
1

Deep Reinforcement Learning for End-to-End
Network Slicing: Challenges and Solutions

Qiang Liu, Nakjung Choi, Tao Han

Abstract—5G and beyond is expected to enable various emerg-
ing use cases with diverse performance requirements from
vertical industries. To serve these use cases cost-effectively,
network slicing plays a key role in dynamically creating virtual
end-to-end networks according to specific resource demands. A
network slice may have hundreds of configurable parameters
over multiple technical domains that define the performance of
the network slice, which makes it impossible to use traditional
model-based solutions to orchestrate resources for network slices.
In this article, we discuss how to design and deploy deep
reinforcement learning (DRL), a model-free approach, to address
the network slicing problem. First, we analyze the network slicing
problem and present a standard-compliant system architecture
that enables DRL-based solutions in 5G and beyond networks.
Second, we provide an in-depth analysis of the challenges
in designing and deploying DRL in network slicing systems.
Third, we explore multiple promising techniques, i.e., safety and
distributed DRL, and imitation learning, for automating end-to-
end network slicing.

I. INTRODUCTION

5G and beyond will be a catalyst to digitalize the econ-

omy and contribute toward global digital transformation. The

explosion of networking connections and mobile data will

dramatically increase the complexity of the network. An

increasing number of new use cases will be enabled for various

industries such as automotive, manufacturing, logistics, and

energy [1]. These new use cases have highly diverse, and even

conflicting, communication and networking requirements such

as latency, data rates, availability, and reliability. The growing

network complexity and service diversity challenge network

operators to dynamically orchestrate and coordinate network

resources to offer a different mix of capacities for supporting

services with diverse requirements simultaneously.

Since it is not economically viable to build a dedicated

network for each type of service, network slicing emerges

as a key technology in 5G wireless networks for efficiently

supporting highly diverse use cases [1]. Network slicing allows

network operators to run multiple logical networks (aka.

network slices) on top of common physical network infras-

tructures. For each network slice, customized functionalities

and network operations can be implemented according to the

specific need of an individual use case, e.g., enhanced mobile

broadband (eMBB), ultra reliable low latency communications

(URLLC) and massive machine type communication (mMTC).

For example, a network slice can be customized to support IoT

services for a large number of devices operated at low data

Qiang Liu is with the School of Computing, University of Nebraska-
Lincoln. E-mail: qiang.liu@unl.edu

Nakjung Choi is with Nokia Bell Labs. E-mail: nakjung.choi@nokia-bell-
labs.com

Tao Han is with the Department of Electrical and Computer Engineering,
New Jersey Institute of Technology. E-mail: tao.han@njit.edu

N
et

w
or

k
Sl

ic
es

Mobile Network Infrastructure

Vi
rt

ua
l R

es
ou

rc
es

Fig. 1: An illustration of end-to-end network slicing.

rates. At the same time, another network slice can be tailored

to provision latency-critical services such as vehicle-to-vehicle

communications and smart grid controls.

Network slices usually span across multiple technical do-

mains of the network, as shown in Fig. 1, e.g., radio access

networks, transportation networks, core networks, and edge

and cloud computing. Hence, end-to-end resource orchestra-

tion is essential in network slicing to dynamically manage

resource allocations to different slices in multiple domains for

achieving optimized performances. A network slice may have

hundreds of configuration parameters defining its functions

and performance according to the service level agreement

(SLA). These configurations are connected to the underlying

resource demands in different domains. Thus, it is impractical

to develop a closed-form model of the network performance

versus the joint resource allocations in multiple domains.

Recent advances in ML, especially deep learning (DL)

and deep reinforcement learning (DRL), have demonstrated

great potential to learn and understand complex and high-

dimensional correlations by leveraging artificial neural net-

work (ANN) architectures. ML as a model-free approach

requires no prior knowledge in advance, which can automati-

cally learn the complex and unknown correlations in network

slicing. Thus, there is increasing popularity of exploring ML

to automate network slicing [2], [3], [4], e.g., admission

control and resource management. Recent works reveal that

the resource orchestration in network slicing has Markov

property [5], i.e., the orchestration decision at the current

time influences not only the current performance of slices

but also the future network states, e.g., queuing. As a result,

the resource orchestration turns out to be a Markov decision

process (MDP), which cannot be resolved with DL techniques.

