones (e.g., a smart
TV, a laptop or a smartphone). They are usually
deployed around Users, can autonomously become
active, and record conversations in the environment
without Users” authorization. The recordings would
be further analyzed with an ASR model.

3) UniAP Jammer is a device equipped with a built-in
speaker. It transmits UniAP perturbations (i.e., non-
intrusive jamming noises) over the air after manual
activation or at a preset time before Users speak. The
perturbed speech recordings would be transcribed
by an ASR to texts much different from what Users
actually said, while remaining intelligible to human
beings.

We consider the adversary as an entity collecting the
conversation recordings and thereafter extracting Users’
private information. The adversary may: (1) record Users’
conversations without their consent using recording devices
(e.g., a smart TV) near them; (2) implement a video con-
ferencing app but secretly keep the conversations recorded
during a virtual conference for own purposes; (3) lure users
to download an eavesdropping app disguised as either a
social or communication app. The app can easily obtain
the permission to access microphone as Zhou et al. [35]
unveiled, and it would record Users’ conversations when
a VoIP call is detected. Once obtaining recordings via one of
the three ways, the adversary would extract sensitive infor-
mation from them. Inferring semantic contents of massive
recordings is usually done with an ASR otherwise entailing
too much human labor.

The speech privacy threat considered in this paper is
the unauthorized semantics interpretation on speech record-
ings. Small businesses are more likely to be the adversary
because they tend to take risks and conduct such behaviour
for the sake of profit>. A small company would probably
choose a well-known and open-source ASR because devel-
oping one from ground up takes too much effort and many
good open-source ASRs are available.

We consider the opponent would use additional noise
reduction techniques to improve the intelligibility of the
recordings. A moderate adversary would probably apply
spectral-subtractive algorithms [36] to perform a general
speech enhancement. A strong adversary would try to ob-
tain our jamming noise (i.e., template) then subtracts the
template from the recording before feeding it to an ASR.

2. This is a conservative claim because these giant companies also use
speech recordings improperly [5], [6].
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3.2 Design Goals

To protect users’ speech content privacy under the above
model, we aim to design a systematic approach to generate
effective and practical jamming noises, achieving the follow-
ing goals: (1) Low interference: to ensure high SNR of the
perturbed speech signal, keeping the interference to users to
the minimal. (2) Be content-agnostic and synchronization-
free: to ensure our UniAP perturbations can protect the
private information contained in most of speech signals
regardless of contents. Additionally, the perturbations must
stay effective no matter when users speak. (3) Stability:
to ensure stability regarding the jamming performance of
generated noises, thus maintaining the effectiveness of dif-
ferent trained perturbations. (4) Robustness: to ensure the
effectiveness of our noises in a physical playback scenario.
We also aim to generate perturbations robust against strong
adversaries that may apply various denoising methods.

4 TRANSCRIBE SPEECH VIA LSTM-BASED ASRS

Before presenting our perturbation generation approach, we
first provide an empirical study on DeepSpeech, then ex-
plain our fundamental observations on the working mecha-
nism of LSTM-based ASRs based on the experiment results.
These observations construct the basis of UniAP, namely our
perturbation generation approach.

Similar to [17], [18], [20], [37], [38], [39], we use Mozilla’s
Project DeepSpeech [40] as the ASR to study. Section 2.1.2
has shown that DeepSpeech incorporates a standard LSTM
as the core component (Figure 6). The LSTM takes X;, hy_1
and C;_; as input and then outputs h;.

t : A, Output |
FC | I :
I___f__W I Cr—\_’ —’(;’|
LSTM | —! Long-term

I —f— =~ | Memory LSTM |
|

FC x3 |
| /7171 —_ — /’1’ |
I Short-term |

Memory t

Input | X, Input |

Fig. 6: The LSTM module in DeepSpeech.

We would like to validate the assumption: The context
information plays the key role in inferring the transcription result
of an LSTM ASR. To confirm this assumption, we verify the
impact of inputs of the LSTM module on the prediction
results. 3300 sentences are randomly chosen from the train-
clean-100 subset of Librispeech and fed into DeepSpeech
to obtain transcriptions. Then, we look at the interpretation
result of each step, collect 50 speech segments which are
recognized as the same English characters, and record their
corresponding LSTM inputs (e.g., hy, Ci—; and z). This
gives us 1300 groups of data, each of which is the mapping
between the prediction characters and three inputs, noted
as Ojstm = f(x4, ht—1, Ci—1). Then, we set the each input of
this mapping to zero vector and calculate what percentage
of the pairs in each class is still recognized correctly.

The experiment results are illustrated in Table 1. When
x4 are reset to zero vectors, most of the prediction results
are correct. When C';_; are settled to zero values, the recog-
nition accuracy fluctuates between 24% and 90%. However,
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when h;_; values become all zeros, most of the recognition
results are wrong. This result shows that x; is less critical in
influencing transcription results. h;—; and C;_; both affect
the prediction, and h;_; is more important than C;_;.

The results demonstrate context information especially
the short-term memory h;_; dominates the transcription
process of LSTM, and information of the current frame only
has minor effect. Therefore, we should focus on perturbing
the context information to achieve effective jamming. Be-
cause h; and C; run down the entire ASR processing chain
from the utterance beginning, an optimistic solution is to
disturb them from the start of a speech signal.

5 UNIAP-BASED PRIVACY MECHANISM DESIGN

Given the importance of context information, we present the
key innovations of our perturbation generation approach,
namely UniAP in this section. We utilize non-targeted AE
training to achieve jamming that fools ASR transcription
while keeping low interference to human being. Besides be-
ing implicitly quasi-perceptible, perturbations trained with
speech AE should be content-agnostic, synchronization-free,
stable and robust to be practical.

5.1 |Initial Formulation for Content-Agnostic Perturba-
tion

We construct perturbations by solving the non-targeted AE
crafting problem. Let x denote a waveform from an audio
sample distribution X, we seek to obtain the perturbation §
causing an ASR mis-transcribes the majority of audio data
sampled X . Formally, we define the goal of our non-targeted
perturbation as:

CER(t, f(x +9)) > €, for majority z € X 2

where ¢ is the ground truth transcription, € is empirically
set as 0.5, and the “majority” requirement is necessary
for jamming arbitrary speech content. Inspired by [29], we
use the term Universal Adversarial Perturbation (UAP) to
name the problem solution. SNR is applied to quantify the
distortion induced by the perturbation. Now we formulate
the UAP construction as an optimization problem as below:

max SN Rs(x)
subjectto E (CER(t,f(x+0)) >¢) >TH @)
zeX

where T'H refers to a threshold of the jamming success rate
to ensure the capability of jamming arbitrary content. How-
ever, solving this formula is not trivial. We instead minimize
the following objective function which is a relaxation of
Equation 3:

min J (0, z,t)
where J(8,z,t) = c||||* — I(t, f(x +0))

Here [ is the CTC loss which measures the distance between
the ground-truth transcript and the model transcript. The
larger [ results in larger CER. The L2 norm aims to restrict
the perturbation energy. Constant c is the weight of L2 norm.

