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Current image-correction frameworks for sensors that employ optically coherent detection attempt to estimate
phase errors in the data, like those caused by aberrations, and simultaneously reconstruct digitally enhanced
images. In practice, these frameworks struggle to account for the effects of speckle. To address this gap, we
develop a novel image-correction framework referred to as Coherent Plug-and-Play Artifact Removal (CPnP-
AR), which couples a neural-network despeckler with a physics-based measurement model. We also develop
the experimental protocol needed to quantitatively evaluate performance relative to multiple state-of-the-art

frameworks. The results show that CPnP-AR produces higher-quality images and more accurate estimates of the
phase errors for a wide range of objects, specifically without the need for object-dependent parameter tuning.
This improvement in overall robustness is a key step towards employing this novel image-correction framework
for numerous applications of interest.

1. Introduction

Sensors that employ optically coherent detection measure the ampli-
tude and phase of a scattered signal. In practice, phase errors in the data,
like those caused by aberrations, degrade one’s ability to use this data
for the purposes of imaging. Therefore, we use image-correction frame-
works to estimate and remove these phase errors and produce digitally-
corrected images.

In addition to phase errors in the data, the use of coherent illu-
mination unfortunately introduces speckle, which manifest as high-
spatial-frequency artifacts in images. Practically speaking, fully formed
speckle occurs when the surface-height standard deviation of the object
is greater than half the wavelength of the coherent illumination [8].
When this occurs, the reflected optical field has a seemingly random
phase at each point. This random phase leads to constructive or de-
structive interference when we integrate the amplitude and phase of
the signal over a finite region. Images formed from the intensity of these
reflected optical fields contain exponentially distributed multiplicative
noise that we call speckle [8]. This is the case for numerous applications
of interest, and the resulting speckle limits the effectiveness of image-
correction frameworks.
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A straightforward but measurement-intensive approach to reduce
the effects of speckle is to average multiple, independent speckle realiza-
tions. This approach assumes that the object is relatively static between
measurements but that each measurement has an independent speckle
realization. We may obtain such data through small relative movements
between the object and the sensor or by changing the illumination wave-
length. However, such multi-shot data may not always be available. For
example, when the object or phase errors are changing rapidly, or if
multiple wavelengths are not available, speckle averaging is not possi-
ble. In those cases, we may only obtain a single measurement in which
the object and turbulence are static. In this paper, we focus on this con-
straining case to produce high-quality images from single-shot data.

Speckle averaging, nonetheless, gives insight into the underlying
problem at hand. In general, we model the spatially discretized version
of the scattered signal, known as the reflection coefficient, g € CM, as a
complex-valued, zero-mean Gaussian random variable [8]. A speckled
image is then formed from the observed amplitude squared, |g|?. How-
ever, the expected value of |g|2, known as the reflectance, r € R™, does
not contain speckle and is typically smoother than |g|? [24]. Simply put,
r is analogous to the real-valued quantity that we observe in incoherent
images and hence is the speckle-free quantity of interest in this paper.
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In previous works, we developed image-correction frameworks that
use a model-based Bayesian framework to find the joint maximum a pos-
terior (MAP) estimate of the phase errors and r from single-shot mea-
surements. These frameworks include Synthetic Aperture Lidar Model-
Based Iterative Reconstruction (SAL-MBIR) [19,24], and Digital Holog-
raphy MBIR (DH-MBIR) [18,20,22]. When compared to existing image-
correction frameworks, SAL-MBIR and DH-MBIR produce higher-quality
images and more accurate estimates of the phase errors with less data
and at lower signal levels. However, both frameworks use relatively
simple analytical functions to model the distribution of reflectances,
p(r), which leads to artifacts in the estimates of reasonably complex im-
ages [21,23].

Alternatively, the image-correction framework referred to as Coher-
ent Plug-and-Play (CPnP) [23] uses a neural network image prior to fur-
ther reduce artifacts. CPnP uses a generalization of Bayesian inversion
based on Plug-and-Play (PnP) methods [6,7,9,11,12,28,37], in which
a black-box denoiser, such as a convolutional neural network (CNN)
trained to remove additive white Gaussian noise (AWGN), is used as
an image prior. CPnP produces higher-quality images and more accu-
rate estimates of the phase errors than the MBIR frameworks found in
Refs. [18,20,22,24]; however, CPnP is limited in the type of image prior
that can be used, and the resulting reconstructions still show residual ar-
tifacts caused by speckle.

In CPnP and other PnP-based methods, a neural network denoiser
is applied iteratively in place of one of the proximal maps associated
with the alternating direction method of multipliers (ADMM) algorithm,
which is the foundation for PnP. A difficulty with using a pre-trained de-
noiser is that the intermediate images in the iterative loop often do not
have the same distribution as that used to train the denoiser. To im-
prove the empirical performance of PnP, one approach is to modify the
denoiser during application. This can be done by changing the assumed
noise level in each iteration as in Chan et al. [7] or by using additional
input-specific training as in Tirer and Giryes [36]. These methods re-
quire significant parameter tuning or on-the-fly training. An alternative
method in Liu et al. [15] uses a CNN trained as part of a deep unrolling
(DU) architecture that includes the forward model in end-to-end train-
ing [11]. However, this method requires that the CNN be trained to-
gether with the forward model, destroying the modularity of PnP that
allows for changes to the forward model without changing or retraining
the prior model.

In this paper, we develop a new PnP image-correction framework
for coherent imaging that allows us to move beyond the limitations
of AWGN-denoiser prior models while still maintaining the benefit of
PnP modularity. Our framework, referred to as CPnP-Artifact Removal
(CPnP-AR), uses a CNN trained to remove speckle instead of AWGN and
applies this so-called “despeckler” to input images using a novel resam-
pling approach. Through this resampling approach, CPnP-AR maintains
the modularity of PnP in that the despeckling CNN is trained on natural
images without reference to the forward model. In addition, CPnP-AR
better matches the distribution of images in the PnP loop to the dis-
tribution of training images by resampling before despeckling. That is,
instead of applying the despeckler directly on an image estimate in the
PnP loop, first this image estimate is used to generate a speckled image
by mimicking the speckle-formation process. Only then is the despeck-
ler applied and the rest of the loop continued. Not only does the result-
ing framework significantly improve image quality compared to existing
frameworks, we find that CPnP-AR can better regularize a wide-range of
image types with fixed hyperparameters. Thus, CPnP-AR is more robust
to variations in the data than existing frameworks.

