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A B S T R A C T   

Inefficiencies in the transmission and distribution (T&D) of electricity between suppliers and customers can lead 
to higher compensatory electricity generation and unanticipated air pollution. Using both life cycle assessments 
and uncertainty analyses, we estimate the compensatory air pollutants – CO2eq, SOx, NOx, and PM2.5 – associated 
with aggregate and non-technical T&D losses at national and subnational scales. Our global analysis estimates 
that 1 Gigatonne of CO2eq and 1.3 Megatonnes (Mt) NOx, 1.6 Mt SOx, and 2 Mt PM2.5 are associated with annual 
aggregate T&D losses. We also find that approximately 274 Mt CO2eq, 367 kilotonnes (kt) NOx, 486 kt SOx, and 
535 kt PM2.5 are emitted due to non-technical T&D losses. Our subnational analysis in the United States dem
onstrates the variation of emissions savings across regulatory jurisdictions. We present an initial deployment cost 
analysis for CO2eq reduction which compares deploying smart meters (i.e., reducing non-technical T&D losses) to 
renewable energy generation expansion. Investments in T&D infrastructure are beneficial in a completely dec
arbonized system because improvements in the T&D grid can make investments in renewable energy more cost- 
effective.   

1. Introduction 

Globally, 10.2 million premature annual deaths, can be attributed to 
fossil-fuel generation and associated PM2.5 emissions [1], a large part of 
which comes from the electricity sector. There are three main oppor
tunities for emission-saving interventions in the electricity system (i.e., 
generation, delivery, and consumption), but one of these components 
(delivery) has often been overlooked leaving potential air pollution re
ductions on the table. In their submitted Nationally Determined Con
tributions (NDCs) in 2015, 110 countries mentioned renewable energy 
targets, while only 32 countries mentioned grid efficiency in their 
climate mitigation strategies [2]. Our analysis unveils the link between 
grid inefficiencies and air pollution at global, national, and sub-national 
scales. In 2018, energy-related CO2eq emissions reached a historic high 
of 33.1 Gigatonnes of carbon dioxide (Gt CO2eq) globally [3]. To 
improve environmental sustainability and decarbonize the electric grid, 
countries are increasingly focused on shifting generation infrastructure 

[4–8]. Several analyses evaluate the emissions resulting from current 
fossil-fuel plants living beyond their historical lifetimes [9–12]. How
ever, policymakers and analysts place little focus on how these emissions 
are tied to inefficiencies in the delivery of electricity, i.e., in the losses 
incurred during the transmission and distribution (T&D) of electricity. 
Reducing T&D losses can be an important climate abatement strategy 
that will lead to less generation infrastructure investments, reduce 
fossil-fuel operational needs, and leverage energy efficiency [2,13]. 

T&D infrastructure is the primary means of delivering electricity 
from the power plant to the end-user. Here we define T&D losses as the 
percentage of electricity that is lost between electricity generation at the 
power plant, and the final amount delivered to the consumer. T&D 
losses mean that electric utilities must generate more than 1 kW-hour 
(kWh) to deliver 1 kWh to the consumer. We refer to compensatory 
generation as that required to make up for T&D losses. These losses 
primarily result from T&D inefficiencies that can be technical (e.g., 
physical constraints and heat loss), or non-technical (e.g., theft, fraud, 
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defective meters, or billing issues). We estimate that, globally, 2100 
TWh of compensatory generation per year is associated with T&D losses 
(based on 2017 data). In 2017, aggregate losses – technical and non- 
technical combined – were approximately 58% in Haiti, 22% in 
Ghana, 18% in India, 5% in the USA, and 1% in Singapore [2]. 

Meanwhile, non-technical losses can make up to 77% of the aggre
gate losses. For example, non-technical losses were approximately 45% 
in Haiti, 11% in Ghana, 6% in India, and 1.3% in the USA [2]. These high 
delivery losses combined with the fact that over 65 countries source 60% 
or more of their electricity from fossil-fuels (Supplementary Information 
Fig. S2), leads to 1100 Mt CO2eq, 0.93 Mt SOx, 0.91 Mt NOx, 0.19 Mt 
PM2.5 annually. In addition to the benefits of reducing co-pollutants, 
improving T&D efficiency reinforces benefits for renewable energy, 
which often require higher initial generation investments than their 
fossil-fuel counterparts [14]. As nations retire fossil-fuel generators 
[15], grid efficiency will reduce renewable and nonrenewable invest
ment needs and ensure that more low carbon energy reaches its intended 
consumers [16,17]. 

T&D efficiency improvements can result from reducing technical 
losses directly or from changes in demand through reducing non- 
technical losses [2]. Technical losses can be reduced by deploying 
high-voltage transmission lines, while non-technical loss reductions can 
occur through reduction in electricity theft, deployment of smart meters, 
and greater accountability in bill paying. Some studies suggest that 
reducing non-technical losses could reduce the associated electricity 
consumption by 33%–50% [2,18]. In the USA, it is estimated that smart 
meters can reduce overall electricity consumption by 6% [19]. In 2018 
in the USA, there was 56% adoption of smart meters, and by 2020, there 
was around 75% adoption [20,21]. The resulting reduction in air 
pollution necessitates granular sub-national analyses that identify hot
spots of high T&D losses and grid inefficiencies that are large contrib
utors to compensatory generation and associated air pollution. 

We address these questions on T&D inefficiencies with three key 
contributions. Our first contribution is to quantify air pollution emis
sions associated with T&D losses in 142 countries and determine how 
much they can be reduced. A previous study determined that 1 Gt CO2eq 
per year are released due to T&D losses and approximately half can be 
mitigated [2], but the co-benefits of reduced air pollution (SOx, NOx, or 
PM2.5 emissions) were not estimated [2,22–24]. Considering 
co-pollutants is vital due to their linkages with premature deaths and 
births [1,25–27]. Emissions estimates using life cycle assessments 
(LCAs) often concentrate on the functional unit of electricity generated 
at the source [28–31]. This choice means that the resulting emissions 
factor misses the compensatory generation that results from T&D losses 
in the delivery of electricity. Our analysis first expands upon the more 
common functional unit of 1 kilowatt hour (kWh) generated to include 
grid inefficiencies by using one kWh delivered. 

