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Abstract—Underground battery-free sensors do not require battery replacement which can support large-scale de-
ployment for agriculture applications. The underground environment is dynamic, and the soil permittivity and electric
conductivity vary significantly due to precipitation and irrigation. These dynamic parameters affect the accuracy of
underground battery-free sensor localization. This letter proposes a localization framework using the expectation-
maximization algorithm by considering the signal attenuation coefficient as a latent variable. The proposed solution is
evaluated using data collected by underground sensors. Simulation results show that the root-mean-square error is around
0.3 m in various scenarios.

Index Terms—Battery-free sensors, expectation-maximization algorithm, magnetic induction communication, underground localization.

I. INTRODUCTION

Underground sensors play an important role in precision agriculture

by collecting agricultural-related information in the soil, such as soil

nutrition, temperature, and moisture. Wireless technologies are used

to connect these sensors with the Internet of Things (IoT) gateways

and servers [1], [2]. These underground sensors are powered by

batteries that can operate for a long time. The recent development of

wearable agriculture sensors [3] aims to use extremely thin or tiny

sensors that can be attached to plants to closely monitor their growth.

Usually, battery-powered sensors are bulky and heavy, and cannot

support wearable agriculture sensors. Moreover, they require battery

replacement and related maintenance, which are labor-intensive.

Battery-free underground sensors [4] powered by wireless signals

can be designed in small sizes and lightweight that are suitable for

wearable agriculture sensing. Backscatter communication is a widely

used solution for battery-free sensors, where the battery-free sensor

modulates and reflects incident electromagnetic waves. A ground robot

or a drone can be used as a reader to excite underground battery-

free sensors and collect data. However, electromagnetic wave-based

wireless communication at the UHF (Ultra High Frequency) band

is not suitable for densely deployed wearable agriculture sensors.

First, UHF signals have a long communication range in the air,

which creates interference and competes for spectrum with existing

applications. Also, UHF signal propagation is significantly affected

by the soil medium due to reflection and attenuation. Most agricultural

activities are in the shallow underground environment with a depth

smaller than 0.5 m. Thus, on one hand, the wireless communication

technology that is used for underground battery-free sensors must

have a communication range longer than 0.5 m. On the other hand,

the communication range should be kept as small as possible to

reduce the interference to nearby wireless applications. Moreover,

it should be efficient in penetrating the soil. Magnetic induction

communication (MIC) uses the near field of RF signals to efficiently

penetrate inhomogeneous soil medium, and the magnetic fields in

the near field fall off fast, which creates negligible interference [5].

As shown in Fig. 1, a ground robot is used to communicate with

underground battery-free sensors using MIC [4]. A large number

of these sensors can be deployed densely around a plant – both
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underground and aboveground. First, the robot broadcasts magnetic

fields, and the underground battery-free sensor harvests energy. Then,

the sensor performs sensing and uses load-modulation to send back

data. The robot can receive load-modulated data using the same coil

or a different coil that is dedicated to receiving [6]. Localization of

underground sensors is essential to better leverage the sensing data

for agriculture applications.

Localizing underground battery-free sensors faces the following

challenges. First, although MIC has a stable wireless channel in

inhomogeneous media compared with far-field electromagnetic wave-

based wireless communication, the soil conductivity and permittivity

dynamics still affect the MIC channel, particularly the attenuation

coefficient. Second, anchor nodes are not always available due to

the limited communication range and the densely deployed sensors.

Existing underground MIC localization algorithms use anchor nodes

and do not consider the dynamic environment. This can be used for

active underground MIC sensors, as shown in Fig. 1, which have

a longer communication range and anchors are available. For the

dense deployment considered in this letter, the active underground

MIC sensors are not optimal. This letter considers the soil dynamics

for load-modulated MIC. First, by showing the collected data using

underground sensors in the Thoreau system [7], [8], we show that

the attenuation coefficient is also dynamic. Then, we develop an

expectation-maximization (EM) algorithm to localize underground

battery-free sensors by considering the attenuation coefficient as a

latent variable. We only use the received signal strength (RSS) since

it is widely available in wireless radios. The proposed solution is

numerically evaluated and compared in different scenarios.

