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Theory, algorithms, and applications

lug-and-play (PnP) priors constitute one of the most widely
Pused frameworks for solving computational imaging prob-

lems through the integration of physical models and learned
models. PnP leverages high-fidelity physical sensor models and
powerful machine learning methods for prior modeling of data
to provide state-of-the-art reconstruction algorithms. PnP al-
gorithms alternate between minimizing a data fidelity term to
promote data consistency and imposing a learned regularizer in
the form of an image denoiser. Recent highly successful applica-
tions of PnP algorithms include biomicroscopy, computerized
tomography (CT), magnetic resonance imaging (MRI), and joint
ptychotomography. This article presents a unified and principled
review of PnP by tracing its roots, describing its major varia-
tions, summarizing main results, and discussing applications in
computational imaging. We also point the way toward further
developments by discussing recent results on equilibrium equa-
tions that formulate the problem associated with PnP algorithms.

Historical background

Consider the inverse problem of estimating an unknown image
x € R” from its noisy measurements y € R™. It is common to
formulate this problem using the optimization

X = argminf(x) with f(x)=gx)+h(x) (1)
xeR

where g is a data fidelity term that quantifies consistency with
the observed measurements y and / is a regularizer that enforc-
es prior knowledge on x. The formulation in (1) corresponds to
the maximum a posteriori probability (MAP) estimator when

g(x) =—log(pyix(x)) and h(x)=—log(p«(x))  (2)

where pyix is the likelihood relating x to measurements y and
px is the prior distribution. For example, given measurements
of the form y = Ax + e, where A is the measurement opera-
tor (also known as the forward operator) characterizing the
response of the imaging instrument and e is additive white
Gaussian noise (AWGN), the data fidelity term reduces to the
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quadratic function g(x)=(1/2)lly —Ax 3. On the other
hand, many popular image regularizers are based on a sparsity
promoting regularizer h(x) = = ll Wx Ili, where 7 > 0 is the
regularization parameter and W is a suitable transform. Over
the years, a variety of reasonable choices of & have been pro-
posed, with examples including the total variation (TV) and
Markov random field (MRF) functions. These functions have
elegant analytical forms and had a major impact in applica-
tions ranging from tomography for medical imaging to image
denoising for cell phone cameras.

The solution of (1) balances the requirements to be both
data consistent and plausible, which can be intuitively inter-
preted as finding a balance between two manifolds: the sensor
manifold and prior manifold. The sensor manifold is repre-
sented by small values of g(x) and in the case of a linear for-
ward model, is roughly an affine subspace of R". Likewise,
the prior manifold is represented by small values of & (x) and
includes the images that are likely to occur in our application.
Importantly, real images have enormous amounts of structure,
departures from which are immediately noticeable to a domain
expert. Consequently, plausible images lie near a lower dimen-
sional manifold in the higher dimensional embedding space.

Proximal algorithms are often used for solving problems
of the form in (1) when g or £ is nonsmooth [1]. One of the
most widely used and effective proximal algorithms is the
alternating direction method of multipliers (ADMM), which
uses an augmented Lagrangian formulation to allow for alter-
nating minimization of each function in turn (see [2] for an
overview of ADMM). ADMM computes the solution of (1)
by iterating the steps summarized in Algorithm 1 (see Fig-
ure 1) until convergence. One important property of ADMM
is that it does not explicitly require knowledge of either g or
h or their gradients, relying instead on the proximal operator,
which is defined as

Algorithm 1. ADMM.

1: input: u® =0, °, and v > 0
2: for k=1,2,...,1t do

k ) k=1 _ k-1
3 2"« prox, (x" ! — u"7)
4 x* « prox. (2" + uF1)
5 uf — uFl (2R 2k)
6: return z'

Algorithm 2. FISTA.

0 — SO, v > 0, and {ek}kzo

cfor k=1,2,...,tdo
PLE —yVg(x

I: input: =z

2

3:

4: sF proxyh(zk)
5

6

k—l)

P (1 —0;)s" + ;85!
: return z'

FIGURE 1. ADMM and FISTA are two widely used iterative algorithms for
minimizing composite functions f(x) = g(x) + h(x), where the regular-
ization term 4 is nonsmooth. Both functions avoid differentiating # by
evaluating its proximal operator.

prox.n(z) := argmin{%H x—z H; + Th(x)} 3)
xR

for any any proper, closed, and convex function £ [2]. Compar-
ing (3) and (1), we see that the proximal operator can be inter-
preted as a MAP estimator for the AWGN denoising problem

z=xo0+w where xo~px, w~N(0,7I) ()
by setting A (x) =—10g(px,(x)).

This perspective inspired the development of PnP priors in
[3], where the proxys step in ADMM is simply replaced by a
more general black-box denoiser D:R" — R”", such as block-
matching and 3D filtering (BM3D) [4]. That is, any black-box
denoiser D can, in principle, replace (“plug”-in for) proxys,
and then ADMM algorithm can run (“play”) as before. We
refer to this original algorithm as PnP-ADMM to distin-
guish it from other methods inspired by this PnP approach.
In fact, there are multiple algorithms using proximal maps to
minimize a sum of convex functions, and for each of these
algorithms, there is a corresponding PnP version obtained by
associating the proximal map with the prior term, then replac-
ing the proximal map with a black-box denoiser. In the fol-
lowing, we provide more detail on PnP-ADMM and PnP-fast
iterative shrinkage/thresholding algorithm (FISTA) [5] (based
on the proximal gradient method) as well as extensions and
variations. See [6] for the roots of FISTA, [7] for more detail
on proximal splitting methods in general, and [8] for a tutorial
overview of some PnP methods.