Hence, DRL becomes the most suitable approach to deal with

the MDP and intelligently manage the resource orchestration

in network slicing.

To facilitate ML-based network management solutions, the

open-radio access network (O-RAN) alliance proposes a gen-

eral framework of ML procedure which incorporates ML com-

ponents, e.g., supervised and unsupervised learning, within

This article has been accepted for inclusion in a future issue of this magazine.

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on April 17,2023 at 15:08:38 UTC from IEEE Xplore. Restrictions apply.

2

multiple network functions [6]. ETSI introduces experiential

networked intelligence (ENI) to enable context-aware artificial

intelligence based on the “observe-orient-decide-act” control

model. It supports adaptive and intelligent service operation

and management for network operators by integrating network

function virtualization (NFV) and software-defined network

(SDN) controllers. 3GPP suggests the management loop of

”observation-analytics-decision-execution” by leveraging the

management data analytics (MDA), which provides the ca-

pability of processing and analyzing the raw data related

to network and service events and status, e.g., performance

measurements, and QoE reports.

Following these initiatives, this article dives deep into

DRL-based network slicing solutions. First, we introduce the

end-to-end resource orchestration problem in network slicing

and show that the problem can be naturally formulated as

a Markov decision process (MDP). To deploy DRL-based

network slicing, a new end-to-end network system architecture

is engineered with the network layer, orchestration layer and

intelligence layer. Second, we discuss the challenges of design-

ing DRL-based network slicing solutions from the perspectives

of both algorithms and system. Third, we explore and envision

multiple promising techniques, i.e., safety and distributed

DRL, and transfer learning, to address these challenges in

automating the end-to-end network slicing.

II. DRL FOR NETWORK SLICING

A fundamental research problem in network slicing is

the design of end-to-end resource orchestration that jointly

orchestrates resources in multiple domains, e.g., radio access

networks and edge computing, based on service requirements

of network slices. In this section, we analyze the end-to-

end resource orchestration problem and present the system

architecture for DRL-based network slicing.

A. Resource Orchestration Problem

The rationale behind using DRL is that the end-to-end re-

source orchestration problem can be reasonably formulated as

a Markov decision process (MDP) when considering the tem-

poral dependency of the resource orchestration and network

performance [5]. A MDP can be denoted by 〈S,A, r, P, μ〉,
where st ∈ S is defined as the state that describes the network

status and traffic load distributions in the current time slot

t. at ∈ A is defined as action that describes how resources

are orchestrated on every edge node, e.g., radio base stations

and edge servers, for every network slices in time slot t.
r : S ×A → R is defined as the reward function that models

the performance of the network system (e.g., resource usage).

c : S × A → C is defined as the cost function that models

the constraints of the network system (e.g., SLA requirement).

P : S × A × S → R is defined as the state transition func-
tion describes the underlying temporal dynamics of the state

depending on the current action and initial state distribution
μ : S → [0, 1]. The resource orchestration action is denoted by

at = {atm,k} where atm,k is the amount of type-m resource

allocated to slice k in time slot t. A resource orchestration

policy π : S → Pr(A) prescribes a probability distribution

over actions given the current state. Given policy π, the end-

to-end networking system receives a sequence of rewards and

costs (i.e., network resource usage and system performance)

r1, r2, ... and c1, c2, The end-to-end orchestration problem

is to find the policy that maximizes the long-term system

reward, i.e., argmaxπ E
πθ [

∑∞
t=0 γ

trt(st, at), s.t. ct(st, at) ≤
0] where γ is the discount factor that balances immediate and

future rewards.

