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Abstract—Bitcoin P2P networking is especially vulnerable to
networking threats because it is permissionless and does not
have the security protections based on the trust in identities,
which enables the attackers to manipulate the identities for
Sybil and spoofing attacks. The Bitcoin node keeps track of
its peer’s networking misbehaviors through ban scores. In this
paper, we investigate the security problems of the ban-score
mechanism and discover that the ban score is not only ineffective
against the Bitcoin Message-based DoS (BM-DoS) attacks but also
vulnerable to the Defamation attack as the network adversary
can exploit the ban score to defame innocent peers. To defend
against these threats, we design an anomaly detection approach
that is effective, lightweight, and tailored to the networking
threats exploiting Bitcoin’s ban-score mechanism. We prototype
our threat discoveries against a real-world Bitcoin node connected
to the Bitcoin Mainnet and conduct experiments based on the
prototype implementation. The experimental results show that
the attacks have devastating impacts on the targeted victim while
being cost-effective on the attacker side. For example, an attacker
can ban a peer in two milliseconds and reduce the victim’s mining
rate by hundreds of thousands of hash computations per second.
Furthermore, to counter the threats, we empirically validate
our detection countermeasure’s effectiveness and performances
against the BM-DoS and Defamation attacks.

Index Terms—Bitcoin, Ban Score, Misbehavior, P2P Network-
ing, Denial of Service, Sybil, Spoofing

I. INTRODUCTION

In the decentralized cryptocurrency economy, since Satoshi

Nakamoto published the white paper in 2008 [1], Bitcoin as

the most typical cryptocurrency has gained great popularity

and has millions of wallet users. Bitcoin and cryptocurrency

have also drawn great attention of the security community

since it secures integrity and non-repudiation of the transac-

tions while supporting permissionless operations for decen-

tralization and anonymity. Bitcoin’s peer-to-peer (P2P) net-

working does not use identity-/credential-based cryptographic

protections, all the Bitcoin messages ride on plain-text TCP

connections, and thus security threats including denial of

service (DoS) are prevalent [2]–[4]. For instance, the real-

world DoS attacks on the Bitcoin exchange platforms were

studied in [5], [6], and the DoS threat using the Bitcoin Core’s

vulnerability (CVE-2018-17144) [7] enables the malicious

§This work was done while Dr. Wenjun Fan was a Postdoctoral Research
Associate at University of Colorado Colorado Springs.

Fig. 1. A high-level overview of the Bitcoin P2P network: our work focuses
on the transmission to the P2P network

miner to validate a block that contains a transaction attempting

to spend same input twice to crash the Bitcoin infrastructure.

Figure 1 illustrates an overview of the Bitcoin P2P network.

In particular, Our work focuses on the ban-score mechanism

applicable to any Bitcoin message types, including those

for delivering transactions and blocks. The present ban-score

mechanism of Bitcoin Core [8] was originally designed for

resisting against the DoS attack (though the ban-score mech-

anism was considered for preventing any other potential net-

work threats). With the ban-score mechanism, a Bitcoin node

can use the ban score to keep track of its peer’s misbehaviors

by increasing the ban score, and once the ban score reaches

the threshold (at 100), the peer will get banned for 24 hours.

However, we find that the current ban-score mechanism is not

only ineffective but also vulnerable. In this paper, therefore,

we are motivated to investigate the security threats on Bitcoin

networking nodes to discover the attack vectors that can reveal

and exploit the ineffectiveness and vulnerability of the ban-

score mechanism.

To this end, we investigate the interplay between the threats

and defenses in terms of the current Bitcoin practice. First,

we sort out that the Bitcoin-Message-based DoS (BM-DoS)

attack reveals that the ban score is ineffective and deficient.

Though the ban score provides some resistance against Sybil,

because the attacker requires the bulky handshaking-based re-

connection process, which costs the attacker up to hundreds
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of packet transmissions, it still suffers multiple DoS attack

vectors which are discovered and described in Section III-B.

Second, we come up with the Defamation attack that aims to

exploit the vulnerability of the ban-score mechanism. More

specifically, the attacker spoofs the innocent peer to send

misbehaving messages to the target node in order to fool the

target node to ban the innocent peer. Using this attack, the

network adversary can easily disconnect the peer connections

with the purpose of decreasing the diversity of the peer

connections and disturbing the Bitcoin operations.

Therefore, we analyze the Bitcoin’s ban-score mechanism

and discover that it is ineffective against the BM-DoS attack

and vulnerable against the Defamation attack. To counter such

threats exploiting the ban-score mechanism, we present an

anomaly detection approach, including the identification of the

detection features which are especially effective against such

anomalies, and discuss some potential countermeasures which

involve modification on the ban-score mechanism. Our paper

aims to inform the Bitcoin and blockchain R&D communities

of the vectors and the severity of the attacks against the

current ban-score mechanism, and demonstrate the potential

countermeasure to them for further security research and

development to secure the networking.

In this paper, we take an empirical study to achieve an astute

observation of the attacks against the misbehavor tracking

in Bitcoin network. Hence, we first build an active Bitcoin

node connected to the Bitcoin Mainnet. Second, we prototype

and measure the attacks against the active Bitcoin node to

investigate how the attacks impact the node’s networking and

operations. Third, we analyze the system cost on both the

attacker’s side and the victim’s side, i.e., use the impact-cost

ratio to measure the attack. Fourth, we build our defense

measures and consolidate the effectiveness to address the

security problem that the ban-score mechanism exacerbates.

Responsible Disclosure We disclosed our research findings,

including the vulnerabilities, threats, and countermeasures, to

the Bitcoin Core team on March 29th, 2021 and received their

feedback on April 1st, 2021. The Bitcoin Core team confirmed

that the ban-score mechanism doesn’t accomplish much in

terms of protection from the attackers considered in this paper.

Our discoveries and security concerns about ban score and

misbehavior tracking are based on Bitcoin Core 0.20.0. The

disclosure to the Bitcoin Core Team affected the following

developments as the team changed and improved parts of

the ban-score mechanism. These changes include: updating

the rules with VERSION in the later Bitcoin Core versions

since we reported the Defamation attack using the VERSION
message (see Section VI-D) and an anomaly detection method

against the BLOCK message traffic in the following Bitcoin

Core versions. We are continually working with them to

analyze the benefits and costs/vulnerabilities of ban score, to

explore the proposed countermeasures and how they fit into the

Bitcoin system and other existing mechanisms, and to improve

the Bitcoin design and implementation.

