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Abstract—This paper considers the problem of localizing a
static transmitter using a robot with a single receiving antenna
and a single communication channel in unknown complex en-
vironments. Existing solutions using Time-of-Arrival (TOA) and
Angle-of-Arrival (AOA) rely on complex wireless communication
systems with multiple receive antennas or multiple communica-
tion channels, which are not available for robots with off-the-shelf
low-cost radios. This paper develops a localization framework
using Received Signal Strength (RSS) to estimate unknown
channel model parameters considering multipath fading and
spatial-correlated shadowing effects. The robot moves along a
predefined trajectory to collect RSS data. AOA information is also
estimated and integrated with the robot SLAM (Simultaneous
Localization and Mapping) results to improve the localization
accuracy. Numerical simulations and experiments in an indoor
environment are conducted. Results show that 90% of the
estimation error is smaller than 2 m to localize a randomly placed
transmitter in a 10x10 m? area.

Index Terms—Complex environment, estimation, localization,
received signal strength, robot, sensor data processing, wireless
channel model.

I. INTRODUCTION

Low-cost wireless localization using mobile robots plays an
important role in target tracking, rescue, robot coordination,
and wireless sensing [1], [2]. In this paper, we consider the
problem of localizing a wireless transmitter using a single
robot in a complex unknown environment with Received
Signal Strength (RSS) measurements.

Existing high-precision localization mainly use two ap-
proaches [3]-[9]. First, machine learning with location-based
features are used. It is applicable for environments with prior
knowledge. Also, the wireless environment is stable and the
features are not time-varying. Second, various location-related
information such as Time-Of-Arrival (TOA) and Angle-Of-
Arrival (AOA) are collected by multi-antenna communication
systems to estimate the transmitter’s location. To obtain TOA
and AOA information, it requires complex devices that most
tiny low-cost robots do not have.

Without multiple antennas or prior knowledge of the en-
vironment, a mobile robot cannot use information of TOA,
AOA, and prior location-related features. It faces the following
challenges to localize a transmitter. First, the robot has to
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Fig. 1. Robot trajectory (red). The corridor is divided into virtual grids. A
robot maps the environment and localize the transmitter simultaneously.

use RSS measurements that is affected by multipath fading,
shadowing effects, distance, RF environment, and transmission
power. Despite that RSS data can be collected by most of
the wireless radios such as Wi-Fi and LoRa, the localization
accuracy is lower compared with TOA, AOA, and feature-
based solutions. Moreover, the robot has to move along
several waypoints to emulate an antenna array to increase the
space diversity. Second, the RSS-based localization relies on
accurate channel models, which are not available in unknown
complex environments. Without an accurate channel model,
the estimation of transmitter location is challenging.

RSS-based localization using anchor sensors with unknown
channel parameters has been studied in [10]-[14]. These
approaches are based on widely distributed anchor sensors.
The received RSS data are used to localize or track targets
using various localization algorithms. In this paper, a mobile
robot is used to localize a transmitter without any support from
anchor sensors.

In this paper, a mobile robot moves along a predefined
trajectory with several waypoints to collect RSS data, as
shown in Fig. 1. The robot has to move in a relatively
small area to collect sufficient data to estimate the channel
unknown parameters, such as the correlated shadowing effects
and multipath fading. An optimization problem is formulated
to estimate the path loss exponent and the distance from
transmitter. The semidefinite programming is employed to
obtain an approximation of the solution. Mobile robots are
usually equipped with various sensors such as LiDAR for



SLAM (Simultaneous Localization And Mapping), which can
be leveraged to gather more environmental information. Based
on the RSS data and channel estimation results, we obtain the
AOA estimation, which is used jointly with SLAM results to
further improve the localization accuracy. The contributions of
this paper include

« First, we develop a framework to estimate channel spatial
correlation, path loss exponent, and the distance from
transmitter using a mobile robot with a single receive
antenna and a single wireless channel.

e Second, we design an algorithm to jointly estimate the
angle of arrival and transmitter location, which is subse-
quently integrated with the robot SLAM to improve the
localization accuracy.

e Third, we perform numerical simulations and compare
our approach with existing solutions. Moreover, we col-
lect RSS data using a Wi-Fi router and a TurtleBot3
Waffle Pi robot with Wi-Fi modules and verify the
proposed solution.

The rest of this paper is organized as follows. In section II,
we present the related works. After that, we introduce the RSS-
based localization algorithm using a single robot in Section
III. The numerical simulations and experiments are given in
Section IV. Finally, this paper is concluded in Section V.