B. DRL-based Network Slicing System Architecture

To facilitate DRL-based end-to-end network slicing, we

design a new and standard-compliant system architecture with

three functional layers as shown in Fig. 2. The network

layer consists of network infrastructure devices, e.g., eNB and

gNB, switches/routers, network functions, and edge and cloud

servers. The orchestration layer provides end-to-end resource

management functions that allocate resources to network slices

to ensure their performances according to SLAs. Domain man-

agers are deployed in each technical domain, e.g., access, edge,

transport, and core networks, with the action and state APIs

to execute the orchestration. The domain managers realize the

network slice subnet management functions (NSSMF) sug-

gested by 3GPP [7]. The end-to-end orchestration and service

assurance modules, which are similar to the 3GPP network

slice management function (NSMF), aim to coordinate domain

managers to ensure the end-to-end system performance of

network slices [7]. These modules are designed with interfaces

that allow DRL agents to receive orchestration actions and

feedback the slice performance statistics. The intelligence

layer implements DRL agents that learn the optimal resource

orchestration policy for end-to-end network slicing. Since the

machine learning components, i.e., DRL agents, are decoupled

from orchestration functions, various machine learning tech-

niques, e.g., safety learning, distributed learning and imitation

learning, can be deployed without changing the underlying

network slice functions in the orchestration layer.

III. DRL CHALLENGES

Although many existing works focus on applying DRL

to solve various networking problems, deploying DRL-based

network slicing solutions in practical end-to-end networks still

faces multiple research challenges in terms of the performance

assurance, solution scalability, and convergence speed of DRL.

A. Performance Assurance

Network operators aim to satisfy service level agreements

(SLAs) of slices with the minimum usage of cross-domain

resources and thus reduce the operating expenses (OPEX).

Realizing this goal is non-trivial because of the following

research challenges.

1) DRL explainability: To provide performance assurance,

it is important to understand why a DRL-based slicing solution

can lead to certain network performance. The difficulties

come from two aspects. First, it is non-trivial to interpret the

impact of the state space of DRL on the optimal policy. The

state space should provide a comprehensive representation of

This article has been accepted for inclusion in a future issue of this magazine.

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on April 17,2023 at 15:08:38 UTC from IEEE Xplore. Restrictions apply.

3

DRL Agent

RAN Transport Core Cloud

Internet

Users Edge

End-to-End Orchestration

Domain Manager (Access)

Action API State API

Domain Manager (Edge)

Action API State API

Domain Manager (Transport)

Action API State API

Domain Manager (Core)

Action API State API

Orchestration Layer Service Assurance

DRL AgentDRL Agent
Intelligence Layer

Network Layer

Edge

Service
Requests

Fig. 2: DRL-powered end-to-end network slicing system architecture.

network status to DRL agents. End-to-end networking systems

generate a huge amount of measurement data from different

domains. There still has no clear path to follow and build the

state space based on these network measurements in order to

achieve the optimal network slicing policy.

Second, the reason why the actions generated by the DRL

agent can achieve the optimal performance in long term is

difficult to interpret. For a DRL policy, actions are calculated

through mathematical operations, e.g., addition, multiplex and

activation in hidden layers and the output layer of a neural

network. Although the mathematical calculations are known,

analyzing them can only provide very limited understandings

about why an action is generated instead of the others, espe-

cially considering deep neural networks with heterogeneous

layers such as convolutional and dropout. Without such inter-

pretable knowledge, it’s hard for network operators to directly

control or modify actions generated by DRL agents.

2) Exploration in policy optimization: DRL usually relies

on random exploration mechanisms to find a better policy for

improving long-term rewards. A practical useful exploration

mechanism explores a nearby space of action at, e.g., at + ε
where ε is sampled from a normal distribution with zero mean

and a predefined deviation. As the new action deviates from

the original action at, the performances of network slices, e.g.,

throughput and delay, may be degraded to the extent that SLAs

are violated. It is straightforward to limit the magnitude of

the action exploration, e.g., at + clip(ε,−H,H), where H
is a given maximum allowed deviation. However, this method

reduces the exploration efficiency as the exploration is clipped.

As a result, it may lead to a suboptimal policy or require more

interactions learn the optimal policy in practice.

