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ARTICLE INFO ABSTRACT

Handling Editor: G Chicco Inefficiencies in the transmission and distribution (T&D) of electricity between suppliers and customers can lead

to higher compensatory electricity generation and unanticipated air pollution. Using both life cycle assessments

Keywords: and uncertainty analyses, we estimate the compensatory air pollutants — CO2eq, SOx, NOy, and PMy 5 — associated

Life C}’de_e_m‘ssmns with aggregate and non-technical T&D losses at national and subnational scales. Our global analysis estimates

:?St?l}]ﬂ)lhty that 1 Gigatonne of CO2¢q and 1.3 Megatonnes (Mt) NOy, 1.6 Mt SOy, and 2 Mt PMy 5 are associated with annual
ectricity

aggregate T&D losses. We also find that approximately 274 Mt CO2q, 367 kilotonnes (kt) NOy, 486 kt SOy, and
535 kt PM, 5 are emitted due to non-technical T&D losses. Our subnational analysis in the United States dem-
onstrates the variation of emissions savings across regulatory jurisdictions. We present an initial deployment cost
analysis for CO2¢q reduction which compares deploying smart meters (i.e., reducing non-technical T&D losses) to
renewable energy generation expansion. Investments in T&D infrastructure are beneficial in a completely dec-
arbonized system because improvements in the T&D grid can make investments in renewable energy more cost-
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Energy transition

effective.

1. Introduction

Globally, 10.2 million premature annual deaths, can be attributed to
fossil-fuel generation and associated PM3 5 emissions [1], a large part of
which comes from the electricity sector. There are three main oppor-
tunities for emission-saving interventions in the electricity system (i.e.,
generation, delivery, and consumption), but one of these components
(delivery) has often been overlooked leaving potential air pollution re-
ductions on the table. In their submitted Nationally Determined Con-
tributions (NDCs) in 2015, 110 countries mentioned renewable energy
targets, while only 32 countries mentioned grid efficiency in their
climate mitigation strategies [2]. Our analysis unveils the link between
grid inefficiencies and air pollution at global, national, and sub-national
scales. In 2018, energy-related CO2eq emissions reached a historic high
of 33.1 Gigatonnes of carbon dioxide (Gt COyeq) globally [3]. To
improve environmental sustainability and decarbonize the electric grid,
countries are increasingly focused on shifting generation infrastructure

[4-8]. Several analyses evaluate the emissions resulting from current
fossil-fuel plants living beyond their historical lifetimes [9-12]. How-
ever, policymakers and analysts place little focus on how these emissions
are tied to inefficiencies in the delivery of electricity, i.e., in the losses
incurred during the transmission and distribution (T&D) of electricity.
Reducing T&D losses can be an important climate abatement strategy
that will lead to less generation infrastructure investments, reduce
fossil-fuel operational needs, and leverage energy efficiency [2,13].
T&D infrastructure is the primary means of delivering electricity
from the power plant to the end-user. Here we define T&D losses as the
percentage of electricity that is lost between electricity generation at the
power plant, and the final amount delivered to the consumer. T&D
losses mean that electric utilities must generate more than 1 kW-hour
(kWh) to deliver 1 kWh to the consumer. We refer to compensatory
generation as that required to make up for T&D losses. These losses
primarily result from T&D inefficiencies that can be technical (e.g.,
physical constraints and heat loss), or non-technical (e.g., theft, fraud,
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defective meters, or billing issues). We estimate that, globally, 2100
TWh of compensatory generation per year is associated with T&D losses
(based on 2017 data). In 2017, aggregate losses — technical and non-
technical combined - were approximately 58% in Haiti, 22% in
Ghana, 18% in India, 5% in the USA, and 1% in Singapore [2].

Meanwhile, non-technical losses can make up to 77% of the aggre-
gate losses. For example, non-technical losses were approximately 45%
in Haiti, 11% in Ghana, 6% in India, and 1.3% in the USA [2]. These high
delivery losses combined with the fact that over 65 countries source 60%
or more of their electricity from fossil-fuels (Supplementary Information
Fig. 52), leads to 1100 Mt COg¢q, 0.93 Mt SOy, 0.91 Mt NO,, 0.19 Mt
PM; 5 annually. In addition to the benefits of reducing co-pollutants,
improving T&D efficiency reinforces benefits for renewable energy,
which often require higher initial generation investments than their
fossil-fuel counterparts [14]. As nations retire fossil-fuel generators
[15], grid efficiency will reduce renewable and nonrenewable invest-
ment needs and ensure that more low carbon energy reaches its intended
consumers [16,17].

T&D efficiency improvements can result from reducing technical
losses directly or from changes in demand through reducing non-
technical losses [2]. Technical losses can be reduced by deploying
high-voltage transmission lines, while non-technical loss reductions can
occur through reduction in electricity theft, deployment of smart meters,
and greater accountability in bill paying. Some studies suggest that
reducing non-technical losses could reduce the associated electricity
consumption by 33%-50% [2,18]. In the USA, it is estimated that smart
meters can reduce overall electricity consumption by 6% [19]. In 2018
in the USA, there was 56% adoption of smart meters, and by 2020, there
was around 75% adoption [20,21]. The resulting reduction in air
pollution necessitates granular sub-national analyses that identify hot-
spots of high T&D losses and grid inefficiencies that are large contrib-
utors to compensatory generation and associated air pollution.