II. DYNAMIC CHANNEL

As shown in Fig. 1, the robot first broadcasts magnetic fields

towards underground battery-free sensors. These sensors first harvest

energy and perform sensing. Then, they use load-modulation to send

data back to the robot. In this letter, we consider the transmitter

and the receiver on the robot to use separated coils for better signal

detection [6]. The signal transmission is based on coil coupling.

The mutual coupling between the transmitter and the receiver on

the robot is neglected. This can be addressed using self-interference

cancellation techniques in practice.

1) Channel Model: For point-to-point MIC with only the forward

path, the received power is 𝑃𝑟 = 𝑙 𝑓 𝑃𝑡 , where 𝑙 𝑓 ∼ (𝜔𝑀)2 is the
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+ log 𝑝(𝒙0) +
∫

𝑝(𝛼𝑡 |𝒓, 𝑿𝑟 , 𝒙̃
𝑘
0 ) log 𝑝(𝛼𝑡 )𝑑𝛼𝑡 . (4)

From Equ. (3) to Equ. (4), we use 𝑝(𝒙0, 𝛼
𝑡 , 𝒓, 𝑿𝑟 ) =

𝑝(𝒓 |𝒙0, 𝛼
𝑡 , 𝑿𝑟 )𝑝(𝒙0)𝑝(𝛼𝑡 ). To find a closed-form solution, we need

to find the probabilities in Equ. (4). For 𝑝(𝒙0), we consider the

underground battery-free sensors are uniformly distributed. Thus,

it can be neglected since any location has the same 𝑝(𝒙0). Note

that, in some scenarios, 𝑝(𝒙0) may be considered as 3D Gaussian

distributions, i.e., it has a high probability around the roots of a

plant. According to the definition of 𝛼𝑡 in Section II-2, 𝑝(𝛼𝑡 ) can

be written as

𝑝(𝛼𝑡 ) = 1
√

2𝜋𝛿𝛼
𝑒
− 1

2

(

𝛼𝑡−𝛼𝑡−1

𝛿𝛼

)2

. (5)

given that 𝛼𝑡−1 is known. When 𝛼𝑡−1 is unknown, the distribution of

𝛼𝑡 is still considered as Gaussian, but with different mean value and

standard deviation. We will discuss the difference and the solutions

to estimate 𝒙0 in these two cases.

The probability 𝑝(𝒓 |𝒙0, 𝛼
𝑡 , 𝑿𝑟 ) can be written as

𝑝(𝒓 |𝒙0, 𝛼
𝑡 , 𝑿𝑟 ) =

𝑁
∏

𝑖=1

1

(2𝜋) 1
2 𝛿𝑛

𝑒
− 1

2

(

𝒓 [𝑖 ]−𝐶𝑝+17.4𝛼𝑡 ‖𝒙0−𝒙𝑖 ‖+120 log10 ‖𝒙0−𝒙𝑖 ‖
𝛿𝑛

)2

.

(6)

where 𝒓 [𝑖] is the received power at the 𝑖𝑡ℎ waypoint. Here, we

implicitly assume that all the RSS signals are independent. The

probability 𝑝(𝛼𝑡 |𝒓, 𝑿𝑟 , 𝒙̃
𝑘
0
) can be written as 𝑝(𝛼𝑡 |𝒓, 𝑿𝑟 , 𝒙̃

𝑘
0
) =

𝑝(𝒓 |𝒙̃𝑘
0
, 𝛼𝑡 , 𝑿𝑟 ) · 𝑝(𝛼𝑡 ), where 𝑝(𝒓 |𝒙̃𝑘

0
, 𝛼𝑡 , 𝑿𝑟 ) can be obtained by

replacing 𝒙0 in Equ. (6) with 𝒙̃
𝑘
0

. Since 𝑝(𝒓 |𝒙̃𝑘
0
, 𝛼𝑡 , 𝑿𝑟 ) and 𝑝(𝛼𝑡 )

