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Figure 1: A visual overview of our case study, demonstrating our integrated design methodology for augmented reality spaces.
Four variations of a museum environment were produced in the Unity game engine (a). VI-SLAM pose tracking performance in
these environments was tested using ORB-SLAMS3 [6]], with different wall and floor textures resulting in different feature point
distributions (b). User satisfaction with these environments was evaluated using a VR headset, the Meta Quest 2 (©).

ABSTRACT

Demand is growing for markerless augmented reality (AR) experi-
ences, but designers of the real-world spaces that host them still have
to rely on inexact, qualitative guidelines on the visual environment
to try and facilitate accurate pose tracking. Furthermore, the need
for visual texture to support markerless AR is often at odds with hu-
man aesthetic preferences, and understanding how to balance these
competing requirements is challenging due to the siloed nature of
the relevant research areas. To address this, we present an integrated
design methodology for AR spaces, that incorporates both tracking
and human factors into the design process. On the tracking side, we
develop the first VI-SLAM evaluation technique that combines the
flexibility and control of virtual environments with real inertial data.
We use it to perform systematic, quantitative experiments on the
effect of visual texture on pose estimation accuracy; through 2000
trials in 20 environments, we reveal the impact of both texture com-
plexity and edge strength. On the human side, we show how virtual
reality (VR) can be used to evaluate user satisfaction with environ-
ments, and highlight how this can be tailored to AR research and use
cases. Finally, we demonstrate our integrated design methodology
with a case study on AR museum design, in which we conduct both
VI-SLAM evaluations and a VR-based user study of four different
museum environments.

Index Terms: Human-centered computing—Human computer
interaction (HCI)—Interaction paradigms—Mixed / augmented real-
ity;
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1 INTRODUCTION

Markerless augmented reality (AR), supported by visual-inertial
simultaneous localization and mapping (VI-SLAM), holds great
potential thanks to the convenience and flexibility it provides users,
and is already commonplace in commercial apps (e.g., [27,43]).
However, this technique places requirements on the spaces that host
AR; their visual properties must be conducive to vision-based pose
tracking to minimize spatial registration errors. A key challenge is
that the requirements of VI-SLAM-based AR systems, in particular
the need for recognizable textures, are frequently at odds with human
preferences related to comfort and aesthetics. For example, the
enduring appeal of minimalism in architecture and interior design
has led to indoor visual environments that commonly contain large
blank regions, which often result in pose tracking errors [29]. How
do we design spaces that work for both AR systems and AR users?

This concept of considering multiple distinct factors in the design
process is known as integrated design. A common example is build-
ing design that takes into account aesthetics, construction methods,
energy efficiency, sustainability, accessibility and cost. One specific
case of conflicting requirements, analogous to ours, is a building
occupant’s preference for large windows providing abundant natural
light [23]], and the greater energy consumption that results from this
design choice [63]]. In this work we develop a technique that brings
together the previously disparate fields of VI-SLAM performance
evaluation (e.g., [5l29]/54])) and occupant comfort research in immer-
sive virtual environments []], to better inform the design of AR host
spaces — towards a future in which holistic architectural and interior
design processes incorporate AR-specific factors as standard.

VI-SLAM performance evaluations are traditionally conducted us-
ing established benchmark datasets (e.g., EuRoC [5], TUM VI [54],
SenseTime [29])), through comparisons with accurate ground truth
pose, obtained through optical tracking systems such as OptiTrack
and Vicon [[68]]. However, due to the practicalities of obtain-
ing accurate ground truth pose data, the visual environments these
benchmarks cover are only representative of a tiny fraction of the en-
vironments in which AR is designed to be used. While methods have



been developed that enable direct measurement of spatial registra-
tion errors in a wider range of environments [53}/59]], controlling for
all possible variables is a near-impossible task. We require an eval-
uation method which facilitates systematic control of environment
conditions, to obtain a quantitative understanding of the relationship
between visual environment properties and spatial registration errors,
and better inform the design of spaces that host AR.

Critically though, the magnitude of spatial registration errors is
not the only way in which the visual properties of a space affect
the quality of an AR user’s experience. Research from the field of
environmental psychology has demonstrated how light [[11}/19,/37,
57|, color [|3338}/47]] and visual texture [47,71,73] in an environment,
as well as its layout [22]/45/72l|74]], can affect an occupant’s comfort,
behavior and task performance. These visual properties are a subset
of a wider group of factors (including air quality, acoustics and
temperature) that determine indoor environment quality (IEQ), and
are sometimes referred to as atmospherics [31], particularly in the
context of consumer behavior. Visual conditions have been shown to
impact other aspects of IEQ, such as thermal comfort perception [51].
Specific to AR, user perception of virtual objects is affected by the
properties of the real world background and surroundings [[10,/15].
Our evaluation methodology must assess these direct effects of the
environment on an AR user, as well as the indirect effects that arise
from the pose tracking quality of an AR system.

In this paper we present a methodology that supports the evalua-
tion of both AR device tracking performance, and AR user comfort
and perception, in diverse visual environments. To the best of our
knowledge our VI-SLAM evaluation technique is the first to enable
accurate measurement of pose tracking performance in virtual en-
vironments with real inertial data. We show how the same virtual
environments can be used to conduct virtual reality (VR)-based eval-
uations of user comfort, towards our proposed integrated design
process that considers both tracking and human factors in the design
of AR spaces. We demonstrate this with a case study on AR museum
design, which reveals important trade-offs related to visual environ-
ment properties, with the user study illustrating further motivation
for the use of virtual environments. While the focus of this work
is on simulation of the real-world environment, our methodology
also supports the simulation of virtual content, and user interactions
with that content, which we will investigate in future work. Our key
contributions are summarized as follows:

e We present the first VI-SLAM evaluation method that combines
virtual environments with real inertial data, enabling accurate
pose tracking performance analysis of handheld or head-mounted
AR devices under controlled visual conditions. We release the
code for our solution on GitHub as a publicly available tool.

e We conduct the first systematic experiments (2000 trials) on
the impact of visual texture on VI-SLAM performance, includ-
ing quantitative analysis of texture complexity and edge strength.
While in general greater edge strength improves performance, suf-
ficient complexity is also key: median relative error on TUM VI
room5 was 22.6cm on a low-complexity texture, compared to
3.6cm on a high-complexity texture with lower edge strength.

e We demonstrate how our VI-SLAM evaluation method can be
combined with VR-based evaluations of user satisfaction in dif-
ferent visual environments, through a case study on AR museum
design (Figure[T). We design and implement a user study, and as-
sess participant responses alongside tracking performance, high-
lighting the advantages of our integrated design methodology.