We address these questions on T&D inefficiencies with three key
contributions. Our first contribution is to quantify air pollution emis-
sions associated with T&D losses in 142 countries and determine how
much they can be reduced. A previous study determined that 1 Gt COg¢q
per year are released due to T&D losses and approximately half can be
mitigated [2], but the co-benefits of reduced air pollution (SOx, NOy, or
PMys5 emissions) were not estimated [2,22-24]. Considering
co-pollutants is vital due to their linkages with premature deaths and
births [1,25-27]. Emissions estimates using life cycle assessments
(LCAs) often concentrate on the functional unit of electricity generated
at the source [28-31]. This choice means that the resulting emissions
factor misses the compensatory generation that results from T&D losses
in the delivery of electricity. Our analysis first expands upon the more
common functional unit of 1 kilowatt hour (kWh) generated to include
grid inefficiencies by using one kWh delivered.

Second, we argue that examining sub-national scales is crucial for
locating opportunities to reduce grid inefficiencies and the related
harmful emissions. Other studies do not examine emissions at sub-
national scales [2,22-24]. We investigate the level of emissions that
could be avoided by reducing aggregate and non-technical T&D losses
and associated compensatory generation, within different electric reg-
ulatory structures at multinational and two subnational scales of the
USA, under three scenarios: business-as-usual (BAU) for T&D efficiency,
moderate ambition T&D efficiency, and high ambition T&D efficiency.
Third, we estimate the initial deployment cost associated with reducing
non-technical losses through implementing smart meters, and we
compare this value to the initial deployment cost for renewable energy
investments (i.e., wind turbines and solar panel deployment). This
estimation provides a better understanding of the viability of reducing
air pollution emissions from non-technical losses.
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2. Methods
2.1. Transmission and distribution losses

In our analysis, we calculate the total T&D losses (np) associated
with each generation source for a given region, by taking the reported
transmission and distribution losses (Utpjess, in TWh) in the country and
dividing this number by the total generation within the country (equa-
tion (1)). The generation associated with T&D losses (Urp,g, in TWh)
from power plant g, is determined by multiplying the percentage of the
reported T&D losses in the region (ntp) by the energy contribution (Ugen,
¢ in TWh) from that electricity source (equation (2)). In our analyses,
the reported T&D losses in the region can be for aggregate losses or non-
technical losses.

U’l'l)loss
np =5 (€)]
Z Ugeng
2eG
Up = ZUTD‘g = ZnTDUgen.g 2
geG geG

The electricity generation for each region (Ugen, g, in TWh) is sourced
from the IEA’s Electricity Information Statistics [32]. Aggregate T&D
losses (n7p) vary across countries, with the lowest at 1.2% in Singapore
and the highest at 60% in Haiti. Although there is also a wide variation
of losses within a region, for the global analysis we assume uniform T&D
losses for individual countries due to a lack of more detailed data for
each of the 142 countries. We define region-level aggregate losses as the
sum of technical losses (ny;) and non-technical losses (nyry), as seen in
equation (3).

nrp =Ny, + NNt 3)

Within relatively efficient electricity systems the non-technical losses
resulting from theft can be 1-2% [33]. To estimate loss reduction in
T&D, we developed two cases related to (1) moderate- and (2)
high-efficiency investments. The upper bound of T&D losses corre-
sponds to BAU losses. The lower bound on T&D efficiency represents a
high ambition for T&D investments and corresponds to the maximum
calculable reduction in aggregate T&D losses, based on the 2% T&D
losses observed in Singapore, and some parts of the USA. We assume
under the moderate T&D investment scenario each country reduces its
losses by 33% [2]. Fig. 1 depicts the system boundary of what we are
considering in these scenarios for the transmission and distribution of
electricity generation. We exclude consideration of material extraction
for and the building of transmission and distribution infrastructure.

2.2. Emissions from transmission and distribution losses

To date, the LCA literature has primarily focused on emissions from
electricity generated (Ege,, in Megatonnes, Mt) rather than from deliv-
ered (Ege) [35,36]. Surana and Jordaan [2] attempted to remedy this
gap by providing an in-depth analysis of the CO2¢q emissions associated
with T&D losses in 142 countries. We expand on this work by analyzing
the air pollution emissions associated with T&D losses (Ejqss, in Mt).

Here we define the emissions associated with the transmission and
distribution losses of electricity transportation, as seen in equation (4).

Eiw= Y EF Uk )

The emissions factor (EFg, in g/kWh) [37-45] represents the life
cycle emissions associated with generating electricity from power plant
g. ki is the adjustment factor for country I, and is used to estimate the
proportion of fossil-fuel technologies (i.e. amount of supercritical and
subcritical coal) using the reported efficiency in each country. For the
full methods for the adjustment calculation, see methods of Sarah and
Jordaan [2]. Humperdinck and Nierop [46] was used to update the ef-
ficiencies for the select countries and the rest were sourced from the IEA
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Fig. 1. System boundary for the emissions analysis of the transmission and
distribution of electricity. Based on Jordaan et al. [34].

and Surana and Jordaan [2] [32]. To account for the range in effi-
ciencies across reported emissions studies we perform a simple harmo-
nization for combustion plants (i.e. oil, NG, coal, and biomass). The
simple harmonization involves scaling the EF by the efficiency ratio (kg)
in equation (5), where n is the reported efficiency for the EF in the
literature, and j represents the different sources of information

L
21

ke =2 5)
8 ’ij

1
L

Coal and natural gas-fired power plants can have two possible
technologies. Across countries, the share of subcritical pulverized coal
(SubCPC) and supercritical pulverized coal (SCPC) plants varies. We
estimated the share of SubCPC and SCPC using the average reported
higher heating value efficiency of coal plants within a country. Similar
to coal we estimated the share of natural gas combined cycle and natural
gas combustion turbine plants within each country. For the estimation of
emissions factor for coal and natural gas-fired power plants see Surana
and Jordaan [2]. The life cycle emissions factor data and sources can be
found in Supplementary Tables S6-S8. The technologies included in this
analysis can be found in Supplementary Table S9. We note that the
emissions factors of air pollutants will depend on many factors (e.g., fuel
types, sulfur content, and end of pipe technology), and it would be
valuable to identify how country and regional specific emissions factors
vary.

