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Abstract—This paper considers the problem of localizing a

static transmitter using a robot with a single receiving antenna

and a single communication channel in unknown complex en-

vironments. Existing solutions using Time-of-Arrival (TOA) and

Angle-of-Arrival (AOA) rely on complex wireless communication

systems with multiple receive antennas or multiple communica-

tion channels, which are not available for robots with off-the-shelf

low-cost radios. This paper develops a localization framework

using Received Signal Strength (RSS) to estimate unknown

channel model parameters considering multipath fading and

spatial-correlated shadowing effects. The robot moves along a

predefined trajectory to collect RSS data. AOA information is also

estimated and integrated with the robot SLAM (Simultaneous

Localization and Mapping) results to improve the localization

accuracy. Numerical simulations and experiments in an indoor

environment are conducted. Results show that 90% of the

estimation error is smaller than 2 m to localize a randomly placed

transmitter in a 10×10 m2 area.

Index Terms—Complex environment, estimation, localization,

received signal strength, robot, sensor data processing, wireless

channel model.

I. INTRODUCTION

Low-cost wireless localization using mobile robots plays an

important role in target tracking, rescue, robot coordination,

and wireless sensing [1], [2]. In this paper, we consider the

problem of localizing a wireless transmitter using a single

robot in a complex unknown environment with Received

Signal Strength (RSS) measurements.

Existing high-precision localization mainly use two ap-

proaches [3]–[9]. First, machine learning with location-based

features are used. It is applicable for environments with prior

knowledge. Also, the wireless environment is stable and the

features are not time-varying. Second, various location-related

information such as Time-Of-Arrival (TOA) and Angle-Of-

Arrival (AOA) are collected by multi-antenna communication

systems to estimate the transmitter’s location. To obtain TOA

and AOA information, it requires complex devices that most

tiny low-cost robots do not have.

Without multiple antennas or prior knowledge of the en-

vironment, a mobile robot cannot use information of TOA,

AOA, and prior location-related features. It faces the following

challenges to localize a transmitter. First, the robot has to
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Fig. 1. Robot trajectory (red). The corridor is divided into virtual grids. A

robot maps the environment and localize the transmitter simultaneously.

use RSS measurements that is affected by multipath fading,

shadowing effects, distance, RF environment, and transmission

power. Despite that RSS data can be collected by most of

the wireless radios such as Wi-Fi and LoRa, the localization

accuracy is lower compared with TOA, AOA, and feature-

based solutions. Moreover, the robot has to move along

several waypoints to emulate an antenna array to increase the

space diversity. Second, the RSS-based localization relies on

accurate channel models, which are not available in unknown

complex environments. Without an accurate channel model,

the estimation of transmitter location is challenging.

RSS-based localization using anchor sensors with unknown

channel parameters has been studied in [10]–[14]. These

approaches are based on widely distributed anchor sensors.

The received RSS data are used to localize or track targets

using various localization algorithms. In this paper, a mobile

robot is used to localize a transmitter without any support from

anchor sensors.

In this paper, a mobile robot moves along a predefined

trajectory with several waypoints to collect RSS data, as

shown in Fig. 1. The robot has to move in a relatively

small area to collect sufficient data to estimate the channel

unknown parameters, such as the correlated shadowing effects

and multipath fading. An optimization problem is formulated

to estimate the path loss exponent and the distance from

transmitter. The semidefinite programming is employed to

obtain an approximation of the solution. Mobile robots are

usually equipped with various sensors such as LiDAR for



SLAM (Simultaneous Localization And Mapping), which can

be leveraged to gather more environmental information. Based

on the RSS data and channel estimation results, we obtain the

AOA estimation, which is used jointly with SLAM results to

further improve the localization accuracy. The contributions of

this paper include

• First, we develop a framework to estimate channel spatial

correlation, path loss exponent, and the distance from

transmitter using a mobile robot with a single receive

antenna and a single wireless channel.

• Second, we design an algorithm to jointly estimate the

angle of arrival and transmitter location, which is subse-

quently integrated with the robot SLAM to improve the

localization accuracy.

• Third, we perform numerical simulations and compare

our approach with existing solutions. Moreover, we col-

lect RSS data using a Wi-Fi router and a TurtleBot3

Waffle Pi robot with Wi-Fi modules and verify the

proposed solution.