The rest of the paper is organized as follows. In Section 2] we
cover related work, then in Sectionpresent our VI-SLAM evalua-
tion technique, and perform systematic experiments to examine the
impact of visual texture on pose error. We present our method of en-
vironment occupant comfort evaluation in Section[d] our case study

on integrated design of an AR museum in Section[5} and conclusions
and future work in Section[f] The code required for implementation
of our VI-SLAM evaluation method is publicly available at https:
//github.com/timscargill/Virtual-Inertial-SLAM/.

2 RELATED WORK

VI-SLAM environment characterization: We build on existing
VI-SLAM benchmarks [|51/94[291|30,/54}/77|], some of which provide
qualitative descriptions of visual conditions; for example less chal-
lenging scenes in EuRoC [5] are labeled ‘good texture, bright scene’,
and more challenging ones ‘dark scene’, while in SenseTime [29]]
the authors note that the two most challenging sequences contain ‘a
glossy wooden floor’ and ‘a white board and repetitive textured car-
pets’. However, no existing VI-SLAM benchmarks quantify visual
environment properties. There are works which predict pose estima-
tion confidence from the distribution of 2D feature point matches (in
part determined by visual texture) [|13]], study the impact of camera
motion (which can affect visual texture through motion blur) [[76],
and characterize the difficulty of SLAM trajectories [S0], but these
are for visual-only SLAM. Perhaps closest to our work is [[17]], which
quantifies visual properties (including texture) of visual-only SLAM
sequences in forest environments, but does not quantify pose error.

SLAM and AR evaluations using virtual environments: Game
engine-based simulations in virtual environments have previously
been used as inputs for visual SLAM [3}|16,/46L|58]], and drone
and autonomous vehicle simulators are available that output visual
and inertial sensor data (e.g., [56[). In [SO] the authors present a
visual-only SLAM dataset in virtual environments that uses realistic
handheld and head-mounted trajectories, recorded using a motion
capture system. However, to the best of our knowledge our eval-
uation methodology is the first to support VI-SLAM simulations
in virtual environments with real inertial data, along with motion
patterns typical of handheld or head-mounted AR devices. Virtual
environments have also been employed to evaluate AR user inter-
faces using VR [34]. We view this work as complementary to our
own, in that testing of user interfaces, how users perceive them in
different environments, and their effect on user states such as cogni-
tive load, may be incorporated into the VR-based user evaluations
of virtual environments we describe in Section 4]

Occupant comfort research using virtual environments: Im-
mersive virtual environments are an established research tool in
psychology [35]], and over the last decade they have increasingly
been used to study occupant comfort and behavior in building en-
vironments — for a recent review see [1]. Previous work in this
field has reported a high level of perceptual accuracy in virtual
environments presented using headset VR compared to physical
environments [7,[25]]. The vast majority of existing works on user
visual comfort in virtual environments have focused on the effects of
lighting (e.g., [23/37])); to the best of our knowledge we are the first
to examine the effect of environment textures on occupant visual
comfort. In our user evaluations of virtual environments we draw
inspiration from [25]], which found varying occupant satisfaction
with different window sizes in headset VR; we use their experiment
design to guide the implementation of our user study (Section[5.2.3).

3 VI-SLAM EVALUATIONS IN VIRTUAL ENVIRONMENTS
3.1 Motivation

Our motivation for the use of virtual environments for VI-SLAM
evaluations is twofold. Firstly, it enables testing in a much wider
variety of visual conditions than is currently practical in physical en-
vironments, given the logistics associated with setup and calibration
of the multi-camera optical tracking system (e.g., OptiTrack [44],
Vicon [|68]]) required for accurate ground truth pose data. This is
important because AR is designed to be used in a diverse range of
settings with highly heterogeneous visual conditions, from ware-
houses and operating theaters to classrooms and parks. Secondly,
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Figure 2: An overview of our VI-SLAM evaluation methodology,

using virtual environments with real inertial data, and incorporating
environment characterization.
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virtual environments facilitate systematic control of environment
properties, including light level, visual textures, and room size. This
will allow us to obtain a quantitative understanding of the relation-
ship between visual conditions and VI-SLAM performance. Unlike
existing VI-SLAM simulation solutions, our technique uses real in-
ertial data, better capturing the challenges of the noisy accelerometer
and gyroscope signals available onboard an AR device.
Furthermore, we envision three practical ways in which our
VI-SLAM evaluation technique, and the wider integrated design
methodology it supports, may be employed. Designers of spaces
that host AR, along with AR app designers creating an experience
for a specific setting, can use it to inform lighting and visual texture
choices in that space, and to better understand the level of pose
tracking accuracy a space is likely to support. Researchers can use it
to generate sufficient training data for machine learning models that
predict VI-SLAM performance from visual and inertial input data,
towards pose error prediction models which could be incorporated
into real AR systems. Finally, developers of VI-SLAM algorithms
have the opportunity to test against a new set of benchmarks, which
can also be readily evaluated from human perspectives; we see the
potential for our methodology to not only create benchmarks more
representative of AR environments, but to introduce more human-
centered design into VI-SLAM algorithm development — tracking
algorithms designed with AR users in mind, not as an afterthought.

