L))

Check for
Updates

Atlas: Automate Online Service Configuration in Network Slicing

Qiang Liu Nakjung Choi Tao Han
University of Nebraska-Lincoln Nokia Bell Labs New Jersey Institute of Technology
qiang.liu@unl.edu nakjung.choi@nokia-bell-labs.com tao.han@njit.edu
ABSTRACT A ®) o B0 = = Sin(l(:li;tor

Network slicing achieves cost-efficient slice customization to sup-
port heterogeneous applications and services. Configuring cross-
domain resources to end-to-end slices based on service-level agree-
ments, however, is challenging, due to the complicated underlying
correlations and the simulation-to-reality discrepancy between sim-
ulators and real networks. In this paper, we propose Atlas, an online
network slicing system, which automates the service configuration
of slices via safe and sample-efficient learn-to-configure approaches
in three interrelated stages. First, we design a learning-based simula-
tor to reduce the sim-to-real discrepancy, which is accomplished by
anew parameter searching method based on Bayesian optimization.
Second, we offline train the policy in the augmented simulator via
a novel offline algorithm with a Bayesian neural network and par-
allel Thompson sampling. Third, we online learn the policy in real
networks with a novel online algorithm with safe exploration and
Gaussian process regression. We implement Atlas on an end-to-end
network prototype based on OpenAirInterface RAN, OpenDayLight
SDN transport, OpenAir-CN core network, and Docker-based edge
server. Experimental results show that, compared to state-of-the-
art solutions, Atlas achieves 63.9% and 85.7% regret reduction on
resource usage and slice quality of experience during the online
learning stage, respectively.

CCS CONCEPTS

» Networks — Network algorithms; Mobile networks; « Com-
puting methodologies — Machine learning;

KEYWORDS
Machine Learning, Network Slicing, Autonomous Management

ACM Reference Format:

Qiang Liu, Nakjung Choi, and Tao Han. 2022. Atlas: Automate Online Service
Configuration in Network Slicing. In The 18th International Conference on
emerging Networking EXperiments and Technologies (CONEXT °22), December
6-9, 2022, Roma, Italy. ACM, New York, NY, USA, 16 pages. https://doi.org/
10.1145/3555050.3569115

1 INTRODUCTION

Network slicing is one of the key building blocks in 5G and Be-
yond [14] to provide guaranteed networking performances for con-
currently supporting various network services and applications, e.g.,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CoNEXT °22, December 69, 2022, Roma, Italy

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9508-3/22/12...$15.00
https://doi.org/10.1145/3555050.3569115

140

ABtoBy0R Bag
A A

A0 0 o8 g B

Slice Tenants

7

i O »s

SLA\b[Service Configuration]

(/il)) E%

Figure 1: Illustration of online network slicing

A

... Sim-to-Real

Real Network -
l Di
] iscrepancy

- S =

mobile augmented reality [25], autonomous driving [51], and feder-
ated learning [47]. It enables network operators to cost-efficiently
create virtual networks (aka. network slices) with performance and
functional isolation [12] based on the common physical infrastruc-
ture. Each network slice can be highly customized according to
the needs of individual slice tenants [2], e.g., throughput per slice
user, delay, and quality of service (QoS). As emerging services are
increasingly focusing on end-to-end performances, e.g., round-trip
latency, end-to-end slicing is more than ever needed, which consists
of the subnet instance [3] in radio access networks (RAN), transport
networks (TN), core networks (CN), and edge networks (EN).

To initialize a network service, slice tenants make service-level
agreements (SLAs) with the network operator to specify the per-
formance requirement of its users. To maintain the performance of
individual slices, as shown in Fig. 1, the network operator aims to
derive a policy! to dynamically configure the slice’s cross-domain
resources and settings, e.g., radio and backhaul bandwidth, under
varying network dynamics. As heterogeneous slices are with highly
diverse needs with performance metrics, e.g., reliability in vehicle-
to-everything and frame-per-second for video streaming [55], it is
impractical to comprehensively examine individual slices before
their deployments. Hence, automated network slicing is indispens-
able to automatically learn the actual needs of slices according to
their service-level agreements (SLAs) and intelligently adjust ser-
vice configuration of slices by exploiting state-of-the-art machine
learning (ML) techniques [36, 49].

It is, however, challenging to obtain the automated service con-
figuration policy in end-to-end network slicing, even if recent ad-
vances in deep neural networks (DNNs) showed promising capa-
bility in complex function approximations [27, 29, 42]. On the one
hand, it is unsafe to learn the configuration policy via online inter-
action with real networks. The exploration during policy learning
may decrease service performances occasionally [23], which results
in the violation of slice SLA. On the other hand, it is insufficient to
learn the configuration policy via offline interaction with network

'We refer a policy as the mapping from network states, e.g., spatiotemporal user traffic,
to service configuration actions, e.g., radio bandwidth.

CoNEXT ’22, December 6-9, 2022, Roma, Italy

simulators. The simulation-to-reality (sim-to-real) discrepancy be-
tween simulators and real networks could compromise the online
performance achieved by offline policies [24], even if they seem to
perform well in simulators. The sim-to-real discrepancy exists in
different systems, e.g., robotics [46] and networks [29], which is
found to be independent to the type of simulators [42].

In this paper, we propose Atlas, an integrated offline-online
network slicing system, to automate the service configuration of
slices, with the following novel designs.

Learning-based simulator. We design a learning-based simu-
lator, whose simulation parameters (e.g., transmission power and
operating spectrum of base stations) can be slightly adjusted to
match that of real networks for reducing the sim-to-real discrep-
ancy. Simulators are built with domain knowledge to mimic real
networks in multiple aspects, e.g., parameters and protocols. We
observe that the sim-to-real discrepancy is partially attributed to
the inaccurate simulation parameter settings, e.g., radio channel
models in simulators are usually simplified and abstracted [48].
Due to the high-dim search space and non-trivial execution time
of simulators, conventional searching methods (e.g., exhaustive
and grid search) fails under given time periods. We propose a new
method based on Bayesian optimization to search for the optimal
simulation parameters, which balances the reduction of sim-to-real
discrepancy and the explainability of simulation parameters. The
method is composed of Bayesian neural networks (BNN) as the
approximation function, Thompson sampling for trading off ex-
ploration and exploitation, and parallel queries for accelerating
the convergence with multiprocessing techniques. The obtained
simulation parameters will be set in the simulator, which serves as
the offline environment for offline policy training.

Offline policy training. We propose a novel offline training al-
gorithm to automatically learn to configure while assuring the slice
SLA by interacting with the augmented simulator. Due to the lack
of prior models for heterogeneous slices, we exploit BNN to approx-
imate the complex correlation between resource configurations and
slice performances. To assure the slice SLA, we design an adaptive
penalization method to incorporate the weighted constraint into
the objective with a dynamic multiplier. As the interdependencies
between consecutive configurations are weakened by large inter-
vals [30, 42], e.g., 1 hour, we adopt Bayesian optimization with
parallel Thompson sampling to search the optimal offline policy
that is utilized to accelerate online learning.

Online policy learning. We propose a novel online learning
algorithm to safely and sample-efficiently learn the optimal online
policy and resolve the sim-to-real discrepancy within real networks.
First, we adopt the sample-efficient Gaussian process as the approx-
imation function, and use it to learn the sim-to-real discrepancy
only, which is simpler than the whole correlation between resource
configurations and slice performances. Second, we design a conser-
vative acquisition function that achieves safe exploration with the
guarantee of Bayesian regret bound. Third, we exploit the offline
simulator to augment online transitions and update the multiplier
for accelerating the online learning progress.

Contributions. To the best of our knowledge, Atlas is the first
online network slicing system that automatically learn to configure
while assuring the slice SLA. The specific contributions of Atlas are
summarized as follows:

141

Qiang Liu, Nakjung Choi and Tao Han

Performance metric | Simulator Real Network
Average Ping Delay 34 ms 34.6 ms
UL Throughput 19.87 Mbps 17.53 Mbps
DL Throughput 32.37 Mbps 31.12 Mbps
UL Packet Error Rate 4.16E-3 9.17E-3
DL Packet Error Rate 2.05E-3 5.15E-3

Table 1: Network performance comparison (10 MHz LTE)

e We design a new parameter searching method (Sec. 4) to auto-
matically search the simulation parameters for offline simulators
to reduce the sim-to-real discrepancy.

e We design a novel offline training algorithm (Sec. 5) to automate
the service configuration of slices in the augmented simulator.

e We design a novel online learning algorithm (Sec. 6) to safely
and sample-efficiently learn the online policy and resolve the
sim-to-real discrepancy within real networks.

e We implement Atlas on an end-to-end network prototype (Sec. 7)
and conduct extensive experiments to evaluate Atlas in terms of
performance assurance and sample-efficiency (Sec. 8).

2 MOTIVATION

In this section, we build a network simulator and a system proto-
type, evaluate the sim-to-real discrepancy in different aspects, and
demonstrate the safety and sample-efficiency in online learning.

Setup. We build a system prototype to achieve end-to-end slic-
ing with a smartphone (OnePlus 9), an eNB (OpenAirInterface [35]
with Ettus USRP frontend), a SDN switch (OpenDayLight [32]), and
a core network (OpenAir-CN [34]). We build a network simulator
by using Network Simulator 3 (NS-3) [10], which includes mobile
users, an eNB in radio access networks, a backhaul link in trans-
port networks, and the EPC core networks. A slice application is
developed in both the system prototype (Android platform) and the
network simulator (emulated traffic). The simulation parameters of
the simulator are matched to that of system prototype, e.g., wireless
spectrum and bandwidth, user-eNB distance, application traffic and
service queue. More implementation details refer to Sec. 7.

Sim-to-Real Discrepancy. We show the sim-to-real discrep-
ancy from three perspectives, i.e., networking performances, and
application performances under different user traffic and resource
configurations. First, we measure networking performances in both
system and simulator in Table 1. As we can observe, the system
achieves slightly lower performances in most metrics, e.g., ping
delay and UL packet error rate (PER). In particular, the UL and DL
throughput of the system is 11.8% and 3.9% lower than that of the
simulator. These discrepancies may be attributed to a variety of
factors, e.g., radio channels and completion of open-source codes.

Second, we measure application performances under different
user traffic. Fig. 2 shows the empirical cumulative probability func-
tion (CDF) of application latency when there is one user in the
network, where the average latency in the system is 25.2% higher
than that in the simulator. Besides, Fig. 3 shows the statistics of
application latency under different user traffic. As we can see, the
discrepancy between the simulator and the system becomes larger,
e.g., mean and variance, when user traffic is increased.

