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P lug-and-play (PnP) priors constitute one of the most widely 
used frameworks for solving computational imaging prob-
lems through the integration of physical models and learned 

models. PnP leverages high-fidelity physical sensor models and 
powerful machine learning methods for prior modeling of data 
to provide state-of-the-art reconstruction algorithms. PnP al-
gorithms alternate between minimizing a data fidelity term to 
promote data consistency and imposing a learned regularizer in 
the form of an image denoiser. Recent highly successful applica-
tions of PnP algorithms include biomicroscopy, computerized 
tomography (CT), magnetic resonance imaging (MRI), and joint 
ptychotomography. This article presents a unified and principled 
review of PnP by tracing its roots, describing its major varia-
tions, summarizing main results, and discussing applications in 
computational imaging. We also point the way toward further 
developments by discussing recent results on equilibrium equa-
tions that formulate the problem associated with PnP algorithms.

Historical background
Consider the inverse problem of estimating an unknown image 
x Rn!  from its noisy measurements .y Rm!  It is common to 
formulate this problem using the optimization

	 ( ) ( ) ( ) ( )argminx x x x xf f g hwith
x Rn

= = +
!

t � (1)

where g is a data fidelity term that quantifies consistency with 
the observed measurements y and h is a regularizer that enforc-
es prior knowledge on x. The formulation in (1) corresponds to 
the maximum a posteriori probability (MAP) estimator when

	 ( ) ( ( )) ( ) ( ( ))log logx x x xg p h pand|y x x=- =- � (2)

where p |y x  is the likelihood relating x to measurements y and 
px  is the prior distribution. For example, given measurements 
of the form ,y Ax e= +  where A is the measurement opera-
tor (also known as the forward operator) characterizing the 
response of the imaging instrument and e is additive white 
Gaussian noise (AWGN), the data fidelity term reduces to the 
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quadratic function ( ) ( / ) || || .x y Axg 1 2 2
2= -  On the other 

hand, many popular image regularizers are based on a sparsity 
promoting regularizer ( ) || || ,x Wxh 1x=  where 02x  is the 
regularization parameter and W is a suitable transform. Over 
the years, a variety of reasonable choices of h have been pro-
posed, with examples including the total variation (TV) and 
Markov random field (MRF) functions. These functions have 
elegant analytical forms and had a major impact in applica-
tions ranging from tomography for medical imaging to image 
denoising for cell phone cameras.

The solution of (1) balances the requirements to be both 
data consistent and plausible, which can be intuitively inter-
preted as finding a balance between two manifolds: the sensor 
manifold and prior manifold. The sensor manifold is repre-
sented by small values of ( )xg  and in the case of a linear for-
ward model, is roughly an affine subspace of .Rn  Likewise, 
the prior manifold is represented by small values of ( )xh  and 
includes the images that are likely to occur in our application. 
Importantly, real images have enormous amounts of structure, 
departures from which are immediately noticeable to a domain 
expert. Consequently, plausible images lie near a lower dimen-
sional manifold in the higher dimensional embedding space.

Proximal algorithms are often used for solving problems 
of the form in (1) when g or h is nonsmooth [1]. One of the 
most widely used and effective proximal algorithms is the 
alternating direction method of multipliers (ADMM), which 
uses an augmented Lagrangian formulation to allow for alter-
nating minimization of each function in turn (see [2] for an 
overview of ADMM). ADMM computes the solution of (1) 
by iterating the steps summarized in Algorithm 1 (see Fig-
ure 1) until convergence. One important property of ADMM 
is that it does not explicitly require knowledge of either g or 
h or their gradients, relying instead on the proximal operator, 
which is defined as

	 ( ) : ( )argminz x z xh
2
1prox

x
h 2

2

Rn
x= - +

!
x $ .� (3)

for any any proper, closed, and convex function h [2]. Compar-
ing (3) and (1), we see that the proximal operator can be inter-
preted as a MAP estimator for the AWGN denoising problem

	 ~ , ~ ( , )z x w x wp 0where INx0 0 0 x= + � (4)

by setting ( ) ( ( )).logx xh px0=-

This perspective inspired the development of PnP priors in 
[3], where the prox hc  step in ADMM is simply replaced by a 
more general black-box denoiser : ,D R Rn n"  such as block-
matching and 3D filtering (BM3D) [4]. That is, any black-box 
denoiser D can, in principle, replace (“plug”-in for) ,prox hc  
and then ADMM algorithm can run (“play”) as before. We 
refer to this original algorithm as PnP-ADMM to distin-
guish it from other methods inspired by this PnP approach. 
In fact, there are multiple algorithms using proximal maps to 
minimize a sum of convex functions, and for each of these 
algorithms, there is a corresponding PnP version obtained by 
associating the proximal map with the prior term, then replac-
ing the proximal map with a black-box denoiser. In the fol-
lowing, we provide more detail on PnP-ADMM and PnP-fast 
iterative shrinkage/thresholding algorithm (FISTA) [5] (based 
on the proximal gradient method) as well as extensions and 
variations. See [6] for the roots of FISTA, [7] for more detail 
on proximal splitting methods in general, and [8] for a tutorial 
overview of some PnP methods.

PnP integration of physical and learned models
Deep learning (DL) has emerged as a powerful paradigm for 
designing algorithms for various image restoration and recon-
struction tasks, including denoising, deblurring, and super-
resolution (the literature is vast, but see [9] for an early his-
tory). Given a set of paired data ( , ),x zi i  where xi  is the desired 
“ground truth” image and zi  is its noisy or corrupted observa-
tion, the traditional supervised DL strategy is to learn a map-
ping from zi  to xi  by training a deep convolutional neural net-
work (CNN). Despite its empirical success in computational 
imaging, an important drawback of DL relative to regularized 
inversion is the potential need to retrain the CNN for different 
measurement operators and noise levels.