In this paper, we use boldface lower-case letters to denote
column vectors, boldface upper-case letters to denote matrices.
For a vector and a matrix, we use (+)! to denote transpose. The
inverse and trace of a matrix A are denoted by (A)~! and
Tr(A), respectively. The i entry of a vector a is [a]; and the
(i,7) entry of a matrix A is [A]; ;. For a matrix A, the i
column is [A].; and the i row is [A]; ..

II. RELATED WORK

The state-of-the-art localization accuracy in complex indoor
environment is at decimeter level [3]-[5]. The technology
relies on multiple Wi-Fi access points with multiple antennas
and multiple channels to estimate TOA and AOA. However,
for a single robot with an antenna and a simple receiver, it
cannot obtain this information directly.

Data-driven localization algorithms use pre-collected data
with known locations to build a database or train a machine
learning model. Real-time data samples are input into machine
learning models, which can output predicted locations [5]-
[9]. Similar to most of the data-driven approaches, the above
algorithms require a significant amount of pre-collected data.
Although the accuracy is attractive, they cannot be applied
to complex dynamic environments, where the trained model
cannot be adaptive to strong environment dynamics. Moreover,
it is not always possible to collect data before applying
the localization algorithms. Under these conditions, it is not
straightforward to employ data-driven approaches.

RSS-based localization algorithms require simple low-cost
hardware, which is suitable for most sensors and robots. On the
other hand, its localization accuracy is lower compared with

the aforementioned TOA, AOA, and data-driven approaches.
For example, existing RSS-based algorithms can achieve a
localization accuracy of 1 to 5 m in indoor environments [10],
[15], which is much higher than the decimeter level accuracy.
The RSS-based localization accuracy is highly affected by
the accuracy of the channel model. In dynamic complex
environments, it is not wise to use a static channel model since
it cannot effectively characterize the wireless environment.
Therefore, the localization problem is usually jointly solved
with the estimation of channel models, e.g., localization with
unknown transmit power and/or unknown path loss exponent
[10]-[14]. The dynamic environment is taken into account by
estimating the unknown channel model parameters. This prob-
lem is challenging due to the increase of unknown parameters.
Various approaches, including MMSE (minimum mean square
error), Least Squares, Maximum Likelihood, and Semidefinite
Relaxation, are employed to solve this problem and the accu-
racy is similar to RSS-based algorithms with known channel
parameters. This approach uses multiple anchors with known
locations to collect RSS data. The anchors are placed widely
separated (mutual distance is longer than/around 10 m) to
collect independent information and the target is assumed to
be in the area that is covered by anchors. This is different from
the use of a single robot where anchors are not available.

More relevantly, localization and target searching using
a single robot have been studied in [16]-[19]. A robot is
employed to localize RFID tags in [16]-[18]. The localization
algorithm is based on the phase information at different loca-
tions. By obtaining the spatial-domain cross-correlation, one
can estimate the tag’s location. The approach relies on signal
phases, which is fundamentally different from this paper. In
[19], robots are used as transmitters and receivers to localize
static objects and track moving targets. RSS data are collected
by one or multiple receivers to increase the diversity. AoA is
first estimated and then used to estimate the target locations.
Various experiments show that the algorithm can accurately
localize static objects and track moving targets. A path loss
channel model is not used and the localization is performed
within an area smaller than 10 mx 10 m. Since we only have
one receiver and the range can be longer than 10 m, the
approach in [19] cannot be directly applied.

III. SYSTEM MODEL AND LOCALIZATION FRAMEWORK
DESIGN

We consider the problem that a single robot localizes a
static transmitter at location s € R?*! in a 2D complex
environment. The robot moves along a predefined trajectory
with N; waypoints, which are organized as grids, as shown
in Fig. 1, to collect multiple measurements in order to em-
ulate an antenna array. Waypoints along the trajectory are
L =[ry,ry, - ,7rn,], where r; € R?*1. At each location 7,
the robot collects NV,,, RSS measurements, which are P, =
[pr (1), pr(12), - -+, Pr(rn,)], Where p,(r;) € RNm=*1,



A. Channel Model

In practice, when a robot is in an unknown or dynamic
complex environment, it does not have the knowledge of
wireless channel parameters. In particular, the received signal
power at 7; can be written as

d;
pr(ri) = pr(ro) — 10 log, do +u(r;) +w(r;), (1)

where p,.(1) is the received power at a reference location 7,
which is usually considered as 1 m away from the transmitter,
« is the path loss exponent, d; = ||r; — s||, do = ||ro — ||,
u(r;) € N(0,0?) is a Gaussian random variable due to
multipath fading, and w(r;) is a random variable due to
shadowing effects.