The rest of this paper is organized as follows. In section II,

we present the related works. After that, we introduce the RSS-

based localization algorithm using a single robot in Section

III. The numerical simulations and experiments are given in

Section IV. Finally, this paper is concluded in Section V.

In this paper, we use boldface lower-case letters to denote

column vectors, boldface upper-case letters to denote matrices.

For a vector and a matrix, we use (·)t to denote transpose. The

inverse and trace of a matrix A are denoted by (A)−1 and

Tr(A), respectively. The ith entry of a vector a is [a]i and the

(i, j) entry of a matrix A is [A]i,j . For a matrix A, the ith

column is [A]:,i and the ith row is [A]i,:.

II. RELATED WORK

The state-of-the-art localization accuracy in complex indoor

environment is at decimeter level [3]–[5]. The technology

relies on multiple Wi-Fi access points with multiple antennas

and multiple channels to estimate TOA and AOA. However,

for a single robot with an antenna and a simple receiver, it

cannot obtain this information directly.

Data-driven localization algorithms use pre-collected data

with known locations to build a database or train a machine

learning model. Real-time data samples are input into machine

learning models, which can output predicted locations [5]–

[9]. Similar to most of the data-driven approaches, the above

algorithms require a significant amount of pre-collected data.

Although the accuracy is attractive, they cannot be applied

to complex dynamic environments, where the trained model

cannot be adaptive to strong environment dynamics. Moreover,

it is not always possible to collect data before applying

the localization algorithms. Under these conditions, it is not

straightforward to employ data-driven approaches.

RSS-based localization algorithms require simple low-cost

hardware, which is suitable for most sensors and robots. On the

other hand, its localization accuracy is lower compared with

the aforementioned TOA, AOA, and data-driven approaches.

For example, existing RSS-based algorithms can achieve a

localization accuracy of 1 to 5 m in indoor environments [10],

[15], which is much higher than the decimeter level accuracy.

The RSS-based localization accuracy is highly affected by

the accuracy of the channel model. In dynamic complex

environments, it is not wise to use a static channel model since

it cannot effectively characterize the wireless environment.

Therefore, the localization problem is usually jointly solved

with the estimation of channel models, e.g., localization with

unknown transmit power and/or unknown path loss exponent

[10]–[14]. The dynamic environment is taken into account by

estimating the unknown channel model parameters. This prob-

lem is challenging due to the increase of unknown parameters.

Various approaches, including MMSE (minimum mean square

error), Least Squares, Maximum Likelihood, and Semidefinite

Relaxation, are employed to solve this problem and the accu-

racy is similar to RSS-based algorithms with known channel

parameters. This approach uses multiple anchors with known

locations to collect RSS data. The anchors are placed widely

separated (mutual distance is longer than/around 10 m) to

collect independent information and the target is assumed to

be in the area that is covered by anchors. This is different from

the use of a single robot where anchors are not available.

More relevantly, localization and target searching using

a single robot have been studied in [16]–[19]. A robot is

employed to localize RFID tags in [16]–[18]. The localization

algorithm is based on the phase information at different loca-

tions. By obtaining the spatial-domain cross-correlation, one

can estimate the tag’s location. The approach relies on signal

phases, which is fundamentally different from this paper. In

[19], robots are used as transmitters and receivers to localize

static objects and track moving targets. RSS data are collected

by one or multiple receivers to increase the diversity. AoA is

first estimated and then used to estimate the target locations.

Various experiments show that the algorithm can accurately

localize static objects and track moving targets. A path loss

channel model is not used and the localization is performed

within an area smaller than 10 m⇥10 m. Since we only have

one receiver and the range can be longer than 10 m, the

approach in [19] cannot be directly applied.

III. SYSTEM MODEL AND LOCALIZATION FRAMEWORK

DESIGN

We consider the problem that a single robot localizes a

static transmitter at location s 2 R
2×1 in a 2D complex

environment. The robot moves along a predefined trajectory

with Nl waypoints, which are organized as grids, as shown

in Fig. 1, to collect multiple measurements in order to em-

ulate an antenna array. Waypoints along the trajectory are

L = [r1, r2, · · · , rNl
], where ri 2 R

2×1. At each location ri,

the robot collects Nm RSS measurements, which are Pr =
[pr(r1),pr(r2), · · · ,pr(rNl

)], where pr(ri) 2 R
Nm×1.