Second, we argue that examining sub-national scales is crucial for 
locating opportunities to reduce grid inefficiencies and the related 
harmful emissions. Other studies do not examine emissions at sub- 
national scales [2,22–24]. We investigate the level of emissions that 
could be avoided by reducing aggregate and non-technical T&D losses 
and associated compensatory generation, within different electric reg
ulatory structures at multinational and two subnational scales of the 
USA, under three scenarios: business-as-usual (BAU) for T&D efficiency, 
moderate ambition T&D efficiency, and high ambition T&D efficiency. 
Third, we estimate the initial deployment cost associated with reducing 
non-technical losses through implementing smart meters, and we 
compare this value to the initial deployment cost for renewable energy 
investments (i.e., wind turbines and solar panel deployment). This 
estimation provides a better understanding of the viability of reducing 
air pollution emissions from non-technical losses. 

2. Methods 

2.1. Transmission and distribution losses 

In our analysis, we calculate the total T&D losses (nTD) associated 
with each generation source for a given region, by taking the reported 
transmission and distribution losses (UTDloss, in TWh) in the country and 
dividing this number by the total generation within the country (equa
tion (1)). The generation associated with T&D losses (UTD,g, in TWh) 
from power plant g, is determined by multiplying the percentage of the 
reported T&D losses in the region (nTD) by the energy contribution (Ugen, 

g, in TWh) from that electricity source (equation (2)). In our analyses, 
the reported T&D losses in the region can be for aggregate losses or non- 
technical losses. 

nTD =
UTDloss
∑

g∈G
Ugen,g

(1)  

UTD =
∑

g∈G
UTD,g =

∑

g∈G
nTDUgen,g (2) 

The electricity generation for each region (Ugen,g, in TWh) is sourced 
from the IEA’s Electricity Information Statistics [32]. Aggregate T&D 
losses (nTD) vary across countries, with the lowest at 1.2% in Singapore 
and the highest at 60% in Haiti. Although there is also a wide variation 
of losses within a region, for the global analysis we assume uniform T&D 
losses for individual countries due to a lack of more detailed data for 
each of the 142 countries. We define region-level aggregate losses as the 
sum of technical losses (nTL) and non-technical losses (nNTL), as seen in 
equation (3). 

nTD = nTL + nNTL (3) 

Within relatively efficient electricity systems the non-technical losses 
resulting from theft can be 1–2% [33]. To estimate loss reduction in 
T&D, we developed two cases related to (1) moderate- and (2) 
high-efficiency investments. The upper bound of T&D losses corre
sponds to BAU losses. The lower bound on T&D efficiency represents a 
high ambition for T&D investments and corresponds to the maximum 
calculable reduction in aggregate T&D losses, based on the 2% T&D 
losses observed in Singapore, and some parts of the USA. We assume 
under the moderate T&D investment scenario each country reduces its 
losses by 33% [2]. Fig. 1 depicts the system boundary of what we are 
considering in these scenarios for the transmission and distribution of 
electricity generation. We exclude consideration of material extraction 
for and the building of transmission and distribution infrastructure. 

2.2. Emissions from transmission and distribution losses 

To date, the LCA literature has primarily focused on emissions from 
electricity generated (Egen, in Megatonnes, Mt) rather than from deliv
ered (Edel) [35,36]. Surana and Jordaan [2] attempted to remedy this 
gap by providing an in-depth analysis of the CO2eq emissions associated 
with T&D losses in 142 countries. We expand on this work by analyzing 
the air pollution emissions associated with T&D losses (Eloss, in Mt). 

Here we define the emissions associated with the transmission and 
distribution losses of electricity transportation, as seen in equation (4). 

Eloss =
∑

EFgUTD,gk (4) 

The emissions factor (EFg, in g/kWh) [37–45] represents the life 
cycle emissions associated with generating electricity from power plant 
g. ki is the adjustment factor for country I, and is used to estimate the 
proportion of fossil-fuel technologies (i.e. amount of supercritical and 
subcritical coal) using the reported efficiency in each country. For the 
full methods for the adjustment calculation, see methods of Sarah and 
Jordaan [2]. Humperdinck and Nierop [46] was used to update the ef
ficiencies for the select countries and the rest were sourced from the IEA 
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and Surana and Jordaan [2] [32]. To account for the range in effi
ciencies across reported emissions studies we perform a simple harmo
nization for combustion plants (i.e. oil, NG, coal, and biomass). The 
simple harmonization involves scaling the EF by the efficiency ratio (kg) 
in equation (5), where η is the reported efficiency for the EF in the 
literature, and j represents the different sources of information 

kg =

1
L

∑L

j=1
ηj

ηj
(5) 

Coal and natural gas-fired power plants can have two possible 
technologies. Across countries, the share of subcritical pulverized coal 
(SubCPC) and supercritical pulverized coal (SCPC) plants varies. We 
estimated the share of SubCPC and SCPC using the average reported 
higher heating value efficiency of coal plants within a country. Similar 
to coal we estimated the share of natural gas combined cycle and natural 
gas combustion turbine plants within each country. For the estimation of 
emissions factor for coal and natural gas-fired power plants see Surana 
and Jordaan [2]. The life cycle emissions factor data and sources can be 
found in Supplementary Tables S6–S8. The technologies included in this 
analysis can be found in Supplementary Table S9. We note that the 
emissions factors of air pollutants will depend on many factors (e.g., fuel 
types, sulfur content, and end of pipe technology), and it would be 
valuable to identify how country and regional specific emissions factors 
vary. 