3) Quantization error and parameterization: DRL agents

update their neural parameters by using gradient descent

methods, e.g., SGD, Adam and Momentum [8], based on

the collected historical trajectories (state-action-reward pairs).

Although the step size of gradient descent methods are usually

small, e.g., 1E-3 or 1E-4, the performance of the DRL agent

after one single policy update can be significantly different.

The reason is that DRL policies are often parameterized by

millions of neurons, a slight change in each neuron can result

in a dramatic discrepancy in output actions. Hence, when

learning the optimal policy via interacting with a real end-to-

end network, DRL agents may show changing performances

during the learning phase. As a result, it is challenging to

assure a predictable performance of network slices using DRL-

based slicing solutions.

B. Solution Scalability

Learning-based networking mechanisms are designed to

solve complex networking problems in a large scale. Hence,

the scalability of DRL-based network slicing solutions deter-

mines whether they can be deployed in practical networking

systems with heterogeneous infrastructures, e.g., base stations

and servers, and dynamic service demands. The challenges

of scaling DRL-based solutions up-and-down are from two

aspects: communication and computing overhead, and neural

network design.
1) Communications and computing overhead: DRL agents

need to collect network measurements from distributed in-

frastructures to train the neural network [9]. As the scale

of the network increases, more measurement data need to

be transmitted over the network, which may incur excessive

communication overhead. According to OpenCelliD database,

the number of base stations (e.g., GSM, UMTS, CDMA, LTE)

of a medium city downtown (several square miles) could

reach 1000. Consider each base station transmits hundreds

of parameters every millisecond, the transmission demands of

such area will reach up to gigabits per second. Meanwhile,

managing a large-scale network also requires DRL agents to

add more dimensions in their state and action spaces. As a

result, the DRL agent consumes more computing resources

and takes a longer time to learn the optimal policy.
2) Neural network design: DRL policies are parameterized

by deep neural networks whose input and output dimensions

are selected based on the states and actions [8], where the

dimensions stay unchanged throughout the policy training.

When the networking condition changes, e.g., new admitted

network slices, both the states and actions space need to be

This article has been accepted for inclusion in a future issue of this magazine.

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on April 17,2023 at 15:08:38 UTC from IEEE Xplore. Restrictions apply.

4

revised to reflect this change. As a result, the input and output

dimensions of the neural network need to be updated, and

the DRL policy has to be trained under the new networking

condition. Although recently emerged recurrent neural net-

works (RNN) and graph neural networks (GNN) can handle

the flexible sizes of inputs and outputs, their implementations

in the context of DRL still need further investigations in terms

of data efficiency, generalization and convergence.

C. Convergence Speed of DRL

DRL agents learn the optimal policy by directly interacting

with real networking systems. To obtain the optimal policy, a

DRL agent usually needs to be trained by a large number of

online interactions. Depending on how frequently the network

measurements can be collected, it may take a very long time

to achieve the convergence of the DRL policy. The large-scale

5G network normally has a long orchestration interval [10] as

it involves the reconfiguration for various network devices and

hardware. Considering 15 minutes as a practical reconfigura-

tion interval, the feedback of an orchestration action generated

by the DRL policy can only be obtained every 15 minutes.

Since a single policy update usually requires more than one

thousand transitions [8], it needs, at least, a few days to achieve

one policy update.

IV. SYSTEM CHALLENGES

Deploying DRL-based network slicing solutions faces sev-

eral system level challenges such as preparing networking data

and providing appropriate network programmability for DRL.

A. Networking Data for DRL

DRL agents are trained with measurement data collected

from heterogeneous and distributed network infrastructures.

Preparing the data for DRL training can be a huge burden on

networking systems.

1) Data heterogeneity: The openness evolution of 5G leads

to the dis-aggregation of network components, which allows

flexible network deployment strategies and increases the het-

erogeneity of these data in terms of formats, volume and time

scales. For example, 3GPP suggests splitting the gNB function

into a central unit (CU) and a distributed unit (DU). The

DU focuses on signal and data processing at PHY and MAC

layers, and CU manages controlling functions at higher layers

such as PDCP and RRC. O-RAN [6] further split the gNB

functions into CU, DU and radio unit (RU), where RU only

provides functions related to radio frequency (RF) and Low-

PHY processing such as fast Fourier transform (FFT), inverse

FFT and physical random access channel (PRACH) extraction.