To solve Equation 4, we utilize the batch loss to itera-
tively generate our UAP. Let 6 refers to the allowed dis-
tortion level, X; = 21,22, ..., %, ...Zy, be a batch of speech

(4)
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TABLE 1: The successful recognition rate of CTC labels after resetting x:, C;—; and h;_; to 0, respectively. The number of
each CTC label is 50. After resetting z;, C;_1 and h;_; to 0, the prediction results achieve average success rates of 96.1%,
68.5% and 2.8%, respectively. Thus, context information (esp. short-term memory ;1) dominates the transcribing process.

CTClabel o -0 Cy_y—>0 hy_; —>0 CTClabel x —+0 Ci_1—>0 hy_,—>0 CTClabel xt —>0 Ci_1—>0 hy_1—0
a 98.0% 86.0% 4.0% j 90.0% 66.0% 2.0% s 88.0% 62.0% 4.0%
b 100.0% 90.0% 2.0% k 96.0% 62.0% 2.0% t 98.0% 78.0% 2.0%
c 96.0% 64.0% 2.0% 1 94.0% 54.0% 4.0% u 94.0% 60.0% 8.0%
d 98.0% 62.0% 2.0% m 94.0% 90.0% 0.0% v 100.0% 90.0% 0.0%
e 90.0% 70.0% 0.0% n 96.0% 80.0% 0.0% w 94.0% 68.0% 0.0%
f 100.0% 82.0% 2.0% o 98.0% 86.0% 2.0% X 94.0% 32.0% 18.0%
g 98.0% 66.0% 0.0% P 94.0% 70.0% 2.0% y 98.0% 64.0% 8.0%
h 98.0% 74.0% 4.0% q 94.0% 64.0% 0.0% z 100.0% 24.0% 2.0%
i 98.0% 76.0% 2.0% r 100.0% 60.0% 2.0% avg 96.1% 68.5% 2.8%

signals sampled from a distribution X, and m refers to the
batch size in training. Algorithm 1 goes through batches of
training samples randomly chosen from the training set and
builds the perturbation § iteratively.

Algorithm 1 Training

Input: Training Audios and Texts (X, T'), allowed distortion 6, learning
rate o, batch size m, L2 penalty constant ¢
Output: Universal Perturbation §
Initialize &
while mean(|6]) < 6 do
(X7 T) = {(Xh T1)7 (X27 T2)7 ey (X’ﬂ7 Tn)})
for (X“TZ) € X do
(X5, T3) = {(z1,t1), (x2,t2), s (Tm tm) }
66— Ozv(j% Z;nzl J((S,Ij,tj)
end for
end while

5.2 Synchronization-Free with Chunk-based Perturba-
tion

We have constructed a basic non-targeted UAP, next we
achieve the synchronization-free goal. In a streaming sce-
nario, the timing of users starting speaking is unpredictable,
which is depicted as the random time delay in Figure 7.
That is to say, we need to significantly disturb the context
information under such unpredicted delay condition ( i.e.,
without synchronization with users” speech). If the length of
the perturbation is comparable to that of speech signals, it is
hard to balance the effect of each portion of the perturbation.
In order to disrupt context information along the whole
speech signal, it is better to make every part of the perturba-
tion count. We use short-length perturbation to concentrate
the disturb effect. The length of a basic perturbation module
is small enough such that it is most likely shorter than a sig-
nal speech command, then small-sized perturbation chunks
are concatenated to form the perturbation, which ensures at
least one complete perturbation chunk for influencing users’
conversation signals. Specifically, we empirically set each
chunk to last for half a second (i.e., 8000 data points when
the sampling rate is 16 kHz).

Based on the chunk structure, we further induce random
time shifting into the UAP training to address various un-
synchronizaed conditions (i.e., unknown speaking timing).
We induce random time shifting as shown in Algorithm 2.
Rather than starting the adversarial perturbation at a spe-
cific point, usually the beginning moment of x, we aim to
minimize the loss if the speech signal is delayed randomly
by ¢, where i obeys the uniform distribution of the time
interval between 0 and [ — 1. [ denotes the length of the

basic noise chunk. We copy J, to form the repeated chunks
illustrated in Figure 7 according to the length of x. The 6 of
Algorithm 1 is replaced by the repeated-chunk perturbation.

Algorithm 2 Random Shift

Input: Perturbation §
Output: Shifted Perturbation d,
l < length(9)
i~ Uniform(0,1 —1)
ds < concatenate(d[i : 1 —1],6[0 : ¢ — 1])

& g
User “My password” @ - <: :: .
) e |

Jammer UAPs

Random Time Delay
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Starts |
jamming

\‘} User starts

speaking

Repeated
Chunks

Fig. 7: Random time delay and chunk-based perturbation.

We evaluate the impact of chunk structure on the jam-
ming performance. A dataset containing 5000 instances
randomly chosen from the Librispeech-clean-100 is built.
The dataset is split into a training set containing 4000
samples and a test set containing 1000 instances. We train
ten perturbations utilizing our algorithms, then generate
ten perturbations with a comparable length to the target
audio clips to jam as the baseline. We choose 1077 as the L.2
penalty constant for our algorithm (no penalty for the audio-
length scenario considering the training feasibility), 100 as
the allowed distortion, 1 as the learning rate and 20 as the
batch size for both training process. Besides, we randomly
delay speech signal during the evaluation to simulate a
user’s random talk timing. CER, JSR and SNR introduced
in Section 2.3 are applied to evaluate the jamming perfor-
mance. Larger values of CER and JSR show better jamming
effect, and larger SNR indicates less interference to human
being. Generating a UAP requires ~1 hour on an NVIDIA
RTX 3090 GPU.

Table 2 shows the average performance of the two types
of perturbations on the test set. The repeated-chunk noise
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TABLE 2: Performance of perturbations in different forms.
The repeated-chunk noise achieves the JSR of 80.3%.

Perturbation form  CER JSR SNR (dB)
Audio Length 60.2%  64.5% 22.89
Repeated Chunks  75.5%  80.3% 23

Audio

—’| Optimization }—> UAP

Repeated |dudu
Chunks

J,
Prepended
' T " Perturbation

Fig. 8: Illustration of the prepended perturbation.
TABLE 3: Perturbation performance with/without prepend-
ing training. Prepending training increases JSR from 85.6%
to 89.1%, and significantly reduces the standard deviation of
JSR between different UAPs trained with the same process.

Prepending Training  CER JSR  std-JSR  SNR (dB)
X 79.3%  85.6% 0.074 229
v 85.7%  89.1% 0.048 22.8

shows a JSR of 80.3%, which is 15.8% higher than the audio-
length ones, and the average SNR is 23 dB that is about
28% higher than the best case of the state-of-the-art [18],
[21]. The results validate the jamming effectiveness under
unsynchronization conditions [28].

