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ABSTRACT

Network slicing achieves cost-efficient slice customization to sup-

port heterogeneous applications and services. Configuring cross-

domain resources to end-to-end slices based on service-level agree-

ments, however, is challenging, due to the complicated underlying

correlations and the simulation-to-reality discrepancy between sim-

ulators and real networks. In this paper, we propose Atlas, an online

network slicing system, which automates the service configuration

of slices via safe and sample-efficient learn-to-configure approaches

in three interrelated stages. First, we design a learning-based simula-

tor to reduce the sim-to-real discrepancy, which is accomplished by

a new parameter searching method based on Bayesian optimization.

Second, we offline train the policy in the augmented simulator via

a novel offline algorithm with a Bayesian neural network and par-

allel Thompson sampling. Third, we online learn the policy in real

networks with a novel online algorithm with safe exploration and

Gaussian process regression. We implement Atlas on an end-to-end

network prototype based on OpenAirInterface RAN, OpenDayLight

SDN transport, OpenAir-CN core network, and Docker-based edge

server. Experimental results show that, compared to state-of-the-

art solutions, Atlas achieves 63.9% and 85.7% regret reduction on

resource usage and slice quality of experience during the online

learning stage, respectively.
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1 INTRODUCTION

Network slicing is one of the key building blocks in 5G and Be-

yond [14] to provide guaranteed networking performances for con-

currently supporting various network services and applications, e.g.,
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Figure 1: Illustration of online network slicing

mobile augmented reality [25], autonomous driving [51], and feder-

ated learning [47]. It enables network operators to cost-efficiently

create virtual networks (aka. network slices) with performance and

functional isolation [12] based on the common physical infrastruc-

ture. Each network slice can be highly customized according to

the needs of individual slice tenants [2], e.g., throughput per slice

user, delay, and quality of service (QoS). As emerging services are

increasingly focusing on end-to-end performances, e.g., round-trip

latency, end-to-end slicing is more than ever needed, which consists

of the subnet instance [3] in radio access networks (RAN), transport

networks (TN), core networks (CN), and edge networks (EN).

To initialize a network service, slice tenants make service-level

agreements (SLAs) with the network operator to specify the per-

formance requirement of its users. To maintain the performance of

individual slices, as shown in Fig. 1, the network operator aims to

derive a policy1 to dynamically configure the slice’s cross-domain

resources and settings, e.g., radio and backhaul bandwidth, under

varying network dynamics. As heterogeneous slices are with highly

diverse needs with performance metrics, e.g., reliability in vehicle-

to-everything and frame-per-second for video streaming [55], it is

impractical to comprehensively examine individual slices before

their deployments. Hence, automated network slicing is indispens-

able to automatically learn the actual needs of slices according to

their service-level agreements (SLAs) and intelligently adjust ser-

vice configuration of slices by exploiting state-of-the-art machine

learning (ML) techniques [36, 49].

It is, however, challenging to obtain the automated service con-

figuration policy in end-to-end network slicing, even if recent ad-

vances in deep neural networks (DNNs) showed promising capa-

bility in complex function approximations [27, 29, 42]. On the one

hand, it is unsafe to learn the configuration policy via online inter-

action with real networks. The exploration during policy learning

may decrease service performances occasionally [23], which results

in the violation of slice SLA. On the other hand, it is insufficient to

learn the configuration policy via offline interaction with network

1We refer a policy as the mapping from network states, e.g., spatiotemporal user traffic,
to service configuration actions, e.g., radio bandwidth.
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simulators. The simulation-to-reality (sim-to-real) discrepancy be-

tween simulators and real networks could compromise the online

performance achieved by offline policies [24], even if they seem to

perform well in simulators. The sim-to-real discrepancy exists in

different systems, e.g., robotics [46] and networks [29], which is

found to be independent to the type of simulators [42].

In this paper, we propose Atlas, an integrated offline-online

network slicing system, to automate the service configuration of

slices, with the following novel designs.

Learning-based simulator.We design a learning-based simu-

lator, whose simulation parameters (e.g., transmission power and

operating spectrum of base stations) can be slightly adjusted to

match that of real networks for reducing the sim-to-real discrep-

ancy. Simulators are built with domain knowledge to mimic real

networks in multiple aspects, e.g., parameters and protocols. We

observe that the sim-to-real discrepancy is partially attributed to

the inaccurate simulation parameter settings, e.g., radio channel

models in simulators are usually simplified and abstracted [48].

Due to the high-dim search space and non-trivial execution time

of simulators, conventional searching methods (e.g., exhaustive

and grid search) fails under given time periods. We propose a new

method based on Bayesian optimization to search for the optimal

simulation parameters, which balances the reduction of sim-to-real

discrepancy and the explainability of simulation parameters. The

method is composed of Bayesian neural networks (BNN) as the

approximation function, Thompson sampling for trading off ex-

ploration and exploitation, and parallel queries for accelerating

the convergence with multiprocessing techniques. The obtained

simulation parameters will be set in the simulator, which serves as

the offline environment for offline policy training.

Offline policy training.We propose a novel offline training al-

gorithm to automatically learn to configure while assuring the slice

SLA by interacting with the augmented simulator. Due to the lack

of prior models for heterogeneous slices, we exploit BNN to approx-

imate the complex correlation between resource configurations and

slice performances. To assure the slice SLA, we design an adaptive

penalization method to incorporate the weighted constraint into

the objective with a dynamic multiplier. As the interdependencies

between consecutive configurations are weakened by large inter-

vals [30, 42], e.g., 1 hour, we adopt Bayesian optimization with

parallel Thompson sampling to search the optimal offline policy

that is utilized to accelerate online learning.

Online policy learning.We propose a novel online learning

algorithm to safely and sample-efficiently learn the optimal online

policy and resolve the sim-to-real discrepancy within real networks.

First, we adopt the sample-efficient Gaussian process as the approx-

imation function, and use it to learn the sim-to-real discrepancy

only, which is simpler than the whole correlation between resource

configurations and slice performances. Second, we design a conser-

vative acquisition function that achieves safe exploration with the

guarantee of Bayesian regret bound. Third, we exploit the offline

simulator to augment online transitions and update the multiplier

for accelerating the online learning progress.

Contributions. To the best of our knowledge, Atlas is the first

online network slicing system that automatically learn to configure

while assuring the slice SLA. The specific contributions of Atlas are

summarized as follows:

Performance metric Simulator Real Network

Average Ping Delay 34 ms 34.6 ms

UL Throughput 19.87 Mbps 17.53 Mbps

DL Throughput 32.37 Mbps 31.12 Mbps

UL Packet Error Rate 4.16E-3 9.17E-3

DL Packet Error Rate 2.05E-3 5.15E-3

Table 1: Network performance comparison (10 MHz LTE)

• We design a new parameter searching method (Sec. 4) to auto-

matically search the simulation parameters for offline simulators

to reduce the sim-to-real discrepancy.

• We design a novel offline training algorithm (Sec. 5) to automate

the service configuration of slices in the augmented simulator.

• We design a novel online learning algorithm (Sec. 6) to safely

and sample-efficiently learn the online policy and resolve the

sim-to-real discrepancy within real networks.

• We implement Atlas on an end-to-end network prototype (Sec. 7)

and conduct extensive experiments to evaluate Atlas in terms of

performance assurance and sample-efficiency (Sec. 8).

2 MOTIVATION

In this section, we build a network simulator and a system proto-

type, evaluate the sim-to-real discrepancy in different aspects, and

demonstrate the safety and sample-efficiency in online learning.

Setup.We build a system prototype to achieve end-to-end slic-

ing with a smartphone (OnePlus 9), an eNB (OpenAirInterface [35]

with Ettus USRP frontend), a SDN switch (OpenDayLight [32]), and

a core network (OpenAir-CN [34]). We build a network simulator

by using Network Simulator 3 (NS-3) [10], which includes mobile

users, an eNB in radio access networks, a backhaul link in trans-

port networks, and the EPC core networks. A slice application is

developed in both the system prototype (Android platform) and the

network simulator (emulated traffic). The simulation parameters of

the simulator are matched to that of system prototype, e.g., wireless

spectrum and bandwidth, user-eNB distance, application traffic and

service queue. More implementation details refer to Sec. 7.

Sim-to-Real Discrepancy. We show the sim-to-real discrep-

ancy from three perspectives, i.e., networking performances, and

application performances under different user traffic and resource

configurations. First, we measure networking performances in both

system and simulator in Table 1. As we can observe, the system

achieves slightly lower performances in most metrics, e.g., ping

delay and UL packet error rate (PER). In particular, the UL and DL

throughput of the system is 11.8% and 3.9% lower than that of the

simulator. These discrepancies may be attributed to a variety of

factors, e.g., radio channels and completion of open-source codes.