3.2 VI-SLAM Evaluation Methodology

Our VI-SLAM evaluation methodology is based on leveraging the
ground truth pose data in existing datasets to generate new camera
images, which we can then use with the original inertial data; our
solution will work with any dataset that has inertial data and com-
plete ground truth pose data, including existing VI-SLAM datasets
(e.g., TUM VI [54], SenseTime [29])), and inertial odometry datasets
(e.g., OXIOD [8])). An overview of our solution is shown in Figure[2]
and the code required to implement it is publicly available at https:
//github.com/timscargill/Virtual-Inertial-SLAM/. We
start by creating a virtual environment in a game engine such as
Unity [66]] or Unreal Engine [[12]]. These software facilitate the cre-
ation of highly realistic environments with accurate lighting. Given
that there are no particular frame rate requirements in this rendering
stage, quality settings can usually be maximized, even on machines
with fewer computational resources. We use the option to define
‘physical’ cameras, with specific field of views and sensor sizes, to
model the sensor specifications of AR devices, such as a smartphone
camera. To the game engine project we add a custom visual data
generation script which samples the ground truth pose data from
an existing dataset to the desired camera frame rate, then generates
new camera images at each of these poses. Our script also outputs
a camera intrinsics and extrinsics config file (calculated from the
defined camera specifications, the game engine coordinate system
and the dataset used), as well as the lists of timestamps and images
required by some open-source SLAM algorithms.

Our methodology supports execution of VI-SLAM sequences
through either SLAM libraries such as ORB-SLAM [6] or the Robot
Operating System (ROS). If ROS is used, then an extra step is
required prior to execution, to convert the VI-SLAM input data to
.bag file format. Once the data has been prepared, sequences can be

executed by following the instructions for the open-source VI-SLAM
algorithm of choice (e.g., ORB-SLAM3 [6], VINS-Mono [48]]). To
facilitate batch processing of the large numbers of trials required
for systematic experiments, we create a custom shell script, which
can be used to execute sequences of multiple types, from multiple
different environments. The outputs from this SLAM sequence
execution step are the trajectory estimate files, which we evaluate
using an existing toolbox [75]]; we extend this toolbox to provide
not only the standard SLAM error metrics absolute trajectory error
(ATE) and relative error (RE), but also data on each individual sub-
trajectory used to calculate RE, for more granular analysis. Finally,
we create a custom Python script to analyze the visual and inertial
input data, and correlations between these data and pose estimation
error.

3.3 VI-SLAM Visual Texture Experiments
3.3.1 VI-SLAM Visual Texture Experiments Setup

‘We now demonstrate our VI-SLAM evaluation methodology through
systematic experiments to study the effect of visual texture on pose
estimation error. We define two metrics to assess visual texture,
calculated from the grayscale image used as visual input to the
VI-SLAM algorithm. As a measure of image complexity we use
Entropy (Shannon entropy), implemented using the Python package
scikit-image [55]] and defined as:

H(X)=—Y Py(x;)logPy(xi), (1)

Xi€X

where the discrete random variable X is the pixel intensity value and
it takes values in a set y that contains all possible pixel intensity
values x;. Py (x;) is the probability that the random variable X takes
the value x;. As a measure of the number and strength of edges
in an image we use Laplacian, the variance of the Laplacian [[17],
implemented using the OpenCV Laplacian operator, and defined as:
I*x  9°X
Var(L) = Var( 32 + R )7
where x and y are the 2D locations of the pixel with intensity val-
ues X, and L denotes the Laplacian of the pixel intensity values. In
these experiments we study 2D visual textures by examining empty
cuboid environments without 3D objects; the effects of visual tex-
tures that arise from 3D objects is a topic for future work, though
objects are included in our museum case study (Section[5). In Unity
2020.3.14f1, using the High Definition Render Pipeline [64], we ap-
ply each visual texture to the walls, floor and ceiling of 6m x 6mx4m
rooms (large enough to fit the trajectories in our chosen SLAM
datasets), to create different virtual environments. We light these
environments using a single point light source, and test each texture
at 10 different light levels, by setting the light source to 50, 100,
200, 300, 400, 550, 750, 1000, 2500 and 5000 lumens. Testing
at different light levels simulates the scenario in which AR users
enter an environment at different times of day. We set the horizontal
field of view of our game engine camera to 79°, matching that of a
high-end smartphone AR device, the Samsung Galaxy S20 [52].
We evaluate performance in our environments using four trajecto-
ries from two handheld VI-SLAM datasets, one from the commonly
used TUM VI dataset [54], and three from an AR-specific dataset,
SenseTime [29]. We use (1) TUM VI roomS5, a trajectory with rapid
motion representative of a dynamic AR user, with camera views
scanning almost all parts of the environment; (2) SenseTime Al,
with slow side-to-side motion facing the wall, as if inspecting a
virtual object at head height, followed by repeated walking away and
returning with the camera angled more towards the floor (described
in [29] as ‘inspect+patrol’); (3) SenseTime A4, with slow motion fo-
cused on an area of the floor, followed by the same slow side-to-side
motion facing the wall (‘aiming+inspect’); (4) SenseTime A6, with
slow motion focusing on then moving around a small area of floor, as

(@)
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Figure 3: The 10 textures we used in our VI-SLAM experiments
with basic textures. More edges are added with increasing texture

number, resulting in greater Laplacian values (see TableEI).

Table 1: Summary of visual texture properties in our VI-SLAM
experiments with basic textures (Section[3.3.2). ‘Source’ values are
calculated directly from the source image texture; sequence values
are averages across all input images, across all 10 light levels tested.

