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ABSTRACT

Robust pervasive context-aware augmented reality (AR) has the
potential to enable a range of applications that support users in
reaching their personal and professional goals. In such applications,
AR can be used to deliver richer, more immersive, and more timely
just in time adaptive interventions (JITAI) than conventional mo-
bile solutions, leading to more effective support of the user. This
position paper defines a research agenda centered on improving
AR applications’ environmental, user, and social context awareness.
Specifically, we argue for two key architectural approaches that
will allow pushing AR context awareness to the next level: use of
wearable and Internet of Things (IoT) devices as additional data
streams that complement the data captured by the AR devices, and
the development of edge computing-based mechanisms for enrich-
ing existing scene understanding and simultaneous localization and
mapping (SLAM) algorithms. The paper outlines a collection of
specific research directions in the development of such architectures
and in the design of next-generation environmental, user, and social
context awareness algorithms.

Index Terms: Human-centered computingÐHuman computer in-
teraction (HCI)ÐInteraction paradigmsÐMixed / augmented reality

1 INTRODUCTION

Pervasive context-aware augmented reality (AR), in which immer-
sive experiences generated for the user are influenced by the state of
the environment and the state of the user [11,22], has already demon-
strated notable potential in many applications aimed at improving
users’ quality of life and helping users reach their goals, such as
in the treatment of phobias [6] and educational applications [11].
Enriched and more robust environmental, user, and social context
awareness for AR applications is likely to lead to an explosion
of context-aware AR applications that support users in reaching a
variety of personal and professional goals.

In this position paper, we lay out a research agenda towards ad-
vancing context awareness for AR applications, with the ultimate
goal of developing a class of context-aware AR applications that
support users’ personal and clinical development and change [36].
We believe that practical realization of this important class of ap-
plications hinges on both improvements in the performance of the
existing context detection algorithms, and on the development of
methods that enable operating over the types of context that current
systems do not capture, such as the understanding of scene changes
between subsequent AR sessions and the characterizations of users’
encounters with others. The outlined research agenda spans multiple
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Figure 1: Multi-device platforms for reliable environmental, user,
and social context awareness. AR devices’ captures are comple-
mented by the data captured by wearable and IoT devices. Edge
computing offers a convenient option for efficient processing of the
data collected by different devices.

elements of engineering the Metaverse. It includes the develop-
ment of integrated platforms where data streams of AR, wearable,
and Internet of Things (IoT) devices are jointly used as sources
of environmental, user, and social context information (see Fig-
ure 1), the design of enriched edge computing-supported semantic
scene understanding and Simultaneous Localization and Mapping
(SLAM) capabilities, and the development of new Deep Neural
Network (DNN)-based context detection approaches that enable
timely operation over multi-modal data streams with time-varying
quality. Broadly, our research agenda contributes to realizing the
vision of AR as a positive technology, that fosters positive growth of
individuals [9].

First, in Section 2 we describe a class of applications that are
likely to benefit from further development of robust pervasive
context-aware AR: specifically, applications that support users’ per-
sonal and clinical development and change. Such eudaimonic [21]
AR applications will center on helping users achieve professional or
educational goals, establish healthier habits, strengthen emotional
regulation skills, or combat substance abuse. We note the relation-
ship of the envisioned AR applications to the broader category of
just-in-time adaptive interventions (JITAI) that have been developed
in the context of mobile health technologies [30]. Compared to
existing mobile health JITAI solutions, AR has the potential to offer
richer, more immersive, and more timely interventions. The envi-
sioned applications impel the development of context understanding
techniques that are significantly more robust than the AR context
detection approaches developed to date.

Next, in Section 3 we describe the core pillars for improving
context awareness for the envisioned AR applications. We note
the opportunities associated with multi-device platforms, that will
bring together AR, wearable, and IoT devices, and will be supporting
enhanced context awareness by offering rich complementary sources
of contextual information. We also note the opportunities associated
with the use of edge computing for improving the performance of
state-of-the-art SLAM and scene understanding algorithms, and
comment on the need for additional research in the area of enhanced
context understanding as a whole. We elaborate on these 3 research



areas in the subsequent 3 sections of the paper.