Second, we measure application performances under different

user traffic. Fig. 2 shows the empirical cumulative probability func-

tion (CDF) of application latency when there is one user in the

network, where the average latency in the system is 25.2% higher

than that in the simulator. Besides, Fig. 3 shows the statistics of

application latency under different user traffic. As we can see, the

discrepancy between the simulator and the system becomes larger,

e.g., mean and variance, when user traffic is increased.
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Third, we measure application performances under different

resource configurations of the slice, e.g., UL bandwidth and CPU.

Here, we use the KL-divergence [20] to evaluate the difference be-

tween the distribution of application latency collected in the system

and simulator. Fig. 4 shows that KL-divergence can be more than

10 under certain resource configurations, which can be interpreted

as the two distributions are significantly different. We notice that

KL-divergence under different traffic and resource configurations

are not the same, which implies uneven sim-to-real discrepancy.

From these measurements, we observe that the sim-to-real dis-

crepancy exists in different aspects, which is non-trivial and uneven.

The sim-to-real discrepancy could compromise the performance of

offline policies in real networks, which needs to be resolved with

different approaches, e.g., online learning.

Safety in Online Learning. We show the performance of two

state-of-the-art online learning solutions, i.e., DLDA and Bayesian

Optimization (BO), in terms of safety and sample efficiency. As

DLDA [42] is originally designed for configuring wireless mesh

networks, we modify its inputs and outputs to manage the service

configuration. Fig. 5 shows the footprint of quality of experience

(QoE2) (see Eq. 6) and resource usage of the slice during online

learning, where the QoE requirement is 0.9. We see that both solu-

tions can find multiple configuration actions that strike the balance

between resource usage and QoE. However, most configuration ac-

tions explored by these solutions fail to meet the QoE requirement,

which needs to be avoided during online learning. Therefore, it is

imperative to design a safe and sample-efficient approach to resolve

the sim-to-real discrepancy via online learning for network slicing.

3 SYSTEM OVERVIEW

The Atlas system includes three integrated stages, i.e., learning-

based simulator, offline training, and online learning.

In the learning-based simulator stage, we use the Bayesian opti-

mization framework to search the optimal simulation parameters

for the simulator for reducing the sim-to-real discrepancy. In par-

ticular, we design a Bayesian neural network (BNN) to approxi-

mate the complex correlation between simulation parameters and

the measured sim-to-real discrepancy. Besides, we design parallel

Thompson sampling (PTS) to balance the exploration and exploita-

tion, where the multiprocessing technique is leveraged to accelerate

2To tackle diverse performance metrics of different slices, we define a unified QoE (its
value is between zero and one) to represent the slice performance for fair comparison.

the searching progress. The obtained optimal simulation parame-

ters under the given real-world time (e.g., 1 hour), will be used in

the augmented simulator in the following stages.

In the offline training stage, we aim to derive the optimal of-

fline configuration policy to configure the cross-domain network

resources to individual slices with the minimum resource usage. To

assure the QoE requirement of slices, we design an adaptive penal-

ization method to incorporate the constraint into the objective with

a dynamic multiplier. As resource configurations are not actually

implemented in real networks in this stage, intermediate violations

of slice SLA are not concerned. Hence, we train the policy based on

the Bayesian optimization framework with the BNN-based approx-

imation function, where the optimistic exploration of PTS helps

to achieve better performance via offline querying the augmented

simulator. The obtained policy, e.g., the trained BNN, will serve as

the start point and offline estimation in the online learning stage.

In the online learning stage, we aim to derive the optimal online

configuration policy that resolves the sim-to-real discrepancy. As

every network configuration is implemented in real networks, the

safety and sample efficiency become the key concerns. Thus, we de-

sign a Gaussian process (which is sample efficient) to approximate

the sim-to-real discrepancy only (which is simpler), rather than

the whole correlation between resource configurations and slice

QoEs. To assure the slice SLA during intermediate explorations,

we design a conservative acquisition function that achieves the

Bayesian regret bound. In addition, we design to update the multi-

plier in the augmented simulator, instead of based on limited online

interactions, which accelerates the convergence of online learning.

4 LEARNING-BASED SIMULATOR STAGE

In this section, we show the design of the learning-based simulator

to offline reduce the sim-to-real discrepancy.

4.1 The Problem

Network simulators. Simulators are developed to mimic the setup

of real networks by exploiting domain knowledge [10, 43], e.g., pro-

tocols, scheduling, and topology. The simulation parameters of the

simulator, e.g., link bandwidth, link delay, and pathloss model, are

determined according to the corresponding specification or mea-

surement in real networks. However, complex network dynamics,

e.g., traffic and mobility, may lead to deviated parameter values and

thus compromise the accuracy of parameters. On the other hand,

abstraction mechanisms of simulators, e.g., block error rate (BLER)
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Figure 6: The system overview

mapping [17], do not have exact counterparts in real networks,

whose parameters need to be set accurately.

Objective. The objective is to find the optimal simulation param-

eters within the given parameter space to minimize the sim-to-real

discrepancy. We consider there is an online collection D𝑟 of slice

performances (e.g., latency) collected from real networks3. Denote

the offline collection D𝑠 (x) as slice performances generated by the

simulator, which is related to simulation parameters x. To evaluate

the sim-to-real discrepancy, we resort to KL-divergence [20] to

measure the distributional differences between the two collections.

Therefore, we formulate the parameter searching problem as

P0 : min
{x}

𝐾𝐿[D𝑟 | |D𝑠 (x)] (1)

𝑠 .𝑡 . |x − x̂|2 ≤ 𝐻, (2)

where 𝐾𝐿 is the KL-divergence operator, | · |2 is the 𝑙2-norm opera-

tor, and x̂ are the original simulation parameters. Here, we denote

𝐾𝐿[D𝑟 | |D𝑠 (x)] as the sim-to-real discrepancy and |x − x̂|2 as the
parameter distance. We introduce threshold 𝐻 to prevent too large

parameter distance, which assures the explainability of parameters

with respect to original parameters. For instance, the sim-to-real

discrepancy may be reduced to nearly zeros when all the link band-

width are set to 10 times of the original parameter derived from

technical specifications. This situation needs to be avoided, as such

large parameter distance is apparently infeasible in real networks.

Challenges. The challenge of solving the above problem P0
mainly lies in the unknown (i.e., black-box) function𝐾𝐿[D𝑟 | |D𝑠 (x)],
where there is no closed-form expression for modeling D𝑠 (x).
Without the mathematical models, traditional gradient-based meth-

ods [7], e.g., Newton’s method, can hardly be applied. Due to the

high-dim simulation parameters, conventional searching methods

(e.g., exhaustive and grid search) fails in practice, especially under

the non-trivial execution time of simulators. In other words, it is

needed to design an efficient method to solve the above problem

and find the optimal simulation parameters.

4.2 The Solution

We propose an offline parameter searching algorithm based on

the Bayesian optimization framework to automate the parameter

searching. Our method handles high-dim simulation parameters by

3We intend to pose minimal collection efforts for network operators. For example,
online collections may be collected via logging the current performance achieved by
existing deployed methods.

using a Bayesian neural network (BNN) as the approximation func-

tion, balances exploitation and exploration via Thompson Sampling,

and accelerates searching progress via parallel queries.

Bayesian Optimization. Bayesian optimization [15] is a state-

of-the-art global optimization framework, which generally consists

of probabilistic surrogate models and acquisition functions. In each

iteration, the surrogate model, e.g., Gaussian process [38], is fitted

with all existing observations to regress the uncertainty of the black-

box function. Then, the selected acquisition function, e.g., expected

improvement (EI) and upper confidence bound (UCB) [8], deter-

mines the utility of different candidate simulation parameters x for

trading off exploration and exploitation. The next simulation param-

eter is selected by maximizing the acquisition function, whose per-

formance is obtained by querying the simulator. Although Gaussian

process (GP) [38] shows promising performance in approximating

various black-box functions, its scalability [22] is concerned due

to its computation complexity O(𝑛3), where 𝑛 is the dimension of

data collections. To accurately approximate the complex correlation

𝐾𝐿[D𝑟 | |D𝑠 (x)], we usually need to collect thousands or more col-

lections from the simulator before the convergence of the Bayesian

optimization. The high-volume collections lead to ever-increasing

execution time when fitting the GP model, which motivates us to

explore more scalable approximation functions.

Bayesian Neural Network.We design the approximation func-

tion based on Bayesian neural network (BNN), which is more scal-

able [44] with competitive performances [18], to approximate the

sim-to-real discrepancy (𝐾𝐿[D𝑟 | |D𝑠 (x)]). Different from standard

DNNs that generate only mean-value predictions, BNN introduces

stochastic components into neural network architectures, e.g., acti-

vation or weights, to quantify the uncertainty of black-box func-

tions. For instance, all the weights in BNNs may be represented by

probability distributions, rather than having a single fixed value.

