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a b s t r a c t 

Current image-correction frameworks for sensors that employ optically coherent detection attempt to estimate 

phase errors in the data, like those caused by aberrations, and simultaneously reconstruct digitally enhanced 

images. In practice, these frameworks struggle to account for the effects of speckle. To address this gap, we 

develop a novel image-correction framework referred to as Coherent Plug-and-Play Artifact Removal (CPnP- 

AR), which couples a neural-network despeckler with a physics-based measurement model. We also develop 

the experimental protocol needed to quantitatively evaluate performance relative to multiple state-of-the-art 

frameworks. The results show that CPnP-AR produces higher-quality images and more accurate estimates of the 

phase errors for a wide range of objects, specifically without the need for object-dependent parameter tuning. 

This improvement in overall robustness is a key step towards employing this novel image-correction framework 

for numerous applications of interest. 

1

 

t  

l  

f  

w  

c

 

m  

s  

s  

i  

W  

p  

s  

t  

r  

n  

o  

c

 

t  

t  

m  

r  

b  

l  

e  

m  

b  

t  

s

 

p  

o  

c  

i  

e  

n  

𝑟  

i

h

R

A

0

. Introduction 

Sensors that employ optically coherent detection measure the ampli-

ude and phase of a scattered signal. In practice, phase errors in the data,

ike those caused by aberrations, degrade one’s ability to use this data

or the purposes of imaging. Therefore, we use image-correction frame-

orks to estimate and remove these phase errors and produce digitally-

orrected images. 

In addition to phase errors in the data, the use of coherent illu-

ination unfortunately introduces speckle, which manifest as high-

patial-frequency artifacts in images. Practically speaking, fully formed

peckle occurs when the surface-height standard deviation of the object

s greater than half the wavelength of the coherent illumination [8] .

hen this occurs, the reflected optical field has a seemingly random

hase at each point. This random phase leads to constructive or de-

tructive interference when we integrate the amplitude and phase of

he signal over a finite region. Images formed from the intensity of these

eflected optical fields contain exponentially distributed multiplicative

oise that we call speckle [8] . This is the case for numerous applications

f interest, and the resulting speckle limits the effectiveness of image-

orrection frameworks. 
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A straightforward but measurement-intensive approach to reduce

he effects of speckle is to average multiple, independent speckle realiza-

ions. This approach assumes that the object is relatively static between

easurements but that each measurement has an independent speckle

ealization. We may obtain such data through small relative movements

etween the object and the sensor or by changing the illumination wave-

ength. However, such multi-shot data may not always be available. For

xample, when the object or phase errors are changing rapidly, or if

ultiple wavelengths are not available, speckle averaging is not possi-

le. In those cases, we may only obtain a single measurement in which

he object and turbulence are static. In this paper, we focus on this con-

training case to produce high-quality images from single-shot data. 

Speckle averaging, nonetheless, gives insight into the underlying

roblem at hand. In general, we model the spatially discretized version

f the scattered signal, known as the reflection coefficient, 𝑔 ∈ ℂ 
𝑀 , as a

omplex-valued, zero-mean Gaussian random variable [8] . A speckled

mage is then formed from the observed amplitude squared, |𝑔|2 . How-
ver, the expected value of |𝑔|2 , known as the reflectance, 𝑟 ∈ ℝ 

𝑀 , does

ot contain speckle and is typically smoother than |𝑔|2 [24] . Simply put,
 is analogous to the real-valued quantity that we observe in incoherent

mages and hence is the speckle-free quantity of interest in this paper. 
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In previous works, we developed image-correction frameworks that

se a model-based Bayesian framework to find the joint maximum a pos-

erior (MAP) estimate of the phase errors and 𝑟 from single-shot mea-

urements. These frameworks include Synthetic Aperture Lidar Model-

ased Iterative Reconstruction (SAL-MBIR) [19,24] , and Digital Holog-

aphy MBIR (DH-MBIR) [18,20,22] . When compared to existing image-

orrection frameworks, SAL-MBIR and DH-MBIR produce higher-quality

mages and more accurate estimates of the phase errors with less data

nd at lower signal levels. However, both frameworks use relatively

imple analytical functions to model the distribution of reflectances,

 ( 𝑟 ) , which leads to artifacts in the estimates of reasonably complex im-
ges [21,23] . 

Alternatively, the image-correction framework referred to as Coher-

nt Plug-and-Play (CPnP) [23] uses a neural network image prior to fur-

her reduce artifacts. CPnP uses a generalization of Bayesian inversion

ased on Plug-and-Play (PnP) methods [6,7,9,11,12,28,37] , in which

 black-box denoiser, such as a convolutional neural network (CNN)

rained to remove additive white Gaussian noise (AWGN), is used as

n image prior. CPnP produces higher-quality images and more accu-

ate estimates of the phase errors than the MBIR frameworks found in

efs. [18,20,22,24] ; however, CPnP is limited in the type of image prior

hat can be used, and the resulting reconstructions still show residual ar-

ifacts caused by speckle. 

In CPnP and other PnP-based methods, a neural network denoiser

s applied iteratively in place of one of the proximal maps associated

ith the alternating direction method of multipliers (ADMM) algorithm,

hich is the foundation for PnP. A difficulty with using a pre-trained de-

oiser is that the intermediate images in the iterative loop often do not

ave the same distribution as that used to train the denoiser. To im-

rove the empirical performance of PnP, one approach is to modify the

enoiser during application. This can be done by changing the assumed

oise level in each iteration as in Chan et al. [7] or by using additional

nput-specific training as in Tirer and Giryes [36] . These methods re-

uire significant parameter tuning or on-the-fly training. An alternative

ethod in Liu et al. [15] uses a CNN trained as part of a deep unrolling

DU) architecture that includes the forward model in end-to-end train-

ng [11] . However, this method requires that the CNN be trained to-

ether with the forward model, destroying the modularity of PnP that

llows for changes to the forward model without changing or retraining

he prior model. 

In this paper, we develop a new PnP image-correction framework

or coherent imaging that allows us to move beyond the limitations

f AWGN-denoiser prior models while still maintaining the benefit of

nP modularity. Our framework, referred to as CPnP-Artifact Removal

CPnP-AR), uses a CNN trained to remove speckle instead of AWGN and

pplies this so-called “despeckler ” to input images using a novel resam-

ling approach. Through this resampling approach, CPnP-AR maintains

he modularity of PnP in that the despeckling CNN is trained on natural

mages without reference to the forward model. In addition, CPnP-AR

etter matches the distribution of images in the PnP loop to the dis-

ribution of training images by resampling before despeckling. That is,

nstead of applying the despeckler directly on an image estimate in the

nP loop, first this image estimate is used to generate a speckled image

y mimicking the speckle-formation process. Only then is the despeck-

er applied and the rest of the loop continued. Not only does the result-

ng framework significantly improve image quality compared to existing

rameworks, we find that CPnP-AR can better regularize a wide-range of

mage types with fixed hyperparameters. Thus, CPnP-AR is more robust

o variations in the data than existing frameworks. 

Another key contribution of this paper is the development of an

xperimental protocol, conducted at optical wavelengths using digi-

al holography (DH), to obtain high-quality estimates of the true re-

ectances and phase errors. Such estimates are difficult to measure

xperimentally due to uncertainties in illumination uniformity, object

omplexity, and detection sensitivity. The use of such estimates as base-

ine truth data is in contrast to previous experiments involving optically-
2 
oherent detection data [18,22,24,27,35] , which lacked accurate esti-

ates of the true reflectances and phase errors. Our experimental pro-

ocol allows us to quantitatively compare image-correction frameworks

nd validate the performance of CPnP-AR. 