The number of coal plant estimates was calculated using the EPA’s 
Greenhouse Gas Equivalencies calculator [47]. 

2.3. Uncertainty analysis 

There is uncertainty associated with each of the emissions factors. 
We apply triangular distributions and a Monte Carlo simulation to 
determine how uncertainty in the emissions factors changes the reported 
impacts at the country level similar to Surana and Jordaan [2]. The 
Monte Carlo simulation was run for 10,000 simulations and was 
implemented using a python model. For each country, we calculated 
EFgen from a triangular distribution with the minimum, median, and 
maximum values of life cycle emissions for each technology or fuel 

source i derived from the larger set of LCA studies. Also, for the mod
erate and highly efficient scenarios, the target losses were calculated 
from a normal distribution. The standard deviation was one-tenth of the 
target losses. This step was taken because one cannot be sure if T&D 
improvements will work as intended and matches the approach taken by 
Surana and Jordaan [2]. 

Tables S6–S10 in the supplementary information detail the as
sumptions used in our analysis [48–53]. 

2.4. USA electricity system 

The USA is made up of three interconnections (Western, ERCOT, and 
Eastern). Within these interconnections, reliability regions are respon
sible for ensuring the security of electricity supply from the generators to 
the electricity consumers in most of the USA bulk electric electricity 
systems, while the rest of the country is maintained by utility companies. 
We group the transmission and distribution losses in each state under the 
entity that controls the balancing of generation and demand across the 
transmission and distribution system, according to the geospatial file 
[54]. Some power plants are in areas that are not clearly defined to be in 
one reliability region and consequently are not included in the maps. 
Additionally, the EIA data used does not include the Southwest Power 
Pool as a reliability region. 

Within the USA analysis, we use the reported efficiency of the power 
plants in the EIA dataset. In some cases, the EIA data reported an effi
ciency higher than the theoretical maximum. In these cases, the average 
efficiency for that type of power plant determined from the life cycle 
analysis review was used for the power plant. 

2.5. Solar generation savings 

We estimate potential savings in solar generation investment using 
the PVWatts calculator from the National Renewable Energy Laboratory 
[55]. We calculate the estimated energy output for a standard 4 kW 
residential solar panel (see Supplementary Information Table S5). We 
scale the by the estimated level of compensatory generation reductions, 
using equation (6). 

Gs =
4(Ur)

Us
(6) 

Here Gs is the installed capacity of residential solar. Ur is the amount 
of displaced fossil-fuel generation, resulting from more efficient T&D 
systems. Us is the amount of electricity generation from solar that is not 
needed due to a more efficient T&D system. 

2.6. Initial deployment cost for CO2 reduction analysis 

We estimate the total cost of purchasing and installing smart meters 
(CSM, in $) to reduce energy usage. We assume that a smart meter can 
reduce overall residential energy demand (i.e., T&D losses, customer 
demand, and theft) by a percentage r. We assume that r is 6% [19]. First, 
we calculate the number of smart meters needed (MNEED). 

MNEED =(1+ pr)×ΔUNTL ×
MTOT

rUres
(7) 

Here, ΔUNTL (TWh) is the difference in energy lost from non- 
technical losses between reduction scenarios. MTOT is the total number 
of residential meters [21]. Ures (TWh) is the energy use of the residential 
sector in 2018 [56]. pr is the percent of energy reductions that are due to 
non-technical losses decreasing. From past installations of smart meters, 
we believe that the range of pr is between 2 and 40% [57]. 

Here, the total cost of implementing smart meters (CSM, in $) is found 
using the number of smart meters needed and the cost per smart meter 
(cSM, in $). The cost per smart meter is estimated by considering a range 
of values based on real implementations of smart meters [58]. 

Fig. 1. System boundary for the emissions analysis of the transmission and 
distribution of electricity. Based on Jordaan et al. [34]. 
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CSM = cSMMNEED (8) 

The initial deployment cost for CO2eq reductions of smart meters 
(ASM, in $) were calculated using equation (9). The U.S. Energy Infor
mation Administration gives the USA average CO2eq emissions per kWh 
(EkWh) in 2020 to be 0.85 pounds CO2eq per kWh [59]. 

ASM =
cSMMTOT

rEkWhUres
(9) 

Using the methodology to find the CO2eq avoided annually by a 2.42 
MW wind turbine with a capacity factor of 35% as given by the EPA 
[47], we find the CO2eq avoided annually (EA) by a 10.0 MW solar plant 
with a capacity factor (CF) of 24% [60], as shown in equation (10). The 
total capacity of solar in the United States in 2018 [60] and the number 
of solar plants in 2018 is used to find the average capacity of a solar plant 
(CP) (10.0 MW). The annual CO2eq avoided per MWh solar (Esol) is given 
by the Environmental Protection Agency to be 6.6*10−7 Mt CO2eq per 
solar plant annually [61]. We find the CO2eq avoided annually by a 10.0 
MW solar plant with a capacity factor of 24% to be 0.0141 Mt CO2eq per 
solar plant annually. 

EA,solar =(CF)(CP)Esol (10) 

We find the number of solar plants or wind turbines (N) with equa
tion (11). ΔEloss is the difference in CO2eq emissions (Mt) from non- 
technical losses between reduction scenarios (equation (11)). 

N =ΔElossEA (11) 

We find the price per solar plant or wind turbine, c, (equation (12)) 
using the construction price per kW [62] (X, in $) and the average ca
pacity [60] (Cp). 

c= χ(Cp) (12) 

Then, the total cost (C, in $) is computed in equation (13) [47]. 