The training of BNNs aim to find the maximum a posteriori

(MAP) weights expressed as w𝑀𝐴𝑃 = argmax
w

log 𝑃 (w|Y), where
w are the weights of the BNN andY is the collection of sim-to-real

discrepancy. Based on the Bayes’ rule, the computation of posterior

needs the prior 𝑃 (w) and likelihood 𝑃 (Y|w), which turns out to be

impractical for large neural networks. An alternative way is the vari-

ational inference [6], which approximates the complicated posterior

𝑃 (w|Y) with a simpler variational approximation, e.g., Gaussian

distribution. Thus, the training of BNNs is accomplished by finding

the parameter 𝜃 on a distribution on the weights 𝑞(w|𝜃 ) [6] that

143



Atlas CoNEXT ’22, December 6–9, 2022, Roma, Italy

minimizes the KL-divergence between the true Bayesian posterior

on the weights, i.e.,

𝜃∗ = argmin
𝜃

𝐾𝐿 [𝑞(w|𝜃 ) | |𝑃 (w)] − E𝑞 (w |𝜃 ) [log 𝑃 (Y|w)] . (3)

Althoughminimizing the above function is computationally prohibi-

tive, Bayes-by-Backprop [6] leverages the trick of re-parameterization

and achieve the approximated loss as

𝐿𝑜𝑠𝑠 ≈
∑𝑁

𝑖=1
log𝑞(w𝑖 |𝜃 ) − log 𝑃 (w𝑖 ) − log 𝑃 (Y|w𝑖 ), (4)

where w𝑖 denotes the Monte Carlo sample drawn from the varia-

tional posterior 𝑞(w𝑖 |𝜃 ).
Parallel Thompson Sampling. Provided the BNN-based ap-

proximation function, we examine conventional acquisition func-

tions, e.g., expected improvement (EI) and probability improvement

(PI), and find that the expensive BNN prediction results in time-

consuming maximization of acquisition function [52]. The predic-

tion of BNN is accomplished by Monte Carlo sampling (e.g., tens

of duplicate inferences), where a small number of samples fail to

provide accurate uncertainty estimations.

To this end, we design parallel Thompson sampling (PTS) to

address this issue and balance exploration and exploitation in the

Bayesian optimization. Thompson sampling [9, 40] is a heuristic,

effective and robust method, which samples the approximation

function and selects the next querying point with the maximum

utility. Here, we extend Thompson sampling to work with BNN-

based approximation functions, and achieve parallel offline queries

by leveraging the multiprocessing technique. Our basic idea is to

draw an estimation of the black-box function (i.e., 𝐾𝐿[D𝑟 | |D𝑠 (x)])
by inferring the BNN only once, rather than evaluating the uncer-

tainty via Monte Carlo sampling. To determine the next simulation

parameters, we randomly sample tens of thousands of simulation

parameters in the given parameter space (Eq. 2). After the one-time

BNN inference on these samples, we select the next simulation

parameters with the minimum weighted sim-to-real discrepancy

(see following explanations), and query its actual performance in

the simulator accordingly. Besides, PTS achieves parallel queries by

selecting multiple simulation parameters and uses multiprocessing

techniques to query the simulator simultaneously. With the parallel

queries in PTS, the offline parameter searching can achieve better

and more stable convergence performance (see Fig. 13).

Weighted Sim-to-Real Discrepancy. Although we limit the

parameter space (i.e., Eq. 2), we still prefer to tradeoff the reduc-

tion of sim-to-real discrepancy and the modification of simulation

parameters. For example, we prefer to select the simulation param-

eters with a smaller parameter distance among these candidates

who are with the same sim-to-real discrepancy. Hence, we design

to penalize the objective with a weighted parameter distance, i.e.,

the objective in Eq. 1 is rewritten as 𝐾𝐿[D𝑟 | |D𝑠 (x)] + 𝛼 |x − x̂|2
(i.e., weighted discrepancy), where 𝛼 is a non-negative weighting

factor. The constraint of parameter space (i.e., Eq. 2) remains.

Remark. In this stage, we design the learning-based simula-

tor and propose a new parameter searching method (summarized

in Appendix A) that efficiently finds the optimal simulation pa-

rameters to reduce the sim-to-real discrepancy. The augmented

simulator (with the optimal simulation parameters) serves as the

offline environment for policy training in the following stages.

5 OFFLINE TRAINING STAGE

In this section, we present the design of network configuration

policy via offline training in the augmented simulator.

5.1 The Problem

Network slicing. Consider a mobile network operator aims to

support a new slice requested by a slice tenant4, where the slice

requires multiple dedicated virtual network resources in different

technical domains, e.g., RAN, TN, and edge computing. The slice

tenant makes a service-level agreement (SLA) with the network op-

erator, where the SLA defines several key requirements of its service

performance, e.g., latency, reliability and availability. We consider

the network can be discretely configured in a time-slotted man-

ner [30], e.g., every hour. As large configuration intervals weaken

the temporal dependencies among consecutive configurations, the

slice performances are mainly dependent on the current configura-

tions [42]. The network operator can obtain network states (e.g.,

user traffic) and service performance of the slice at the beginning

and end of each configuration interval, respectively.

Objective.We aim to derive the optimal offline policy that mini-

mizes the network resource usage under the performance constraint

of the slice by dynamically configuring the slice’s resources. De-

note a𝑡 as the network configuration of the slice at the time 𝑡 (e.g.,
UL and DL bandwidth), s𝑡 as the network state (e.g., traffic), and

𝑦 (a𝑡 |s𝑡 ) as the service performance, where 𝑦(·) is the unknown
performance function. Therefore, we formulate the network con-

figuration problem at the time 𝑡 as follow

P1 : min
𝜙

𝐹 (𝜙) (5)

𝑠 .𝑡 . 𝑃𝑟 (𝑦𝜙 (a𝑡 |s𝑡 ) ≥ 𝑌 ) ≥ 𝐸, (6)

0 ≤ a𝑡 ≤ 𝐴, (7)

where 𝜙 is the policy and 𝐴 is the maximum allowable configura-

tions, e.g., total bandwidth. The resource usage function 𝐹 (𝜙) =
|a𝑡/𝐴|1, where | · |1 is 𝑙1-norm, is developed to combine different

kinds of resources, without loss of generality. The constraints [41]

in Eq. 6 assure that the service performance of slices are better than

the predefined threshold 𝑌 with a higher probability 𝐸 ∈ [0, 1].
Quality of Experience.We denote𝑄𝑠 (𝜙) = 𝑃𝑟 (𝑦𝜙 (a𝑡 |s𝑡 ) ≥ 𝑌 )

as the QoE of the slice obtained in the augmented simulator. Hence,

the slice SLA is assured only if its requirement 𝐸 is satisfied in Eq. 6.

Challenges. The challenges of resolving the above problem

P1 lie in two aspects. First, the QoE function 𝑄𝑠 (𝜙) is unknown,
where offline service performance of slices can only be obtained by

executing the simulator. Second, the QoE requirement needs to be

maintained under different states s𝑡 , where the weighting method

with fixed weights fails to achieve this constraint.

5.2 The Solution

We propose an offline network configuration algorithm to auto-

matically learn to configure while assuring the slice SLA. First,

we design to adaptively incorporate the constraint into the objec-

tive based on the Lagrangian primal-dual method [7]. Second, we

leverage the Bayesian optimization framework to solve the relaxed

4Atlas focuses on service configuration of individual slices, and can be extended to
multiple slices scenarios because of the performance and functional isolation.
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problem, where BNN is used to approximate the unknown QoE

function and parallel Thompson sampling is also exploited.

Adaptive Penalization Method. The idea is to convert the con-

strained problem P1 into an unconstrained problem, by adaptively

penalizing the objective with the weighted constraint. To use the

Lagrangian primal-dual method, we first build Lagrangian [7] as

L(a𝑡 , 𝜆) = 𝐹 (𝜙) − 𝜆(𝑄𝑠 (𝜙) − 𝐸), (8)

where 𝜆 is the multiplier. Then, the problem is resolved by alterna-

tively solving the primal problem written as a∗𝑡 = argmin
a𝑡

L(a𝑡 , 𝜆),
and the dual problem 𝜆∗ = argmin

𝜆≥0
L(a𝑡 , 𝜆). The dual problem is

solved by updating the multiplier with sub-gradient descent [7] as

𝜆 = [𝜆 − 𝜀 (𝑄𝑠 (𝜙) − 𝐸)]+ , (9)

where [𝑥]+ =𝑚𝑎𝑥 (𝑥, 0) and 𝜀 is a positive step size. In this method,

the multiplier 𝜆 is increased if the slice SLA is violated, which guides

the optimization in the next round.

Learn to Configure. To tackle the unknownQoE function in the

primal problem, we leverage the Bayesian optimization framework

to obtain the optimal offline configuration policy. In particular, a

BNN is created to approximate the unknown QoE function 𝑄𝑠 (𝜙),
where its inputs include the network state s𝑡 , threshold 𝑌 and

network configuration a𝑡 . The exploitation and exploration are

balanced with Thompson sampling, where parallel querying applies

to accelerate the convergence.