Misbehavior tracking

Ban score 
>= 100?

No

Yes

Banning

Input

number

payload

repeat
disorder

oversize
invalid

Peer’s ban score grown 
by 1, 10, 20, or 100

Fig. 2. The Bitcoin’s ban-score mechanism logic

II. A PRIMER OF THE BITCOIN’S BAN-SCORE MECHANISM

Bitcoin network is designed as an open P2P network,

whereby any node can join the network without permission.

This openness, however, makes it possible for malicious nodes

to join and attack the P2P network. Thus, on the one hand,

the Bitcoin P2P networking requires availability and resistance

against denial of service (DoS) threats, otherwise, a node

will be disabled from the cryptocurrency operations. On the

other hand, a Bitcoin node should resist against the Eclipse

attacks [9], [10]. The principle of Eclipse attack is that the

attacker would occupy all the peer-connection slots of the

victim node and then filter the victim node’s view of the

blockchain network. With Eclipse, the attacker can take down

a victim node with low cost, and it could even control the

victim’s mining power for its nefarious purposes or cheat the

victim to launch a double-spending attack.

Therefore, a DoS prevention framework of Bitcoin (in

Pull 517 [8]) was introduced to protect the Bitcoin’s P2P

networking nodes. Though the framework was originated for

defending against DoS attacks, it was informed for responding

to other potential attacks, e.g., Eclipse attack. The framework

essentially provided a ban-score mechanism. Figure 2 illus-

trates a brief of the ban-score mechanism of Bitcoin Core.

We define that “misbehavior tracking” refers to the score

keeping of ban score of node’s peers. If a peer is sending

wrong information to a node, the node can keep track of the

misbehavior in terms of certain ban-score rules and punish

the peer (that is a connection identifier denoted by a pair of

IP address and Port number, i.e.,[IP:Port]) by dropping

the peer connection and banning the connection identifier

when the ban score reaches the threshold (100 by default)

for a banning period (24 hours by default). Thereby, the

peer is disconnected and added to the banning filter so that

it cannot immediately reconnect using the same connection

identifier. The ban-score rules mainly focus on the number

(repeat or disorder) and the payload (oversize or invalid) of

the message, which will result in an increment (1, 10, 20, or

100) of the ban score to the peer. Further, we found that the

misbehavior tracking information is only stored in the node‘s

memory, and the node never broadcasts the misbehaving peer’s

information. Peers that get banned are just disconnected and

can not reconnect back immediately, but there is no warning

or reason sent to the peer.

We have noticed and studied the ban-score mechanism since

Bitcoin Core 0.20.0 till the current 0.22.0, and we found that
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TABLE I
THE BAN-SCORE RULES OF BITCOIN CORE (0.20.0 VS.0.21.0 VS. 0.22.0)

Message Type Message Misbehavior Ban Score’20 Ban Score’21 Ban Score’22 Object of Ban Misbehavior Type

BLOCK

Block data was mutated 100 100 100 Any peer Invalid
Block was cached as invalid 100 100 100 Outbound peer Invalid
Previous block is invalid 100 100 100 Any peer Invalid
Previous block is missing 10 10 10 Any peer Invalid

TX Invalid by consensus rules of SegWit 100 100 100 Any peer Invalid
GETBLOCKTXN Out-of-bounds transaction indices 100 100 100 Any peer Oversize

HEADERS
10 non-connecting headers 20 20 20 Any peer Disorder
Non-continuous headers sequence 20 20 20 Any peer Disorder
More than 2000 headers 20 20 20 Any peer Oversize

ADDR More than 1000 addresses 20 20 20 Any peer Oversize
INV More than 50000 inventory entries 20 20 20 Any peer Oversize
GETDATA More than 50000 inventory entries 20 20 20 Any peer Oversize
CMPCTBLOCK Invalid compact block data 100 100 100 Any peer Invalid

FILTERLOAD Bloom filter size > 36000 bytes 100 100 100 Any peer Oversize
Protocol version number >= 70011 100 - - Any peer Invalid

FILTERADD Data item > 520 bytes 100 100 100 Any peer Oversize
Protocol version number >= 70011 100 - - Any peer Invalid

VERSION Duplicate VERSION 1 1 - Inbound peer Repeat
Message before VERSION 1 1 - Inbound peer Disorder

VERACK Message (other than VERSION) before VERACK 1 - - Inbound peer Disorder

the mechanism evolves time to time (updated by the Bitcoin

development community). However, the ban-score mechanism

is not formally studied until now, and there is no well-

documented report about it. Though some work [11], [12]

mentioned it, neither the Bitcoin’s developer guide nor the

literature showed the comprehensive ban-score rules. There-

fore, we were motivated to look into the Bitcoin Core’s source

code to reveal the ban-score rules. We summarize the ban-

score rules in Table I, which includes and compares the rules

amongst Bitcoin Core 0.20.0, 0.21.0, and 0.22.0. With this

table, we have got some interesting discoveries:

1) We found that not all of the Bitcoin’s P2P networking

message types (the complete description of all message

types can refer to the Bitcoin’s developer-reference [13])

have ban-score rules.

2) Among the ban-score rules, though the punishment is

supposed to be directly proportional to the severity of

the misbehavior, some individual rules remain to debate.

For example, the rule of increasing the ban score of 10

points when a previous block is missing is considered

to be too arbitrary.

3) One node’s peer can be identified as inbound peer

(which initiates the TCP connection to the node in

question) or outbound peer (that is requested to be

connected by the node). One ban-score rule only affects

outbound peer, i.e., block was cached as invalid, while

some ban-score rules can only be used to ban inbound

peer, such as the rules of VERSION and VERACK.

4) We can see that the Bitcoin Core team is increasingly

refraining from applying the ban-score rules to the

message misbehaviors, since several rules have been

deprecated in the recent Bitcoin Core versions, e.g., the

rules with VERSION and VERACK.

III. INEFFECTIVENESS: BAN SCORE FAILS TO DEFEND

TRICKY BM-DOS VECTORS

In this section, we study the interplay between the Bitcoin-
Message-based DoS (BM-DoS) attack and the ban-score

mechanism. We reveal multiple attack vectors to exploit the

ineffectiveness of the ban score.