A. Channel Model

In practice, when a robot is in an unknown or dynamic

complex environment, it does not have the knowledge of

wireless channel parameters. In particular, the received signal

power at ri can be written as

pr(ri) = pr(r0)� 10α log
10

di
d0

+ u(ri) + w(ri), (1)

where pr(r0) is the received power at a reference location r0,

which is usually considered as 1 m away from the transmitter,

α is the path loss exponent, di = kri � sk, d0 = kr0 � sk,

u(ri) 2 N (0,σ2) is a Gaussian random variable due to

multipath fading, and w(ri) is a random variable due to

shadowing effects.

Note that, we consider the multipath fading is spatially

independent since it decorrelates fast. The shadowing effect is

usually spatially correlated [20], [21], which can be modeled

as an exponentially-decaying function:

E(w(ri), w(rj)) = γ · exp

✓

�kri � rjk

η

◆

, (2)

where γ is the shadowing power and η is the correlation

distance. We assume [w(r1), w(r2), · · · , w(rNm
)]t are zero-

mean Gaussian random variables with covariance R, where

[R]i,j = E(w(ri), w(rj)) which is given in Equ. (2).

Localization considering spatial correlation is studied in

[22], but the channel is known. In this paper, we consider the

knowledge of channel parameters is not available, i.e., α, σ,

γ, and η are unknown. However, we assume the transmission

power is known (p(r0) and d0). In practice, when we localize

a device with standard communication protocols, usually, we

can find the transmission power. This information can also be

sent via wireless communication.

Direct positioning by jointly estimating all the unknown

parameters in conjunction with the transmitter location s is

challenging due to the nonlinear logarithm and exponential

functions. Although various approximations can linearize the

exponential functions, they are based on assumptions of

roughly knowing those parameters or having prior knowledge.

In this paper, we only have RSS samples without any other

prior information. The estimation is divided into three steps,

namely, covariance and multipath fading estimation, path loss

exponent estimation, and AOA and location estimation.

B. Shadowing and Multipath Fading

First, we estimate σ, γ, and η. These parameters are affected

by the environment which can vary significantly at different

locations. Considering them as global parameters may result

in a low accuracy. In this paper, the robot moves in a

relatively small area to collect RSS data following a predefined

trajectory, as shown in Fig. 1. The robot moves to cover the

virtual grids with length lx and width ly . Note that, lx can be

different from ly depending on the space and the distance from

transmitter. In each grid, the robot collects Nm measurements

of RSS. The number of columns Nc and the number of rows

Nr are variables which are determined by the environment,

e.g., walls may prevent the robot from moving in the x or

y direction. Without the knowledge of distance or path loss

exponent, we cannot use typical estimation algorithms such

as least squares to obtain σ and γ. To address this problem,

the robot uses local RSS measurements within a small area,

and periodically updates its estimation using the following

approach.

First, the measurements are centered using

p̂r(ri) = pr(ri)� p̃, for i = 1, 2, · · · , Nl (3)

where p̃ = 1
t(
PNl

i=1
pr(ri))/NlNm and 1 is a column

vector with all 1 elements. Since the measurements are

collected within a small area, all the grids have similar

distance to transmitter. By removing p̃, only the multipath

fading and shadowing effect are kept. Then, we can obtain

σ2 + γ ⇡ Tr(KR)/Nt where KR = E(R̂R̂t) and R̂ =
[p̂r(r1), p̂r(r2), · · · , p̂r(rNl

)]. By using the above equation,

we can only find the summation of σ2 and γ. To find their

individual values and η, we need to use the off-diagonal

elements in the covariance matrix.

We rewrite Equ. (2) in log scale, which is

log (E(w(ri), w(rj))) = log γ �
kri � rjk

η
(4)

= x1 � kri � rjkx2, (5)

where x1 = log γ and x2 = 1/η. Thus, for the ith row in KR

we have Xixi = kRi, where

Xi =

2

6

6

6

4

1 �kri � r1k
1 �kri � r2k
...

...

1 �kri � rNl
k

3

7

7

7

5

, kRi =

2

6

6

6

4

[KR]i,1
[KR]i,2

...