Note that, we consider the multipath fading is spatially
independent since it decorrelates fast. The shadowing effect is
usually spatially correlated [20], [21], which can be modeled
as an exponentially-decaying function:

E(w(rs),w(r;)) = 7 - exp (‘”‘”) o

n
where v is the shadowing power and 7 is the correlation
distance. We assume [w(ry),w(r2), - ,w(ry,, )] are zero-

mean Gaussian random variables with covariance R, where
[R);,; = E(w(r;), w(r;)) which is given in Equ. (2).

Localization considering spatial correlation is studied in
[22], but the channel is known. In this paper, we consider the
knowledge of channel parameters is not available, i.e., o, o,
v, and 1 are unknown. However, we assume the transmission
power is known (p(rg) and do). In practice, when we localize
a device with standard communication protocols, usually, we
can find the transmission power. This information can also be
sent via wireless communication.

Direct positioning by jointly estimating all the unknown
parameters in conjunction with the transmitter location s is
challenging due to the nonlinear logarithm and exponential
functions. Although various approximations can linearize the
exponential functions, they are based on assumptions of
roughly knowing those parameters or having prior knowledge.
In this paper, we only have RSS samples without any other
prior information. The estimation is divided into three steps,
namely, covariance and multipath fading estimation, path loss
exponent estimation, and AOA and location estimation.

B. Shadowing and Multipath Fading

First, we estimate o, 7y, and 7). These parameters are affected
by the environment which can vary significantly at different
locations. Considering them as global parameters may result
in a low accuracy. In this paper, the robot moves in a
relatively small area to collect RSS data following a predefined
trajectory, as shown in Fig. 1. The robot moves to cover the
virtual grids with length /,, and width [,. Note that, [, can be
different from /,, depending on the space and the distance from
transmitter. In each grid, the robot collects [V,,, measurements
of RSS. The number of columns /N, and the number of rows

N, are variables which are determined by the environment,
e.g., walls may prevent the robot from moving in the x or
y direction. Without the knowledge of distance or path loss
exponent, we cannot use typical estimation algorithms such
as least squares to obtain ¢ and ~. To address this problem,
the robot uses local RSS measurements within a small area,
and periodically updates its estimation using the following
approach.
First, the measurements are centered using

pr(ri):pr(ri)iﬁv fori:lv 2, aNl (3)

where p = 1t(2ﬁ1pr(ri))/Nle and 1 is a column
vector with all 1 elements. Since the measurements are
collected within a small area, all the grids have similar
distance to transmitter. By removing p, only the multipath
fading and shadowing effect are kept. Then, we can obtain
02 + v ~ Tr(Kg)/N; where Kr = E(RR') and R =
[Dr(71), Pr(T2), -+ , Pr(7n,)]- By using the above equation,
we can only find the summation of o2 and 7. To find their
individual values and 7, we need to use the off-diagonal
elements in the covariance matrix.
We rewrite Equ. (2) in log scale, which is

[ — 75l
n

log (E(w(r;), w(r;))) = logy — 4)
=1 — |7y — rjllze, )

where x; = log~ and x5 = 1/7. Thus, for the i® row in Kp
we have X,;x; = kg;, where

T —[r — 7y [KRrli1

T —[r; — o (K Rrli2
X;=|. ) , kri= ) (6)

L —[ri —rn| [KRr]i,N,

t .
and x; = [xl,i .132,,'] . Note that, in X; and kg;, 7; 75 T
and the diagonal entry of K is not included. Then, we can
obtain

x; = (XIX) ' X kg (7)

Note that, o2 is nonnegative. We also use a ReLU rectifier
for Kr to change any negative values to 0. Due to multipath
fading and shadowing effects, the estimated x; may not be
meaningful, i.e., 2 ; should be real positive and x; ; should
be real, otherwise, we cannot obtain a meaningful result.
To eliminate meaningless results, we find the summation of
estimated x;; and x5 ;. Then, we update z; and z2 using
the mean value of z;, and x5 ;, respectively. Finally, the
estimated values are v = exp(z1), n = 1/x9, and 02 =
max(0, Tr(K,)/N; — exp(z1)). Substituting these parameters
into Equ. (2), we can obtain the covariance matrix R. How-
ever, the above estimation is based on local observations. As
the robot moves away from the area, the estimation may not
be accurate. Therefore, the robot has to update its estimation
periodically.