C= cN (13)  

2.7. Limitations 

When we consider T&D at aggregate levels, we ignore the fact that 
T&D efficiency will vary by line due to the spatial scale of our model. 
Thus, it may take less effort to improve T&D losses than expected 
depending on the amount of variation between the lines. Additionally, 
we assume that reductions in T&D losses will impact the emissions from 
each power plant by the same proportion. This assumption is due to the 
data being aggregated at the annual level for either each country at the 
global level and power plant in the USA. Further studies could attempt to 
use timed demand data of each power plant to determine how peaker 
plants would be affected by reductions in compensatory generation. 

We do not have data for the losses of the NERC regions, so they are 
the area-weighted averages of the state losses. The data available for the 
NERC regions did not include the Southwest Power Pool and did include 
the Florida Reliability Coordinating Council; however, the geospatial 
file had the opposite and included an area of unclear jurisdiction. 
Additionally, we only have data for non-technical losses at the country 
level, so any state or NERC analyses of non-technical losses are just a 
percentage of the aggregate losses. 

When we use wind and solar generation to explore carbon mitigation 
options, we do not account for hourly generation variations. When 
considering smart meters as a carbon mitigation option, we assume from 
past installations of smart meters that electricity consumption associ
ated with both non-technical losses and smart meters decreases by 
2–40% [57]. 

We also assume that more accurate billing and reducing the use of 
faulty meters will not increase overall electricity system demand (i.e., 
sum of T&D losses, customer demand, theft). Additionally, the initial 
deployment cost estimates do not consider operational costs or savings 

from adopting the technologies. Further assumptions of the Monte Carlo 
methods can be found in Table S10. 

3. Results and discussion 

3.1. Analysis of multinational co-pollutant emissions 

Aggregate T&D losses vary widely across the globe with the most 
efficient system in Singapore at 2% and the most inefficient in Haiti at 
60% (Fig. 2). Non-technical T&D losses also vary greatly with the lowest 
losses at 0% in a few smaller countries (Bahrain, Iceland, Luxembourg, 
Singapore, and Trinidad and Tobago), and the greatest losses at 45% in 
Haiti (Fig. 2). The average air pollution emissions from the full life cycle 
of electricity delivered – including T&D losses – vary widely by country 
(Supplementary Figs. S1 and S2). Within the of the countries with the 25 
highest aggregate losses we find that there is a slight indication of how 
these losses translate to emissions. We found that 7 of the 25 most CO2eq 
intense countries, 9 of the 25 most NOx intense, 13 of the 25 most SOx 
intense, and 9 of the 25 most PM2.5 intense were also in the top 25 
countries for aggregate losses. 

Understanding the link between T&D efficiency and air pollution 
emissions is becoming increasingly urgent because, despite global 
commitments to decarbonize, several countries are actively building and 
operating coal plants to fuel near-term growth [25,63,64]. These power 
plants are detrimental to both climate and public health goals and are 
often slated in countries will high levels of T&D losses. For example, in 
2019 India generated 805 GWh of electricity from coal, which is ex
pected to increase to 1300 GWh by 2030 following the country’s 4.5% 
annual demand growth [65]. The associated PM2.5 emissions from coal 
generation in India result in an estimated 112,000 deaths annually [66]. 
While improving the T&D system will indirectly reduce coal generation, 
we also found that there are system-wide benefits to reducing T&D 
losses. We estimate that compensatory generation in India alone can be 
reduced by 209 TWh annually (13.6% of 2018 total generation) when 
moving from the BAU to a high ambition scenario (capping T&D losses 
at 5%). The avoided electricity generation, potentially including coal, 
and consequent health impacts would likely be substantial [33]. 

Fig. 3 exhibits the variability of reductions in average emissions from 
compensatory generation from aggregate losses for countries with 
moderate ambition (reducing aggregate losses by 33%) and high 
ambition (capping aggregate losses at 5%) efficiency upgrades. These 
scenarios provide a lower bound on the expected losses that result from 
enhancements in the T&D system without generation investments and 
reflect changes associated with reductions in compensatory generation. 
When considering decreases in emissions from the BAU to high ambition 
scenario for aggregate losses for all countries, global median emissions 
decrease by about 40% (Supplementary Table S1). Improving aggregate 
T&D efficiency in all countries to the moderate or high ambition T&D 
efficiency have similar effects even though the mean global losses of the 
two scenarios are 8.3% and 4.8% respectively. However, there are some 
differences. SOx emissions are predicted to experience slightly greater 
reductions for the high ambition scenario compared to BAU losses 
(44.1%), and PM2.5 emissions are expected to have slightly fewer re
ductions (37.6%). Consequently, improving to the high ambition sce
nario would improve SOx emissions slightly more and PM2.5 emissions 
slightly less than CO2eq and NOx emissions. 

As expected, we find T&D emissions savings are highly linked to 
generation types due to the relationship between compensatory gener
ation and emission intensities of generation types. Typically, we see that 
countries with high levels of CO2eq intensities (>670 g CO2eq/kWh) have 
above average coal plant capacity (greater than 20%) (17 out of the top 
30 CO2eq intense countries). Meanwhile, countries with high levels of 
SOx (≥0.8 g SOx/kWh), NOx (>0.6 g NOx/kWh), and PM2.5 (>0.135 g 
PM2.5/kWh) have greater than 15% oil plant capacity (27 out of top 30 
SOx intense countries, 21 out of top 30 NOx intense countries, and 23 out 
of top 30 PM2.5 intense countries). Some of the countries with high 
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emission intensities also had percentages of non-technical to aggregate 
losses in the top 25% (26.5%) (Supplementary Fig. S5). We found that 8 
of the 25 most CO2eq intense, 8 of the 25 most NOx intense, 9 of the 25 
most SOx intense, and 21 of the 25 most PM2.5 intense countries to fit in 
this category. See supporting information for maps and tabular results. 

