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Abstract—Underground battery-free sensors do not require battery replacement which can support large-scale de-
ployment for agriculture applications. The underground environment is dynamic, and the soil permittivity and electric
conductivity vary significantly due to precipitation and irrigation. These dynamic parameters affect the accuracy of
underground battery-free sensor localization. This letter proposes a localization framework using the expectation-
maximization algorithm by considering the signal attenuation coefficient as a latent variable. The proposed solution is
evaluated using data collected by underground sensors. Simulation results show that the root-mean-square error is around

0.3 m in various scenarios.

Index Terms—Battery-free sensors, expectation-maximization algorithm, magnetic induction communication, underground localization.

[. INTRODUCTION

Underground sensors play an important role in precision agriculture
by collecting agricultural-related information in the soil, such as soil
nutrition, temperature, and moisture. Wireless technologies are used
to connect these sensors with the Internet of Things (IoT) gateways
and servers [1], [2]. These underground sensors are powered by
batteries that can operate for a long time. The recent development of
wearable agriculture sensors [3] aims to use extremely thin or tiny
sensors that can be attached to plants to closely monitor their growth.
Usually, battery-powered sensors are bulky and heavy, and cannot
support wearable agriculture sensors. Moreover, they require battery
replacement and related maintenance, which are labor-intensive.

Battery-free underground sensors [4] powered by wireless signals
can be designed in small sizes and lightweight that are suitable for
wearable agriculture sensing. Backscatter communication is a widely
used solution for battery-free sensors, where the battery-free sensor
modulates and reflects incident electromagnetic waves. A ground robot
or a drone can be used as a reader to excite underground battery-
free sensors and collect data. However, electromagnetic wave-based
wireless communication at the UHF (Ultra High Frequency) band
is not suitable for densely deployed wearable agriculture sensors.
First, UHF signals have a long communication range in the air,
which creates interference and competes for spectrum with existing
applications. Also, UHF signal propagation is significantly affected
by the soil medium due to reflection and attenuation. Most agricultural
activities are in the shallow underground environment with a depth
smaller than 0.5 m. Thus, on one hand, the wireless communication
technology that is used for underground battery-free sensors must
have a communication range longer than 0.5 m. On the other hand,
the communication range should be kept as small as possible to
reduce the interference to nearby wireless applications. Moreover,
it should be efficient in penetrating the soil. Magnetic induction
communication (MIC) uses the near field of RF signals to efficiently
penetrate inhomogeneous soil medium, and the magnetic fields in
the near field fall off fast, which creates negligible interference [5].

As shown in Fig. 1, a ground robot is used to communicate with
underground battery-free sensors using MIC [4]. A large number
of these sensors can be deployed densely around a plant — both

Corresponding author: H. Guo (e-mail: hguo@nsu.edu)
This work was supported by National Science Foundation under grant no.
CNS1947748.

underground and aboveground. First, the robot broadcasts magnetic
fields, and the underground battery-free sensor harvests energy. Then,
the sensor performs sensing and uses load-modulation to send back
data. The robot can receive load-modulated data using the same coil
or a different coil that is dedicated to receiving [6]. Localization of
underground sensors is essential to better leverage the sensing data
for agriculture applications.

Localizing underground battery-free sensors faces the following
challenges. First, although MIC has a stable wireless channel in
inhomogeneous media compared with far-field electromagnetic wave-
based wireless communication, the soil conductivity and permittivity
dynamics still affect the MIC channel, particularly the attenuation
coefficient. Second, anchor nodes are not always available due to
the limited communication range and the densely deployed sensors.
Existing underground MIC localization algorithms use anchor nodes
and do not consider the dynamic environment. This can be used for
active underground MIC sensors, as shown in Fig. 1, which have
a longer communication range and anchors are available. For the
dense deployment considered in this letter, the active underground
MIC sensors are not optimal. This letter considers the soil dynamics
for load-modulated MIC. First, by showing the collected data using
underground sensors in the Thoreau system [7], [8], we show that
the attenuation coefficient is also dynamic. Then, we develop an
expectation-maximization (EM) algorithm to localize underground
battery-free sensors by considering the attenuation coefficient as a
latent variable. We only use the received signal strength (RSS) since
it is widely available in wireless radios. The proposed solution is
numerically evaluated and compared in different scenarios.