PnP integration of physical and learned models

Deep learning (DL) has emerged as a powerful paradigm for
designing algorithms for various image restoration and recon-
struction tasks, including denoising, deblurring, and super-
resolution (the literature is vast, but see [9] for an early his-
tory). Given a set of paired data (x;, z;), where x; is the desired
“ground truth” image and z; is its noisy or corrupted observa-
tion, the traditional supervised DL strategy is to learn a map-
ping from z; to x; by training a deep convolutional neural net-
work (CNN). Despite its empirical success in computational
imaging, an important drawback of DL relative to regularized
inversion is the potential need to retrain the CNN for different
measurement operators and noise levels.

The success of CNNs as black-box denoisers leads natu-
rally to their use with PnP (see “Turning an Image Denoising
Network Into an Image Superresolver”). In its simplest form,
PnP can be implemented by pretraining an image denois-
ing CNN D and using D in place of proxy, within ADMM.
Remarkably, this simple heuristic of using denoisers not
associated with any 4 exhibited great empirical success and
spurred much theoretical and algorithmic work on PnP and
other related methods. As a result, PnP-inspired methods
are among the most widely used approaches for combining
the advantages of regularized inversion, which is flexible to
changes in the data fidelity term, with the powerful represen-
tation capabilities of deep CNNs.
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PnP priors algorithms

The first PnP algorithm was PnP-ADMM [10], which is
implemented by iterating the steps in Algorithm 3 (see Fig-
ure 2) until convergence. The operator D in PnP-ADMM is an
image denoiser that approximates a solution to the problem in
(4). While the original formulation of PnP relies on ADMM,
PnP can be equally effective when used with other proximal
algorithms, such as primal—dual splitting [11] and FISTA [5].
Algorithm 4 summarizes the steps of PnP-FISTA, which is
based on the traditional FISTA summarized in Algorithm 2.

PnP-ADMM and PnP-FISTA share the important feature of
modularity; they explicitly separate the application of the physi-
cal models (the data fidelity update in line 3 of both algorithms)
from that of the learned models (the image denoising in line
4 of both algorithms). This observation reveals a key strength
of PnP methods: they can be easily customized for different
measurement operators by changing the data fidelity term, thus
enabling the use of the same learned CNN over a wide range
of applications without retraining. Similarly, PnP methods pro-
vide a simple mechanism to combine different image priors on

Turning an Image Denoising Network into an Image Superresoluer

Plug-and-play (PnP) can be applied to multiple imaging
problems using a single convolutional neural network
(CNN) denoiser simply by changing the physics-based
measurement model. Consider image superresolution (ISR)
with factors 2 x and 4 x, where the goal is to recover a
high-resolution image from its blurred, decimated, and
noisy low-resolution (LR) observation. As shown in the fol-
lowing, a single denosing CNN can be used within PnP to
address both problems, thus leveraging the implicit image
model in a deep CNN over multiple problems without
retraining.

Step 1: Learn a denoiser

let X c R" denote a training data set of natural images.
The denoiser is trained by updating the weights 6 of a
CNN D, to remove the noise from z=x,+w, where

Reference Image  Gaussian Noise

w

l

xo€X and w~ N(,0°I). It is worth mentioning that
since the prior in PnP is learned on a prefext task (image
denoising) rather than on the final task (image reconstruc-
tion), PnP can be considered a self-supervised learning
framework.

Step 2: Turn denoiser into superresolver

A pretrained denoiser Do can be used for ISR by replac-
ing proxy in the alternating direction method of multipliers
or the fast iterative shrinkage/thresholding algorithm by
Do (Figure S1). Figure S2 shows the results obtained for
two upsampling rates 2 x and 4 X using the same denois-
ing CNN, either to postprocess the pseudoinverse or as an
image prior within PnP. Note how PnP obtains significantly
better results by infegrating information both from the phys-
ical and learned models.

Back Propagation

>® L(xg— Dyl(xg * )
4 Training Loss Function

_________________________

FIGURE $1. Image priors for PnP can be obtained by training CNNs to remove the additive white Gaussian noise from a set of

images.

LR(2x) CNN(28.7dB)  PnP (31.7 dB)

LR (4x) CNN (24.3dB)  PnP (26.0 dB)

FIGURE S2. A single pretrained CNN denoiser in PnP can address different superresolution factors. The code is available at https://github.com/lanl/

scico-data/blob/main/notebooks/superres_ppp_dncnn_admm.ipynb.
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the same problem by simply changing the denoiser D. Note that
since the prior in PnP is learned on a pretext task (image denois-
ing) rather than on the final task (image reconstruction), PnP
can be considered a self-supervised learning framework.

One of the practical differences between various PnP algo-
rithms is the treatment of the data fidelity term, g, which models
the physical measurements. PnP-FISTA uses a standard (explic-
it) gradient descent step z = x — yVg(x), while PnP-ADMM
uses the proximal operator proxyg, which can be written as an
implicit gradient step, z = proxy,(x) =x —yVg(z), with Vg
evaluated at z. We assume, for simplicity, that g is differentiable;
extensions to nondifferentiable g require more care. For the loss
g(x) = (1/2) Il Ax —y II3, these updates can be computed as

x—yVgx)=x —AT(Ax —y) and
proxye(x) = (I+yATA) " (x +yATy). 3)
PnP-ADMM is known for its fast empirical convergence
and efficiency for many widely used operators in computa-
tional imaging. However, it requires the computation of the
proximal map, whereas PnP-FISTA requires only the compu-
tation of the gradient, Vg. In principle, the gradient is simpler
than the proximal map, but in many applications, the proxi-
mal map can be computed or approximated efficiently using
general methods, such as the conjugate gradient, or with spe-
cialized methods, such as when the forward model is a spatial
blurring operator that can be computed using the fast Fourier
transform (FFT) [14]. In other cases, the proximal map can be
efficiently computed using partial updates [15] that avoid the
explicit inversion of (I + YA TA) in (5). This is accomplished
by maintaining an additional state variable that is used as ini-
tialization for the proximal minimization problem. The mini-
mization is approximated by a few steps of an iterative solver,