Entropy Laplacian

Texture Source Source | room5 | Al Ad | A6
B1 1.3 881 210 210 | 181 79
B2 1.3 1165 270 273 | 237 | 101
B3 1.3 1458 329 330 | 289 | 124
B4 1.4 1681 336 347 | 293 | 139
BS 1.5 1933 375 409 | 370 | 172
B6 1.5 2042 394 435 | 389 | 184
B7 1.6 2176 420 460 | 423 | 198
BS 1.7 2570 459 496 | 466 | 210
BY 1.8 2831 490 537 | 509 | 230
B10 1.9 3236 526 581 | 552 | 249

if inspecting a virtual map placed there (‘hold+inspect’). The room5
sequence has the most challenging inertial data, in particular higher
rates of rotation: the average magnitude of gyroscope readings for
roomS is 1.5rad/s, compared to 0.3rad/s for Al and A4 and 0.2rad/s
for A6. We generate the camera images for each trajectory, in each
environment, with a custom C# script, using the method introduced
in our VI-SLAM evaluation methodology (Section[3.3.T).

We execute our new sequences using a state-of-the-art open-
source monocular VI-SLAM algorithm, ORB-SLAM3 [6]], using
default settings. We run them on a desktop computer (equipped
with an Intel i7-9700K CPU and an Nvidia GeForce RTX 2060
GPU), using a virtual machine with 4 CPUs and 8GB of RAM,
representative of the computational resources of a mobile AR device
such as a high-end smartphone. To evaluate the estimated trajectories
we use the toolbox provided in [[75]], and focus on the translational
component of RE of each trajectory as our primary performance
metric. We choose this metric because it corresponds to a noticeable
issue in markerless AR, virtual object position error; the individual
sub-trajectories from which RE is calculated represent a movement
a user makes between virtual object views, and the translational
component of the pose error at the end of a sub-trajectory is how
much a virtual object drifts out of position during that movement.
For all results in this paper, we report RE as calculated using a
sub-trajectory length of 2m, as a typical length of movement an AR
user might make between virtual object views, though in practice
RE calculated using different lengths is usually highly correlated
(with longer sub-trajectories resulting in greater error). We define
an additional performance metric robustness, the mean percentage
of input sequence frames that are tracked. Robustness is generally
slightly higher for the TUM VI sequence, room5, than for SenseTime
sequences, due to the latter having a 5-10s stationary period at the
start of the trajectory, during which tracking is not initialized. We
perform 10 trials at each of 10 light levels, a total of 100 trials for
each texture, and 2000 across our experiments described below.

3.3.2 VI-SLAM Experiments: Basic Textures

For our first set of visual texture experiments we created 10 low-
complexity binary images (Entropy < 2 for all), with random shapes
added incrementally to gradually increase the number of edges (and
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Figure 4: Relative error and robustness for four VI-SLAM sequences

run with ORB-SLAM3 in 6mx 6mx4m rooms with each basic tex-
ture (Figure E]), over 100 trials (10 light levels, 10 trials at each).

Table 2: VI-SLAM performance results for our experiments with
basic textures (Section [3.3.2), over 100 trials. Robustness is the
mean percentage of frames tracked over all trials.

Texture Median RE (cm) Robustness (%)
room5| A1 | A4 | A6 | room5| Al | Ad | A6
B1 - - - - 0 0 0 0
B2 - - - - 0 0 0 0
B3 102.1 - 241 - 62 0 61 0
B4 1135 | 49| 1.8 - 72 76 | 70 | O
B5 1141 | 48 | 1.6 | - 82 78 | 78 | O

B6 1184 | 25| 15] 2.0 95 79 | 81 | 2
B7 107.7 | 23 | 1.2 | 2.1 94 81 | 82 | 36
B8 107.1 | 1.6 | 1.2 | 1.9 95 80 | 82 | 43
B9 511 | 1.4 ] 14| 1.8 94 78 | 81 | 66
B10 447 |15 14| 14 92 82 | 81 | 75

thereby the amount of visual texture), as shown in Figure[3] The En-
tropy and Laplacian values for these images are shown in Table[T}
only Laplacian is shown per sequence because different types of mo-
tion in different trajectories do not have a large impact on Entropy,
but do affect edge strength through motion blur. We applied these
textures to the walls, floor and ceiling of our virtual environment
(each black shape in the first texture, B1, covered approximately
Imx 1m), to create 10 different environments, then tested them using
the procedure described in our VI-SLAM visual texture experiments
setup (Section[3.3.1). We hypothesized that RE would decrease as
the number of edges increased (increasing texture number).

The results for our VI-SLAM experiments with basic textures are
shown in Figure [ and Table[2] Textures B1 and B2 failed on all
trials for all sequences, B3 failed for A1, and B3, B4 and B5 failed
for A6. Visual texture had the greatest effect on median RE for the
more dynamic sequences, room5 and Al; median RE for room5
was 118.4cm with texture B6 compared to 44.7cm with texture B10,
while for A1 median RE was 4.9cm with texture B4 but 1.5cm with
texture B10. For the A6 sequence a dramatic decline in robustness at
low textures was observed: 75% with texture B10, but just 2% with
texture B6. This impact on robustness was also observed to a lesser
extent for room5 and A4. For room5 textures with low robustness
(e.g., B3, B4, BS) actually exhibited slightly lower median RE due
to tracking being maintained accurately but only for a small number
of frames on some trials. Multiple large RE values greater than 1m
occurred with all textures for both room5 and Al.

3.3.3 VI-SLAM Experiments: Complex Textures

For our next set of visual texture experiments we selected 10 more
complex images (Entropy > 5 for all), with levels of complexity
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3 6.6 498 132 290 | 301 | 139 run with ORB-SLAM3 in 6mx6m x4m rooms with each complex
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Cé6 6.4 879 79 112 | 101 50 Table 4: VI-SLAM performance results for our experiments with

C7 74 1276 112 166 | 173 | 113 complex textures (Section @, over 100 trials. Robustness is the

C8 5.1 2916 328 567 | 513 | 239 mean percentage of frames tracked over all trials.