II. DYNAMIC CHANNEL

As shown in Fig. 1, the robot first broadcasts magnetic fields
towards underground battery-free sensors. These sensors first harvest
energy and perform sensing. Then, they use load-modulation to send
data back to the robot. In this letter, we consider the transmitter
and the receiver on the robot to use separated coils for better signal
detection [6]. The signal transmission is based on coil coupling.
The mutual coupling between the transmitter and the receiver on
the robot is neglected. This can be addressed using self-interference
cancellation techniques in practice.

1) Channel Model: For point-to-point MIC with only the forward
path, the received power is P, = [y P,, where [, ~ (wM)? is the
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Fig. 3: Electric conductivity of the soil measured by an underground sensor
in 2020 and 2021.

linear forward path loss, P, is the transmission power, w = 27 f,., f. is
the signal carrier frequency, and M is the mutual inductance between
the transmit coil and the receive coil [5]. For load-modulation MIC,
the transmitter and the receiver are almost in the same location and
their coil configurations are the same. The backward path loss can
be approximated by the forward path loss I¢. The load-modulated
signal has a slight frequency shift compared with the incident signal.
However, this frequency shift is negligible compared with the carrier
frequency. Thus, the received signal strength of load-modulation MIC
is proportional to (wM)*P;.

The soil has a certain conductivity, and wireless signals attenuates
as they propagate in the soil. The mutual inductance considering
soil conductivity can be approximated by M = %e"’d, where
C,, is a constant which is determined by coil configurations,
d is the distance between the robot and the sensor, and « =

172
w, £ lﬂl + (ﬁ)2 - IJ . The soil permeability, permittivity, and

conductivity are represented by u, €, and o, respectively. The misalign-
ment between the coils in the robot and sensor is not considered.
Existing research has shown that the misalignment loss can be
addressed by using coil arrays on the robot [4]. As a result, the RSS of
load-modulation MIC indB scaleis P, = C,,—17.4ad-120log,, d+n,
where C), = 10log,, P; + 40log,,(wC,,) and n is the noise due to
RSS receiving and measurement which subjects to the Guassian
distribution, i.e., n € N (0, 02).

2) Dynamic Attenuation Coefficient: The soil conductivity is
related to the volumetric water content, which is a dynamic parameter
that is affected by precipitation and irrigation. In this paper, we use
the data collected through the Thoreau platform [7], [8]. An example
of the conductivity is shown in Fig. 3. While not shown here, the
permittivity has a similar pattern. The data was measured by an
underground sensor in 2020 and 2021. As we can see, conductivity
is a dynamic parameter that vary significantly during a year. Due to
different weather conditions, there is an obvious difference between
the two years. The conductivity and permittivity can be different at
different depths. We consider the soil is homogeneous with the same
conductivity and permittivity at any depths. The associated attenuation
coefficient at 13.56 MHz is shown in Fig. 4. This frequency is used
since it is an ISM frequency band and battery-free sensors using
Near Field Communication (NFC) protocols are available. MIC uses
lower MHz band signals to increase the wavelength and reduce the
attenuation losses. Thus, the attenuation coefficient is stable with
small values.