Another key contribution of this paper is the development of an
experimental protocol, conducted at optical wavelengths using digi-
tal holography (DH), to obtain high-quality estimates of the true re-
flectances and phase errors. Such estimates are difficult to measure
experimentally due to uncertainties in illumination uniformity, object
complexity, and detection sensitivity. The use of such estimates as base-
line truth data is in contrast to previous experiments involving optically-
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coherent detection data [18,22,24,27,35], which lacked accurate esti-
mates of the true reflectances and phase errors. Our experimental pro-
tocol allows us to quantitatively compare image-correction frameworks
and validate the performance of CPnP-AR.

In what follows, we provide a brief overview of MBIR and CPnP
in Section 2. We then describe our novel image-correction framework
CPnP-AR. Hereafter, we refer to the original CPnP algorithm as CPnP-
Denoising (CPnP-DN) to help distinguish it from CPnP-AR. In Section 3,
we describe our custom-built experimental testbed, which uses DH data.
We provide our results in Section 4, where we leverage this testbed
and our methodology for obtaining the baseline truth data needed to
quantitatively evaluate the performance of CPnP-AR relative to existing
image-correction frameworks. We do so for a wide range of objects with
varying contrast levels. Our conclusion then follows in Section 5.

2. Image-correction framework

In this section, we briefly describe our physics-based measurement
model and our general approach to jointly estimating the reflectance
and the phase errors. We then provide an overview of CPnP-DN found
in Pellizzari et al. [23], and we present our novel framework, CPnP-
AR. Please see Appendices A-D for more details on the physics-based
measurement model, CPNP-DN, CNN architectures and training, and al-
gorithmic parameters, respectively.

2.1. Physics-based measurement model

Sensors that employ optically-coherent detection measure the
complex-valued field of a scatered signal. In general, we model this mea-
surement, y € CM, as

y=As8t+w. (€)]

Here, g € CM is the rasterized unknown reflection coefficient for the
illuminated object, w € CM is complex-valued Gaussian measurement
noise with variance o2, and 4, € CM*M is a linear transform de-
scribing propagation, measurement geometry, and phase errors, ¢ €
RM [20,22,24]. While Eq. (1) represents a generic model for optically-
coherent detection, the structure of A, will depend on the sensor modal-
ity at hand. In this paper, we consider the model for a sensor employing
DH, as described in Appendix A.

Given y, we wish to jointly estimate the speckle-free image, r =
E[|g|?], and the phase errors, ¢, from single-shot data. Fig. 1 shows an
example reflectance image along with averages of multishot data to esti-
mate r = E[|g|*]. Since our goal is to use single-shot data, the N = 1 case
in Fig. 1 indicates the need for a prior distribution, so we seek the MAP
estimate of r and ¢, given y. With the physically-plausible assumption
that r and ¢ are independent, we seek to solve the problem

(*, ) = arg max .1, §)
= argmax p(yIr, @) p(r) p(e). @

However, since r is the expected value of |g|?, it is non-linearly related
to y, making this MAP estimate difficult to obtain [24].

Instead of solving (2) directly, our work in Pellizzari et al. [20,22—
24] uses the expectation maximization (EM) algorithm to iteratively
construct and minimize a surrogate function, Q, in place of the MAP
cost function. With further details described in Appendix A, we obtain
a surrogate function for — log p(y, r, ¢), given by

O(r, ', ¢') = E [~ log p(y, g, r, ) | v, 1, ¢']

=0,(¢d:r.¢") + O (. ¢) + O3(r) + 04 () 3
where each of the four terms are given as in Pellizzari et al. [23] by
0,(¢:r.¢') = —E,[log p(y|g. ) | y. 7. ¢'] )
0y(r;v',¢') = —E,[log p(glr) | y. 1. ¢'] ©)
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Reflectance Image Speckled Image, N=1
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Speckled Image, N=15

Speckled Image, N=50

Fig. 1. Example reflectance image, r, and corresponding speckle averaged images, produced according to % E/’il |g;|, where i is the index for each independent
speckle realization. Here, we show the images produced by averaging N = 1, 15, and 50 independent speckle realizations. As N grows large, the average converges

to r and is analogous to what we observe in incoherent images.

Q5(r) = —log p(r) 6

Q4(¢) = —log p(¢). )

Here, the conditional expectation E,[- | y, r'¢'] indicates that E, is com-
puted using the posterior distribution of g, as given in Appendix A, with
the current estimates, (+, ¢'), in place of (r, ¢), while the density func-
tions p(y|r, p), p(y, g|r, $), and p(g|y,r, ¢) do not depend on ' and ¢’.

DH-MBIR, CPnP-DN, and CPnP-AR, are all designed using iterations
of the form

(', ") < arg nrn(ibn or, ;v , ). ®)

However, they solve the problem differently and they each use a differ-
ent model for p(r). These key differences have a significant impact on the
resulting image quality and algorithm robustness. We direct the reader
to Appendix A for more information about the physics-based measure-
ment model and this surrogate function.

2.2. CPnP-DN

CPnP-DN is an adaptation of the Multi-Agent Consensus Equilib-
rium (MACE) framework [6], which uses a set of balance equations to
integrate multiple heterogeneous agents [4,11]. Agents are functions,
F : RM - RM | that take an initial estimate as an input and produce
a “better” estimate as an output. Here, better means that the output is
more consistent with one or more models assigned to that agent [11].
Each agent, F;, maintains its own version of the estimate, x; = (r;, ¢;),
called a state vector. MACE seeks solutions x; so that all the output
points F;(x}) are identical (consensus) and the update steps F;(x}) — x}
sum to 0 (equilibrium).

CPnP-DN and MACE use the idea of proximal maps to convert the
cost function formulation of Eq. (3) into an agent update formulation.
As described in Sreehari et al. [32], Venkatakrishnan et al. [37], PnP
starts with the ADMM algorithm for minimizing a sum of functions, as in
Eq. (3). In ADMM, each term f(x) in this sum is converted to a proximal
map, given by

F(x;,) = argmin{ L=, 2+ £ } ©)
x 202

Equation (9) is an agent that maps the input, x;,, closer to the minimizer
of f(x). The constant o2 is a kind of step size, maintaining proximity to
this input. As ¢? increases, the proximal map output gets closer to the
minimizer of f, thus making this agent more insistent on its preference.