The number of coal plant estimates was calculated using the EPA’s
Greenhouse Gas Equivalencies calculator [47].

2.3. Uncertainty analysis

There is uncertainty associated with each of the emissions factors.
We apply triangular distributions and a Monte Carlo simulation to
determine how uncertainty in the emissions factors changes the reported
impacts at the country level similar to Surana and Jordaan [2]. The
Monte Carlo simulation was run for 10,000 simulations and was
implemented using a python model. For each country, we calculated
EFge, from a triangular distribution with the minimum, median, and
maximum values of life cycle emissions for each technology or fuel
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source i derived from the larger set of LCA studies. Also, for the mod-
erate and highly efficient scenarios, the target losses were calculated
from a normal distribution. The standard deviation was one-tenth of the
target losses. This step was taken because one cannot be sure if T&D
improvements will work as intended and matches the approach taken by
Surana and Jordaan [2].

Tables S6-S10 in the supplementary information detail the as-
sumptions used in our analysis [48-53].

2.4. USA electricity system

The USA is made up of three interconnections (Western, ERCOT, and
Eastern). Within these interconnections, reliability regions are respon-
sible for ensuring the security of electricity supply from the generators to
the electricity consumers in most of the USA bulk electric electricity
systems, while the rest of the country is maintained by utility companies.
We group the transmission and distribution losses in each state under the
entity that controls the balancing of generation and demand across the
transmission and distribution system, according to the geospatial file
[54]. Some power plants are in areas that are not clearly defined to be in
one reliability region and consequently are not included in the maps.
Additionally, the EIA data used does not include the Southwest Power
Pool as a reliability region.

Within the USA analysis, we use the reported efficiency of the power
plants in the EIA dataset. In some cases, the EIA data reported an effi-
ciency higher than the theoretical maximum. In these cases, the average
efficiency for that type of power plant determined from the life cycle
analysis review was used for the power plant.

2.5. Solar generation savings

We estimate potential savings in solar generation investment using
the PVWatts calculator from the National Renewable Energy Laboratory
[55]. We calculate the estimated energy output for a standard 4 kW
residential solar panel (see Supplementary Information Table S5). We
scale the by the estimated level of compensatory generation reductions,
using equation (6).

4(U))

“="7 ©®

Here G; is the installed capacity of residential solar. U, is the amount
of displaced fossil-fuel generation, resulting from more efficient T&D
systems. Uy is the amount of electricity generation from solar that is not
needed due to a more efficient T&D system.

2.6. Initial deployment cost for COz reduction analysis

We estimate the total cost of purchasing and installing smart meters
(Csm, in $) to reduce energy usage. We assume that a smart meter can
reduce overall residential energy demand (i.e., T&D losses, customer
demand, and theft) by a percentage r. We assume that r is 6% [19]. First,
we calculate the number of smart meters needed (Mnggp)-

Mror

Mygep = (14 p,) xAUyp X )

Here, AUyt (TWh) is the difference in energy lost from non-
technical losses between reduction scenarios. Mot is the total number
of residential meters [21]. Ues (TWh) is the energy use of the residential
sector in 2018 [56]. p, is the percent of energy reductions that are due to
non-technical losses decreasing. From past installations of smart meters,
we believe that the range of p; is between 2 and 40% [57].

Here, the total cost of implementing smart meters (Cgy, in $) is found
using the number of smart meters needed and the cost per smart meter
(csm, in $). The cost per smart meter is estimated by considering a range
of values based on real implementations of smart meters [58].
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Csy = csuMygep (8)

The initial deployment cost for COgeq reductions of smart meters
(Agm, in $) were calculated using equation (9). The U.S. Energy Infor-
mation Administration gives the USA average CO2¢q emissions per kWh
(Exwn) in 2020 to be 0.85 pounds CO2¢q per kWh [59].

oM
_ CsmMror ©)

M=
rEwn Ures

Using the methodology to find the CO2¢q avoided annually by a 2.42
MW wind turbine with a capacity factor of 35% as given by the EPA
[471, we find the CO2¢q avoided annually (Es) by a 10.0 MW solar plant
with a capacity factor (CF) of 24% [60], as shown in equation (10). The
total capacity of solar in the United States in 2018 [60] and the number
of solar plants in 2018 is used to find the average capacity of a solar plant
(CP) (10.0 MW). The annual CO2¢q avoided per MWh solar (Eso)) is given
by the Environmental Protection Agency to be 6.61077 Mt CO2eq per
solar plant annually [61]. We find the CO2¢q avoided annually by a 10.0
MW solar plant with a capacity factor of 24% to be 0.0141 Mt COx¢q per
solar plant annually.

EA.sa[ar = (CF)(CP)E:aI (10)

We find the number of solar plants or wind turbines (N) with equa-
tion (11). AEjy;s is the difference in CO2eq emissions (Mt) from non-
technical losses between reduction scenarios (equation (11)).

N =AE 5 Ey 1D

We find the price per solar plant or wind turbine, ¢, (equation (12))
using the construction price per kW [62] (X, in $) and the average ca-
pacity [60] (Cp).

c=x(Cp) 12
Then, the total cost (C, in $) is computed in equation (13) [47].
C=cN 13)

2.7. Limitations

When we consider T&D at aggregate levels, we ignore the fact that
T&D efficiency will vary by line due to the spatial scale of our model.
Thus, it may take less effort to improve T&D losses than expected
depending on the amount of variation between the lines. Additionally,
we assume that reductions in T&D losses will impact the emissions from
each power plant by the same proportion. This assumption is due to the
data being aggregated at the annual level for either each country at the
global level and power plant in the USA. Further studies could attempt to
use timed demand data of each power plant to determine how peaker
plants would be affected by reductions in compensatory generation.