Internet

Attacker NodeTarget Node BM-DoS

Fig. 3. Threat model of the BM-DoS attack

A. Threat Model against Ineffectiveness

The attacker is capable of injecting networking packets on

the victim for DoS and is aware of the Bitcoin protocol.

Figure 3 shows the threat model for the BM-DoS attack.

First, the network adversary needs to connect to the public

internet and knows the target Bitcoin node’s IP address, and

the target node should be reachable. Second, to launch the

application-layer BM-DoS, the attacker node needs to create

Bitcoin session to the target node, which means the attacker

node needs to establish TCP connection with the target node

first. Thus, BM-DoS is a connection-based attack. Third, the

attacker has enough computing/networking resources (e.g.,

botnet) to overwhelm the victim. For instance, every bot builds

a connection to the target node (that can maintain up to 117

inbound peer connections out of the overall 128 connections).

Fourth, we assume that the real world Bitcoin node could

be deployed behind a perimeter firewall. A public node is

publicly reachable by definition (if not, it is a private node)

and the firewall- or perimeter-based filtering is not applicable

in cryptocurrency networking and for our work. A public

node can physically be located behind the network perimeter

firewall, but the firewall uses an open port 8333. Therefore,

the traditional application-layer or circuit-layer firewall mech-

anisms are not applicable for cryptocurrency contexts.

B. Attack Vectors

We discover that the ban-score mechanism is ineffective

and deficient against multiple tricky attack vectors, which are

described specifically as follows.

1) Nullifying ban score by using messages never getting
banned: We can see that not all of the Bitcoin message types

are equipped with ban score as stated in Section II. According

to Table I, only 12 out of 26 message types [13] possess

corresponding ban-score rules in Bitcoin Core 0.20.0. Thus,
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Fig. 4. Sybil identifier to establish Bitcoin sessions (built on TCP connections)

the adversary can still use those message having no ban score

(e.g., Bitcoin PING) to launch the BM-DoS attack.

2) Forgoing ban score by constructing bogus messages:
We discover that the adversary can still use the messages

which are protected by ban score to attack the target node

as long as the adversary can construct the bogus message

payload to bypass the misbehavior tracking to avoid the ban

score increasing. For instance, despite the fact that a Bitcoin

BLOCK message has ban-score rule protection, an adversary

can still construct and send a bogus payload with an invalid

Proof-of-Work (PoW) hash value and an incorrect checksum.

Usually, the target node will check an arrival packet’s header

information on the transport layer first, i.e., the TCP seqnum,

acknum, flags, and checksum field. If the packet passes

the check on the transport layer, the message payload will be

decapsulated from the segment of the transport layer, passed

to the application layer, and processed by the misbehavior

tracking. In our attack case, the target node will process and

drop the packet when it finds the incorrect checksum on

the transport layer, which will occur before the misbehavior

checking on the application layer, whereby the adversary’s

connection will not be banned. This gives an option to the

adversary to forgo the ban score.

3) Defeating ban-score mechanism by creating serial and
multiple Sybil connections: Further, even if the adversary is

not able to construct the message payload to trick the ban-

score-based protection, the adversary can still generate serial

and multiple Sybil identifiers to connect to the target node and

transmit misbehaving messages to it. Actually, in the context of

permissionless Bitcoin P2P networking, one entity/node could

have multiple identifiers. Hence, an attacker node can use

multiple identifiers to establish Bitcoin sessions to the target

node. Figure 4 illustrates how Sybil identifier works for this

attack vector. The attacker node (A) using Sybil socket pairs

(picking up a free [IP:Port]) initiates the TCP three-way

handshake to the victim node (V), which is the target node

listening on port 8333. Once the TCP three-way handshake

is done, they have connected on the transport layer, and then

A needs to build the Bitcoin application-layer session with

V by exchanging VERSION and VERACK (which ride on

TCP packets) named Version Handshake. If A succeeds, it

can transmit Bitcoin messages with V directly. Thus, A can

send misbehaving messages to V. When a prior identifier gets

banned, A can use another un-banned identifier (e.g., another

port with the same IP address) to create the next connection

in serial to keep sending misbehaving messages to V.

Internet

Attacker Node

Innocent PeerTarget Node

Defamation

Fig. 5. Threat model of the Defamation attack

IV. VULNERABILITY: BAN SCORE ENABLES UNEXPECTED

DEFAMATION ATTACK VECTORS ON INNOCENT PEER

In this section, we expose the vulnerability and a major

threat of the Bitcoin’s ban-score mechanism. We propose the

Defamation attack to exploit and leverage the ban score to

make the innocent peer get banned by the target node.

A. Threat Model against Vulnerability

We build on the threat model in Section III-A. However,

the threat model for launching the ban-score-exploiting threats

requires greater capabilities than the one against ineffec-

tiveness. Figure 5 presents the threat model of Defamation.

There are two victims involved in this attack, i.e., the tar-

get node and the innocent peer. Assuming that there is a

connection between the target node and the innocent peer,

the attacker node sends the misbehaving Bitcoin messages

to the target node pretending to be the innocent peer in

order to make target node ban the innocent peer. To in-

ject such messages into the TCP connection, the attacker

should know the 4-tuple <source IP, source port,
destination IP, destination port> and the real-

time TCP state of the connection, i.e., seqnum and acknum.

Although, some network switches/routers may prevent sniff-

ing, and Internet service providers (ISPs) and autonomous

systems (ASes) could use network access control to block

IP spoofing, there are a number of cases that can satisfy the

requirement in practice. For example, we can sniff and spoof

when the attacker node and the target node are in the same

network using the promiscuous mode (as is the case for Bitcoin

public nodes) (e.g., [14]), or when they are in the same 802.11

wireless network, or with the help of a compromised ISP/AS

(e.g., [10]).

Our threat model is different from the network connection

based man-in-the-middle (MitM) threat model (where the

attacker covertly relays and possibly alters the communications

between two parties who believe that they are directly commu-

nicating with each other). We only assume that the adversary

can eavesdrop on the connection and inject data into the TCP

connection, but we do not assume that the adversary must have

the capability to perform route manipulation to make itself

have a privileged position in the middle of the target node

and the Bitcoin Mainnet (as done in previous cryptocurrency

research, e.g., [10], [15] ).