In what follows, we provide a brief overview of MBIR and CPnP

n Section 2 . We then describe our novel image-correction framework

PnP-AR. Hereafter, we refer to the original CPnP algorithm as CPnP-

enoising (CPnP-DN) to help distinguish it from CPnP-AR. In Section 3 ,

e describe our custom-built experimental testbed, which uses DH data.

e provide our results in Section 4 , where we leverage this testbed

nd our methodology for obtaining the baseline truth data needed to

uantitatively evaluate the performance of CPnP-AR relative to existing

mage-correction frameworks. We do so for a wide range of objects with

arying contrast levels. Our conclusion then follows in Section 5 . 

. Image-correction framework 

In this section, we briefly describe our physics-based measurement

odel and our general approach to jointly estimating the reflectance

nd the phase errors. We then provide an overview of CPnP-DN found

n Pellizzari et al. [23] , and we present our novel framework, CPnP-

R. Please see Appendices A –D for more details on the physics-based

easurement model, CPNP-DN, CNN architectures and training, and al-

orithmic parameters, respectively. 

.1. Physics-based measurement model 

Sensors that employ optically-coherent detection measure the

omplex-valued field of a scatered signal. In general, we model this mea-

urement, 𝑦 ∈ ℂ 
𝑀 , as 

 = 𝐴 𝜙𝑔 + 𝑤. (1)

ere, 𝑔 ∈ ℂ 
𝑀 is the rasterized unknown reflection coefficient for the

lluminated object, 𝑤 ∈ ℂ 
𝑀 is complex-valued Gaussian measurement

oise with variance 𝜎2 
𝑤 
, and 𝐴 𝜙 ∈ ℂ 

𝑀×𝑀 is a linear transform de-

cribing propagation, measurement geometry, and phase errors, 𝜙 ∈
 
𝑀 [20,22,24] . While Eq. (1) represents a generic model for optically-

oherent detection, the structure of 𝐴 𝜙 will depend on the sensor modal-

ty at hand. In this paper, we consider the model for a sensor employing

H, as described in Appendix A . 

Given 𝑦 , we wish to jointly estimate the speckle-free image, 𝑟 =
[ |𝑔|2 ] , and the phase errors, 𝜙, from single-shot data. Fig. 1 shows an

xample reflectance image along with averages of multishot data to esti-

ate 𝑟 = 𝐸[ |𝑔|2 ] . Since our goal is to use single-shot data, the 𝑁 = 1 case
n Fig. 1 indicates the need for a prior distribution, so we seek the MAP

stimate of 𝑟 and 𝜙, given 𝑦 . With the physically-plausible assumption

hat 𝑟 and 𝜙 are independent, we seek to solve the problem 

 ̂𝑟 , 𝜙̂) = arg max 
𝑟,𝜙

𝑝 ( 𝑦, 𝑟, 𝜙) 

= arg max 
𝑟,𝜙

𝑝 ( 𝑦 |𝑟, 𝜙) 𝑝 ( 𝑟 ) 𝑝 ( 𝜙) . (2) 

owever, since 𝑟 is the expected value of |𝑔|2 , it is non-linearly related
o 𝑦 , making this MAP estimate difficult to obtain [24] . 

Instead of solving (2) directly, our work in Pellizzari et al. [20 , 22–

4] uses the expectation maximization (EM) algorithm to iteratively

onstruct and minimize a surrogate function, 𝑄 , in place of the MAP

ost function. With further details described in Appendix A , we obtain

 surrogate function for − log 𝑝 ( 𝑦, 𝑟, 𝜙) , given by 

 ( 𝑟, 𝜙; 𝑟 ′, 𝜙′) = 𝐸 𝑔 

[
− log 𝑝 ( 𝑦, 𝑔, 𝑟, 𝜙) | 𝑦, 𝑟 ′, 𝜙′]

= 𝑄 1 ( 𝜙; 𝑟 ′, 𝜙′) + 𝑄 2 ( 𝑟 ; 𝑟 ′, 𝜙′) + 𝑄 3 ( 𝑟 ) + 𝑄 4 ( 𝜙) (3) 

here each of the four terms are given as in Pellizzari et al. [23] by 

 1 ( 𝜙; 𝑟 ′, 𝜙′) = − 𝐸 𝑔 

[
log 𝑝 ( 𝑦 |𝑔, 𝜙) | 𝑦, 𝑟 ′, 𝜙′] (4) 

 2 ( 𝑟 ; 𝑟 ′, 𝜙′) = − 𝐸 𝑔 

[
log 𝑝 ( 𝑔|𝑟 ) | 𝑦, 𝑟 ′, 𝜙′] (5) 
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Fig. 1. Example reflectance image, 𝑟 , and corresponding speckle averaged images, produced according to 1 
𝑁 

∑𝑁 

𝑖 =1 |𝑔 𝑖 |, where 𝑖 is the index for each independent 
speckle realization. Here, we show the images produced by averaging 𝑁 = 1 , 15, and 50 independent speckle realizations. As 𝑁 grows large, the average converges 

to 𝑟 and is analogous to what we observe in incoherent images. 
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 3 ( 𝑟 ) = − log 𝑝 ( 𝑟 ) (6) 

 4 ( 𝜙) = − log 𝑝 ( 𝜙) . (7) 

ere, the conditional expectation 𝐸 𝑔 [ ⋅ | 𝑦, 𝑟 ′𝜙′] indicates that 𝐸 𝑔 is com-

uted using the posterior distribution of 𝑔, as given in Appendix A , with

he current estimates, ( 𝑟 ′, 𝜙′) , in place of ( 𝑟, 𝜙) , while the density func-
ions 𝑝 ( 𝑦 |𝑟, 𝜙) , 𝑝 ( 𝑦, 𝑔|𝑟, 𝜙) , and 𝑝 ( 𝑔|𝑦, 𝑟, 𝜙) do not depend on 𝑟 ′ and 𝜙′. 

DH-MBIR, CPnP-DN, and CPnP-AR, are all designed using iterations

f the form 

 𝑟 ′, 𝜙′) ← arg min 
𝑟,𝜙

𝑄 ( 𝑟, 𝜙; 𝑟 ′, 𝜙′) . (8)

owever, they solve the problem differently and they each use a differ-

nt model for 𝑝 ( 𝑟 ) . These key differences have a significant impact on the
esulting image quality and algorithm robustness. We direct the reader

o Appendix A for more information about the physics-based measure-

ent model and this surrogate function. 

.2. CPnP-DN 

CPnP-DN is an adaptation of the Multi-Agent Consensus Equilib-

ium (MACE) framework [6] , which uses a set of balance equations to

ntegrate multiple heterogeneous agents [4,11] . Agents are functions,

 ∶ ℝ 
𝑀 → ℝ 

𝑀 , that take an initial estimate as an input and produce

 “better ” estimate as an output. Here, better means that the output is

ore consistent with one or more models assigned to that agent [11] .

ach agent, 𝐹 𝑖 , maintains its own version of the estimate, 𝑥 𝑖 = ( 𝑟 𝑖 , 𝜙𝑖 ) ,
alled a state vector. MACE seeks solutions 𝑥 ∗ 

𝑖 
so that all the output

oints 𝐹 𝑖 ( 𝑥 ∗ 𝑖 ) are identical (consensus) and the update steps 𝐹 𝑖 ( 𝑥 
∗ 
𝑖 
) − 𝑥 ∗ 

𝑖 

um to 0 (equilibrium). 