Remark. In this stage, we design the offline network configura-

tion algorithm (summarized in Appendix B) that derives the optimal

offline policy to automatically learn to configure while assuring the

slice SLA. The derived offline policy serves multiple purposes in

the online learning stage, e.g., start point and offline acceleration.

6 ONLINE LEARNING STAGE

In this section, we present the design of network configuration

policy via online learning to resolve the sim-to-real discrepancy.

6.1 The Problem

The objective is to obtain the optimal policy to minimize resource

usage while meeting the slice SLA, which is the same as that in

the offline training stage. The key difference is that, instead of

interacting with the simulator, network configurations are queried

directly to real networks in this stage. As a result, the policy safety

(i.e., maintaining the slice SLA for every network configuration)

and sample efficiency (i.e., the number of needed online transitions

for convergence) become two critical considerations. For example,

any unsatisfied QoEs in this stage are actually applied to actual slice

users, and thus result in SLA violations in real networks. Besides, the

algorithm is highly desired to be sample efficient in real networks,

e.g., 1K transitions need more than 40 days to collect when the

configuration interval is 1 hour. To evaluate the policy safety, we

define the regret function with respect to the resource usage 𝑔
(𝑢 )
𝑛

and slice QoE 𝑔
(𝑝 )
𝑛 at the 𝑛th iteration as

𝑔
(𝑢 )
𝑛 =

∑𝑛

𝑗=0

[
𝐹 (𝜙 𝑗 ) − 𝐹 (𝜙∗)] , (10)

𝑔
(𝑝 )
𝑛 =

∑𝑛

𝑗=0

[
𝑚𝑎𝑥 (𝑄 (𝜙∗) −𝑄 (𝜙 𝑗 ), 0)] , (11)

where 𝜙∗ is the optimal policy, 𝜙 𝑗 is the policy at the 𝑗th iteration,

and 𝑄 (𝜙) is the slice QoE in real networks.

6.2 The Solution

We propose an online network configuration algorithm to con-

tinue learn to configure during the online learning stage, which

achieves safe exploration and sample efficient approximation func-

tion. Specifically, we design the algorithmwith an efficient Gaussian

process model for regressing the sim-to-real performance difference,

a conservative acquisition function with a Bayesian regret bound,

and a offline acceleration method by using the offline simulator.

Learn Sim-to-Real Discrepancy. Gaussian process (GP) is

a widely-adopted and generic model for function approximation,

which constructs probabilistic models with a variety of kernel func-

tions to regress given data collections. It is much more powerful

than traditional parametric models, e.g., linear regression, and more

sample efficient than deep neural networks (DNNs) [38].

Hence, we propose to create a GP model5 to approximate the

sim-to-real performance difference only, i.e., the gap of slice QoE

between the simulator and real networks. This is based on two

observations. First, a GP model is insufficient to approximate the

complicated QoE function of the slice as a whole (see Fig. 20 and

Fig. 21). Second, the sim-to-real performance difference is easier to

be learned, provided that the BNN-based approximation function

in the offline training stage has been trained extensively in the

augmented simulator. By using a GP model to approximate the

sim-to-real performance difference, the slice QoE function in real

networks is written as

𝑄 (𝜙) = 𝑄𝑠 (𝜙) +𝐺 (𝜓 ), (12)

where 𝑄𝑠 (𝜙) is the slice QoE obtained in the simulator, and 𝐺 (𝜓 )
is the QoE difference learned by the GP model (denoted by𝜓 ).

Conservative Exploration. Existing acquisition functions (e.g.,

EI and PI) and Thompson sampling practically cause over-exploration

and lead to intermediate SLA violations (see Fig. 22). Gaussian

process upper confidence bound (GP-UCB) [45], as an acquisition

function, achieves a sub-linear regret bound with strong theoretical

convergence guarantees by using a hyperparameter 𝛽𝑡 to balance

exploration and exploitation. However, the hyperparameter is se-

lected to be large to meet the regret bound requirement, which

usually leads to excessive violations of slice SLAs during the online

learning stage.

To this end, we propose a clipped randomized GP-UCB (cRGP-

UCB) [5] as the acquisition function to assure conservative explo-

ration while guaranteeing the Bayesian regret bound. Specifically,

cRGP-UCB evaluates the utility of configurations via 𝜇𝑡 (a𝑡 ) +
√
𝛽𝑡 ·

𝜎𝑡 (a𝑡 ), where 𝜇𝑡 (·) and 𝜎𝑡 (·) is the mean and standard deviation

function, respectively. Note that 𝜇𝑡 (·) and 𝜎𝑡 (·) are estimated by

using both offline BNN and online GP model (Eq. 12). The hyper-

parameter 𝛽𝑡 is sampled from a distribution, instead of calculating

to be fixed in GP-UCB, at each iteration. The hyperparameter is

obtained by 𝛽𝑡 = Γ (𝜅𝑡 , 𝜌), where Γ is the Gamma distribution, and

𝜅𝑡 = log
(
(𝑛2 + 1)/

√
2𝜋

)
/log (1 + 𝜌/2), (13)

5The total number of online transitions is limited to hundreds, which alleviates the
concern of GP scalability.
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and 𝜌 is a scaling parameter. The distributional hyperparameter 𝛽𝑡
allows greater freedom to select smaller 𝛽𝑡 , as compared to GP-UCB,

which contributes to maintaining the Bayesian regret bounds6. As

the sampled hyperparameter still can reach up to hundreds, we

clip the hyperparameter for conservative exploration in practice.

In other words, the actual 𝛽𝑡 is expressed as 𝛽𝑡 = 𝑐𝑙𝑖𝑝 (𝛽𝑡 , 0, 𝐵),
where 𝐵 is the upper bound of hyperparameter. Here, both 𝜌 and

𝐵 can be adjusted by individual slice tenants to tradeoff potential

performance improvements and possible risks of SLA violations.

Offline Acceleration. To maintain the slice SLA, we use the

adaptive penalization method (see Sec.5.2) to dynamically penalize

the objective in Eq. 5 for both the offline training and online learning

stage. In online learning, the Lagrangian in Eq. 8 is rewritten as

L(a𝑡 , 𝜆) = 𝐹 (𝜙) − 𝜆(𝑄𝑠 (𝜙) +𝐺 (𝜓 ) − 𝐸). (14)

In the offline training stage, its low convergence rate [7] is hidden

by using parallel queries to collect multiple slice QoEs under dif-

ferent network configurations in simulators. In the online learning

stage, however, the single query in real networks causes insufficient

updates on the multiplier 𝜆. As a result, inappropriate multipliers

usually lead to changing resource usage and frequent violations

of slice SLA, e.g., too small multipliers may fail to penalize the

objective for assuring the slice SLA.

To this end, we propose to exploit the augmented simulator to

update the multiplier for accelerating the convergence of online

algorithm in the online learning stage. Our basic idea is to update

themultiplier multiple times by estimating the slice QoEwith Eq. 12,

where the 𝑄𝑠 (𝜙) is obtained in the augmented simulator and 𝐺 (𝜓 )
is predicted by the current online GP model𝜓 . Hence, the update
of multiplier in Eq. 9 is rewritten as

𝜆 = [𝜆 − 𝜀 (𝑄𝑠 (𝜙) +𝐺 (𝜓 ) − 𝐸)]+ . (15)

In other words, the slice QoE obtained from real networks serves

more to regress the GP model 𝜓 . As more online transitions are

collected, a more accurate GP model can be achieved, which helps

to estimate actual sim-to-real performance differences.

Remark. In this stage, we design the online algorithm (sum-

marized in Appendix C) that derives the optimal online policy to

resolve the sim-to-real discrepancy via online learning with real

networks. The policy is composed of two models, i.e., the offline

BNN 𝜙 learns offline estimation of slice QoE 𝑄𝑠 (𝜙) and online GP

𝜓 learns only sim-to-real discrepancy 𝐺 (𝜓 ).

7 SYSTEM IMPLEMENTATION

In this section, we present implementation of end-to-end slicing

prototype (Fig. 7), network simulator and algorithms.

7.1 The System

RAN. We implement the radio access network based on OpenAir-

Interface (OAI) [35] with 4G LTE. The eNB operates at band 7 with

10MHz radio bandwidth, i.e., 50 physical resource blocks (PRBs).

The RAN is hosted in an Intel i7 desktop with a low-latency kernel

of Ubuntu 18.04, which connects an Ettus USRP B210 as the RF

front-end. The distance between the eNB antenna and stationary

6The detailed description of Bayesian regret bounds can be found in [5, 45].

eNB

USRP SDN Switch

AntennaPhone

Core 
Network

&
Edge ServerTN RAN

CN Algorithm

Figure 7: Overview of system prototype

smartphone is 1 meter. To enable the network slicing capability, we

develop the radio domain manager with FlexRAN support [13].

UEs. We use a OnePlus 9 5G smartphone (Qualcomm Snap-

dragon 888 and Android 11) as the user to connect with the eNB.