To capture this dynamic process, the attenuation coefficient at time
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Fig. 4: Attenuation coefficient of soil.
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Fig. 5: Distribution of A, using the attenuation coefficient in 2020.

step ¢ can be considered as o’ = a'~! + A, where A, is a Gaussian
random variable with mean m, and standard deviation &, and o™’
is the attenuation coefficient at time step ¢ — 1. The distribution of A,
is shown in Fig. 5. Since the original data was sampled at different
time intervals due to data missing and node failures, we resampled
the data and make the sampling interval as a constant. In Fig. 5a, the
time interval for one step is one hour, while in Fig. 5b, it is one day.
As shown in Fig. 5b, the distribution of both the hourly and daily
sampled A, can be approximated by Gaussian. The daily change
is more significant and it demonstrates a large standard deviation
compared to the hourly change.

[ll. EXPECTATION-MAXIMIZATION LOCALIZATION

The EM algorithm [9] is an iterative solution with the expectation
and maximization steps to estimate unknown parameters with partial
observations. In this paper, the received power r and aboveground
robot trajectory X, = [x,Xx,---,xXn] are known, while the
underground battery-free sensor location x¢ and attenuation coefficient
a(t) are unknown. The objective is to estimate xo with the latent
variable @' which is determined by the soil states. Considering the
unknown attenuation coefficient, the problem is

io:argmax/p(xo,at|r,X,)da’. (1)
xo

The probability p(xo,a’,r, X,) has a simple analytical expression.
The EM algorithm first generates @' based on observed r and X,,
and an initial estimation of the sensor location £, where k represents
the iteration number. This is achieved by using the expectation of
the logarithm of the probability p(xo,a’,r, X,-). After that, 5! is
obtained by maximizing the expectation expression with respect to
xo. In the expectation step, we find the conditional expectation of
the complete logarithm augmented density, which is

Q(x()"f(])c) = E{lOg p(X(), at)lra er f(I;} (2)

= / p(a’|r, X, .%§)log p(xo,a’,r, X, )da' (3)

= / p(a'|r, X, %) log p(r|xo, @', X, )da’
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+logp(x0)+/p(a/’|r,Xr,f(]f)logp(at)da". 4)

From Equ. (3) to Equ. (4), we use p(xg,a,r,X,) =
p(rlxg,a’, X,)p(xo)p(a’). To find a closed-form solution, we need
to find the probabilities in Equ. (4). For p(x(), we consider the
underground battery-free sensors are uniformly distributed. Thus,
it can be neglected since any location has the same p(x,). Note
that, in some scenarios, p(xo) may be considered as 3D Gaussian
distributions, i.e., it has a high probability around the roots of a
plant. According to the definition of ¢’ in Section II-2, p(@') can
be written as

e*%(i"t}fil )2' 5)

pla') = —=
V2780
given that @'~! is known. When @'~! is unknown, the distribution of
' is still considered as Gaussian, but with different mean value and
standard deviation. We will discuss the difference and the solutions
to estimate x( in these two cases.
The probability p(r|xy, @', X,)) can be written as

N

p(rixg, ', X,) = [ | ——e
1_1[ (27)16,

2
1 it rli]-Cp+17.4at |xg-x; [+120log g llxg—x; ||
2 Sn

(6)

where r[i] is the received power at the i*" waypoint. Here, we
implicitly assume that all the RSS signals are independent. The
probability p(a’|r, X,,%5) can be written as p(a'|r, X,,%;) =
p(ri&f, o', X,) - p(a’), where p(r|&§, o', X,) can be obtained by
replacing x in Equ. (6) with £§. Since p(r|%f,a’, X,) and p(a’)
are Gaussian distributions, p(a’|r, X,,f(’;’) is also proportional to a
Gaussian distribution. The mean value of @' is u.4 = F;/F> and the

variance is 6?(1 =1/F, [10], where

- Cp +12010gy, ||x0 —-x;l
17. 4||x = x1(6,/(17.4|1%§ — x:11)?

(M

i=1

and

137 4|| - X II))2
T e ®)

0% i=1
Note that, u., and 6., are useful to derive the maximization of
Q(xo,i(’)"). Since in the maximization step, we will use the derivative
of Q(xo,f(’)‘) with respect to x to find updated estimation, any item
that is not related to the maximization can be removed from Equ. (4),
i.e., the second and the third items can be removed and only the first
item is kept.