The key insight of PnP methods is that we can replace these proximal
maps with more general maps that are not based on optimization. In
particular, the proximal map for the prior model can be interpreted as
a MAP estimate for an AWGN forward model [11,32,37]. Thus, we may
replace this proximal map with a state-of-the-art CNN denoiser designed
to remove AWGN.

Using a CNN denoiser as an agent provides two primary benefits.
First, there is no optimization step; instead, we simply apply the de-
noiser. Second, we inherit the implicit image prior model, p(r), learned
by the CNN, which better captures subtle characteristics that explicit
analytical models lack.

For CPnP-DN, we define three agents that reduce the cost associated
with one or more of the four model terms in the surrogate function in
Eq. (3). Fig. 2 shows DH-MBIR, in which the surrogate functions are iter-
atively minimized in turn, as well as CPnP-DN and CPnP-AR. DH-MBIR
can be reformulated using PnP as in Fig. 2(b), in which case agent F,
updates the phase-error estimate by minimizing O, + O, with respect
to ¢, while agents F, and F; are proximal maps for O, and Q3, respec-
tively. The consensus solution, r*, ¢*, is found using Mann iterations to
a specified convergence tolerance.

In CPnP-DN [23], the agent F; is replaced with a CNN designed to
remove AWGN, DN'(-), as shown in Fig. 2(c). In this paper, we use the
U-in-U Network (UinUNet) architecture [1], trained on a single normal-
ized noise level, ¢ = 0.1, and use an L2-loss function. In Appendix B and
Appendix C, we provide additional details about CPnP-DN and UinUNet.

2.3. CPnP-AR

As noted above, the images encountered at various iterations of the
PnP reconstruction process generally do not follow the AWGN assump-
tion precisely. In the current setting, the presence of speckle in our im-
ages tempts us to include a prior agent in the form of a CNN despeck-
ler, which can be trained for state-of-the-art performance for removing
speckle [13,26,29]. While such CNNs encode a great deal of image prior
information, using a despeckler naively as an agent also fails to match
the distribution of images encountered during CPnP reconstruction.

To overcome this mismatch, we introduce a new agent for artifact
removal (AR) in the form of a two-stage CNN despeckler, as shown in
Fig. 2(d). The first stage takes an input state vector, (r3, ¢3), which repre-
sents a candidate reconstruction in the iteration process, and projects it
to a speckled image that is consistent with measured data and estimated
phase error. In the second stage, a CNN despeckler maps this speckled
image into the set of clean images that are consistent with the learned
prior model.

More precisely, we define our AR agent as

Fy(r3) = DS(E,[ |gl* | y. b3, 73] 10

This agent consists of two steps: computing the expected value of the
speckled image given the input state vector and measured data y, then
despeckling that image with a CNN DS(-) trained to remove speckle
from a generic set of images. The expected value E,[ lgl? | y, ¢s.r3]1is
shown in Appendix A to be the backprojection of the data y modulated
by the influence of ¢; and r3, hence it is a speckled image. We evaluate
the expectation in Eq. (10) with the same approach used to evaluate our
surrogate function, except that we condition the expectation on the state
vector, (r3, ¢3), rather than the current estimate, (+/, ¢’). With this new
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¢

arg(;nin{Ql + Q4}

¢

(2) DH-MBIR

E[|g|2|3’: ¢3' 7"3]

Speckled Image
Estimate

1

73, ¢3

DS()

CNN Despeckler

(d) CPnP-AR

Fig. 2. (a) DH-MBIR uses an iterative coordinate descent minimization to up-
date r and ¢. (b) Reformulating DH-MBIR using PnP converts Q, and Q; to
proximal maps, while Q, + Q, is minimized separately. Each agent has its own
state vector, (r;, ¢;). (c) CPnP-DN uses a CNN trained to remove AWGN in place
of prior term proximal map F;. (d) CPnP-AR replaces the CNN denoising agent
with a two-step operation that first transforms the state vector, r;, ¢; into a
speckled image and then applies a CNN trained to remove speckle.

agent, the CPnP-AR algorithm is identical to the CPnP-DN algorithm,
except that we use Eq. (10) for F; in place of an AWGN CNN denoiser.
While this change seems small, it is a fundamentally-different process for
incorporating image priors. By using an appropriate resampling method,
like the expectation in Eq. (10), we are no longer restricted to using
AWGD operators, allowing us to incorporate a wider-range of mapping
functions that better model the problem at hand.

In contrast to deep unrolling methods, in which the CNN is trained
while embedded in a full reconstruction algorithm, our AR agent de-
couples the learned image model from the forward model through our
two-step process. During the resampling step, we directly use the for-
ward model to evaluate E,|| gl? |y, ¢', r3]. This step provides us with an
estimate of a speckled image based on the current state vector. During
the second step, we input this speckled image into our CNN despeckler,
DS(+). In our approach, DS(-) does not use information about the for-
ward model during training. Instead, we train the CNN using a generic
set of speckled images, |g;|?, for i € 1,..., K, where K is the number of
training images. We generate each training pair by drawing from the
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Training input, |g;|?

Desired training output, 7;

Fig. 3. Example data pairs used for training our CNN despeckler. On the left, we
show the training input, a random draw of a speckled image, |g;|>. On the right,
we show the corresponding reflectance image, r;, used to generate the speckled
input. We trained our CNN to map |g;|> = r;.

distribution
p(g) ~ CN(0, D(r),0) (11)

where D(-) denotes an operator that produces a diagonal matrix from
its vector argument and CN (u, C,I') indicates a multivariate complex
normal distribution with mean, u, covariance matrix, C, and pseudo-
covariance matrix, I [8]. We then train the CNN to map |g;|> - r;, as
shown in Fig. 3.

This generic model is applicable to any coherent imaging application
with rough-surface scattering (e.g., LIDAR, ultrasound, active imaging,
etc.) [8]. Thus, if the forward model changes, we do not need to retrain
the CNN. Instead, we need only use this new forward model when com-
puting the conditional expectation and then apply the original CNN.
For our CNN despeckler, we use the same architecture, loss function,
and training images that we used for our AWGN denoiser. For further
details, see Appendices C and D.