We develop an Android application7 for the smartphone, which con-

tinuously sends frames (540p) to the edge server in CN. The server

processes the frame with a feature extraction algorithm (ORB [39])

and then feeds the results back. We limit the number of on-the-fly

frames (i.e., the frames with no results back yet) for the purpose of

congestion control. The performance metric of this application is

end-to-end latency. To emulate varying user traffic, we control the

number of on-the-fly frames, e.g., we may set it as four to emulate

the traffic from four users.

TN.We implement the transport network based on OpenDay-

Light (ODL) [32] with OpenFlow 1.3. We use a Ruckus ICX 7150-

C12P as the SDN switch to connect the eNB and CN, where each

port has 1Gbps capacity. To enable the network slicing capability,

we develop the transport domain manager by dynamically modify-

ing the link bandwidth with meters API in OpenFlow protocol [31].

CN.We implement the core network based on OpenAir-CN [34]

with the control and data plane separation architecture (CUPS). The

network functions, e.g., HSS, MME, SPGW-C, and SPGW-U, are

deployed with Docker containers. To enable the network slicing

capability, we develop the core domain manager by mapping users’

destination SPGW-U to that of slices. Thus, each slice has an isolated

SPGW-U container, while the other network functions are shared.

EN.We implement the edge computing network based onDocker

container [33], which virtualizes the computing resources and pro-

vides isolation for edge servers. For the sake of simplicity, we co-

locate the edge server of slices with their SPGW-U containers. The

edge server serves the slice users, where the performances can be re-

trieved with a minimum 60-second interval via the developed REST

API. Besides, we develop the edge domain manager to dynamically

manage the CPU ratio of edge servers, via docker update.

Configuration Space.We develop 6-dim network configuration

actions in both RAN, TN and EN in the prototype, see Table 2.

7Atlas makes no prior assumptions on the performance metric of slices and is compat-
ible with other applications.
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Configuration Meaning Range

bandwidth_ul maximum uplink PRBs [0, 50]

bandwidth_dl maximum downlink PRBs [0, 50]

mcs_offset_ul uplink MCS offset [24] [0, 10]

mcs_offset_dl downlink MCS offset [24] [0, 10]

backhaul_bw transport bandwidth (Mbps) [0, 100]

cpu_ratio CPU ratio of docker [0, 1.0]

Table 2: Network configuration space

Parameters Meaning

baseline_loss base loss in pathloss model (dBm)

enb_noise_figure noise by non-ideal transceivers (dBm)

ue_noise_figure noise by non-ideal transceivers (dBm)

backhaul_bw additional transport bandwidth (Mbps)

backhaul_delay additional transport delay (ms)

compute_time additional server compute time (ms)

loading_time additional loading time in UE (ms)

Table 3: Simulation parameter space

7.2 The Simulator

The network simulator is developed based on Network Simula-

tor 3 (NS-3) [10], which is an extensively adopted platform and

capable of conducting various network simulations. We develop

7-dim simulation parameters in the NS-3 simulator, see Table 3.

The cellular network is developed based on the LENA project with

4G LTE, where we adopt the LogDistancePropagationLossModel

pathloss model and no fading model. The transport network is sim-

ulated by a p2p link, whose bandwidth and delay are matched to

experimental measurements in the prototype. We develop the edge

computing module to allow queue-based computing simulation

(matched to the prototype), where the computing delay is sampled

from the experimental collections (81ms mean and 35ms std). The

Android application is also replicated in NS-3, which matches the

traffic pattern and uplink transmission size (28.8kb mean and 9.9kb

std). All other settings are thoughtfully examined and configured

to match that in the prototype, e.g., MAC scheduler algorithm, an-

tenna type and gain, frequency band, and distance between eNB

and smartphones. The simulation results are obtained by reading

the tracer including not only end-to-end latency of every frame,

but also transmission and computing details, e.g., queuing time,

computing time, and uplink and downlink transmission time.

7.3 The Algorithm

We develop BNNs with PyTorch 1.5, where neural networks use

4-layer fully connected layers, i.e., 128x256x256x128, with ReLU

activation functions [16]. We adopt the Adadelta optimizer with

the initial learning rate of 1.0, where the learning rate is decayed by

using the StepLR scheduler with gamma 0.999 and batch size 128.

We develop the GP model using sklearn toolkit [37] with the

GaussianProcessRegressor module. We adopt theMatern kernel with

𝜈 = 2.5, which is a generalization of the radial-basis function (RBF)

kernel. Besides, target values are normalized by removing the mean

and scaling to unit-variance for better regression performance.

To evaluate the computation complexity of Atlas, we use the

cProfile tool in a desktop with AMD Ryzen 5 3600 and 32G DDR4

RAM. In learning-based simulator stage, we obtain the computation

time of 22.27s with 214201 calls per iteration, and 0.4GB memory

usage. In the offline training stage, we obtain the computation time

of 27.23s with 211665 calls per iteration, and 0.5GB memory usage.

In the online learning stage, we obtain the computation time of

16.99s with 357292 calls per iteration, and 1.1GB memory usage.

8 PERFORMANCE EVALUATION

In this section, we conduct extensive network simulations and

experiments to evaluate the performance of Atlas. The step size of

dual problem updates in Eq. 15 is 𝜀 = 0.1. The scaling factor 𝜌 is

0.1 [5] and the clipping value 𝐵 is 10 to prevent too large exploration.

We determine the fixed weight 𝛼 is 7 to balance the reduction of

sim-to-real discrepancy and the parameter distance. The application

related parameters, i.e., 𝐸 = 0.9, and 𝑌 = 300𝑚𝑠 , are set according
to capability of the prototype, e.g., RAN throughput. The number

of offline and online iterations is 1000 and 100, respectively. The

simulation and experimental time of each network configuration

are 60 seconds, for collecting statistical performance. We compare

Atlas with the following solutions.

• Baseline. The baseline uses the Bayesian optimization with GP

model and expected improvement (EI) acquisition function to

online learn in real networks directly.

• DLDA. The DLDA [42] is a state-of-the-art online learning solu-

tion, which transfers the offline knowledge from a teacher model

to the student model via interacting with real networks. As DLDA

is designed to improve the prediction accuracy, we modify it to

choose the configuration with minimum resource usage while

meeting the QoE requirement. This is completed by randomly

sampling 10K configurations8 from the configuration space.

• VirtualEdge. The VirtualEdge [26] uses a GP model to online

learn the unknown slice QoE function, and relies on a predictive

gradient descent method to update the current configuration

under accumulative online interactions.

8.1 Learning-based Simulator

In the learning-based simulator stage, we focus on the metric of

sim-to-real discrepancy under given number of iterations.

Searching Progress. Fig. 8 shows the searching progress of dif-

ferent methods, where the first 100 iterations are purely exploration.

The average weighted discrepancy is calculated by averaging the

weighted sim-to-real discrepancy in each iteration. Our method

finds better simulation parameters, which reduce 24.5% average

weighted discrepancy than that of the GP-based approach. In the

experiments, conducting a 60-second simulation in NS-3 consumes

average 27.8 seconds real-world time9.

Table 4 shows the details of best simulation parameters obtained

by different methods, where the order of simulation parameters

refers to Table. 3. The original simulator uses the default simulation

8As the dimensional of the configuration space is six, we believe 10K samples are
sufficient to seek the optimal action under controlled accuracy.
9Leveraging themultiprocessing technique, parallel querying of NS-3 with 16 processes
achieves nearly the same real-world time with single query.
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Methods Sim-to-Real Discrepancy Parameter distance Best simulation parameters

Original Simulator 1.38 0 [38.57, 5.0, 9.0, 0.0, 0.0, 0.0, 0.0]

Aug. Simulator, GP 0.31 0.16 [38.57, 1.44, 7.48, 5.07, 9.23, 6.02, 6.47]

Aug. Simulator, Ours 0.26 0.12 [38.76, 0.68, 8.93, 5.03, 8.93, 2.16, 3.10]

Table 4: Details of offline learning-based simulator
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parameters, where ReferenceLoss is 38.57 in the LogDistancePropa-

gationLossModel pathloss model in NS-3, and the UE and eNB noise

figure are 9.0 and 5.0, respectively. As a result, the original simulator

has zero parameter distance, while gets 1.38 sim-to-real discrep-

ancy. The GP-based method obtains 0.31 sim-to-real discrepancy

under 0.16 parameter distance, with heavily increased loading_time,

backhaul_bw and compute_time. In contrast, our method achieves

0.26 sim-to-real discrepancy (i.e., 81.2% reduction than original sim-

ulator) with 0.12 parameter distance. As we calculate the parameter

distance with L-2 norm, the actual parameter difference is even

smaller, which helps to maintain the explainability of simulation pa-

rameters. Fig. 9 shows the cumulative probability of latency under

the best simulation parameters obtained by different methods. We

can see that the CDF achieved by the GP-based approach has a long

tail, which is worse than that of our method. As compared to the

CDF of original simulator (see Fig. 2), the sim-to-real discrepancy

is substantially reduced with the learning-based simulator.