CPnP-DN and MACE use the idea of proximal maps to convert the

ost function formulation of Eq. (3) into an agent update formulation.

s described in Sreehari et al. [32] , Venkatakrishnan et al. [37] , PnP

tarts with the ADMM algorithm for minimizing a sum of functions, as in

q. (3) . In ADMM, each term 𝑓 ( 𝑥 ) in this sum is converted to a proximal

ap, given by 

 ( 𝑥 𝑖𝑛 ) = argmin 
𝑥 

{ 

1 
2 𝜎2 

||𝑥 − 𝑥 𝑖𝑛 ||2 + 𝑓 ( 𝑥 ) 
} 

. (9)

quation (9) is an agent that maps the input, 𝑥 𝑖𝑛 , closer to the minimizer

f 𝑓 ( 𝑥 ) . The constant 𝜎2 is a kind of step size, maintaining proximity to
his input. As 𝜎2 increases, the proximal map output gets closer to the

inimizer of 𝑓 , thus making this agent more insistent on its preference.

The key insight of PnP methods is that we can replace these proximal

aps with more general maps that are not based on optimization. In

articular, the proximal map for the prior model can be interpreted as

 MAP estimate for an AWGN forward model [11,32,37] . Thus, we may

eplace this proximal map with a state-of-the-art CNN denoiser designed

o remove AWGN. 
3 
Using a CNN denoiser as an agent provides two primary benefits.

irst, there is no optimization step; instead, we simply apply the de-

oiser. Second, we inherit the implicit image prior model, 𝑝 ( 𝑟 ) , learned
y the CNN, which better captures subtle characteristics that explicit

nalytical models lack. 

For CPnP-DN, we define three agents that reduce the cost associated

ith one or more of the four model terms in the surrogate function in

q. (3) . Fig. 2 shows DH-MBIR, in which the surrogate functions are iter-

tively minimized in turn, as well as CPnP-DN and CPnP-AR. DH-MBIR

an be reformulated using PnP as in Fig. 2 (b), in which case agent 𝐹 1 
pdates the phase-error estimate by minimizing 𝑄 1 + 𝑄 4 with respect

o 𝜙, while agents 𝐹 2 and 𝐹 3 are proximal maps for 𝑄 2 and 𝑄 3 , respec-

ively. The consensus solution, 𝑟 ∗ , 𝜙∗ , is found using Mann iterations to

 specified convergence tolerance. 

In CPnP-DN [23] , the agent 𝐹 3 is replaced with a CNN designed to

emove AWGN,  ( ⋅) , as shown in Fig. 2 (c). In this paper, we use the
-in-U Network (UinUNet) architecture [1] , trained on a single normal-

zed noise level, 𝜎 = 0 . 1 , and use an L2-loss function. In Appendix B and
ppendix C , we provide additional details about CPnP-DN and UinUNet.

.3. CPnP-AR 

As noted above, the images encountered at various iterations of the

nP reconstruction process generally do not follow the AWGN assump-

ion precisely. In the current setting, the presence of speckle in our im-

ges tempts us to include a prior agent in the form of a CNN despeck-

er, which can be trained for state-of-the-art performance for removing

peckle [13,26,29] . While such CNNs encode a great deal of image prior

nformation, using a despeckler naively as an agent also fails to match

he distribution of images encountered during CPnP reconstruction. 

To overcome this mismatch, we introduce a new agent for artifact

emoval (AR) in the form of a two-stage CNN despeckler, as shown in

ig. 2 (d). The first stage takes an input state vector, ( 𝑟 3 , 𝜙3 ) , which repre-
ents a candidate reconstruction in the iteration process, and projects it

o a speckled image that is consistent with measured data and estimated

hase error. In the second stage, a CNN despeckler maps this speckled

mage into the set of clean images that are consistent with the learned

rior model. 

More precisely, we define our AR agent as 

 3 ( 𝑟 3 ) =  ( 𝐸 𝑔 [ |𝑔|2 | 𝑦, 𝜙3 , 𝑟 3 ]) . (10) 

his agent consists of two steps: computing the expected value of the

peckled image given the input state vector and measured data 𝑦 , then

especkling that image with a CNN  ( ⋅) trained to remove speckle
rom a generic set of images. The expected value 𝐸 𝑔 [ |𝑔|2 | 𝑦, 𝜙3 , 𝑟 3 ] is
hown in Appendix A to be the backprojection of the data 𝑦 modulated

y the influence of 𝜙3 and 𝑟 3 , hence it is a speckled image. We evaluate

he expectation in Eq. (10) with the same approach used to evaluate our

urrogate function, except that we condition the expectation on the state

ector, ( 𝑟 , 𝜙 ) , rather than the current estimate, ( 𝑟 ′, 𝜙′) . With this new
3 3 
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Fig. 2. (a) DH-MBIR uses an iterative coordinate descent minimization to up- 

date 𝑟 and 𝜙. (b) Reformulating DH-MBIR using PnP converts 𝑄 2 and 𝑄 3 to 

proximal maps, while 𝑄 1 + 𝑄 4 is minimized separately. Each agent has its own 

state vector, ( 𝑟 𝑖 , 𝜙𝑖 ) . (c) CPnP-DN uses a CNN trained to remove AWGN in place 
of prior term proximal map 𝐹 3 . (d) CPnP-AR replaces the CNN denoising agent 

with a two-step operation that first transforms the state vector, 𝑟 3 , 𝜙3 into a 

speckled image and then applies a CNN trained to remove speckle. 
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we show the corresponding reflectance image, 𝑟 𝑖 , used to generate the speckled 

input. We trained our CNN to map |𝑔 𝑖 |2 → 𝑟 𝑖 . 
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t  
gent, the CPnP-AR algorithm is identical to the CPnP-DN algorithm,

xcept that we use Eq. (10) for 𝐹 3 in place of an AWGN CNN denoiser.

hile this change seems small, it is a fundamentally-different process for

ncorporating image priors. By using an appropriate resampling method,

ike the expectation in Eq. (10) , we are no longer restricted to using

WGD operators, allowing us to incorporate a wider-range of mapping

unctions that better model the problem at hand. 

In contrast to deep unrolling methods, in which the CNN is trained

hile embedded in a full reconstruction algorithm, our AR agent de-

ouples the learned image model from the forward model through our

wo-step process. During the resampling step, we directly use the for-

ard model to evaluate 𝐸 𝑔 [ |𝑔|2 |𝑦, 𝜙′, 𝑟 3 ] . This step provides us with an
stimate of a speckled image based on the current state vector. During

he second step, we input this speckled image into our CNN despeckler,

 ( ⋅) . In our approach,  ( ⋅) does not use information about the for-
ard model during training. Instead, we train the CNN using a generic

et of speckled images, |𝑔 𝑖 |2 , for 𝑖 ∈ 1 , … , 𝐾 , where 𝐾 is the number of

raining images. We generate each training pair by drawing from the
4 
istribution 

 ( 𝑔) ∼ 𝐶𝑁(0 , 𝐷( 𝑟 ) , 0) (11) 

here 𝐷 ( ⋅) denotes an operator that produces a diagonal matrix from
ts vector argument and 𝐶 𝑁( 𝜇, 𝐶 , Γ) indicates a multivariate complex
ormal distribution with mean, 𝜇, covariance matrix, 𝐶, and pseudo-

ovariance matrix, Γ [8] . We then train the CNN to map |𝑔 𝑖 |2 → 𝑟 𝑖 , as

hown in Fig. 3 . 

This generic model is applicable to any coherent imaging application

ith rough-surface scattering (e.g., LIDAR, ultrasound, active imaging,

tc.) [8] . Thus, if the forward model changes, we do not need to retrain

he CNN. Instead, we need only use this new forward model when com-

uting the conditional expectation and then apply the original CNN.

or our CNN despeckler, we use the same architecture, loss function,

nd training images that we used for our AWGN denoiser. For further

etails, see Appendices C and D . 