In Section 4 we outline several research directions in the area
of multi-device ± i.e., AR devices, wearable sensors, IoT devices ±
platforms for supporting context awareness in AR applications. The
core connectivity between different devices we envision deploying
can be readily established, via multiple existing communication
technologies and platforms. However, as sources of context data,
the 3 different device categories have so far been studied largely
in isolation. To enable them to work together to achieve robust
context awareness, we need to design solutions that operate over
diverse, in many cases multi-modal, sources of data, where the
quality and the relative importance of different data sources vary over
time. We call for the development of domain-specific multi-modal
DNNs optimized for real-time execution, and for the development
of suitable online metrics of data quality, for different elements of
environmental, user, and social context awareness.

Subsequently, in Section 5 we describe a collection of research
directions in the area of improved SLAM and scene understanding
for context-aware AR. In particular, we describe the opportunities
associated with the use of edge computing, a distributed computing
paradigm that brings computing closer to the end-users [41], for
improving AR device-captured environmental characterizations, se-
mantic scene understanding, and traditional and semantic SLAM.
We also describe the opportunities for using IoT-based cameras to im-
prove the performance of semantic scene understanding algorithms
and enable the detection of changes in a scene.

Finally, in Section 6 we outline specific context adaptation mech-
anisms enabled, in the envisioned applications, by environmental,
user, and social context awareness, and describe a set of research di-
rections specific to these 3 context types. In particular, we emphasize
the need to develop environmental context awareness interfaces that
allow users to correct errors made by context detection algorithms.
We also describe the potential of predicting, rather than detecting,
user context, given the richness of context data our applications will
be able to collect. In addition, we note the challenge of ensuring
bystander privacy in collecting social context for our applications.

2 SUPPORTING PERSONAL DEVELOPMENT WITH ENVIRON-
MENTAL, USER, AND SOCIAL CONTEXT-AWARE AR

Pervasive context-aware AR, which generates experiences that are
personalized for the user and adapted to the state of the environment
around her [11], has recently been envisioned for many types of
applications that support personal development and change [36],
including reducing stress and improving emotion regulation [6], and
treating different kinds of substance use disorders [42, 50]. In these
applications, context-aware AR has enormous potential as a technol-
ogy for delivering just-in-time adaptive interventions (JITAI) [30],
defined as ‘interventions aimed to provide the right type of support,
at the right time, by adapting to an individual’s changing internal
and contextual state’. Current modes of delivery for JITAI using
mobile health technologies may deliver messages tailored to the
user through smartphone or smartwatch app notifications or text
messaging. By contrast, AR provides the canvas on which the in-
tervention can be brought to life, potentially allowing interventions
to be seamless and immersive. For example, rather than sending
a notification that buzzes on a phone as someone walks into a fast
food restaurant to ªTry the grilled chicken instead of the Big Macº,
one can envision blurring out the menu options that are unhealthy,
reducing the need for the user to exercise additional self-control
after having seen the menu items available that they are more drawn
to. AR also has the potential to reduce alarm fatigue associated
with existing JITAI notification methods. Correspondingly, multiple
practitioner communities are eagerly awaiting for AR to offer the
robust environmental, user, and social context recognition that would
enable such experiences. For instance, as emphasized in [42], there
is evidence that AR can offer real advances in the understanding

(a) Supporting healthy eating habits with user

context-aware AR.

(b) Supporting professional and educational as-

pirations with environmental context-aware AR.

Figure 2: Magic Leap-based mock-ups of two context-aware AR
applications that aim to support users’ personal development and
change. (a) Healthy food suggestions are presented to a user who
is predicted to soon feel hunger; (b) To motivate a user to study, a
distracting real-world object (phone) is covered with a hologram,
and a motivational hologram (a diploma) is presented.

and treatment of psychopathology. Context-aware AR applications
can be readily imagined for many different types of personal de-
velopment and change, such as maintaining a healthy lifestyle and
fulfilling personal and professional aspirations.