We do not have data for the losses of the NERC regions, so they are
the area-weighted averages of the state losses. The data available for the
NERC regions did not include the Southwest Power Pool and did include
the Florida Reliability Coordinating Council; however, the geospatial
file had the opposite and included an area of unclear jurisdiction.
Additionally, we only have data for non-technical losses at the country
level, so any state or NERC analyses of non-technical losses are just a
percentage of the aggregate losses.

When we use wind and solar generation to explore carbon mitigation
options, we do not account for hourly generation variations. When
considering smart meters as a carbon mitigation option, we assume from
past installations of smart meters that electricity consumption associ-
ated with both non-technical losses and smart meters decreases by
2-40% [57].

We also assume that more accurate billing and reducing the use of
faulty meters will not increase overall electricity system demand (i.e.,
sum of T&D losses, customer demand, theft). Additionally, the initial
deployment cost estimates do not consider operational costs or savings
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from adopting the technologies. Further assumptions of the Monte Carlo
methods can be found in Table S10.

3. Results and discussion
3.1. Analysis of multinational co-pollutant emissions

Aggregate T&D losses vary widely across the globe with the most
efficient system in Singapore at 2% and the most inefficient in Haiti at
60% (Fig. 2). Non-technical T&D losses also vary greatly with the lowest
losses at 0% in a few smaller countries (Bahrain, Iceland, Luxembourg,
Singapore, and Trinidad and Tobago), and the greatest losses at 45% in
Haiti (Fig. 2). The average air pollution emissions from the full life cycle
of electricity delivered — including T&D losses — vary widely by country
(Supplementary Figs. S1 and S2). Within the of the countries with the 25
highest aggregate losses we find that there is a slight indication of how
these losses translate to emissions. We found that 7 of the 25 most CO2¢q
intense countries, 9 of the 25 most NOy intense, 13 of the 25 most SOy
intense, and 9 of the 25 most PM; 5 intense were also in the top 25
countries for aggregate losses.

Understanding the link between T&D efficiency and air pollution
emissions is becoming increasingly urgent because, despite global
commitments to decarbonize, several countries are actively building and
operating coal plants to fuel near-term growth [25,63,64]. These power
plants are detrimental to both climate and public health goals and are
often slated in countries will high levels of T&D losses. For example, in
2019 India generated 805 GWh of electricity from coal, which is ex-
pected to increase to 1300 GWh by 2030 following the country’s 4.5%
annual demand growth [65]. The associated PM5 5 emissions from coal
generation in India result in an estimated 112,000 deaths annually [66].
While improving the T&D system will indirectly reduce coal generation,
we also found that there are system-wide benefits to reducing T&D
losses. We estimate that compensatory generation in India alone can be
reduced by 209 TWh annually (13.6% of 2018 total generation) when
moving from the BAU to a high ambition scenario (capping T&D losses
at 5%). The avoided electricity generation, potentially including coal,
and consequent health impacts would likely be substantial [33].

Fig. 3 exhibits the variability of reductions in average emissions from
compensatory generation from aggregate losses for countries with
moderate ambition (reducing aggregate losses by 33%) and high
ambition (capping aggregate losses at 5%) efficiency upgrades. These
scenarios provide a lower bound on the expected losses that result from
enhancements in the T&D system without generation investments and
reflect changes associated with reductions in compensatory generation.
When considering decreases in emissions from the BAU to high ambition
scenario for aggregate losses for all countries, global median emissions
decrease by about 40% (Supplementary Table S1). Improving aggregate
T&D efficiency in all countries to the moderate or high ambition T&D
efficiency have similar effects even though the mean global losses of the
two scenarios are 8.3% and 4.8% respectively. However, there are some
differences. SOx emissions are predicted to experience slightly greater
reductions for the high ambition scenario compared to BAU losses
(44.1%), and PM, 5 emissions are expected to have slightly fewer re-
ductions (37.6%). Consequently, improving to the high ambition sce-
nario would improve SOy emissions slightly more and PM; 5 emissions
slightly less than CO2eq and NOy emissions.

As expected, we find T&D emissions savings are highly linked to
generation types due to the relationship between compensatory gener-
ation and emission intensities of generation types. Typically, we see that
countries with high levels of CO2¢q intensities (>670 g CO2¢q/kWh) have
above average coal plant capacity (greater than 20%) (17 out of the top
30 COy¢q intense countries). Meanwhile, countries with high levels of
SOy (>0.8 g SO,/kWh), NOy (>0.6 g NO,/kWh), and PM, 5 (>0.135 g
PM, 5/kWh) have greater than 15% oil plant capacity (27 out of top 30
SOy intense countries, 21 out of top 30 NOy intense countries, and 23 out
of top 30 PM; 5 intense countries). Some of the countries with high
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Fig. 2. T&D losses by countries for 140 countries for the BAU, moderate, and high ambition scenarios. a. Aggregate Losses, b. Non-technical Losses. Note that the

aggregate and non-technical scales are not the same.

emission intensities also had percentages of non-technical to aggregate
losses in the top 25% (26.5%) (Supplementary Fig. S5). We found that 8
of the 25 most CO2¢q intense, 8 of the 25 most NOy intense, 9 of the 25
most SOy intense, and 21 of the 25 most PM, 5 intense countries to fit in
this category. See supporting information for maps and tabular results.