are Gaussian distributions, 𝑝(𝛼𝑡 |𝒓, 𝑿𝑟 , 𝒙̃
𝑘
0
) is also proportional to a

Gaussian distribution. The mean value of 𝛼𝑡 is 𝑢𝑐𝑑 = 𝐹1/𝐹2 and the

variance is 𝛿2
𝑐𝑑

= 1/𝐹2 [10], where

𝐹1 =
𝛼𝑡−1

𝛿2
𝛼

−
𝑁
∑︁

𝑖=1

𝒓 [𝑖] − 𝐶𝑝 + 120 log10 ‖𝒙̃𝑘
0
− 𝒙𝑖 ‖

17.4‖𝒙̃𝑘
0
− 𝒙𝑖 ‖(𝛿𝑛/(17.4‖𝒙̃𝑘

0
− 𝒙𝑖 ‖))2

(7)

and

𝐹2 =
1

𝛿2
𝛼

+
𝑁
∑︁

𝑖=1

(17.4‖𝒙̃𝑘
0
− 𝒙𝑖 ‖))2

𝛿2
𝑛

. (8)

Note that, 𝑢𝑐𝑑 and 𝛿𝑐𝑑 are useful to derive the maximization of

𝑄(𝒙0, 𝒙̃
𝑘
0
). Since in the maximization step, we will use the derivative

of 𝑄(𝒙0, 𝒙̃
𝑘
0
) with respect to 𝒙0 to find updated estimation, any item

that is not related to the maximization can be removed from Equ. (4),

i.e., the second and the third items can be removed and only the first

item is kept.

Thus, we have an updated equation

𝑄(𝒙0, 𝒙̃
𝑘
0 ) ∼

∫

𝑝(𝛼𝑡 |𝒓, 𝑿𝑟 , 𝒙̃
𝑘
0 ) log 𝑝(𝒓 |𝒙0, 𝛼

𝑡 , 𝑿𝑟 )𝑑𝛼𝑡 . (9)

The logarithm item in the above equation can be written as a function

of 𝛼𝑡 and (𝛼𝑡 )2. The integral finds the summation of constants and

the mean value and the second order moment of 𝛼𝑡 . Finally, we

obtain the following equation.

𝑄𝑎𝑝 (𝒙0, 𝒙̃
𝑘
0 ) =

𝑁
∑︁

𝑖=1

302.8(𝑢2
𝑐𝑑 + 𝛿2

𝑐𝑑)𝒅 [𝑖]2 + 14400(log10 𝒅 [𝑖])2

+ 4176𝑢𝑐𝑑𝒅 [𝑖] log10 𝒅 [𝑖] + 34.8𝑢𝑐𝑑 𝒓 [𝑖]𝒅 [𝑖] + 240𝒓 [𝑖] log10 𝒅[𝑖]
− 34.8𝑢𝑐𝑑𝐶𝑝𝒅 [𝑖] − 240𝐶𝑝 log10 𝒅[𝑖], (10)

where 𝒅 [𝑖] = ‖𝒙0 − 𝒙𝑖 ‖. Note that, 𝑄(𝒙0, 𝒙̃
𝑘
0
) ∼ −𝑄𝑎𝑝 (𝒙0, 𝒙̃

𝑘
0
) +

𝐶2, where 𝐶2 is a constant. Thus, maximizing 𝑄(𝒙0, 𝒙̃
𝑘
0
) in the

maximization step is equivalent to minimizing 𝑄𝑎𝑝 (𝒙0, 𝒙̃
𝑘
0
). Then,

by minimizing 𝑄𝑎𝑝 (𝒙0, 𝒙̃
𝑘
0
) we can obtain updated 𝒙̃

𝑘+1
0

. This process

will continue until ‖𝒙̃𝑘+1
0

− 𝒙̃
𝑘
0
‖ < 𝜂 or the predefined step number

𝑁𝑠𝑡𝑒𝑝 has been reached. A summary of the EM-based localization

algorithm is given in Algorithm 1. 𝑄𝑎𝑝 (𝒙0, 𝒙̃
𝑘
0
) is not linear, and it is

Algorithm 1 Expectation-Maximization Algorithm

Input: 𝒙
1
0
, 𝑿𝑟 , 𝛼𝑡−1, 𝛿𝛼, 𝛿𝑛, 𝐶𝑝 , 𝑁𝑠𝑡𝑒𝑝

Output: 𝒙̃0

𝑘 = 1.