To compare the TCP reset attack [14] from the Defamation

threat model. Although a TCP reset attack also needs the

real-time TCP connection’s state, such an attack is feasible

regardless of the existence of the ban-score mechanism. There

is not much can be done for defending against the TCP reset

attack by the public P2P network. Nevertheless, using TCP
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Algorithm 1 Post-connection Defamation
Require: A can sniff i’s inbound peer connection from j
Ensure: j gets banned by i
1: A gets 4-tuple [i’s IP, i’s port, j’s IP, j’s port]
2: while A performs real-time eavesdropping do
3: A learns the current TCP seqnum and acknum
4: A crafts misbehaving message with the packet header using the 4-tuple and the

expected seqnum and acknum
5: A injects the misbehaving message to i
6: i increases ban score against j
7: end while

reset attack can only terminate a connection but can not ban

a peer identifier for 24 hours.

B. Attack Vectors

We unveil the Defamation attack vectors to exploit and show

the vulnerability of the ban-score mechanism as follows.

1) Pre-connection Defamation: In this case, the attacker

only needs to know the existence of the innocent peer identifier

j and the target node identifier i, and only to preemptively

make j get banned by i before j attempts to connect to i. In

other words, the attacker node performs IP spoofing by using

j to connect and transmit misbehaving messages to i. This

attack will work if it occurs before the innocent peer uses j
to connect to i, i.e., there is no TCP connection between the

original innocent peer and the target node, and so the attacker

node only needs to perform IP spoofing rather than real-time

eavesdropping and TCP data injection.

2) Post-connection Defamation: In this case, the target

node identifier i and the innocent peer identifier j have already

established a TCP connection, where assuming j is an inbound

peer identifier towards i. To defame j, the attacker A needs to

perform not only spoofing but also sniffing and learning the

real-time TCP connection state in order to inject data into the

connection. In brief, A should be capable of spoofing j and

inject misbehaving messages to i to make i ban j. The attack

procedures can be described by Algorithm 1.

V. IMPLEMENTATION

This section presents the attack prototyping and the testbed

setup for conducting experiments.

A. Attack Prototyping

Regarding the attack prototyping, the attacker is required

to be able to establish a Bitcoin session with the target

node and construct certain Bitcoin messages for data trans-

mission/injection. The attacker is not necessary to be a full

Bitcoin node, but it should use the Bitcoin library like python-

bitcoinlib [16] to satisfy the requirements. Moreover, to facil-

itate the post-connection Defamation attack, we use Scapy to

sniff the target connection, craft misbehaving message packets,

and inject the spoofed TCP packet into the connection heading

to the target node.

B. Testbed Setup

We implement the real-world Bitcoin nodes on machines

(using Ubuntu 18.10 64-bit operation system, Intel Core i7

4GHz CPU, 4GB memory, and Intel PRO/1000 MT Desktop

network adapter). In addition to the node labeled “target

TABLE II
MEASUREMENT OF BITCOIN MESSAGE TYPES PER QUERY

Bitcoin Message Attacker’s cost
(clocks)

Victim’s impact
(clocks)

Impact-
Cost ratio

VERSION 60.71 129.5 2.13
VERACK 48.57 241.375 4.97
ADDR 5743.68 42.981 0.0075
INV 47112.62 77.83 0.0017
GETDATA 41270.62 238.905 0.0058
GETHEADERS 50.8 38.875 0.77
TX 54.55 609.016 11.16
HEADERS 7220.95 16.394 0.0023
BLOCK 23.45 617282.101 26323.33
PING 21.33 95.582 4.48
PONG 20.68 9.797 0.47
NOTFOUND 16.75 10.232 0.61
SENDHEADERS 12.89 7.125 0.55
FEEFILTER 15.37 8.714 0.57
SENDCMPCT 15.85 4.889 0.31
CMPCTBLOCK 14.48 46225.182 3192.35
GETBLOCKTXN 422.32 874 2.07
BLOCKTXN 16.66 97445.452 5849.07

node”, we implement another two nodes: “attacker node” and

“innocent peer”, but all the three nodes have equal machine

specifications. Both target node and innocent peer install and

run Bitcoin Core (software version Satoshi 0.20.0 and protocol

version 70015) with the default configuration.

The Bitcoin configuration file for the target node and

innocent peer includes the adapter attribute so that the innocent

peer can automatically connect to the target node as an

inbound peer when they start up. Other than the innocent peer,

the target node also connects to the other peers from Internet.

Our attacker node only connects to the target node and never

connects to the Bitcoin Mainnet due to ethical concerns.

We note that i) for the BM-DoS vectors and the

preemptive/pre-connection Defamation attack, we only need

the attacker node to directly connect to the target node to carry

out desired attacks; ii) for the post-connection Defamation

attack, all the three nodes are involved, where the attacker

node needs to sniff the connection of the target node and the

innocent peer node, and spoofs the innocent peer and transmits

misbehaving messages to the target node.

VI. ATTACK MEASUREMENTS AND ANALYSES

In this section, we measure and analyze the impact as well

as the cost of using different attacks.

A. Measurement of Message Types: Impact-Cost Ratio

The impact-cost ratio of DoS indicates the ratio of the

impact for processing the received message on the target node,

over the cost for sending the message on the attacker node.

To this end, we measure the clock cycles (i.e., CPU time) for

processing different Bitcoin message types (used by default)

on both the attacker and the target nodes respectively. Thus,

from the attacker node’s perspective, the mean clock cycles

indicate how much CPU time is needed to generate a certain

message, while from the target node’s perspective, the average

clock cycles denote how long it has to take to process a certain

arrival message.

Table II presents a measurement of processing every mes-

sage per query from both sides. We calculate the impact-cost

ratio which is shown in the fourth column of the table to

find out which message type can make the adversary have
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the greatest gain - the highest value of impact-cost ratio.

We found that using BLOCK would gain the highest impact-

cost ratio, which is 26323.33 on average and is more than 4

times as much as the second-highest BLOCKTXN that spends

5849.07 in mean. Also, it is countable that one BLOCK
message has the same impact as 6 BLOCKTXN messages

in the victim’s computational resource cost. Thus, sending

BLOCK messages is the best option for flooding, which forces

the victim to execute resource-consuming operations that are

disproportionate to the attack effort.