We demonstrate two Magic Leap-based mock-ups of context-
aware AR applications we envision to support personal development
and change in Figure 2. Both these applications fall in the category
of eudaimonic technologies, that support human flourishing, growth,
and the realization of one’s full potential [21]. Figure 2(a) shows a
mock-up of an AR application centered on supporting users’ goals to
maintain a healthy diet. Detecting, via a combination of AR device-
based and wearable sensor-based signals, that the user will soon
get hungry, the application proactively recommends healthy food
options, accompanied by a vibrant, visually appealing depiction of
one of them. Figure 2(b) shows a mock-up of a user productivity and
motivation-focused application. This AR application is envisioned to
be generating and placing, around the users, appropriate motivational
holograms, while also hiding real-world distractions. For instance,
a user who needs help motivating herself to study can be shown
a hologram of a diploma (as depicted in Figure 2(b)) or a visual
of herself in a cap and gown, while having distracting objects (TV,
gaming consoles) obstructed by virtual objects or blurred.

Realizing these and other context-aware AR applications that sup-
port personal development and change requires significant advances
in AR’s environmental, user, and social context awareness. For
example, generating the experience shown in Figure 2(a) requires
correctly predicting that the user will soon be hungry, and detecting
that the user is likely to be able to process and use the information
provided by the AR application (as opposed to, for instance, dis-
missing it while being engaged in an important task). Generating
the experience shown in Figure 2(b) requires the mobile phone that
is placed on the desk (shown on the left side of Figure 2(b)) to be
reliably identified in a wide range of conditions, and requires the
hologram covering it to consistently stay in place (i.e., not be subject
to spatial drift, which may be significant in modern AR platforms



Figure 3: Envisioned pillars of next-generation environmental, user,
and social context-aware AR: (1) multi-device platforms that inte-
grate additional sources of context data with the data captured by
the AR devices, (2) enhanced edge computing-supported SLAM
and scene understanding, and (3) context understanding algorithms
enriched by multi-device data, advanced SLAM and scene under-
standing, and computational capabilities of edge computing.

under many circumstances [43]).

3 PILLARS OF NEXT-GENERATION CONTEXT-AWARE AR

Realizing AR applications described in Section 2 necessitates signif-
icant improvements in the quality and extent of context awareness
available to the applications. We argue for the following pillars of
next-generation context awareness. The pillars and their relation-
ships to each other are shown schematically in Figure 3.

• Multi-device integration: We argue that supporting personal
development and change with pervasive AR calls for the develop-
ment of integrated platforms that bring together AR, wearables,
and the IoT. Lightweight and ubiquitous wearable sensors, such
as heart rate monitors, can provide important additional infor-
mation about the physical, cognitive, and emotional state of the
user. IoT devices, such as cameras and microphones, commonly
deployed in smart homes and offices, can provide additional im-
portant signals for establishing environmental and social context.
We elaborate on this in Section 4.

• Edge computing-supported SLAM and scene understanding:
Modern SLAM and scene understanding algorithms may not be
sufficiently powerful for the applications we have outlined in
Section 2. We argue for the need to develop additional edge
computing-supported algorithms, that will incorporate inputs
from multiple devices, adapt to practical wireless communication
environments, and both extend the range of SLAM and scene
understanding features available to the AR devices (e.g., they
will include scene change detection) and improve the robustness
of the existing algorithms. We describe the specific associated
research directions in Section 5.

• Enhanced context understanding: The already-impressive sens-
ing capabilities of user-worn AR devices, coupled with multi-
device support and advanced SLAM and scene understanding
approaches, will allow for the development of the next generation
of environmental, user, and social context understanding algo-
rithms for the envisioned applications. We elaborate on this in
Section 6.