The success of CNNs as black-box denoisers leads natu-
rally to their use with PnP (see “Turning an Image Denoising 
Network Into an Image Superresolver”). In its simplest form, 
PnP can be implemented by pretraining an image denois-
ing CNN D and using D in place of prox hc  within ADMM. 
Remarkably, this simple heuristic of using denoisers not 
associated with any h exhibited great empirical success and 
spurred much theoretical and algorithmic work on PnP and 
other related methods. As a result, PnP-inspired methods 
are among the most widely used approaches for combining 
the advantages of regularized inversion, which is flexible to 
changes in the data fidelity term, with the powerful represen-
tation capabilities of deep CNNs.

Algorithm 1. ADMM.

Algorithm 2. FISTA.

FIGURE 1. ADMM and FISTA are two widely used iterative algorithms for 
minimizing composite functions ( ) ( ) ( ),x x xf g h= +  where the regular-
ization term h  is nonsmooth. Both functions avoid differentiating h  by 
evaluating its proximal operator.
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PnP priors algorithms
The first PnP algorithm was PnP-ADMM [10], which is 
implemented by iterating the steps in Algorithm 3 (see Fig-
ure 2) until convergence. The operator D in PnP-ADMM is an 
image denoiser that approximates a solution to the problem in 
(4). While the original formulation of PnP relies on ADMM, 
PnP can be equally effective when used with other proximal 
algorithms, such as primal–dual splitting [11] and FISTA [5]. 
Algorithm 4 summarizes the steps of PnP-FISTA, which is 
based on the traditional FISTA summarized in Algorithm 2.

PnP-ADMM and PnP-FISTA share the important feature of 
modularity; they explicitly separate the application of the physi-
cal models (the data fidelity update in line 3 of both algorithms) 
from that of the learned models (the image denoising in line 
4 of both algorithms). This observation reveals a key strength 
of PnP methods: they can be easily customized for different 
measurement operators by changing the data fidelity term, thus 
enabling the use of the same learned CNN over a wide range 
of applications without retraining. Similarly, PnP methods pro-
vide a simple mechanism to combine different image priors on 

Plug-and-play (PnP) can be applied to multiple imaging 
problems using a single convolutional neural network 
(CNN) denoiser simply by changing the physics-based 
measurement model. Consider image superresolution (ISR) 
with factors 2 #  and ,4 #  where the goal is to recover a 
high-resolution image from its blurred, decimated, and 
noisy low-resolution (LR) observation. As shown in the fol-
lowing, a single denosing CNN can be used within PnP to 
address both problems, thus leveraging the implicit image 
model in a deep CNN over multiple problems without 
retraining.
Step 1: Learn a denoiser
Let RX n1  denote a training data set of natural images. 
The denoiser is trained by updating the weights i  of a 
CNN Di  to remove the noise from ,z x w0= +  where 

x X0 !  and ( , ).w I0N 2+ v  It is worth mentioning that 
since the prior in PnP is learned on a pretext task (image 
denoising) rather than on the final task (image reconstruc-
tion), PnP can be considered a self-supervised learning 
framework.
Step 2: Turn denoiser into superresolver
A pretrained denoiser Di  can be used for ISR by replac-
ing prox hc  in the alternating direction method of multipliers 
or the fast iterative shrinkage/thresholding algorithm by 
Di  (Figure S1). Figure S2 shows the results obtained for 
two upsampling rates 2 #  and 4 #  using the same denois-
ing CNN, either to postprocess the pseudoinverse or as an 
image prior within PnP. Note how PnP obtains significantly 
better results by integrating information both from the phys-
ical and learned models.

Turning an Image Denoising Network into an Image Superresolver

FIGURE S1. Image priors for PnP can be obtained by training CNNs to remove the additive white Gaussian noise from a set of  
images.

Reference Image Gaussian Noise

+

x0 w
Back Propagation

+–
L(x0 – Dθ(x0 + w))

Training Loss Function

FIGURE S2. A single pretrained CNN denoiser in PnP can address different superresolution factors. The code is available at https://github.com/lanl/
scico-data/blob/main/notebooks/superres_ppp_dncnn_admm.ipynb.

LR (2×) LR (4×) CNN (24.3 dB)CNN (28.7 dB) PnP (31.7 dB) PnP (26.0 dB)
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the same problem by simply changing the denoiser D. Note that 
since the prior in PnP is learned on a pretext task (image denois-
ing) rather than on the final task (image reconstruction), PnP 
can be considered a self-supervised learning framework.

One of the practical differences between various PnP algo-
rithms is the treatment of the data fidelity term, g, which models 
the physical measurements. PnP-FISTA uses a standard (explic-
it) gradient descent step ( ),z x xgdc= -  while PnP-ADMM 
uses the proximal operator ,prox gc  which can be written as an 
implicit gradient step, ( ) ( ),z x x zgprox g dc= = -c  with gd  
evaluated at z. We assume, for simplicity, that g is differentiable; 
extensions to nondifferentiable g require more care. For the loss 
( ) / || || ,x Ax yg 1 2 2

2= -^ h  these updates can be computed as

	
( ) ( )

( ) ( ).

x x x A Ax y

x I A A x A y

g and

prox g
1

dc

c c

- = - -

= + +

<

< <
c

-^ h �
(5)

PnP-ADMM is known for its fast empirical convergence 
and efficiency for many widely used operators in computa-
tional imaging. However, it requires the computation of the 
proximal map, whereas PnP-FISTA requires only the compu-
tation of the gradient, .gd  In principle, the gradient is simpler 
than the proximal map, but in many applications, the proxi-
mal map can be computed or approximated efficiently using 
general methods, such as the conjugate gradient, or with spe-
cialized methods, such as when the forward model is a spatial 
blurring operator that can be computed using the fast Fourier 
transform (FFT) [14]. In other cases, the proximal map can be 
efficiently computed using partial updates [15] that avoid the 
explicit inversion of ( )I A Ac+ <  in (5). This is accomplished 
by maintaining an additional state variable that is used as ini-
tialization for the proximal minimization problem. The mini-
mization is approximated by a few steps of an iterative solver, 

starting from this initialization. As the outer loop converges, 
this additional state variable also converges [15], so these par-
tial updates reduce computation without compromising the 
accuracy of the final solution.