5.3 Improve Stability with Perturbation-Prepending
Training

Based on the synchronization-free UAP, we further improve
its performance stability, which is critical because users
would only choose reliable jamming noise. That is to say,
when maintaining high jamming effectiveness, we aim to
reduce the variance of performance caused by the inherent
randomness of the training process and avoid generating
invalid perturbations. Considering the actual jamming sit-
uation where the user would turn on the jamming before
he/she speaks, we introduce the constraint to the training
to match the real deployment for stability improvement.

With our chunk-based perturbation structure, we
prepend one chunk (half second) before the actual audio
signal starts to perform the AE training (see Figure 8). In
this way, the perturbation is more compatible with the way
it will be utilized, thus reducing the probability of invalid
and unstable perturbations.

We evaluate the effect of doing so with and without
prepending training. In either condition, we generate per-
turbations 50 times and record the variation of JSR to
calculate its standard deviation value (see Table XII in the
demo website for full results). The training and evaluation
setting are the same with the chunk perturbation training in
Section 5.2 and the length of the prepend perturbation is half
a second. Table 3 shows the mean and standard deviation
of JSR of prepending training perturbation are 89.1% and
0.048, better than those of non-prepending training pertur-
bation, which are 85.6% and 0.074, respectively. Therefore,
we incorporate perturbation-prepend training into UniAP.
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5.4 Robustness vs Targeted Noise Reduction

In an actual attack scenario, a strong adversary may
perform targeted noise reduction before feeding a speech
recording to an ASR to increase the recognition accuracy.
In this section, we consider how to improve the robustness
of our perturbation in case the opponent performs template
cancellation and filtering on the recordings.

5.4.1 Initialization Statuses for UAP Generation

When there is only one UAP as the jamming noise, the
adversary can easily obtain the noise as a template and
subtract it from the recordings. Therefore, we discuss how
to generate multiple non-targeted UAPs thereafter the ad-
versary does not know what jamming noise to expect. In
order to improve the number of UAP choices, we generate
multiple UAPs from a variety of initialization status to
expand the UAP candidate pool.

The frequency of different words/phrases appearing in
English is different, which is represented in the English
corpora used to train an ASR, we assume certain content
can be recognized more easily. Based on this assumption,
we train a good many UAPs with abundant (combinations
of) words as different starting points, expecting our per-
turbation gets recognized prior to speech. These starting
points belong to one of nine categories including sentence
starter words, words containing multiple vowel/phoneme
phonemes and their combination, etc. The jamming perfor-
mance of trained UAPs in five categories are illustrated in
Table 4. The performance of words combination is better
than that of single word, and we think the initialization
statuses of words combination provide more syllables for
the training process to manipulate. Please check the demo
website for full results.

TABLE 4: Perturbation performance under different initial-
ization statuses. UAPs trained from different starting points
achieve a CER of at least 77.1% with a JSR of at least 82.6%.

Initialization Status =~ CER JSR SNR (dB)
starter-combine 85.5%  88.9% 22.6
vowel-single 771%  82.6% 22.7
vowel-combine 79.0%  86.0% 22.8
consonant-single 779%  84.4% 22.7
consonant-combine 80.3%  85.8% 22.7

It is shown that all UAPs achieve a CER of at least 77.1%,
and at least 82.6% of audio clips are transcribed to meaning-
less texts. This optimistic perturbation performance prove
we are able to generate multiple UAPs with small distortion,
thus relaxing the limit on the amount of noises that can be
chosen. The flexibility in UAP choice makes it harder for
the adversary to compromise the jamming through template
(i.e., the copy of one of our UAPs) subtraction.

5.4.2 Frequency Matching via Mix Training

The adversary could filter recordings on the frequency do-
main and only keeps information within the speech range,
thus compromising the jamming effect. To defend against
such filtering, we empirically study DeepSpeech’s frequency
dependency. Through matching the frequency dependency
of UAPs and DeepSpeech, we force the adversary into a
zero-sum game to improve the robustness of UniAP.
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Not all frequency range is equally important for an
ASR to perform correct recognition. The adversary could
filter out less important frequency part of the recording
to reduce the jamming effect of noises, while the filtered
signal still contains enough information for recognition. We
heuristically validate the importance of various frequency
bands between 0 and 8kHz (the Nyquist frequency when
sampling frequency is 16 kHz). We randomly sample 500
speech signals from the train-clean-100 subset of Librispeech
dataset, filter out certain frequency part of them, and feed
them to DeepSpeech for transcription. The CER of the tran-
scriptions is calculated and the results classified according
to the passed frequency range are shown in Table 5. A larger
value of CER indicates the passed frequency range is of less
importance to transcribing speech signals.

TABLE 5: Frequency dependency of DeepSpeech. The most
sensitive frequency range is from 0 Hz to 4000 Hz.

Passed Band (Hz) CER  Passed Band (Hz) CER
0 ~ 2000 55.5% 500 ~ 4000 51.3%
0 ~ 3000 31.7% 1000 ~ 4000 95.7%
0 ~ 3500 18.8% 2000 ~ 4000 99.8%
0 ~ 4000 16.3% 100 ~ 3500 18.6%
0 ~ 5000 15.3% 200 ~ 3500 21.3%
0 ~ 6000 11.9% 4000 ~ 8000 100.0%

It is obvious that DeepSpeech is sensitive to frequency
ranging from 0 Hz to 4000 Hz. By only keeping information
from this range and filtering out other part, the adversary
may reduce the effect of the perturbation. As shown in
Table 6, the JSR of normal UAP reduces from 93.1% to
81.9% after filtering the perturbed signal. To address this
issue, we first dedicately mask other frequency to generate
perturbation within 0 to 4 kHz. In Table 6, the constraint
training strategy results in JSRs of 78.4% and 92.3% in the
normal and filtering scenario respectively. Although the
robustness against filtering is improved, the performance
in the normal condition declines. We further propose a
strategy called mix training that randomly decides whether
it filters the perturbed signals with a probability in the
training. The mix training strategy achieves a more balanced
performance, with JSRs of 86.3% and 91.2% in the normal
and filtering condition, respectively.

TABLE 6: Jamming performance of normal UAP and UAP
processed with frequency matching. CER-f and JSR-f mean
CER and JSR of the filtered signals respectively. Filtering
range is from 0 Hz to 4000 Hz. Mix training improves the
JSR-f from 81.9% to 91.2%.

UAP CER JSR  CER-f JSR-f SNR (dB)
Normal Training 952% 93.1%  772%  81.9% 228
Constrained Training  70.0%  78.4%  83.2%  92.3% 23.0
Mix Training 76.9%  86.3% 80.8%  91.2% 22.9

5.5 Comparisons with Normal Noises

We compare UAPs with common noises in real life regard-
ing jamming performance and the distortion level. Common
noises are roughly categorized as white noise (e.g., engine
noise and rainfall sound), pink noise (e.g., wind rustling
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Fig. 9: The jamming performance comparison between
common noises and our UAP.

sound and waves on a beach) and sudden noise (e.g., phone
ring and car honking). We generate white noise and pink
noise based on their mathematical models, and collect 105
sudden noises from the RWCP sound scene database [41].
We overlap different types of noises with speech samples
from the test dataset in the time domain to simulate jam-
ming. The mixed signals are directly fed into DeepSpeech
for recognition. The average CER and JSR of the jammed
signals are calculated.