These pillars will serve as the key enablers of the applications
we outlined in Section 2. Additionally, practical realization of these
applications, and their-long-term acceptance by the users, will cer-
tainly require enhancing privacy, which has long been recognized
as one of the key concerns in both AR and other related technol-
ogy areas (such as wearables, smart homes, edge computing, and
SLAM) [26, 31, 44, 62]. Towards it, one may envision developing,

for instance, edge computing-based privacy mediators, which have
been proposed in multiple lines of work [41]. Many context-aware
AR applications may also benefit from optimized approaches to
storing and delivering large context-specific virtual objects (e.g.,
virtual objects that are particular to a given context may be stored on
the edge or the cloud, and transmitted to the AR device in advance
of being displayed to the user). Several platforms that enable such
behavior have recently been proposed and developed [10, 19]. Due
to page restrictions, in this position paper we focus on the three
pillars highlighted above, leaving the discussion of other important
topics for future work.

4 MULTI-DEVICE INTEGRATION

AR devices capture considerable amounts of information about the
user and the environment through the egocentric video, inertial mea-
surement units, eye tracking cameras, and other sensors. However,
there are inherent limitations to having an AR headset as the only
source of contextual data. To enable the applications we outlined
in Section 2, we propose to develop platforms that combine AR
devices with the following:

• Wearable sensors, such as smart watches, that can provide
additional signals for capturing physical, cognitive, and emo-
tional state of the user.

• Ambient IoT devices, such as cameras and microphones, that
can provide signals for improving environmental, user, and
social context detection.

• Edge servers that collect data from multiple devices and of-
fer the computational capacity essential for the execution of
complex context detection algorithms in real time.

We show the high-level view of the envisioned multi-device plat-
forms in Figure 1. As shown in this figure, we envision using edge
computing to collect data from multiple, user-worn and environ-
mental, devices. While one user’s AR device and wearable sensors
can operate independently without relying on an edge server to
coordinate them, edge computing offers a convenient option for
running complex context detection algorithms on behalf of these
devices. Edge computing also offers a natural point for collecting
and analyzing the data captured by environmental IoT devices.

It is worth noting that the core connectivity between AR de-
vices, wearable sensors, IoT devices, and edge servers can be readily
established, via ubiquitous communication protocols (e.g., WiFi,
Bluetooth Low Energy) and a wide range of available IoT gate-
ways. Indeed, multiple lines of work have integrated wearable or
IoT sensors with AR, with the intent of using AR to visualize the
data generated by the other devices [16, 28, 32, 60]. However, in
using multi-device architectures to enable next-generation context
awareness, many research challenges remain, as we elaborate on
below.

4.1 AR devices and wearable sensors

Integration of AR devices with wearable sensors that obtain addi-
tional biometrics is particularly helpful for understanding the state
of the user. Convenient commonplace wearable devices have been
used to aid in recognizing arousal, stress, illness, and more via mea-
surements of movement, heart rate, skin conductance, blood oxygen
saturation, and skin temperature, among others [8]. To date, AR
devices and wearables, as sources of user context data, have largely
been examined separately. However, jointly they offer diverse, com-
plementary streams of data that can be used to improve upon existing
single-source context detection algorithms. One can imagine explor-
ing joint use of AR devices and wearables for detecting a wide range
of different elements of physical, cognitive, and emotional states
of the user. For example, how can fine-grained user activity recog-
nition based on AR-provided egocentric camera feeds [52] benefit



from the information captured by wrist-worn inertial measurement
units? Can heart rate variability measurements improve eye tracking-
based mental and physical fatigue recognition algorithms [45, 58]?
Which elements of AR-provided egocentric video captures and eye
tracking-based recognition of cognitive and emotional states of the
user [3, 20] could aid existing wearables-based stress recognition
algorithms [40]? Translating multi-device signal collection to reli-
able and timely user context detection will likely require developing
multi-modal DNNs, optimized for near-real-time execution; an edge
server’s computational capabilities are likely to be advantageous for
ensuring near-real-time performance in these cases.