B. BM-DoS Impacting Mining Rate

As stated in Section III, the bogus BLOCK message can

bypass the misbehavior checking, and the previous subsection

also shows that it leads the target node to cost the greatest

number of clock cycles1. Hence, we use bogus BLOCK BM-

DoS to flood the target node to impact the mining rate. Figure

6 shows the results which also include the result under PING
messages flooding for comparison. In this case, the attacker

performs flooding as fast as possible which means the attacker

setting no interval/delay between two consecutive messages.

The figure shows average values (with 95% confidence level)

given by using the Bitcoin node to do 100 mining samples,

and each sample performs 107 hashes. We find that the

mining rate under no flooding is as high as 9.5 · 105 h/s,

which is much higher than the one of 3.5 · 105 h/s under

invalid BLOCK BM-DoS with a single connection. Further, we

enable Sybil identifiers to handle 10 sockets (with 10 threads

running in parallel, whereas running them across different bots

will yield even more impact) and 20 sockets respectively to

contact the target node and keep flooding the target node using

bogus BLOCK messages concurrently. With this, an increasing

number of Sybil connections is applied to DoS the victim and

measure the change of its mining rate. That does impact the

mining rate, which results in 2.8 · 105 h/s and 2.6 · 105 h/s

on average under 10 and 20 Sybil connections separately. By

contrast, using PING BM-DoS leads to the mining rates of

5.5 · 105 h/s, 4.6 · 105 h/s and 3.5 · 105 h/s under 1, 10 and

20 Sybil peer connections respectively. It indicates that the

BLOCK BM-DoS has a higher impact than the PING BM-

1The bogus BLOCK message (without application-layer process at the
victim’s side) still has the highest impact-cost ratio which is 2132.79 amongst
all the message types using bogus payloads.

TABLE III
DOS ATTACK IMPACT-TO-COST COMPARISON

Cost (Attacker) Impact (Victim)
Layer Rate

(num/sec)
CPU
(%)

MEM
(MB)

Bandwidth
DoSed (kBits/s)

Mining Rate
(times/sec)

Bitcoin 102 1.3 14.34 96.48 824564.81

PING 103 4.7 14.34 482.31 518954.34

ICMP 102 2.7 2.048 107.72 919619.71

ping 103 14 2.048 383.14 841188.46

104 62.9 2.048 1853.44 639356.67

105 88.7 2.048 3491.84 505638.85

106 98.3 2.048 5990.40 359115.99

DoS, and the attacker’s cost is directly proportional to the

impact on the victim.

C. BM-DoS vs. Network-layer Traffic Flooding

We also measure and compare the attack efficiency between

the network-layer traffic flooding and the application-layer

BM-DoS. To facilitate a fair comparison, we use Bitcoin’s

PING message for the BM-DoS attack and ICMP protocol

ping packet for the network-layer traffic flooding. We mea-

sure the attacker‘s cost including CPU and memory usage,

and the target node’s impact including the bandwidth and the

mining rate in terms of applying different flooding rates. Table

III presents the measurement results.

Our attack implementation in python reveals that the BM-

DoS has the flooding rate limitation to 103 messages per

second, which denotes that if the attacker node increases the

rate beyond that value, the flooding only lasts several seconds

then the network socket becomes inundated and the pipeline

breaks. By contrast, the network-layer using flooding tools like

hping can grow the flooding rate up to 106 packets per second.

However, comparing the same flooding rate, we observe that

the Bitcoin PING BM-DoS costs less attacker node’s CPU

(and more memory) resource than the ICMP ping flooding.

Further, we reveal that BM-DoS can impact the mining

rate more than the network-layer traffic flooding (see Figure

7), although the network-layer traffic flooding can eat more

bandwidth than BM-DoS. That is because the arrival Bitcoin

PING message will cause the Bitcoin node to process it in

the application-layer, which consumes CPU resource, while

the arrival ICMP ping packet will only be processed by the

network-layer that is conducted by the operating system.

D. Innocent Peer Ban Rate by Defamation

As stated, the adversary can even leverage the ban score to

attack the target node by recreating multiple socket connec-

tions in serial if the prior connection gets banned. Figure 8

presents the target node’s ban score tracking results when it

receives misbehaving VERSION messages. We know that each

VERSION message (except for the first one) arriving to the

target node will result in an increment of the ban score. Thus,

the attacker node can carry out a loop-attacking by continu-

ously establishing new connection after the prior connection

getting banned and use such serial Sybil connections to keep

sending VERSION messages to the target node.

We see that if there is no delay (sending the message as fast

as possible), one peer identifier will get banned in 0.1 seconds
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Fig. 8. Defamation attack using Version message, where the attacker bans
another peer node if the ban score reaches 100

in mean, while if we set 1 millisecond delay between every two

consecutive messages for comparison, the Sybil identifier will

be banned slower, in 0.2 seconds on average. The quicker the

attacker gets banned, the more continuous Sybil connections it

can launch within a certain time interval. However, the lower

flooding rate saves the networking/transmission resource and

is generally more efficient. Also, we find that the Sybil attack

program used by the attacker node has latency to establish

every new socket pair connecting to the target node, which

is approximately 0.2 seconds. That is bulky since it costs the

attacker up to hundreds of packet injections.

Moreover, if one attacker would like to perform the preemp-

tive Defamation attack to fully defame an IP address, which

means that it needs to defame 65536− 49152 = 16384 ports

in theory (TCP ports with numbers from 49152 to 65535 are

used as dynamic, private or ephemeral ports), which will take

approximately 16384 · (0.1 + 0.2)/60 = 81.92 mins. With

that attack, this IP address will not be able to create any

connection to the target node for 24 hours, because all the

potentially available identifiers had been banned. Therefore,

the peer-table’s diversity of the target node is decreased, and

if the attacker is powerful enough, the greater number of peers

can be defamed within an even shorter time.

VII. OUR DETECTION COUNTERMEASURE

In this section, we present the anomaly detection to build

the intelligence to defend against the BM-DoS attack and

the Defamation attack. The proposed detection approach does

not need any changes to the current Bitcoin Core, thus, the

anomaly detection still makes use of the existing ban-score

mechanism. In the next section, we discuss other potential

countermeasures which include changes to the Bitcoin Core.