C9 7.8 3966 133 298 | 262 | 133 Texture Median RE (cm) Robustness (%)

C10 7.8 4077 203 378 | 328 | 199 room5| A1 | A4 | A6 | room5| Al | A4 | A6

C1 8.6 50| 14| 1.6 78 63 | 68 | 57

more representative of real-world environments. The selection crite- 2 - - N - 0 0 0 0
ria for these images were that the level of texture should be relatively a3 6.1 29109126 o1 79 | 82 | 63
uniform (i.e., no large blank spaces in which tracking might be C4 38 | 23] 13] 17 85 80 | 82 | 32
lost), they should contain minimal repetitive elements, and that to- (& 5.1 31109 17 96 82 | 82 | 30
gether they should cover a range of Entropy and Laplacian values. Co 4.4 2710813 84 81 | 82 | 52
These images are shown in Figure[5] and the respective Entropy c7 36 23107 1.1] 96 83 | 82 |75
and Laplacian values in Table[3] We applied these textures to create C8 226 | 32| 1.1 | 1.8 91 82 | 82 | 50
10 different virtual environments (scaled such that each image in C9 4.0 26 | 0.7] 1.0 97 83 | 82 | 80
Figure 5] covered a 6mx4m wall), then tested those environments C10 4.0 22107109 96 83 | 82 | 80

following the procedure described in our VI-SLAM visual texture
experiments setup (Section@. Following the results we obtained
in our experiments with basic textures, we hypothesized that RE
would decrease and robustness would increase as the number of
edges increased (increasing texture number).

The results of our VI-SLAM experiments with complex textures
are shown in Figure [6] and Table [d] Texture C2 failed for all se-
quences, while for sequence Al, outliers greater than 140cm are
excluded from the plot (but included in statistics calculations): 12
for texture C1, 6 for texture C4, and 17 for texture C8. Out of the
other textures, the texture with the lowest Laplacian values, texture
C1, generally resulted in notably lower robustness than others. For
roomS5 robustness was 78% with texture C1, compared to 84% or
greater with all other textures; for A1l and A4 respectively robustness
was 63% and 68% with texture C1, compared to at least 79% with
all other textures. The exception to this was A6 which, as in our
experiments with basic textures, exhibited lower levels of robustness
across a wider range of textures — only with textures C7, C9, and
C10 was robustness 75% or greater. Another standout result was that
while edge strength was less impacted by motion blur on texture C8
(sequence Laplacian values were higher than for any other textures),
performance was worse than with textures with comparable source
Laplacian values for all sequences, in particular roomS5: for room5
median RE was 22.6cm with texture C8, compared to 3.6cm with
C7 and 4.0cm with C9, and over twice as high as with C1 (8.6cm).

3.3.4 VI-SLAM Visual Texture Experiments Discussion

The results of our experiments reveal important insights regarding
the impact of visual texture on VI-SLAM performance. The low
level of robustness and high RE we observed at lower texture num-
bers, in particular with textures C1 and C2 in our complex texture

experiments, clearly demonstrates the challenges of hosting marker-
less AR in spaces without visual texture; tracking often either fails
to initialize or is unavailable for large portions of many trajectories,
unacceptable for AR scenarios. We also observed that both the num-
ber and strength of edges (Laplacian) and the complexity (Entropy)
in a visual environment determine pose tracking performance. Aside
from worse performance at lower Laplacian values, the complex
texture with the lowest Entropy, texture C8 (5.1), performed worse
than other textures with comparable Laplacian values; the texture
with the second-lowest Entropy, texture C2 (6.3), failed to run at
all, despite having a higher Laplacian value than the moderately
successful texture C1 (Entropy = 7.1). Comparing our complex and
basic texture results, greater Entropy in complex textures resulted
in lower median RE for room5 than with basic textures; we posit
that this is due to complexity aiding place recognition, as with the
basic textures loop closure often did not occur at expected points,
resulting in large RE on a dynamic trajectory such as roomS.
Furthermore, the effects of visual texture on pose error were
strongest for the sequences with the greatest motion, but certain
types of camera views in lower-texture environments also resulted
in poor robustness. The relative performance degradation in low
texture environments was greatest with the most challenging inertial
data (roomS5), but in A6 the fact that the camera view only covered a
small portion of the environment floor meant that less texture was
visible (Laplacian values for A6 in Tables[T]and [3|are frequently
lower than for room3, despite the lack of motion blur), resulting in
more frequent tracking losses. It is clear that to support AR scenarios
and applications with dynamic users, for example young children,
or animated content that prompts users to move their head rapidly to
follow it around a room, we must understand how best to create en-



vironments with sufficient texture. However, we must also consider
AR interactions which cause users to focus on specific regions of an
environment, because they place additional requirements on those
regions. The types of motion and camera views that different AR
content prompts in users is a vital topic for future work.

3.3.5 Realistic Virtual Environments

The textures we examined in our VI-SLAM experiments were cho-
sen to investigate an extensive distribution of Laplacian and En-
tropy values. We have also tested 10 textures designers are more
likely to encounter in real-world scenarios, using the same format as
with our basic and complex textures. Four of these source textures
(speckled marble, brick, stone and wallpaper with a plant texture)
had high edge strength (Laplacian>1800), while the remaining
six (paint, concrete, rough concrete, marble with a soft texture,
wood and repetitive geometric wallpaper) had low edge strength
(Laplacian<500). The paint and soft marble textures failed to ini-
tialize for all sequences, while the geometric wallpaper resulted in a
large number of high RE outliers, illustrating the problems posed by
insufficient texture and repetitive elements respectively. Results for
the remaining textures were consistent with our previous findings,
with performance differences greatest in the presence of more chal-
lenging inertial data; for room5 three out of four high edge strength
textures, brick, stone and the plants wallpaper, achieved median
RE <5cm, compared to >20cm for all other textures. The notable
exception was the speckled marble (median RE = 95cm): here the
fine texture was greatly affected by motion blur, resulting in low
edge strength in camera images in dynamic scenarios.