Atlas
1.0 e 800
‘..‘ /- mmm Simulator
08 I / TuE?GOO - System
r o
0.6 = - o
) §/ Zaoo 4L o |
% ot
02 J £ Simulator & 200} o= B
: a [System
0.0 1 —== 0

0 100 200 300 400 500
Latency (ms)

User traffic

Figure 2: End-to-end latency
under one slice user

Third, we measure application performances under different
resource configurations of the slice, e.g., UL bandwidth and CPU.
Here, we use the KL-divergence [20] to evaluate the difference be-
tween the distribution of application latency collected in the system
and simulator. Fig. 4 shows that KL-divergence can be more than
10 under certain resource configurations, which can be interpreted
as the two distributions are significantly different. We notice that
KL-divergence under different traffic and resource configurations
are not the same, which implies uneven sim-to-real discrepancy.

From these measurements, we observe that the sim-to-real dis-
crepancy exists in different aspects, which is non-trivial and uneven.
The sim-to-real discrepancy could compromise the performance of
offline policies in real networks, which needs to be resolved with
different approaches, e.g., online learning.

Safety in Online Learning. We show the performance of two
state-of-the-art online learning solutions, i.e., DLDA and Bayesian
Optimization (BO), in terms of safety and sample efficiency. As
DLDA [42] is originally designed for configuring wireless mesh
networks, we modify its inputs and outputs to manage the service
configuration. Fig. 5 shows the footprint of quality of experience
(QoE?) (see Eq. 6) and resource usage of the slice during online
learning, where the QoE requirement is 0.9. We see that both solu-
tions can find multiple configuration actions that strike the balance
between resource usage and QoE. However, most configuration ac-
tions explored by these solutions fail to meet the QoE requirement,
which needs to be avoided during online learning. Therefore, it is
imperative to design a safe and sample-efficient approach to resolve
the sim-to-real discrepancy via online learning for network slicing.

3 SYSTEM OVERVIEW

The Atlas system includes three integrated stages, i.e., learning-
based simulator, offline training, and online learning.

In the learning-based simulator stage, we use the Bayesian opti-
mization framework to search the optimal simulation parameters
for the simulator for reducing the sim-to-real discrepancy. In par-
ticular, we design a Bayesian neural network (BNN) to approxi-
mate the complex correlation between simulation parameters and
the measured sim-to-real discrepancy. Besides, we design parallel
Thompson sampling (PTS) to balance the exploration and exploita-
tion, where the multiprocessing technique is leveraged to accelerate

To tackle diverse performance metrics of different slices, we define a unified QoE (its
value is between zero and one) to represent the slice performance for fair comparison.

Figure 3: End-to-end latency
under different user traffic

UL BW usage (%)

142

CoNEXT ’22, December 6-9, 2022, Roma, Italy

| R e
g. ’ 0.75 e QoE thresho
o%e
5 7.5 . . xx
3 20.50 %
o s0 © JUB
v\. 0.25 &% e DLDA
' 0% 297
o -2.5 o adi R IVES <« BO
°’-- L 0.001 % X
10 30 50 70 90 20 40 60 80 100

CPU usage (%) Resource usage (%)

Figure 4: Heatmap of
KL-divergence

Figure 5: Footprint of online
learning methods

the searching progress. The obtained optimal simulation parame-
ters under the given real-world time (e.g., 1 hour), will be used in
the augmented simulator in the following stages.

In the offline training stage, we aim to derive the optimal of-
fline configuration policy to configure the cross-domain network
resources to individual slices with the minimum resource usage. To
assure the QoE requirement of slices, we design an adaptive penal-
ization method to incorporate the constraint into the objective with
a dynamic multiplier. As resource configurations are not actually
implemented in real networks in this stage, intermediate violations
of slice SLA are not concerned. Hence, we train the policy based on
the Bayesian optimization framework with the BNN-based approx-
imation function, where the optimistic exploration of PTS helps
to achieve better performance via offline querying the augmented
simulator. The obtained policy, e.g., the trained BNN, will serve as
the start point and offline estimation in the online learning stage.

In the online learning stage, we aim to derive the optimal online
configuration policy that resolves the sim-to-real discrepancy. As
every network configuration is implemented in real networks, the
safety and sample efficiency become the key concerns. Thus, we de-
sign a Gaussian process (which is sample efficient) to approximate
the sim-to-real discrepancy only (which is simpler), rather than
the whole correlation between resource configurations and slice
QoEs. To assure the slice SLA during intermediate explorations,
we design a conservative acquisition function that achieves the
Bayesian regret bound. In addition, we design to update the multi-
plier in the augmented simulator, instead of based on limited online
interactions, which accelerates the convergence of online learning.

4 LEARNING-BASED SIMULATOR STAGE

In this section, we show the design of the learning-based simulator
to offline reduce the sim-to-real discrepancy.

4.1 The Problem

Network simulators. Simulators are developed to mimic the setup
of real networks by exploiting domain knowledge [10, 43], e.g., pro-
tocols, scheduling, and topology. The simulation parameters of the
simulator, e.g., link bandwidth, link delay, and pathloss model, are
determined according to the corresponding specification or mea-
surement in real networks. However, complex network dynamics,
e.g., traffic and mobility, may lead to deviated parameter values and
thus compromise the accuracy of parameters. On the other hand,
abstraction mechanisms of simulators, e.g., block error rate (BLER)

CoNEXT ’22, December 6-9, 2022, Roma, Italy

Stage 1: Learning-based Simulator

Stage 2: Offline Training

Qiang Liu, Nakjung Choi and Tao Han

Stage 3: Online Learning

|
£ BNN Parallel Parallel BNN . Conservative
%% o0 Thompson Thompson (ST Acquisition
58 . r N Process .
JZ & & Sampling Sampling Function
A vy vy T
E T | t t |
g 5 Simulation Parameters Service Configuration QoE QoE Difference Service Configuration
5 B v v | |
2 % g () Simulator — A ted Real Network
I e s O
IS £ A @ E Parameters Simulator 2& % S

Figure 6: The system overview

mapping [17], do not have exact counterparts in real networks,
whose parameters need to be set accurately.

Objective. The objective is to find the optimal simulation param-
eters within the given parameter space to minimize the sim-to-real
discrepancy. We consider there is an online collection D, of slice
performances (e.g., latency) collected from real networks>. Denote
the offline collection D (x) as slice performances generated by the
simulator, which is related to simulation parameters x. To evaluate
the sim-to-real discrepancy, we resort to KL-divergence [20] to
measure the distributional differences between the two collections.
Therefore, we formulate the parameter searching problem as

Py : r{n)gl KL[D||Ds(x)] (1)
st |x—%2 <H @)

where KL is the KL-divergence operator, | - |2 is the /2-norm opera-
tor, and % are the original simulation parameters. Here, we denote
KL[D,||Ds(x)] as the sim-to-real discrepancy and |x — X|2 as the
parameter distance. We introduce threshold H to prevent too large
parameter distance, which assures the explainability of parameters
with respect to original parameters. For instance, the sim-to-real
discrepancy may be reduced to nearly zeros when all the link band-
width are set to 10 times of the original parameter derived from
technical specifications. This situation needs to be avoided, as such
large parameter distance is apparently infeasible in real networks.

Challenges. The challenge of solving the above problem Py
mainly lies in the unknown (i.e., black-box) function KL[D, || Ds (x)]
where there is no closed-form expression for modeling D;(x).
Without the mathematical models, traditional gradient-based meth-
ods [7], e.g., Newton’s method, can hardly be applied. Due to the
high-dim simulation parameters, conventional searching methods
(e.g., exhaustive and grid search) fails in practice, especially under
the non-trivial execution time of simulators. In other words, it is
needed to design an efficient method to solve the above problem
and find the optimal simulation parameters.

4.2 The Solution

We propose an offline parameter searching algorithm based on
the Bayesian optimization framework to automate the parameter
searching. Our method handles high-dim simulation parameters by

3We intend to pose minimal collection efforts for network operators. For example,
online collections may be collected via logging the current performance achieved by
existing deployed methods.

143

using a Bayesian neural network (BNN) as the approximation func-
tion, balances exploitation and exploration via Thompson Sampling,
and accelerates searching progress via parallel queries.

Bayesian Optimization. Bayesian optimization [15] is a state-
of-the-art global optimization framework, which generally consists
of probabilistic surrogate models and acquisition functions. In each
iteration, the surrogate model, e.g., Gaussian process [38], is fitted
with all existing observations to regress the uncertainty of the black-
box function. Then, the selected acquisition function, e.g., expected
improvement (EI) and upper confidence bound (UCB) [8], deter-
mines the utility of different candidate simulation parameters x for
trading off exploration and exploitation. The next simulation param-
eter is selected by maximizing the acquisition function, whose per-
formance is obtained by querying the simulator. Although Gaussian
process (GP) [38] shows promising performance in approximating
various black-box functions, its scalability [22] is concerned due
to its computation complexity O(n®), where n is the dimension of
data collections. To accurately approximate the complex correlation
KL[D,||Ds(x)], we usually need to collect thousands or more col-
lections from the simulator before the convergence of the Bayesian
optimization. The high-volume collections lead to ever-increasing
execution time when fitting the GP model, which motivates us to
explore more scalable approximation functions.

Bayesian Neural Network. We design the approximation func-
tion based on Bayesian neural network (BNN), which is more scal-
able [44] with competitive performances [18], to approximate the
sim-to-real discrepancy (KL[Dy||Ds(x)]). Different from standard
DNNs that generate only mean-value predictions, BNN introduces
stochastic components into neural network architectures, e.g., acti-
vation or weights, to quantify the uncertainty of black-box func-
tions. For instance, all the weights in BNNs may be represented by
probability distributions, rather than having a single fixed value.

The training of BNNs aim to find the maximum a posteriori

(MAP) weights expressed as wMAP = arg max log P(w|Y), where
w

w are the weights of the BNN and Y is the collection of sim-to-real
discrepancy. Based on the Bayes’ rule, the computation of posterior
needs the prior P(w) and likelihood P(Y|w), which turns out to be
impractical for large neural networks. An alternative way is the vari-
ational inference [6], which approximates the complicated posterior
P(w|Y) with a simpler variational approximation, e.g., Gaussian
distribution. Thus, the training of BNNs is accomplished by finding
the parameter 6 on a distribution on the weights q(w]|6) [6] that

Atlas

minimizes the KL-divergence between the true Bayesian posterior
on the weights, i.e.,

0" =argmin KL [g(w|0)[[P(W)] ~ Eg(wio) [og P(YW)]. ()

Although minimizing the above function is computationally prohibi-
tive, Bayes-by-Backprop [6] leverages the trick of re-parameterization
and achieve the approximated loss as

Loss ~ ' logq(w']0) ~ log P(w') ~log P(Y|w), (4)

where w! denotes the Monte Carlo sample drawn from the varia-
tional posterior g(w'|6).