Algorithm 3. PnP-ADMM [10].

u’ =0, 2% and v > 0
cfor k=1,2,...,t do
2k proxw(a:k*1 —

1: input:

2

3

4: xF « D(zF 4+ ub 1)
5

6

uk—l)

ub — ufl 4 (z’C — mk)
. return z'

Algorithm 4. PnP-FISTA [5].

I: input: =% v >0, and 6}, € (0,1] Vk
2: for k=1,2,...,t do

3: 2P ahml — 4Vg(ah!)
4 sk« D(2F)

5: xF (1 —0)s" + 0pst!
6: return z'

FIGURE 2. The term plug-and-play (PnP) priors refers to a family of itera-
tive algorithms that replace the proximal operator prox,.: R" — R" of the
regularizer i (as in Figure 3) by a more general denoiser D:R" — R" in
line 4. The success of DL in image restoration has led to a wide adoption
of PnP for exploiting learned priors specified through pretrained deep
CNNs, leading to state-of-the-art performance in a variety of applications.

starting from this initialization. As the outer loop converges,
this additional state variable also converges [15], so these par-
tial updates reduce computation without compromising the
accuracy of the final solution.

An important conceptual point is that PnP algorithms with
black-box denoisers do not generally solve an optimization prob-
lem. Thatis, the original ADMM and FISTA algorithms solve the
optimization problem in (1). But once the proximal map denois-
ing operation is replaced with a black-box denoiser, D, then there
is no longer any corresponding function 4 to minimize. In fact,
the numerical evaluation of many widely used denoisers, includ-
ing BM3D and the denoising CNN, reveals that their Jacobians
are not symmetric, which implies that these denoisers are neither
proximal maps nor gradient descent steps [16, Th. 1].

Nonetheless, it is still possible to formulate a criterion for
the converged solution for PnP using a consensus equilibrium
formulation [17] (also see “Geometric Intuition for Multiagent
Consensus Equilibrium”) given by

x=Gx—u) and x=D(x+u) 6)
where G:= proxy; and x and u are the converged values of
PnP-ADMM. Interestingly, in the consensus equilibrium equa-
tion of (6), x is the final reconstruction, and u can be interpret-
ed as noise that is removed by the denoiser in x = D(x + u)
on the one hand and balanced by the action of the data fitting
update in x = G (x —u) on the other.

To establish (6), note that the fixed points z, x, and u of
PnP-ADMM iteration satisfy

z=G(x—-u), x=D(Z+u), u=u+z—x. 7
From the last equation, we conclude that x = z, which leads
directly to (6). Also, the first-order optimality condition for
the minimization problem x = G(x —u) = proxXy(x —u) is
0=x—(x—u)+yVg(x), sou =—yVg(x). A similar analy-
sis in [18] and [19] shows that the fixed points of PnP-FISTA
satisfy the same consensus equilibrium conditions:

x=DE-1Vgk) o {;‘ - o uj)/Vg(x)
x=Gx—u)

“ {x =D(x+uy ®)

where we again used the first-order optimally condition to con-

vert from Vg to G.

The convergence of PnP algorithms can be established using
monotone operator theory [20]. In this approach, as in [14], [17],
[18], [19], [21], [22], and [23], the problem is first expressed as
finding a fixed point of some high-dimensional operator, which
under appropriate hypotheses can be iterated to yield a solution.
The proof of convergence of PnP-ADMM [17], [23] begins by
showing that the fixed points of the PnP-ADMM are in one-to-
one correspondence with the fixed points of the operator

T=2G-1H2D-1I). ©)]
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In fact, after a linear change of coordinates, Algo-
rithm 3 is equivalent to the Mann iterations of 7' given by
vE— (1/2vF + (1/2)TF Y [1, [17]. This yields linear
convergence to a unique fixed point when T is a contrac-
tion, which is true when g is strongly convex and R:=[1—D
is a sufficiently strong contraction [23]. Weaker conditions
establish sublinear convergence to a possibly nonunique
fixed point [24]. Other well-known theoretical results on
PnP-ADMM include its convergence for implicit proximal
operators [21], bounded denoisers [22], and linearized Gauss-
ian mixture model denoisers [14]. Even CNN-based denoisers
can be trained to satisfy these contractive, nonexpansive, and
Lipschitz conditions by using spectral normalization tech-
niques [23], [25].

The convergence of PnP-ISTA (which is PnP-FISTA
with the Nesterov acceleration parameters set to 6x = 1 for
all k= 1) can be established by expressing it using operator

F:=D({—yVg). When the data fidelity term g is strongly
convex and the denoiser D is Lipschitz continuous with a suf-
ficiently small constant, then the iteration of F converges lin-
early to its unique fixed point [23]. On the other hand, when g
is weakly convex and the denoiser D is firmly nonexpansive,
then the iteration converges sublinearly to its fixed point [19].
Related results have shown that PnP-ISTA converges to a min-
imizer of some global cost function when the denoiser D cor-
responds to a minimum mean-square error estimator applied
to the denoising problem in (4) [26], and they have established
recovery guarantees for PnP for the measurement operators
that satisfy the restricted eigenvalue condition commonly used
in compressive sensing [27].