Our VI-SLAM evaluation methodology facilitates the creation
of highly realistic virtual environments that incorporate these types
of textures and natural 3D objects. Guidance on how to do this
can be found, along with examples, on our GitHub page: https:
//github.com/timscargill/Virtual-Inertial-SLAM/.

4 USER EVALUATIONS OF VIRTUAL ENVIRONMENTS
4.1 Motivation

In order to inform the design of AR spaces we require a method
of testing the effect of environments on occupants, including both
AR users and non-AR users. Physical environments are often im-
practical for this because (1) they require the space to already have
been constructed, (2) they do not facilitate easy adjustment of vi-
sual conditions other than lighting, and (3) human participants have
to be physically present to experience them. Specific to AR, the
study of how different visual conditions affect the perception of
virtual content is constrained by the limited range of physical en-
vironments available to researchers. Inspired by the recent use of
head-mounted VR to study occupant satisfaction and behavior in
environmental psychology [1], and for AR user interface design [34]],
we propose combining and extending these two approaches, to in-
corporate VR-based user evaluations into our integrated design of
AR spaces. These user evaluations provide additional motivation for
the use of virtual environments, and are a powerful tool for investi-
gating human factors in both AR environment design and VI-SLAM
algorithm design. Just as crowdsourcing can be employed for web
quality of experience assessments [70], we envision the increasing
availability of VR headsets facilitating crowdsourced, remote testing
of simulated AR environments, in both academia and industry.

4.2 User Evaluation Methodology

An overview of our user evaluation methodology for simulated AR
environments is shown in Figure[7] We create a virtual environment
in a game engine such as Unity [|66] or Unreal Engine [12], which
can be evaluated from a tracking perspective using our VI-SLAM
evaluation methodology (Section[3.2), in parallel to the process de-
scribed here. For user evaluations, this virtual environment may
simulate either only the real elements of an AR space or both real

Game engine VR headset Survey software Python

VI-SLAM
evaluation
methodology
(see Figure 2)

Virtual User
fe1=] environment =»] environment  jrepe—tpy
creation experience

Environment
M= experience
analysis

‘ —————
I Motion and !
1 cognitive attribute |
analysis |
Head pose, eye, | R "
biosignal data

User experience
survey

VR application | |
build

Figure 7: An overview of our user evaluation methodology to study
the effect of different environments on occupants. In our integrated
design methodology the virtual environments that are created can
also be evaluated in terms of tracking performance (see Figure.

and virtual content. We then build a VR app tailored to the nature of
the AR experience to be tested, which can be run on a VR headset
such as the Meta Quest 2 [[39] or Vive Pro [69]]. This app may simply
facilitate user movement in an environment, or incorporate interac-
tions with simulated virtual content as well. It is also configured to
record user head pose, and depending on available hardware, eye
tracking data and biosignals such as heart rate (the HP Reverb G2
Omnicept VR headset contains both an eye tracker and a heart rate
sensor [26]]). This app can be packaged for different headset models
and distributed online in the case of remote testing.

A human participant wears a headset running the VR app to ex-
perience the virtual environment (possibly performing a predefined
task), while head pose, eye and any other available biosignal data are
captured and saved to a file. After experiencing the environment, the
participant answers survey questions regarding their experience; in
this version of our methodology we use external survey software, but
questions could also be incorporated into the VR app itself. These
survey questions cover both general comfort and feelings about an
environment (see [25]] for examples), as well as application or use
case-specific topics — for example, how easy it was to find or focus
on AR content, or information learned from an AR experience.

Finally, we develop custom Python scripts to analyze the data
collected in our user evaluations. Here we extract and examine user
survey responses, analyzing them alongside the sequence charac-
terization step in our VI-SLAM evaluation methodology, to enable
quantitative analysis of the effect of visual conditions on human
responses, and side-by-side comparison of performance from track-
ing and human perspectives. Although not implemented here, our
methodology can also be extended to include analysis of user mo-
tion from head pose data (we provide an example of recorded head
pose data in Figure[I0), and cognitive attribute detection from eye
and biosignal data, which has recently been demonstrated in VR
for stress [24] and mental workload [36]. By gathering data from
multiple onboard sensors in VR, it will be possible to gain additional
insights on the impact of different virtual environments on users,
further enhancing the efficacy of our integrated design methodology.

5 CASE STUDY: INTEGRATED DESIGN OF AN AR MUSEUM

Having developed our methodology for integrated design of AR
spaces, we now demonstrate it using a case study that replicates a
real-world use case. We consider the scenario in which an institution
wishes to host AR applications in a specific physical space, and
wishes to design that space to have optimal visual properties, to
support high quality user experiences. Here we focus on the example
of a small museum exhibit, featuring real historical artifacts that
would be supplemented by virtual content. However, this scenario
covers a wide range of possible AR host spaces, from art galleries
and classrooms to conference rooms and design studios.