. Experimental testbed 

In this section, we describe our custom-built experimental testbed

sed for collecting DH data, which is the sensor modality we chose to

alidate the performance of CPnP-AR. We also describe our methodol-

gy for obtaining the baseline truth data needed to rigorously evaluate

erformance using quantitative metrics. Please see Appendix E for more

etails about out testbed and methodology. 

.1. Optical setup 

Fig. 4 shows a diagram of our custom-built experimental testbed.

s shown, we used a 300 mW, 532 nm continuous-wave laser (Oxxius

BX-532S-300) as the master oscillator (MO) with an optical isolator

o protect the laser from back reflections. Additionally, we used a half-

ave plate and a polarized beam splitter (PBS) to create the signal and

eference, and we included a variable neutral density (VND) filter in

ach leg of the optical setup to control the power. For ease of use, we

lso used a ten meter polarization-maintaining patch fiber for both legs.

e positioned the object being imaged 4.6 m away from the imaging

ens and adjusted the divergence of the outgoing beam using the lens at

he output of the signal fiber. Our outgoing beam had an approximately

aussian profile, and we adjusted its divergence until the illumination

ithin the camera field of view was relatively uniform. Since the outgo-

ng beam was not exactly uniform, some images have noticeably darker

egions near the corners. 

Starting with a one-inch-diameter, 400 mm-focal-length lens (Thor-

abs best form), we used the off-axis image plane recording geometry

IPRG) [31] . We positioned the output from the reference fiber next

o the imaging lens, and we placed the camera (Point Grey Chameleon
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Fig. 4. Diagram of our optical setup depicting 

the beam path from the MO through the signal 

and reference legs to the camera. 
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7  

a  
MLN-13S2M) in the image plane. We spatially demodulated each 16-

it digital hologram to obtain a 344 × 344 -pixel, complex-valued field
n the pupil plane of our sensor. For details about the demodulation

rocess used for the off-axis IPRG, we direct the reader to any of the

ollowing resources: [18,22,25,30,31] . To add aberrations to the opti-

al setup, we placed a phase plate as close as possible to the imaging

ens. Made by Lexitek [14] , this phase plate matched the statistics of

ealistic atmospheric turbulence, which allowed us to experimentally

uantify the strength of the phase errors. Using baseline truth data and

he methodology in Ref. [27] , we obtained a 𝐷∕ 𝑟 0 of 10.7, where 𝐷 is

he aperture diameter and 𝑟 0 is the coherence length of our phase plate.

.2. Baseline truth data 

Unique to this paper, we obtained high-quality estimates of the

rue reflectance, for the objects tested, and the true phase errors, for

he phase plate tested. We used this baseline truth data to quantita-

ively evaluate the performance of CPnP-AR relative to other image-

orrection frameworks, including Image Sharpening (IS) [34] , DH-

BIR, and CPnP-DN. While these frameworks are designed for, and

ested with, single-shot data, in our laboratory experiments we have

he benefit of using multi-shot approaches to obtain our high-quality

mages and phase errors to serve as truth data. 

To obtain baseline truth data for the reflectance 𝑟 (for each object

ested), we used speckle averaging rather than incoherent illumination

n order to better capture the dynamic range of our DH data and to

atch the estimated reflectance to our illumination wavelength. For

hese baseline speckle-averaged images, we recorded 20 digital holo-

rams, each with independent speckle realizations, by rotating the ob-

ect on a precision rotation stage (Thorlabs PR01). We determined that

ith an object distance of 4.6 m, 2.8 mrad of rotation resulted in in-

ependent speckle realizations on a frame-to-frame basis. Note that we

veraged the magnitude squared of the complex images obtained from

he DH data, not the recorded digital holograms. More precisely, we

rst demodulated each of the 20 holograms, ℎ 𝑖 for 𝑖 ∈ [1 , 20] , to obtain
he complex measurement, 𝑦 𝑖 , given by Eq. (1) . Next, we formed our

0 images according to |𝐴 
𝐻 𝑦 𝑖 |2 , where the superscript 𝐻 represents the

ermitian transpose. Note that the phase errors, 𝜙, are 0 in this case.

astly, we averaged these 20 images to obtain our baseline reflectance

unction. 

To avoid blurring caused by the frame-to-frame rotation, we reg-

stered the 20 real-valued images prior to averaging using MATLAB’s

mregister function with default monomodal settings. We fixed the first

mage and registered the remaining 19 images to the fixed image. Lastly,

o reduce the residual speckle variation arising from a sample size of 20

ndependent speckle realizations, we applied a Gaussian spatial filter,

ith a width 𝜎 = 1.5 pixels, to each averaged image. 

To obtain baseline truth data for the phase errors (for each position

f the phase plate tested), we explored two methods: (1) using a point

ource in the object plane and (2) applying DH-MBIR to multi-shot data

ith a high-contrast object. We found that the second approach worked

etter due to the dynamic-range limitations of the off-axis IPRG. There-

ore, we obtained the baseline truth data by following the methodology
5 
rom Horst et al. [10] . We used a transmissive chrome-on-glass USAF

951 bar chart backed by a sheet of white paper, and we obtained five

igh signal-to-noise ratio (SNR) measurements, each with independent

peckle realizations. We then used DH-MBIR with multi-shot data, as

n Bate et al. [3] , to produce high-quality estimates of the phase errors.

.3. Quantitative metrics 

To quantitatively evaluate image quality, we used MATLAB’s struc-

ural similarity index measure (SSIM) and peak SNR (PSNR) functions

ith default settings [16,17] . Before using these functions, we first nor-

alized our baseline truth reflectance to the range [0 , 1] . Next, using
q. (16) in Pellizzari et al. [22] , we removed any multiplicative scalar

ffset between each reconstruction and our normalized baseline truth

eflectance. 

To assess the quality of phase errors, we used peak Strehl ratio, 𝑆 𝑝 .

e define 𝑆 𝑝 as 

 𝑝 = 

{
PSF c 

}
max {

PSF d 
}
max 

, (12)

here { ⋅} max indicates that we take the maximum value of the ar-

ument, PSF c is the point-spread function (PSF) of the imaging sys-

em after correction of phase errors, and PSF d is the diffraction-limited

SF [23] . Thus, the peak Strehl ratio is a normalized measure of how

lose imaging-system performance is to the diffraction limit, neglecting

he effects of tilt. 

. Results and discussion 

Figs. 5 and 6 show results for the 16 objects tested. The far left col-

mn shows the baseline truth data, 𝑟 truth . In the second column, we show

he back projections, |𝐴 
𝐻 

0 𝑦 |2 . These back projections represent the raw
mages with no correction (i.e., with 𝜙 = 0 ). They contain speckle, mea-
urement noise, and are corrupted by phase errors. In the remaining four

olumns, we show the results for IS, DH-MBIR, CPnP-DN, and CPnP-AR,

espectively. To improve visibility for plotting purposes, we reduced the

ynamic range by taking the square root of each image. 

The results in Figs. 5 and 6 show the difficulty of regularizing coher-

nt images. With no regularization, IS produces a speckled image. Using

 simple model for 𝑝 ( 𝑟 ) , DH-MBIR does reduce the speckle variations;
owever, it does so only in certain regions that contain high signal lev-

ls. It also leaves “hole-like ” artifacts throughout the image. We found

hat further increasing the regularization with DH-MBIR over-blurred

he image. 