Regularization by denoising
Regularization by denoising (RED) is an algorithm inspired
by PnP that also enables the integration of denoisers as priors

Geometric Intuition for Multiagent Gonsensus Equilibrium

Multiagent consensus equilibrium (MACE) is a formal
mechanism to compute a reconstruction that is a balance
among multiple competing models or agents (Figure S3).
When the agents are a forward and prior model, the
MACE solution is exactly the plug-and-play solution. But
MACE also works with multiple models, each promoting
different desired outcomes.

An agent is @ function, x = F(v), that fakes an input image,
v, and makes it better in some way to produce a new image,
x. Denoisers, gradient descent steps, and proximal maps are
all examples of useful agents. Beyond that, agents can be neu-
ral networks frained to remove application-specific arfifacts
and noise as well as other image enhancing operations.

Algorithm S1 shows how to compute the MACE solution
with n agents, shown as F,...,F,.. At convergence, all

agents yield the same reconstruction: F,(v,) =x" for all n.
This is the idea of consensus. This reconstruction is also the
average of the input points: Average(v,,...,v,) = v". This is
the idea of equilibrium.

Algorithm S1. MACE reconstruction [17].

1: input: Initial Reconstruction x (an image)
2:v—(x,...%) # Form a stack of images

3: while not converged do

4: x — (Fi(v),...,F.(v.) # Apply each agent
5 w—2x—v

6: z — Average(W,...,w,)

702 @Z...2) # Restack the average image
8 v—v+20(z—x)  #Updafe agent input

9: end while

0:

X <z # Get final result

v
Agent 3
o P 4
Agent 1 )
Agent2 v
v

Consensus Without Equilibrium Without Consensus

Equilibrium Consensus Equilibrium

(a) (b) (c)

FIGURE $3. Consensus means that each agent has the same output, while equilibrium means that vector sum of the updates is 0. (a) Consensus
without equilibrium. (b) Equilibrium without consensus. (c) Consensus equilibrium.
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for inverse problems [28]. The steepest descent (SD) variant of
RED [28] can be implemented by iterating the following steps
until convergence:

x — x* ' —yHXY with H(x):= Vg ) +7(x — D(x))
(10

where y > 0 is the step size, D is a denoiser, and 7 > 0 is
the regularization parameter. While RED was initially derived
as an optimization problem [28], a subsequent analysis [16]
showed that an interpretation as a fixed-point problem is more
appropriate for practical denoisers. Using this approach, the
fixed-point condition in (10) translates to the RED equilibrium
condition given by

—Vgx)=7t(x—D(x)). (11)

As noted in (2), the function g is often the negative log
likelihood of the distribution pyx relating the reconstruction
x to the measurements y. In this setting, —Vg is known as the
“score” of this distribution. This negative gradient describes
the steepness of the log-likelihood function and hence the
sensitivity to changes in x. From this, we see that (11) bal-
ances changes in the log likelihood against the update step
x — D(x). This is similar to the balance in (6), in which the
same u is removed by the denoiser and added by the data
fitting map. A much more complete discussion of RED algo-
rithms and score matching is given in [16]. The convergence
of RED algorithms can also be analyzed using monotone
operator theory. In particular, it can be shown that for a
convex function g and a nonexpansive denoiser D, RED-SD
converges sublinearly to a set of x satisfying the equilibrium
condition in (11) [16], [25].

Figure 3 presents results using PnP and RED on com-
pressive sensing from random projections with 20% sub-
sampling. The setup used in the simulation is identical to
that described in [27]. The results of the traditional TV
reconstruction and of the ISTA-Net+ deep unfolding (DU)
architecture [29] are presented for reference (see the “DU

and DEQ Models” section for a discussion of DU). The fig-
ure considers two priors for PnP: 1) an AWGN denoiser and
2) an artifact removal (AR) operator trained to remove arti-
facts specific to the PnP iterations that is used in place of
an AWGN denoiser. Both priors are implemented using the
denoising CNN architecture, with its batch normalization
layers removed to enable control of the Lipschitz constant of
the network via spectral normalization. The AR operator D
is trained by including it in a DU architecture that performs
PnP iterations and training it end to end in a supervised
fashion. This approach has the disadvantage that the prior
model is no longer completely separate from the forward
model, but as seen in Figure 3, it can yield significantly
improved results relative to an AWGN denoiser.

Online PnP algorithms

The traditional PnP methods are batch algorithms in the
sense that they compute the gradient Vg or the proximal
operator proxyg of the data fidelity term g by using the
whole measurement vector y € R™. The per-iteration com-
putational and memory complexity of batch PnP algorithms
depends on the total number of measurements. For example,
in tomography with b projections, the complexity of evalu-
ating Vg scales linearly with b, making it computationally
expensive for a large b. This has motivated interest in on-
line, stochastic, and/or incremental PnP algorithms that ap-
proximate the batch Vg with an approximation Vg based
on a single element or a small subset of the measurements
[19], [24], [30].