An important conceptual point is that PnP algorithms with 
black-box denoisers do not generally solve an optimization prob-
lem. That is, the original ADMM and FISTA algorithms solve the 
optimization problem in (1). But once the proximal map denois-
ing operation is replaced with a black-box denoiser, D, then there 
is no longer any corresponding function h to minimize. In fact, 
the numerical evaluation of many widely used denoisers, includ-
ing BM3D and the denoising CNN, reveals that their Jacobians 
are not symmetric, which implies that these denoisers are neither 
proximal maps nor gradient descent steps [16, Th. 1].

Nonetheless, it is still possible to formulate a criterion for 
the converged solution for PnP using a consensus equilibrium 
formulation [17] (also see “Geometric Intuition for Multiagent 
Consensus Equilibrium”) given by

	 ( ) ( )x x u x x uG Dand= - = + � (6)

where :G prox g= c  and x and u are the converged values of 
PnP-ADMM. Interestingly, in the consensus equilibrium equa-
tion of (6), x is the final reconstruction, and u can be interpret-
ed as noise that is removed by the denoiser in ( )x x uD= +  
on the one hand and balanced by the action of the data fitting 
update in ( )x x uG= -  on the other.

To establish (6), note that the fixed points ,z x , and u of 
PnP-ADMM iteration satisfy

	 ( ), ( ), .z x u x z u u u z xG D= - = + = + - � (7)

From the last equation, we conclude that ,x z=  which leads 
directly to (6). Also, the first-order optimality condition for 
the minimization problem ( ) ( )x x u x uG prox g= - = -c  is 

( ) ( ),x x u xg0 dc= - - +  so ( ) .u xgdc=-  A similar analy-
sis in [18] and [19] shows that the fixed points of PnP-FISTA 
satisfy the same consensus equilibrium conditions:

	
( ( ))

( )
( )

( )
( )

,

x x x
x u x x
x x u

x x u
x x u

D g
g

D
G
D

+

+

d
d

c
c

= -
+ = -

= +

= -

= +
'

'
�

(8)

where we again used the first-order optimally condition to con-
vert from gd  to G.

The convergence of PnP algorithms can be established using 
monotone operator theory [20]. In this approach, as in [14], [17], 
[18], [19], [21], [22], and [23], the problem is first expressed as 
finding a fixed point of some high-dimensional operator, which 
under appropriate hypotheses can be iterated to yield a solution. 
The proof of convergence of PnP-ADMM [17], [23] begins by 
showing that the fixed points of the PnP-ADMM are in one-to-
one correspondence with the fixed points of the operator

	 : ( ) ( ).T G I D I2 2= - - � (9)

Algorithm 3. PnP-ADMM [10].

Algorithm 4. PnP-FISTA [5].

FIGURE 2. The term plug-and-play (PnP) priors refers to a family of itera-
tive algorithms that replace the proximal operator :prox RRh

n n"c  of the 
regularizer h  (as in Figure 3) by a more general denoiser :D RRn n"  in 
line 4. The success of DL in image restoration has led to a wide adoption 
of PnP for exploiting learned priors specified through pretrained deep 
CNNs, leading to state-of-the-art performance in a variety of applications.
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In fact, after a linear change of coordinates, Algo-
rithm 3 is equivalent to the Mann iterations of T given by 

/ ( / ) ( )( )v v vT1 2 1 2k k k1 1! +- -  [1], [17]. This yields linear 
convergence to a unique fixed point when T is a contrac-
tion, which is true when g is strongly convex and :R I D= -  
is a sufficiently strong contraction [23]. Weaker conditions 
establish sublinear convergence to a possibly nonunique 
fixed point [24]. Other well-known theoretical results on 
PnP-ADMM include its convergence for implicit proximal 
operators [21], bounded denoisers [22], and linearized Gauss-
ian mixture model denoisers [14]. Even CNN-based denoisers 
can be trained to satisfy these contractive, nonexpansive, and 
Lipschitz conditions by using spectral normalization tech-
niques [23], [25].

The convergence of PnP-ISTA (which is PnP-FISTA 
with the Nesterov acceleration parameters set to 1ki =  for 
all )k 1$  can be established by expressing it using operator 

: ( ) .F D I gdc= -  When the data fidelity term g is strongly 
convex and the denoiser D is Lipschitz continuous with a suf-
ficiently small constant, then the iteration of F converges lin-
early to its unique fixed point [23]. On the other hand, when g 
is weakly convex and the denoiser D is firmly nonexpansive, 
then the iteration converges sublinearly to its fixed point [19]. 
Related results have shown that PnP-ISTA converges to a min-
imizer of some global cost function when the denoiser D cor-
responds to a minimum mean-square error estimator applied 
to the denoising problem in (4) [26], and they have established 
recovery guarantees for PnP for the measurement operators 
that satisfy the restricted eigenvalue condition commonly used 
in compressive sensing [27].