4.2 AR devices and IoT devices

IoT devices, such as cameras and microphones, have the advantage
of providing persistent and continuous 3rd person captures of the en-
vironment, in addition to the transient 1st person captures obtained
by an AR device. As such, they can be used to capture context
that an AR device cannot obtain. For instance, IoT-based cameras
can capture whether someone has recently been smoking in a given
environment, which may be relevant to applications that aid in smok-
ing cessation (since the environment is likely to have a lingering
cigarette smell that may trigger a craving). IoT cameras can also
be used to establish whether the environment has changed between
different AR sessions, to trigger SLAM remapping as required to
improve the quality of spatial scene understanding (and, conversely,
to avoid unnecessarily time- and resource-consuming remapping if
the environment did not change). We elaborate more on this scene
change detection capability in Section 5.4.

Additionally, offering different vantage points of the same scene,
simultaneous 1st person AR device-based and 3rd person IoT-based
captures can be used to improve the accuracy of environmental, user,
and social context detection algorithms. Captures from different
vantage points have been shown to improve the performance of ob-
ject detection algorithms [24]. Within the context of SLAM, use
of multiple vantage points can be seen as a type of collaborative
SLAM, where captures of different devices can be combined to ob-
tain a higher-quality overall map that leads to higher-quality pose
estimation by the AR device. For user context detection, multiple
algorithms have been developed, disjointly, for either IoT camera-
based or AR device camera-based operation [2, 52]. Combining
IoT-based and AR-based approaches has the potential to offer im-
provements over either of the separate techniques. Finally, IoT-based
monitoring of ambient acoustic signals [31] can be used to improve
acoustic-based context detection for audio sources that are located
far from the microphone of the AR device.

The key research direction in this space is the development of
robust approaches for combining signals from different devices.
Different vantage points’ ‘quality levels’ will change over time: other
noise sources will be interfering with signals captured by different
microphones; users of AR devices will move closer and farther
from different IoT-based cameras. It is thus important to design
algorithms that will adaptively amplify ‘good’ signals and place
less weight on signals that are less useful. In DNN-based context
detection, this can be accomplished via the design of appropriate
attention mechanisms [49]. In SLAM, assigning relative importance
to different devices’ inputs can be accomplished via measures of
captured frames’ information gain [13, 15].

5 SLAM AND SCENE UNDERSTANDING

The applications we describe in Section 2 call for the development of
environmental understanding algorithms that are significantly more
robust than the state of the art. We highlight a set of related research
directions below.

5.1 Edge computing for improving AR-captured environ-
mental characterizations

Modern AR devices are increasingly relying on depth sensors to aid
with both scene understanding and SLAM. However, depth captures
remain sparse and imperfect even on higher-end AR devices. For
example, modern LiDAR sensors only capture depth information for
200-500 pixels in an image [33]. In addition, many modern depth
sensors struggle with obtaining reliable data when the observed
scene contains materials with low reflectivity, strongly specular
objects, and reflections from multiple objects [12, 48]. This leads to
depth data captures that are missing valid depth estimates in large
parts of a frame. For example, in our evaluation of depth estimates
obtained by a Microsoft HoloLens 2 in the long throw mode, we
found that 30% of depth pixels in a frame were missing, on average,
across a range of captures in representative indoor environments.
These challenges can potentially be addressed with modern depth
completion, super-resolution, and inpainting approaches such as [27,
33, 64]. Most such techniques are computationally complex; edge
computing support is likely to be required to ensure that they are
executed in real time.

Another area of improvement for AR device-based estimation of
the state of the environment is lighting estimation. Generating real-
istic 3D rendering of virtual objects in AR requires matching virtual
objects’ lighting effects (shadows, reflections) to complex omnidi-
rectional lighting conditions of the environment, i.e., photometric
registration. Detecting lighting conditions correctly is a challenging
task, for which multiple DNN-based solutions have been proposed.
Recently, [65] demonstrated the use of edge computing to obtain
high-quality lighting estimation in real time. Given the complexity
of environmental lighting estimation required for realistic virtual
object rendering, we believe that edge computing offers a natural fit
for developing high-performing photometric registration solutions.