For non-technical losses, we consider the BAU, moderate ambition 
(reducing non-technical losses by 33%), and high ambition (capping 
non-technical losses at 0.5%) scenarios. When transitioning from BAU 
for non-technical T&D efficiency to the high ambition scenario, median 
emission reductions range from 76% to 80%. Globally, nations could 
collectively reduce NOx emissions by 286 kt, SOx emissions by 375 kt, 
and PM2.5 emissions by 405 kt annually (see Supplementary Fig. S2). 

CO2eq emissions could be reduced by 210 Mt annually, which is equiv
alent to approximately 53 average coal-fired power plants in the United 
States. For the moderate ambition scenario, CO2eq emissions could be 
reduced by 91 Mt (around 23 coal plants), NOx by 121 kt, SOx by 156 kt, 
and PM2.5 by 179 kt each year. While national-level analyses present 
high-level guidance for country policies, we acknowledge there are 
subnational regulatory bodies, each of which makes decisions about 
infrastructure investments. 

3.2. High-resolution analysis at subnational scales 

We capture more granular results with subnational T&D 

Fig. 2. T&D losses by countries for 140 countries for the BAU, moderate, and high ambition scenarios. a. Aggregate Losses, b. Non-technical Losses. Note that the 
aggregate and non-technical scales are not the same. 
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inefficiencies, providing a framework to assist countries in identifying 
mitigation opportunities for greenhouse gases and the resulting co- 
benefits from reductions in compensatory generation. We use the USA 
to examine compensatory average emissions at the subnational scale, 
supported by high data availability multiple subnational regulatory 
bodies, and large data availability on smart meter deployment and 
granular power plant data. The aim of this subnational analysis is to 
provide greater insight into how both technology and policy can be 
better designed to reduce air pollution and climate impacts. The value of 
this work is in highlighting how policy strategies change at the federal 
regulatory, and state levels. 

Within the continental USA, aggregate T&D losses range from 2 to 
5% across the states with the mean at 4.5%. When investigating the 
variability in total air pollutants from aggregate losses under BAU, 
moderate ambition (each state reduces aggregate losses by 33%), and 
high ambition (aggregate T&D losses capped at 2%) for the contiguous 
US, we find T&D improvements could reduce median compensatory 
emissions by at least 31% for all pollutants (Supplementary Table S3). 
When moving from the BAU to the very efficient scenario, CO2eq and 
NOx emissions reduced by 57.5%, and SOx and PM2.5 emissions reduce 
by about 53.5%. In the moderate scenario, the US could reduce CO2eq 
emissions by 20 Mt/year, which is equivalent to 5 average US coal 
power plants running for a year. The other pollutants would reduce by 
approximately 0.3 Mt/year. Under the high ambition scenario, the US 
could reduce CO2eq emissions by 35 Mt/year (approximately 8.8 coal 
power plants) and the remaining pollutants by 0.5 Mt/year. Within the 
very efficient scenario, we see wide ranges for annual air pollution 
emissions (CO2eq: 24.9–62.3 Mt, NOx: 13–121 kt, SOx: 5–133 kt, PM2.5: 
3–266 kt), highlighting the impact of generation variability across 
states, thus reinforcing the need for more spatially resolved analyses. 

Non-technical T&D losses range from 0.5% to 1.2% across the USA 
with the mean at 1.0%. When we consider the variability of air pollut
ants from non-technical losses under BAU, moderate ambition (each 
state reduces non-technical losses by 33%), and high ambition (non- 
technical T&D losses capped at 0.5%) for the contiguous USA, we find 
T&D improvements could reduce median non-technical compensatory 

emissions by at least 33% for all pollutants (Supplementary Table S4). 
From BAU to the very efficient scenario, CO2eq and NOx emissions 
reduced by 53.3%, and SOx and PM2.5 emissions reduce by about 49.5%. 
We see in the moderate scenario that the USA could reduce CO2eq 
emissions by 4.6 Mt/year, which is equivalent to around 1.2 average US 
coal power plants annually. The other pollutants would reduce by 
approximately 7 kt/year. In the high ambition scenario, the US could 
reduce CO2eq emissions by 7.4 Mt/year (1.9 coal power plants) and the 
remaining pollutants by approximately 10 kt/year. 

Internalizing T&D emission externalities will impact market-level 
regulations and ultimately the consumer residential electricity prices. 
At the sub-national level, we first focus on the North American Electric 
Reliability Corporation (NERC) which is responsible for developing 
reliability rules governing the operation of the bulk power electric 
transmission systems. NERC develops and improves the reliability 
standards, enforces compliance for those standards, and distributes 
penalties for regulation violations. The NERC regions are a common sub- 
national level of aggregation for the United States when considering air 
pollution emissions from energy [67]. 

As seen in Table 1, the ReliabilityFirst Corporation (RFC), Western 
Electricity Coordinating Council (WECC), Midwest Reliability Organi
zation (MRO), Northeast Power Coordinating Council (NPCC), and 
Southeastern Electric Reliability Council (SERC) have aggregate losses 
of around 4.78%, and Texas Reliability Entity (TRE) has aggregate losses 
around 5.09%. The losses of the NERC regions are area-weighted 

Fig. 3. Variability of annual air pollution emissions from aggregate T&D losses in the world including 142 countries from a Monte Carlo analysis with 10,000 trials. 
Box plots represent the 25th percentile, median, and 75th percentile. a. CO2eq emissions, b. NOx emissions, c. SOx emissions, d. PM2.5 emissions. 

Table 1 
Aggregate losses of NERC Regions.  