Network Dynamics. Fig. 10 shows the sim-to-real discrepancy

obtained under different user mobility. In general, we see the sim-

to-real discrepancy increases under a larger line-of-sight distance

between the user and the base station. This may be attributed to the

disparity of the radio channel model, where the pathloss model in

the simulator fails to represent the real channel dynamics in experi-

ments, especially under randomwalk scenarios. Besides, to evaluate

the end-to-end performance isolation among network slices, we

dynamically attach new users, generate traffic (i.e., YouTube), and

detach the users. Fig. 11 shows that the latency performance of

the slice is very stable no matter how many extra users are in the

network. This is attributed to the performance isolation achieved

in both RAN, TN, CN, and EN in the developed system prototype.

Pareto Boundary. Fig. 12 shows the Pareto boundary achieved

by our method via varying the weight 𝛼 . Provided that the sim-to-

real discrepancy is 0.26 when 𝛼 = 7, it can be further reduced to 0.21

at the cost of more than 0.2 parameter distance. On the other hand,

given the maximum 0.1 parameter distance, the lowest sim-to-real

discrepancy can reach 0.4, which still achieves a 71.0% reduction

as compared to that of the original simulator. Besides, our method

allows the customized weight to balance sim-to-real discrepancy

and the parameter distance.

Parallel Queries. Fig. 13 shows the searching progress of our

method under different number of parallel queries. When the num-

ber of parallel queries is only one, i.e., single query per iteration,

the average discrepancy curve is similar to that of the GP-based

method (see Fig. 8). As the number of parallel queries increases,

our method can achieve lower discrepancy, which suggests the

necessity of parallel queries for Thompson sampling to train BNNs.

Discrepancy Reduction. Fig. 14 shows the sim-to-real discrep-

ancy achieved by our method under different user traffic. Here,

we emulate a maximum of four mobile users in the slice, due to

the limitation of hardware capability and software stability, e.g.,

constrained uplink throughput, in the system prototype. Note that,

the optimal simulation parameters are derived only based on the

user traffic 1, and apply to the learning-based simulator for all user

traffic simulations. With the simulation parameters in Table 4, the

sim-to-real discrepancy is reduced to 81.2%, 56.7%, 43.6%, and 61.6%

under the user traffic 1, 2, 3, and 4, respectively. This result suggests

that the sim-to-real discrepancy may share some common patterns

under different scenarios. Fig. 15 shows that the sim-to-real dis-

crepancy is reduced substantially (79.3% in average) for almost all

the resources. Another interpretation of these figures is that, the

sim-to-real discrepancy is not identical and not even under differ-

ent scenarios. As it is impractical to have online collections under

all possible scenarios, the sim-to-real discrepancy will still exist

between the augmented simulator and real networks.

8.2 Offline Training

In the offline training stage, we evaluate the achieved resource

usage and slice QoE of the policy under given number of iterations.

Training Progress. Fig. 16 shows the training progress of our

method, including the average resource usage and QoE, where the
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different thresholds

first 100 iterations are purely exploration. We observe that resource

usage is gradually decreased when the average QoE is above the

requirement (𝐸 = 0.9), e.g., between the iteration 300 to 500. Then,

both the average QoE and resource usage converge, where the

found optimal policy achieves stable average performance and the

oscillations are mainly from Thompson sampling. The total real-

world time consumption for 1000 iterations is 7.72 hours, given the

average of 27.8 seconds for NS-3 simulations.

Performance Comparison. Fig. 17 depicts the QoE and re-

source usage under the best network configuration policy obtained

by different methods. We see that our method achieves the best per-

formance, where the QoE is 0.905 and the resource usage is 19.81%.

When user traffic is 1, the best configuration actions are 9 and 3

uplink and downlink PRBs, 6.2 Mbps backhaul bandwidth and 0.8

CPU ratio at the edge server, where the uplink and downlink MCS

offsets are zeros. In contrast, DLDA achieves 0.98 QoE at the cost

of 26.87% resource usage, which fails to balance the QoE and the

resource usage. The other GP-based methods, e.g., GP-EI and GP-PI,

maintain more than 0.92 QoE while using up to 37.62% resources.

Pareto Boundary. Fig. 18 shows the Pareto boundary of differ-

ent methods, which are obtained by varying the QoE requirement

𝐸. It can be seen that our method outperforms the other methods,

in both QoE requirement and resource usage, where the slice SLAs

on these curves are met. For training the DLDA, we collect the

offline dataset with 4096 configuration actions10 by grid searching

the configuration space (Eq. 7), where each dimension is with 4

different values (i.e., [0.0, 0.3, 0.6, 0.9]). We notice that DLDA has a

huge leap of QoE from 0.33 to 0.89, which may be attributed to the

10We collect the slice performances in 60 seconds for each configuration action, which
consumes approximately 68.5 hours in total.

coarse-grained dataset and implies that the grid searching method

fails in handling high-dimensional action spaces.

Slice Requirement. Fig. 19 shows the achieved performance by

our method and DLDA under different latency thresholds 𝑌 . Our
method obtains lower resource usage under all the scenarios with

satisfied thresholds. Besides, we see that the difference in resource

usage between our method and DLDA shrinks when the threshold

increases. This is because we set a minimum of 6 uplink and 3

downlink PRBs for maintaining radio connectivities of users, where

these resources may be sufficient to satisfy the loosen thresholds.

8.3 Online Learning

In the online learning stage, we evaluate the regret of resource

usage and slice QoE under given number of iterations.

Training Progress. Fig. 20 and Fig. 21 show average resource

usage and slice QoE achieved during 100 online interactions, re-

spectively. The very first online configuration action is the optimal

one obtained in the offline learning stage, if applicable, for all meth-

ods. Recall that our method achieved 0.905 QoE in the augmented

simulator (see Fig. 17), it turns out to be 0.65 QoE in real networks,

which implies the noticeable sim-to-real discrepancy.

We see our method searches for the optimal online policy under

40% resource usage, while the resulted slice QoEs are around the

requirement (𝐸 = 0.9). As compared to other methods in Table 5, our

method achieves the lowest regret for both average resource usage

(63.9% reduction than DLDA) and slice QoE (85.7% reduction than

DLDA) in 100 iterations. In other words, our method uses only 3.16%

more resource usage and obtains 0.077 less slice QoE on average, as

compared to the best policy in 100 iterations. This result validates

the efficacy of our method in terms of policy safety and sample
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Methods
Avg. usage

regret (%)

Avg. QoE

regret

Offline

queries

Baseline 35.83 0.31 0

VirtualEdge 16.06 0.34 0

DLDA 8.79 0.54 0

Ours 3.17 0.077 20×100
Table 5: Details of online learning under different methods

efficiency. Although our method needs 𝑁 = 20 offline queries with

the augmented simulator after each online action, it does not affect

and delay the behavior of online network configuration, especially

when configuration intervals are usually tens of minutes or even

hours in real networks [30, 42].

Acquisition Function. Fig. 22 shows the footprint of ourmethod

under different acquisition functions, which is obtained by scatter-

ing the achieved resource usage and slice QoE in each iteration. Our

proposed conservative acquisition function (Eq. 13) outperforms

classic acquisition functions, which explores configuration actions

with lower resource usages while approximating the slice QoE

requirement. Also, we see that GP-UCB has nearly comparative

performance, which usually uses more network resources to satisfy

the slice QoE requirement. As the only difference is acquisition

function, this result justifies the safe exploration of Atlas.

Approximation Function. Fig. 23 shows the performance of

our method under different approximation functions, e.g., BNN and

GP. When using BNN to approximate the sim-to-real performance

difference (𝐺 (𝜓 ) in Eq. 12), we see the regret of resource usage and

slice QoE is increased by 107.6% and 96.5%, respectively. This can

be attributed to the poor sample efficiency of BNN, as 100 online

collections are insufficient to train the BNN. Alternatively, if we use

the offline trained BNN to continue learning in the online learning

stage (i.e., BNN-Cont’d), we see the average QoE regret soared.

Besides, if we do not exploit the offline acceleration, we observe

average usage regret is increased by 63.5% consequently.

Individual Components. Fig. 24 shows the footprint of our

method when individual stages are absent. When there is no online

learning stage, we see the resource usage keep constant while the

QoE is around 0.65, where the sim-to-real discrepancy remains.

When there is no offline training stage, all the policies have to be

learned via directly interacting with real networks. As a result, it is

no surprise that the early-stage performance is poor, which justifies

the importance of offline training. Without the learning-based sim-

ulator, the QoE performance is worsen due to the large sim-to-real

discrepancy between original simulator and real networks.

Dynamic Traffic. Fig. 25 and Fig. 26 show the average slice

QoE and resource usage under different user traffic, where the

latency threshold 𝑌 = 500𝑚𝑠 . We see our method achieves the

lowest regret of both resource usage and slice QoE for almost all

user traffic. Although DLDA has a slightly lower regret of average

resource usage when user traffic is 4, its average QoE regret is much

higher than that of ours.