With an AWGN denoiser, CPnP-DN does obtain better regulariza-

ion and perceptual image quality than DH-MBIR. However, our results

ighlight a significant challenge with CPnP-DN that was not observed in

ur earlier simulated work —the optimal amount of regularization varies

ased on the object. Here, we see that by fixing our hyperparameters,

e get over-regularization in some images and under-regularization in

thers. As an example, Object 5 appears over-regularized while Object

 is under-regularized. While we could obtain better performance by

djusting the regularization for each image, such a method would be
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Fig. 5. Results for objects 1–8 shown on a normalized and unitless scale. To improve the visibility of these high-dynamic range images, we show the square root of 

the reconstructions here. The far-left column shows the baseline truth data, 𝑟 truth , whereas the second column shows the blurry and noisy back projections, |𝐴 𝐻 0 𝑦 |2 . 
The remaining columns show the results from IS, DH-MBIR, CPnP-DN, and CPnP-AR, respectively. 

6 
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Fig. 6. Results for objects 9–16 shown on a normalized and unitless scale. To improve the visibility of these high-dynamic range images, we show the square root of 

the reconstructions here. The far-left column shows the baseline truth data, 𝑟 truth , whereas the second column shows the blurry and noisy back projections, |𝐴 𝐻 0 𝑦 |2 . 
The remaining columns show the results from IS, DH-MBIR, CPnP-DN, and CPnP-AR, respectively. 

7 
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Table 1 

Quantitative performance measures for each algorithm on all 16 objects. 

Peak Strehl Ratio SSIM PSNR 

Object # IS DH-MBIR CPnP-DN CPnP-AR IS DH-MBIR CPnP-DN CPnP-AR IS DH-MBIR CPnP-DN CPnP-AR 

1 0.02 0.01 0.02 0.04 0.16 0.32 0.37 0.67 12.6 17.9 17.9 23.5 

2 0.04 0.47 0.65 0.66 0.65 0.80 0.87 0.90 24.6 30.1 28.9 31.1 

3 0.09 0.06 0.51 0.67 0.37 0.52 0.76 0.84 14.6 22.2 23.6 25.7 

4 0.07 0.04 0.33 0.29 0.33 0.59 0.72 0.83 19.1 25.3 25.8 27.8 

5 0.30 0.73 0.83 0.80 0.24 0.45 0.77 0.74 19.4 22.9 25.7 25.7 

6 0.08 0.19 0.67 0.71 0.45 0.64 0.81 0.91 19.1 25.5 27.0 31.7 

7 0.03 0.01 0.02 0.12 0.16 0.26 0.19 0.75 11.5 16.3 15.5 23.0 

8 0.40 0.75 0.74 0.77 0.76 0.82 0.79 0.85 23.4 26.7 25.6 27.2 

9 0.07 0.06 0.12 0.16 0.68 0.80 0.91 0.92 24.2 29.6 33.5 33.9 

10 0.23 0.74 0.85 0.86 0.18 0.33 0.33 0.37 15.3 18.9 18.2 18.8 

11 0.07 0.16 0.50 0.66 0.21 0.50 0.64 0.76 17.4 23.0 23.6 25.1 

12 0.43 0.63 0.66 0.67 0.27 0.50 0.63 0.59 18.3 24.3 24.5 25.0 

13 0.71 0.89 0.92 0.92 0.36 0.51 0.61 0.58 18.5 20.9 21.6 21.6 

14 0.48 0.84 0.90 0.90 0.59 0.76 0.84 0.91 19.6 27.5 25.5 30.1 

15 0.79 0.88 0.89 0.90 0.65 0.76 0.83 0.85 20.9 27.0 26.4 27.9 

16 0.77 0.85 0.90 0.90 0.29 0.51 0.69 0.62 22.0 24.7 26.9 26.3 

Mean 0.29 0.46 0.59 0.63 0.40 0.57 0.67 0.76 18.8 23.9 24.4 26.5 

STD 0.27 0.35 0.31 0.29 0.20 0.18 0.20 0.15 3.7 3.9 4.3 3.8 
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ractical only if we could automate the process. Furthermore, for many

bjects, we see that the optimal amount of regularization varies locally

ithin the image. As an example, for Objects 1 and 7, the bright regions

ithin the images are over-regularized, while the dimmer regions are

nder-regularized. 

Using the AR agent, CPnP-AR produces reconstructions with higher

erceptual image quality compared to the other algorithms. We observe

hat CPnP-AR does a better job of regularizing different types of images

ith a fixed set of hyperparameters. Furthermore, within a single image,

t does better than CPnP-DN at regularizing both the bright and dim

egions. 

In Table 1 , we present our quantitative results for peak Strehl Ratio

nd our image-quality metrics. These results reinforce the qualitative

esults shown in Figs. 5 and 6 . On average, the two CPnP algorithms

roduce similar peak Strehl ratios, with both performing significantly

etter than DH-MBIR and IS. CPnP-AR provides a slight advantage over

PnP-DN in this category. Also, both algorithms obtain a significant im-

rovement in image quality compared to DH-MBIR and IS. In this cate-

ory, CPnP-AR provides a significant advantage over CPnP-DN. 

. Conclusion 

In this paper, we developed a new image-correction framework:

PnP-AR, which incorporates the benefits of a neural-network despeck-

er in a way that maintains the independence of prior-model training

nd forward-model implementation. We also developed a custom-built

xperimental testbed and the associated methodology needed to quan-

itatively evaluate performance. The results show that CPnP-AR signif-

cantly outperforms competing methods: IS, DH-MBIR, and CPnP-DN,

ost notably without the need for additional parameter tuning. Overall,

PnP-AR produced higher-quality images and moreaccurate estimates of

he phase errors for a wide range of objects. This improvement in over-

ll robustness is a key step towards employing CPnP-AR for numerous

pplications of interest. While CPnP-AR performed significantly better

han the other methods for low-contrast images, there is still room for

mprovement. One possible approach to better reconstruct low-contrast

bjects might be to train the image model using a wider-range of image

ontrasts, or to integrate multiple image models trained on different

ontrast levels. 
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ppendix A. Problem Formulation 

In this Appendix, we expand our description of the problem at hand

tarting with our data model and surrogate function. We also specify

he physics-based forward model, 𝐴 𝜙, and provide information about

he distribution of our data. Thereafter, we describe the posterior distri-

ution of 𝑔, given 𝑟 ′, 𝜙′ used in our evaluation of the EM algorithm. 
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1. Data model and surrogate function 

As described in the main body of the paper, we model the complex-

alued measurement, 𝑦 ∈ ℂ 
𝑀 , for a sensor employing optically-coherent

etection as 

 = 𝐴 𝜙𝑔 + 𝑤, (13)

here 𝑔 ∈ ℂ 
𝑀 is the rasterized unknown reflection coefficient for the

lluminated object, 𝑤 ∈ ℂ 
𝑀 is complex-valued measurement noise with

ariance 𝜎2 
𝑤 
, and 𝐴 𝜙 ∈ ℂ 

𝑀×𝑀 is a linear transform describing propaga-

ion, measurement geometry, and phase errors, 𝜙 ∈ ℝ 
𝑀 [20,22] . 