Parallel Thompson Sampling. Provided the BNN-based ap-
proximation function, we examine conventional acquisition func-
tions, e.g., expected improvement (EI) and probability improvement
(PI), and find that the expensive BNN prediction results in time-
consuming maximization of acquisition function [52]. The predic-
tion of BNN is accomplished by Monte Carlo sampling (e.g., tens
of duplicate inferences), where a small number of samples fail to
provide accurate uncertainty estimations.

To this end, we design parallel Thompson sampling (PTS) to
address this issue and balance exploration and exploitation in the
Bayesian optimization. Thompson sampling [9, 40] is a heuristic,
effective and robust method, which samples the approximation
function and selects the next querying point with the maximum
utility. Here, we extend Thompson sampling to work with BNN-
based approximation functions, and achieve parallel offline queries
by leveraging the multiprocessing technique. Our basic idea is to
draw an estimation of the black-box function (i.e., KL[D, || Ds(x)])
by inferring the BNN only once, rather than evaluating the uncer-
tainty via Monte Carlo sampling. To determine the next simulation
parameters, we randomly sample tens of thousands of simulation
parameters in the given parameter space (Eq. 2). After the one-time
BNN inference on these samples, we select the next simulation
parameters with the minimum weighted sim-to-real discrepancy
(see following explanations), and query its actual performance in
the simulator accordingly. Besides, PTS achieves parallel queries by
selecting multiple simulation parameters and uses multiprocessing
techniques to query the simulator simultaneously. With the parallel
queries in PTS, the offline parameter searching can achieve better
and more stable convergence performance (see Fig. 13).

Weighted Sim-to-Real Discrepancy. Although we limit the
parameter space (i.e., Eq. 2), we still prefer to tradeoff the reduc-
tion of sim-to-real discrepancy and the modification of simulation
parameters. For example, we prefer to select the simulation param-
eters with a smaller parameter distance among these candidates
who are with the same sim-to-real discrepancy. Hence, we design
to penalize the objective with a weighted parameter distance, i.e.,
the objective in Eq. 1 is rewritten as KL[D,||Ds(x)] + a|x — X|2
(i.e., weighted discrepancy), where « is a non-negative weighting
factor. The constraint of parameter space (i.e., Eq. 2) remains.

Remark. In this stage, we design the learning-based simula-
tor and propose a new parameter searching method (summarized
in Appendix A) that efficiently finds the optimal simulation pa-
rameters to reduce the sim-to-real discrepancy. The augmented
simulator (with the optimal simulation parameters) serves as the
offline environment for policy training in the following stages.

144

CoNEXT ’22, December 6-9, 2022, Roma, Italy

5 OFFLINE TRAINING STAGE

In this section, we present the design of network configuration
policy via offline training in the augmented simulator.

5.1 The Problem

Network slicing. Consider a mobile network operator aims to
support a new slice requested by a slice tenant*, where the slice
requires multiple dedicated virtual network resources in different
technical domains, e.g., RAN, TN, and edge computing. The slice
tenant makes a service-level agreement (SLA) with the network op-
erator, where the SLA defines several key requirements of its service
performance, e.g., latency, reliability and availability. We consider
the network can be discretely configured in a time-slotted man-
ner [30], e.g., every hour. As large configuration intervals weaken
the temporal dependencies among consecutive configurations, the
slice performances are mainly dependent on the current configura-
tions [42]. The network operator can obtain network states (e.g.,
user traffic) and service performance of the slice at the beginning
and end of each configuration interval, respectively.

Objective. We aim to derive the optimal offline policy that mini-
mizes the network resource usage under the performance constraint
of the slice by dynamically configuring the slice’s resources. De-
note a; as the network configuration of the slice at the time ¢ (e.g.,
UL and DL bandwidth), s; as the network state (e.g., traffic), and
y(ar|s;) as the service performance, where y(-) is the unknown
performance function. Therefore, we formulate the network con-
figuration problem at the time t as follow

P;: mq%n F(¢) (5)
s.t. Pr(y¢(at|st) >Y) > E, (6)
0<a; <A, ()

where ¢ is the policy and A is the maximum allowable configura-
tions, e.g., total bandwidth. The resource usage function F(¢) =
la;/Al1, where | - |1 is [1-norm, is developed to combine different
kinds of resources, without loss of generality. The constraints [41]
in Eq. 6 assure that the service performance of slices are better than
the predefined threshold Y with a higher probability E € [0, 1].

Quality of Experience. We denote Qs(¢) = Pr(yg(asls¢) > Y)
as the QoE of the slice obtained in the augmented simulator. Hence,
the slice SLA is assured only if its requirement E is satisfied in Eq. 6.

Challenges. The challenges of resolving the above problem
P; lie in two aspects. First, the QoE function Qg(¢) is unknown,
where offline service performance of slices can only be obtained by
executing the simulator. Second, the QoE requirement needs to be
maintained under different states s;, where the weighting method
with fixed weights fails to achieve this constraint.

5.2 The Solution

We propose an offline network configuration algorithm to auto-
matically learn to configure while assuring the slice SLA. First,
we design to adaptively incorporate the constraint into the objec-
tive based on the Lagrangian primal-dual method [7]. Second, we
leverage the Bayesian optimization framework to solve the relaxed

4Atlas focuses on service configuration of individual slices, and can be extended to
multiple slices scenarios because of the performance and functional isolation.

CoNEXT ’22, December 6-9, 2022, Roma, Italy

problem, where BNN is used to approximate the unknown QoE
function and parallel Thompson sampling is also exploited.
Adaptive Penalization Method. The idea is to convert the con-
strained problem P; into an unconstrained problem, by adaptively
penalizing the objective with the weighted constraint. To use the
Lagrangian primal-dual method, we first build Lagrangian [7] as

L(ar, 1) = F(¢$) = MQs(4) - E), ®

where A is the multiplier. Then, the problem is resolved by alterna-
tively solving the primal problem written as a; = argmin L(az, 1),
a

and the dual problem 1* = arg r)Lnin L(ag, A). The dual problem is
>0
solved by updating the multiplier with sub-gradient descent [7] as

A=[1-e(Qs(¢) - B)]", ©)

where [x]* = max(x, 0) and ¢ is a positive step size. In this method,
the multiplier A is increased if the slice SLA is violated, which guides
the optimization in the next round.

Learn to Configure. To tackle the unknown QoE function in the
primal problem, we leverage the Bayesian optimization framework
to obtain the optimal offline configuration policy. In particular, a
BNN is created to approximate the unknown QoE function Qs (¢),
where its inputs include the network state s;, threshold Y and
network configuration a;. The exploitation and exploration are
balanced with Thompson sampling, where parallel querying applies
to accelerate the convergence.

Remark. In this stage, we design the offline network configura-
tion algorithm (summarized in Appendix B) that derives the optimal
offline policy to automatically learn to configure while assuring the
slice SLA. The derived offline policy serves multiple purposes in
the online learning stage, e.g., start point and offline acceleration.

6 ONLINE LEARNING STAGE

In this section, we present the design of network configuration
policy via online learning to resolve the sim-to-real discrepancy.

6.1 The Problem

The objective is to obtain the optimal policy to minimize resource
usage while meeting the slice SLA, which is the same as that in
the offline training stage. The key difference is that, instead of
interacting with the simulator, network configurations are queried
directly to real networks in this stage. As a result, the policy safety
(i.e., maintaining the slice SLA for every network configuration)
and sample efficiency (i.e., the number of needed online transitions
for convergence) become two critical considerations. For example,
any unsatisfied QoEs in this stage are actually applied to actual slice
users, and thus result in SLA violations in real networks. Besides, the
algorithm is highly desired to be sample efficient in real networks,
e.g., 1K transitions need more than 40 days to collect when the
configuration interval is 1 hour. To evaluate the policy safety, we

()

define the regret function with respect to the resource usage g,,"

and slice QoE g,(lp) at the nth iteration as

g =) [F@) = F(g)]. (10)
o =30 [maxg) - 0@h0)]. ay

145

Qiang Liu, Nakjung Choi and Tao Han

where ¢* is the optimal policy, ¢/ is the policy at the jth iteration,
and Q(¢) is the slice QoE in real networks.

6.2 The Solution

We propose an online network configuration algorithm to con-
tinue learn to configure during the online learning stage, which
achieves safe exploration and sample efficient approximation func-
tion. Specifically, we design the algorithm with an efficient Gaussian
process model for regressing the sim-to-real performance difference,
a conservative acquisition function with a Bayesian regret bound,
and a offline acceleration method by using the offline simulator.

Learn Sim-to-Real Discrepancy. Gaussian process (GP) is
a widely-adopted and generic model for function approximation,
which constructs probabilistic models with a variety of kernel func-
tions to regress given data collections. It is much more powerful
than traditional parametric models, e.g., linear regression, and more
sample efficient than deep neural networks (DNNs) [38].

Hence, we propose to create a GP model® to approximate the
sim-to-real performance difference only, i.e., the gap of slice QoE
between the simulator and real networks. This is based on two
observations. First, a GP model is insufficient to approximate the
complicated QoE function of the slice as a whole (see Fig. 20 and
Fig. 21). Second, the sim-to-real performance difference is easier to
be learned, provided that the BNN-based approximation function
in the offline training stage has been trained extensively in the
augmented simulator. By using a GP model to approximate the
sim-to-real performance difference, the slice QoE function in real
networks is written as

Q) = 0s(9) +G(¥), (12)

where Qs (¢) is the slice QoE obtained in the simulator, and G()
is the QoE difference learned by the GP model (denoted by).

Conservative Exploration. Existing acquisition functions (e.g.,
Eland PI) and Thompson sampling practically cause over-exploration
and lead to intermediate SLA violations (see Fig. 22). Gaussian
process upper confidence bound (GP-UCB) [45], as an acquisition
function, achieves a sub-linear regret bound with strong theoretical
convergence guarantees by using a hyperparameter f; to balance
exploration and exploitation. However, the hyperparameter is se-
lected to be large to meet the regret bound requirement, which
usually leads to excessive violations of slice SLAs during the online
learning stage.

To this end, we propose a clipped randomized GP-UCB (cRGP-
UCB) [5] as the acquisition function to assure conservative explo-
ration while guaranteeing the Bayesian regret bound. Specifically,
cRGP-UCB evaluates the utility of configurations via pi;(a;) + \/E .
ot(as), where pi;(+) and o4 (-) is the mean and standard deviation
function, respectively. Note that y; () and o;(-) are estimated by
using both offline BNN and online GP model (Eq. 12). The hyper-
parameter f; is sampled from a distribution, instead of calculating
to be fixed in GP-UCB, at each iteration. The hyperparameter is
obtained by f; =T (k¢, p), where T is the Gamma distribution, and

Kkt = log ((n2+1)/@)/log(l+p/2), (13)

5The total number of online transitions is limited to hundreds, which alleviates the
concern of GP scalability.