3. Experimental testbed

In this section, we describe our custom-built experimental testbed
used for collecting DH data, which is the sensor modality we chose to
validate the performance of CPnP-AR. We also describe our methodol-
ogy for obtaining the baseline truth data needed to rigorously evaluate
performance using quantitative metrics. Please see Appendix E for more
details about out testbed and methodology.

3.1. Optical setup

Fig. 4 shows a diagram of our custom-built experimental testbed.
As shown, we used a 300 mW, 532 nm continuous-wave laser (Oxxius
LBX-532S-300) as the master oscillator (MO) with an optical isolator
to protect the laser from back reflections. Additionally, we used a half-
wave plate and a polarized beam splitter (PBS) to create the signal and
reference, and we included a variable neutral density (VND) filter in
each leg of the optical setup to control the power. For ease of use, we
also used a ten meter polarization-maintaining patch fiber for both legs.
We positioned the object being imaged 4.6 m away from the imaging
lens and adjusted the divergence of the outgoing beam using the lens at
the output of the signal fiber. Our outgoing beam had an approximately
Gaussian profile, and we adjusted its divergence until the illumination
within the camera field of view was relatively uniform. Since the outgo-
ing beam was not exactly uniform, some images have noticeably darker
regions near the corners.

Starting with a one-inch-diameter, 400 mm-focal-length lens (Thor-
labs best form), we used the off-axis image plane recording geometry
(IPRG) [31]. We positioned the output from the reference fiber next
to the imaging lens, and we placed the camera (Point Grey Chameleon
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CMLN-13S2M) in the image plane. We spatially demodulated each 16-
bit digital hologram to obtain a 344 x 344-pixel, complex-valued field
in the pupil plane of our sensor. For details about the demodulation
process used for the off-axis IPRG, we direct the reader to any of the
following resources: [18,22,25,30,31]. To add aberrations to the opti-
cal setup, we placed a phase plate as close as possible to the imaging
lens. Made by Lexitek [14], this phase plate matched the statistics of
realistic atmospheric turbulence, which allowed us to experimentally
quantify the strength of the phase errors. Using baseline truth data and
the methodology in Ref. [27], we obtained a D/r, of 10.7, where D is
the aperture diameter and r is the coherence length of our phase plate.

3.2. Baseline truth data

Unique to this paper, we obtained high-quality estimates of the
true reflectance, for the objects tested, and the true phase errors, for
the phase plate tested. We used this baseline truth data to quantita-
tively evaluate the performance of CPnP-AR relative to other image-
correction frameworks, including Image Sharpening (IS) [34], DH-
MBIR, and CPnP-DN. While these frameworks are designed for, and
tested with, single-shot data, in our laboratory experiments we have
the benefit of using multi-shot approaches to obtain our high-quality
images and phase errors to serve as truth data.

To obtain baseline truth data for the reflectance r (for each object
tested), we used speckle averaging rather than incoherent illumination
in order to better capture the dynamic range of our DH data and to
match the estimated reflectance to our illumination wavelength. For
these baseline speckle-averaged images, we recorded 20 digital holo-
grams, each with independent speckle realizations, by rotating the ob-
ject on a precision rotation stage (Thorlabs PR0O1). We determined that
with an object distance of 4.6 m, 2.8 mrad of rotation resulted in in-
dependent speckle realizations on a frame-to-frame basis. Note that we
averaged the magnitude squared of the complex images obtained from
the DH data, not the recorded digital holograms. More precisely, we
first demodulated each of the 20 holograms, 4; for i € [1,20], to obtain
the complex measurement, y;, given by Eq. (1). Next, we formed our
20 images according to | A" y;|?, where the superscript H represents the
Hermitian transpose. Note that the phase errors, ¢, are 0 in this case.
Lastly, we averaged these 20 images to obtain our baseline reflectance
function.

To avoid blurring caused by the frame-to-frame rotation, we reg-
istered the 20 real-valued images prior to averaging using MATLAB’s
imregister function with default monomodal settings. We fixed the first
image and registered the remaining 19 images to the fixed image. Lastly,
to reduce the residual speckle variation arising from a sample size of 20
independent speckle realizations, we applied a Gaussian spatial filter,
with a width ¢ = 1.5 pixels, to each averaged image.

To obtain baseline truth data for the phase errors (for each position
of the phase plate tested), we explored two methods: (1) using a point
source in the object plane and (2) applying DH-MBIR to multi-shot data
with a high-contrast object. We found that the second approach worked
better due to the dynamic-range limitations of the off-axis IPRG. There-
fore, we obtained the baseline truth data by following the methodology
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Object

Fig. 4. Diagram of our optical setup depicting
the beam path from the MO through the signal
and reference legs to the camera.

from Horst et al. [10]. We used a transmissive chrome-on-glass USAF
1951 bar chart backed by a sheet of white paper, and we obtained five
high signal-to-noise ratio (SNR) measurements, each with independent
speckle realizations. We then used DH-MBIR with multi-shot data, as
in Bate et al. [3], to produce high-quality estimates of the phase errors.

3.3. Quantitative metrics

To quantitatively evaluate image quality, we used MATLAB’s struc-
tural similarity index measure (SSIM) and peak SNR (PSNR) functions
with default settings [16,17]. Before using these functions, we first nor-
malized our baseline truth reflectance to the range [0, 1]. Next, using
Eq. (16) in Pellizzari et al. [22], we removed any multiplicative scalar
offset between each reconstruction and our normalized baseline truth
reflectance.

To assess the quality of phase errors, we used peak Strehl ratio, .
We define S, as

— {PSFC }max
! {PSFd }max

where {-}., indicates that we take the maximum value of the ar-
gument, PSF. is the point-spread function (PSF) of the imaging sys-
tem after correction of phase errors, and PSFy is the diffraction-limited
PSF [23]. Thus, the peak Strehl ratio is a normalized measure of how
close imaging-system performance is to the diffraction limit, neglecting
the effects of tilt.