5.2 Edge-supported scene understanding

Multiple lines of work have recently demonstrated the use of edge
computing for executing DNNs used for object detection in 2D im-
ages [23, 34]. A wide range of more computationally expensive
scene understanding techniques, such as those that use both image
and depth data, or those that use point clouds [14], are likely to
benefit from edge computing support as well. Additional computa-
tional support offered by edge computing is particularly important
for the types of applications we envision, since higher accuracy in
environmental understanding is likely to directly influence user ex-
perience (e.g., scene understanding errors that lead to the generation
of inappropriate interventions are likely to significantly reduce the
effectiveness of the AR application). The tradeoffs associated with
using more computationally efficientÐbut less accurateÐmodels
are not likely to be acceptable for these applications.

Envisioned applications’ scene understanding is also likely to
benefit from the inclusion of stationary IoT-based cameras into the
envisioned platforms. For example, these cameras can be used to
detect objects that are not in the field of view of the AR device, or
provide an additional input for more accurate object classification.

5.3 Traditional and semantic SLAM

Remarkable progress has been made, over the last few years, in en-
abling reliable SLAM for AR devices. Yet, much room for improve-
ment remains. Significant computational complexity of state-of-the
art Visual-Inertial-SLAM (VI-SLAM) employed in modern AR plat-
forms results in both high AR device resource consumption and
reduced tracking and mapping performance. Within AR experiences,
notable spatial artifacts continue to be encountered in a significant
fraction of scenarios. These artifacts, some of which we quantified
in our recent work [35, 43], include drift (unintended motion) of
virtual objects, spatial inconsistency between the views of different
AR devices on the same virtual objects, and long interruptions of



AR experiences following loss of tracking. Multiple research efforts
have lately been focused on offloading computationally expensive
parts of SLAM pipelines (such as global map optimization, place
recognition, loop closing, and map fusion) to edge servers, to reduce
mobile device resource consumption [1, 18, 55, 56]. In developing
mobile offloading strategies, most of these efforts assume that the
bandwidth available for offloading is sufficient and that wireless
connectivity is stable, which is not likely to be the case in practice,
particularly in environments with multiple AR devices. Realizing the
benefits of edge offloading for improving VI-SLAM performance
under computation and communication resource constraints in a
diverse set of practical conditions is an important research direction.

An exciting and wide range of recent work is combining SLAM
with machine learning-based perception (i.e., semantic) algorithms ±
the area referred to as semantic SLAM [4, 38]. SLAM and semantics
can be combined in multiple ways [4]: SLAM helping semantics
(e.g., [25]), semantics helping SLAM (e.g., [63]), and semantics
and SLAM solved within a joint formulation (e.g., [59]). Edge-
assisted semantic SLAM approaches have recently started to be
developed [57]. Given the already-demonstrated fit of edge com-
puting to improving semantic scene understanding, discussed in
Section 5.2, edge computing holds notable promise for improving
the performance of a wide range of semantic SLAM algorithms as
well.

5.4 Scene change detection

Most environments where one is likely to use applications outlined in
Section 2 are semistatic: in-between consecutive AR sessions, parts
of the environment may be altered (e.g., in a study area, chairs and
books may be moved, and blinds may be raised and lowered), which
leads to reduced performance in SLAM systems that rely on the
so-called static world assumption [38]. Stationary IoT-based cam-
eras can be an important aid in determining whether the scene has
changed (i.e., whether the AR device can rely on the map it has pre-
viously obtained, or whether it needs to map the environment again).
Scene change detection based on stationary cameras’ inputs is a
long-examined, well-formulated problem, for which many solutions
have been proposed [53]. Extending existing solutions to incorpo-
rate the specific constraints of heterogeneous multi-device platforms
we envision (IoT and AR, stationary and mobile, devices), for the
specific case of scene change detection in context of VI-SLAM, has
the potential to significantly reduce the extent of mapping that would
be required to achieve high-quality spatially aware AR experiences.