Regularization by denoising
Regularization by denoising (RED) is an algorithm inspired 
by PnP that also enables the integration of denoisers as priors 

Multiagent consensus equilibrium (MACE) is a formal 
mechanism to compute a reconstruction that is a balance 
among multiple competing models or agents (Figure S3).  
When the agents are a forward and prior model, the 
MACE solution is exactly the plug-and-play solution. But 
MACE also works with multiple models, each promoting 
different desired outcomes.

An agent is a function, ( ),x vF=  that takes an input image, 
,v  and makes it better in some way to produce a new image, 
.x  Denoisers, gradient descent steps, and proximal maps are 

all examples of useful agents. Beyond that, agents can be neu-
ral networks trained to remove application-specific artifacts 
and noise as well as other image enhancing operations.

Algorithm S1 shows how to compute the MACE solution 
with n  agents, shown as , , .F Fn1 f  At convergence, all 

agents yield the same reconstruction: ( )v xF nn = )  for all n. 
This is the idea of consensus. This reconstruction is also the 
average of the input points: ( , , ) .v v vAverage n1 f = )  This is 
the idea of equilibrium.

Geometric Intuition for Multiagent Consensus Equilibrium

FIGURE S3. Consensus means that each agent has the same output, while equilibrium means that vector sum of the updates is 0. (a) Consensus 
without equilibrium. (b) Equilibrium without consensus. (c) Consensus equilibrium.
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Algorithm S1. MACE reconstruction [17].

  1:  input: Initial Reconstruction x  (an image)
  2:  , ,( )v x x! f     # Form a stack of images
  3:  while not converged do
  4:  ( ( ), , ( ))x v vF Fn n1 1! f     # Apply each agent
  5:  w x v2! -
  6:  ( , , )z w wAverage n1! fr
  7:  ( , , )z zz! fr r     # Restack the average image
  8:  ( )v v z x2! t+ -     # Update agent input
   9:  end while
10:  x z!) r     # Get final result
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for inverse problems [28]. The steepest descent (SD) variant of 
RED [28] can be implemented by iterating the following steps 
until convergence:

	 ( ) ( ) : ( ) ( ( ))x x x x x x xH H g Dwithk k k1 1! dc x- = + -- -  
� (10)

where 02c  is the step size, D is a denoiser, and 02x  is 
the regularization parameter. While RED was initially derived 
as an optimization problem [28], a subsequent analysis [16] 
showed that an interpretation as a fixed-point problem is more 
appropriate for practical denoisers. Using this approach, the 
fixed-point condition in (10) translates to the RED equilibrium 
condition given by

	 ( ) ( ( )).x x xg Dd x- = - � (11)

As noted in (2), the function g is often the negative log 
likelihood of the distribution p |y x  relating the reconstruction 
x to the measurements y. In this setting, gd-  is known as the 
“score” of this distribution. This negative gradient describes 
the steepness of the log-likelihood function and hence the 
sensitivity to changes in x. From this, we see that (11) bal-
ances changes in the log likelihood against the update step 

( ).x xD-  This is similar to the balance in (6), in which the 
same u is removed by the denoiser and added by the data 
fitting map. A much more complete discussion of RED algo-
rithms and score matching is given in [16]. The convergence 
of RED algorithms can also be analyzed using monotone 
operator theory. In particular, it can be shown that for a 
convex function g and a nonexpansive denoiser D, RED-SD 
converges sublinearly to a set of x satisfying the equilibrium 
condition in (11) [16], [25].

Figure 3 presents results using PnP and RED on com-
pressive sensing from random projections with 20% sub-
sampling. The setup used in the simulation is identical to 
that described in [27]. The results of the traditional TV 
reconstruction and of the ISTA-Net+ deep unfolding (DU) 
architecture [29] are presented for reference (see the “DU 

and DEQ Models” section for a discussion of DU). The fig-
ure considers two priors for PnP: 1) an AWGN denoiser and 
2) an artifact removal (AR) operator trained to remove arti-
facts specific to the PnP iterations that is used in place of 
an AWGN denoiser. Both priors are implemented using the 
denoising CNN architecture, with its batch normalization 
layers removed to enable control of the Lipschitz constant of 
the network via spectral normalization. The AR operator D 
is trained by including it in a DU architecture that performs 
PnP iterations and training it end to end in a supervised 
fashion. This approach has the disadvantage that the prior 
model is no longer completely separate from the forward 
model, but as seen in Figure 3, it can yield significantly 
improved results relative to an AWGN denoiser.

Online PnP algorithms
The traditional PnP methods are batch algorithms in the 
sense that they compute the gradient gd  or the proximal 
operator prox gc  of the data fidelity term g by using the 
whole measurement vector .y Rm!  The per-iteration com-
putational and memory complexity of batch PnP algorithms 
depends on the total number of measurements. For example, 
in tomography with b projections, the complexity of evalu-
ating gd  scales linearly with b, making it computationally 
expensive for a large b. This has motivated interest in on-
line, stochastic, and/or incremental PnP algorithms that ap-
proximate the batch gd  with an approximation gdt  based 
on a single element or a small subset of the measurements 
[19], [24], [30].