NERC 
Region 

Business-as-Usual 
(BAU) Losses 

Moderate Ambition 
Losses (reduced by 33%) 

High Ambition 
Losses (capped) 

MRO 4.76% 3.19% 2.00% 
NPCC 4.77% 3.19% 2.00% 
RFC 4.72% 3.16% 2.00% 
SERC 4.87% 3.26% 2.00% 
TRE 5.06% 3.39% 2.00% 
WECC 4.76% 3.19% 2.00%  
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averages of the states’ losses. 
We find that regions with the most emissions on average from 

compensatory generation from aggregate losses (Fig. 4) and greatest 
losses (Table 1) differ. While the RFC has the lowest losses in the BAU 
scenario, it still produces high magnitudes of emissions. On the other 
hand, the TRE has the highest losses but produces lower magnitudes of 
emissions. This abnormality is likely due to the small region that TRE 
covers compared to other regions like the WECC. If the high ambition 
scenario is achieved, all regions would reduce their emissions below 15 
Mt CO2eq, 5 kt SOx, and 2.8 kt PM2.5. In the high ambition scenario, only 
the SERC for NOx emissions remains in the class of high emission mag
nitudes (>21 kt). Within the NERC regions, state legislatures guide en
ergy policy targets, which presents a need for understanding how state- 
level T&D efficiency targets will impact air pollution emissions. 

In the USA, states often guide renewable energy targets and can 
provide incentives for investments to reduce air pollution emissions. 
Within the MRO region, North Dakota is the state with the highest 
emissions by intensity and magnitude (Supplementary Figs. S13 and 
S14). Thus, while a NERC level policy could target the MRO, similar 
emissions savings could be achieved through a state policy targeting 
North Dakota. Similarly, when we view the SERC region if there was a 
state policy then to secure the bulk of the savings policies should target 
Georgia, North Carolina, and Florida. Although TRE has low levels of 
emissions associated with compensatory generation, it presents a unique 
case due to it primarily encompassing one state and subsequentially 
being an islanded electricity system within the USA. 

In comparing aggregate T&D losses (Fig. 5) to the subsequent 
emissions from these losses (Supplementary Fig. S14), we find that the 
states with the greatest magnitude of compensatory generation emis
sions do not always correlate to the states with the greatest aggregate 
T&D losses. In general, of the states with BAU losses above 5% (25 
states), 12 states of those 25 have above-median BAU CO2eq emissions 
(0.73 Mt, given all 50 states), 11 states for NOx (0.11 kt), 8 states for SOx 
(0.69 kt), and 11 states for PM2.5 (0.16 kt). For example, North Dakota 
has low BAU aggregate losses (2.52%), but higher emissions in all sce
narios. On the other hand, Texas has high BAU aggregate losses (5.06%), 
and higher emissions for all scenarios. This difference can likely be 
attributed to the generation profiles of these states. North Dakota pri
marily relies on coal, which heavily pollutes, and Texas strongly de
pends on natural gas and other fossil-fuels. 

Additionally, the states that get little of their electricity from fossil- 
fuels tend to be in the lowest emission class for all pollutants and sce
narios. We acknowledge that there is an inherent relationship between 
the emission intensity of generation types and the potential benefits of 
improving the T&D system because of the potential emissions shifts. We 
notice that states with high levels of CO2eq (>490 g CO2eq/kWh), SOx 
(>0.18 g SOx/kWh), and NOx (>0.38 g NOx/kWh) emissions per unit of 
electricity delivered have above average (>10%) coal plant capacity (7 
out of top 10 CO2eq intense states, 9 out of top 10 SOx intense states, 8 
out of top 10 NOx intense states). Additionally, all the top ten states with 
the highest levels of PM2.5 emissions per unit of electricity delivered 
either have >10% coal capacity (5 states) or >40% natural gas capacity 
(5 states). We find that Texas, with a relatively average efficiency for 
T&D systems within the USA (5.1%), is a high producer of air pollutants 
because 68% of its electricity is from fossil-fuels. Texas aggregate T&D 
inefficiencies correspond to 13.7% CO2eq, 17.1% SOx, 13.5% NOx, 
20.2% PM2.5 of emissions due to compensatory generation in the USA. 
There are other states with more of their electricity generated from 
fossil-fuels; however, they either do not generate as much electricity as 
Texas, or they have more efficient T&D systems. Texas’ issues like the 
rolling blackouts induced by the deep freeze in 2021 are caused by 
Texas’ system being in islanding mode [68]. Due to its island mode, the 
responsibility for spending on the physical infrastructure can fall at the 
NERC, the Electricity Reliability Council of Texas, or state levels. 

Even under the high ambition scenario for aggregate losses, Texas is 
still the largest producer of all air pollutants, based on median emissions 
estimates. The range in emissions estimates that result from compen
satory generation varies within the top five of the most populated 
states–California, Texas, Florida, New York, and Pennsylvania (Supple
mentary Fig. S15)–signifying the importance of conducting analyses at 
more granular scales for solutions. If Texas moves from BAU (5.1% 
aggregate losses) to the high ambition scenario, compensatory genera
tion would decrease by 11.5 TWh and median emissions for all pollut
ants by 60%. In a high renewable energy investment scenario, the 
compensatory generation savings would correspond to 7.7 GW of resi
dential solar investments. The top five most populated states have 
aggregate T&D losses above 5.1% except Pennsylvania, whose losses are 
3.7%. Yet, its median emissions are not always the lowest due to the 
state’s heavy reliance on coal (6.1% of generation) and natural gas 
(42.0% of generation). While improving the T&D system will indirectly 

Fig. 4. Emissions due to aggregate T&D losses by NERC Region, a. CO2eq emissions, b. NOx emissions, c. SOx emissions, d. PM2.5 emissions.  
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reduce coal or natural gas generation, we also found that there are 
system-level benefits to reducing T&D losses. If Pennsylvania followed 
the high ambition scenario, this change would reduce compensatory 
generation needs by 3.1 TWh and reduce Pennsylvania’s BAU annual 
emissions by 46%. This change corresponds to a reduced need for 2.6 
GW of residential solar investments. Thus, it is important to recognize 
that while improving T&D losses will not completely compensate for 
relying more on fossil-fuels, it can reduce BAU emissions and the number 
of resources needed in a fully renewable electric system. 