For non-technical losses, we consider the BAU, moderate ambition
(reducing non-technical losses by 33%), and high ambition (capping
non-technical losses at 0.5%) scenarios. When transitioning from BAU
for non-technical T&D efficiency to the high ambition scenario, median
emission reductions range from 76% to 80%. Globally, nations could
collectively reduce NOy emissions by 286 kt, SOy emissions by 375 kt,
and PM, 5 emissions by 405 kt annually (see Supplementary Fig. S2).

CO2¢q emissions could be reduced by 210 Mt annually, which is equiv-
alent to approximately 53 average coal-fired power plants in the United
States. For the moderate ambition scenario, CO2eq emissions could be
reduced by 91 Mt (around 23 coal plants), NOy by 121 kt, SO by 156 kt,
and PMy 5 by 179 kt each year. While national-level analyses present
high-level guidance for country policies, we acknowledge there are
subnational regulatory bodies, each of which makes decisions about
infrastructure investments.

3.2. High-resolution analysis at subnational scales

We capture more granular results with subnational T&D
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Fig. 3. Variability of annual air pollution emissions from aggregate T&D losses in the world including 142 countries from a Monte Carlo analysis with 10,000 trials.
Box plots represent the 25th percentile, median, and 75th percentile. a. CO2¢q emissions, b. NO, emissions, c. SOy emissions, d. PMs 5 emissions.

inefficiencies, providing a framework to assist countries in identifying
mitigation opportunities for greenhouse gases and the resulting co-
benefits from reductions in compensatory generation. We use the USA
to examine compensatory average emissions at the subnational scale,
supported by high data availability multiple subnational regulatory
bodies, and large data availability on smart meter deployment and
granular power plant data. The aim of this subnational analysis is to
provide greater insight into how both technology and policy can be
better designed to reduce air pollution and climate impacts. The value of
this work is in highlighting how policy strategies change at the federal
regulatory, and state levels.

Within the continental USA, aggregate T&D losses range from 2 to
5% across the states with the mean at 4.5%. When investigating the
variability in total air pollutants from aggregate losses under BAU,
moderate ambition (each state reduces aggregate losses by 33%), and
high ambition (aggregate T&D losses capped at 2%) for the contiguous
US, we find T&D improvements could reduce median compensatory
emissions by at least 31% for all pollutants (Supplementary Table S3).
When moving from the BAU to the very efficient scenario, CO2¢q and
NOy emissions reduced by 57.5%, and SOx and PM3 5 emissions reduce
by about 53.5%. In the moderate scenario, the US could reduce COgeq
emissions by 20 Mt/year, which is equivalent to 5 average US coal
power plants running for a year. The other pollutants would reduce by
approximately 0.3 Mt/year. Under the high ambition scenario, the US
could reduce COz¢q emissions by 35 Mt/year (approximately 8.8 coal
power plants) and the remaining pollutants by 0.5 Mt/year. Within the
very efficient scenario, we see wide ranges for annual air pollution
emissions (COgeq: 24.9-62.3 Mt, NOy: 13-121 kt, SOx: 5-133 kt, PMa 5:
3-266 kt), highlighting the impact of generation variability across
states, thus reinforcing the need for more spatially resolved analyses.

Non-technical T&D losses range from 0.5% to 1.2% across the USA
with the mean at 1.0%. When we consider the variability of air pollut-
ants from non-technical losses under BAU, moderate ambition (each
state reduces non-technical losses by 33%), and high ambition (non-
technical T&D losses capped at 0.5%) for the contiguous USA, we find
T&D improvements could reduce median non-technical compensatory

emissions by at least 33% for all pollutants (Supplementary Table S4).
From BAU to the very efficient scenario, CO¢q and NOy emissions
reduced by 53.3%, and SOx and PMj 5 emissions reduce by about 49.5%.
We see in the moderate scenario that the USA could reduce COgeq
emissions by 4.6 Mt/year, which is equivalent to around 1.2 average US
coal power plants annually. The other pollutants would reduce by
approximately 7 kt/year. In the high ambition scenario, the US could
reduce CO2eq emissions by 7.4 Mt/year (1.9 coal power plants) and the
remaining pollutants by approximately 10 kt/year.

Internalizing T&D emission externalities will impact market-level
regulations and ultimately the consumer residential electricity prices.
At the sub-national level, we first focus on the North American Electric
Reliability Corporation (NERC) which is responsible for developing
reliability rules governing the operation of the bulk power electric
transmission systems. NERC develops and improves the reliability
standards, enforces compliance for those standards, and distributes
penalties for regulation violations. The NERC regions are a common sub-
national level of aggregation for the United States when considering air
pollution emissions from energy [67].

As seen in Table 1, the ReliabilityFirst Corporation (RFC), Western
Electricity Coordinating Council (WECC), Midwest Reliability Organi-
zation (MRO), Northeast Power Coordinating Council (NPCC), and
Southeastern Electric Reliability Council (SERC) have aggregate losses
of around 4.78%, and Texas Reliability Entity (TRE) has aggregate losses
around 5.09%. The losses of the NERC regions are area-weighted

Table 1
Aggregate losses of NERC Regions.
NERC Business-as-Usual Moderate Ambition High Ambition
Region (BAU) Losses Losses (reduced by 33%) Losses (capped)
MRO 4.76% 3.19% 2.00%
NPCC 4.77% 3.19% 2.00%
RFC 4.72% 3.16% 2.00%
SERC 4.87% 3.26% 2.00%
TRE 5.06% 3.39% 2.00%
WECC 4.76% 3.19% 2.00%
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averages of the states’ losses.