Thus, we have an updated equation

Ozt ~ [ pla’lr. X8 log p(rlxo. o X,)da. (9)

The logarithm item in the above equation can be written as a function
of a’ and (a*)?. The integral finds the summation of constants and
the mean value and the second order moment of «’. Finally, we
obtain the following equation.

N
Qup (0, %§) = D 302.8(u2,, +62,)d[i]? + 14400(log,, d[i])*

i=1
+ 41761, qd[i] 1og,, d[i] + 34.8ucqr[i1d[i] + 240r[i] log,o d[i]
— 34.8u.qCpd[i] — 240C, log,, d[il, (10)
where d[i] = |lxo — x;||. Note that, Q(xo,®5) ~ —Qp (x0, E5) +

C,, where C; is a constant. Thus, maximizing Q(xo,.f(’f) in the
maximization step is equivalent to minimizing Q) (xo,.f(’f). Then,

by minimizing Q. (o, £5) we can obtain updated .f(’)‘“. This process
will continue until [|€5*' — £5|| < 5 or the predefined step number
Ngtep has been reached. A summary of the EM-based localization
algorithm is given in Algorithm 1. Q,, (xo, £ ) is not linear, and it is

Algorithm 1 Expectation-Maximization Algorithm

Input: x), X,, @', 64, 6n, Cp, Nyrep

Output: %,

k=1.

while k < Ny, do
E-step: obtain O, (xo,f(’;') using Equ. (10), (7), and (8).
M-step: obtain £*' = argmin, Q. (X0, £j)
k=k+1.

end while

% = &k,

not straightforward to obtain the solution. We use gradient decent to
iteratively find the minimum value [11]. When o~ is not available,
we use a general distribution of @. Consider that the soil properties
can be measured monthly or even longer, e.g., soil samples are
collected by robots and sent to laboratories for analysis.

IV. SIMULATION AND NUMERICAL ANALYSIS

A significant advantage of MIC is that it is less affected by the
environment compared with the UHF electromagnetic wave commu-
nications. Thus, existing works either do not consider the impact of soil
conductivity or consider the permittivity and conductivity as constants.
With this in mind, our baseline model only considers the impact of
distance, i.e., M = C,,,/d>. The localization problem is simplified to
¥ = argmin, | >N ||r[i] —Cp +1201o0g;, (|lxo — x,~||)||2 . The above
problem is also solved using gradient descent to iteratively find the
optimal x,. We also compared with anchor-based solution, where
four anchors are placed at the four corners of a plane with a depth
of half of the maximum depth. The problem is formulated the same
as the baseline model, i.e., the anchor-based model is equivalent to
the robot-based solution with four waypoints.

In the simulation model, we consider the robot moves on the
ground following a predefined trajectory, as shown in Fig. 2. There
are 10 waypoints aligned along two rows. The first waypoint’s
location is (—0.25,-0.10,0)m, and the last waypoint’s location is
(-0.35,0.10,0)m. The mutual interval between two waypoints in
a row is 0.1 m. The sensor is uniformly distributed in an area
with x € [0,0.5]m, y € [0,0.5]m, and z € [-0.6,-0.1]Jm. We do
not consider the scenario where the sensor’s depth is smaller than
0.1 m. When the depth is small, the received signal is strong and
the location can be easily estimated. The attenuation coefficient is
randomly sampled from the 2020 data. The simulation parameters
are summarized in Table 1.