5.1 Motivation: AR Museum Design

Educational spaces such as museums and art galleries are a promi-
nent use case for AR. AR has the ability to provide engaging,
interactive experiences for visitors, and a number of institutions
have already started to adopt it for specific exhibits, including the
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Smithsonian Natural History Museum [60l/61], the Hamburger Kun-
sthalle [20], the Muséum national d’Histoire naturelle in Paris [42],
and the Dalif Museum in St Petersburg, Florida [62]. In their AR-
supported exhibit ‘Invasive Species’, the Perez Art Museum in Mi-
ami noted how visitors not only interacted with the technology, but
that AR encouraged interactions between people, and that positive
experiences were reported across age groups [41]. From a research
perspective, study of these spaces involves many interesting chal-
lenges and opportunities, such as dynamic, multi-user environments,
heterogeneous users, and a wide variety of possible virtual content.
In our work we extend an existing body of research on the effect
of museum environments on visitor comfort, engagement, and be-
havior [4}[28]|32,/451[72]. Now, given the recent interest in using AR
in museums, there is a clear need to understand how the environmen-
tal requirements of the AR system and the museum visitor trade off
against one another. The spatial registration errors that result from
poor AR device pose tracking limit, and can even destroy, the sense
of immersion and engagement that a visitor has with an exhibit;
therefore it is vital that we can design spaces that minimize these
errors, even for dynamic users, while maintaining a pleasant environ-
ment for visitors. Only through an integrated design methodology,
which considers both tracking and human factors, can we do that.

5.2 Case Study Experiments Design
5.2.1 Virtual Museum Environment

We created a virtual museum environment in the cross-platform
game engine Unity [[66]], using 3D models and textures from the
‘Museum VR Complete Edition” Unity asset [65[]. The environ-
ment dimensions were 4mx3mx2.4m, chosen to match the size
of the physical environment in which we conducted our VR-based
experiments. We created an exhibit on Ancient Egypt, containing
five 3D models of real artifacts, sourced from the aforementioned
Unity asset. To study the effects of different visual textures in our
museum space we created four versions of the environment, each
with a different wall and floor texture combination. Images of these
environments are shown in Figure MuseumA (top left) had blank
gray walls with a wooden paneled baseboard and a wooden floor;
MuseumB (top right) had gray marble walls and a patterned marble
floor; MuseumC (bottom left) had wooden walls and a patterned
marble floor; MuseumD (bottom right) had commercially available
wallpaper with an Ancient Egyptian design [[67] and a wooden floor.

5.2.2 VI-SLAM Performance Experiments Design

We evaluated VI-SLAM performance for each of the four museum
environments (Figure with ORB-SLAM3 (default settings), us-
ing the methodology we established in Section[3] on the SenseTime
Al, A4 and A6 sequences (the TUM VI sequence trajectory we used
in our previous experiments was too large to fit within our museum
environment). The Entropy and Laplacian values for these envi-
ronments, averages across the input images for each sequence, are
shown in Table[5] We performed 10 trials for each sequence in each
environment, with a fixed, ‘normal’ light level. We hypothesized
that the well-defined textures of the Ancient Egyptian wallpaper
(MuseumD) would result in the lowest RE, the less clear marble and
wood textures (MuseumB and MuseumC) would result in higher RE,
and the blank walls (MuseumA) would result in the highest RE.

Table 5: Summary of visual properties for the four museum envi-
ronments in our case study. Values for each sequence are averages
across all sequence input images.

Entro Laplacian
Museum | T AT T AG
A 58 | 58 | 54 | 74 | 67 | =
B 60 | 60 | 58 | 102 | 262 | 119
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Figure 8: Relative error and robustness for three VI-SLAM se-
quences run with ORB-SLAM3 in our four museum environments,
over 10 trials.

Table 6: VI-SLAM performance results for the four museum envi-
ronments in our case study, over 10 trials. Robustness is the mean
percentage of frames tracked over all trials.

Museum Median RE (cm) Robustness (%)
Al A4 A6 Al Ad A6
A 2.5 0.6 0.8 81 81 73
B 0.7 0.7 0.5 81 83 83
C 1.3 0.6 0.5 81 83 82
D 1.2 0.6 0.8 82 81 68

5.2.3 User Satisfaction Experiments Design

We evaluated user satisfaction with each museum environment
through an IRB-approved user study, using the process described in
our user evaluation methodology (Section[d.2). We chose to use the
Meta Quest 2 VR headset because it is a standalone (non-tethered)
headset, allowing natural user motion in our museum environment.
All survey questions were administered through Qualtrics [49]. We
recruited 15 participants aged 18 to 34 (6 female) for this pilot study,
from our personal and professional networks. Our experiment design
and surveys were based on an existing study of user comfort in VR
environments [25]], which measured satisfaction with four different
window sizes. After an initial pre-experiment survey to determine
eligibility, previous VR experience, and gather demographic data,
participants freely explored each environment in VR for two min-
utes, with the order the environments were presented in randomized
for each participant. After each environment, participants answered
eight survey questions on their experience, in which they rated the
extent to which they agreed or disagreed with statements on a 7-point
Likert scale. These questions covered the participant’s overall visual
comfort in and satisfaction with a space, how pleasant, comfortable
and open the space felt, how easy it was to focus on the museum
objects, as well as eye, mind and body fatigue. Participants had the
option to provide additional comments about each environment, then
had a two-minute break or ‘washout’ period before the next environ-
ment. After experiencing all four environments they completed a
short post-experiment survey to gather feedback on the experiment
protocol and any resulting fatigue or motion sickness.

5.3 Case Study Results
5.3.1 VI-SLAM Performance Experiments Results

The results of our case study VI-SLAM experiments are shown in
Figure [§] and Table [6] As in our VI-SLAM visual texture exper-
iments (Section tracking performance varied more between
environments for A1 and A6 than for the less challenging A4 se-
quence. For A1, robustness was consistent across environments, but
the lowest median RE was achieved in the marble walls and floor of
MuseumB (0.7cm), followed by MuseumD (1.2cm) and MuseumC
(1.3cm), with MuseumA, which had blank walls, resulting in the
highest median RE (2.5cm). For A6, with camera views focused on
the floor, the two environments with the marble floor, MuseumB and
MuseumC, resulted in greater robustness and lower median RE (83%
and 82% robustness respectively, median RE = 0.5cm for both) than
those with wooden floors, MuseumA (73% robustness, median RE =
0.8cm) and MuseumD (68% robustness, median RE = 0.8cm).
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Figure 9: User opinions of our four museum environments, rated on
a 7-point Likert scale.