C. Path Loss Exponent and Distance

Jointly estimating the path loss exponent a and the distance
between the transmitter and the receiver is a challenging
problem. Overestimating of « results in underestimation of
the distance, vice versa. Existing solutions use approximations
to first narrow the solution search space, then use the initial
estimated results to improve the accuracy of the approximation
[13]. Also, constraints are added to regulate the solution [10].
In this paper, we do not consider any prior knowledge of the
environment and the solution is based on searching for optimal
a in [1,00).

First, assume that we have an estimation of «, which is .
Then, using Equ. (1), we can estimate the distance by solving
the following problem:

Pl (&,d): n(rllin f(d) = (pr(r0) — pm — 10a10g,, d)*

x R (p.(ro) — pm — 10@log,yd) (8)

st ||s—mri|| =[d);, fori=1, 2,--- | Nj; 9
where Dr (TO) = Dr (TO ) 1 and Pm =
[E(p,(r1)), E(p.(r2)), - ,E(pr(rn,))]!. Directly solving

the above problem is challenging. Since we mainly estimate
the distance based on the path loss exponent, we move d
outside of the logarithm and change the problem to the
following format:

min (d—y)'R™'(d - y) (10)
st |ls—mri|| =[d);, fori=1, 2,--- N 11
y = 102 (12)

where y can be considered as an estimation of d. We im-
plicitly assume dy = 1 m. We use the Semidefinite Relaxation
[23] to obtain an approximation of the solution. The problem
is reformulated as

P2 (&,d): min Tr(DR™')-2y'R'd (13)
d,s,D,ys
s.t. [D)i; = ys — 28'r; + rlr; (14)
[D);; > |ys — 8'(ri +7;) +rlr|, fori#£j  (15)
1 dt
—
[ d D] =0 (16)
I2 S
>_ .
[St yj =0 (17)

where Iy is a 2x2 identity matrix. In the constraints, y, is
a variable used to constrain the norm of transmitter location.
Semidefinite Relaxation is an approximation, and the solution
may not be exact. Given &, the solution to the above problem
obtains the optimal d and s, but it is not clear what the optimal
& is. To address this problem, we search the optimal « starting
from 1.

Due to Equ. (1), the optimal combination of & and d should
minimize f(d). We use a gradient decent algorithm to find &
and the associated distance d. We increase & by a step A if the
newly obtained f(d) is smaller than the previous value. This

Algorithm 1: Optimal «

Input: P,, p.(r9), do
Output: o, d, s
1 Initialization: oy = s = 1; A =0.1;
2 Solve P2 (aq,dy) ;
3 fi=f(d1)// Equ. (8)
4 fo = f1;da =di; 82 = 813

s while f; > f5 do

6 | Ji=[xs

7 dy = dy; 51 = 83;
8 Q= Qg;

9 o = (1 + A;

10 Solve P2 (as9,d>) ;
u | fa= f(da);

12 end while
Ba=o;d=d; s=s;.

ensures that f(d) keeps decreasing until the minimum value
is obtained. The accuracy can be adjusted by changing A. A
summary of the algorithm to obtain the estimated «, d, and s is
given in Algorithm 1. Although P2(&, d) can directly generate
an estimation of the transmitter location s, its accuracy can
be further improved by the use of other sensing information
such as SLAM.

D. AOA and Location

Most of the robots use SLAM for navigation, and robotic
sensors such as LiDAR are ubiquitous. Although wireless
channel parameters are unknown, the robot can sense the
surrounding environment using SLAM, which can be used
together with the estimated channel parameters and distances
to obtain the location. Next, we refine the localization results
based on SLAM maps generated by robot SLAM applications.
If & is large, it means the signal experiences significant
attenuation which can be caused by the non-line-of-sight
(NLOS) propagation. The path loss exponent for NLOS is
usually higher than 3 [24], [25]. The LOS and NLOS can
be distinguished by using machine learning-based solutions
[26]. In this paper, when & > 2.5, we consider the search is
performed on a whole 2D plane and we use s as the estimated
location. When & < 2.5, there is a strong signal path, and the
transmitter location should be in the open space detected by
SLAM.