A. Anomaly Detection for Bitcoin

In general, anomaly detection is helpful for monitoring and

detecting anomalous behavior, in particular, for the networking

traffic where DoS attack’s impact can be exposed. As opposed

to using identifier-based detection that is ineffective in the

permissionless environment as the spoofing and Sybil attacks

can often violate peer identifiers in such network environment,

we introduce an identifier-oblivious detection approach to

detect anomalies like DoS attacks. That is typically effective

against our attacks for the permissionless Bitcoin P2P network,

because the presented BM-DoS attack and Defamation attack

involving Sybil and spoofing which make the identifier-based

detection approach ineffective. In this regard, this proposed

detection method mainly uses the analysis of the message

Fig. 9. Anomaly detection engine using statistical analysis and involving no
Bitcoin Core change

traffic information rather than the peer connection identifiers

to detect the anomalies. The novelty of this approach is not

because of the traffic information analysis but the specific

features of the Bitcoin messages used to detect the anomalies.

In addition, this approach uses statistical analysis rather than

machine learning, and so there is no computational resource

requirements for implementing the detection engine.

The detection engine builds on the real-world Bitcoin node

implementation connecting to the Bitcoin Mainnet. Figure 9

presents the target node prototype where the anomaly detection

engine builds. The detection engine consists of three main

components: Monitor, Dataset and Analysis Engine. The Mon-

itor component (which actually is a functional module of the

Bitcoin Core application) is used to collect the arrival Bitcoin

messages transmitted from the Bitcoin Mainnet. The Dataset

component is used to store the collected data (messages) in

a certain format. The Analysis Engine component uses the

data to train its reference profile and applies the built model

to detect the testing data. When it detects anomaly, it can

send alert to the Bitcoin Core application to inform it to

take reaction, e.g., to drop and rebuild peer connections. The

machine connects to the Bitcoin Mainnet so that it can collect

the real-world data for training and testing. The outlier data is

generated by an attacker node that only connects to the target

node so that the misbehaving message traffic will not spill

out to the Bitcoin Mainnet. The generated anomaly traffic is

mixed with the normal real-world data when we generate the

abnormal dataset.

1) Key Features for Detection: This subsection presents the

features of the Bitcoin messages used to perform anomaly

detection. The following feature is novel and specific to the

Defamation attack:

Outbound Peer Reconnection Rate (c) This feature

denotes the peer reconnection count per minute (rate). It is

specifically selected to detect the Defamation attack, because

we know that once an innocent outbound peer gets banned, the

target node will rebuild a new outbound peer connection, and

this operation will lead the target node to have an abnormal

peer reconnection rate during a certain time window (e.g., 10

minutes), which can be used to detect the anomaly.

There are also other features that are generally adopted for

anomaly detection although they are Bitcoin specific:

Overall Message Rate (n) This feature indicates the

count rate over all the arrival Bitcoin messages (num/min).

It is typically selected to detect the BM-DoS attack, because

if there is a message flooding traffic, the overall message rate

will deviate from the normal message rate. That can be used

to detect the anomaly.
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Fig. 10. Anomaly detection by comparing the count of messages (Λ): the
normal case and the under-BM-DoS case have the correlation ρ = 0.05; the
normal case and the under-Defamation case have the correlation ρ = 0.88

Message Count Distribution (Λ) This feature represents

the relative count distribution among all messages. It is used

for detecting both the BM-DoS and the Defamation attack,

since both attacks using certain Bitcoin messages for carrying

out the attack will change the relative message count distribu-

tion from the normal distribution.

2) Anomaly Detection Performance: After training the

model using the normally collected data for approximate 35

hours, we figure out that the threshold of c is τc = [0, 2.1]
reconnections per minute during a time window of 10 minutes,

the threshold of n (i.e., the range of the message arrival rate) is

τn = [252, 390] messages per minute, and the threshold of Λ
(i.e., the similarity using correlation coefficient) is τΛ = 0.993.

Detection Accuracy With the reference profile and the fixed

thresholds, we can further use the model to perform anomaly

detection. Figure 10 shows the comparison of the normalized

count of messages (in the vertical axis in the logarithmic scale)

between the normal case, the under-BM-DoS case and the

under-Defamation case.

On the one hand, the under-BM-DoS case represents the one

when the attacker takes the BM-DoS attack through sending

numerous PING messages to the target node. We can find that

the under-BM-DoS case has the PING message dominating

the message count distribution, whereby the PING message

takes 94.16% of the normalized count of the overall messages,

it is 45.38 times greater than the PING’s normalized count

in the normal case, and it is also 26.45 times greater than

the TX’s normalized count in the under-BM-DoS case. Thus,

the similarity of the normal case and the under-BM-DoS case

becomes very low, i.e., the correlation ρ = 0.05 which is

largely lower than τΛ = 0.993. Also, the flooding PING
messages increase the n, resulting in approx. 15,000 messages

per minute, which is much greater than the upper bound of τn
that is 390 messages per minute.

On the other hand, the under-Defamation case denotes the

one when the attacker keeps defaming the innocent outbound

peers of the target node so that the target node has to reconnect

to new outbound peers by VERSION/VERACK exchange. We

can see that the VERSION’s normalized count is 43.57 times

greater than the one in the normal case, and the VERACK’s

normalized count is 30 times greater than the one in the normal
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Fig. 11. Comparison of the training and testing latencies of the detection
approaches, and our approach is on the far left in “Ours”

case. Thus, the correlation of the normal case and the under-

Defamation case is ρ = 0.88 that is lower than the threshold,

and also, we get that the outbound peer reconnection rate is

c = 5.3, which is greater than the upper bound of τc that is

2.1 reconnections per minute.

Therefore, the proposed message traffic features can distin-

guish the under-BM-DoS and under-Defamation cases from

the normal case, and the anomaly-based detection can leverage

the Bitcoin message traffic information to detect if the target

node is under the presented attacks. After the detection, the

Bitcoin node can perform detection response to resist against

the attack, e.g., to disconnect the current anomaly connections

and rebuild all the peer connections.