12)

4. Results and discussion

Figs. 5 and 6 show results for the 16 objects tested. The far left col-
umn shows the baseline truth data, r,. In the second column, we show
the back projections, |A(’)’ y|?. These back projections represent the raw
images with no correction (i.e., with ¢ = 0). They contain speckle, mea-
surement noise, and are corrupted by phase errors. In the remaining four
columns, we show the results for IS, DH-MBIR, CPnP-DN, and CPnP-AR,
respectively. To improve visibility for plotting purposes, we reduced the
dynamic range by taking the square root of each image.

The results in Figs. 5 and 6 show the difficulty of regularizing coher-
ent images. With no regularization, IS produces a speckled image. Using
a simple model for p(r), DH-MBIR does reduce the speckle variations;
however, it does so only in certain regions that contain high signal lev-
els. It also leaves “hole-like” artifacts throughout the image. We found
that further increasing the regularization with DH-MBIR over-blurred
the image.

With an AWGN denoiser, CPnP-DN does obtain better regulariza-
tion and perceptual image quality than DH-MBIR. However, our results
highlight a significant challenge with CPnP-DN that was not observed in
our earlier simulated work—the optimal amount of regularization varies
based on the object. Here, we see that by fixing our hyperparameters,
we get over-regularization in some images and under-regularization in
others. As an example, Object 5 appears over-regularized while Object
7 is under-regularized. While we could obtain better performance by
adjusting the regularization for each image, such a method would be
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Fig. 5. Results for objects 1-8 shown on a normalized and unitless scale. To improve the visibility of these high-dynamic range images, we show the square root of
the reconstructions here. The far-left column shows the baseline truth data, r,;,, whereas the second column shows the blurry and noisy back projections, |A§ yI%
The remaining columns show the results from IS, DH-MBIR, CPnP-DN, and CPnP-AR, respectively.
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Fig. 6. Results for objects 9-16 shown on a normalized and unitless scale. To improve the visibility of these high-dynamic range images, we show the square root of

the reconstructions here. The far-left column shows the baseline truth data, rq,, whereas the second column shows the blurry and noisy back projections, |A¥ y|>.
The remaining columns show the results from IS, DH-MBIR, CPnP-DN, and CPnP-AR, respectively.
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Table 1
Quantitative performance measures for each algorithm on all 16 objects.
Peak Strehl Ratio SSIM PSNR

Object # IS DH-MBIR CPnP-DN CPnP-AR IS DH-MBIR CPnP-DN CPnP-AR 1S DH-MBIR CPnP-DN CPnP-AR
1 0.02 0.01 0.02 0.04 0.16 0.32 0.37 0.67 12.6 17.9 17.9 23.5
2 0.04 0.47 0.65 0.66 0.65 0.80 0.87 0.90 24.6 30.1 28.9 31.1
3 0.09 0.06 0.51 0.67 0.37 0.52 0.76 0.84 14.6 22.2 23.6 25.7
4 0.07 0.04 0.33 0.29 0.33 0.59 0.72 0.83 19.1 25.3 25.8 27.8
5 0.30 0.73 0.83 0.80 0.24 0.45 0.77 0.74 19.4 22.9 25.7 25.7
6 0.08 0.19 0.67 0.71 0.45 0.64 0.81 0.91 19.1 25.5 27.0 31.7
7 0.03 0.01 0.02 0.12 0.16 0.26 0.19 0.75 11.5 16.3 15.5 23.0
8 0.40 0.75 0.74 0.77 0.76 0.82 0.79 0.85 23.4 26.7 25.6 27.2
9 0.07 0.06 0.12 0.16 0.68 0.80 0.91 0.92 24.2 29.6 33.5 33.9
10 0.23 0.74 0.85 0.86 0.18 0.33 0.33 0.37 15.3 18.9 18.2 18.8
11 0.07 0.16 0.50 0.66 0.21 0.50 0.64 0.76 17.4 23.0 23.6 25.1
12 0.43 0.63 0.66 0.67 0.27 0.50 0.63 0.59 18.3 24.3 24.5 25.0
13 0.71 0.89 0.92 0.92 0.36 0.51 0.61 0.58 18.5 20.9 21.6 21.6
14 0.48 0.84 0.90 0.90 0.59 0.76 0.84 0.91 19.6 27.5 25.5 30.1
15 0.79 0.88 0.89 0.90 0.65 0.76 0.83 0.85 20.9 27.0 26.4 27.9
16 0.77 0.85 0.90 0.90 0.29 0.51 0.69 0.62 22.0 24.7 26.9 26.3
Mean 0.29 0.46 0.59 0.63 0.40 0.57 0.67 0.76 18.8 23.9 24.4 26.5
STD 0.27 0.35 0.31 0.29 0.20 0.18 0.20 0.15 3.7 3.9 4.3 3.8

practical only if we could automate the process. Furthermore, for many
objects, we see that the optimal amount of regularization varies locally
within the image. As an example, for Objects 1 and 7, the bright regions
within the images are over-regularized, while the dimmer regions are
under-regularized.

Using the AR agent, CPnP-AR produces reconstructions with higher
perceptual image quality compared to the other algorithms. We observe
that CPnP-AR does a better job of regularizing different types of images
with a fixed set of hyperparameters. Furthermore, within a single image,
it does better than CPnP-DN at regularizing both the bright and dim
regions.

In Table 1, we present our quantitative results for peak Strehl Ratio
and our image-quality metrics. These results reinforce the qualitative
results shown in Figs. 5 and 6. On average, the two CPnP algorithms
produce similar peak Strehl ratios, with both performing significantly
better than DH-MBIR and IS. CPnP-AR provides a slight advantage over
CPnP-DN in this category. Also, both algorithms obtain a significant im-
provement in image quality compared to DH-MBIR and IS. In this cate-
gory, CPnP-AR provides a significant advantage over CPnP-DN.