We find that regions with the most emissions on average from
compensatory generation from aggregate losses (Fig. 4) and greatest
losses (Table 1) differ. While the RFC has the lowest losses in the BAU
scenario, it still produces high magnitudes of emissions. On the other
hand, the TRE has the highest losses but produces lower magnitudes of
emissions. This abnormality is likely due to the small region that TRE
covers compared to other regions like the WECC. If the high ambition
scenario is achieved, all regions would reduce their emissions below 15
Mt COz¢q, 5 kt SOy, and 2.8 kt PM3 5. In the high ambition scenario, only
the SERC for NOy emissions remains in the class of high emission mag-
nitudes (>21 kt). Within the NERC regions, state legislatures guide en-
ergy policy targets, which presents a need for understanding how state-
level T&D efficiency targets will impact air pollution emissions.

In the USA, states often guide renewable energy targets and can
provide incentives for investments to reduce air pollution emissions.
Within the MRO region, North Dakota is the state with the highest
emissions by intensity and magnitude (Supplementary Figs. S13 and
S14). Thus, while a NERC level policy could target the MRO, similar
emissions savings could be achieved through a state policy targeting
North Dakota. Similarly, when we view the SERC region if there was a
state policy then to secure the bulk of the savings policies should target
Georgia, North Carolina, and Florida. Although TRE has low levels of
emissions associated with compensatory generation, it presents a unique
case due to it primarily encompassing one state and subsequentially
being an islanded electricity system within the USA.

In comparing aggregate T&D losses (Fig. 5) to the subsequent
emissions from these losses (Supplementary Fig. S14), we find that the
states with the greatest magnitude of compensatory generation emis-
sions do not always correlate to the states with the greatest aggregate
T&D losses. In general, of the states with BAU losses above 5% (25
states), 12 states of those 25 have above-median BAU CO2q emissions
(0.73 Mt, given all 50 states), 11 states for NOx (0.11 kt), 8 states for SOy
(0.69 kt), and 11 states for PM3 5 (0.16 kt). For example, North Dakota
has low BAU aggregate losses (2.52%), but higher emissions in all sce-
narios. On the other hand, Texas has high BAU aggregate losses (5.06%),
and higher emissions for all scenarios. This difference can likely be
attributed to the generation profiles of these states. North Dakota pri-
marily relies on coal, which heavily pollutes, and Texas strongly de-
pends on natural gas and other fossil-fuels.
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Additionally, the states that get little of their electricity from fossil-
fuels tend to be in the lowest emission class for all pollutants and sce-
narios. We acknowledge that there is an inherent relationship between
the emission intensity of generation types and the potential benefits of
improving the T&D system because of the potential emissions shifts. We
notice that states with high levels of CO2¢q (>490 g CO2¢q/kWh), SOy
(>0.18 g SOx/kWh), and NOy (>0.38 g NOy/kWh) emissions per unit of
electricity delivered have above average (>10%) coal plant capacity (7
out of top 10 COy¢q intense states, 9 out of top 10 SO intense states, 8
out of top 10 NOy intense states). Additionally, all the top ten states with
the highest levels of PMy 5 emissions per unit of electricity delivered
either have >10% coal capacity (5 states) or >40% natural gas capacity
(5 states). We find that Texas, with a relatively average efficiency for
T&D systems within the USA (5.1%), is a high producer of air pollutants
because 68% of its electricity is from fossil-fuels. Texas aggregate T&D
inefficiencies correspond to 13.7% COgzeq, 17.1% SOy, 13.5% NOy,
20.2% PM; 5 of emissions due to compensatory generation in the USA.
There are other states with more of their electricity generated from
fossil-fuels; however, they either do not generate as much electricity as
Texas, or they have more efficient T&D systems. Texas’ issues like the
rolling blackouts induced by the deep freeze in 2021 are caused by
Texas’ system being in islanding mode [68]. Due to its island mode, the
responsibility for spending on the physical infrastructure can fall at the
NERC, the Electricity Reliability Council of Texas, or state levels.

Even under the high ambition scenario for aggregate losses, Texas is
still the largest producer of all air pollutants, based on median emissions
estimates. The range in emissions estimates that result from compen-
satory generation varies within the top five of the most populated
states—California, Texas, Florida, New York, and Pennsylvania (Supple-
mentary Fig. S15)-signifying the importance of conducting analyses at
more granular scales for solutions. If Texas moves from BAU (5.1%
aggregate losses) to the high ambition scenario, compensatory genera-
tion would decrease by 11.5 TWh and median emissions for all pollut-
ants by 60%. In a high renewable energy investment scenario, the
compensatory generation savings would correspond to 7.7 GW of resi-
dential solar investments. The top five most populated states have
aggregate T&D losses above 5.1% except Pennsylvania, whose losses are
3.7%. Yet, its median emissions are not always the lowest due to the
state’s heavy reliance on coal (6.1% of generation) and natural gas
(42.0% of generation). While improving the T&D system will indirectly
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Fig. 4. Emissions due to aggregate T&D losses by NERC Region, a. COcq emissions, b. NO, emissions, c. SO, emissions, d. PM 5 emissions.
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Fig. 5. T&D losses by state for the BAU, moderate, and high ambition scenarios. a. Aggregate Losses, b. Non-technical Losses. Note that the aggregate and non-

technical losses scales do not overlap.

reduce coal or natural gas generation, we also found that there are
system-level benefits to reducing T&D losses. If Pennsylvania followed
the high ambition scenario, this change would reduce compensatory
generation needs by 3.1 TWh and reduce Pennsylvania’s BAU annual
emissions by 46%. This change corresponds to a reduced need for 2.6
GW of residential solar investments. Thus, it is important to recognize
that while improving T&D losses will not completely compensate for
relying more on fossil-fuels, it can reduce BAU emissions and the number
of resources needed in a fully renewable electric system.