Our detection accuracy performance is 100% because the

attacker tested against our scheme does not make the effort

to avoid the detection. However, attacker which controls its

traffic and reduces the traffic amount for the attack would

have a smaller impact on the victim, and our detection

scheme has the security effect of mitigating the attack. More

specifically, against BM-DoS, the attacker consumes less band-

width/resource of the victim; against Defamation, the attacker

takes longer time to succeed in its blacklisting goal. We leave

a more intelligent attacker for future work.

Detection Cost Overhead Further, we compare the time

latencies (as they show how timely the defense would be)

of both training and testing between our approach and the

machine learning (ML)-based approaches described in the

literature [17]–[22], including Logistic Regression (LR), Gra-

dient Boosting (GB), Random Forest (RF), Support Vector

Machine (SVM), Deep Neural Network (DNN), One-Class

SVM (OC-SVM) and AutoEncoder (AE). Figure 11 shows that

our approach using statistical analysis is at least four orders of

magnitudes efficient than the ML-based approaches depending

on the certain ML algorithm which is adopted.

VIII. DISCUSSIONS OF OTHER POTENTIAL

COUNTERMEASURES

Although we should err on the side of caution when

making the decision of changing the Bitcoin Core (other-

wise it will backfire), this section discusses several potential

countermeasures that involve Bitcoin Core changes for further

investigation in the future.

Forgoing Ban Score Our research discovers that the ban

score is both ineffective against BM-DoS (that can bypass the
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ban score) and vulnerable against Defamation (that can use the

ban score to attack other nodes). Therefore, we recommend

forgoing the ban-score mechanism as a preventive approach

to eliminate the opportunities for such networking threats

exploiting the ban score. Disabling the ban score does not

affect any of the other Bitcoin operations. The node disabling

the ban score can still communicate with other nodes and

participate in the Bitcoin protocols as usual, since ban score

is implemented locally and in a distributed manner, i.e., all

nodes keep track of their peers’ ban scores locally and use

them as they see fit, including not taking any control action.

While there are numerous methods to disable or forgo the

ban-score mechanism of Bitcoin Core, we test and validate the

following methods which has negligible overheads (we do not

observe the performance changes):

• Ban score threshold to ∞. This modification method is

just to omit the checking when the ban score reaches the

threshold at 100. With that, the ban score can increase in-

finitely and the peer identifier will never get banned. One

benefit of this method is that the misbehavior tracking is

still working and the score is kept, which would have

some other use, e.g., peer-health ranking. This method

just needs to comment out lines 1059 to 1062 of the

code [23] in Bitcoin Core 0.21.0.

• Disabling the checking. This modification method is

to fully disable the ban-score mechanism, which omits

misbehavior checking and tracking. This method needs

to comment out the entire PeerManager::Misbehaving
function, from lines 1051 to 1064 of the code [23] in

Bitcoin Core 0.21.0.

In our disclosure to Bitcoin described in Section I, the Bit-

coin Core Team acknowledged our work and validations. How-

ever, Bitcoin Core decided to keep the ban-score mechanism

because of its benefit to deter some networking misbehaviors.

We acknowledge that the ban-score mechanism can defend

against unintentional and non-malicious misbehaviors or some

security threats unaware of our research, as the classical threats

which are older and lacking in sophistication generally exist in

the real-world networking. However, we expect the risks of our

discovered threats to increase in the future especially after the

publication of our research and given the high feasibilities of

the threats. We plan to continue to communicate with Bitcoin

Core to secure Bitcoin and other cyptocurrencies in the future,

including investigating the benefit vs. security risk tradeoff and

exploring non-binary mechanism solutions for ban score.

Good-score Mechanism Because the current ban-score

mechanism has such critical deficiencies, we consider intro-

ducing a good-score mechanism to replace it. The good score

is used to increase the credit/reputation to a peer from the

target node’s perspective, and only the target node keeps track

of its every peer’s good score through increasing the peer’s

good score by 1 when the peer transmits a valid BLOCK
message to the target node. With this, an innocent peer can not

be banned by the Defamation attack. Despite an attacker may

want to masquerade the high-reputation peer to continuously

transmit misbehaving messages to the target node, the attacker

is hard to find out the good scores associating to different peers

which are only recorded by the target node locally.

Authentication To defend against the Defamation attack the

typical approach is to provide cryptographic encryption and

authentication to every connection. However, that challenges

the design principle of the permissionless cryptocurrency P2P

network, since that will bring immense networking overhead.

Although P2P communication encryption for Bitcoin has been

discussed by BIP151 [24] and BIP324 [25], BIP151 has been

withdrawn and BIP324 is still under work. It is estimated that

there are over 60,000 nodes in the Bitcoin P2P network [26],

[27]. Assuming each node maintains 34 connections according

to the result presented by a related work [28], the whole Bit-

coin P2P network then will have 1,020,000 connections need

to be encrypted. This is a significant overhead considering that

Bitcoin relies on broadcasting where all packets get relayed

numerous times. However, some cryptocurrency like Ethereum

does use specific TCP-based transport protocol to provide the

encryption and authentication to the communication among

Ethereum nodes. For example, Ethereum adopts the RLPx

Transport Protocol using asymmetric authenticated encryption

function [29] which is different from the application-layer

digital signature function for signing the message payload by

using the sender’s private key. It is worth mentioning that this

countermeasure can resist against the Defamation attack, while

it is not able to resist against the TCP reset attack which is

out of our threat model.

IX. LITERATURE REVIEW

This section performs a literature review in terms of the

following aspects.