5. Conclusion

In this paper, we developed a new image-correction framework:
CPnP-AR, which incorporates the benefits of a neural-network despeck-
ler in a way that maintains the independence of prior-model training
and forward-model implementation. We also developed a custom-built
experimental testbed and the associated methodology needed to quan-
titatively evaluate performance. The results show that CPnP-AR signif-
icantly outperforms competing methods: IS, DH-MBIR, and CPnP-DN,
most notably without the need for additional parameter tuning. Overall,
CPnP-AR produced higher-quality images and moreaccurate estimates of
the phase errors for a wide range of objects. This improvement in over-
all robustness is a key step towards employing CPnP-AR for numerous
applications of interest. While CPnP-AR performed significantly better
than the other methods for low-contrast images, there is still room for
improvement. One possible approach to better reconstruct low-contrast
objects might be to train the image model using a wider-range of image
contrasts, or to integrate multiple image models trained on different
contrast levels.
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Appendix A. Problem Formulation

In this Appendix, we expand our description of the problem at hand
starting with our data model and surrogate function. We also specify
the physics-based forward model, A, and provide information about
the distribution of our data. Thereafter, we describe the posterior distri-
bution of g, given r/, ¢’ used in our evaluation of the EM algorithm.
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Al. Data model and surrogate function

As described in the main body of the paper, we model the complex-
valued measurement, y € CM, for a sensor employing optically-coherent
detection as

y=A,8+w, (13)

where g € CM is the rasterized unknown reflection coefficient for the
illuminated object, w € CM is complex-valued measurement noise with
variance o2, and Ay € CM*M s a linear transform describing propaga-
tion, measurement geometry, and phase errors, ¢ € RM [20,22].

Given y, we wish to jointly estimate the speckle-free image, r =
E[|g|?], and the phase errors, ¢, from single-shot DH data. With the
physically plausible assumption that r and ¢ are independent, we seek
to solve the problem

(7, $) = arg max p(y|r.¢) p(r) p(). (14)

Instead of solving (14) directly, we use the expectation maximiza-
tion (EM) algorithm as in Refs. [20,22-24] to iteratively construct and
minimize a surrogate function, Q in place of the MAP cost function.
Those papers show that the assumptions on y,r, g yield the following
conditional distributions

ylg.¢~CN(Ayg.621,0) (15)
glr~CN(0,D(r),0) (16)
gly.r.¢ ~ CN(p, 4. C, .0), an

where Ay, Hy s Cr g are defined below. These distributions determine the
corresponding density functions p(- | -) used below. To relate these dis-
tributions to p(y|r, ¢) as in (14), we note that the EM algorithm as in
Ref. [4] uses the fact that

—logp(y|r,¢) = E,[~logp(y.g|r.) | y.r . ¢ ]
—E [-logp(g|y.r.d) | y.7. ¢]- (18)

Here the conditional expectation E,[- |y, r'¢'] indicates that the distri-
bution of g for the expectation E, is given by (17) with (+, ¢') in place
of (r, ¢), while the density functions p(y|r, @), p(y. g|r, ¢), and p(g|y, r, $)
do not depend on ' and ¢’. The second term in (18) can be shown to
achieve its maximum when (r, ¢) = (+/, ¢'), so that the first term serves
as a surrogate function for —log p(y | , ¢). That is, instead of minimiz-
ing (18) directly, we can fix (+/, ¢'), minimize the first term in (18) over
(r, ¢), use these to update (', ¢'), and iterate.

After including the prior terms, we obtain a surrogate function for
—log p(y, r, ¢) given by

o, ¢;r',¢') = E,[~log p(y. g, 7. ) | y. 7', &'

=01(d:r, ¢+ Qr(r ', ¢) + O3(r) + Qu(9) (19)
where each of the four terms are given as in Pellizzari et al. [23] by
0,(¢;r'.¢) = -E, [lOgP(YIg,¢)|y, r',¢'] (20)
O,(r;r,¢') = —E,[log p(g|r) | y. "', ¢'] @n
0;(r) = —log p(r) (22)
04(¢p) = —log p(¢) (23)

and where we have used p(y,g, |r.¢) = p(y|g.d) p(g|r), and where
p(y|g,¢) and p(g | r) are determined by (15) and (17).

DH-MBIR, CPnP-DN, and CPnP-AR, are all designed using iterations
of the form

(', ¢') < arg r{lgbn o, s, ¢). (24)
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A2. Forward model

While Egs. (1) and (15) represent a generic model for sensors that
employ optically-coherent detection, the structure of A will depend on
the application at hand. In this paper, we consider the model for a sen-
sor employing DH. In practice, DH data starts with a master oscillator
(MO) and arises from the interference between a strong reference from
a local oscillator and the scattered signal from the coherent illumination
of a distant object [30]. The associated spatially modulated irradiance
patterns or “holograms” are digitized using a camera, and the resulting
digital holograms encode information about the amplitude and phase
of the scattered signal. This information is decoded by spatially demod-
ulating the digital holograms [25]. In so doing, we gain access to the
path-integrated amplitude and phase of the scattered signal, which al-
lows the decoded images to be digitally corrected.

In Appendix A of Ref. [22], we described a generalized form of A,
for DH. In this paper, we restrict to a single Fresnel propagation be-
tween the object and the digital-holographic sensor. We also restrict to
cases in which the phase errors are concentrated near the pupil plane of
our digital-holographic sensor, resulting in a shift-invariant point spread
function (PSF) in the image domain. The resulting model for A, is given
by

Ay = D(@)D(e'P?)A FT'HFA, (25)

where D(-) denotes an operator that produces a diagonal matrix from
its vector argument, a € RM is a binary vector that represents the trans-
parency of the circular aperture in the pupil plane, F € CM*M s a 2D
discrete Fourier transform (DFT) matrix, H € CM*M is the free-space
transfer function, and Ay, A; € CM*M are diagonal matrices that apply
the quadratic-phase factors in each plane for the Fresnel propagation.
Furthermore, we use an interpolation matrix, P € RM*L, where L < M,
that allows us to model the phase errors, ¢ € RL, on a low-resolution
grid. In this paper, we used nearest-neighbor interpolation. For com-
plete details on the structure of these matrices, we direct the reader
to Pellizzari et al. [22].

A3. Posterior distribution

As noted above, the conditional posterior distribution p(g | y, 7', ¢'),
as in (17), is the distribution used to evaluate the expectation with re-
spect to g as in Egs. (4), (5), and (10) of the main paper and (20) and
(21) of this Appendix. In [20], we showed that this distribution is com-
plex Gaussian with mean

sy SR Y
,u(r,qﬁ)—C(r,cb)aiAd),y, (26)
and covariance

-1 5
(o3
c'.¢) = [J%Afé%r + D(r’)l] ~ Dl —*| @

w 1+ i—’?
In this paper, we indicate explicitly that 4 and C are functions of inputs
', ¢’ since we will later use a state variable as input, rather than ', ¢'.
The approximation in Eq. (27) assumes that A A » ~ I. In practice, we
have found this approximation to work well [18,20,22].