3.3. Initial deployment cost for CO2 reduction comparison

In the USA, non-technical losses will primarily be reduced through
the deployment of more effective billing systems (i.e., smart meters). We
considered the initial deployment and total costs of three different car-
bon mitigation strategies: installing smart meters to support the existing
grid, constructing more wind turbines, and constructing solar farms.
While multiple green technologies can be used to reduce emissions from
the electric grid, we focus on solar and wind because these technologies
are the most common renewable technologies planned to be constructed
in 2022 [69]. While solar and wind is rapidly expanding across the
globe, the cost of renewable energy deployments is uncertain [70,71].
Hence, we include smart meters in our analysis which are often a cheap,
efficient, and a widely deployable technology [58]. Smart meters reduce
non-technical losses by providing more accurate billing, reducing the
use of faulty meters, and preventing electricity theft [18,72]. We assume
that between 2 and 40% of energy reductions that are due to smart

meters are reductions to non-technical losses according to past in-
stallations of smart meters [57]. We also assume that more accurate
billing and reducing the use of faulty meters will not increase demand.
To quantify improvements by smart meters, we assume that smart me-
ters can reduce household electricity consumption by 6% [19]. We
consider two scenarios for smart meter deployment when considering
the total costs: moderate ambition (reducing non-technical losses by
33%) and high ambition (capping non-technical losses at 0.5%).

One way to compare the viability of carbon reduction options is to
consider the initial deployment cost for CO2¢q reduction of each option
in the United States. These values are different than the abatement costs
reported by the IEA ($27.10/t CO2¢q for wind power and $32.98/t CO2¢q
for solar PV) and other sources because typically operational losses and
savings from adopting the technologies are included in the analysis [73].
We note that only considering the initial deployment or construction
costs is relevant to implementation of the Infrastructure Investment and
Jobs Act (2021) and the Inflation Reduction Act (2022) because it will
generally fund construction of new energy technologies rather than the
operations costs and will not receive benefits from the savings of the new
technologies [74,75].

Our analysis of the initial deployment cost for CO2¢q reductions of
installing more smart meters, wind turbines, and solar plants. Our
analysis considers a 2.42 MW wind turbine operating with a capacity
factor of 35% and a 10.05 MW solar plant with a capacity factor of 24%,
which are meant to be average in the United States. We also focus on the
upper bound of our estimate to illustrate how smart meters can reduce
non-technical losses. Reducing non-technical losses through wind
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turbines (2.5-10 billion) appears to be the most viable solution, when
solely looking at the initial deployment (or construction) costs. Smart
meter median initial deployment (or construction) costs range from 5 —
14.5 billion, and solar costs range from 5 to 23 billion. As a note, this
methodology is an upper bound and is different from the abatement cost
methodology. It does not consider operational cost changes between
wind, solar, and fossil fuel generators.

In 2019, there were approximately 22 million traditional residential
and 41.2 automated meter reading meters in the United States [21]. As
of 2019, 87.5% of the total number of meters in the USA were in the
residential sector, while another 12.0% of total meters were in the
commercial sector [21]. To achieve the COzeq reductions of the mod-
erate ambition scenario (reducing by 12.0 TWh or 4.6 Mt COz¢q, See
Table S4), the nation would need to deploy approximately 25.7 million
advanced metering infrastructure units (smart meters) at a median
deployment cost of $7.07 billion.

For the high ambition scenario (reducing by 19.3 TWh or 7.5 Mt
CO2¢q), the nation would need to deploy approximately 41.3 million
smart meters at a median cost of $11.4 billion. To achieve deployment of
41.3 million, there would need to be a total replacement of the 22.0
million traditional residential meters, but at least 19.3 million smart
meters would still be needed. A combination of replacing meters in the
commercial and industrial sectors, and potentially other technology
deployments (e.g., renewable generation, efficient appliances) could be
used to achieve the remaining carbon reductions. In the moderate
ambition scenario, wind turbines (median cost of $3.02 billion) and
solar plants ($5.49 billion) are less costly compared to smart meters. For
the high ambition scenario, we estimate that smart meters are less costly
compared to solar plants ($15.6 billion) but not wind turbines ($8.54
billion).

These cost estimates do not consider operational costs or savings
from adopting the technologies, which tell a different story than looking
at deployment costs alone. In recent years, there have been declines in
the levelized cost of energy in solar and wind. Reported values of
abatement costs have been found to range from -$7 and $70 per tCO2¢q
for wind and from $41 per tCOg¢q to over $100 per tCOzeq for solar
technologies, depending on assumptions [76]. Despite the relatively
high initial construction costs, it is well known that the operational
revenues from wind make it competitive on the market since there are
no fuel costs. This fact is supported by the levelized cost of electricity
(LCOE) for onshore wind being $37.80/MWh, and standalone solar
being $36.09/MWh, compared to natural gas combined cycle being
$37.05/MWh [77]. While installing smart meters could be a viable so-
lution in the United States for reducing non-technical losses, their
viability in a global context may be stronger than in the USA. In some
parts of the world with governance challenges or a “culture of corrup-
tion,” certain groups can expect to not pay for their electricity and get
away with it [33]. This problem results in fraud, stealing electricity,
billing irregularities, and unpaid bills, which together contribute to a
large share of a country’s non-technical losses [33]. Smart meters are an
effective strategy in reducing theft because it introduces automatic
billing payments and provides more accurate and transparent billing.
While many countries like India have passed legislation to expand the
legal understanding and repercussions of electricity theft [18], these
countries still have problems with electricity theft [33,78]. Thus,
installing smart meters can reduce electricity demand and reduce losses
that occur due to electricity theft.