3.3. Initial deployment cost for CO2 reduction comparison 

In the USA, non-technical losses will primarily be reduced through 
the deployment of more effective billing systems (i.e., smart meters). We 
considered the initial deployment and total costs of three different car
bon mitigation strategies: installing smart meters to support the existing 
grid, constructing more wind turbines, and constructing solar farms. 
While multiple green technologies can be used to reduce emissions from 
the electric grid, we focus on solar and wind because these technologies 
are the most common renewable technologies planned to be constructed 
in 2022 [69]. While solar and wind is rapidly expanding across the 
globe, the cost of renewable energy deployments is uncertain [70,71]. 
Hence, we include smart meters in our analysis which are often a cheap, 
efficient, and a widely deployable technology [58]. Smart meters reduce 
non-technical losses by providing more accurate billing, reducing the 
use of faulty meters, and preventing electricity theft [18,72]. We assume 
that between 2 and 40% of energy reductions that are due to smart 

meters are reductions to non-technical losses according to past in
stallations of smart meters [57]. We also assume that more accurate 
billing and reducing the use of faulty meters will not increase demand. 
To quantify improvements by smart meters, we assume that smart me
ters can reduce household electricity consumption by 6% [19]. We 
consider two scenarios for smart meter deployment when considering 
the total costs: moderate ambition (reducing non-technical losses by 
33%) and high ambition (capping non-technical losses at 0.5%). 

One way to compare the viability of carbon reduction options is to 
consider the initial deployment cost for CO2eq reduction of each option 
in the United States. These values are different than the abatement costs 
reported by the IEA ($27.10/t CO2eq for wind power and $32.98/t CO2eq 
for solar PV) and other sources because typically operational losses and 
savings from adopting the technologies are included in the analysis [73]. 
We note that only considering the initial deployment or construction 
costs is relevant to implementation of the Infrastructure Investment and 
Jobs Act (2021) and the Inflation Reduction Act (2022) because it will 
generally fund construction of new energy technologies rather than the 
operations costs and will not receive benefits from the savings of the new 
technologies [74,75]. 

Our analysis of the initial deployment cost for CO2eq reductions of 
installing more smart meters, wind turbines, and solar plants. Our 
analysis considers a 2.42 MW wind turbine operating with a capacity 
factor of 35% and a 10.05 MW solar plant with a capacity factor of 24%, 
which are meant to be average in the United States. We also focus on the 
upper bound of our estimate to illustrate how smart meters can reduce 
non-technical losses. Reducing non-technical losses through wind 

Fig. 5. T&D losses by state for the BAU, moderate, and high ambition scenarios. a. Aggregate Losses, b. Non-technical Losses. Note that the aggregate and non- 
technical losses scales do not overlap. 
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turbines (2.5–10 billion) appears to be the most viable solution, when 
solely looking at the initial deployment (or construction) costs. Smart 
meter median initial deployment (or construction) costs range from 5 – 
14.5 billion, and solar costs range from 5 to 23 billion. As a note, this 
methodology is an upper bound and is different from the abatement cost 
methodology. It does not consider operational cost changes between 
wind, solar, and fossil fuel generators. 

In 2019, there were approximately 22 million traditional residential 
and 41.2 automated meter reading meters in the United States [21]. As 
of 2019, 87.5% of the total number of meters in the USA were in the 
residential sector, while another 12.0% of total meters were in the 
commercial sector [21]. To achieve the CO2eq reductions of the mod
erate ambition scenario (reducing by 12.0 TWh or 4.6 Mt CO2eq, see 
Table S4), the nation would need to deploy approximately 25.7 million 
advanced metering infrastructure units (smart meters) at a median 
deployment cost of $7.07 billion. 

For the high ambition scenario (reducing by 19.3 TWh or 7.5 Mt 
CO2eq), the nation would need to deploy approximately 41.3 million 
smart meters at a median cost of $11.4 billion. To achieve deployment of 
41.3 million, there would need to be a total replacement of the 22.0 
million traditional residential meters, but at least 19.3 million smart 
meters would still be needed. A combination of replacing meters in the 
commercial and industrial sectors, and potentially other technology 
deployments (e.g., renewable generation, efficient appliances) could be 
used to achieve the remaining carbon reductions. In the moderate 
ambition scenario, wind turbines (median cost of $3.02 billion) and 
solar plants ($5.49 billion) are less costly compared to smart meters. For 
the high ambition scenario, we estimate that smart meters are less costly 
compared to solar plants ($15.6 billion) but not wind turbines ($8.54 
billion). 

These cost estimates do not consider operational costs or savings 
from adopting the technologies, which tell a different story than looking 
at deployment costs alone. In recent years, there have been declines in 
the levelized cost of energy in solar and wind. Reported values of 
abatement costs have been found to range from -$7 and $70 per tCO2eq 
for wind and from $41 per tCO2eq to over $100 per tCO2eq for solar 
technologies, depending on assumptions [76]. Despite the relatively 
high initial construction costs, it is well known that the operational 
revenues from wind make it competitive on the market since there are 
no fuel costs. This fact is supported by the levelized cost of electricity 
(LCOE) for onshore wind being $37.80/MWh, and standalone solar 
being $36.09/MWh, compared to natural gas combined cycle being 
$37.05/MWh [77]. While installing smart meters could be a viable so
lution in the United States for reducing non-technical losses, their 
viability in a global context may be stronger than in the USA. In some 
parts of the world with governance challenges or a “culture of corrup
tion,” certain groups can expect to not pay for their electricity and get 
away with it [33]. This problem results in fraud, stealing electricity, 
billing irregularities, and unpaid bills, which together contribute to a 
large share of a country’s non-technical losses [33]. Smart meters are an 
effective strategy in reducing theft because it introduces automatic 
billing payments and provides more accurate and transparent billing. 
While many countries like India have passed legislation to expand the 
legal understanding and repercussions of electricity theft [18], these 
countries still have problems with electricity theft [33,78]. Thus, 
installing smart meters can reduce electricity demand and reduce losses 
that occur due to electricity theft. 