Using this diagonal approximation, Eqs. (26) and (27) imply that
|g; > has a non-central y? distribution with

EgL1g 1y.r'.¢'1= Cy(r'. ¢)) + |w (. ¢)|* forall i (28)
where y; is the ith element of the posterior mean and C;; is the ith
diagonal element of the posterior covariance.

Appendix B. CPnP-DN

In this Appendix, we give further details on CPnP-DN, particularly
as it relates to the Multi-Agent Consensus Equilibrium (MACE) frame-
work [6]. This framework allows us to integrate three heterogeneous
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agents, each of which is associated with one or more of the four model
terms in the surrogate function Q in Eq. (3). We use agents

F('.¢) = arg;lin{Ql(¢;r’,¢/)+ 04}

Fy(ry;r, @) = argmin{ %Hr— r2||2 + Q2(r;r',¢’)}
r 20’2

F3(r3) = DN(r3). (29)
Agent F, updates the phase-error estimate by minimizing O, and Q,
with respect to ¢. The output of F, is the MAP estimate of ¢, given
the data and our current estimate, /,¢’. Given the relatively simple
structure of ¢, we use a Gaussian Markov Random Field (GMRF) for the
prior model, p(¢) used to define Q,(¢) [23]. To conduct the optimization
required for F;, we use a quasi-Newton gradient descent method.

Unlike the update of ¢, we split the forward- and prior-model terms
for r between two agents, F, and F;. As shown, F, is a proximal map
for the data-fitting image model Q,, but this proximal map has a rel-
atively simple closed form solution, equivalent to rooting a 3rd order
polynomial for each pixel [23]. Finally, for the image prior model, we
use a CNN designed to remove AWGN with variance o‘§ [23]. In partic-
ular, we use the U-in-U network (UinUNet) architecture, described in
Appendix C for DN'(-) [1].

We combine the agents in Eq. (29) by first defining v = [¢; r,; r3] to
be a vector formed by stacking three state variables and defining

(At ¢
F(v;r, @) =|Fy(ryr, @) |, G)=|F| (30)
F5(r3) r

Here, F is an operator formed by the application of the three agents
in parallel, G is an operator that averages and stacks the reflectance
state vectors, 7 = (r, +r3)/2, and r’, ¢’ on one iteration is obtained by
using the values of r,, r;, and ¢ from the previous iteration and taking
¢ =17 ¢l

The MACE balance equation is then given by

F(v*;r*, ¢*) = G(v*) , @1
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where v* = (¢*, s, r;‘), and the final reconstruction is given by r* = (r; +
r3)/2, which represents an equilibrium and a consensus among the 3
agents [5].

To find this solution, we use the fact that v* is a fixed point of the
operator, T = (2G — I)(2F — I), where I is the identity map. We find this
fixed point using Mann iterations of the form

z « F(v)

v <« v+2p[GR2z—-0v)-1z] (32)
where p = p(¢, p,) is a linear map that multiplies the first of the three
components in the stacked vector, [G(2z - v) - z], by p,, and multiplies
the other two components by p,.

In Ref. [23], we showed that when these updates converge to a fixed
point, that fixed point is also a solution to the MACE equation defined
in Eq. (31). Ref. [23] also shows that when the CNN agent F; is replaced
by a proximal map for the function Qs, then any solution to the MACE
equation is also a solution to the original MAP problem given by Eq. (2).
However, since Fj is not a proximal map, and since the first two terms in
the surrogate function are non-convex, proper initialization can improve
convergence and may improve the final solution point.

Following [18,20,22-24], we employ a set of nested iterations to
improve performance. Specifically, we use an outer loop of N, itera-
tions with periodic restarts using the current estimate of ¢ and simple
backprojection to re-estimate r. We use an inner loop of N, iterations
to find the solution given the initialization from the outer loop. These
inner iterations first define the surrogate functions at the current base
point, then take a step towards equilibrium using (32). This single step
approach is based on the idea of a partial update as in Pellizzari et al.
[23], Sridhar et al. [33].

In Fig. 7, we provide pseudo code for the general CPnP algorithm.
This pseudo code applies to both CPnP-DN and CPnP-AR, which differ
only in the behavior of agent F;.

Appendix C. CNN architectures and training

To maintain a fair comparison between CPnP-DN and CPnP-AR, we
used the same CNN UinUNet architecture for both frameworks, shown

Algorithm 1 General CPnP Algorithm

. 2 2 2
1: Input: Ny, N,, 05, 03, 0y ¥
2: d)’ <0
3: fori=1: N, do #Multi-start re-initialization

4: Foery—ry« |A£§y|2

5: v~ (p,1,,73)

6: for j=1: N, do #Find solution for this initialization
7: # E-Step: Define Q and F

8: O(r, ;1. ¢") = E;[—log p(y, g, 7, d) | y,r', '] # as in (20)—(23)
9: F,, F,, F; « definition as in (29)

10: # M-Step: Take a step towards consensus equilibrium
11: z < F(v)

12: ve—v+2p[GRz —v) - z]

13: # Update surrogate base point

14: @) < (vl, Lo, + v3)>

15: end for

16: end for

17: Return r/, ¢/

Fig. 7. The general C-PnP algorithm consists of an outer loop for periodic restarts using the current estimate of ¢ and simple backprojection to re-estimate r, and an
inner loop to iteratively conduct the joint estimation. Within the inner loop, we use a variant of the EM algorithm to define a surrogate for the cost function, convert
this surrogate to agents, then we use Mann iterations to find a solution. Note that CPnP-DN and CPnP-AR are implemented using the same algorithm; they differ
only in the form of the image agent F;.