Consider the decomposition of R™ into » = 1 blocks:

R"=R"XR™X .- xR™ with m=mi+ma+ -+ mp.
(12)

In this setting, the data fidelity term and the corresponding
gradient vector are given by

g0 =52 gix) and Vg =D Ve (13)

i=1 i=1

FIGURE 3. Color image recovery in compressive sensing from random projections with 20% subsampling. The results of TV and a well-known deep
unfolding (DU) architecture, ISTA-Net+, are provided for reference. The PnP (denoising) and RED (denoising) methods use a pretrained AWGN denoiser
as an image prior. The PnP [artifact removal (AR)] method uses a problem-dependent AR operator pretrained using DU. Note that the choice of denoiser
affects the reconstruction significantly. The number on the bottom-right corner is the peak signal-to-noise ratio (PSNR) in dB. (a) Ground truth, (b) TV,

(c) ISTA-Net+, (d) RED (denoising), (e) PnP (denoising), and (f) PnP (AR).
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where each g, is evaluated only on the subset y; € R™ of the
full measurement vector y € R™. For example, each individ-
ual term in the gradient can be set to the quadratic function
gi(x) = (1/2) ||y,~—A,-xII%, where A; is the operator corre-
sponding to the measurement block y;.

Online PnP in Algorithm 5 and scalable iterative mini-
batch algorithm (SIMBA) in Algorithm 6 (Figure 4) are online
extensions of PnP-FISTA and RED-SD, respectively. Both
algorithms improve the scalability to large-scale measure-
ments by using only a single component gradient Vg; (x),
with ix € {1,...,b}, making their per-iteration complexity
independent of 4. Online PnP algorithms can be implemented
using different block selection rules. The strategy commonly
adopted for the theoretical analysis focuses on selecting indices
ir as independent identically distributed random variables dis-
tributed uniformly over {1,..., b}. An alternative would be to
proceed in epochs of b consecutive iterations, where the set
{1,..., b} is reshuffled at the start of each epoch and the index
Vgi. is selected from this ordered set.

Online PnP algorithms can also be implemented in a mini-
batch fashion by replacing Vg, in step 4 of both by a mini-
batch gradient

P
Vg (x) =LZ Vgi;(x) (14)
P =
where p is the minibatch size and i1, ..., i, are indices select-
ed from the set {1,..., b}. The minibatch variants of online
PnP can process several blocks in parallel in every iteration,
thus improving efficiency on multiprocessor hardware archi-
tectures. While online algorithms have traditionally focused
on partial approximations of the gradient, recent work has
also explored the approximation of the batch proximal op-
erator proxy; in PnP-ADMM by a partial proximal operator

Algorithm 5. Online PnP [19].

I: input: 2%, b>1,and v >0

2. for k=1,2,...,t do

3: Choose an index i € {1,...,b}
4: 2F kb=t 4V, (xF1)

5 ¥« D(2")

Algorithm 6. SIMBA [30].

1: input: % b>1,>0,and 7 >0

2: for k=1,2,...,t do

3: Choose an index if € {1,...,b}

& Hy(2™") « Vg, (@) + 7R(@')
5

2t @l —yH, (@)

FIGURE 4. The complexity of evaluating the batch gradient of Vg or
proximal operator prox,, iS computationally expensive in some applica-
tions. This has motivated the development of online, stochastic, and
incremental variants of PnP that use a single element or a small subset of
the measurements at each iteration. The per-iteration complexity of such
algorithms is independent of the batch size » > 1, thus making them
suitable for certain large-scale applications.

proxyg [24]. One can also consider block coordinate exten-
sions of online PnP by considering decomposition of the im-
age space R" into a number of smaller image blocks [25].

The fixed-point convergence analysis of online PnP algo-
rithms uses mathematical tools from traditional stochastic
optimization and monotone operator theory. The key require-
ment for the analysis is that the gradient estimate in (14) is
unbiased and has bounded variance,

E[Vg(x)]=Vg(x) and E[|Vg(x)—VgmiI<t- (15)

< %

for some constant ¥ > 0 and every x € R". Note that when ix
is selected uniformly at random from {1,..., b}, the unbiased-
ness assumption is automatically satisfied. Then, for convex
data fidelity terms g; and firmly nonexpansive denoisers D, one
can establish the sublinear convergence of online PnP algo-
rithms to their fixed points [19], [24], [30].

DU and DEQ

DU (also known as deep unrolling or algorithm unrolling) is
a DL paradigm with roots in sparse coding [31], [32] that has
gained popularity in computational imaging, due to its abil-
ity to provide a systematic connection between iterative algo-
rithms and CNN architectures [32], [33]. Many PnP algorithms
have been turned into DU architectures by parameterizing the
operator De as a CNN with weights 6, truncating the PnP al-
gorithm to a fixed number of iterations 7 = 1, and training the
corresponding architecture end to end in a supervised fashion.
For example, Figure 5 illustrates the representation of ¢ itera-
tions of PnP-ISTA and RED-SD as DU architectures.
Consider a set of paired data (x;, y;), where x; is the
desired “ground truth” image and y; = Ax;+ e; is its noisy

Iteration 1 Iteration ¢

(b)

FIGURE 5. The PnP framework is related to two other popular computa-
tional imaging paradigms, DU and deep equilibrium (DEQ) models. A PnP
algorithm, such as PnP-ISTA and RED-SD, can be turned into a DU archi-
tecture by truncating the algorithm to # > 1 iterations and training the
weights 6 of the CNN D, end to end. Similarly, a DEQ architecture can
be obtained by running the PnP algorithm until convergence and using the
implicit differentiation at the fixed point to train the weights 6. The opera-
tor Do in DU/DEQ is not necessarily an AWGN denoiser; instead, it is an
AR operator trained to remove artifacts specific to the PnP iterations. The
(a) deep unfolding of PnP-ISTA and (b) deep unfolding of RED-SD.
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observation. Consider also the iterate x}(0) of a PnP algorithm
truncated to ¢ = 1 iterations, where we made explicit the depen-
dence of the PnP output on the weights 6 of the CNN param-
eterizing De. DU interprets the steps required for mapping the
input vector y; and the initialization x{ to the output x}(6) as
layers of a CNN architecture. The DU training is performed by
solving the optimization problem

6 = argmin ) L(x;, x/(6)) (16)
o i

where L is a loss function that quantifies the discrepancy be-
tween the true and predicted solutions. Once trained using
(16), the truncated PnP algorithm can be directly used for
imaging [27].