As shown in Fig. 2, using the SLAM map and the estimated
distance, we can obtain an area that the transmitter may locate
in, which is denoted as 4. As shown in Fig. 2, when the space
is constrained and & < 2.5, the search area is within one or
multiple sectors with angle ;. If s also locates in this area,
we can use it as the estimated location. Otherwise, we need
search for the most likely location in this area. The distance
d is measured from each waypoint and it is extracted from d.
The estimation divides the sector equally into Ny segments.



Fig. 2. Tllustration of the search area with estimated distance d and SLAM
map. The sector with angle 65 is the search area. Given a specific angle 6;
and distance d, the source location can be estimated. The angle is measured
clockwise.

Algorithm 2: Localization Algorithm
Input: P,, p.(ry), do, A
Output: s
Estimate o, «, 1 using Equ. (3) to (7);
Estimate &, d, and s using Algorithm 1;
if & > 2.5 or s € A then
‘ Return s;
else
Determine 6 based on the boundaries;
Estimate updated s using Equ. (18) to (21);
end if

X 9N B W N =

The reference point for the angle can be chosen as one of the
waypoints.
Given an angle 6;, the estimated location of transmitter is

[ cos b; ]
Sij="7Tr+ Pi

—sin 6; (18)

where 7, is the location of the reference waypoint and p; is
an unknown variable denoting the distance along the direction
of 6;. Based on the following relation ||s; ; — r;|| = [d];, we
can obtain p;, which is

1
p=g oo et =t - @3], 1o

where

(20)

Ol — 2(,’,7_ _ ,’,j)t |: COSei :| 7

—sin 6;

and j =1,2,--- , N;.

Since the estimation at each waypoint is equally important,
we use the mean value. The estimated transmitter location is
s; = Z;\ll s; ;/Ni. By substituting s; into Equ. (9), we can
obtain d. Then, using Equ. (8), we can obtain {f(d)|0;, s;}.
The ultimate estimated location is

§ = argmin {/(d)|0;,5:}. 1)
The localization algorithm is summarized in Algorithm 2,

including the covariance estimation, path loss exponent and

distance estimation, and the AOA and location estimation.
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Fig. 3. Received power by a robot in a corridor on the 4th floor of Robinson
Technology Center at Norfolk State University. The transmitter is a Wi-Fi
router. Received power is measured while the robot is moving.

E. Impact of Distance

The localization accuracy is affected by the robot trajectory
in Fig. 1. The design of the trajectory relies on obtaining
optimal [, and [,,. However, the use of [, and [, is constrained
by the environment. Moreover, the values of [, and [, are
affected by the distance between the transmitter and the robot.
In Fig. 3, we show the measured received power by a mobile
robot. The trajectory of the robot is shown in the upper part
of the figure.

As we can see, in such an indoor environment, the received
power reduces significantly within the first 5 m. As the
distance increases, the path loss exponent decreases. Especially
between 15 m and 20 m, the received power does not demon-
strate an obvious decrease. As shown in the floor plan, this is
the intersection area of two corridors. Signals are affected by
multipath fading and shadowing significantly. In free space,
the path loss exponent is 2, while in the corridor, the path loss
exponent is around 1.5 to 2 due to the guided environment
[25]. When the distance is longer than 10 m, the change of
the mean received power in 1 m becomes small. If the robot
moves in such a small area, it cannot collect sufficient spatial
information to estimate the distance and path loss exponent.

To obtain sufficient information, the robot has to move in
a larger area when the distance from the transmitter is large.
On the contrary, the robot can collect sufficient information in
a small area when the distance from the transmitter is short.
We define a threshold of the received power py. When the
mean received power is larger than py,, the robot will expand
its moving area to collect more information, whereas when the
mean received power is smaller than pg,, the robot moves in a
small area to collect information. In our experiment, we notice
that -40 dBm is a reasonable py, value for a Wi-Fi router.
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Fig. 4. Simulated received power in a 15x15 m? area. The transmitter is
at (0,0) with transmission power of -25 dBm. The parameters are y=2, n=1,
o=1, and a=2.

IV. NUMERICAL SIMULATION AND EXPERIMENTS

In Fig. 4, we show an example of received power distribu-
tion. As we can see, when the robot is close to the transmitter,
the received power has a significant decrease and the robot
can collect sufficient information to estimate the transmitter’s
location. As the distance increases beyond 5 m, the change of
the received power becomes small within 1 m. Even worse,
due to the multipath fading and shadowing effects, the change
of the received power becomes random. Note that, in Fig. 4,
the received power at (0, 0) is considered as the same as the
transmission power.