Consider the decomposition of Rm  into b 1$  blocks:

	 .m m m mwithR R R Rm m m m
b1 2

b1 2# # #g g= = + + +  
� (12)

In this setting, the data fidelity term and the corresponding 
gradient vector are given by

	 ( ) ( ) ( ) ( )x x x xg
b

g g
b

g1 1andi
i

b

i

b

i
1 1

d d= =
= =

/ / � (13)

(a) (b) (c) (d) (e) (f)

PSNR 25.8 32.6 32.81 33.11 35.55

FIGURE 3. Color image recovery in compressive sensing from random projections with 20% subsampling. The results of TV and a well-known deep 
unfolding (DU) architecture, ISTA-Net+, are provided for reference. The PnP (denoising) and RED (denoising) methods use a pretrained AWGN denoiser 
as an image prior. The PnP [artifact removal (AR)] method uses a problem-dependent AR operator pretrained using DU. Note that the choice of denoiser 
affects the reconstruction significantly. The number on the bottom-right corner is the peak signal-to-noise ratio (PSNR) in dB. (a) Ground truth, (b) TV, 
(c) ISTA-Net+, (d) RED (denoising), (e) PnP (denoising), and (f) PnP (AR).
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where each gi is evaluated only on the subset y Ri
mi!  of the 

full measurement vector .y Rm!  For example, each individ-
ual term in the gradient can be set to the quadratic function 
( ) ( / ) || || ,x y A xg 1 2i i i 2

2= -  where Ai  is the operator corre-
sponding to the measurement block .yi

Online PnP in Algorithm 5 and scalable iterative mini-
batch algorithm (SIMBA) in Algorithm 6 (Figure 4) are online 
extensions of PnP-FISTA and RED-SD, respectively. Both 
algorithms improve the scalability to large-scale measure-
ments by using only a single component gradient ( ),xgikd  
with { , , },i b1k f!  making their per-iteration complexity 
independent of b. Online PnP algorithms can be implemented 
using different block selection rules. The strategy commonly 
adopted for the theoretical analysis focuses on selecting indices 
ik  as independent identically distributed random variables dis-
tributed uniformly over { , , }.b1 f  An alternative would be to 
proceed in epochs of b consecutive iterations, where the set 
{ , , }b1 f  is reshuffled at the start of each epoch and the index 

gikd  is selected from this ordered set.
Online PnP algorithms can also be implemented in a mini-

batch fashion by replacing gikd  in step 4 of both by a mini-
batch gradient

	 ( ) ( )xxg
p

g1
j

p

i
1

jd d=
=

t / � (14)

where p is the minibatch size and , ,i i p1 f  are indices select-
ed from the set { , , } .b1 f  The minibatch variants of online 
PnP can process several blocks in parallel in every iteration, 
thus improving efficiency on multiprocessor hardware archi-
tectures. While online algorithms have traditionally focused 
on partial approximations of the gradient, recent work has 
also explored the approximation of the batch proximal op-
erator prox gc  in PnP-ADMM by a partial proximal operator 

prox gic  [24]. One can also consider block coordinate exten-
sions of online PnP by considering decomposition of the im-
age space Rn  into a number of smaller image blocks [25].

The fixed-point convergence analysis of online PnP algo-
rithms uses mathematical tools from traditional stochastic 
optimization and monotone operator theory. The key require-
ment for the analysis is that the gradient estimate in (14) is 
unbiased and has bounded variance,

	 ( ) ( ) ( ) ( )x x x xg g g g
p

andE E 2
2

2
d d d d< < # o= -t t6 6@ @ � (15)

for some constant 02o  and every .x Rn!  Note that when ik  
is selected uniformly at random from { , , },b1 f  the unbiased-
ness assumption is automatically satisfied. Then, for convex 
data fidelity terms gi and firmly nonexpansive denoisers D, one 
can establish the sublinear convergence of online PnP algo-
rithms to their fixed points [19], [24], [30].

DU and DEQ
DU (also known as deep unrolling or algorithm unrolling) is 
a DL paradigm with roots in sparse coding [31], [32] that has 
gained popularity in computational imaging, due to its abil-
ity to provide a systematic connection between iterative algo-
rithms and CNN architectures [32], [33]. Many PnP algorithms 
have been turned into DU architectures by parameterizing the 
operator Di  as a CNN with weights ,i  truncating the PnP al-
gorithm to a fixed number of iterations ,t 1$  and training the 
corresponding architecture end to end in a supervised fashion. 
For example, Figure 5 illustrates the representation of t itera-
tions of PnP-ISTA and RED-SD as DU architectures.

Consider a set of paired data ( , ),x yi i  where xi  is the 
desired “ground truth” image and y Ax ei i i= +  is its noisy 

Algorithm 5. Online PnP [19].

Algorithm 6. SIMBA [30].

FIGURE 4. The complexity of evaluating the batch gradient of gd  or 
proximal operator prox gc  is computationally expensive in some applica-
tions. This has motivated the development of online, stochastic, and 
incremental variants of PnP that use a single element or a small subset of 
the measurements at each iteration. The per-iteration complexity of such 
algorithms is independent of the batch size ,b 1$  thus making them 
suitable for certain large-scale applications. 

x0 x1 x t

– γ∇g – γ∇g

Iteration 1 Iteration t

Dθ Dθ

x0 x1 x t– γ∇g

Iteration 1 Iteration t

I – Dθ

– γ∇g

I – Dθ–γ t –γ t

(a)

(b)

FIGURE 5. The PnP framework is related to two other popular computa-
tional imaging paradigms, DU and deep equilibrium (DEQ) models. A PnP 
algorithm, such as PnP-ISTA and RED-SD, can be turned into a DU archi-
tecture by truncating the algorithm to t 1$  iterations and training the 
weights i  of the CNN Di  end to end. Similarly, a DEQ architecture can 
be obtained by running the PnP algorithm until convergence and using the 
implicit differentiation at the fixed point to train the weights .i  The opera-
tor Di  in DU/DEQ is not necessarily an AWGN denoiser; instead, it is an 
AR operator trained to remove artifacts specific to the PnP iterations. The 
(a) deep unfolding of PnP-ISTA and (b) deep unfolding of RED-SD.
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observation. Consider also the iterate ( )xi
t i  of a PnP algorithm 

truncated to t 1$  iterations, where we made explicit the depen-
dence of the PnP output on the weights i  of the CNN param-
eterizing .Di  DU interprets the steps required for mapping the 
input vector yi  and the initialization xi

0  to the output ( )xi
t i  as 

layers of a CNN architecture. The DU training is performed by 
solving the optimization problem

	 ( , ( ))argmin x xL
i

i i
ti i=

i

t / � (16)

where L is a loss function that quantifies the discrepancy be-
tween the true and predicted solutions. Once trained using 
(16), the truncated PnP algorithm can be directly used for 
imaging [27].