Deep equilibrium (DEQ) models are a recent extension
of DU to an arbitrary number of iterations [34]. DEQ can be
implemented by replacing x}(8) in (16) by a fixed-point x;(6)
of a given PnP algorithm and using implicit differentiation for
updating the weights 6. The benefit of DEQ over DU is that
it doesn’t require the storage of the intermediate variables for
solving (16), thus reducing the memory complexity of train-
ing. However, DEQ requires the computation of the fixed-point
Xi(0), which can increase the computational complexity.

There are some important differences between tradition-
al PnP and DU/DEQ. Traditional PnP relies on an AWGN
denoiser as an image prior. On the other hand, the operator
Do in DU/DEQ is not an AWGN denoiser; instead, it is an
AR operator trained to remove artifacts specific to the PnP
iterations. As seen in Figure 3, which shows the relative per-
formance of PnP using an AWGN denoiser and a pretrained
AR operator, this problem-specific training can yield signifi-
cantly improved results. However, this performance comes at
a cost; while the prior in traditional PnP is fully decoupled
from the measurement operator, that of DU/DEQ is trained
by accounting for the measurement operator A. Hence the
DU/DEQ approach has reduced generality and higher com-
putational/memory complexity of training since the AR prior
is trained for the specific task of reconstruction from random
projections rather than for AWGN denoising.

Related approaches

There is a wide variety of approaches to learning and using
prior information in the context of inverse imaging, far too
many to describe completely. Early work on non-CNN-learned
priors includes the expected patch log likelihood [35], which
uses a cost function approach on patches. Work related to the
use of CNNs as priors includes [36], which describes certain
empirical advantages enjoyed by CNN denoisers; [37], which
uses CNN denoisers with (F)ISTA on a modified cost function
with convergence/accuracy benefits [38]; and [39], which is re-
lated to RED with a motivation that comes from an analysis of
denoising autoencoders [40]. In addition to DU/DEQ, another
approach to improving the performance of PnP-inspired meth-
ods is to fine-tune denoisers for a specialized distribution of
images. Examples of this include [41], with images from the

same class as the observed image; [14], with images from the
same scene as the observed image; and [42], with training on
the single observed image.

Tradeoffs and limitations

A key idea of PnP-inspired methods is to encapsulate Bayes-
ian prior information into an algorithmic denoiser. This ap-
proach has the benefit of promoting code modularity in that
data fitting updates and denoisers can be developed separately,
with many possible pairings of data updates and denoisers.
The downside of this generality is that some reconstruction
quality is lost; under ideal conditions, an end-to-end trained
system can outperform a general-purpose PnP system. DU and
DEQ methods fall somewhere in the middle in that they have
separate data update and denoising modules, but the denoiser
is trained as part of an end-to-end system to enhance recon-
struction quality.

We note also that as with any inversion method, particu-
larly one with learned priors, PnP methods involve a number
of hyperparameters to be tuned. For PnP-ADMM and PnP-
FISTA, one of the most important of these is the distribu-
tion of images used to train a denoiser, most especially the
assumed noise level. In practice, the noise level needed for
optimal reconstruction may not be known at training time.
Approaches to address this include training a denoiser for
multiple noise levels [43] and reconciling multiple denois-
ers using multiagent consensus equilibrium (MACE) [17].
An additional factor is the architecture of the NN, which
can play an important role in the quality of results and the
time required for reconstructions. However, this is a com-
plex design problem with much ongoing work and many
problem-specific considerations. Finally, the use of learned
priors introduces the possibility of mismatch between train-
ing data and application data. Some work on the effect of
such mismatch is described in [42], [44], and [45].

MACE

MACE, introduced in [17], is a framework that extends PnP-
ADMM to more than two update terms and provides an equi-
librium interpretation to the problem solved by PnP-ADMM.
As noted in the preceding, PnP-ADMM with a black-box de-
noiser does not generally solve an optimization problem but
instead solves the equilibrium problem in (6). MACE takes this
equilibrium condition as a starting point and extends it to al-
low for multiple types of models, including physics-based, data-
driven, and application-specific models. When a physics-based
forward model and a denoiser-based prior model are used, then
the MACE solution is the same as the PnP solution. But MACE
is more general and offers more flexibility in the choice of mod-
els as well as algorithms for computing the solution.

A MACE agent is a function F:R" — R" that takes in an
image v and produces an “improved” output image, x = F(v).
So, a denoiser and proximal maps are examples of agents, but
other agents might implement AR and other heuristic improve-
ments. We denote the agents by Fi,..., Fi, each of which
maintains its own version v; of the input image. We can then
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stack input images as v =[vy,...,v¢] and the output images
as F(v)=[Fi(v1),..., Fo(vo)]. At the same time, we define an
averaging operator G (v) = (v, ..., v), where v is the average of
the {v,}. With this notation, the MACE equation is

F()=G(") (17)

and the final reconstruction is the average of the vectors v;.
As seen in “Geometric Intuition for Multiagent Consensus
Equilibrium,” the MACE equation in (17) has an interpreta-
tion as the consensus equilibrium. Since each entry in G is
identical, all agents must output the same reconstruction, so
Fi(vj) = Fx(vy) for all j and k: this is consensus. Moreover,
since this consensus point is the same as the average of the
input points encoded in v*, the updates v; — F;(v;) must sum
to zero: this is equilibrium. As with PnP and RED, the MACE
equations can be converted to a fixed-point problem by not-
ing that the averaging operator G is a linear projection and so

(xy, 1) CNN
Denoiser

(vz, 1) CNN
Denoiser

Multislice Fusion With MACE

has the property that G* = G. This implies that (2G — I) is its
own inverse, which means that (2G — I)(2G — I)=I. Then,
from (17), we see that 2F (v*) —v" = 2G (v") — v", so multiply-
ing both sides by (2G — I), we have that (17) is equivalent to

T(v)=v', where T =QG—I)Q2F —1I).