The comparison results are categorized in noise type and
shown in Figure 9. The horizontal orange line illustrate the
CER of clear audios which is a baseline. We can see that
as the power of noise increases, white noise has the best
jamming effect among normal noise types, which achieves
nearly 70% CER with -0.5 SNR. Our synchronization-free
UAP has the best jamming effect, outperfoming white noise
with a SNR of 22.8dB while achieving CER of 95%.

5.6 Random-Chunk UAPs

Our UAP so far is formed by repeated chunks, which could

cause a problem: a dedicated attacker may discover the
repeated pattern and accurately locate the chunk to recover
the noise template and filter out the perturbation fully.

To address such an issue, instead of concatenating one
chunk repeatedly, we utilize Algorithm 4 to generate UAPs
formed with selected chunks, and each chunk is chosen ran-
domly from our UAP pool. The valid perturbation chunks
in the pool are generated from different initialization sta-
tuses (see 5.4.1) following Algorithm 3. As such, sufficient
randomness is induced, and the jamming noise played each
time is different, which greatly decreases the noise recovery
possibility. Moreover, the UAP pool can be updated con-
stantly with fresh perturbation chunks.

We assess the jamming performance of the random-
chunk UAP with the same setting in Section 5.2. 1000 differ-
ent random-chunk UAPs are generated to perturb the 1000
instances in the test set, which achieves the JSR of 84.9%
and the CER of 88.4% with an SNR of 22.7dB. To validate
the claimed randomness, we pick 10 chunks generated from
different starting points and calculate the similarity between
either two of them using the Pearson correlation coefficient
(CC). The average CC is 0.003, which shows these chunks
show little similarity. As a result, the random combinations
of different chunks further enrich the randomness.
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Algorithm 3 Generation of UAP Pool

Input: UAP Pool Size N
Output: UAP Pool P
10
P« {}
while i < N do
Training perturbation ¢ with different initialization statuses
P+ PU{é}
P41+ 1
end while

Algorithm 4 Usage of Random-Chunk UAPs

Input: UAP Pool P, Target Length L
Output: Random-Chunk UAP 6,
or <0
while length(6,) < L do
Randomly select § from UAP Pool P
&y « concatenate(dr, d)
end while
Or < 6-[0: L —1]

6 EVALUATION

In this section, we comprehensively evaluate the perfor-
mance of our UAPs (we call it UniAP perturbations/noises
alternatively). Note that UAPs used for evaluation in this
section are trained without frequency matching because 0-4
kHz is different from the frequency range usually consid-
ered in the over-the-air enhancement.

6.1 Experimental Setup

Computing Environment: UniAP is implemented using
Tensorflow 1.15.4 and trained by Adam optimizer, on a
high-end server equipped with an NVIDIA RTX 3090 GPU
and 252 GB RAM. Metrics: We rely on mentioned and two
new metrics (see below) for evaluation. Besides, we also test
ASR recognition performance on clean audios and use it as
the baseline for benchmarking. Parameter Configuration:
We use the same parameters as before (see section 5.2).

6.2 Additional Metrics

Sentence Similarity Scores. Using CER alone is insufficient
in some occasions. For example, “how are you” and “how r
u” represent the same meaning but the CER between them
reaches 36%. Therefore, we introduce sentence similarity
scores (SSS) as the supplementary metric to measure the
jamming effectiveness. SSS is the cosine similarity between
two sentence embeddings extracted with the model pro-
posed by Google [42]. The smaller value indicates the more
effective jamming®.

Distortion. SNR measurement in physical playback is un-
stable and tedious (verified by experiments), thus we apply
Decibels (dB) to quantify the distortion introduced by noise
following other works [17]. The distortion dB,(J), calcu-
lated by dB,(d) = dB(d) — dB(z), shows the relative loud-
ness of the UAP (§) with respect to the speech (z), and the
smaller value indicates less interference. As a reference, -31
dB is approximately the difference between the background
noise and a person talking in a silent room [43].

3. The SSS between “how are you” and “how r u” reaches 0.82.
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6.3 Digital Domain

Table 7 shows that our repeated-chunk UAPs (10 UAPs)
achieve an average JSR of 90.4% on the Librispeech Test-
clean set (more than 2000 clips), with an average SNR of
22.4dB (92.5% and 22.3 dB for the best UAP). Additionally,
our UAPs also achieve an average JSR of 72.3% on the
Gigaspeech Test set (nearly 20000 clips lasting for 40 hours)
that is larger and quite different from our training set.
The SNRs show that our perturbations are quieter than the
AEs of CommanderSong [18] (18.6 dB) and AdvPulse [21]
(13.7 dB). The performance of random-chunk UAPs is also
analyzed, resulting in average JSRs of 87% and 69.6% on
the Test-clean and Gigaspeech-test datasets. CERs of signals
jammed by the two perturbations are also shown in Table 7.
As a baseline, the average CER for clean audios are 5.7% and
20.2% on the two datasets. Overall, random-chunk UAPs
maintain similar performance but show better robustness.

TABLE 7: Perturbation performance on large datasets. UAPs
composed of repeated chunks achieve the JSR of 90.4% and
72.3% on the Librispeech Test-clean set and the Gigaspeech
test set, while the UAPs composed of random chunks
achieve 87.0% and 69.6%, respectively.

Reapted Chunks

Dataset
CER JSR SSS SNR (dB)
Test-clean 87.7%  90.4%  0.23 22.4
Gigaspeech-test 69.2% 72.3% 0.27 25.5
Dataset Random Chunks
CER JSR SSS SNR (dB)
Test-clean 83.1% 87.0% 0.31 224
Gigaspeech-test  66.2%  69.6%  0.25 25.5

6.4 Over the Air

We assess the jamming effect of our perturbations in two
physical playback scenarios where users’ daily conversa-
tions could be covertly recorded.

e Chatting. 1) A user is chatting with her partner at
home. The malicious microphone is located in the
same room (e.g., on a smart TV) with them; 2) A user
is having a video conference. The conference app
developer illegally keeps the conversation. In both
cases, a standalone jammer plays the UniAP noise
by the users’ side. Note that our chatting experiment
setup covers both cases because there is no funda-
mental distinction between them regarding involved
devices and distance settings.

o Voice Call. A user is making a voice call using
a social media app on his/her smartphone, and a
malicious app on the same phone activates itself to
secretly record the conversation upon detecting the
call activity. The user utilizes the speaker of the same
phone to play our UniAP noise.