There is a large amount of variability for the smart meter estimate,
which may result from cost differences between manufacturers or pur-
chasing smart meters in bulk [58]. Another point to keep in mind is that
the performance of solar plants and wind turbines is dependent on the
weather. Thus, before implementation, a high-resolution analysis of
resource constraints and smart meter costs in the area should be con-
ducted. We note that countries are using a combination of approaches
(smart meters, wind, and solar deployment) as part of their decarbon-
ization strategies. Smart meters might be cheaper in some cases, and the
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right combination of smart meters, wind, and solar should be based on
spatially resolved analysis. While renewable energy has other benefits
beyond reducing carbon emissions, even in a high renewable future,
smart meters can be beneficial because they will reduce the electricity
demand, leading to fewer investment needs in generation capacity.

4. Conclusions and policy implications

Analyses that clarify the link between grid inefficiencies and air
pollution are necessary to determine not only the mitigation potential
but also formulate a holistic strategy for reducing emissions. Through
quantifying the air pollution emissions associated with T&D losses in
142 countries, we determine the mitigation potential, and we leverage
an in-depth analysis for the USA to inform how to reach this potential.
Our analysis presents a first-of-a-kind approach that emphasizes the
need for high spatial resolution, granular analyses and realizes the co-
benefits of reducing air pollution emissions and resolving grid in-
efficiencies. Decisions to invest in infrastructure are made at multiple
regulatory levels, including scales that country-level analyses are inca-
pable of capturing. Reducing harmful pollutants from grid inefficiencies
needs to capture the emissions and energy savings opportunities from
regulations and investment strategies from the scale of countries down
to each facility.

For aggregate losses, our multinational and subnational analyses
tested moderate ambition (reducing regional losses by 33%) and high
ambition (reducing each country to 5% T&D losses, or state to 2% T&D
losses) scenarios at multiple scales. Our country-level analyses of non-
technical losses also considered moderate ambition (reducing regional
losses by 33%) and high ambition (reducing each country to 0.5% T&D
losses) scenarios. These scenarios provide a lower bound on the expected
number of losses that can result from enhancements in the T&D system
without generation investments.

Our work has three implications for policymakers involved in
decarbonizing the electricity sector. First, our results point to the need
for systems-level examinations of air pollution emissions and mitigation
at national and sub-national scales. Only a few countries consider T&D
in their 2015 NDCs [2], meaning that countries are not capturing the full
range of grid-scale solutions.

Second, as the electricity system is going through major transitions to
reduce emissions, multiple co-benefits arise from viewing the whole
system at multiple scales. Grid modernization initiatives that reduce
T&D losses can reduce the emissions impact of the top emitters within a
country while lessening the resource needs for investment in renewable
energy technologies as seen in our analyses of Texas and Pennsylvania.
Future work could consider how electricity demand would change as
technical improvements to the T&D system are made, and the trade-offs
between other environmental considerations [5,79] (e.g., water con-
sumption and land use [80,81]). Other work could further investigate
the health benefits of the reductions in air pollutants from T&D losses,
consider the equity of the distribution of these benefits [82], and look
deeper into emerging economies [83].

Third, we have highlighted that public policies at varying scales can
each benefit from reducing T&D losses. These benefits stem from the
linkages between T&D infrastructure, air pollution emissions, and ma-
terial requirements needed in the low-carbon energy transition [14]. In
the USA, T&D loss reductions would come from reducing distances be-
tween suppliers and consumers (i.e. decentralized generation), technical
losses (e.g., improving quality of lines or transformers), and
non-technical losses (e.g., enhancing billing security and restructuring
electricity system regulation). Even highly efficient electricity systems
(<6% T&D losses) can have non-technical losses that range from 1% to
2% [33]. Smart meters reduce overall electricity system demand (i.e.,
the sum of T&D losses, customer demand, poor billing practices, and
theft), due to better bill accounting. This change in demand in turn
decreases the amount of investment needed in new energy sources and
non-technical losses. We found that smart meters are less cost-effective
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than wind turbines when reducing carbon emissions from non-technical
losses, due to wind turbines being at the community scale. However,
smart meters are more cost-effective compared to solar plants in the high
ambition scenario.

An additional consideration is that the benefits from wind and solar
are resource-dependent, while smart meters provide benefits by making
the billing process more reliable. In 2018, the USA had reached a 56%
adoption rate of smart meters, and by 2020 the USA had reached
approximately 75% adoption [20,21]. Thus, replacing the final 25% is
an important step towards reducing emissions from non-technical losses.
Future studies should investigate the T&D emissions mitigation poten-
tial within a developing country context and distinguish between tech-
nical and non-technical losses. Additional work could also consider how
alternative energy sources, besides wind and solar, compare to deploy-
ing smart meters.

In conclusion, our approach can not only be used to quantify the
regional benefits of reducing overall grid inefficiencies but also to esti-
mate the costs of technological changes to reduce grid inefficiencies.
This work highlights the impetus for greater data availability and the
need for higher resolution energy transition analyses at multiple regu-
latory scales due to multiple stakeholder groups operating in these areas
[84,82]. While this work focused on the USA, other high-efficiency
countries have multiple sub-national electricity regulatory structures.
Reducing T&D losses at multiple levels, not only reduces compensatory
emissions but also may reduce the investments need in a low-carbon
energy transition. Considering the impacts of T&D losses is vital in a
transitioning electricity system in both the BAU system for T&D effi-
ciency and in a low carbon or carbon-neutral future.
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