Atlas

and p is a scaling parameter. The distributional hyperparameter f;
allows greater freedom to select smaller f;, as compared to GP-UCB,
which contributes to maintaining the Bayesian regret bounds®. As
the sampled hyperparameter still can reach up to hundreds, we
clip the hyperparameter for conservative exploration in practice.
In other words, the actual f; is expressed as f; = clip(f;, 0, B),
where B is the upper bound of hyperparameter. Here, both p and
B can be adjusted by individual slice tenants to tradeoff potential
performance improvements and possible risks of SLA violations.
Offline Acceleration. To maintain the slice SLA, we use the
adaptive penalization method (see Sec.5.2) to dynamically penalize
the objective in Eq. 5 for both the offline training and online learning
stage. In online learning, the Lagrangian in Eq. 8 is rewritten as

L(a,) = F(¢) = A(Qs(9) + G(¥) - E). (14)

In the offline training stage, its low convergence rate [7] is hidden
by using parallel queries to collect multiple slice QoEs under dif-
ferent network configurations in simulators. In the online learning
stage, however, the single query in real networks causes insufficient
updates on the multiplier A. As a result, inappropriate multipliers
usually lead to changing resource usage and frequent violations
of slice SLA, e.g., too small multipliers may fail to penalize the
objective for assuring the slice SLA.

To this end, we propose to exploit the augmented simulator to
update the multiplier for accelerating the convergence of online
algorithm in the online learning stage. Our basic idea is to update
the multiplier multiple times by estimating the slice QoE with Eq. 12,
where the Qg(¢) is obtained in the augmented simulator and G (/)
is predicted by the current online GP model ¢. Hence, the update
of multiplier in Eq. 9 is rewritten as

A=[1-e(Qs(9) +G(y) —E)*. (15)

In other words, the slice QoE obtained from real networks serves
more to regress the GP model ¢. As more online transitions are
collected, a more accurate GP model can be achieved, which helps
to estimate actual sim-to-real performance differences.

Remark. In this stage, we design the online algorithm (sum-
marized in Appendix C) that derives the optimal online policy to
resolve the sim-to-real discrepancy via online learning with real
networks. The policy is composed of two models, i.e., the offline
BNN ¢ learns offline estimation of slice QoE Qs(¢) and online GP
¥ learns only sim-to-real discrepancy G(¢).

7 SYSTEM IMPLEMENTATION

In this section, we present implementation of end-to-end slicing
prototype (Fig. 7), network simulator and algorithms.

7.1 The System

RAN. We implement the radio access network based on OpenAir-
Interface (OAI) [35] with 4G LTE. The eNB operates at band 7 with
10MHz radio bandwidth, i.e., 50 physical resource blocks (PRBs).
The RAN is hosted in an Intel i7 desktop with a low-latency kernel
of Ubuntu 18.04, which connects an Ettus USRP B210 as the RF
front-end. The distance between the eNB antenna and stationary

The detailed description of Bayesian regret bounds can be found in [5, 45].

146

CoNEXT ’22, December 6-9, 2022, Roma, Italy

Figure 7: Overview of system prototype

smartphone is 1 meter. To enable the network slicing capability, we
develop the radio domain manager with FlexRAN support [13].

UEs. We use a OnePlus 9 5G smartphone (Qualcomm Snap-
dragon 888 and Android 11) as the user to connect with the eNB.
We develop an Android application’ for the smartphone, which con-
tinuously sends frames (540p) to the edge server in CN. The server
processes the frame with a feature extraction algorithm (ORB [39])
and then feeds the results back. We limit the number of on-the-fly
frames (i.e., the frames with no results back yet) for the purpose of
congestion control. The performance metric of this application is
end-to-end latency. To emulate varying user traffic, we control the
number of on-the-fly frames, e.g., we may set it as four to emulate
the traffic from four users.

TN. We implement the transport network based on OpenDay-
Light (ODL) [32] with OpenFlow 1.3. We use a Ruckus ICX 7150-
C12P as the SDN switch to connect the eNB and CN, where each
port has 1Gbps capacity. To enable the network slicing capability,
we develop the transport domain manager by dynamically modify-
ing the link bandwidth with meters API in OpenFlow protocol [31].

CN. We implement the core network based on OpenAir-CN [34]
with the control and data plane separation architecture (CUPS). The
network functions, e.g., HSS, MME, SPGW-C, and SPGW-U, are
deployed with Docker containers. To enable the network slicing
capability, we develop the core domain manager by mapping users’
destination SPGW-U to that of slices. Thus, each slice has an isolated
SPGW-U container, while the other network functions are shared.

EN. We implement the edge computing network based on Docker
container [33], which virtualizes the computing resources and pro-
vides isolation for edge servers. For the sake of simplicity, we co-
locate the edge server of slices with their SPGW-U containers. The
edge server serves the slice users, where the performances can be re-
trieved with a minimum 60-second interval via the developed REST
API. Besides, we develop the edge domain manager to dynamically
manage the CPU ratio of edge servers, via docker update.

Configuration Space. We develop 6-dim network configuration
actions in both RAN, TN and EN in the prototype, see Table 2.

7 Atlas makes no prior assumptions on the performance metric of slices and is compat-
ible with other applications.

CoNEXT ’22, December 6-9, 2022, Roma, Italy

Configuration
bandwidth_ul
bandwidth_dl
mcs_offset_ul
mcs_offset_dl
backhaul bw

cpu_ratio

Meaning
maximum uplink PRBs
maximum downlink PRBs [0, 50]
uplink MCS offset [24] [0, 10]
downlink MCS offset [24] [0, 10]
transport bandwidth (Mbps) | [0, 100]
CPU ratio of docker [0, 1.0]

Table 2: Network configuration space

Parameters Meaning
base loss in pathloss model (dBm)
noise by non-ideal transceivers (dBm)
noise by non-ideal transceivers (dBm)
additional transport bandwidth (Mbps)
additional transport delay (ms)
additional server compute time (ms)

additional loading time in UE (ms)

baseline_loss
enb_noise_figure
ue_noise_figure
backhaul bw
backhaul delay
compute_time
loading time

Table 3: Simulation parameter space

7.2 The Simulator

The network simulator is developed based on Network Simula-
tor 3 (NS-3) [10], which is an extensively adopted platform and
capable of conducting various network simulations. We develop
7-dim simulation parameters in the NS-3 simulator, see Table 3.
The cellular network is developed based on the LENA project with
4G LTE, where we adopt the LogDistancePropagationLossModel
pathloss model and no fading model. The transport network is sim-
ulated by a p2p link, whose bandwidth and delay are matched to
experimental measurements in the prototype. We develop the edge
computing module to allow queue-based computing simulation
(matched to the prototype), where the computing delay is sampled
from the experimental collections (81ms mean and 35ms std). The
Android application is also replicated in NS-3, which matches the
traffic pattern and uplink transmission size (28.8kb mean and 9.9kb
std). All other settings are thoughtfully examined and configured
to match that in the prototype, e.g., MAC scheduler algorithm, an-
tenna type and gain, frequency band, and distance between eNB
and smartphones. The simulation results are obtained by reading
the tracer including not only end-to-end latency of every frame,
but also transmission and computing details, e.g., queuing time,
computing time, and uplink and downlink transmission time.

7.3 The Algorithm

We develop BNNs with PyTorch 1.5, where neural networks use
4-layer fully connected layers, i.e., 128x256x256x128, with ReLU
activation functions [16]. We adopt the Adadelta optimizer with
the initial learning rate of 1.0, where the learning rate is decayed by
using the StepLR scheduler with gamma 0.999 and batch size 128.
We develop the GP model using sklearn toolkit [37] with the
GaussianProcessRegressor module. We adopt the Matern kernel with
v = 2.5, which is a generalization of the radial-basis function (RBF)
kernel. Besides, target values are normalized by removing the mean
and scaling to unit-variance for better regression performance.

147

Qiang Liu, Nakjung Choi and Tao Han

To evaluate the computation complexity of Atlas, we use the
cProfile tool in a desktop with AMD Ryzen 5 3600 and 32G DDR4
RAM. In learning-based simulator stage, we obtain the computation
time of 22.27s with 214201 calls per iteration, and 0.4GB memory
usage. In the offline training stage, we obtain the computation time
of 27.23s with 211665 calls per iteration, and 0.5GB memory usage.
In the online learning stage, we obtain the computation time of
16.99s with 357292 calls per iteration, and 1.1GB memory usage.

8 PERFORMANCE EVALUATION

In this section, we conduct extensive network simulations and
experiments to evaluate the performance of Atlas. The step size of
dual problem updates in Eq. 15 is ¢ = 0.1. The scaling factor p is
0.1 [5] and the clipping value B is 10 to prevent too large exploration.
We determine the fixed weight « is 7 to balance the reduction of
sim-to-real discrepancy and the parameter distance. The application
related parameters, i.e., E = 0.9, and Y = 300ms, are set according
to capability of the prototype, e.g., RAN throughput. The number
of offline and online iterations is 1000 and 100, respectively. The
simulation and experimental time of each network configuration
are 60 seconds, for collecting statistical performance. We compare
Atlas with the following solutions.

o Baseline. The baseline uses the Bayesian optimization with GP
model and expected improvement (EI) acquisition function to
online learn in real networks directly.

e DLDA. The DLDA [42] is a state-of-the-art online learning solu-
tion, which transfers the offline knowledge from a teacher model
to the student model via interacting with real networks. As DLDA
is designed to improve the prediction accuracy, we modify it to
choose the configuration with minimum resource usage while
meeting the QoFE requirement. This is completed by randomly
sampling 10K configurations® from the configuration space.

e VirtualEdge. The VirtualEdge [26] uses a GP model to online
learn the unknown slice QoE function, and relies on a predictive
gradient descent method to update the current configuration
under accumulative online interactions.

8.1 Learning-based Simulator

In the learning-based simulator stage, we focus on the metric of
sim-to-real discrepancy under given number of iterations.

Searching Progress. Fig. 8 shows the searching progress of dif-
ferent methods, where the first 100 iterations are purely exploration.
The average weighted discrepancy is calculated by averaging the
weighted sim-to-real discrepancy in each iteration. Our method
finds better simulation parameters, which reduce 24.5% average
weighted discrepancy than that of the GP-based approach. In the
experiments, conducting a 60-second simulation in NS-3 consumes
average 27.8 seconds real-world time®.

Table 4 shows the details of best simulation parameters obtained
by different methods, where the order of simulation parameters
refers to Table. 3. The original simulator uses the default simulation

8As the dimensional of the configuration space is six, we believe 10K samples are
sufficient to seek the optimal action under controlled accuracy.