In the simulation, we consider the following four scenarios: (1)
the previous hourly attenuation coefficient and the standard deviation
is available; (2) the previous daily attenuation coefficient and the
standard deviation are available; (3) an initial inaccurate estimation
of the attenuation coefficient and its standard deviation during a year
is available; and (4) the attenuation coefficient is not considered in
the model, i.e., the baseline model. In Fig. 6, Fig. 7, and Fig. 8,
these scenarios are denoted by “Hour”, “Day”, “Unknown «”, and
“Baseline”. The squared localization error is defined as ||£y — xo]|?,
where X is the estimated localization. The root-mean-square error

(RMSE) is defined as \/va 1%5 — x|/ Ngim, where Ny, the
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Table 1: Simulation Parameters

[ Symbol | Value ][ Symbol | Value |
Cn %1010 I %107
€ 8.854x107"2 P, 0.01W
o 5 x| (0.1,0.1,-0.1)m
Baseline — — Anchor-basedl

Hour — — Day =—-=-= Unknown a
T T T

0 — T L L L L L L
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Localization Error (m2)
Fig. 6: CDF of localization error with z,,,;, = —0.6m.

simulation number. Note that, in the estimation, we consider the
sensors can be anywhere underground, i.e., there is no constraint in
the x and y directions. Moreover, at each waypoint, the robot collects
10 samples and uses the mean value as the received power to reduce
the noise impact.

In Fig. 6, we consider a large area with the depth z,,;, = —0.6 m.
We run Ny;p,, = 200 simulations and randomly select the attenuation
coefficient from the second one to the last one. The standard deviation
of the “unknown a” case is set as 1. This allows the EM algorithm
to iterate in a large range to obtain the optimal expectation value.
The maximum iteration number Ny, is set as 10. For the “Hour”
and “Day” cases, the standard deviations are small, as shown in
Fig. 5. Thus, the expectation computation converges fast, and we
use Ngrep =2 for these two cases. Last, for the “Baseline” model,
since there is no iteration for @, N, is 1. However, the “Baseline”
model has iterative computation for the optimal localization for
the gradient descent optimization, which is accomplished using the
standard MATLAB optimization function fminunc. As shown in
the figure, with prior information about «, the “Hour” and “Day”
achieve the lowest error and there is no obvious difference between
their performances. This is due to the fact that soil dynamics are
relatively slow processes. There is no significant difference between
the hourly change and the daily change. Also, without knowledge
of @, we use a rough estimation of 1.43 and this number can be
different, which results in a similar performance. The performance
of the “Unknown «” is slightly worse than the previous two cases
due to the lack of attenuation coefficient information. However, this
is a more practical case for most underground applications. Last,
if the attenuation coefficient is not considered, only 60% of the
simulations can get a squared localization error smaller than 0.4,
while it is nearly 100% for the previous three cases. The anchor-based
solution performs much worse because it only has 4 anchor nodes.
Compared with the 10 waypoints, the anchor number is small and
the anchors cannot collect sufficient spacial information.

In Fig. 7, we consider a smaller area with z,,,;, = —0.4 m. Since
the underground battery-free sensors have a shorter distance to the
aboveground robot, the received power is stronger. As shown in
the figure, the squared localization error is smaller for all the cases
compared with that in Fig. 6. The RMSE for both Fig. 6 and Fig. 7
is shown in Fig. 8. With the attenuation coefficient information, the
RMSE is around 0.31 m, while for unknown « it is around 0.36 m.
Without considering the dynamics, the RMSE is higher than 0.5 m.

V. CONCLUSION

Localizing underground sensors using a single robot finds many
applications for the Internet of Things in agriculture. In this letter, a
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Fig. 8: Root-mean-square error with z,,;, = —0.6m and z,,,;, = —0.4m.

single robot moves along a predefined trajectory to collect Received
Signal Strength data at multiple waypoints to emulate an antenna array.
The soil conductivity and permittivity are dynamic parameters that
can affect the accuracy of underground localization. In this letter, the
expectation-maximization algorithm is used by considering the soil
attenuation coefficient as a latent variable. Numerical simulations
have shown that the proposed localization algorithm can achieve
significant gain compared with a baseline model which does not
consider dynamic soil parameters.
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