For the video conferencing scenario, we cannot use the
built-in speaker of the computer to play back the jamming
noise. The audio fed into the conference software by the OS
does not contain the noise. We assume this is because the
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TABLE 8: Perturbation performance in the chatting scenario. “UAP-N” means perturbations trained from different
initialization states but without over-the-air enhancement, while “UAP-E” means perturbations with the enhancement.
CER(V), JSR(V) and SSS(V) show the jamming performance on the vanilla DeepSpeech model. CER(R), JSR(R) and SSS(R)
are tested on the robust DeepSpeech model. Our UAPs achieve high JSRs with the microphone deployed at all locations.

They also perform well when the speaker is walking.

Perturbations Location 1 (UMD = JMD = 1m)

Location 2 (UMD = JMD = 2m)

Location 3 (UMD = JMD = 3m)

CER(V) JSR(V) SSS(V) CER(R) JSR(R) SSS(R) | CER(V) JSR(V) SSS(V) CER(R) JSR(R) SSS(R) | CER(V) JSR(V) SSS(V) CER(R) JSR(R) SSS(R)
UAP-N 62.8% 86.0% 0.19 61.9% 83.0% 0.24 71.9% 98.0% 0.15 73.1% 92.0% 0.18 62.9% 88.0% 0.19 60.3% 71.0% 0.23
UAP-E 65.8% 90.0% 0.19 61.9% 75.0% 0.23 75.1% 98.0% 0.16 72.4% 97.0% 0.18 65.8% 91.0% 0.18 62.8% 85.0% 0.21
Clean Audio 20.4% N/A 0.59 17.1% N/A 0.57 21.5% N/A 0.51 17.7% N/A 0.57 24.0% N/A 0.49 17.0% N/A 0.60
Perturbations Location 4 (UMD = JMD = 4m) Location 5 (UMD = 0, JMD = 1m) Location 6 (UMD = 0, JMD = 2m)
CER(V) JSR(V) SSS(V) CER(R) JSR(R) SSS(R) | CER(V) JSR(V) SSS(V) CER(R) JSR(R) SSS(R) | CER(V) JSR(V) SSS(V) CER(R) JSR(R) SSS(R)
UAP-N 68.3% 93.0% 0.17 68.6% 91.0% 0.20 67.4% 92.0% 0.17 63.2% 78.0% 0.21 63.7% 84.0% 0.18 58.4% 68.0% 0.23
UAP-E 70.5% 100.0% 0.15 67.2% 91.0% 0.20 70.1% 96.0% 0.17 63.5% 81.0% 0.20 70.2% 93.0% 0.16 63.1% 80.0% 0.22
Clean Audio 38.6% N/A 0.28 26.7% N/A 0.44 24.8% N/A 0.45 17.8% N/A 0.54 24.8% N/A 0.45 17.8% N/A 0.54
Perturbations Location 7 (UMD = 0, JMD = 3m) Location 8 (UMD = 0, JMD = 4m) Walking
CER(V) JSR(V) SSS(V) CER(R) JSR(R) SSS(R) | CER(V) JSR(V) SSS(V) CER(R) JSR(R) SSS(R) | CER(V) JSR(V) SSS(V) CER(R) JSR(R) SSS(R)
UAP-N 66.8% 89.0% 0.19 64.0% 83.0% 0.23 55.4% 64.0% 0.20 50.4% 50.0% 0.29 71.3% 100.0% 0.15 78.3% 96.0% 0.19
UAP-E 68.0% 92.0% 0.16 62.9% 78.0% 0.21 57.1% 70.0% 0.20 50.8% 53.0% 0.27 75.6% 99.0% 0.15 77.2% 99.0% 0.19
Clean Audio 24.8% N/A 0.45 17.8% N/A 0.54 24.8% N/A 0.45 17.8% N/A 0.54 34.3% N/A 0.37 28.9% N/A 0.46

audio fed into the app is from the phone call data chan-
nel, where the echo cancellation mechanism gets activated
and eliminates the signal emitted by its speaker from the
recorded sound. In contrast, for the voice call case, the audio
data acquired by the malicious app does not undergo the
echo cancellation process, and the noise is therefore kept.
In both the chatting and voice call scenarios, the jamming
noises shall experience distortions when a speaker plays
them, propagate through the air and get recorded by a
microphone. Recent studies [20], [21], [25], [38], [44] address
the playback distortion by incorporating device limitations,
channel effect and ambient noise into the perturbation gen-
eration stage. We follow a similar convention to enhance
the robustness of our UAPs in the over-the-air condition,
and the Aachen impulse response database [45] is used to
include room impulse response (RIR) to handle the channel
effect. Users could use the exact RIR of their room envi-
ronment to enhance robustness further. However, reverber-
ation distortion could be minor in our tasks. For the voice
call scenario, the jamming distance is negligible because
the jamming noises are both played and recorded by the
smartphone’s own speaker and microphone. Reverberation
does not pose a strong effect when the jamming distance is
short (e.g., shorter than 6 m) [20]. In addition, we assume
that the unique structure and the perturbation-prepending
training method of UniAP improve the robustness of our
UAPs. Therefore, we evaluate our UniAP perturbations with
and without over-the-air enhancement in both scenarios. To
the best of our knowledge, we are the first to generate non-
targeted UAPs that can attack a complex ASR over the air
to protect users’ speech privacy.

For the ease of explanation, we use JMD, UMD and
UJD to refer to the distance between the jammer and a
microphone, a user and a microphone, and a user and the
jammer, respectively. All UAPs used for over-the-air eval-
uation are random-chunk perturbations. UAPs with (with-
out) over-the-air enhancement during training are referred
with the notation UAP-E (UAP-N). Since audios recorded
over the air endure attenuation and reverberation, which
downgrades the recognition accuracy of the DeepSpeech
pre-trained model (i.e., vanilla DeepSpeech), we fine-tune
the model with the reverberated audio data to obtain a more
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robust DeepSpeech, which performs better in a practical use
case. We conduct experiments in the chatting and voice
call scenarios in a quiet room with the sound of the air
conditioner running and traffic outside the window being
the background noises (37.5 dB).

6.4.1 Chatting Scenario

For the chatting scenario, we conduct experiments in two
different settings (i.e., a static scenario and a walking sce-
nario) in a bedroom, and we assume a vigilant user uses
our UniAP jammer to protect his/her speech privacy.

Static Scenario. The vigilant user may put the jammer
around him/her while the location of an eavesdropping
microphone is unknown or while having a video conference
using a laptop in front of him/her. We assume the UJD is
1m (i.e., putting the jammer too far away will reduce user’s
psychological sense of security). Because normal speech sig-
nals are not attenuated much over the air as the propagation
distance increases [46], the jamming will be ineffective if the
UAP is attenuated rapidly as the J]MD increases. Therefore,
we only vary JMD and maintain UMD = JMD to evaluate
whether the UAP will experience serious attenuation over
the air. Specifically, the JMD is set to be 1m, 2m, 3m and 4m
(i.e., red number 1 to number 4 highlighted in Figure 10(a)).