Deep equilibrium (DEQ) models are a recent extension 
of DU to an arbitrary number of iterations [34]. DEQ can be 
implemented by replacing ( )xi

t i  in (16) by a fixed-point ( )xi ir  
of a given PnP algorithm and using implicit differentiation for 
updating the weights .i  The benefit of DEQ over DU is that 
it doesn’t require the storage of the intermediate variables for 
solving (16), thus reducing the memory complexity of train-
ing. However, DEQ requires the computation of the fixed-point 
( ),xi ir  which can increase the computational complexity.
There are some important differences between tradition-

al PnP and DU/DEQ. Traditional PnP relies on an AWGN 
denoiser as an image prior. On the other hand, the operator 
Di  in DU/DEQ is not an AWGN denoiser; instead, it is an 
AR operator trained to remove artifacts specific to the PnP 
iterations. As seen in Figure 3, which shows the relative per-
formance of PnP using an AWGN denoiser and a pretrained 
AR operator, this problem-specific training can yield signifi-
cantly improved results. However, this performance comes at 
a cost; while the prior in traditional PnP is fully decoupled 
from the measurement operator, that of DU/DEQ is trained 
by accounting for the measurement operator A. Hence the 
DU/DEQ approach has reduced generality and higher com-
putational/memory complexity of training since the AR prior 
is trained for the specific task of reconstruction from random 
projections rather than for AWGN denoising.

Related approaches
There is a wide variety of approaches to learning and using 
prior information in the context of inverse imaging, far too 
many to describe completely. Early work on non-CNN-learned 
priors includes the expected patch log likelihood [35], which 
uses a cost function approach on patches. Work related to the 
use of CNNs as priors includes [36], which describes certain 
empirical advantages enjoyed by CNN denoisers; [37], which 
uses CNN denoisers with (F)ISTA on a modified cost function 
with convergence/accuracy benefits [38]; and [39], which is re-
lated to RED with a motivation that comes from an analysis of 
denoising autoencoders [40]. In addition to DU/DEQ, another 
approach to improving the performance of PnP-inspired meth-
ods is to fine-tune denoisers for a specialized distribution of 
images. Examples of this include [41], with images from the 

same class as the observed image; [14], with images from the 
same scene as the observed image; and [42], with training on 
the single observed image.

Tradeoffs and limitations
A key idea of PnP-inspired methods is to encapsulate Bayes-
ian prior information into an algorithmic denoiser. This ap-
proach has the benefit of promoting code modularity in that 
data fitting updates and denoisers can be developed separately, 
with many possible pairings of data updates and denoisers. 
The downside of this generality is that some reconstruction 
quality is lost; under ideal conditions, an end-to-end trained  
system can outperform a general-purpose PnP system. DU and 
DEQ methods fall somewhere in the middle in that they have 
separate data update and denoising modules, but the denoiser 
is trained as part of an end-to-end system to enhance recon-
struction quality.

We note also that as with any inversion method, particu-
larly one with learned priors, PnP methods involve a number 
of hyperparameters to be tuned. For PnP-ADMM and PnP-
FISTA, one of the most important of these is the distribu-
tion of images used to train a denoiser, most especially the 
assumed noise level. In practice, the noise level needed for 
optimal reconstruction may not be known at training time. 
Approaches to address this include training a denoiser for 
multiple noise levels [43] and reconciling multiple denois-
ers using multiagent consensus equilibrium (MACE) [17]. 
An additional factor is the architecture of the NN, which 
can play an important role in the quality of results and the 
time required for reconstructions. However, this is a com-
plex design problem with much ongoing work and many 
problem-specific considerations. Finally, the use of learned 
priors introduces the possibility of mismatch between train-
ing data and application data. Some work on the effect of 
such mismatch is described in [42], [44], and [45].

MACE
MACE, introduced in [17], is a framework that extends PnP-
ADMM to more than two update terms and provides an equi-
librium interpretation to the problem solved by PnP-ADMM. 
As noted in the preceding, PnP-ADMM with a black-box de-
noiser does not generally solve an optimization problem but 
instead solves the equilibrium problem in (6). MACE takes this 
equilibrium condition as a starting point and extends it to al-
low for multiple types of models, including physics-based, data-
driven, and application-specific models. When a physics-based 
forward model and a denoiser-based prior model are used, then 
the MACE solution is the same as the PnP solution. But MACE 
is more general and offers more flexibility in the choice of mod-
els as well as algorithms for computing the solution.