As in the preceding, we can solve this fixed point problem
via Mann iterations [20]. For MACE, this takes the form of
v—1-p)v+pT(v), with p€(0,1). This is guaranteed to
converge when 7 is nonexpansive and has a fixed point but
converges in practice for a wide variety of agents. “Geometric
Intuition for Multiagent Consensus Equilibrium” gives addi-
tional intuition and a pseudocode implementation of this algo-
rithm for solving the MACE equations.

Figure 6 illustrates the benefits of MACE for fusing the
outputs of three separate 2D image denoisers to regularize
the result of a 4D reconstruction problem in space and time

(zx, £) CNN
Denoiser

4D Sinogram
Measurements

Cone Beam
Inversion

4D Reconstruction

(b) (c)

(d) (e)

FIGURE 6. The application of MACE from [46], using multiple 2D denoisers to regularize a time-varying volume (4D). (a) The combination of 2D
denoisers in multiple orientations with CT measurements using MACE. (b) and (c) The reference reconstructions using filtered backprojection (FBP)
and model-based iterative reconstruction (MBIR). (d) The reconstruction using 2D denoisers in two out of three possible spatial orientations, which
leads to streaking artifacts in the complementary direction. (e) The multislice fusion (MSF) MAGE reconstruction using 2D denoisers in all three

orientations.
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[46]. Each denoiser operates along only two of the three
dimensions, and MACE integrates these three denoisers
along with a physical model of tomographic projections. The
image using all four agents, labeled multislice fusion, has the
best quality, while the images reconstructed with one miss-
ing denoising agent contain streaking artifacts aligned with
the orientation of the missing agent. The use of multiple 2D
denoisers has a number of important advantages over 3D/4D
denoising. First, 2D processing is more efficient since mem-
ory access is more local and the number of nearest neigh-
bors is smaller. Second, 2D denoisers implemented as deep
NN can be trained on widely available 2D images, whereas
3D/4D data are currently very limited.

PnP in practice

Implementing PnP algorithms

While PnP methods are generally easy to implement, there
are several reference implementations that can be used as
sources of inspiration and as utilities. Some open source
libraries that include implementations of PnP algorithms
include Sparse Optimization Research Code (https://github.

com/bwohlberg/sporco), PnP-MACE (https://github.com/
gbuzzard/PnP-MACE), and, most recently, SCICO [49], pro-
viding a wide array of computational imaging tools in Py-
thon. SCICO is built on the Python package JAX, which pro-
vides support for seamless code transition between CPU and
GPU, acceleration via just-in-time compilation, and auto-
matic differentiation. In particular, the superresolution dem-
onstration in “Turning an Image Denoising Network Into an
Image Superresolver” was implemented using SCICO (see
“Implementing PnP-ADMM Superresolution in SCICO”).

Applications of PnP

PnP has been applied to a very wide range of problems, in-
cluding superresolution [47] and blind deconvolution, various
forms of tomographic imaging [46], MRI [13], and synthetic
aperture radar [48], to name but a few. In this section, we pres-
ent two applications of PnP in computational imaging: MRI
and intensity diffraction tomography (IDT).

Figure 7 presents an application of PnP to a free-breath-
ing 3D MRI problem described in [13]. The experimental-
ly collected in vivo k-space measurements were acquired
using T1-weighted stack-of-starts 3D spoiled gradient echo

Implementing PnP-ADMM Superresolution in SCIGCO

Scientific Computational Imaging Code (SCICO) [49] is an
open source library for computational imaging that includes
implementations of plug-and-play (PnP) algorithms. Since
SCICO is built on the python package JAX, it provides seamless
support for learned deep priors. In the following, we show the
steps for implementing the PnP alternating direction method of
multipliers (ADMM,) for the example in Figure S2. We assume
that a reference image has been loaded as the variable img,
then set up problem parameters, such as the downsampling
rate and noise level, and construct a downsampled and noise-
corrupted measurement that will be superresolved:

rate = 4 # downsampling rate

o = 2e-2 # noise standard deviation

Afn =
rate)

lambda x: downsample image(x, rate=
# forward operator

s = Afn(img) # downsample reference image

noise, key = scico.random.randn (s.shape,
seed = 0)
sn = s + O = noise # downsampled and

noise-corrupted measurement

We next set up the inverse problem of form (1), where ¢
is the leastsquares function and £ is used to invoke a
denosing convolutional neural network (DnCNN) as the
black-box denoiser:

A = linop.LinearOperator (input shape=img.
shape, output shape=s.shape, eval fn=Afn)

9%

loss.SquaredL2Loss (y=sn, A = A)
C = linop.Identity (input shape=img.shape)
h = functional.DnCNN (“17M")