6 CONTEXT AWARENESS

This section outlines how environmental, user, and social context
can be used to generate context-adaptive AR that supports personal
development and change, and describes a number of important asso-
ciated research directions.

6.1 Environmental Context Awareness

Applications: Reliable semantic understanding of an environment
(i.e., accurate identification of objects and surfaces present in it)
opens a wide range of exciting possibilities for AR applications that
support personal development and change. One can imagine gener-
ating specific types of interventions when an environment includes a
certain set of elements. For instance, the user could be reminded of
her goals when the environment contains temptations for engaging
in unhealthy behavior. It may also be important to ensure that the
environment does not contain certain elements before an interven-
tion is presented to the user. For instance, in AR-based extinction
therapy for substance use disorders, where AR is envisioned to be
generating craving-inducing virtual objects [50], the AR-based inter-
vention should be delayed if physical craving-inducing objects are
already present in the environment (e.g., it would not make sense

to generate a virtual object representing a cigarette pack when a
physical cigarette pack is already on the table in front of the user).

A combination of reliable semantic and spatial understanding of
an environment (i.e., accurate identification of objects and surfaces,
coupled with accurate real-time captures of their positions with
respect to the user) can enable further important application capa-
bilities. One can imagine highlighting, altering, or blocking certain
features in the environment: for instance, in a supermarket, drawing
a user’s attention to healthy food options and blurring unhealthy
ones. The foundations for such spatially and semantically aware
AR have already been laid, and many exciting futuristic applications
that incorporate them have been demonstrated. For instance, Trans-
forMR recently showed how to compose AR scenes so that virtual
objects assume behavioral and environment-contextual properties
of the real-world objects they replace [17]. Further improvements
in semantic and spatial awareness will make an expanding range of
environmental context-aware AR-based interventions a reality.

Challenges and research directions: Additional research direc-
tions in environmental context awareness, not covered in Section 5,
include the need to develop multi-device, edge-supported algorithms
for acoustic environmental context understanding (e.g., detecting
music, loud noise, conversations and their properties), which can im-
pact intervention generation strategies. Another important research
direction is in determining the best approaches to representing rel-
evant properties of the environment. Recent examinations of 3D
scene graphs, which are used to capture the semantics and the rela-
tionships between objects in an environment [39, 47, 51], may offer
a path to compact and easily modifiable representations that cap-
ture the properties of the environment important for the envisioned
applications.

Another important research direction is developing AR applica-
tion interfaces that deal with errors in semantic and spatial awareness.
The multi-device edge computing-supported mechanisms we have
described in Sections 4 and 5 will improve the reliability of existing
environmental context detection algorithms. However, it is unre-
alistic to expect these techniques to fully eliminate all sources of
error. At its core, environmental context awareness for AR will
continue relying on DNNs and SLAM, both of which are known
to fail unpredictably, and for both of which mathematical founda-
tions of robustness have not yet been fully established [38, 46]. We
envision borrowing the Internet designers’ philosophy of building
reliable applications on top of best-effort lower-layer mechanisms:
AR applications will need to be engineered to take the likelihood
of environmental context detection errors into account. For exam-
ple, one can develop AR applications that allow users to correct
errors made by scene understanding algorithms described in Sec-
tion 5.2: e.g., by correcting incorrectly generated labels, or removing
incorrectly generated holograms.

6.2 User Context Awareness

Applications: Within the AR applications we envision, user context
detection will allow tailoring virtual objects that are rendered by the
AR device to the state of the user. One can imagine, for instance,
generating different virtual objects depending on whether the user
is sitting still or moving, focused or distracted, tired or energetic.
Formally, accurate and timely understanding of the state of the
user will translate to the correct identification of the user’s states
of vulnerability (i.e., periods of heightened susceptibility for an
undesirable outcome) [30] or states of receptivity (i.e., periods when
the user is able to process and use interventions provided) [29]. That
is, user context detection will allow delivering interventions when
they are most likely to be needed by the user, and most likely to be
useful to her.