There is a large amount of variability for the smart meter estimate, 
which may result from cost differences between manufacturers or pur
chasing smart meters in bulk [58]. Another point to keep in mind is that 
the performance of solar plants and wind turbines is dependent on the 
weather. Thus, before implementation, a high-resolution analysis of 
resource constraints and smart meter costs in the area should be con
ducted. We note that countries are using a combination of approaches 
(smart meters, wind, and solar deployment) as part of their decarbon
ization strategies. Smart meters might be cheaper in some cases, and the 

right combination of smart meters, wind, and solar should be based on 
spatially resolved analysis. While renewable energy has other benefits 
beyond reducing carbon emissions, even in a high renewable future, 
smart meters can be beneficial because they will reduce the electricity 
demand, leading to fewer investment needs in generation capacity. 

4. Conclusions and policy implications 

Analyses that clarify the link between grid inefficiencies and air 
pollution are necessary to determine not only the mitigation potential 
but also formulate a holistic strategy for reducing emissions. Through 
quantifying the air pollution emissions associated with T&D losses in 
142 countries, we determine the mitigation potential, and we leverage 
an in-depth analysis for the USA to inform how to reach this potential. 
Our analysis presents a first-of-a-kind approach that emphasizes the 
need for high spatial resolution, granular analyses and realizes the co- 
benefits of reducing air pollution emissions and resolving grid in
efficiencies. Decisions to invest in infrastructure are made at multiple 
regulatory levels, including scales that country-level analyses are inca
pable of capturing. Reducing harmful pollutants from grid inefficiencies 
needs to capture the emissions and energy savings opportunities from 
regulations and investment strategies from the scale of countries down 
to each facility. 

For aggregate losses, our multinational and subnational analyses 
tested moderate ambition (reducing regional losses by 33%) and high 
ambition (reducing each country to 5% T&D losses, or state to 2% T&D 
losses) scenarios at multiple scales. Our country-level analyses of non- 
technical losses also considered moderate ambition (reducing regional 
losses by 33%) and high ambition (reducing each country to 0.5% T&D 
losses) scenarios. These scenarios provide a lower bound on the expected 
number of losses that can result from enhancements in the T&D system 
without generation investments. 

Our work has three implications for policymakers involved in 
decarbonizing the electricity sector. First, our results point to the need 
for systems-level examinations of air pollution emissions and mitigation 
at national and sub-national scales. Only a few countries consider T&D 
in their 2015 NDCs [2], meaning that countries are not capturing the full 
range of grid-scale solutions. 

Second, as the electricity system is going through major transitions to 
reduce emissions, multiple co-benefits arise from viewing the whole 
system at multiple scales. Grid modernization initiatives that reduce 
T&D losses can reduce the emissions impact of the top emitters within a 
country while lessening the resource needs for investment in renewable 
energy technologies as seen in our analyses of Texas and Pennsylvania. 
Future work could consider how electricity demand would change as 
technical improvements to the T&D system are made, and the trade-offs 
between other environmental considerations [5,79] (e.g., water con
sumption and land use [80,81]). Other work could further investigate 
the health benefits of the reductions in air pollutants from T&D losses, 
consider the equity of the distribution of these benefits [82], and look 
deeper into emerging economies [83]. 

Third, we have highlighted that public policies at varying scales can 
each benefit from reducing T&D losses. These benefits stem from the 
linkages between T&D infrastructure, air pollution emissions, and ma
terial requirements needed in the low-carbon energy transition [14]. In 
the USA, T&D loss reductions would come from reducing distances be
tween suppliers and consumers (i.e. decentralized generation), technical 
losses (e.g., improving quality of lines or transformers), and 
non-technical losses (e.g., enhancing billing security and restructuring 
electricity system regulation). Even highly efficient electricity systems 
(<6% T&D losses) can have non-technical losses that range from 1% to 
2% [33]. Smart meters reduce overall electricity system demand (i.e., 
the sum of T&D losses, customer demand, poor billing practices, and 
theft), due to better bill accounting. This change in demand in turn 
decreases the amount of investment needed in new energy sources and 
non-technical losses. We found that smart meters are less cost-effective 
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than wind turbines when reducing carbon emissions from non-technical 
losses, due to wind turbines being at the community scale. However, 
smart meters are more cost-effective compared to solar plants in the high 
ambition scenario. 

An additional consideration is that the benefits from wind and solar 
are resource-dependent, while smart meters provide benefits by making 
the billing process more reliable. In 2018, the USA had reached a 56% 
adoption rate of smart meters, and by 2020 the USA had reached 
approximately 75% adoption [20,21]. Thus, replacing the final 25% is 
an important step towards reducing emissions from non-technical losses. 
Future studies should investigate the T&D emissions mitigation poten
tial within a developing country context and distinguish between tech
nical and non-technical losses. Additional work could also consider how 
alternative energy sources, besides wind and solar, compare to deploy
ing smart meters. 

In conclusion, our approach can not only be used to quantify the 
regional benefits of reducing overall grid inefficiencies but also to esti
mate the costs of technological changes to reduce grid inefficiencies. 
This work highlights the impetus for greater data availability and the 
need for higher resolution energy transition analyses at multiple regu
latory scales due to multiple stakeholder groups operating in these areas 
[84,82]. While this work focused on the USA, other high-efficiency 
countries have multiple sub-national electricity regulatory structures. 
Reducing T&D losses at multiple levels, not only reduces compensatory 
emissions but also may reduce the investments need in a low-carbon 
energy transition. Considering the impacts of T&D losses is vital in a 
transitioning electricity system in both the BAU system for T&D effi
ciency and in a low carbon or carbon-neutral future. 
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