while 𝑘 < 𝑁𝑠𝑡𝑒𝑝 do

E-step: obtain 𝑄𝑎𝑝 (𝒙0, 𝒙̃
𝑘
0
) using Equ. (10), (7), and (8).

M-step: obtain 𝒙̃
𝑘+1
0

= arg min
𝒙0
𝑄𝑎𝑝 (𝒙0, 𝒙̃

𝑘
0
)

𝑘 = 𝑘 + 1.

end while

𝒙̃0 = 𝒙̃
𝑘
0

.

not straightforward to obtain the solution. We use gradient decent to

iteratively find the minimum value [11]. When 𝛼𝑡−1 is not available,

we use a general distribution of 𝛼. Consider that the soil properties

can be measured monthly or even longer, e.g., soil samples are

collected by robots and sent to laboratories for analysis.

IV. SIMULATION AND NUMERICAL ANALYSIS

A significant advantage of MIC is that it is less affected by the

environment compared with the UHF electromagnetic wave commu-

nications. Thus, existing works either do not consider the impact of soil

conductivity or consider the permittivity and conductivity as constants.

With this in mind, our baseline model only considers the impact of

distance, i.e., 𝑀 ≈ 𝐶𝑚/𝑑3. The localization problem is simplified to

𝒙̃0 = argmin
𝒙0

∑𝑁
𝑖=1





𝒓 [𝑖] − 𝐶𝑝 + 120 log10 (‖𝒙0 − 𝒙𝑖 ‖)






2
. The above

problem is also solved using gradient descent to iteratively find the

optimal 𝒙0. We also compared with anchor-based solution, where

four anchors are placed at the four corners of a plane with a depth

of half of the maximum depth. The problem is formulated the same

as the baseline model, i.e., the anchor-based model is equivalent to

the robot-based solution with four waypoints.

In the simulation model, we consider the robot moves on the

ground following a predefined trajectory, as shown in Fig. 2. There

are 10 waypoints aligned along two rows. The first waypoint’s

location is (−0.25,−0.10, 0)m, and the last waypoint’s location is

(−0.35, 0.10, 0)m. The mutual interval between two waypoints in

a row is 0.1 m. The sensor is uniformly distributed in an area

with 𝑥 ∈ [0, 0.5]m, 𝑦 ∈ [0, 0.5]m, and 𝑧 ∈ [−0.6,−0.1]m. We do

not consider the scenario where the sensor’s depth is smaller than

0.1 m. When the depth is small, the received signal is strong and

the location can be easily estimated. The attenuation coefficient is

randomly sampled from the 2020 data. The simulation parameters

are summarized in Table 1.

In the simulation, we consider the following four scenarios: (1)

the previous hourly attenuation coefficient and the standard deviation

is available; (2) the previous daily attenuation coefficient and the

standard deviation are available; (3) an initial inaccurate estimation

of the attenuation coefficient and its standard deviation during a year

is available; and (4) the attenuation coefficient is not considered in

the model, i.e., the baseline model. In Fig. 6, Fig. 7, and Fig. 8,

these scenarios are denoted by “Hour”, “Day”, “Unknown 𝛼”, and

“Baseline”. The squared localization error is defined as ‖𝒙̃0 − 𝒙0‖2,

where 𝒙̃0 is the estimated localization. The root-mean-square error

(RMSE) is defined as

√︃

∑𝑁𝑠𝑖𝑚

𝑖 ‖𝒙̃𝑖
0
− 𝒙

𝑖
0
‖2/𝑁𝑠𝑖𝑚, where 𝑁𝑠𝑖𝑚 the