Next we evaluate the disadvantageous settings when
JMD is longer than UMD. Specifically, we conduct jamming
experiments with the JMD varying from 1 m to 4 m (as
shown in orange number 5 to number 8 in Figure 10a), while
the UMD is almost zero. This represents an unlikely case
where the eavesdropping microphone is besides the user’s
mouth and it poses a difficult challenge for jamming.

Walking Scenario. As shown by the green circle in
Figure 10(a), the victim is speaking while walking back and
forth along a straight line, and the one-way walking distance
is about 2m. The carried jammer keeps playing UAPs. The
recording device is set at the center of the table.

We use a common USB microphone as the recording
device controlled by the adversary. Similar to AdvPulse [21],
we use an Edifier m230 Bluetooth speaker to play speech
signals (i.e., simulating the victim user) for better control
and repeatability, and use a JBL-clip3 Bluetooth speaker to
play our UniAP noises to jam the microphone. A sound
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Fig. 10: Evaluation environment of two over-the-air scenarios: (a) chatting and (b) voice call.

level meter measures the loudness of clean audios and
perturbations for calculating distortions. Our experiment
simulates the scenario: the user would activate the jammer
first to ensure her speech privacy is protected, then she
could start talking at any moment. The speaker plays 10
speech clips (5 times for each one) without activating the
jammer, and the recognition results of these clean audios
serve as the baseline. Then the jammer plays a random-
chunk UAP signal first, and the speaker starts playing one
speech clip at a random point (controlled by an experi-
menter). Recording and playing speech clip start at the same
time. 10 best-performing chunks on the digital domain and 7
different chunks with over-the-air enhancement are shuffled
and played randomly by a software player to form the
random-chunk perturbations. The experiment is repeated 10
times for each perturbation, which gives us 200 recordings.
Metric values are calculated accordingly.

Results. When the UMD and the JMD are set to 1m, 2m,
3m and 4m, UAP-E can achieve JSRs of 90%, 98%, 91% and
100% on the vanilla DeepSpeech and 75%, 97%, 85% and
91% on the robust DeepSpeech as shown in Table 8, while
the mean distortion of the UAP-N and the UAP-E are -41.2
dB and -40.9 dB, respectively (perceived by the speaker). For
the adverse scenarios (i.e, UMD = 0 and JMD = 1m, 2m, 3m
and 4m), UAP-E still achieve a high JSR, even the lowest
one is 70% and 53% on vanilla and robust DeepSpeech
respectively, and the distortion is 1-2 dB less than the former
scenario. In addition, the SSSs of UAP-E in all locations are
less than 0.27, which shows the jamming effectiveness.

For the walking scenario, Table 8 shows UAP-E achieves
a JSR of 99% on the robust DeepSpeech, while the CER and
SSS are of 77.2% and 0.19 respectively. As a baseline, the
CER of clean audio recognition is 28.9%.

Remarks. UAP-E achieve equal or better jamming per-
formance than the UAP-N in most cases. UAP-E is en-
hanced with reverberation simulation dataset. Its better
performance indicates the sound absorption and reflection
that happened during the multi-path acoustic propagation
moderately weaken the jamming effect of UAPs. Still, UAP-
N also shows close jamming effectiveness. Our perturba-
tions achieve an impressive average JSR of 90.2% and 80.6%
on the vanilla and robust DeepSpeech, respectively with
a mean distortion of -39.7 dB. It is worth noting that the
reported results are close to the worst case in practical
use since the timing of playing speech and recording are
synchronized. In practice, an attacker does not know when
the user will speak, so he/she would probably record the
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noise for a while before the victim start talking. The noise
segment ahead of the speech will greatly improve the CER.

TABLE 9: Perturbation performance in the voice call sce-
nario. The L label means the loud perturbations while the Q
label means the quiet ones. Both UAP-N(L) and UAP-E(L)
perturbations achieve at least 49.6% CER and 53% JSR on
both vanilla and robust DeepSpeech models.

Perturbations CER(V) JSR(V) SSS(V) CER[R) JSR(R) SSS(R)
UAP-N(L) 60.9% 70.0% 0.32 53.1% 59.0% 0.34
UAP-E(L) 56.2% 61.0% 0.30 49.6% 53.0% 0.34
UAP-N(Q) 54.3% 62.0% 0.42 50.9% 58.0% 0.42
UAP-E(Q) 57.7% 62.0% 0.33 50.7% 55.0% 0.38

Clean Audio 6.8% N/A 0.85 9.4% N/A 0.78

6.4.2 \Voice Call Scenario

As shown in Figure 10b, a mobile phone plays the UAPs
(acting as the jammer) while records audios at the same
time, and the same 10 speech in the chatting scenario is
used. The distance between the smartphone and the speaker
is about 6 cm, similar to the distance between human mouth
and a smartphone shown in the left half of Figure 10b.
A sound level meter is also used for measuring the audio
loudness. Distortion level of the perturbation perceived by
the speaking person and at the receiver end are measured.
The distortion on the speaker end relates to the speaking
person’s perception on the sound, while the receiver one
presents the noise level in the recording. UAP-N and UAP-
E perturbations are played with two volume levels of the
smartphone, resulting the loud version of them, namely
UAP-N(L) and UAP-E(L), and the quiet version, namely
UAP-N(Q) and UAP-E(Q).

Table 9 shows that UAP-N(L) achieve JSRs of 70% and
59% on the vanilla and robust DeepSpeech, while UAP-E(L)
show slightly worse performances. In these two cases of
loud perturbation, the distortion level of the audio heard
by the speaker is -45.0dB (i.e., almost imperceptible), while
the distortion level of the recorded audio is -22.9dB. It is
surprising that the quiet UAPs show similar jamming per-
formance compared with the loud version, while achieving
the distortion level of -31.3dB and -46.07dB in the recorded
signals and on the speaker end, which ensure the low
interference of noises. In particular, quiet UAP-N and UAP-
E show similar jamming performance.

Remarks. In the voice call scenario simulating an adver-
sarial app covertly recording users’ VoIP call conversation,
UAP-E show similar or worse performance than UAP-N,
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which verifies our assumption that the reverberation effect
may get compromised greatly due to the short distance
between the speaker and the microphone. Besides, we con-
jecture the main propagation medium is the smartphone
motherboard in the voice call scenario, which results in
almost no obvious gaps regarding performance between the
loud and quiet perturbations. We leave the verification in
future work. Regarding the distortion level, the speaker-
side distortion is less than -45 dB. Under this circumstance,
the perturbation is even quieter than the working noise of
the air conditioner in the experiment room (confirmed by
measurement). Initially, we controlled the distortion level of
recordings to be less than -23 dB to ensure the listener’s com-
fort. However, we found the call receiver cannot hear the
perturbations because of the echo cancellation mechanism.
The perturbation noise played by the smartphone’s speaker
is subtracted from the recording, and only the speaking per-
son’s voice is kept and gets transmitted over the VoIP chan-
nel, while the malicious app can get the original recording,
including both the speech and the perturbation, which is a
great advantage since the comfort of the speaking person is
the only limitation regarding the perturbation energy level.