To efficiently manage measurement data from various network

functions, O-RAN introduces the key performance measure-

ment (KPM) function that defines a collection of information

elements such as 5G QoS Identifier (5QI), QoS Class Identifier

(QCI), time stamp, and Cell Object ID. These information

elements contain highly heterogeneous data. In addition, the

service-based architecture of 5G core (5GC) implements new

network functions such as access and mobility management

function (AMF), session management function (SMF), and

user plane function (UPF), which further increases the amount

and heterogeneity of network data.

2) Data processing capability: Since a large amount of

heterogeneous network data have to be collected and analyzed

for DRL-based network slicing solutions, additional comput-

ing devices and functions are necessary to meet such data

processing demands. For example, the logging size of an

operating gNB could easily exceed 1GB every minute [11],

which is difficult to be transmitted from infrastructures to DRL

agents. To reduce the data size of runtime data, the function

of feature extraction, e.g., autoencoder, may be implemented

to generate a concise representation. The feature extractor

usually achieves a better compression rate and accuracy of

representation if more computing resources are enforced, e.g.,

denser neural network architectures. As a result, there is a

tradeoff between the deployed computation resources and the

extraction performances, which requires further investigations.

B. Network Programmability

To reconfigure network slices dynamically, network systems

need to provide virtualization functions and programming in-

terfaces to allow DRL agents to configure end-to-end network

slices.

1) End-to-end infrastructure virtualization: The infrastruc-

ture virtualization is a key technology to provide neces-

sary isolations among network slices, which assure that the

performance and functions of a network slice are not af-

fected by the operations of any other slices. The existing

virtualization solutions are designed for individual technical

domains, e.g., RAN, transportation networks, and edge and

cloud computing. For example, FlexRAN virtualizes physical

resource blocks (PRBs) in the MAC layer as virtual radio

bandwidth in RAN [11]; OpenFlow allows the creation of

virtual networks using software defined networking (SDN)

in transport networks; virtual machine and docker container

techniques enable the virtualization of computing resources

in edge and cloud computing. It is, however, challenging

to integrate virtualization solutions from different technical

domains due to the heterogeneity of time scale, programming

interfaces, and data models. For instance, the PRBs in RAN

can be modified in milliseconds, while the scaling of docker

containers in edge computing requires seconds to take effect.

2) Network resource model: The network resource model

(NRM) is introduced to provide predefined interfaces based on

either XML, JSON, or YANG to query and manage network

resources [12]. The NRM defines various network resources

that allow efficient network management. For example, RRM-
PolicyRatio defines rRMPolicyMaxRatio, rRMPolicyMinRatio
and rRMPolicyDedicatedRatio, which represent the maximum,

minimum and dedicated resource usage quota for the associ-

ated rRMPolicyMemberList. A RRMPolicyMember is defined

by its pLMNId and sNSSAI (S-NSSAI). Considering diverse

performance requirements of services, e.g., reliability and

delay, the NRM needs to support more configurable param-

eters, e.g., antenna array, transmit power, modulation and

coding schemes. However, how these parameters affect the

This article has been accepted for inclusion in a future issue of this magazine.

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on April 17,2023 at 15:08:38 UTC from IEEE Xplore. Restrictions apply.

5

USRP
B210

BS 2
Users in BS 1 Users in BS 2

Transport
Network

BS 1

• Orchestrator Agents
• Perf. Coordinator
• Edge Servers (GPU)

USRP
B210

(a) (b)

SDN
Controller

Transport DMRadio DM Core DM

DRL Agent

Slice A

Coordination

DRL Agent
Im

ita
tio

n
Le

ar
ni

ng

Safety DRL D
is

tri
bu

te
d

D
R

L

O
ffl

in
e

tra

in
in

g

Safety learning

D
is

tri
bu

te
d

D
R

L

Safety DRL
Safety learning O

ffl
in

e

 tr
ai

ni
ng

Slice B

Im
ita

tio
n

Le
ar

ni
ng

Hierarchical and Recursive Abstraction

Fig. 3: a) the explored techniques for addressing challenges; b) the network slicing testbed [5].

performance of users and enable more customization features

for slices are still open problems.