The localization error is defined as e = ||§ — s||, which is
the distance between estimated location and the real location.
First, we consider [, = [, = 0.6 m and the number of grids
in Fig. 1 are 5 and 5 in x and y direction, respectively, i.e.,
N, = N, = 5. In the following simulations, o« = 1.5, 0?2 =1,
v = 2, and n = 1. Models based on these parameters can
better approximate the measured data. Since our experiment
is conducted in an indoor environment, the path loss exponent
along a corridor is smaller than 2. The center of the robot’s
trajectory grids is located at the origin, as shown in Fig. 7.
At each waypoint, the robot collects 10 measurements. We
consider the sources are randomly located in four different
squares with edge lengths 5 m, 10 m, 15 m, and 20 m,
respectively, as shown in Fig. 7. We run 100 simulations
for each scenario and plot the CDF (cumulative distribution
function) of the localization error. As shown in Fig. 5, when
transmitters are randomly placed in a square with 5 m edge,
around 90% of the localization has an error that is smaller than
1 m, while for 10 m, this number is increased to around 5 m.
For 15 m and 20 m, about 90% and 70% of the localization
errors are smaller than 10 m, respectively. This is consistent
with our analysis that the RSS-based localization accuracy
reduces as the distance increases.

For the long-distance localization, the robot can move in a
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Fig. 6. CDF of localization error with robot trajectory Iz = I, = 1.0 m.

larger area to collect more spatial information. In Fig. 6, the
interval between two waypoints is increased from 0.6 m to 1.0
m. As we can see in the figure, when transmitters are randomly
placed in a square with 5 m edge length, the localization error
is still smaller than 1 m with 90%, but for 10 m the localization
error is reduced from 5 m to around 2.5 m. For 15 m and 20
m, around 90% of the localization errors are smaller than 5
m and 10 m, respectively, which are much smaller than that
in Fig. 5. By increasing the moving area, we can efficiently
reduce the localization error.

To evaluate the performance of existing solutions, we imple-
ment the static localization algorithm (SLA) without knowing
the path loss exponent in [13]. The SLA algorithm does not
consider spatial correlation and relies on widely separated
anchors. This algorithm is not suitable to directly solve the
problem in this paper. However, to the best of our knowledge,
there is no similar work that has been done and [13] is a
classical work. We consider two scenarios: 1) the anchors are
placed at the same location as the robot waypoints (sensor
array 1 in Fig. 8, and 2) the anchors are placed at (20, 20),
(20, 0), (0, 20), (0, 0), and (10, 10) (sensor array 2 in Fig. 8).
For the first scenario, the location of anchors is the same as
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the robot moving area in Fig. 7. For the second scenario, the
location of anchors is displayed using red circles in Fig. 7.
As we can see from Fig. 8, the performance uses a static
sensor array at the same location as the robot waypoints
(sensor 1) is worse than that using a mobile robot with the
proposed approach in this paper. When the transmitters are
randomly distributed in a square with an edge of 8 m, 90%
of the estimation error using a robot is smaller than 2 m,
while for the sensor array 1 case it is around 8 m. For
the edge length of 16 m, we have similar observations and
performance of sensor array 1 becomes even worse. For the
sensor array 2 case, the performance of 8 m and 16 m edges are
similar since the anchor sensors are widely distributed. This
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Fig. 9. Robot RSS data collection setup. The transmitter location 2 is behind
a door and measurements are collected when the door is closed.

paper considers a more complex channel model with spatial
correlations, whereas the SLA considers a log-normal channel
model, where the solution relies on a bisection search. It is
expected that better performance of SLA can be obtained if
more computation resources are used.

We use a mobile robot to collect Wi-Fi RSS data and
localize a transmitter (Wi-Fi router). TurtleBot3 Waffle Pi with
Raspberry Pi 3B is used to receive Wi-Fi signals from an
AC1750 NETGEAR Wi-Fi router. Secure Shell (SSH) is used
to connect over the shared Wi-Fi network with the Raspberry
Pi 3B that sits remotely on the Turtlebot3 Waffle Pi, which
is over the floor of the experiment area. Once access to the
Unix terminal in the Raspberry Pi 3B is granted through SSH,
the directories containing the shell script can be accessed. The
script is run to collect data over various points, after which the
saved files are retrieved and collated. We process the collected
RSS data offline in MATLAB.