[KR]i,Nl

3

7

7

7

5

(6)

and xi =
⇥

x1,i x2,i

⇤t
. Note that, in Xi and kRi, ri 6= rj

and the diagonal entry of KR is not included. Then, we can

obtain

xi = (Xt
iXi)

−1Xt
ikRi. (7)

Note that, σ2 is nonnegative. We also use a ReLU rectifier

for KR to change any negative values to 0. Due to multipath

fading and shadowing effects, the estimated xi may not be

meaningful, i.e., x2,i should be real positive and x1,i should

be real, otherwise, we cannot obtain a meaningful result.

To eliminate meaningless results, we find the summation of

estimated x1,i and x2,i. Then, we update x1 and x2 using

the mean value of x1,i and x2,i, respectively. Finally, the

estimated values are γ = exp(x1), η = 1/x2, and σ2 =
max(0,Tr(Kr)/Nt � exp(x1)). Substituting these parameters

into Equ. (2), we can obtain the covariance matrix R. How-

ever, the above estimation is based on local observations. As

the robot moves away from the area, the estimation may not

be accurate. Therefore, the robot has to update its estimation

periodically.



C. Path Loss Exponent and Distance

Jointly estimating the path loss exponent α and the distance

between the transmitter and the receiver is a challenging

problem. Overestimating of α results in underestimation of

the distance, vice versa. Existing solutions use approximations

to first narrow the solution search space, then use the initial

estimated results to improve the accuracy of the approximation

[13]. Also, constraints are added to regulate the solution [10].

In this paper, we do not consider any prior knowledge of the

environment and the solution is based on searching for optimal

α in [1,1).
First, assume that we have an estimation of α, which is α̂.

Then, using Equ. (1), we can estimate the distance by solving

the following problem:

P1 (α̂,d): min
d,s

f(d) = (pr(r0)� pm � 10α̂ log
10

d)t

⇥R−1(pr(r0)� pm � 10α̂ log
10

d) (8)

s.t. ks� rik = [d]i, for i = 1, 2, · · · , Nl; (9)

where pr(r0) = pr(r0)1 and pm =
[E(pr(r1)),E(pr(r2)), · · · ,E(pr(rNl

))]t. Directly solving

the above problem is challenging. Since we mainly estimate

the distance based on the path loss exponent, we move d

outside of the logarithm and change the problem to the

following format:

min
d,s

(d� y)tR−1(d� y) (10)

s.t. ks� rik = [d]i, for i = 1, 2, · · · , Nt (11)

y = 10
pr(r0)−pm

10α̂ , (12)

where y can be considered as an estimation of d. We im-

plicitly assume d0 = 1 m. We use the Semidefinite Relaxation

[23] to obtain an approximation of the solution. The problem

is reformulated as

P2 (α̂,d): min
d,s,D,ys

Tr(DR−1)� 2ytR−1d (13)

s.t. [D]i,i = ys � 2stri + rtiri (14)

[D]i,j � |ys � st(ri + rj) + rtirj |, for i 6= j (15)


1 dt

d D

�

⌫ 0 (16)



I2 s

st ys

�

⌫ 0; (17)

where I2 is a 2⇥2 identity matrix. In the constraints, ys is

a variable used to constrain the norm of transmitter location.

Semidefinite Relaxation is an approximation, and the solution

may not be exact. Given α̂, the solution to the above problem

obtains the optimal d and s, but it is not clear what the optimal

α̂ is. To address this problem, we search the optimal α starting

from 1.

Due to Equ. (1), the optimal combination of α̂ and d should

minimize f(d). We use a gradient decent algorithm to find α̂

and the associated distance d. We increase α̂ by a step ∆ if the

newly obtained f(d) is smaller than the previous value. This

Algorithm 1: Optimal α

Input: Pr, pr(r0), d0
Output: α, d, s

1 Initialization: α1 = α2 = 1; ∆ = 0.1;

2 Solve P2 (α1,d1) ;

3 f1 = f(d1) // Equ. (8)

4 f2 = f1; d2 = d1; s2 = s1;

5 while f1 � f2 do

6 f1 = f2;

7 d1 = d2; s1 = s2;

8 α1 = α2;

9 α2 = α1 +∆;

10 Solve P2 (α2,d2) ;

11 f2 = f(d2);
12 end while

13 α = α1; d = d1; s = s1.

ensures that f(d) keeps decreasing until the minimum value

is obtained. The accuracy can be adjusted by changing ∆. A

summary of the algorithm to obtain the estimated α, d, and s is

given in Algorithm 1. Although P2(α̂,d) can directly generate

an estimation of the transmitter location s, its accuracy can

be further improved by the use of other sensing information

such as SLAM.