Q
Il

We obtain a baseline solution (and initializer for PnP)
by denoising the pseudoinverse of the forward operator:

xpinv, info = solver.cg(A.T @ A, A.T @ sn,
snp.zeros (img. shape) )

dncnn = denoiser.DnCNN (“17M”)
denoiser object

xden =

# construct
dncnn (xpinv) # denoised pseudo
inverse solution

Finally, we set up ADMM to solve the inverse problem:

p = 3.4e-2 # ADMM penalty parameter
solver = ADMM (
f=g, g list=[h],
C list=[C], rho list=[p],
x0=xden, maxiter=12,
itstat options={“display”: True},
subproblem solver=Linear SubproblemSolver (
og_kwargs={
“tol”: le-3,
"maxiter”: 10,
}
Do
)
Xppp =

solver.solve() # PnP solution.
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sequence with fat suppression. The first three images in
Figure 7 are reconstructions from 800 k-space radial lines,
corresponding to scans of about 2 min. Multicoil nonuni-
form inverse FFT (MCNUFFT) refers to a simple inversion
of the measurement operator without any regularization.
Deformation-compensating learning (DeCoLearn) refers
to a CNN trained in a self-supervised fashion to remove
artifacts from MCNUFFT images obtained from 1,600
radial lines (scans of about 4 min) [12]. While DeCoLe-
arn offers excellent reconstruction performance when
applied to 2,000-line data (see Reference in Figure 7), its
performance degrades when applied without retraining to
800-line data. Regularization by AR (RARE) is a variant
of PnP that is obtained by simply replacing the AWGN
denoiser with DeCoLearn [13]. Note that RARE success-
fully adapts DeCoLearn to 800-line data without retrain-
ing, which is due to its ability to leverage DeCoLearn as
an image prior.

Figure 8 presents an application of PnP to biomicroscopy
using the IDT instrument described in [30]. RED-SD and
SIMBA are both used to reconstruct a 3D algae sample of
1,024 x 1,024 x 25 voxels from b =89 high-resolution inten-
sity measurements. Both algorithms use exactly the same
forward model and the same denoising CNN AWGN. The
per-iteration memory complexity of RED-SD is about 75 GB,
which includes the storage of the 3D complex-valued transfer
functions for each illumination {A;}, all the measured inten-
sity images {y:}, and the estimate of the desired image x. By
using minibatches of size p =10, SIMBA significantly reduc-
es the per-iteration memory complexity to about 11 GB. Addi-
tionally, SIMBA has significant per-iteration computational
advantage over RED-SD, due to its usage of minibatch gra-
dients. Despite these memory and computational advantages

29.08/0.706 37.66/0.958

‘J \
|

/
&

{l

/

TR

of SIMBA, the results in Figure 4 clearly show its comparable
performance to RED-SD in terms of imaging quality.

Future directions

The idea of encapsulating prior information using algorithmic
updates is a fertile area with much room for growth. For PnP-
ADMM and related methods, there are questions about which
denoisers provide guaranteed convergence, how to accelerate
convergence, and how to manage the tradeoffs between modu-
larity and reconstruction quality. These questions also apply to
MACE, with additional questions about how to select hyper-
parameters for each agent, how to balance the contributions of
multiple agents, and how to use agents that work in different
spaces (e.g., the sinogram domain and space domain). And of
course, there are many new applications to explore.

Condlusions

Since their introduction in 2013, PnP methods have become
a standard tool for computational imaging. They have been
used in a remarkably diverse range of applications in which
they provide state-of-the-art performance. When they were
introduced, they provided what was arguably the first prac-
tical approach to integrating learned models with imaging
physics to solve inverse imaging problems. A significant fac-
tor in their rapid growth in popularity was the ease with which
they can be implemented. Alternative approaches to achieving
this goal have since emerged, and in some cases, they provide
better reconstruction performance, but this is achieved at the
expense of a potentially time-consuming and data-dependent
application-specific training process. PnP and the multiagent
extension MACE are particularly powerful for contexts in
which the forward model is not fixed and in which there is
insufficient labeled problem-specific training data.

39.33/0.965

FIGURE 7. PnP algorithms explicitly separate the application of the forward model from that of the learned prior, enabling the adaptation of trained CNNs
to new sensor configurations. This is illustrated on experimentally collected 3D MRI data corresponding to 800 radial spokes (scans of about 2 min).
Multicoil nonuniform inverse FFT (MCNUFFT) refers to a simple inversion of the measurement operator without any regularization. Deformation-com-
pensating learning (DeCoLearn) [12] is a CNN that was trained under a mismatched sensor configuration corresponding to 1,600 lines (scans of about
4 min). A variant of PnP called regularization by AR (RARE) [13] is used to adapt DeCoLearn to the desired 800-line data. The results of the DeCoLearn
reconstruction using all the available 2,000 lines is shown as the reference image. The numbers on the top-right corner correspond to the relative PSNR/
structural similarity index measure (SSIM) values with respect to the reference image. Note the ability of RARE to successfully adapt DeCoLearn to 800-
line data. (a) MCNUFFT. (b) DeCoLearn. (c) RARE with DeCoLearn. (d) Reference image.
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(a)
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FIGURE 8. Online PnP algorithms, such as SIMBA, in Algorithm 6, can reduce the computational and memory complexity of PnP. (a) The reconstruction
of a 3D algae sample from 89 experimentally collected intensity diffraction tomography (IDT) measurements. (b) SIMBA, which uses minibatches of size
p =10, is compared against (c) RED-SD, which uses all » =89 measurements at each iteration. Both algorithms use exactly the same measurement
model and the same denoising CNN AWGN. Note how the results of SIMBA are indistinguishable from RED-SD even though the per-iteration complexity

of SIMBA is only a fraction of that of RED-SD.
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