For applications that support personal development and change,
the holy grail is predicting the future state of the user (rather than
detecting the state the user has already entered), to perform an early



intervention. One can imagine, for instance, displaying a calming
virtual object before the user gets stressed, or helping the user take
a break in advance of cognitive fatigue setting in. The richness of
environmental and user context the envisioned systems are expected
to be able to gather holds promise to enable such predictions, which
in turn will translate to the increased effectiveness of the systems in
supporting personal development and change.

Challenges and research directions: In addition to the research
directions outlined in Sections 4.1 and 4.2, an important challenge is
the expected need to personalize, i.e., tailor to the individual users,
the algorithms we will be developing for user context detection and
prediction. The advantages of model personalization have been
established in a wide range of recent work on physical, cognitive,
emotional, and other human state recognition and prediction [5, 7].
Due to the difficulties of collecting large amounts of data from indi-
vidual users, personalization generally involves the development of
few-shot learning techniques [54], potentially coupled with inventive
application-specific approaches to data labeling and augmentation.
The challenges associated with collecting, labeling, and training the
model with the data of an individual user may be exacerbated in
the heterogeneous multi-device systems we envision in this work;
innovative approaches are likely to be required in these and other
elements of algorithm personalization.

6.3 Social Context Awareness

Applications: Finally, for supporting personal development and
change, social context, i.e., the state of other humans in the envi-
ronment, and the nature of a user’s interactions with them, plays
a very important role as well. For instance, [31] emphasizes the
role of positive social contacts for a user’s stress response, and [42]
notes the importance of social context in the treatment of addiction.
For social context detection, the combination of AR devices’ and
IoT devices’ data streams offers a wide range of possibilities that
go beyond the ‘encounter profiling’ possible with traditional mobile
technologies (such as users’ proximity estimates based on Bluetooth
Low Energy, Near-Field Communications, or acoustic signals [61]).
One can imagine using AR device-captured 1st person egocentric
views to obtain accurate characterizations of the length and the
nature of users’ encounters with others around her, and using 3rd
person IoT-based captures to obtain additional insights into the state
of other humans in the environment and the interactions between
them. Additional context information can be gathered in cases where
multiple users are wearing AR devices or wearable sensors. In this
case we would be able to gain further insights into their state, thus
obtaining richer context for quantifying the interactions between
users. We can also envision developing methods for joint adaptation
of AR-based interventions. For example, when one of the users is
concentrating on her task, others can be shown an augmentation that
warns against disturbing her; when two users have been recorded
as having had a heated conversation, both can be shown calming,
stress-reducing, virtual objects.

Challenges and research directions: Social context recognition
methods developed for the applications outlined in Section 2 need to
be cognizant of the need to ensure bystander privacy [37], which is
paramount for the societal acceptance of AR as a whole. Because of
this, social context recognition detection may be limited, at least at
first, to the environments where all humans support the goals of the
AR user (and consent to having their behavior analyzed for the bene-
fit of the user), as could be the case within user’s home or, potentially,
workplace. In such scenarios, we imagine early experiments and
pilot deployments to build on a set of well-developed frameworks for
privacy in the context of smart homes, and include explicit consent
from all inhabitants and visitors. We envision using edge computing
for further privacy mediation: one can imagine, for instance, storing
all information gathered about the other humans on a local edge
server only, without transmitting it to the cloud. Wider use of social

context detection methods would require the development of a range
of bystander privacy preservation techniques.

7 CONCLUSION

This position paper outlines a research agenda towards improving
AR applications’ ability to capture and adapt to environmental, user,
and social context, with the overarching goal of enabling an emerg-
ing class of context-aware AR applications that will support users’
personal and clinical development and change. The outlined research
will enable improvements in the performance of current context de-
tection algorithms. It will also result in the development of context
detection techniques that are not feasible with state of the art AR
architectures. We define how this enhanced context awareness will
be used to enable the envisioned AR applications, and point out
several research directions associated with exploiting different types
of context that we will be able to collect.
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