9Leveraging the multiprocessing technique, parallel querying of NS-3 with 16 processes
achieves nearly the same real-world time with single query.

Atlas CoNEXT ’22, December 6-9, 2022, Roma, Italy
Methods Sim-to-Real Discrepancy | Parameter distance Best simulation parameters
Original Simulator 1.38 0 [38.57, 5.0, 9.0, 0.0, 0.0, 0.0, 0.0]
Aug. Simulator, GP 0.31 0.16 [38.57, 1.44, 7.48, 5.07, 9.23, 6.02, 6.47]
Aug. Simulator, Ours 0.26 0.12 [38.76, 0.68, 8.93, 5.03, 8.93, 2.16, 3.10]
Table 4: Details of offline learning-based simulator
g ; ; 1.0 - o n
E I l % GP, Best ﬁ"'::/_‘_'_'_ § E 400
@'4 I||I | | Y& Ours, Best | 0.8 & %2-0 g
! ; i 7 < =
2 i 5 : 215 .
s, L w 0.6 t.‘. 2 o
Q] : @) I = =
% ‘ ‘ 0.4 i’.rl [Simulator, GP o 1.0 5
g2 0.24 !..:'I S.ystem) $ 0.5 g
o % ...t Simulator, Ours ¢ g
<1 i i n 0.0 ©
0 100 200 300 400 500 200 400 600 1 3 5 7 10random - 0 1 2

Number of iterations Latency (ms)

Figure 8: Searching progress Figure 9: CDF of latency under

under different methods different methods

parameters, where ReferenceLoss is 38.57 in the LogDistancePropa-
gationLossModel pathloss model in NS-3, and the UE and eNB noise
figure are 9.0 and 5.0, respectively. As a result, the original simulator
has zero parameter distance, while gets 1.38 sim-to-real discrep-
ancy. The GP-based method obtains 0.31 sim-to-real discrepancy
under 0.16 parameter distance, with heavily increased loading_time,
backhaul_bw and compute_time. In contrast, our method achieves
0.26 sim-to-real discrepancy (i.e., 81.2% reduction than original sim-
ulator) with 0.12 parameter distance. As we calculate the parameter
distance with L-2 norm, the actual parameter difference is even
smaller, which helps to maintain the explainability of simulation pa-
rameters. Fig. 9 shows the cumulative probability of latency under
the best simulation parameters obtained by different methods. We
can see that the CDF achieved by the GP-based approach has a long
tail, which is worse than that of our method. As compared to the
CDF of original simulator (see Fig. 2), the sim-to-real discrepancy
is substantially reduced with the learning-based simulator.
Network Dynamics. Fig. 10 shows the sim-to-real discrepancy
obtained under different user mobility. In general, we see the sim-
to-real discrepancy increases under a larger line-of-sight distance
between the user and the base station. This may be attributed to the
disparity of the radio channel model, where the pathloss model in
the simulator fails to represent the real channel dynamics in experi-
ments, especially under random walk scenarios. Besides, to evaluate
the end-to-end performance isolation among network slices, we
dynamically attach new users, generate traffic (i.e., YouTube), and
detach the users. Fig. 11 shows that the latency performance of
the slice is very stable no matter how many extra users are in the
network. This is attributed to the performance isolation achieved
in both RAN, TN, CN, and EN in the developed system prototype.
Pareto Boundary. Fig. 12 shows the Pareto boundary achieved
by our method via varying the weight a. Provided that the sim-to-
real discrepancy is 0.26 when « = 7, it can be further reduced to 0.21
at the cost of more than 0.2 parameter distance. On the other hand,
given the maximum 0.1 parameter distance, the lowest sim-to-real

148

User-BS Distance Number of extra users

Figure 10: Sim-to-real
discrepancy under user
mobility

Figure 11: Slice latency under
extra mobile users

discrepancy can reach 0.4, which still achieves a 71.0% reduction
as compared to that of the original simulator. Besides, our method
allows the customized weight to balance sim-to-real discrepancy
and the parameter distance.

Parallel Queries. Fig. 13 shows the searching progress of our
method under different number of parallel queries. When the num-
ber of parallel queries is only one, i.e., single query per iteration,
the average discrepancy curve is similar to that of the GP-based
method (see Fig. 8). As the number of parallel queries increases,
our method can achieve lower discrepancy, which suggests the
necessity of parallel queries for Thompson sampling to train BNNs.

Discrepancy Reduction. Fig. 14 shows the sim-to-real discrep-
ancy achieved by our method under different user traffic. Here,
we emulate a maximum of four mobile users in the slice, due to
the limitation of hardware capability and software stability, e.g.,
constrained uplink throughput, in the system prototype. Note that,
the optimal simulation parameters are derived only based on the
user traffic 1, and apply to the learning-based simulator for all user
traffic simulations. With the simulation parameters in Table 4, the
sim-to-real discrepancy is reduced to 81.2%, 56.7%, 43.6%, and 61.6%
under the user traffic 1, 2, 3, and 4, respectively. This result suggests
that the sim-to-real discrepancy may share some common patterns
under different scenarios. Fig. 15 shows that the sim-to-real dis-
crepancy is reduced substantially (79.3% in average) for almost all
the resources. Another interpretation of these figures is that, the
sim-to-real discrepancy is not identical and not even under differ-
ent scenarios. As it is impractical to have online collections under
all possible scenarios, the sim-to-real discrepancy will still exist
between the augmented simulator and real networks.

8.2 Offline Training

In the offline training stage, we evaluate the achieved resource
usage and slice QoE of the policy under given number of iterations.

Training Progress. Fig. 16 shows the training progress of our
method, including the average resource usage and QoE, where the

CoNEXT ’22, December 6-9, 2022, Roma, Italy

Qiang Liu, Nakjung Choi and Tao Han

5 >
p 9
$0.30 > — Parallel=1 § 10.0{ M Orig. simulator [=3 @
S €4 \ —— Parallel=2 S - 0 S5 0.8
£ 0.25 Better g —— Parallel=4 g A | 0@
5 o —— Parallel=8 i) 2
8 0.20 = 33 ~ poraliel=16| O 82 _ 0.6
[s R E NN > o4
5015 %2 g2s, M BN =2
£ 0.10 A 1 £ °8 W 97 -0.2
: 1 bt @
0.3 0.4 0 100 200 300 400 500 2 3 10 30 50 70 90

Sim-to-real discrepancy Number of iterations
Figure 12: Pareto boundary of

augmented simulator with parallel queries

Figure 13: Searching progress

reduction under user traffic

User traffic

CPU usage (%)

Figure 14: Discrepancy Figure 15: Discrepancy

reduction (1.0 means 100%)
under resources

S 1o 1000 DLDA 1.0 g
SCUE - - log 0975 g
g ' u 0.8 v
g 06" 10950 w B
£ 40 655 GPucs | Sogl s
o ~p_ .

8 1o 4< 0.925 ocp-el GP-P! i
220 0.900 ®0urs 041/ g

0 500 1000 10 20 30 40 50 15 20 25 30 300 400 500

Number of iterations Resource Usage (%)
Figure 16: Training progress of Figure 17: Performance of
our method different methods

first 100 iterations are purely exploration. We observe that resource
usage is gradually decreased when the average QoE is above the
requirement (E = 0.9), e.g., between the iteration 300 to 500. Then,
both the average QoE and resource usage converge, where the
found optimal policy achieves stable average performance and the
oscillations are mainly from Thompson sampling. The total real-
world time consumption for 1000 iterations is 7.72 hours, given the
average of 27.8 seconds for NS-3 simulations.

Performance Comparison. Fig. 17 depicts the QoE and re-
source usage under the best network configuration policy obtained
by different methods. We see that our method achieves the best per-
formance, where the QoE is 0.905 and the resource usage is 19.81%.
When user traffic is 1, the best configuration actions are 9 and 3
uplink and downlink PRBs, 6.2 Mbps backhaul bandwidth and 0.8
CPU ratio at the edge server, where the uplink and downlink MCS
offsets are zeros. In contrast, DLDA achieves 0.98 QoE at the cost
of 26.87% resource usage, which fails to balance the QoE and the
resource usage. The other GP-based methods, e.g., GP-EI and GP-PI,
maintain more than 0.92 QoE while using up to 37.62% resources.

Pareto Boundary. Fig. 18 shows the Pareto boundary of differ-
ent methods, which are obtained by varying the QoE requirement
E. It can be seen that our method outperforms the other methods,
in both QoE requirement and resource usage, where the slice SLAs
on these curves are met. For training the DLDA, we collect the
offline dataset with 4096 configuration actions'® by grid searching
the configuration space (Eq. 7), where each dimension is with 4
different values (i.e., [0.0, 0.3, 0.6, 0.9]). We notice that DLDA has a
huge leap of QoE from 0.33 to 0.89, which may be attributed to the

10We collect the slice performances in 60 seconds for each configuration action, which
consumes approximately 68.5 hours in total.

149

Avg. resource usage (%) Threshold (ms)
Figure 18: Pareto boundary Figure 19: Average usage under
under different availability different thresholds

coarse-grained dataset and implies that the grid searching method
fails in handling high-dimensional action spaces.

Slice Requirement. Fig. 19 shows the achieved performance by
our method and DLDA under different latency thresholds Y. Our
method obtains lower resource usage under all the scenarios with
satisfied thresholds. Besides, we see that the difference in resource
usage between our method and DLDA shrinks when the threshold
increases. This is because we set a minimum of 6 uplink and 3
downlink PRBs for maintaining radio connectivities of users, where
these resources may be sufficient to satisfy the loosen thresholds.

8.3 Online Learning

In the online learning stage, we evaluate the regret of resource
usage and slice QoE under given number of iterations.

Training Progress. Fig. 20 and Fig. 21 show average resource
usage and slice QoE achieved during 100 online interactions, re-
spectively. The very first online configuration action is the optimal
one obtained in the offline learning stage, if applicable, for all meth-
ods. Recall that our method achieved 0.905 QoE in the augmented
simulator (see Fig. 17), it turns out to be 0.65 QoE in real networks,
which implies the noticeable sim-to-real discrepancy.