10
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Fig. 8. (a) Overall U-in-U Network (UinUnet) architecture [1]. In this paper,
we used two U-in-U Blocks (UUBs) (b) UUB architecture. Each UUB has a single
down-up structure and contains three Down-Up Units (DUU)s (c) DUU architec-
ture. Each DUU resembles a conventional Unet.

in Fig. 8 and described in Abdelhamed et al. [1]. This residual-learning
architecture uses a nested UNet structure and yielded state-of-the-art
performance in the NTIRE 2020 real-denoising challenge. The UinUNet
is built with U-in-U Blocks (UUBs), which use a “down-up” architecture
along with several three-level “down-up units” (DUUs) that resemble
conventional Unets. The output of the UUBs are concatenated and fed
into a final "Recon” block that applies a series of eight consecutive 3 x 3
convolutions and ReLU blocks. We used two U-in-U Blocks (UUBs) for
our network.

To produce CNN agents for CPnP-DN and CPnP-AR, we trained two
UinUnets with corresponding training pairs, (y, x), where y is the noisy
input and x is the clean image used to evaluate the L2 loss function. For
both CNNs, we obtained x from the 400 training images found at [2] and
normalized all values to be € [0, 1].

For CPnP-DN, we generated noisy data y, € RM from clean images
x, according to
Yo =Xx,+ow, , (33)
where w, € RM is a random vector with elements that are zero-mean
Gaussian with unit variance. In this paper, we used a fixed noise level
of o = 0.1. For CPnP-AR, we generated noisy data (speckled images) ac-
cording to

2

X
n
- © Wyal >

2

Xn

> (34)

Yy = Quw,+i

where i = V/—1, w, 1, w,, € RM are two zero-mean Gaussian vectors
with unit variance, and © indicates element-wise multiplication. Then
¥, is a speckle realization using the values of x, as the reflectance r.
We trained both CNNs in MATLAB using the Deep Learning Tool-
box with the ADAM training routine. We trained for 30 epochs with a

learning rate of 1 x 10~ and a batch size of 4 images. We reduced our
learning rate by half every 5 epochs.
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Appendix D. Algorithmic parameters

In this Appendix, we provide additional details about the application
and parameters for each of IS, DH-MBIR, CPnP-DN, and CPnP-AR. For
each approach, we estimate the phase errors on a low-resolution, 86 x 86
grid and convert to a 344 x 344 grid using nearest neighbors interpola-
tion. This step enables comparison with our baseline truth data. For IS,
we used the steps outlined in Thurman [34] with a sharpness param-
eter f =0.5, and we iteratively reduced the phase-error pixel binning
according to B, =[86, 43, 8, 4].

DH-MBIR, CPnP-DN, and CPnP-AR share several characteristics, in-
cluding the same phase-error estimation step and common parameters
N, =40, N, =250, o, = 0.25, and 5, = 0.3 (see Ref. [23] for all param-
eters not defined in this Appendix). Specifically, for DH-MBIR, we set
the unitless regularizing parameter y = 5. For CPnP-DN and CPnP-AR,
we set p;, = 0.5 and p, = 0.8. For CPnP-DN, we also set o, = 0.34 and
o3 = 0.1. Lastly, for CPnP-AR, we set o, = 0.05. Note that the prior agent
for CPnP-AR, given by Eq. (9), does not have a o3.

For each algorithm, we used a single set of parameters for all re-
constructions. We selected the regularization parameters that produced
the highest quality estimates when averaged over all 16 data sets. Us-
ing our truth data, we quantified the quality, g, of our estimate as the
sum of the peak Strehl ratio and the SSIM, (g = S, + SSIM). To max-
imize g with respect to the regularization parameters, we used MAT-

P

Fig. 9. Photo of our optical setup depicting the beam path from the laser to
the camera. Note that we moved the phase plate closer to the imaging lens than
what is depicted in the photo.
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Fig. 10. On the left (a), we show example incoherent images and the corresponding speckle-averaged images using a normalized and unitless scale. Here, we used
the speckle-averaged images as our baseline truth data for the reflectance (of the objects tested). In the middle, (b), we show a bar-chart image blurred with the
phase errors from our rotatable phase plate and the corresponding phase-corrected image obtained using DH-MBIR with multi-shot data, also shown on a normalized
scale. On the right, (c), we show baseline truth data for the phase errors with units of radians.

LAB’s Particle-Swarm global-optimization function. Each particle in the
population evaluated the algorithm with a unique set of regularization
parameters. We used the parameters that produced the highest value
of q. For all other parameters not mentioned here, we used the values
found in Pellizzari et al. [23].

Appendix E. Experimental testbed

In this Appendix, we provide additional figures to supplement
the description of our experimental testbed. Fig. 9 shows the digital-
holographic sensor and bar chart in the object plane. This picture sup-
plements Fig. 4 from the main text.

Fig. 10 shows four reference images and phase errors. In Fig. 10(a)
we show examples of the reference reflectance functions obtained using
incoherent illumination on the left and speckle averaging on the right.
The speckle-averaged images obtained using coherent detection have
a larger dynamic range and contrast than the incoherent images. Addi-
tionally, we see wavelength differences in the reflectivity between these
two image types. This is most apparent with the helmet visor of object
number 2, which is clear when viewed with the broad-band incoherent
light but opaque when viewed with the narrow-band laser illumination.
For these reasons, we used speckle averaging to produce our reference
reflectance functions.

The left side of Fig. 10(b) shows the blurry bar-chart images corre-
sponding to the first four data sets. We used DH-MBIR with multi-shot
data to produce a high-quality estimate of the phase errors for each
bar chart. To verify the quality of our estimate, we applied the conju-
gate of these estimated phase-errors to the blurry bar-chart data. This
phase-only correction, shown on the right side of Fig. 10(b), produced
a focused image in each case. In Fig. 10(c), we show the corresponding
estimates of the phase errors.
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Given our methodology for obtaining baseline truth data, we devel-
oped the following procedure to collect data for each object tested. First,
we measured 20 speckle realizations without the phase plate in the op-
tical setup. Second, we inserted the phase plate into the optical setup
and took a single measurement with the object being tested. Next, we
replaced this object with the transmissive chrome-on-glass 1951 USAF
bar chart backed by a sheet of white paper and kept the phase-plate po-
sition fixed. Lastly, we obtained five independent speckle realizations
by rotating the bar chart relative to the digital-holographic sensor. Fi-
nally, we used MATLAB’s imregister function to align these images and
then average them.
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