V. DRL-BASED NETWORK SLICING SOLUTIONS

In this section, we discuss several promising techniques,

as summarized in Table I, to address the aforementioned

algorithm and system challenges. Fig. 3 (a) illustrates how

these technologies can be deployed for end-to-end network

slicing.

• The safety DRL addresses the challenge of the perfor-

mance assurance by tackling the unpredictable exploita-

tion and random exploration, and assuring performance

requirements of slices throughout the learning phase.

• The distributed DRL addresses the scalability challenge

by leveraging multi-agent DRL and allowing effective

coordination among distributed agents.

• The imitation learning addresses the challenge of DRL

convergence by offline imitating a baseline policy and

obtaining a good start point for online learning.

We implement and evaluate these solutions using the testbed

shown in Fig. 3 (b). The radio domain manager is designed

based on OpenAirInterface (OAI) project with FlexRAN sup-

port [11] and use Ettus USRP B210 as the RF front-end of

a base station. The transport domain manager is developed

based on OpenDayLight (ODL) with OpenFlow 1.3 to control

the transportation network composed of Ruckus ICX series

SDN switches. We use OpenAir-CN project to deploy core

network and docker container technique to enable edge com-

puting virtualization. The DRL agents are developed by using

PyTorch 1.5 with 3-layer fully-connected neural networks.

A. Safety DRL

The safety DRL aims to train the DRL agent to maximize

the cumulative rewards while maintaining different constraints.

It is accomplished by integrating the Lagrangian primal dual

method for statistical performance assurance and the baseline

switching mechanism for avoiding instantaneous violations.

The reward shaping method, which re-weights the reward

if constraints are violated, has been widely used to penalize

the DRL agent and guide its training. However, it is difficult

to choose the optimal weights especially under multiple con-

straints. For example, too small weights leads to insufficient

penalization for the violations of constraints, while too large

weights would suppress the exploration of DRL. To address

this problem, recent advances adaptively incorporate these

constraints into the reward function by using the Lagrangian

primal dual method [13]. In particular, Lagrangian multipliers

are introduced to re-weight the reward function, which are

updated with the sub-gradient descent method in a larger

time scale than that of resource orchestration. On learning the

resource orchestration policy, the reward function of the DRL

agent is rewritten by the Lagrangian function, which integrates

both the original objective and the weighted constraints by

using the updated Lagrangian multipliers. The constraints can

be eventually satisfied by alternatively updating the multipliers

and training the DRL agent.

The constraints, however, can still be violated before the

Lagrangian primal dual method converges. As shown in Fig. 4

(a), a baseline switching mechanism is developed to enable the

dynamic switching between the policy of the DRL agent and

a baseline policy. We consider there is a baseline policy, e.g.,

rule-based or heuristic, which can guarantee the slice SLA

but with higher resource usages [14]. The policy evaluation

module is created to predict whether enforcing the current

action generated by the DRL agent will break the slice SLA.

In particular, we design the module to learn the value of

constraints under different states and actions. This module can

be implemented with DNN, where the input is the combination

of state and action space, and the output is set to be the value

of constraints, i.e., ct(st, at). If the prediction result is above

zero with high confidence, the baseline policy will be invoked,

which can maintain slice SLA at a cost of high resource

usage. Fig. 4 (b) shows the cumulative probability of the SLA

violation by two schemes, i.e., with and without the baseline

switching mechanism. The SLA violation is defined if the

constraints are violated, i.e., ct(st, at) ≥ 0. It can be seen that,

without the baseline switching mechanism, the SLA violation

can be as high as 15%. If the baseline switching mechanism

is enabled, the SLA violation is reduced significantly (∼1%).