We see our method searches for the optimal online policy under
40% resource usage, while the resulted slice QoEs are around the
requirement (E = 0.9). As compared to other methods in Table 5, our
method achieves the lowest regret for both average resource usage
(63.9% reduction than DLDA) and slice QoE (85.7% reduction than
DLDA) in 100 iterations. In other words, our method uses only 3.16%
more resource usage and obtains 0.077 less slice QoE on average, as
compared to the best policy in 100 iterations. This result validates
the efficacy of our method in terms of policy safety and sample

Atlas

[y
o
o

CoNEXT ’22, December 6-9, 2022, Roma, Italy

S T 1.00] 1.00 T T :) :
S 3?;e|,TEZ 3 03" :’ ” 08 ¢ No Offline Acc.
-=- VirtualEdge . = i
g 80y~ e \ 0.75 1 075 B " 50.6 ¢ BNN-Cont'd
o w " Pl w m BN
%; 0.50 o = iy s 8 0.50 ., R 8 0.4 ® Ours
o -
0 o - o))
¢ MY 0.2 I 0.25 Hat s = GP-UCB o2
5 20 3 R | B ?&o“’. « Ours Lot []
E L 0.00 ‘ 0.00{ & Tt e — : etter ® ¢
0 20 40 60 80 100 0 25 50 75 100 20 40 60 80 100 -5 0 5

Number of iterations Number of iterations

Figure 20: Avg. usage under

Figure 21: Avg. QoE under

Resource usage (%) Avg. usage regret (%)

Figure 22: Our method with Figure 23: Our method with

different methods different methods different acquisition functions different online models
1.00 = 9
S 0.6 EmE Ours =404 B B Ours
£0.6 o
0.75 @ = DLDA g w DLDA
= . o304 .)
w ° ; 50_4, ,,,,,,,,,,,,,,,,,,,,,,,,,,,, BN VirtualEdge @ 30 I VirtualEdge
8 0.50 + Nostage 3 | Il Baseline g0 Il Baseline
¢ Nostage2 (§ N " B e e
0.25 = Nostagel dO. > 10
‘tlatee v o Ours z 2
0-00""m """"" ; — 1% 0.0l < o
20 30 40

Resource usage (%)

Figure 24: Impact of individual
components in our method

Methods Avg. usage | Avg. QoE Oﬁ"li'ne
regret (%) | regret queries

Baseline 35.83 0.31 0

VirtualEdge | 16.06 0.34 0

DLDA 8.79 0.54 0

Ours 3.17 0.077 20x100

Table 5: Details of online learning under different methods

efficiency. Although our method needs N = 20 offline queries with
the augmented simulator after each online action, it does not affect
and delay the behavior of online network configuration, especially
when configuration intervals are usually tens of minutes or even
hours in real networks [30, 42].

Acquisition Function. Fig. 22 shows the footprint of our method
under different acquisition functions, which is obtained by scatter-
ing the achieved resource usage and slice QoE in each iteration. Our
proposed conservative acquisition function (Eq. 13) outperforms
classic acquisition functions, which explores configuration actions
with lower resource usages while approximating the slice QoE
requirement. Also, we see that GP-UCB has nearly comparative
performance, which usually uses more network resources to satisfy
the slice QoE requirement. As the only difference is acquisition
function, this result justifies the safe exploration of Atlas.

Approximation Function. Fig. 23 shows the performance of
our method under different approximation functions, e.g., BNN and
GP. When using BNN to approximate the sim-to-real performance
difference (G(¢) in Eq. 12), we see the regret of resource usage and

User traffic

Figure 25: Avg. QoE regret under
different user traffic

User traffic

Figure 26: Avg. usage regret under
different user traffic

slice QoE is increased by 107.6% and 96.5%, respectively. This can
be attributed to the poor sample efficiency of BNN, as 100 online
collections are insufficient to train the BNN. Alternatively, if we use
the offline trained BNN to continue learning in the online learning
stage (i.e., BNN-Cont’d), we see the average QoE regret soared.
Besides, if we do not exploit the offline acceleration, we observe
average usage regret is increased by 63.5% consequently.

Individual Components. Fig. 24 shows the footprint of our
method when individual stages are absent. When there is no online
learning stage, we see the resource usage keep constant while the
QoE is around 0.65, where the sim-to-real discrepancy remains.
When there is no offline training stage, all the policies have to be
learned via directly interacting with real networks. As a result, it is
no surprise that the early-stage performance is poor, which justifies
the importance of offline training. Without the learning-based sim-
ulator, the QoFE performance is worsen due to the large sim-to-real
discrepancy between original simulator and real networks.

Dynamic Traffic. Fig. 25 and Fig. 26 show the average slice
QoE and resource usage under different user traffic, where the
latency threshold Y = 500ms. We see our method achieves the
lowest regret of both resource usage and slice QoE for almost all
user traffic. Although DLDA has a slightly lower regret of average
resource usage when user traffic is 4, its average QoE regret is much
higher than that of ours.

9 RELATED WORK

Network Slicing. Network slicing systems have been increasingly
studied to support heterogeneous applications in terms of flexibility
and cost-efficiency [4, 11, 13, 26, 41]. Foukas et. al. [12] designed

150

CoNEXT ’22, December 6-9, 2022, Roma, Italy

Orion as the first RAN slicing system based on FlexRAN [13], which
enables on-the-fly RAN virtualization with both performance and
functional isolation. Marqueze et. al. [30] empirically demonstrated
that dynamic resource orchestration improves the efficiency of re-
source multiplexing in RAN. Liu et. al. [26] proposed VirtualEdge
that automatically learns to orchestrate cross-domain resources for
maximizing the performance of slices. Salvat et. al. [41] proposed
to multiplex network resources via overbooking for concurrently
supporting multiple slices with two new resource provisioning al-
gorithms. D’Oro et. al. [11] proposed SI-EDGE that enables joint
network-edge slicing, where near-optimal algorithms are designed
to instantiate slices under constrained resources in edge nodes.
These works, however, mainly focused on network slicing in indi-
vidual domains with known slice resource demands, which do not
apply to network configuration in end-to-end slicing systems.

Machine learning for Networking: Recent advances in ma-
chine learning techniques provoke the interest in applying ML in
handling complex networking problems [1, 21, 23, 50, 53]. Micro-
scope [54] introduced an ML-based decomposition method to effi-
ciently estimate the service demand of slices, which deals with com-
plex spatiotemporal features in aggregated traffic. EdgeSlice [27]
handled the multi-user and multi-domain resource orchestration
problems by using a decentralized deep reinforcement learning
(DRL) algorithm for network slicing. The constrained resource allo-
cation problems are studied in network slicing [19, 27], where differ-
ent techniques, e.g., reward shaping and interior-point method [28],
are utilized to maintain the performance requirement of slices.
These works, however, primarily focused on the offline training
and online deployment strategy, which suffer the sim-to-real dis-
crepancy when applying offline policies to real networks.

Sim-to-Real Discrepancy. The sim-to-real discrepancy has
been increasingly unveiled for online system design. Mao et. al. [29]
identified the non-negligible performance difference between the
high-fidelity simulator and real data center networks under the iden-
tical policy. OnRL [55] is proposed to address the sim-to-real dis-
crepancy in real-time mobile video telephony, via online DRL within
real networks, where an individualized hybrid learning method is
designed to counter the potential performance degradation. OnSlic-
ing [24] resolved the cross-domain resource orchestration problem
in online network slicing by designing a proactive baseline switch-
ing mechanism for near-zero SLA violations. These works focus on
time-correlated problems with small time scales (e.g., seconds or
minutes) and unfortunately fail in network configuration problems
with large time scales. Shi et. al. [42] designed a transfer learning
DNN-based algorithm to bridge the sim-to-real gap by using both
offline and online datasets (obtained by grid searching), which fails
in terms of performance assurance and sample efficiency.

10 DISCUSSION

In this section, we discuss the scalability, adaptability and general-
izability of the proposed Atlas system.

Scalability. As Atlas tackles the service configuration of individ-
ual network slices, it can seamlessly accommodate dynamic slice
admission and removal. When a new slice is admitted and launched,
an individualized Atlas will be initialized to build its learning-based
simulator, offline train the policy, and online learn to configure

151

Qiang Liu, Nakjung Choi and Tao Han

continually. As there are infrastructure changes, e.g., installing
more antennas and higher bandwidth switches, the corresponding
parts in the learn-based simulator will be updated. The simulation
parameters will be continually searched based on its last optima
if needed. The offline policies will be fine-tuned in the updated
simulator, and the online learning stage continues uninterruptedly
as the GP model learns only the sim-to-real discrepancy. All these
procedures will be offline executed and accelerated if applicable,
without the need for additional online transitions.

Adaptability. For parameter and configuration space changes,
Atlas can reuse previous experience (e.g., buffered transitions) to
accelerate the training and finetuning of new approximation func-
tions (i.e., BNNs and GPs). If network dynamics are observable, e.g.,
spatiotemporal traffic changes, the topology and settings in the
simulator can be updated accordingly. Then, the learning compo-
nents, e.g., simulation parameters and approximation functions, at
the learning-based simulator stage and offline training stage will be
refined with the new updated simulator. During the online learning
stage, the learned GP model regarding the sim-to-real discrepancy
may be further continuously updated with new interactions. If net-
work dynamics are not observable, e.g., instant link failure, Atlas
will recognize it as the fluctuations of simulation-to-reality discrep-
ancy and rely on the sample efficient Gaussian process model to
learn and adapt continually.

Generalizability. The proposed methods in Atlas have the po-
tential to be generalized to tackle sim-to-real discrepancy and online
learning problems in other network systems, e.g., datacenter net-
works and wireless mesh networks [42]. This is attributed to the
minimal assumptions of Atlas, summarized as follows: 1) there is a
queryable simulated environment to imitate the real-world system.
2) there is an online dataset collected directly from the real-world
system. 3) the real-world system can be queried, where network
states and generated results are observable.

11 CONCLUSION

In this paper, we proposed an online network slicing system (i.e.,
Atlas) to automate the service configuration of slices. We design
three interrelated stages in Atlas to tackle the sim-to-real discrep-
ancy for obtaining the optimal network configuration policy in
real networks. First, we designed a learning-based simulator to
reduce the sim-to-real discrepancy with a new parameter searching
method. Second, we designed a novel offline training algorithm to
train the policy in the augmented simulator. Third, we designed
a novel online learning algorithm to safely learn the policy and
resolve the sim-to-real discrepancy with real networks. We develop
an end-to-end network prototype and evaluated Atlas in terms of
performance assurance, sample efficiency, and resource usage.

ACKNOWLEDGMENTS

We would like to thank the anonymous shepherd and reviewers for
their insightful comments and valuable guidance in refining this
paper.

This work is partially supported by the US National Science
Foundation under Grant No. 2212050, No. 2147624, No. 2147821,
and No. 2147623.

Atlas

REFERENCES

(1]

[10]
[11

[12

[13

[14]
[15]
[16]

[17]

[18

[19]

[20]
[21]

[22]

[23

[24

[25]

[26

Shivang Aggarwal, Urjit Satish Sardesai, Viral Sinha, Deen Dayal Mohan, Moinak
Ghoshal, and Dimitrios Koutsonikolas. 2020. LiBRA: learning-based link adapta-
tion leveraging PHY layer information in 60 GHz WLANS. In Proceedings of the
16th International Conference on emerging Networking EXperiments and Technolo-
gies. 245-260.