A MACE agent is a function :F R Rn n"  that takes in an 
image v and produces an “improved” output image, ( ) .x vF=  
So, a denoiser and proximal maps are examples of agents, but 
other agents might implement AR and other heuristic improve-
ments. We denote the agents by , , ,F F1 f ,  each of which 
maintains its own version v j  of the input image. We can then 
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stack input images as [ , , ]v v v1 f= ,  and the output images 
as ( ) [ ( ), , ( )].F v v vF F1 1 f= , ,  At the same time, we define an 
averaging operator ( ) ( , , ),G v v vf= r r  where vr  is the average of 
the .v j" ,  With this notation, the MACE equation is

	 ( ) ( )F v G v=) ) � (17)

and the final reconstruction is the average of the vectors .v j
)

As seen in “Geometric Intuition for Multiagent Consensus 
Equilibrium,” the MACE equation in (17) has an interpreta-
tion as the consensus equilibrium. Since each entry in G is 
identical, all agents must output the same reconstruction, so 

( ) ( )v vF Fj j k k=  for all j and k: this is consensus. Moreover, 
since this consensus point is the same as the average of the 
input points encoded in ,v)  the updates ( )v vFj j j-  must sum 
to zero: this is equilibrium. As with PnP and RED, the MACE 
equations can be converted to a fixed-point problem by not-
ing that the averaging operator G is a linear projection and so 

has the property that .G G2 =  This implies that ( )G I2 -  is its 
own inverse, which means that ( ) ( ) .G I G I I2 2- - =  Then, 
from (17), we see that ( ) ( ) ,F v v G v v2 2- = -) ) ) )  so multiply-
ing both sides by ( ),G I2 -  we have that (17) is equivalent to

T ( ) , ( ) ( ).v v T G I F Iwhere 2 2|= = - -) )

As in the preceding, we can solve this fixed point problem 
via Mann iterations [20]. For MACE, this takes the form of 

( ) ( ),v v T v1! t t- +  with ( , ) .0 1!t  This is guaranteed to 
converge when T is nonexpansive and has a fixed point but 
converges in practice for a wide variety of agents. “Geometric 
Intuition for Multiagent Consensus Equilibrium” gives addi-
tional intuition and a pseudocode implementation of this algo-
rithm for solving the MACE equations.

Figure 6 illustrates the benefits of MACE for fusing the 
outputs of three separate 2D image denoisers to regularize 
the result of a 4D reconstruction problem in space and time 

(xy, t) CNN
Denoiser

(yz, t) CNN
Denoiser

(zx, t) CNN
Denoiser

4D Sinogram
Measurements

Cone Beam
Inversion

Multislice Fusion With MACE

4D Reconstruction

(a)

(b) (c) (d) (e)

FIGURE 6. The application of MACE from [46], using multiple 2D denoisers to regularize a time-varying volume (4D). (a) The combination of 2D 
denoisers in multiple orientations with CT measurements using MACE. (b) and (c) The reference reconstructions using filtered backprojection (FBP) 
and model-based iterative reconstruction (MBIR). (d) The reconstruction using 2D denoisers in two out of three possible spatial orientations, which 
leads to streaking artifacts in the complementary direction. (e) The multislice fusion (MSF) MACE reconstruction using 2D denoisers in all three 
orientations.
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[46]. Each denoiser operates along only two of the three 
dimensions, and MACE integrates these three denoisers 
along with a physical model of tomographic projections. The 
image using all four agents, labeled multislice fusion, has the 
best quality, while the images reconstructed with one miss-
ing denoising agent contain streaking artifacts aligned with 
the orientation of the missing agent. The use of multiple 2D 
denoisers has a number of important advantages over 3D/4D 
denoising. First, 2D processing is more efficient since mem-
ory access is more local and the number of nearest neigh-
bors is smaller. Second, 2D denoisers implemented as deep 
NNs can be trained on widely available 2D images, whereas 
3D/4D data are currently very limited.

PnP in practice

Implementing PnP algorithms
While PnP methods are generally easy to implement, there 
are several reference implementations that can be used as 
sources of inspiration and as utilities. Some open source 
libraries that include implementations of PnP algorithms 
include Sparse Optimization Research Code (https://github.

com/bwohlberg/sporco), PnP-MACE (https://github.com/
gbuzzard/PnP-MACE), and, most recently, SCICO [49], pro-
viding a wide array of computational imaging tools in Py-
thon. SCICO is built on the Python package JAX, which pro-
vides support for seamless code transition between CPU and 
GPU, acceleration via just-in-time compilation, and auto-
matic differentiation. In particular, the superresolution dem-
onstration in “Turning an Image Denoising Network Into an 
Image Superresolver” was implemented using SCICO (see 
“Implementing PnP-ADMM Superresolution in SCICO”).

Applications of PnP
PnP has been applied to a very wide range of problems, in-
cluding superresolution [47] and blind deconvolution, various 
forms of tomographic imaging [46], MRI [13], and synthetic 
aperture radar [48], to name but a few. In this section, we pres-
ent two applications of PnP in computational imaging: MRI 
and intensity diffraction tomography (IDT).

Figure 7 presents an application of PnP to a free-breath-
ing 3D MRI problem described in [13]. The experimental-
ly collected in vivo k-space measurements were acquired 
using T1-weighted stack-of-starts 3D spoiled gradient echo 

Scientific Computational Imaging Code (SCICO) [49] is an 
open source library for computational imaging that includes 
implementations of plug-and-play (PnP) algorithms. Since 
SCICO is built on the python package JAX, it provides seamless 
support for learned deep priors. In the following, we show the 
steps for implementing the PnP alternating direction method of 
multipliers (ADMM) for the example in Figure S2. We assume 
that a reference image has been loaded as the variable img, 
then set up problem parameters, such as the downsampling 
rate and noise level, and construct a downsampled and noise-
corrupted measurement that will be superresolved:

rate = 4 # downsampling rate
σ = 2e-2 # noise standard deviation
Afn = lambda x: downsample_image(x, rate= 
  rate) # forward operator
s = Afn(img) # downsample reference image
noise, key = scico.random.randn(s.shape,  
  seed = 0)
sn = s + σ = noise # downsampled and  
  noise-corrupted measurement

We next set up the inverse problem of form (1), where g  
is the least-squares function and h  is used to invoke a 
denosing convolutional neural network (DnCNN) as the 
black-box denoiser:

A = linop.LinearOperator(input_shape=img. 
  shape, output_shape=s.shape, eval_fn=Afn)

g = loss.SquaredL2Loss(y=sn, A = A)
C = linop.Identity(input_shape=img.shape)
h = functional.DnCNN(“17M”)

We obtain a baseline solution (and initializer for PnP) 
by denoising the pseudoinverse of the forward operator:

xpinv, info = solver.cg(A.T @ A, A.T @ sn,  
  snp.zeros(img.shape))
dncnn = denoiser.DnCNN(“17M”) # construct  
  denoiser object
xden = dncnn(xpinv) # denoised pseudo 
  inverse solution

Finally, we set up ADMM to solve the inverse problem:

t = 3.4e-2 # ADMM penalty parameter
solver = ADMM(
   f=g, g_list=[h],  
   C_list=[C], rho_list=[t],  
   x0=xden, maxiter=12,  
   itstat_options={“display”: True},  
   subproblem_solver=Linear SubproblemSolver( 
       cg_kwargs={ 
        “tol”: 1e-3, 
        ”maxiter”: 10,
       }
   ),
)
xppp = solver.solve() # PnP solution.

Implementing PnP-ADMM Superresolution in SCICO
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sequence with fat suppression. The first three images in 
Figure 7 are reconstructions from 800 k-space radial lines, 
corresponding to scans of about 2 min. Multicoil nonuni-
form inverse FFT (MCNUFFT) refers to a simple inversion 
of the measurement operator without any regularization. 
Deformation-compensating learning (DeCoLearn) refers 
to a CNN trained in a self-supervised fashion to remove 
artifacts from MCNUFFT images obtained from 1,600 
radial lines (scans of about 4 min) [12]. While DeCoLe-
arn offers excellent reconstruction performance when 
applied to 2,000-line data (see Reference in Figure 7), its 
performance degrades when applied without retraining to 
800-line data. Regularization by AR (RARE) is a variant 
of PnP that is obtained by simply replacing the AWGN 
denoiser with DeCoLearn [13]. Note that RARE success-
fully adapts DeCoLearn to 800-line data without retrain-
ing, which is due to its ability to leverage DeCoLearn as 
an image prior.

Figure 8 presents an application of PnP to biomicroscopy 
using the IDT instrument described in [30]. RED-SD and 
SIMBA are both used to reconstruct a 3D algae sample of 
, ,1 024 1 024 25# #  voxels from b 89=  high-resolution inten-

sity measurements. Both algorithms use exactly the same 
forward model and the same denoising CNN AWGN. The 
per-iteration memory complexity of RED-SD is about 75 GB, 
which includes the storage of the 3D complex-valued transfer 
functions for each illumination ,Ai" ,  all the measured inten-
sity images ,yi" ,  and the estimate of the desired image x. By 
using minibatches of size ,p 10=  SIMBA significantly reduc-
es the per-iteration memory complexity to about 11 GB. Addi-
tionally, SIMBA has significant per-iteration computational 
advantage over RED-SD, due to its usage of minibatch gra-
dients. Despite these memory and computational advantages 

of SIMBA, the results in Figure 4 clearly show its comparable 
performance to RED-SD in terms of imaging quality.

Future directions
The idea of encapsulating prior information using algorithmic 
updates is a fertile area with much room for growth. For PnP-
ADMM and related methods, there are questions about which 
denoisers provide guaranteed convergence, how to accelerate 
convergence, and how to manage the tradeoffs between modu-
larity and reconstruction quality. These questions also apply to 
MACE, with additional questions about how to select hyper-
parameters for each agent, how to balance the contributions of 
multiple agents, and how to use agents that work in different 
spaces (e.g., the sinogram domain and space domain). And of 
course, there are many new applications to explore.

Conclusions
Since their introduction in 2013, PnP methods have become 
a standard tool for computational imaging. They have been 
used in a remarkably diverse range of applications in which 
they provide state-of-the-art performance. When they were 
introduced, they provided what was arguably the first prac-
tical approach to integrating learned models with imaging 
physics to solve inverse imaging problems. A significant fac-
tor in their rapid growth in popularity was the ease with which 
they can be implemented. Alternative approaches to achieving 
this goal have since emerged, and in some cases, they provide 
better reconstruction performance, but this is achieved at the 
expense of a potentially time-consuming and data-dependent 
application-specific training process. PnP and the multiagent 
extension MACE are particularly powerful for contexts in 
which the forward model is not fixed and in which there is 
insufficient labeled problem-specific training data.

29.08/0.706 37.66/0.958 39.33/0.965

(a) (b) (c) (d)

FIGURE 7. PnP algorithms explicitly separate the application of the forward model from that of the learned prior, enabling the adaptation of trained CNNs 
to new sensor configurations. This is illustrated on experimentally collected 3D MRI data corresponding to 800 radial spokes (scans of about 2 min). 
Multicoil nonuniform inverse FFT (MCNUFFT) refers to a simple inversion of the measurement operator without any regularization. Deformation-com-
pensating learning (DeCoLearn) [12] is a CNN that was trained under a mismatched sensor configuration corresponding to 1,600 lines (scans of about 
4 min). A variant of PnP called regularization by AR (RARE) [13] is used to adapt DeCoLearn to the desired 800-line data. The results of the DeCoLearn 
reconstruction using all the available 2,000 lines is shown as the reference image. The numbers on the top-right corner correspond to the relative PSNR/
structural similarity index measure (SSIM) values with respect to the reference image. Note the ability of RARE to successfully adapt DeCoLearn to 800-
line data. (a) MCNUFFT. (b) DeCoLearn. (c) RARE with DeCoLearn. (d) Reference image. 
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