6.5 User Study

We mainly evaluated the interference level of UAPs based
on the SNR [18], [21] and the distortion level [17]. The
average SNR of our digital-domain signal is about 22.4
dB, and it maintains lower distortion in the over-the-air
case. Such numbers show great improvement over existing
works. However, we would like to know users’ subjective
perception on our noise, therefore we conduct a user study
to evaluate if users are bothered by the UAPs*.

A dataset containing 20 noisy speech signals are first
created. We choose 5 different speech signals from Lib-
rispeech test-clean and overlap each signal with 4 types of
noises (white noise, pink noise, random event noise and our
UAPs), resulting 20 noisy signals. The power of each type
of noise is adjusted to achieve the similar CER of about 80%
for a fair comparison. 10 individuals (5 males and 5 females)
are recruited to participate in the survey. Each person is
asked to listen to the 20 signals and give three scores to
each audio regarding intelligibility of the speech content,
willingness to tolerate the noise and the noise intensity.
Higher score in each category indicates better intelligiblity,
higher acceptability, and lower intensity. Table 10 shows
our perturbations get 0.96, 0.74 and 0.89 in intelligibility,
acceptability and intensity relatively, which is much higher
than others in all aspects.

TABLE 10: User study results. UAPs get the highest scores
in all categories: intelligibility, acceptability and intensity.

Perturbations  Intelligibility = Acceptability Intensity
Ours 0.96 0.74 0.89
Event Noise 0.27 0.45 0.28
Pink Noise 0.34 0.36 0.32
White Noise 0.26 0.19 0.16

4. The study is approved by the IRB.
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6.6 Robustness against Denoising Methods

General Denoising. We utilize spectral subtraction, a classic
and powerful denoising solution to evaluate the robustness
of our UAPs against general denoising technique. We choose
the best UAP from the candidate pool, use the VOICEBOX
on MATLAB as the denoising implementation, and use the
same setting as the unsynchronization evaluation 5.2. After
denoising, perturbed signals are fed into DeepSpeech. The
results show a JSR of 60.0% , a CER of 60.5% , a WER of
101.8% and a SSS of 0.47 are achieved even with denoising.
For comparison, these four values are respectively 88.4%,
84.9%, 137.4% and 0.36 without denoising. The optimisitic
results show the robustness of our UniAP perturbations.

Targeted Denoising. A strong adversary may perform
filtering or even template cancellation to get rid the effect of
the UAPs. We have illustrated how UniAP is robust against
these attacks in Section 5.4 and 5.6.

Dompteur. Dompteur, a recent study, proposes to use
an augmentation module to extend any ASR system [47],
which is a denoising method that restricts ASR to human
voice frequencies and applies psychoacoustic modeling to
remove the inaudible part. We evaluate UAP noises against
the DeepSpeech augmented with Dompteur, and a good
jamming results regarding CER of 95.8% and JSR of 92.7%
are obtained (see Table 11). If a greater scaling factor is uti-
lized to boost the denoising effect, higher CER of 100.1% and
JSR of 98% are gained. The results are within expectation
because we don’t rely on frequency to develop the noises.

Beamforming. Multi-microphone beamforming is a
sound source localization technique to improve speech
quality by reducing reverberation and ambient noises. We
assume our perturbations can still work even in the presence
of beamforming because we mainly attack the vulnerability
of an ASR rather than relying on energy masking to achieve
jamming (e.g., white noise). We use SpeechBrain [48], a
state-of-the-art speech toolkit, to perform delay-and-sum
beamforming on voice call recordings. After beamforming,
compared with the previous experiment shown in Table 9,
UAP-N(Q) and UAP-E(Q) get JSRs of 46% and 48% on
vanilla model with average CERs of 44% and 47% , while
UAP-N(L) and UAP-E(L) get JSRs of 51% and 47% with
average CERs of 46% and 43%. The results show that despite
of the JSR decrease, the average jamming CERs are still close
to 50%, indicating the perturbation robustness.

We conclude some robutness evaluation results in Ta-
ble 11. Most results are tested with repeated-chunk UAPs,
and the results in parentheses are tested with random-chunk
ones. Our UAPs show inherently robustness against differ-
ent kinds of denoising methods never seen in the training.

6.7 Generalization across LSTM-based Models

Considering LSTM-based ASRs work based on the context,
our UAPs may have transferability over other LSTM ASRs.
We consider two impact factors on the generalization test:
different training dataset and different model archietecu-
ture. First, we use dataset Gigaspeech [49] (the M subset)
to train a DeepSpeech-architecture model, and validate the
transferability of UAPs on this model that has different
parameters than the DeepSpeech pre-trained one. For the
ease of reference, we call it DeepSpeech_2. Next, we use
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TABLE 11: Results with denoising methods and performance cross LSTM-based Models. CER, WER and JSR are shown in
each scenario. Numbers in DeepSpeech column are the original jamming results. +Denoiser illustrates the jamming results
after VOICEBOX denoising. +Dompteur shows the results with the latest Dompteur denoising. The last two columns

present the transferability of UAPs on other LSTM models.

Perturbations DeepSpeech | +Denoiser | +Dompteur I DeepSpeech_2 | ESPnet
CER WER JSR | CER WER JSR | CER WER JSR || CER WER JSR | CER WER  JSR
Clean Audio 4.0% 14.0% N/A N/A N/A N/A N/A N/A 8.0% 25.4% N/A 1.5% 14% N/A
Our UAPs 95.2%(84.9%)  149.4%(137.4%)  93.1%(88.4%) | 55.3%(60.5%)  94.2%(101.8%)  52.8%(60.0%) | 95.8%  151.2%  92.7% 78.7% 130.0%  83.0% | 46.9% 49.8% N/A

another LSTM ASR implemented in ESPnet toolkit [50] to
validate the transferability of our UAPs on unseen LSTM-
based model. We trained the ESPnet model with the entire
training set of Librispeech. As a reference, the official RNN-
based ESPnet achieves a WER of 4.0% on Librispeech test-
clean while our ESPnet model achieved a WER of 4.2%
on the same dataset, which shows our trained model is
qualified for speech recognition tasks.

We first test the recognition performance of these two
models on clean speech. The test-1000 dataset mentioned in
Section 5.2 are used. As shown in Table 11, DeepSpeech_2
achieves a WER of 25.4% on the test-1000 dataset, while
a WER of 1.4% is achieved by ESPnet. We pick one UAP
trained from white noise as the initialization and follow the
same test setting as Section 5.2 to evaluate the jamming
effectiveness. Table 11 shows the CER and WER go up
to 78.7% and 130.0% for DeepSpeech_2. As for ESPnet,
they rise to 46.9% and 49.8%. These results validate the
transferability of our UAPs. The SNR in both scenarios is
22.8 dB, which is acceptable.