GSM Association. 01 June 2021. Generic Network Slice Template, Version 5.0.
https://www.gsma.com/newsroom/wp-content/uploads//NG.116-v5.0-7.pdf
Idris Badmus, Marja Matinmikko-Blue, and Jaspreet Singh Walia. 2019. Network
slicing management technique for local 5G micro-operator deployments. In 2019
16th International Symposium on Wireless Communication Systems (ISWCS). IEEE,
697-702.

Dario Bega, Marco Gramaglia, et al. 2019. A Machine Learning approach to
5G Infrastructure Market optimization. IEEE Transactions on Mobile Computing
(2019).

Julian Berk, Sunil Gupta, Santu Rana, and Svetha Venkatesh. 2020. Randomised
gaussian process upper confidence bound for bayesian optimisation. arXiv
preprint arXiv:2006.04296 (2020).

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. 2015.
Weight uncertainty in neural network. In International conference on machine
learning. PMLR, 1613-1622.

Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. 2004. Convex opti-
mization. Cambridge university press.

Eric Brochu, Vlad M Cora, and Nando De Freitas. 2010. A tutorial on Bayesian
optimization of expensive cost functions, with application to active user modeling
and hierarchical reinforcement learning. arXiv preprint arXiv:1012.2599 (2010).
Olivier Chapelle and Lihong Li. 2011. An empirical evaluation of thompson
sampling. Advances in neural information processing systems 24 (2011).

A discrete event network simulator for internet systems. 2022 [Online]. NS-3.
Salvatore D’Oro, Leonardo Bonati, et al. 2020. SI-EDGE: Network Slicing at the
Edge. arXiv preprint arXiv:2005.00886 (2020).

Xenofon Foukas, Mahesh K Marina, and Kimon Kontovasilis. 2017. Orion: RAN
slicing for a flexible and cost-effective multi-service mobile network architecture.
In Proceedings of the 23rd annual international conference on mobile computing
and networking. 127-140.

Xenofon Foukas, Navid Nikaein, Mohamed M Kassem, Mahesh K Marina, and
Kimon Kontovasilis. 2016. FlexRAN: A flexible and programmable platform for
software-defined radio access networks. In Proceedings of the 12th International
on Conference on emerging Networking EXperiments and Technologies. 427-441.
Xenofon Foukas, Georgios Patounas, et al. 2017. Network slicing in 5G: Survey
and challenges. IEEE Communications Magazine 55, 5 (2017), 94-100.

Peter I Frazier. 2018. A tutorial on Bayesian optimization. arXiv preprint
arXiv:1807.02811 (2018).

Tan Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep learning. MIT
press.

Josep Colom Ikuno, Martin Wrulich, and Markus Rupp. 2010. System level
simulation of LTE networks. In 2010 IEEE 71st Vehicular Technology Conference.
IEEE, 1-5.

Laurent Valentin Jospin, Hamid Laga, Farid Boussaid, Wray Buntine, and Mo-
hammed Bennamoun. 2022. Hands-on Bayesian neural networks—A tutorial
for deep learning users. IEEE Computational Intelligence Magazine 17, 2 (2022),
29-48.

Sami Khairy, Prasanna Balaprakash, Lin X Cai, and Yu Cheng. 2020. Constrained
deep reinforcement learning for energy sustainable multi-UAV based random ac-
cess [oT networks with NOMA. IEEE Journal on Selected Areas in Communications
39, 4 (2020), 1101-1115.

Solomon Kullback. 1997. Information theory and statistics. Courier Corporation.
Jinsung Lee, Sungyong Lee, Jongyun Lee, Sandesh Dhawaskar Sathyanarayana,
Hyoyoung Lim, Jihoon Lee, Xiaoqing Zhu, Sangeeta Ramakrishnan, Dirk Grun-
wald, Kyunghan Lee, et al. 2020. PERCEIVE: deep learning-based cellular uplink
prediction using real-time scheduling patterns. In Proceedings of the 18th Interna-
tional Conference on Mobile Systems, Applications, and Services. 377-390.

Haitao Liu, Yew-Soon Ong, Xiaobo Shen, and Jianfei Cai. 2020. When Gaussian
process meets big data: A review of scalable GPs. IEEE transactions on neural
networks and learning systems 31, 11 (2020), 4405-4423.

Qiang Liu, Nakjung Choi, and Tao Han. 2021. Constraint-Aware Deep Reinforce-
ment Learning for End-to-End Resource Orchestration in Mobile Networks. In
2021 IEEE 29th International Conference on Network Protocols (ICNP). IEEE, 1-11.
Qiang Liu, Nakjung Choi, and Tao Han. 2021. OnSlicing: online end-to-end net-
work slicing with reinforcement learning. In Proceedings of the 17th International
Conference on emerging Networking EXperiments and Technologies. 141-153.
Qiang Liu and Tao Han. 2018. Dare: Dynamic adaptive mobile augmented reality
with edge computing. In 2018 IEEE 26th International Conference on Network
Protocols (ICNP). IEEE, 1-11.

Qiang Liu and Tao Han. 2019. VirtualEdge: Multi-domain resource orchestration
and virtualization in cellular edge computing. In 2019 IEEE 39th International
Conference on Distributed Computing Systems (ICDCS). IEEE, 1051-1060.

152

[27

[28]

[29]

[38

[39

[40]

"~
&

(48]

[49]

[50]

[51]

[52]

CoNEXT ’22, December 6-9, 2022, Roma, Italy

Qiang Liu, Tao Han, and Ephraim Moges. [n. d.]. EdgeSlice: Slicing wireless edge
computing network with decentralized deep reinforcement learning. In 2020 IEEE
40th International Conference on Distributed Computing Systems (ICDCS). IEEE,
234-244.

Yongshuai Liu, Jiaxin Ding, and Xin Liu. 2020. A Constrained Reinforcement
Learning Based Approach for Network Slicing. In 2020 IEEE 28th International
Conference on Network Protocols (ICNP). IEEE, 1-6.

Hongzi Mao, Malte Schwarzkopf, et al. 2019. Learning scheduling algorithms
for data processing clusters. In Proceedings of the ACM Special Interest Group on
Data Communication. ACM, 270-288.

Cristina Marquez, Marco Gramaglia, Marco Fiore, Albert Banchs, and Xavier
Costa-Perez. 2018. How should I slice my network? A multi-service empiri-
cal evaluation of resource sharing efficiency. In Proceedings of the 24th Annual
International Conference on Mobile Computing and Networking. 191-206.

Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Pe-
terson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. 2008. OpenFlow:
enabling innovation in campus networks. ACM SIGCOMM computer communica-
tion review 38, 2 (2008), 69-74.

Jan Medved, Robert Varga, et al. 2014. Opendaylight: Towards a model-driven
SDN controller architecture. In IEEE WoWMoM 2014. IEEE, 1-6.

Dirk Merkel. 2014. Docker: lightweight linux containers for consistent develop-
ment and deployment. Linux journal 2014, 239 (2014), 2.

OpenAirInterface Software Alliance. Openair-cn repository.
https:gitlab.eurecom.fr/oai/openair-cn. 2017.

OpenAirlnterface ~ Software Alliance. ~ OpenAirInterface repository.

https:gitlab.eurecom.fr/oai/openairinterface5g. 2017.

Lei Pang, Chungang Yang, Danyang Chen, Yanbo Song, and Mohsen Guizani.
2020. A survey on intent-driven networks. IEEE Access 8 (2020), 22862-22873.
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825-2830.
Carl Edward Rasmussen. 2003. Gaussian processes in machine learning. In
Summer school on machine learning. Springer, 63-71.

Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. 2011. ORB: An
efficient alternative to SIFT or SURF. In 2011 International conference on computer
vision. leee, 2564—-2571.

Daniel] Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, Zheng Wen,
etal. 2018. A tutorial on thompson sampling. Foundations and Trends® in Machine
Learning 11, 1 (2018), 1-96.

Josep Xavier Salvat, Lanfranco Zanzi, et al. 2018. Overbooking network slices
through yield-driven end-to-end orchestration. In ACM CoNEXT. ACM, 353-365.
Junyang Shi, Mo Sha, and Xi Peng. 2021. Adapting Wireless Mesh Network Config-
uration from Simulation to Reality via Deep Learning based Domain Adaptation.
In 18th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 21). 887-901.

Discrete Event Simulator. 2022 [Online]. OMNeT++.

Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish,
Narayanan Sundaram, Mostofa Patwary, Mr Prabhat, and Ryan Adams. 2015.
Scalable bayesian optimization using deep neural networks. In International
conference on machine learning. PMLR, 2171-2180.

Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias Seeger. 2009.
Gaussian process optimization in the bandit setting: No regret and experimental
design. arXiv preprint arXiv:0912.3995 (2009).

Jie Tan, Tingnan Zhang, Erwin Coumans, Atil Iscen, Yunfei Bai, Danijar Hafner,
Steven Bohez, and Vincent Vanhoucke. 2018. Sim-to-real: Learning agile locomo-
tion for quadruped robots. arXiv preprint arXiv:1804.10332 (2018).

Nguyen H Tran, Wei Bao, Albert Zomaya, Minh NH Nguyen, and Choong Seon
Hong. 2019. Federated learning over wireless networks: Optimization model
design and analysis. In [EEE INFOCOM 2019-IEEE Conference on Computer Com-
munications. IEEE, 1387-1395.

Esa Tuomaala and Haiming Wang. 2005. Effective SINR approach of link to
system mapping in OFDM/multi-carrier mobile network. In 2005 2nd Asia Pacific
Conference on Mobile Technology, Applications and Systems. IEEE, 5-pp.

Luis Velasco, Marco Signorelli, Oscar Gonzalez De Dios, Chrysa Papagianni,
Roberto Bifulco, Juan Jose Vegas Olmos, Simon Pryor, Gino Carrozzo, Julius
Schulz-Zander, Mehdi Bennis, et al. 2021. End-to-End Intent-Based Networking.
IEEE Communications Magazine 59, 10 (2021), 106-112.

Haoyu Wang, Zetian Liu, and Haiying Shen. 2020. Job scheduling for large-scale
machine learning clusters. In Proceedings of the 16th International Conference on
emerging Networking EXperiments and Technologies. 108—120.

Jiadai Wang, Jiajia Liu, and Nei Kato. 2018. Networking and communications in
autonomous driving: A survey. [EEE Communications Surveys & Tutorials 21, 2
(2018), 1243-1274.

James Wilson, Frank Hutter, and Marc Deisenroth. 2018. Maximizing acquisition
functions for Bayesian optimization. Advances in neural information processing
systems 31 (2018).

CoNEXT ’22, December 6-9, 2022, Roma, Italy

[53] Francis Y Yan, Hudson Ayers, Chenzhi Zhu, Sadjad Fouladi, James Hong, Keyi
Zhang, Philip Levis, and Keith Winstein. 2020. Learning in situ: a randomized
experiment in video streaming. In 17th { USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 20). 495-511.