Given 𝑦 , we wish to jointly estimate the speckle-free image, 𝑟 =
[ |𝑔|2 ] , and the phase errors, 𝜙, from single-shot DH data. With the

hysically plausible assumption that 𝑟 and 𝜙 are independent, we seek

o solve the problem 

 ̂𝑟 , 𝜙̂) = arg max 
𝑟,𝜙

𝑝 ( 𝑦 | 𝑟, 𝜙) 𝑝 ( 𝑟 ) 𝑝 ( 𝜙) . (14) 

Instead of solving (14) directly, we use the expectation maximiza-

ion (EM) algorithm as in Refs. [20 , 22–24] to iteratively construct and

inimize a surrogate function, 𝑄 in place of the MAP cost function.

hose papers show that the assumptions on 𝑦, 𝑟, 𝑔 yield the following

onditional distributions 

 | 𝑔, 𝜙 ∼ 𝐶𝑁 ( 𝐴 𝜙𝑔, 𝜎
2 
𝑤 
𝐼 , 0) (15) 

 | 𝑟 ∼ 𝐶𝑁(0 ,  ( 𝑟 ) , 0) (16) 

 | 𝑦, 𝑟, 𝜙 ∼ 𝐶𝑁( 𝜇𝑟,𝜙, 𝐶 𝑟,𝜙, 0) , (17) 

here 𝐴 𝜙, 𝜇𝑟,𝜙, 𝐶 𝑟,𝜙 are defined below. These distributions determine the

orresponding density functions 𝑝 ( ⋅ | ⋅) used below. To relate these dis-
ributions to 𝑝 ( 𝑦 | 𝑟, 𝜙) as in (14) , we note that the EM algorithm as in

ef. [4] uses the fact that 

 log 𝑝 ( 𝑦 | 𝑟, 𝜙) = 𝐸 𝑔 

[
− log 𝑝 ( 𝑦, 𝑔 | 𝑟, 𝜙) | 𝑦, 𝑟 ’ , 𝜙’ ]

− 𝐸 𝑔 

[
− log 𝑝 ( 𝑔 | 𝑦, 𝑟, 𝜙) | 𝑦, 𝑟 ’ , 𝜙’ ]. (18) 

ere the conditional expectation 𝐸 𝑔 [ ⋅ | 𝑦, 𝑟 ′𝜙′] indicates that the distri-
ution of 𝑔 for the expectation 𝐸 𝑔 is given by (17) with ( 𝑟 ′, 𝜙′) in place
f ( 𝑟, 𝜙) , while the density functions 𝑝 ( 𝑦 |𝑟, 𝜙) , 𝑝 ( 𝑦, 𝑔|𝑟, 𝜙) , and 𝑝 ( 𝑔|𝑦, 𝑟, 𝜙)
o not depend on 𝑟 ′ and 𝜙′. The second term in (18) can be shown to

chieve its maximum when ( 𝑟, 𝜙) = ( 𝑟 ′, 𝜙′) , so that the first term serves

s a surrogate function for − log 𝑝 ( 𝑦 | 𝑟, 𝜙) . That is, instead of minimiz-
ng (18) directly, we can fix ( 𝑟 ′, 𝜙′) , minimize the first term in (18) over

 𝑟, 𝜙) , use these to update ( 𝑟 ′, 𝜙′) , and iterate. 
After including the prior terms, we obtain a surrogate function for

 log 𝑝 ( 𝑦, 𝑟, 𝜙) given by 

 ( 𝑟, 𝜙; 𝑟 ′, 𝜙′) = 𝐸 𝑔 

[
− log 𝑝 ( 𝑦, 𝑔, 𝑟, 𝜙) | 𝑦, 𝑟 ′, 𝜙′]

= 𝑄 1 ( 𝜙; 𝑟 ′, 𝜙′) + 𝑄 2 ( 𝑟 ; 𝑟 ′, 𝜙′) + 𝑄 3 ( 𝑟 ) + 𝑄 4 ( 𝜙) (19) 

here each of the four terms are given as in Pellizzari et al. [23] by 

 1 ( 𝜙; 𝑟 ′, 𝜙′) = − 𝐸 𝑔 

[
log 𝑝 ( 𝑦 |𝑔, 𝜙) | 𝑦, 𝑟 ′, 𝜙′] (20) 

 2 ( 𝑟 ; 𝑟 ′, 𝜙′) = − 𝐸 𝑔 

[
log 𝑝 ( 𝑔|𝑟 ) | 𝑦, 𝑟 ′, 𝜙′] (21) 

 3 ( 𝑟 ) = − log 𝑝 ( 𝑟 ) (22) 

 4 ( 𝜙) = − log 𝑝 ( 𝜙) (23) 

nd where we have used 𝑝 ( 𝑦, 𝑔, | 𝑟, 𝜙) = 𝑝 ( 𝑦 | 𝑔, 𝜙) 𝑝 ( 𝑔 | 𝑟 ) , and where
 ( 𝑦 | 𝑔, 𝜙) and 𝑝 ( 𝑔 | 𝑟 ) are determined by (15) and (17) . 
DH-MBIR, CPnP-DN, and CPnP-AR, are all designed using iterations

f the form 

 𝑟 ′, 𝜙′) ← arg min 
𝑟,𝜙

𝑄 ( 𝑟, 𝜙; 𝑟 ′, 𝜙′) . (24)
w  

9 
2. Forward model 

While Eqs. (1) and (15) represent a generic model for sensors that

mploy optically-coherent detection, the structure of 𝐴 will depend on

he application at hand. In this paper, we consider the model for a sen-

or employing DH. In practice, DH data starts with a master oscillator

MO) and arises from the interference between a strong reference from

 local oscillator and the scattered signal from the coherent illumination

f a distant object [30] . The associated spatially modulated irradiance

atterns or “holograms ” are digitized using a camera, and the resulting

igital holograms encode information about the amplitude and phase

f the scattered signal. This information is decoded by spatially demod-

lating the digital holograms [25] . In so doing, we gain access to the

ath-integrated amplitude and phase of the scattered signal, which al-

ows the decoded images to be digitally corrected. 

In Appendix A of Ref. [22] , we described a generalized form of 𝐴 𝜙

or DH. In this paper, we restrict to a single Fresnel propagation be-

ween the object and the digital-holographic sensor. We also restrict to

ases in which the phase errors are concentrated near the pupil plane of

ur digital-holographic sensor, resulting in a shift-invariant point spread

unction (PSF) in the image domain. The resulting model for 𝐴 𝜙 is given

y 

 𝜙 = 𝐷 ( 𝑎 ) 𝐷 ( 𝑒 𝑖𝑃𝜙)Λ1 𝐹 
−1 𝐻𝐹 Λ0 (25) 

here 𝐷 ( ⋅) denotes an operator that produces a diagonal matrix from
ts vector argument, 𝑎 ∈ ℝ 

𝑀 is a binary vector that represents the trans-

arency of the circular aperture in the pupil plane, 𝐹 ∈ ℂ 
𝑀×𝑀 is a 2D

iscrete Fourier transform (DFT) matrix, 𝐻 ∈ ℂ 
𝑀×𝑀 is the free-space

ransfer function, and Λ0 , Λ1 ∈ ℂ 
𝑀×𝑀 are diagonal matrices that apply

he quadratic-phase factors in each plane for the Fresnel propagation.

urthermore, we use an interpolation matrix, 𝑃 ∈ ℝ 
𝑀×𝐿 , where 𝐿 ≤ 𝑀 ,

hat allows us to model the phase errors, 𝜙 ∈ ℝ 
𝐿 , on a low-resolution

rid. In this paper, we used nearest-neighbor interpolation. For com-

lete details on the structure of these matrices, we direct the reader

o Pellizzari et al. [22] . 

3. Posterior distribution 

As noted above, the conditional posterior distribution 𝑝 ( 𝑔 | 𝑦, 𝑟 ′, 𝜙′) ,
s in (17) , is the distribution used to evaluate the expectation with re-

pect to 𝑔 as in Eqs. (4) , (5) , and (10) of the main paper and (20) and

21) of this Appendix. In [20] , we showed that this distribution is com-

lex Gaussian with mean (
𝑟 ’ , 𝜙’ 

)
= 𝐶 

(
𝑟 ’ , 𝜙’ 

) 1 
𝜎2 
𝑤 

𝐴 
𝐻 

𝜙’ 
𝑦 , (26) 

nd covariance 

( 𝑟 ′, 𝜙′) = 

[ 

1 
𝜎2 
𝑤 

𝐴 
𝐻 

𝜙′𝐴 𝜙′ + 𝐷( 𝑟 ′) −1 
] −1 

≈ 𝐷 

⎛ ⎜ ⎜ ⎝ 
𝜎2 
𝑤 

1 + 

𝜎2 𝑤 
𝑟 ′

⎞ ⎟ ⎟ ⎠ . (27)

n this paper, we indicate explicitly that 𝜇 and 𝐶 are functions of inputs

 
′, 𝜙′ since we will later use a state variable as input, rather than 𝑟 ′, 𝜙′.

he approximation in Eq. (27) assumes that 𝐴 
𝐻 

𝜙′
𝐴 𝜙′ ≈ 𝐼 . In practice, we

ave found this approximation to work well [18,20,22] . 