To further improve the transferability, we generate the
UAP on DeepSpeech and Espnet jointly by training each
epoch alternatively on the two models. The joint-training
perturbation achieves a better performance on ESPnet (a
CER of 90.5% and a WER of 96.7% ) and maintains a similar
performance on DeepSpeech.

We also evaluate the effectiveness of the chunk-based
UAP in the single-word recognition scenario. A command
recognition DeepSpeech is trained with the Google com-
mand dataset [51]; we then validate the effectiveness of our
UAP (the same one in digital domain evaluation) on the
model. The UAP greatly increases the CER from 20.8% to
454.1%, achieving a JSR of 100% when the SNR is 29.23 dB.

7 RELATED WORK

We mainly discuss the studies related to speech privacy
preservation and speech AEs as they are the two main com-
ponents of this work. AE studies targeting other modals like
image, video [52] or traffic analysis [53] are not included.
Anti-eavesdropping Approaches. One potential method
to protect speech content privacy is jamming microphones
surrounding a user [7], [11]. However, these methods make
the recorded speech incomprehensible to both ASR and
humans, which stops normal voice activities. When they are
applied in the video conference case of the chatting set up
(see Section 6.4), the listener would seriously be bothered
by the noisy speech. Additionally, they require ultrasonic
speakers which are not integrated in COTS devices. Cohen-
Hadr et al. [54] and Abdullah et al. [16] bring a third
party that intercepts and modifies the signal to protect, but
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these work introduce a new trust issue and intercepting the
audio signal is not applicable when defending against secret
recordings. Chiquier [23] proposes a method that monitors
a two-second audio clip and forecasts noise of 0.5 second to
jam future speech. This work needs to record speech, which
brings a potential privacy threat. Also, they did not prove
the robustness of their method against unseen denoising
techniques and user perceptions of their noise is unknown.

Other Speech Privacy-Preserving Methods. Intel’s Soft-
ware Guard Extensions (SGX) can limit the access to data
stored within the secure hardware, but it cannot load a
large speech recognition model due to memory size limi-
tation [55], and it is vulnerable to side-channel attacks [56];
a recent work integrates cryptographic approaches (e.g., ho-
momorphic encryption) with deep learning, but the conflict
between accuracy and efficiency remains unresolved [57].

White-Box Speech Adversarial Examples. Studies on
white-box speech AEs have been emerging. Most of these
studies focus on targeted AE generation [17], [18], [19], [20],
[21], [44]. They evolve from pure digital domain to over-the-
air scenario. Li et al. [21] addresses the unsynchronization
challenge, but they focus on targeted attack on speaker
recognition and command classification tasks.

Universal Adversarial Perturbation (UAP). UAP was
first proposed by Moosavi-Dezfooli et al. [29] on images. Li
et al. [58] and Xie et al. [59] demonstrated the existence of
the UAPs for the speaker recognition models. Lu et al. [60]
and Zong et al. [61] explored the targeted audio-agnostic
adversarial attack. However, the former had a low success
rate towards models with CTC loss, and the latter only tried
to perturb sentences lasting 2 to 4 seconds.

8 DiscussioN AND FUTURE WORK
8.1 Transferability on Black Box ASRs

We tested the transferability of UniAP perturbations on
other LSTM-based models. Now we further test the trans-
ferability on commercial speech-to-text (STT) APIs that are
black boxes to us. With the same average SNR (23.01 dB),
we directly feed speech signals (200 clips randomly cho-
sen from Librispeech Train-clean-100) perturbed with our
UAPs (4 perturbations including two different repeated-
chunk UAPs, one random-chunk UAP and the joint-training
UAP) and white noise to three ASR APIs, namely Ama-
zon Transcribe [62], Google Speech-to-Text [63] and Xunfei
ASR [64]. The WER of recognizing clean audios is applied
as a comparison baseline. The jamming results in Figure 11
show our UAPs have limited jamming performance on
commercial models. It is a huge challenge to train a white
box UAP with a good transferability on proprietary STT
engines. Nevertheless, we observe the joint training UAP
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Fig. 11: Jamming performance on commercial ASRs.

and repeated-chunk UAP 2 achieve certain jamming effect
on Google and Xunfei ASRs respectively. The joint training
UAP achieves WER of 15.2% (10.3% for clean audio) on
Google TTS, while the repeated-chunk UAP 2 achieves
14.1% (9.5% for clean audio) on Xunfei. Besides, all four
types of UAPs have better jamming performance than white
noise on Google and Xunfei ASRs.

Despite the limited effect on commercial STT, the op-
timistic transferability of UAPs cross LSTM-based models
provides us a new way of thinking. We would explore
the dominating factors of ASRs with other architectures
possibly applied by commercial STTs, and construct UAPs
disrupting the dominating factors of each ASR type. If an
intersection exists between these factors, a non-targeted
UAP effective on multiple black boxes may be possible.

8.2 Miscellaneous

We have implemented UniAP as an Android app that
supports various activation modes, including event reser-
vation, all-time jamming, and dedicated app/external jam-
ming. The app enables updating the UAP pool and playing
random-chunk UAP. It does not require permission to access
the sensitive microphone data and only needs the ones re-
lated to its function, such as installing packages, foreground
services, and reading phone states’.

We generate UAP and UAP-E using the iterative opti-
mization training paradigm (i.e., SGD) as shown in Algo-
rithm 1 and the Iterative Fast Gradient Sign Method (I-
FGSM), respectively. Besides, we do not consider algorithms
only suitable for misleading classification models such as
DeepFool [65]. We do not study which training paradigm is
optimal and leave it for future work.

UniAP may be countered in the future by adversaries as
attacks evolve. However, most privacy preserving systems
may not be future-proof (e.g., RSA vs quantum computing).
We believe it is important to provide a timely solution to
protect user privacy from large-scale speech analysis, and
this paper takes the first step in utilizing AEs to thwart au-
tomatic and large-scale content snoop by small companies.

9 CONCLUSION

In this paper, we present UniAP, to protect users from
a privacy threat with the big data contexts - companies

5. Please check out the app specifics at the demo website.
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secretly record and transcribe users’ daily conversations
for commercial purposes via ubiquitous microphones. We
utilize COTS speakers to emit quasi-perceptible noises to
jam the speech spoken by users, such that users’ voice
activity is not affected while an ASR fails to recognize the
speech content correctly. We first conduct empirical study
to understand the key mechanisms of LSTM-based ASRs,
then design AE training process to generate jamming noises
which focus on disrupting the context information in ASR
recogniton. Extensive experiments show the effectiveness of
the UniAP perturbations on both the digital domain test and
over-the-air evaluations. Moreover, our UniAP approach
enhances the stability of jamming performance, improves
the robustness against noise removal techniques, and shows
good transferability over models based on LSTM.
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