D. AOA and Location

Most of the robots use SLAM for navigation, and robotic

sensors such as LiDAR are ubiquitous. Although wireless

channel parameters are unknown, the robot can sense the

surrounding environment using SLAM, which can be used

together with the estimated channel parameters and distances

to obtain the location. Next, we refine the localization results

based on SLAM maps generated by robot SLAM applications.

If α̂ is large, it means the signal experiences significant

attenuation which can be caused by the non-line-of-sight

(NLOS) propagation. The path loss exponent for NLOS is

usually higher than 3 [24], [25]. The LOS and NLOS can

be distinguished by using machine learning-based solutions

[26]. In this paper, when α̂ > 2.5, we consider the search is

performed on a whole 2D plane and we use s as the estimated

location. When α̂  2.5, there is a strong signal path, and the

transmitter location should be in the open space detected by

SLAM.

As shown in Fig. 2, using the SLAM map and the estimated

distance, we can obtain an area that the transmitter may locate

in, which is denoted as A. As shown in Fig. 2, when the space

is constrained and α̂  2.5, the search area is within one or

multiple sectors with angle θs. If s also locates in this area,

we can use it as the estimated location. Otherwise, we need

search for the most likely location in this area. The distance

d is measured from each waypoint and it is extracted from d.

The estimation divides the sector equally into Nθ segments.



Fig. 2. Illustration of the search area with estimated distance d and SLAM

map. The sector with angle θs is the search area. Given a specific angle θi

and distance d, the source location can be estimated. The angle is measured

clockwise.

Algorithm 2: Localization Algorithm

Input: Pr, pr(r0), d0, A
Output: s

1 Estimate σ, γ, η using Equ. (3) to (7);

2 Estimate α̂, d, and s using Algorithm 1;

3 if α̂ > 2.5 or s ∈ A then

4 Return s;

5 else

6 Determine θs based on the boundaries;

7 Estimate updated s using Equ. (18) to (21);

8 end if

The reference point for the angle can be chosen as one of the

waypoints.

Given an angle θi, the estimated location of transmitter is

si,j = rr +

[

cos θi
− sin θi

]

ρi, (18)

where rr is the location of the reference waypoint and ρi is

an unknown variable denoting the distance along the direction

of θi. Based on the following relation ‖si,j − rj‖ = [d]j , we

can obtain ρi, which is

ρi =
1

2

[

−C1 +
√

C2

1
− 4(‖rr − rj‖2 − [d]2j )

]

, (19)

where

C1 = 2(rr − rj)
t

[

cos θi
− sin θi

]

, (20)

and j = 1, 2, · · · , Nl.

Since the estimation at each waypoint is equally important,

we use the mean value. The estimated transmitter location is

si =
∑Nl

j=1
si,j/Nl. By substituting si into Equ. (9), we can

obtain d. Then, using Equ. (8), we can obtain {f(d)|θi, si}.

The ultimate estimated location is

ŝ = argmin
si

{f(d)|θi, si}. (21)

The localization algorithm is summarized in Algorithm 2,

including the covariance estimation, path loss exponent and

distance estimation, and the AOA and location estimation.
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Fig. 3. Received power by a robot in a corridor on the 4th floor of Robinson

Technology Center at Norfolk State University. The transmitter is a Wi-Fi

router. Received power is measured while the robot is moving.

E. Impact of Distance

The localization accuracy is affected by the robot trajectory

in Fig. 1. The design of the trajectory relies on obtaining

optimal lx and ly . However, the use of lx and ly is constrained

by the environment. Moreover, the values of lx and ly are

affected by the distance between the transmitter and the robot.

In Fig. 3, we show the measured received power by a mobile

robot. The trajectory of the robot is shown in the upper part

of the figure.