An illustration of the data collection is shown in Fig. 9. The
left-hand side shows the robot and the router, and the right-
hand side shows the robot moving area along a corridor. The
transmitter is placed at Location 1 in the corridor. The robot
waypoints are shown in Fig. 10. The robot receives around
2.7 RSS measurements per second. The robot stays at each
waypoint for 10 seconds and only the first 20 measurements
are used. There are 5x4 waypoints with [, = [, = 0.305 m
for the robot waypoints 1, 2, and 3, and with [, = 1.220 m
and [, = 0.305 m for the robot waypoints 4 and 5. The angle
0 is set as 27 /3. As shown in Fig. 10, the estimated error is
around 2 m, which is consistent with the numerical simulation.
Also, we placed the transmitter at Location 2 in Fig. 9. The
localization error is similar as shown in Fig. 11.

The developed algorithm finds a large number of robotic ap-
plications. First, the transmitter can be regarded as a reference
robot that does not move and periodically sends out beacons.
A swarm of task robots can use the estimated relative location
with respect to the reference robot to navigate in a complex
environment, such as pipeline inspection robots [27]. Second,
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Fig. 10. Estimated location and robot waypoints. The transmitter is placed
at the transmitter Location 1 in Fig. 9.

— — Wall @ Transmitter location *  Robot waypoints 1
X Estimated location 1 *  Robot waypoints 2 X Estimated location 2

6 %  Robot waypoints 3 X  Estimated location 3 Robot waypoints 4 ]
Estimated location 4 Robot waypoints 5 Estimated location 5

Fig. 11. Estimated location and robot waypoints. The transmitter is placed
at the transmitter Location 2 in Fig. 9.

it can also be used for target searching with knowledge of the
transmission power (or the received power at 1 m away from
the transmitter) in complex unknown environments.

V. CONCLUSION

It is challenging for a robot using off-the-shelf single-
antenna radios to localize a target. This paper develops a lo-
calization framework for a mobile robot using Received Signal
Strength (RSS) in complex unknown environments. The robot
moves along a predefined trajectory and collects RSS data at
waypoints, which are used to estimate the wireless channel
parameters, including spatial correlation, multipath fading,
path loss exponent, and the distance from the transmitter. The
channel model is then used to estimate the angle of arrival
and the location of the transmitter. Numerical simulations and
experiments are conducted to evaluate the performance of the
proposed localization framework.

REFERENCES

[1] M. Erdelj, E. Natalizio, K. R. Chowdhury, and I. F. Akyildiz, “Help
from the sky: Leveraging uavs for disaster management,” [EEE Pervasive
Computing, vol. 16, no. 1, pp. 24-32, 2017.

[2] H. Guo and A. A. Ofori, “The internet of things in extreme environments
using low-power long-range near field communication,” IEEE Internet
of Things Magazine, vol. 4, no. 1, pp. 34-38, 2021.

[3] M. Kotaru, K. Joshi, D. Bharadia, and S. Katti, “Spotfi: Decimeter level
localization using wifi,” in Proceedings of the 2015 ACM Conference
on Special Interest Group on Data Communication, 2015, pp. 269-282.

[4] D. Vasisht, S. Kumar, and D. Katabi, “Decimeter-level localization with
a single wifi access point,” in 13th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 16), 2016, pp. 165-178.

[5] R. Ayyalasomayajula, A. Arun, C. Wu, S. Sharma, A. R. Sethi, D. Va-
sisht, and D. Bharadia, “Deep learning based wireless localization for
indoor navigation,” in Proceedings of the 26th Annual International
Conference on Mobile Computing and Networking, 2020, pp. 1-14.

[6] X. Guo, L. Li, F. Xu, and N. Ansari, “Expectation maximization indoor
localization utilizing supporting set for internet of things,” IEEE Internet
of Things Journal, vol. 6, no. 2, pp. 2573-2582, 2018.

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

X. Wang, L. Gao, and S. Mao, “Biloc: Bi-modal deep learning for indoor
localization with commodity Sghz wifi,” IEEE access, vol. 5, pp. 4209—
4220, 2017.

Y. Shu, C. Bo, G. Shen, C. Zhao, L. Li, and F. Zhao, “Magicol:
Indoor localization using pervasive magnetic field and opportunistic wifi
sensing,” IEEE Journal on Selected Areas in Communications, vol. 33,
no. 7, pp. 1443-1457, 2015.

Y. Sun, M. Liu, and M. Q.-H. Meng, “Wifi signal strength-based
robot indoor localization,” in 2014 IEEE International Conference on
Information and Automation (ICIA). 1EEE, 2014, pp. 250-256.