B. Distributed DRL

The distributed DRL aims to assure the scalability of the

DRL agent when tackling dynamic networks, e.g., varying

slice traffic and infrastructure deployment. The multi-agent

DRL is the common approach to scale the DRL agent in

This article has been accepted for inclusion in a future issue of this magazine.

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on April 17,2023 at 15:08:38 UTC from IEEE Xplore. Restrictions apply.

6

DRL Policy
Rule-based Policy

Baseline Switching

Switch

St
at

e S
pa

ce

RL Policy

Baseline
Policy

Evaluation

A
ct

io
n

Sp
ac

e

(b) (c)

Edge
TN 2

TN 1 CloudRAN

Core

DRL 1 DRL 3DRL 2

(d)(a)

SLA decomposition

Fig. 4: a) overview of baseline switching mechanism; b) SLA violation with baseline switching mechanism; c) illustration of distributed
coordination; d) resource usage with imitation learning;

Challenges Existing Work Our Solution
Performance
Assurance

unawareness of performance requirements,
free action space exploration

Safety DRL: constraint-awareness update, baseline switching
scheme

Solution Scalability communication & computing overhead,
fixed input/output DNN design

Distributed DRL: distributed multi-agents, coordination
mechanism among agents

DRL Convergence massive online interactions required, poor
performance at early stage

Imitation Learning: offline imitate from baseline for online
acceleration

TABLE I: Summary of challenges and solutions

distributed networks, which creates multiple cooperative or

competitive agents to achieve the global optima. For example,

an individualized DRL agent can be created to orchestrate

the resource for each network slice, where these agents are

competitive due to the limitation of resource capacity. This

individualized slice agent scheme helps to resolve the dynam-

ics of slice admission and departure, where the action space

varies. The training of distributed agents can be accomplished

by centrally aggregating their experiences and updating the

policy of all agents simultaneously.

To orchestrate the cross-domain resources for end-to-end

slices, multiple individualized DRL agents can be created in

distributed infrastructures. As illustrated in Fig. 4 (c), the

DRL agent 1 orchestrates RAN and edge networks, the DRL

agent 2 controls transport networks, and the DRL agent 3

manages core networks and cloud computing resources. These

agents learn to allocate resources of infrastructures to slices

independently, e.g., the DRL agent 2 allocates the bandwidth

in transport networks. As these agents only focus on their

technical domains, the end-to-end performance requirement

of slices may not be guaranteed if no collaborations. Thus,

we propose an SLA decomposition module to decompose the

end-to-end performance requirements of slices into different

technical domains, which allow the DRL agents aware of

local requirements. For example, the end-to-end latency and

reliability performance of a slice may be decomposed to local

requirement in RAN, TN, CN, and Edge. Then, the DRL

agents in each domain is focused to allocate their resources to

meet the local performance requirement of this slice. In this

scenario, the SLA decomposition module needs to balance the

resource utilization in different domains, and is responsible for

satisfying the end-to-end performance requirement.

C. Imitation Learning

Imitation learning aims to train the DRL agent to mimic

the behavior of a target agent, where the target agent can

be either human, model-based rules or another DRL agent.

The main methods of imitation learning are behavior cloning,

direct policy learning via interactive demonstrator, and inverse

reinforcement learning. Consider the network operator has a

baseline policy, e.g., model-based rules, the imitation learning

can train the DRL agent to mimic its behaviors, e.g., mapping

the observed states to actions. The advantage of offline imita-

tion learning is that the transitions of the baseline policy are

not expensive to obtain. In Fig. 4 (d), we offline train the DRL

agent to imitate the behavior of the baseline policy by using

the behavior cloning method. Specifically, the offline training

is accomplished by minimizing the action differences between

the DRL policy and the baseline policy under different states.

We see that the DRL agent uses a similar resource usage as

the baseline policy does after several offline training epochs.

The DRL agent, after the imitation learning, serves as the

start point for the online learning phase, which then continues

learning and improving.

VI. FUTURE DIRECTIONS

We envision several promising techniques that may help

to alleviate and resolve the aforementioned system and DRL

challenges for end-to-end network slicing.