9 RELATEDWORK

Network Slicing. Network slicing systems have been increasingly

studied to support heterogeneous applications in terms of flexibility

and cost-efficiency [4, 11, 13, 26, 41]. Foukas et. al. [12] designed
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Orion as the first RAN slicing system based on FlexRAN [13], which

enables on-the-fly RAN virtualization with both performance and

functional isolation. Marqueze et. al. [30] empirically demonstrated

that dynamic resource orchestration improves the efficiency of re-

source multiplexing in RAN. Liu et. al. [26] proposed VirtualEdge

that automatically learns to orchestrate cross-domain resources for

maximizing the performance of slices. Salvat et. al. [41] proposed

to multiplex network resources via overbooking for concurrently

supporting multiple slices with two new resource provisioning al-

gorithms. D’Oro et. al. [11] proposed Sl-EDGE that enables joint

network-edge slicing, where near-optimal algorithms are designed

to instantiate slices under constrained resources in edge nodes.

These works, however, mainly focused on network slicing in indi-

vidual domains with known slice resource demands, which do not

apply to network configuration in end-to-end slicing systems.

Machine learning for Networking: Recent advances in ma-

chine learning techniques provoke the interest in applying ML in

handling complex networking problems [1, 21, 23, 50, 53]. Micro-

scope [54] introduced an ML-based decomposition method to effi-

ciently estimate the service demand of slices, which deals with com-

plex spatiotemporal features in aggregated traffic. EdgeSlice [27]

handled the multi-user and multi-domain resource orchestration

problems by using a decentralized deep reinforcement learning

(DRL) algorithm for network slicing. The constrained resource allo-

cation problems are studied in network slicing [19, 27], where differ-

ent techniques, e.g., reward shaping and interior-point method [28],

are utilized to maintain the performance requirement of slices.

These works, however, primarily focused on the offline training

and online deployment strategy, which suffer the sim-to-real dis-

crepancy when applying offline policies to real networks.

Sim-to-Real Discrepancy. The sim-to-real discrepancy has

been increasingly unveiled for online system design. Mao et. al. [29]

identified the non-negligible performance difference between the

high-fidelity simulator and real data center networks under the iden-

tical policy. OnRL [55] is proposed to address the sim-to-real dis-

crepancy in real-timemobile video telephony, via online DRLwithin

real networks, where an individualized hybrid learning method is

designed to counter the potential performance degradation. OnSlic-

ing [24] resolved the cross-domain resource orchestration problem

in online network slicing by designing a proactive baseline switch-

ing mechanism for near-zero SLA violations. These works focus on

time-correlated problems with small time scales (e.g., seconds or

minutes) and unfortunately fail in network configuration problems

with large time scales. Shi et. al. [42] designed a transfer learning

DNN-based algorithm to bridge the sim-to-real gap by using both

offline and online datasets (obtained by grid searching), which fails

in terms of performance assurance and sample efficiency.

10 DISCUSSION

In this section, we discuss the scalability, adaptability and general-

izability of the proposed Atlas system.

Scalability. As Atlas tackles the service configuration of individ-

ual network slices, it can seamlessly accommodate dynamic slice

admission and removal. When a new slice is admitted and launched,

an individualized Atlas will be initialized to build its learning-based

simulator, offline train the policy, and online learn to configure

continually. As there are infrastructure changes, e.g., installing

more antennas and higher bandwidth switches, the corresponding

parts in the learn-based simulator will be updated. The simulation

parameters will be continually searched based on its last optima

if needed. The offline policies will be fine-tuned in the updated

simulator, and the online learning stage continues uninterruptedly

as the GP model learns only the sim-to-real discrepancy. All these

procedures will be offline executed and accelerated if applicable,

without the need for additional online transitions.

Adaptability. For parameter and configuration space changes,

Atlas can reuse previous experience (e.g., buffered transitions) to

accelerate the training and finetuning of new approximation func-

tions (i.e., BNNs and GPs). If network dynamics are observable, e.g.,

spatiotemporal traffic changes, the topology and settings in the

simulator can be updated accordingly. Then, the learning compo-

nents, e.g., simulation parameters and approximation functions, at

the learning-based simulator stage and offline training stage will be

refined with the new updated simulator. During the online learning

stage, the learned GP model regarding the sim-to-real discrepancy

may be further continuously updated with new interactions. If net-

work dynamics are not observable, e.g., instant link failure, Atlas

will recognize it as the fluctuations of simulation-to-reality discrep-

ancy and rely on the sample efficient Gaussian process model to

learn and adapt continually.

Generalizability. The proposed methods in Atlas have the po-

tential to be generalized to tackle sim-to-real discrepancy and online

learning problems in other network systems, e.g., datacenter net-

works and wireless mesh networks [42]. This is attributed to the

minimal assumptions of Atlas, summarized as follows: 1) there is a

queryable simulated environment to imitate the real-world system.

2) there is an online dataset collected directly from the real-world

system. 3) the real-world system can be queried, where network

states and generated results are observable.

11 CONCLUSION

In this paper, we proposed an online network slicing system (i.e.,

Atlas) to automate the service configuration of slices. We design

three interrelated stages in Atlas to tackle the sim-to-real discrep-

ancy for obtaining the optimal network configuration policy in

real networks. First, we designed a learning-based simulator to

reduce the sim-to-real discrepancy with a new parameter searching

method. Second, we designed a novel offline training algorithm to

train the policy in the augmented simulator. Third, we designed

a novel online learning algorithm to safely learn the policy and

resolve the sim-to-real discrepancy with real networks. We develop

an end-to-end network prototype and evaluated Atlas in terms of

performance assurance, sample efficiency, and resource usage.
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A PARAMETER SEARCHING METHOD

The parameter searching algorithm for learning-based simulator

is summarized in Alg. 1. First, tens of thousands of simulation pa-

rameters are sampled from the parameter space (i.e., Eq. 2). Second,

the next query is selected by minimizing the weighted discrepancy,

where the sim-to-real discrepancy 𝐾𝐿[D𝑟 | |D𝑠 (x)] is estimated by

the BNN for all the sampled parameters. Third, the actual values of

sim-to-real discrepancy is obtained via querying the offline simu-

lation. Fourth, the transition < x, 𝐾𝐿[D𝑟 | |D𝑠 (x)] > are stored for

BNN training. Note that these above steps are executed in parallel

with multiprocessing technique.

Algorithm 1: The Parameter Searching Method

Input: 𝐻 , 𝛼 , x̂
1 while True do

2 for 𝑛 = 0, 1, ...(𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙) do
3 Sample x;

4 Estimated sim-to-real discrepancy 𝐾𝐿[D𝑟 | |D𝑠 (x)]
from BNN for all samples;

5 Get the next query

x ← argmin (𝐾𝐿[D𝑟 | |D𝑠 (x)] + 𝛼 |x − x̂|2);
6 Obtain sim-to-real discrepancy 𝐾𝐿[D𝑟 | |D𝑠 (x)] by

querying simulator;

7 Store transition < x, 𝐾𝐿[D𝑟 | |D𝑠 (x)] >;
8 Train the BNN with new added transitions;

9 if Convergence then

10 break;

B THE OFFLINE ALGORITHM

The offline network configuration algorithm is summarized in Alg. 2.

First, tens of thousands of network configuration actions are sam-

pled from the configuration space (i.e., Eq. 7). Second, the next query

is selected by minimizing the Lagrangian, where the resource usage

is calculated in 𝐹 (𝜙) and the slice QoE is estimated by the BNN

for all the sampled actions. Third, the actual values of slice QoE

is obtained via querying the offline simulation. Fourth, the tran-

sition < a𝑡 , 𝐹 (𝜙), 𝑄𝑠 (𝜙) > are stored for BNN training. Note that

these above steps are executed in parallel with multiprocessing

technique. Then, the multiplier is updated by averaging the results

from parallel queries.

C THE ONLINE ALGORITHM

The online network configuration algorithm is summarized in Alg. 3.

First, the multiplier in the online learning stage is initialized with

the final multiplier in the offline training stage. Then, we update

the multiplier by interacting with the offline simulator for 𝑁 times

(Line 4-10). Specifically, we calculate the Lagrangian for all sampled

configuration actions with both the offline BNN and the online

GP model. The next network configuration is selected by minimiz-

ing the Lagrangian. We update the multiplier with 𝜆 ← Eq. 15

by querying offline simulator and estimating GP model. Next, we

online query real networks, when it needs to, e.g., configuration
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Algorithm 2: The Offline Algorithm

Input: 𝜀, 𝐸,𝑌,𝐴,
1 Initialize parameters 𝜆 ← 0;

2 while True do

3 for 𝑛 = 0, 1, ...(𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙) do
4 Sample a𝑡 , calculate 𝐹 (𝜙) for all samples;

5 Estimated 𝑄𝑠 (𝜙) from BNN for all samples;

6 Calculate Lagrangian in Eq. 8;

7 Get the next query a𝑡 ← argmin𝐿;

8 Obtain slice QoE by querying the simulator;

9 Store transition < a𝑡 , 𝐹 (𝜙), 𝑄𝑠 (𝜙) >;
10 Train the BNN with new added transitions;

11 Update multiplier 𝜆 ← Eq. 9;

12 if Convergence then

13 break;

14 return 𝜙 ;

interval is 1 hour. The new obtained online transitions are used

to update the GP model for approximating the sim-to-real perfor-

mance differences.