Y. Zou and H. Liu, “Rss-based target localization with unknown model
parameters and sensor position errors,” IEEE Transactions on Vehicular
Technology, 2021.

H. Lohrasbipeydeh and T. A. Gulliver, “Unknown rssd-based localization
crlb analysis with semidefinite programming,” IEEE Transactions on
Communications, vol. 67, no. 5, pp. 3791-3805, 2019.

R. Sari and H. Zayyani, “Rss localization using unknown statistical path
loss exponent model,” IEEE Communications Letters, vol. 22, no. 9, pp.
1830-1833, 2018.

M. R. Gholami, R. M. Vaghefi, and E. G. Strom, “Rss-based sensor
localization in the presence of unknown channel parameters,” IEEE
Transactions on Signal Processing, vol. 61, no. 15, pp. 3752-3759, 2013.
C. Liang and F. Wen, “Received signal strength-based robust cooperative
localization with dynamic path loss model,” IEEE Sensors Journal,
vol. 16, no. 5, pp. 1265-1270, 2015.

L. Zhang, B. Yang, and X. You, “Received signal strength indicator-
based recursive set-membership localization with unknown transmit
power and path loss exponent,” IEEE Sensors Journal, 2021.

F. Bernardini, A. Buffi, D. Fontanelli, D. Macii, V. Magnago, M. Mar-
racci, A. Motroni, P. Nepa, and B. Tellini, “Robot-based indoor position-
ing of uhf-rfid tags: The sar method with multiple trajectories,” IEEE
Transactions on Instrumentation and Measurement, vol. 70, pp. 1-15,
2020.

A. Motroni, P. Nepa, P. Tripicchio, and M. Unetti, “A multi-antenna
sar-based method for uhf rfid tag localization via ugv,” in 2018 IEEE
International Conference on RFID Technology & Application (RFID-
TA). IEEE, 2018, pp. 1-6.

A. Motroni, P. Nepa, V. Magnago, A. Buffi, B. Tellini, D. Fontanelli,
and D. Macii, “Sar-based indoor localization of uhf-rfid tags via mobile
robot,” in 2018 International Conference on Indoor Positioning and
Indoor Navigation (IPIN). 1EEE, 2018, pp. 1-8.

C. R. Karanam, B. Korany, and Y. Mostofi, “Magnitude-based angle-
of-arrival estimation, localization, and target tracking,” in 2018 17th
ACM/IEEE International Conference on Information Processing in Sen-
sor Networks (IPSN). 1EEE, 2018, pp. 254-265.

M. Malmirchegini and Y. Mostofi, “On the spatial predictability of com-
munication channels,” IEEE Transactions on Wireless Communications,
vol. 11, no. 3, pp. 964-978, 2012.

M. Gudmundson, “Correlation model for shadow fading in mobile radio
systems,” Electronics letters, vol. 27, no. 23, pp. 2145-2146, 1991.

R. M. Vaghefi and R. M. Buehrer, “Received signal strength-based
sensor localization in spatially correlated shadowing,” in 2013 IEEE
International Conference on Acoustics, Speech and Signal Processing.
IEEE, 2013, pp. 4076-4080.

Z.-Q. Luo, W.-K. Ma, A. M.-C. So, Y. Ye, and S. Zhang, “Semidefinite
relaxation of quadratic optimization problems,” IEEE Signal Processing
Magazine, vol. 27, no. 3, pp. 20-34, 2010.

J. Turkka and M. Renfors, ‘“Path loss measurements for a non-line-of-
sight mobile-to-mobile environment,” in 2008 8th International Confer-
ence on ITS Telecommunications. 1EEE, 2008, pp. 274-278.

H. J. Jo and S. Kim, “Indoor smartphone localization based on los and
nlos identification,” Sensors, vol. 18, no. 11, p. 3987, 2018.

Z. Xiao, H. Wen, A. Markham, N. Trigoni, P. Blunsom, and J. Frolik,
“Non-line-of-sight identification and mitigation using received signal
strength,” IEEE Transactions on Wireless Communications, vol. 14,
no. 3, pp. 1689-1702, 2014.

H. Guo and A. A. Ofori, “Sequential task allocation with connectivity
constraints in wireless robotic networks,” in 2021 17th International
Conference on Distributed Computing in Sensor Systems (DCOSS).
IEEE, 2021, pp. 420-428.