As we can see, in such an indoor environment, the received

power reduces significantly within the first 5 m. As the

distance increases, the path loss exponent decreases. Especially

between 15 m and 20 m, the received power does not demon-

strate an obvious decrease. As shown in the floor plan, this is

the intersection area of two corridors. Signals are affected by

multipath fading and shadowing significantly. In free space,

the path loss exponent is 2, while in the corridor, the path loss

exponent is around 1.5 to 2 due to the guided environment

[25]. When the distance is longer than 10 m, the change of

the mean received power in 1 m becomes small. If the robot

moves in such a small area, it cannot collect sufficient spatial

information to estimate the distance and path loss exponent.

To obtain sufficient information, the robot has to move in

a larger area when the distance from the transmitter is large.

On the contrary, the robot can collect sufficient information in

a small area when the distance from the transmitter is short.

We define a threshold of the received power pth. When the

mean received power is larger than pth, the robot will expand

its moving area to collect more information, whereas when the

mean received power is smaller than pth, the robot moves in a

small area to collect information. In our experiment, we notice

that -40 dBm is a reasonable pth value for a Wi-Fi router.



Fig. 4. Simulated received power in a 15×15 m2 area. The transmitter is

at (0,0) with transmission power of -25 dBm. The parameters are γ=2, η=1,

σ=1, and α=2.

IV. NUMERICAL SIMULATION AND EXPERIMENTS

In Fig. 4, we show an example of received power distribu-

tion. As we can see, when the robot is close to the transmitter,

the received power has a significant decrease and the robot

can collect sufficient information to estimate the transmitter’s

location. As the distance increases beyond 5 m, the change of

the received power becomes small within 1 m. Even worse,

due to the multipath fading and shadowing effects, the change

of the received power becomes random. Note that, in Fig. 4,

the received power at (0, 0) is considered as the same as the

transmission power.

The localization error is defined as e = ‖ŝ − s‖, which is

the distance between estimated location and the real location.

First, we consider lx = ly = 0.6 m and the number of grids

in Fig. 1 are 5 and 5 in x and y direction, respectively, i.e.,

Nc = Nr = 5. In the following simulations, α = 1.5, σ2
= 1,

γ = 2, and η = 1. Models based on these parameters can

better approximate the measured data. Since our experiment

is conducted in an indoor environment, the path loss exponent

along a corridor is smaller than 2. The center of the robot’s

trajectory grids is located at the origin, as shown in Fig. 7.

At each waypoint, the robot collects 10 measurements. We

consider the sources are randomly located in four different

squares with edge lengths 5 m, 10 m, 15 m, and 20 m,

respectively, as shown in Fig. 7. We run 100 simulations

for each scenario and plot the CDF (cumulative distribution

function) of the localization error. As shown in Fig. 5, when

transmitters are randomly placed in a square with 5 m edge,

around 90% of the localization has an error that is smaller than

1 m, while for 10 m, this number is increased to around 5 m.

For 15 m and 20 m, about 90% and 70% of the localization

errors are smaller than 10 m, respectively. This is consistent

with our analysis that the RSS-based localization accuracy

reduces as the distance increases.

For the long-distance localization, the robot can move in a
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Fig. 5. CDF of localization error with robot trajectory lx = ly = 0.6 m.
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Fig. 6. CDF of localization error with robot trajectory lx = ly = 1.0 m.

larger area to collect more spatial information. In Fig. 6, the

interval between two waypoints is increased from 0.6 m to 1.0

m. As we can see in the figure, when transmitters are randomly

placed in a square with 5 m edge length, the localization error

is still smaller than 1 m with 90%, but for 10 m the localization

error is reduced from 5 m to around 2.5 m. For 15 m and 20

m, around 90% of the localization errors are smaller than 5

m and 10 m, respectively, which are much smaller than that

in Fig. 5. By increasing the moving area, we can efficiently

reduce the localization error.

To evaluate the performance of existing solutions, we imple-

ment the static localization algorithm (SLA) without knowing

the path loss exponent in [13]. The SLA algorithm does not

consider spatial correlation and relies on widely separated

anchors. This algorithm is not suitable to directly solve the

problem in this paper. However, to the best of our knowledge,

there is no similar work that has been done and [13] is a

classical work. We consider two scenarios: 1) the anchors are

placed at the same location as the robot waypoints (sensor

array 1 in Fig. 8, and 2) the anchors are placed at (20, 20),

(20, 0), (0, 20), (0, 0), and (10, 10) (sensor array 2 in Fig. 8).

For the first scenario, the location of anchors is the same as



Fig. 7. Illustration of the robot moving area and the random source location.