A. Ban Score in Other Cryptocurrencies

We find that several other cryptocurrencies also use score

mechanism to protect the permissionless P2P networking. The

Nervos CKB Blockchain network maintains a P2P scoring

system to achieve network security [30]. CKB’s scoring sys-

tem is quite different from the Bitcoin’s ban-score mechanism,

because it does not only track bad behaviors (via subtracting

points) but also counts good behaviors (via adding points),

so the nodes need to score peers’ good and bad behaviors

continuously and can retain good (high-score) peers and evict

bad (low-score) peers out. Another case in point is the Dash

Core [31], which has a similar ban-score mechanism with Bit-

coin, i.e., the mechanisms are in place to punish misbehaving

peers who take up bandwidth and computing resources by

sending false information. If a peer gets a ban score above

the threshold (100 by default), they will be banned for 86,400

seconds by default (24 hours). However, Dash Core includes

more ban-score rules for tracking misbehavior. In summary,

we can see that ban score is not only used by Bitcoin, but

Bitcoin Core team even did not document it, and that is why

our research is worth perform.
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B. DDoS Threats on Bitcoin Ecosystem

It is prevalent that DDoS threats impact operators and

financial services of the Bitcoin ecosystem. In [32], the

authors analyzed the economic impact of DDoS attacks on

a cryptocurrency exchange using event analysis. Vasek et

al. [5] performed an empirical analysis of DoS attacks that

impact the Bitcoin currency exchange, mining pools, gambling

operators, eWallets, etc. Feder et al. [6] investigated the impact

of shocks on trading activity at the leading Mt. Gox exchange

using Bitcoin between April 2011 and November 2013. It

was revealed that the number of large trades on the exchange

fell sharply, particularly, the distribution of the daily trading

volume becomes less skewed (fewer big trades). Indeed, some

protection means such as Cloudflare has been created to

protect the online platform from DDoS attacks.

C. DoS Threats on Bitcoin Blockchain

1) Bitcoin Transaction-based DoS Attacks: A typical case

in point is the Bitcoin DoS vulnerability (CVE-2018-17144)

[7], which was exploited in Bitcoin Core versions 0.14.0

up to 0.16.2, whereby malicious miners try to validate a

block containing a transaction that attempts to spend the same

input twice, causing the whole Bitcoin infrastructure to crash.

Developers thereafter yielded a patch for anyone running

nodes up to version 0.16.3, along with an appeal to update

the software. In addition, a number of DoS attacks have been

studied, such as crafting bogus transactions to impact miner’s

hash power [33], transmitting out-of-order transactions to eat

up victim’s RAM resource [26], sending spam transactions to

delay non-spam transactions [34], and increasing the transac-

tion transmission rate to flood the mempool of the full node

[35]. All the above-related work focused on violating Bitcoin

transaction’s order, payload, or rate. Differently, our work aims

at crafting misbehaving messages to attack the built-in ban-

score mechanism.

2) Bitcoin Protocol-based DoS Attacks: State-based (or

protocol-based) DoS attacks include multiple state causality

based interactions. A case in point is the messages exchange

following the INV, GETDATA and then BLOCK/TX sequence.

This sort of attack is more sophisticated than flooding based

DoS attacks. Built on protocol exploiting, an attacker can

launch potential reflection and amplification DoS attacks to

Bitcoin node [36]. Gervais et al. [37] presented the 20 minutes

time-out (for BLOCK message) and 2 minutes time-out (for

TX message) attacks which enable the adversary to launch

propagation delay to the connected victim peer. The related

attacks rely on the Bitcoin protocol as well as multiple

interactions between the attacker and the victim, which is

feasible to be applied, while our work is simple and focuses

on one interaction.

D. DoS Threats on Bitcoin P2P Networking

1) Attacks against the Bitcoin Node: Yves-Christian et al.

[12] studied several ban-score rules and found a way to reset

the ban score to 0 through changing a different message

type to send, but those ban-score rules are out of date. In

[38], the authors described that an attack can create a large

number of bogus addresses using ADDR messages to exhaust

the victim node’s memory. Also, Eclipse attacks [9], [10]

use crafted ADDR messages to poison the target node’s peer-

table to further control the target node’s peer connections,

which is inevitably effective to implicate DoS attack [4].

However, the Eclipse attacks in the context of Bitcoin network

become increasingly infeasible with the up-to-date Bitcoin

Core (version 0.20.0) since the related bugs were fixed [10].

2) Attacks against the networking infrastructure: To this

end, the most well-known and effective attack is called

partitioning [35]. In contrast to Eclipse attack that is node-

based and focusing on poisoning the node’s peer-table, the

partitioning attack aims to use the network-layer attacking

techniques, like route manipulation by BGP hijacking [15],

to separate the target nodes from the rest of the Bitcoin

Mainnet. However, the partitioning attack itself is hard to form

in practice, since it is difficult to compromise a well configured

and protected routing system (like ISP/AS).

E. DoS Countermeasures for Bitcoin

The related work about anomaly detection in the con-

text of Bitcoin often used machine learning (ML)-based ap-

proaches, including supervised algorithms [17]–[19] and semi-

supervised/unsupervised algorithms [20], [21]. Built on the

state-of-the-art, [39] analyzes the feasibility and cost in greater

details with a focus on those ML-based detection approaches’

training and testing latencies and system impact on mining

operation. Most recently, [22] presented an anomaly detection

engine on top of AutoEncoder (AE) algorithm, which is able

to effectively detect the message-based DoS attack.

In contrast to the previous research based on ML, our detec-

tion uses statistical analysis. Our previous work in Lightweight

and Identifier-Oblivious eNgine (LION) [40] shows that a

well-designed statistical analysis-based detection can be more

appropriate and practical for the computing-invaluable miner

nodes (e.g., how it impacts the application-layer mining oper-

ations) and that such anomaly detection is effective against the

previously known Bitcoin threats. This paper however focuses

on detecting the novel threat discoveries exploiting the mis-

behavior tracking and identifies and tests the data/information

and parameters for the detection of such threats.

X. CONCLUSION

Cryptocurrency has the beauty of decentralization, im-

mutability and consensus protocol, however, it lacks authen-

ticity and trust which expose a critical vulnerability to the

adversary. Though the Bitcoin’s ban-score-based misbehavior

tracking framework was proposed to prevent nodes from

network threats, we demonstrate that it is not only ineffective

but also vulnerable. This ban-score rules can be nullified or

bypassed, which means an adversary can still use the ban-

score protected messages to attack the victim, by crafting

bogus messages. Even worse, the ban-score mechanism has

a severe side-effect, which enables an attacker to defame the

innocent Bitcoin peers due to the ease of launching connection
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identifier spoofing in the permissionless P2P network. We

reveal and prototype a variety of attack vectors against the

current ban-score mechanism, and evaluate their impacts on

the target node, which result in various implications, such

as the mining rate heavily decreasing. The anomaly detection

approach without including Bitcoin Core change is proposed,

and also, several other potential countermeasures involving

Bitcoin Core changes are discussed. We call for more research

in securing the networking for cryptocurrency and permission-

less blockchain. A formal analysis of the ban-score mechanism

could be as part of a future research.
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