Using this diagonal approximation, Eqs. (26) and (27) imply that

𝑔 𝑖 |2 has a non-central 𝜒2 distribution with 

 𝑔 [ |𝑔 𝑖 |2 | 𝑦, 𝑟 ′, 𝜙′] = 𝐶 𝑖,𝑖 ( 𝑟 ′, 𝜙′) + |𝜇𝑖 ( 𝑟 ′, 𝜙′) |2 for all 𝑖 (28) 

here 𝜇𝑖 is the 𝑖 th element of the posterior mean and 𝐶 𝑖,𝑖 is the 𝑖 th

iagonal element of the posterior covariance. 

ppendix B. CPnP-DN 

In this Appendix, we give further details on CPnP-DN, particularly

s it relates to the Multi-Agent Consensus Equilibrium (MACE) frame-

ork [6] . This framework allows us to integrate three heterogeneous
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gents, each of which is associated with one or more of the four model

erms in the surrogate function 𝑄 in Eq. (3) . We use agents 

𝐹 1 ( 𝑟 ′, 𝜙′) = argmin 
𝜙

{
𝑄 1 ( 𝜙; 𝑟 ′, 𝜙′) + 𝑄 4 ( 𝜙) 

}
 2 ( 𝑟 2 ; 𝑟 ′, 𝜙′) = argmin 

𝑟 

{ 

1 
2 𝜎2 2 

||||𝑟 − 𝑟 2 ||||2 + 𝑄 2 ( 𝑟 ; 𝑟 ′, 𝜙′) 

} 

𝐹 3 ( 𝑟 3 ) =  ( 𝑟 3 ) . (29) 

gent 𝐹 1 updates the phase-error estimate by minimizing 𝑄 1 and 𝑄 4 
ith respect to 𝜙. The output of 𝐹 1 is the MAP estimate of 𝜙, given

he data and our current estimate, 𝑟 ′, 𝜙′. Given the relatively simple

tructure of 𝜙, we use a Gaussian Markov Random Field (GMRF) for the

rior model, 𝑝 ( 𝜙) used to define 𝑄 4 ( 𝜙) [23] . To conduct the optimization
equired for 𝐹 1 , we use a quasi-Newton gradient descent method. 

Unlike the update of 𝜙, we split the forward- and prior-model terms

or 𝑟 between two agents, 𝐹 2 and 𝐹 3 . As shown, 𝐹 2 is a proximal map

or the data-fitting image model 𝑄 2 , but this proximal map has a rel-

tively simple closed form solution, equivalent to rooting a 3rd order

olynomial for each pixel [23] . Finally, for the image prior model, we

se a CNN designed to remove AWGN with variance 𝜎2 3 [23] . In partic-

lar, we use the U-in-U network (UinUNet) architecture, described in

ppendix C for  ( ⋅) [1] . 
We combine the agents in Eq. (29) by first defining 𝑣 = [ 𝜙; 𝑟 2 ; 𝑟 3 ] to

e a vector formed by stacking three state variables and defining 

 

(
𝑣 ; 𝑟 ’ , 𝜙’ 

)
= 

⎡ ⎢ ⎢ ⎣ 
𝐹 1 

(
𝑟 ’ , 𝜙’ 

)
𝐹 2 

(
𝑟 2 ; 𝑟 ’ , 𝜙’ 

)
𝐹 3 

(
𝑟 3 
) ⎤ ⎥ ⎥ ⎦ , 𝐆 ( 𝑣 ) = 

⎡ ⎢ ⎢ ⎣ 
𝜙

𝑟 

𝑟 

⎤ ⎥ ⎥ ⎦ . (30) 

ere, 𝐅 is an operator formed by the application of the three agents
n parallel, 𝐆 is an operator that averages and stacks the reflectance

tate vectors, 𝑟̄ = ( 𝑟 2 + 𝑟 3 )∕2 , and 𝑟 ′, 𝜙′ on one iteration is obtained by

sing the values of 𝑟 2 , 𝑟 3 , and 𝜙 from the previous iteration and taking

 
′, 𝜙′ = [ ̄𝑟 , 𝜙] . 
The MACE balance equation is then given by 

 

(
𝑣 ∗ ; 𝑟 ∗ , 𝜙∗ ) = 𝐆 

(
𝑣 ∗ 
)
, (31) 
ig. 7. The general C-PnP algorithm consists of an outer loop for periodic restarts usi

nner loop to iteratively conduct the joint estimation. Within the inner loop, we use a

his surrogate to agents, then we use Mann iterations to find a solution. Note that C

nly in the form of the image agent 𝐹 3 . 

10 
here 𝑣 ∗ = ( 𝜙∗ , 𝑟 ∗ 2 , 𝑟 
∗ 
3 ) , and the final reconstruction is given by 𝑟 

∗ = ( 𝑟 ∗ 2 +
 
∗ 
3 )∕2 , which represents an equilibrium and a consensus among the 3

gents [5] . 

To find this solution, we use the fact that 𝑣 ∗ is a fixed point of the

perator, 𝐓 = (2 𝐆 − 𝐈 )(2 𝐅 − 𝐈 ) , where 𝐈 is the identity map. We find this
xed point using Mann iterations of the form 

 ← 𝐅 ( 𝑣 ) 
 ← 𝑣 + 2 𝜌[ 𝐆 (2 𝑧 − 𝑣 ) − 𝑧 ] (32) 

here 𝜌 = 𝜌( 𝜙𝜙, 𝜌𝑟 ) is a linear map that multiplies the first of the three
omponents in the stacked vector, [ 𝐆 (2 𝑧 − 𝑣 ) − 𝑧 ] , by 𝜌𝜙 and multiplies
he other two components by 𝜌𝑟 . 

In Ref. [23] , we showed that when these updates converge to a fixed

oint, that fixed point is also a solution to the MACE equation defined

n Eq. (31) . Ref. [23] also shows that when the CNN agent 𝐹 3 is replaced

y a proximal map for the function 𝑄 3 , then any solution to the MACE

quation is also a solution to the original MAP problem given by Eq. (2) .

owever, since 𝐹 3 is not a proximal map, and since the first two terms in

he surrogate function are non-convex, proper initialization can improve

onvergence and may improve the final solution point. 

Following [18,20,22–24] , we employ a set of nested iterations to

mprove performance. Specifically, we use an outer loop of 𝑁 1 itera-

ions with periodic restarts using the current estimate of 𝜙 and simple

ackprojection to re-estimate 𝑟 . We use an inner loop of 𝑁 2 iterations

o find the solution given the initialization from the outer loop. These

nner iterations first define the surrogate functions at the current base

oint, then take a step towards equilibrium using (32) . This single step

pproach is based on the idea of a partial update as in Pellizzari et al.

23] , Sridhar et al. [33] . 