The sources are randomly generated based on the range. Four different areas

are considered with edge lengths 5 m, 10 m, 15 m, and 20 m. The bigger

squares overlap with the smaller squares. The five red dots are the locations

of the anchor nodes which are used to evaluate the SLA.
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Fig. 8. CDF of location error: lx = ly = 1.0 m. The sensor array 1 and

sensor array 2 are static sensor arrays using SLA. For sensor array 1: the

anchors are placed at the same location as the robot waypoints; for sensor

array 2: the anchors are placed at (20, 20), (20, 0), (0, 20), (0, 0), and (10,

10).

the robot moving area in Fig. 7. For the second scenario, the

location of anchors is displayed using red circles in Fig. 7.

As we can see from Fig. 8, the performance uses a static

sensor array at the same location as the robot waypoints

(sensor 1) is worse than that using a mobile robot with the

proposed approach in this paper. When the transmitters are

randomly distributed in a square with an edge of 8 m, 90%

of the estimation error using a robot is smaller than 2 m,

while for the sensor array 1 case it is around 8 m. For

the edge length of 16 m, we have similar observations and

performance of sensor array 1 becomes even worse. For the

sensor array 2 case, the performance of 8 m and 16 m edges are

similar since the anchor sensors are widely distributed. This

Fig. 9. Robot RSS data collection setup. The transmitter location 2 is behind

a door and measurements are collected when the door is closed.

paper considers a more complex channel model with spatial

correlations, whereas the SLA considers a log-normal channel

model, where the solution relies on a bisection search. It is

expected that better performance of SLA can be obtained if

more computation resources are used.

We use a mobile robot to collect Wi-Fi RSS data and

localize a transmitter (Wi-Fi router). TurtleBot3 Waffle Pi with

Raspberry Pi 3B is used to receive Wi-Fi signals from an

AC1750 NETGEAR Wi-Fi router. Secure Shell (SSH) is used

to connect over the shared Wi-Fi network with the Raspberry

Pi 3B that sits remotely on the Turtlebot3 Waffle Pi, which

is over the floor of the experiment area. Once access to the

Unix terminal in the Raspberry Pi 3B is granted through SSH,

the directories containing the shell script can be accessed. The

script is run to collect data over various points, after which the

saved files are retrieved and collated. We process the collected

RSS data offline in MATLAB.

An illustration of the data collection is shown in Fig. 9. The

left-hand side shows the robot and the router, and the right-

hand side shows the robot moving area along a corridor. The

transmitter is placed at Location 1 in the corridor. The robot

waypoints are shown in Fig. 10. The robot receives around

2.7 RSS measurements per second. The robot stays at each

waypoint for 10 seconds and only the first 20 measurements

are used. There are 5×4 waypoints with lx = ly = 0.305 m

for the robot waypoints 1, 2, and 3, and with lx = 1.220 m

and ly = 0.305 m for the robot waypoints 4 and 5. The angle

θs is set as 2π/3. As shown in Fig. 10, the estimated error is

around 2 m, which is consistent with the numerical simulation.

Also, we placed the transmitter at Location 2 in Fig. 9. The

localization error is similar as shown in Fig. 11.

The developed algorithm finds a large number of robotic ap-

plications. First, the transmitter can be regarded as a reference

robot that does not move and periodically sends out beacons.

A swarm of task robots can use the estimated relative location

with respect to the reference robot to navigate in a complex

environment, such as pipeline inspection robots [27]. Second,
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Fig. 11. Estimated location and robot waypoints. The transmitter is placed

at the transmitter Location 2 in Fig. 9.

it can also be used for target searching with knowledge of the

transmission power (or the received power at 1 m away from

the transmitter) in complex unknown environments.

V. CONCLUSION

It is challenging for a robot using off-the-shelf single-

antenna radios to localize a target. This paper develops a lo-

calization framework for a mobile robot using Received Signal

Strength (RSS) in complex unknown environments. The robot

moves along a predefined trajectory and collects RSS data at

waypoints, which are used to estimate the wireless channel

parameters, including spatial correlation, multipath fading,

path loss exponent, and the distance from the transmitter. The

channel model is then used to estimate the angle of arrival

and the location of the transmitter. Numerical simulations and

experiments are conducted to evaluate the performance of the

proposed localization framework.
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