Algorithm 3: The Online Algorithm

Input: 𝜀, 𝑌, 𝐸,𝐴, 𝐵, 𝑁
1 Initialize multiplier 𝜆 from offline stage;

2 while True do

3 for 𝑛 = 0, 1, ...𝑁 do

4 Sample a𝑡 , calculate 𝐹 (𝜙) for all samples;

5 Estimated 𝑄 (𝜙) from BNN 𝑄𝑠 (𝜙) and GP model

𝐺 (𝜓 ) for all samples with Eq. 12;

6 Calculate Lagrangian in Eq. 14;

7 Get the next query a𝑡 ← argmin𝐿;

8 Obtain 𝑄𝑠 (𝜙) by querying simulator;

9 Estimate 𝐺 (𝜓 ) with𝜓 ;

10 Update multiplier 𝜆 ← Eq. 15 ;

11 if Time to online query then

12 Apply a𝑡 to real networks;

13 Calculate 𝐺 (𝜓 ) = 𝑄 (𝜙) −𝑄𝑠 (𝜙);
14 Train𝜓 with new online transitions;

15 if Convergence then

16 break;

17 return𝜓 ;

D ARTIFACT APPENDIX

D.1 Abstract

This section describes the instructions for performing artifact eval-

uation for this paper. In the paper, we achieve Atlas with three

integrated stages, i.e., learning-based simulator, offline training,

and online learning.

D.2 Artifact check-list
• Algorithm: Algorithm 1, 2, 3 described in the paper

• Program: Python scripts, NS-3 simulator, OpenDayLight, executable

files in OpenAirInterface RAN and CORE, Android applications

• Compilation: g++ 8.0, gcc 8.0 or higher

• Data set: own dataset provided in open-source codes.

• Run-time environment: At least two desktop computers, one for

RAN and one for CN&Edge. OS can be either Ubuntu 18.04 or 20.04.

Docker containers is needed in CN desktop.

• Hardware: For network simulator: No restriction on hardware; For

network prototype: Intel i7 or above CPU, NI USRP B210, Ruckus

ICX 7150-C12P, OnePlus 9 5G smartphone, Antenna compatible

with LTE B7 frequency band.

• Execution: sole user is preferred

• Metrics: runtime log in NS-3, performance reported by smart-

phones.

• Output: saved experiment results in pickle format, which will be

used for following figure plotting.

• Experiments: see README in the open-source codes.

• How much disk space required (approximately)?: 1GB for data

and trained model, the disk space for software installation are not

counted.

• How much time is needed to prepare workflow (approxi-

mately)?: For network simulator: less than 30 minutes; For network

prototype: several hours if not more.

• How much time is needed to complete experiments (approxi-

mately)?: For stage 1: 3 5 hours, under 16 threads; For stage 2: 3 5

hours, under 16 threads; For stage 3: 1 3 hours.

• Publicly available?: Yes.

D.3 Descriptions
• 𝑚𝑎𝑖𝑛_𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑜𝑟 .𝑝𝑦 is the main file for conducting experiments

for the stage 1: learning-based simulator.

• 𝑚𝑎𝑖𝑛_𝑜 𝑓 𝑓 𝑙𝑖𝑛𝑒.𝑝𝑦 is the main file for conducting experiments for

the stage 2: offline training.

• 𝑚𝑎𝑖𝑛_𝑜𝑛𝑙𝑖𝑛𝑒.𝑝𝑦 is the main file for conducting experiments for

the stage 3: online learning.

• 𝑝𝑙𝑜𝑡_ ∗ .𝑝𝑦 are mainly for plotting the results based on completed

experiments.

• 𝑠𝑦𝑠𝑡𝑒𝑚.𝑝𝑦 is the main file for connecting with network prototype.

• 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑜𝑟 .𝑝𝑦 is the main file for connecting with network simula-

tor.

D.3.1 How to access. The codes are open-sourced available in

https://doi.org/10.5281/zenodo.7262492, where more detailed in-

structions can be found in https://github.com/int-unl/Atlas.git.

D.3.2 Hardware dependencies. At least two desktop computers

with Intel i7 or above CPUs, one for RAN and one for CN&Edge. OS

can be either Ubuntu 18.04 or 20.04. Docker containers is needed

in CN desktop.

D.3.3 Software dependencies. For executing the codes: Ubuntu

20.04, Python 3.6.9, PyTorch 1.10.2, scipy 1.5.4, sklearn 0.24.2, numpy

1.19.5, pickle 4.0, CUDA is not required.

For RAN host in the network prototype: Ubuntu 18.04, low-

latency kernel; For CN and Edge in the network prototype: Ubuntu

20.04.

D.3.4 Data sets. We collect our own dataset from the real-world

network prototype. The file is in 𝑎𝑝𝑝_𝑒𝑣𝑎𝑙/ folder, which is mainly

used for the stage 1: learning-based simulator.
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D.4 Network Simulator and Prototype Build
Network Simulator:

• Install NS-3 3.36, either with official instruction or provided bash

file.

• Add additional files (i.e., 𝑒𝑑𝑔𝑒/) in NS-3 𝑐𝑜𝑛𝑡𝑟𝑖𝑏/ folder, and rebuild.
• Add additional files (i.e., main.cc) in NS-3 𝑠𝑐𝑟𝑎𝑡𝑐ℎ/ folder, and re-

build.

• Validate the network simulator can be connected by 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑜𝑟 .𝑝𝑦
script.

Network Prototype:

• Install OpenAirInterface RAN with official instruction.

• Install OpenAirInterface CORE with official instruction, where the

dockerized network functions are required, e.g., SPGW-U and HSS.

• Modify SPGW-C and rebuild to enable core network slicing, validate

it redirects specific mobile users to corresponded SPGW-Us.

• Connect smartphones with RAN with programmed USIM card to

match the PLMN and other parameters, validate they can access to

the RAN and the SPGW-U docker.

• Install the provided Android application to smartphones (Android

11).

• Install the provided edge server application in individual SPGW-U

dockers, validate smartphones can connect with their servers with

periodically performance updates.

• Install FlexRAN controller 2.0 with official instruction, validate its

slicing capability when changing PRB allocation on RAN to different

mobile users.

• Initialize the SDN switch, install OpenDayLight to connect the

switch, validate the provided 𝑡𝑛_𝑠𝑒𝑟𝑣𝑒𝑟 .𝑝𝑦 can connect OpenDay-

Light.

• Connect SDN switch between the RAN and CORE desktop, validate

it can enforce bandwidth allocation to between mobile users and

their SPGW-U dockers.

• As everything is well validated individually, close all scripts and

programs.

• The order of running the network prototype is: OpenDayLight –

Transport controller – FlexRAN controller – CORE – edge server

applications – RAN – Configure slicing parameters – Smartphone

(disable airplane mode and open the app) – start 𝑠𝑦𝑠𝑡𝑒𝑚.𝑝𝑦.
• The demo procedures of bringing up the network prototype is online:

https://youtu.be/-AFw17ANBN8

D.5 Experiment workflow
• Download open-source codes

• Install package dependencies, e.g., sklearn, scipy, torch, and more.

Stage 1: learning-based simulator.

• Run𝑚𝑎𝑖𝑛_𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑜𝑟 .𝑝𝑦, where the arguments vary according to

different experiments.

• Run 𝑝𝑙𝑜𝑡_𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑜𝑟 .𝑝𝑦 to reproduce the figures in the paper, after

all corresponded experiments are done.

• Update the searched optimal simulation parameter to𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 .𝑝𝑦.
Stage 2: offline training.

• Run 𝑚𝑎𝑖𝑛_𝑜 𝑓 𝑓 𝑙𝑖𝑛𝑒.𝑝𝑦, where the arguments vary according to

different experiments.

• Run 𝑝𝑙𝑜𝑡_𝑜 𝑓 𝑓 𝑙𝑖𝑛𝑒.𝑝𝑦 to reproduce the figures in the paper, after

all corresponded experiments are done.

• Update the searched optimal resource configuration to𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 .𝑝𝑦.
Stage 3: online learning.

• Bring up the network prototype (see above), validate it is live and

can be connected by the 𝑠𝑦𝑠𝑡𝑒𝑚.𝑝𝑦 script.

• Run𝑚𝑎𝑖𝑛_𝑜𝑛𝑙𝑖𝑛𝑒.𝑝𝑦, where the arguments vary according to dif-

ferent experiments.

• Run 𝑝𝑙𝑜𝑡_𝑜𝑛𝑙𝑖𝑛𝑒.𝑝𝑦 to reproduce the figures in the paper, after all

corresponded experiments are done.
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