5.3.2 User Satisfaction Experiment Results

The results of our user satisfaction experiment for our case study are
shown in Figure[9] We assign the following numeric values to the
responses on our 7-point Likert scale: 1 = Strongly disagree, 2 =
Disagree, 3 = Somewhat disagree, 4 = Neither agree nor disagree,
5 = Somewhat agree, 6 = Agree, 7 = Strongly agree. Participants
found MuseumD, with the Egyptian wallpaper pattern, the most
pleasant environment (Figure[9a)), with a mean response of 6.0 to the
statement “This space was pleasant” (MuseumA = 4.4, MuseumB =
4.9, MuseumC =5.5). This may be due to the fact that MuseumD also
felt most open to our participants (Figure[9b). We hypothesize that
wall texture brightness caused this effect; one participant commented
that in MuseumD “The wallpapers felt back-lit, which made the
space feel less dark and gloomy.” However, participants also found
that the texture in MuseumD made it more difficult to focus on the
museum objects (Figure[0c); the mean response for the statement
“It was easy to focus on the museum objects” was 4.2 for MuseumD,
compared to 5.2 or greater for the other museum environments.
Comments about MuseumD included “The room felt brighter, but
the wallpaper was distracting,” “The mural on the wall felt a bit
distracting,” and “...it was hard for me to focus on the artifacts as 1
was focusing on the walls,” while one participant commented that
in MuseumB, “The simpler background seems to make it easier to
focus on the objects.” Examples of the user head poses we captured
during this experiment are shown in Figure[I0]

5.4 Case Study Discussion

The results of our user satisfaction experiment in our case study high-
light the potential pitfalls of adding visual texture to real-world envi-
ronments to improve AR tracking performance, without considering
the impact on users. Commercial AR platform guidelines [2}[18[40]
call for surfaces with distinct, recognizable textures, which might
lead a designer of a space hosting AR to choose a texture such as
the wallpaper in MuseumD. But as our user study illustrated, these
textures can be distracting and interfere with an occupant’s activities.

In fact, our VI-SLAM experiments results revealed that MuseumB,
with the marble wall and floor textures, actually provided better
tracking performance than MuseumD. The reason for the greater
tracking error observed in A6 was clear: the wooden floors provided
less visual texture than the marble floors, both in terms of complexity
(Entropy) and edge strength (Laplacian), as shown in Table[5] We
hypothesized that this was also the cause of greater error in A1, while
the camera was pointed towards the floor. However, when we used
our extended trajectory evaluation tool (see Section[3.2) to analyze
the pose error in different parts of the sequence, we found that the
difference in error between MuseumB and MuseumD was greatest
when the camera was focused on the wall. This unexpected result,
that a soft marble wall texture provided better tracking performance
than the distinct Egyptian wallpaper (at least when combined with
other 3D objects), indicates both that further or refined metrics
will be required to fully characterize environments, and that human
perception of visual texture differs from the degree to which those
textures support VI-SLAM. This opens up exciting avenues for

—— MuseumA
—— MuseumB

—— MuseumC
—— MuseumD

(a) MuseumA and MuseumB (b) MuseumC and MuseumD

Figure 10: Examples of the head pose trajectories captured (at
approximately 72Hz), during the two minute free exploration of
each virtual museum environment, from one participant. Analyzing
these trajectories can help inform selection of the most appropriate
VI-SLAM dataset sequences in our integrated design methodology.

future research to develop and characterize environment textures
that facilitate high quality tracking, with minimal impact on AR user
perception of real and virtual objects.

6 CONCLUSION AND FUTURE WORK

In this paper we presented and demonstrated an integrated design
methodology for real-world spaces which host AR experiences,
which takes into account both tracking and human factors. We devel-
oped the first VI-SLAM evaluation method that enables controlled
testing in virtual environments while using real inertial data from
handheld or head-mounted AR devices, and employed it to conduct
systematic experiments with different visual textures. We then pre-
sented a method to evaluate user satisfaction with those same virtual
environments using VR headsets. Combining both of these elements,
we demonstrated our integrated design methodology through a case
study on AR museum design, which highlighted the complex and
sometimes unexpected effects of applying different visual textures
to an environment, and thereby the need for our solution.

Our integrated design methodology sets the stage for exciting
opportunities for future work. Firstly, the promising results we ob-
tained regarding the relationship between visual texture and tracking
performance invite further experiments using our VI-SLAM eval-
uation method, towards accurate prediction of performance from
visual and inertial input data. The study of non-uniform textures, in
particular the impact of ‘challenging regions’ such as blank walls
will be informative. Secondly, we focus here on the simulation of
the real-world environment, but our methodology also supports the
simulation of AR content in VR (e.g., user interfaces [34]), to study
how real-world environments affect perception of AR content, as
well as overall user comfort. Methods to accurately replicate the
color-blending effects that occur in optical see-through AR, guided
by recent research [[14}21]], will be important for realistic AR content
simulation. Our ultimate goal is to also simulate the AR content
registration errors that arise from inaccurate tracking, thus fully
integrating the study of tracking and human factors; this is a com-
plex and open challenge however, requiring the implementation of
an open-source VI-SLAM algorithm on a VR headset, running in
real time on the headset images of the virtual environment and in-
ertial data. As we noted in our user evaluation methodology, the
collection and analysis of eye and biosignal data in user studies
will enable additional insights into the cognitive states of partici-
pants in different environments. Finally, no existing studies have
examined occupant comfort in multi-user virtual environments [[1] —
this is highly relevant to AR, and forms another part of our vision
for remote, collaborative design and evaluation of real-world AR
scenarios using VR.
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