Chaoyun Zhang, Marco Fiore, Cezary Ziemlicki, and Paul Patras. 2020. Micro-
scope: mobile service traffic decomposition for network slicing as a service. In
Proceedings of the 26th Annual International Conference on Mobile Computing and
Networking. 1-14.

Huanhuan Zhang, Anfu Zhou, Jiamin Lu, Ruoxuan Ma, Yuhan Hu, Cong Li, Xinyu
Zhang, Huadong Ma, and Xiaojiang Chen. 2020. OnRL: improving mobile video
telephony via online reinforcement learning. In Proceedings of the 26th Annual
International Conference on Mobile Computing and Networking. 1-14.

[54

[55]

153

Qiang Liu, Nakjung Choi and Tao Han

A PARAMETER SEARCHING METHOD

The parameter searching algorithm for learning-based simulator
is summarized in Alg. 1. First, tens of thousands of simulation pa-
rameters are sampled from the parameter space (i.e., Eq. 2). Second,
the next query is selected by minimizing the weighted discrepancy,
where the sim-to-real discrepancy KL[D,||Ds(x)] is estimated by
the BNN for all the sampled parameters. Third, the actual values of
sim-to-real discrepancy is obtained via querying the offline simu-
lation. Fourth, the transition < x, KL[D;||Ds(x)] > are stored for
BNN training. Note that these above steps are executed in parallel
with multiprocessing technique.

Algorithm 1: The Parameter Searching Method
Input: H, a, x
1 while True do

2 forn=0,1,...(Parallel) do
3 Sample x;
4 Estimated sim-to-real discrepancy KL[D,||Ds(x)]
from BNN for all samples;
5 Get the next query
x «— argmin (KL[D,||Ds(x)] + a|x — X[2);
6 Obtain sim-to-real discrepancy KL[D,||Ds(x)] by
querying simulator;
7 Store transition < x, KL[D,||Ds(x)] >;
8 Train the BNN with new added transitions;
9 if Convergence then
10 L break;

B THE OFFLINE ALGORITHM

The offline network configuration algorithm is summarized in Alg. 2.
First, tens of thousands of network configuration actions are sam-
pled from the configuration space (i.e., Eq. 7). Second, the next query
is selected by minimizing the Lagrangian, where the resource usage
is calculated in F(¢) and the slice QoE is estimated by the BNN
for all the sampled actions. Third, the actual values of slice QoE
is obtained via querying the offline simulation. Fourth, the tran-
sition < az, F(¢), Qs(¢) > are stored for BNN training. Note that
these above steps are executed in parallel with multiprocessing
technique. Then, the multiplier is updated by averaging the results
from parallel queries.

C THE ONLINE ALGORITHM

The online network configuration algorithm is summarized in Alg. 3.
First, the multiplier in the online learning stage is initialized with
the final multiplier in the offline training stage. Then, we update
the multiplier by interacting with the offline simulator for N times
(Line 4-10). Specifically, we calculate the Lagrangian for all sampled
configuration actions with both the offline BNN and the online
GP model. The next network configuration is selected by minimiz-
ing the Lagrangian. We update the multiplier with A « Eq. 15
by querying offline simulator and estimating GP model. Next, we
online query real networks, when it needs to, e.g., configuration

Atlas

Algorithm 2: The Offline Algorithm
Input: ¢, E, Y, A,
1 Initialize parameters A < 0;

2 while True do
3 forn=0,1,...(Parallel) do

4 Sample a;, calculate F(¢) for all samples;

5 Estimated Qs(¢) from BNN for all samples;
6 Calculate Lagrangian in Eq. 8;

7 Get the next query a; « argminL;

8 Obtain slice QoE by querying the simulator;
9 Store transition < az, F(¢), Qs(¢) >;
10 Train the BNN with new added transitions;

1 Update multiplier A < Eq. 9;

12 if Convergence then

L break;

13

14 return ¢;

interval is 1 hour. The new obtained online transitions are used
to update the GP model for approximating the sim-to-real perfor-
mance differences.

Algorithm 3: The Online Algorithm
Input: ¢, Y, E,A, BN
1 Initialize multiplier A from offline stage;

2 while True do
3 forn=0,1,..N do

4 Sample a;, calculate F(¢) for all samples;

5 Estimated Q(¢) from BNN Qg(¢) and GP model
G(y) for all samples with Eq. 12;

6 Calculate Lagrangian in Eq. 14;

7 Get the next query a; <— argmin L;

8 Obtain Qs(¢) by querying simulator;

9 Estimate G(¢) with ¢;

10

| Update multiplier A « Eq. 15;

1 if Time to online query then
Apply a; to real networks;

Calculate G(1) = Q(¢) — Qs(¢);

Train ¢ with new online transitions;

12

13

14

15 if Convergence then

L break;

16

17 return y;

D ARTIFACT APPENDIX
D.1 Abstract

This section describes the instructions for performing artifact eval-
uation for this paper. In the paper, we achieve Atlas with three
integrated stages, i.e., learning-based simulator, offline training,
and online learning.

154

CoNEXT ’22, December 6-9, 2022, Roma, Italy

D.2 Artifact check-list

Algorithm: Algorithm 1, 2, 3 described in the paper

Program: Python scripts, NS-3 simulator, OpenDayLight, executable

files in OpenAirInterface RAN and CORE, Android applications

e Compilation: g++ 8.0, gcc 8.0 or higher

o Data set: own dataset provided in open-source codes.

e Run-time environment: At least two desktop computers, one for
RAN and one for CN&Edge. OS can be either Ubuntu 18.04 or 20.04.
Docker containers is needed in CN desktop.

e Hardware: For network simulator: No restriction on hardware; For

network prototype: Intel i7 or above CPU, NI USRP B210, Ruckus

ICX 7150-C12P, OnePlus 9 5G smartphone, Antenna compatible

with LTE B7 frequency band.

Execution: sole user is preferred

Metrics: runtime log in NS-3, performance reported by smart-

phones.

e Output: saved experiment results in pickle format, which will be
used for following figure plotting.

o Experiments: see README in the open-source codes.

How much disk space required (approximately)?: 1GB for data

and trained model, the disk space for software installation are not

counted.

e How much time is needed to prepare workflow (approxi-
mately)?: For network simulator: less than 30 minutes; For network
prototype: several hours if not more.

o How much time is needed to complete experiments (approxi-

mately)?: For stage 1: 3 5 hours, under 16 threads; For stage 2: 3 5

hours, under 16 threads; For stage 3: 1 3 hours.

Publicly available?: Yes.

D.3 Descriptions

main_simulator.py is the main file for conducting experiments

for the stage 1: learning-based simulator.

main_of fline.py is the main file for conducting experiments for

the stage 2: offline training.

e main_online.py is the main file for conducting experiments for
the stage 3: online learning.

e plot_+ .py are mainly for plotting the results based on completed
experiments.

e system.py is the main file for connecting with network prototype.

e simulator.py is the main file for connecting with network simula-

tor.

D.3.1 How to access. The codes are open-sourced available in
https://doi.org/10.5281/zenodo.7262492, where more detailed in-
structions can be found in https://github.com/int-unl/Atlas.git.

D.3.2 Hardware dependencies. At least two desktop computers
with Intel i7 or above CPUs, one for RAN and one for CN&Edge. OS
can be either Ubuntu 18.04 or 20.04. Docker containers is needed
in CN desktop.

D.3.3 Software dependencies. For executing the codes: Ubuntu
20.04, Python 3.6.9, PyTorch 1.10.2, scipy 1.5.4, sklearn 0.24.2, numpy
1.19.5, pickle 4.0, CUDA is not required.

For RAN host in the network prototype: Ubuntu 18.04, low-
latency kernel; For CN and Edge in the network prototype: Ubuntu
20.04.

D.3.4 Data sets. We collect our own dataset from the real-world
network prototype. The file is in app_eval/ folder, which is mainly
used for the stage 1: learning-based simulator.

CoNEXT ’22, December 6-9, 2022, Roma, Italy

D.4 Network Simulator and Prototype Build

D.5

Network Simulator:

Install NS-3 3.36, either with official instruction or provided bash
file.

Add additional files (i.e., edge/) in NS-3 contrib/ folder, and rebuild.
Add additional files (i.e., main.cc) in NS-3 scratch/ folder, and re-
build.

Validate the network simulator can be connected by simulator.py
script.

Network Prototype:

Install OpenAirInterface RAN with official instruction.

Install OpenAirInterface CORE with official instruction, where the
dockerized network functions are required, e.g., SPGW-U and HSS.
Modify SPGW-C and rebuild to enable core network slicing, validate
it redirects specific mobile users to corresponded SPGW-Us.
Connect smartphones with RAN with programmed USIM card to
match the PLMN and other parameters, validate they can access to
the RAN and the SPGW-U docker.

Install the provided Android application to smartphones (Android
11).

Install the provided edge server application in individual SPGW-U
dockers, validate smartphones can connect with their servers with
periodically performance updates.

Install FlexRAN controller 2.0 with official instruction, validate its
slicing capability when changing PRB allocation on RAN to different
mobile users.

Initialize the SDN switch, install OpenDayLight to connect the
switch, validate the provided ¢n_server.py can connect OpenDay-
Light.

Connect SDN switch between the RAN and CORE desktop, validate
it can enforce bandwidth allocation to between mobile users and
their SPGW-U dockers.

As everything is well validated individually, close all scripts and
programs.

The order of running the network prototype is: OpenDayLight —
Transport controller — FlexRAN controller - CORE - edge server
applications - RAN - Configure slicing parameters — Smartphone
(disable airplane mode and open the app) — start system.py.

The demo procedures of bringing up the network prototype is online:
https://youtu.be/-AFw17ANBNS

Experiment workflow

Download open-source codes

Install package dependencies, e.g., sklearn, scipy, torch, and more.
Stage 1: learning-based simulator.

Run main_simulator.py, where the arguments vary according to
different experiments.

Run plot_simulator.py to reproduce the figures in the paper, after
all corresponded experiments are done.

Update the searched optimal simulation parameter to parameter.py.
Stage 2: offline training.

Run main_of fline.py, where the arguments vary according to
different experiments.

Run plot_of fline.py to reproduce the figures in the paper, after
all corresponded experiments are done.

Update the searched optimal resource configuration to parameter.py.

Stage 3: online learning.

Bring up the network prototype (see above), validate it is live and
can be connected by the system.py script.

Run main_online.py, where the arguments vary according to dif-
ferent experiments.

155

Qiang Liu, Nakjung Choi and Tao Han

e Run plot_online.py to reproduce the figures in the paper, after all
corresponded experiments are done.