In Fig. 7 , we provide pseudo code for the general CPnP algorithm.

his pseudo code applies to both CPnP-DN and CPnP-AR, which differ

nly in the behavior of agent 𝐹 3 . 

ppendix C. CNN architectures and training 

To maintain a fair comparison between CPnP-DN and CPnP-AR, we

sed the same CNN UinUNet architecture for both frameworks, shown
ng the current estimate of 𝜙 and simple backprojection to re-estimate 𝑟 , and an 

 variant of the EM algorithm to define a surrogate for the cost function, convert 

PnP-DN and CPnP-AR are implemented using the same algorithm; they differ 
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Fig. 8. (a) Overall U-in-U Network (UinUnet) architecture [1] . In this paper, 

we used two U-in-U Blocks (UUBs) (b) UUB architecture. Each UUB has a single 

down-up structure and contains three Down-Up Units (DUU)s (c) DUU architec- 

ture. Each DUU resembles a conventional Unet. 
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Fig. 9. Photo of our optical setup depicting the beam path from the laser to 

the camera. Note that we moved the phase plate closer to the imaging lens than 

what is depicted in the photo. 
n Fig. 8 and described in Abdelhamed et al. [1] . This residual-learning

rchitecture uses a nested UNet structure and yielded state-of-the-art

erformance in the NTIRE 2020 real-denoising challenge. The UinUNet

s built with U-in-U Blocks (UUBs), which use a “down-up ” architecture

long with several three-level “down-up units ” (DUUs) that resemble

onventional Unets. The output of the UUBs are concatenated and fed

nto a final ”Recon ” block that applies a series of eight consecutive 3 × 3
onvolutions and ReLU blocks. We used two U-in-U Blocks (UUBs) for

ur network. 

To produce CNN agents for CPnP-DN and CPnP-AR, we trained two

inUnets with corresponding training pairs, ( 𝑦, 𝑥 ) , where 𝑦 is the noisy
nput and 𝑥 is the clean image used to evaluate the 𝐿 2 loss function. For
oth CNNs, we obtained 𝑥 from the 400 training images found at [2] and

ormalized all values to be ∈ [0 , 1] . 
For CPnP-DN, we generated noisy data 𝑦 𝑛 ∈ ℝ 

𝑀 from clean images

 𝑛 according to 

 𝑛 = 𝑥 𝑛 + 𝜎𝑤 𝑛 , (33) 

here 𝑤 𝑛 ∈ ℝ 
𝑀 is a random vector with elements that are zero-mean

aussian with unit variance. In this paper, we used a fixed noise level

f 𝜎 = 0 . 1 . For CPnP-AR, we generated noisy data (speckled images) ac-
ording to 

 𝑛 = 

||||𝑥 𝑛 2 ⊙𝑤 𝑛, 1 + 𝑖 
𝑥 𝑛 

2 
⊙𝑤 𝑛, 2 

||||2 , (34) 

here 𝑖 = 

√
−1 , 𝑤 𝑛, 1 , 𝑤 𝑛, 2 ∈ ℝ 

𝑀 are two zero-mean Gaussian vectors

ith unit variance, and ⊙ indicates element-wise multiplication. Then

 𝑛 is a speckle realization using the values of 𝑥 𝑛 as the reflectance 𝑟 . 

We trained both CNNs in MATLAB using the Deep Learning Tool-

ox with the ADAM training routine. We trained for 30 epochs with a

earning rate of 1 × 10 −4 and a batch size of 4 images. We reduced our
earning rate by half every 5 epochs. 
11 
ppendix D. Algorithmic parameters 

In this Appendix, we provide additional details about the application

nd parameters for each of IS, DH-MBIR, CPnP-DN, and CPnP-AR. For

ach approach, we estimate the phase errors on a low-resolution, 86 × 86
rid and convert to a 344 × 344 grid using nearest neighbors interpola-
ion. This step enables comparison with our baseline truth data. For IS,

e used the steps outlined in Thurman [34] with a sharpness param-

ter 𝛽 = 0 . 5 , and we iteratively reduced the phase-error pixel binning
ccording to 𝐵 𝑝 = [86 , 43 , 8 , 4] . 
DH-MBIR, CPnP-DN, and CPnP-AR share several characteristics, in-

luding the same phase-error estimation step and common parameters

 1 = 40 , 𝑁 2 = 250 , 𝜎𝜙 = 0 . 25 , and 𝜎𝑤 = 0 . 3 (see Ref. [23] for all param-
ters not defined in this Appendix). Specifically, for DH-MBIR, we set

he unitless regularizing parameter 𝛾 = 5 . For CPnP-DN and CPnP-AR,

e set 𝜌𝜙 = 0 . 5 and 𝜌𝑟 = 0 . 8 . For CPnP-DN, we also set 𝜎2 = 0 . 34 and
3 = 0 . 1 . Lastly, for CPnP-AR, we set 𝜎2 = 0 . 05 . Note that the prior agent
or CPnP-AR, given by Eq. (9) , does not have a 𝜎3 . 

For each algorithm, we used a single set of parameters for all re-

onstructions. We selected the regularization parameters that produced

he highest quality estimates when averaged over all 16 data sets. Us-

ng our truth data, we quantified the quality, 𝑞, of our estimate as the

um of the peak Strehl ratio and the SSIM, ( 𝑞 = 𝑆 𝑝 + SSIM ). To max-

mize 𝑞 with respect to the regularization parameters, we used MAT-
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Fig. 10. On the left (a), we show example incoherent images and the corresponding speckle-averaged images using a normalized and unitless scale. Here, we used 

the speckle-averaged images as our baseline truth data for the reflectance (of the objects tested). In the middle, (b), we show a bar-chart image blurred with the 

phase errors from our rotatable phase plate and the corresponding phase-corrected image obtained using DH-MBIR with multi-shot data, also shown on a normalized 

scale. On the right, (c), we show baseline truth data for the phase errors with units of radians. 
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AB’s Particle-Swarm global-optimization function. Each particle in the

opulation evaluated the algorithm with a unique set of regularization

arameters. We used the parameters that produced the highest value

f 𝑞. For all other parameters not mentioned here, we used the values

ound in Pellizzari et al. [23] . 

ppendix E. Experimental testbed 

In this Appendix, we provide additional figures to supplement

he description of our experimental testbed. Fig. 9 shows the digital-

olographic sensor and bar chart in the object plane. This picture sup-

lements Fig. 4 from the main text. 

Fig. 10 shows four reference images and phase errors. In Fig. 10 (a)

e show examples of the reference reflectance functions obtained using

ncoherent illumination on the left and speckle averaging on the right.

he speckle-averaged images obtained using coherent detection have

 larger dynamic range and contrast than the incoherent images. Addi-

ionally, we see wavelength differences in the reflectivity between these

wo image types. This is most apparent with the helmet visor of object

umber 2, which is clear when viewed with the broad-band incoherent

ight but opaque when viewed with the narrow-band laser illumination.

or these reasons, we used speckle averaging to produce our reference

eflectance functions. 

The left side of Fig. 10 (b) shows the blurry bar-chart images corre-

ponding to the first four data sets. We used DH-MBIR with multi-shot

ata to produce a high-quality estimate of the phase errors for each

ar chart. To verify the quality of our estimate, we applied the conju-

ate of these estimated phase-errors to the blurry bar-chart data. This

hase-only correction, shown on the right side of Fig. 10 (b), produced

 focused image in each case. In Fig. 10 (c), we show the corresponding

stimates of the phase errors. 
12 
Given our methodology for obtaining baseline truth data, we devel-

ped the following procedure to collect data for each object tested. First,

e measured 20 speckle realizations without the phase plate in the op-

ical setup. Second, we inserted the phase plate into the optical setup

nd took a single measurement with the object being tested. Next, we

eplaced this object with the transmissive chrome-on-glass 1951 USAF

ar chart backed by a sheet of white paper and kept the phase-plate po-

ition fixed. Lastly, we obtained five independent speckle realizations

y rotating the bar chart relative to the digital-holographic sensor. Fi-

ally, we used MATLAB’s imregister function to align these images and

hen average them. 
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