A. Hierarchical and Recursive Abstraction

The hierarchical and recursive abstraction (HRA) aims to

adaptively abstract and manage resources in different domains

both vertically and horizontally. In the vertical direction,

domain managers (DMs) in the same technical domain are

hierarchically abstracted to provide high-level programmabil-

ity. For example, the coverage in RAN can be accomplished

by abstracting radio resources in multiple base stations in the

geographic area. In the horizontal direction, DMs in different

technical domains are recursively abstracted to provide end-

to-end programmability. For example, the end-to-end data

rate can be achieved by abstracting virtual resources in both

radio, transport and core DMs. These DMs are responsible

for enabling the network programmability of infrastructures,

collecting the network state with standardized interfaces, and

enforcing the management actions made by the DRL agents.

This article has been accepted for inclusion in a future issue of this magazine.

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on April 17,2023 at 15:08:38 UTC from IEEE Xplore. Restrictions apply.

7

B. Offline DRL

Offline DRL can be explored to offline train the DRL

agents only based on collected online data sets. It helps

to avoid expensive and unsafe online interactions with real

networks. The main difficulty is the distributional shift issue,

i.e., although its function approximators (e.g., policy and value

networks) is trained under one distribution (i.e., limited data

set), it will actually perform on a different distribution (i.e.,

the real network).

C. Transfer Learning

Transfer learning has shown a great potential to address

challenges regarding scalability, model reproducibility, and

sample efficiency [15]. The basic idea is to exploit prior

learned knowledge to benefit the learning process in target

tasks. For example, several works have been done to transfer

resource allocation policies from one network to another

with similar settings, which accelerates the convergence speed

of DRL agents [15]. Hence, the exploration of leveraging

transfer learning in dealing with DRL challenges needs further

research.

D. Explainable AI

The explainable artificial intelligence (XAI) aims to under-

stand, interpret and explain the black-box DNN-based policies

via different approaches, e.g., visual explanation, local ex-

planations, illustrative examples, and simplifications. Various

techniques, e.g., linear regression, decision trees, K-nearest

neighbors, and Bayesian models, can be exploited to improve

the explainability of DNN-based policies. For example, given

a state observation, the Q-value of each possible action can

be obtained from the Q network in the Deep Q-Network

(DQN) agent. To maximize the long-term cumulative reward,

the action with the highest Q-value is usually selected by the

DQN agent.

VII. SUMMARY

This article discusses DRL-based end-to-end network slic-

ing. We have briefly studied the end-to-end resource orches-

tration problem and presented a new system architecture to

enable DRL-based network slicing. We have also analyzed

the challenges of deploying DRL-based solutions from the

perspectives of both algorithm and system. Moreover, we

have explored and envision multiple promising techniques,

e.g., safety and distributed DRL and transfer learning, for

automating end-to-end network slicing.

REFERENCES

[1] Global Mobile Suppliers Association, “5G net-
work slicing for vertical industries.” [Online]. Avail-
able: http://www.huawei.com/minisite/5g/img/5g-network-slicing-for-
vertical-industries-en.pdf

[2] L. U. Khan, I. Yaqoob, N. H. Tran, Z. Han, and C. S. Hong, “Network
slicing: Recent advances, taxonomy, requirements, and open research
challenges,” IEEE Access, vol. 8, pp. 36 009–36 028, 2020.

[3] J. A. Hurtado Sánchez, K. Casilimas, and O. M. Caicedo Rendon, “Deep
reinforcement learning for resource management on network slicing: A
survey,” Sensors, vol. 22, no. 8, p. 3031, 2022.

[4] V. P. Kafle, P. Martinez-Julia, and T. Miyazawa, “Automation of 5g
network slice control functions with machine learning,” IEEE Commu-
nications Standards Magazine, vol. 3, no. 3, pp. 54–62, 2019.

[5] Q. Liu, T. Han, and E. Moges, “Edgeslice: Slicing wireless edge
computing network with decentralized deep reinforcement learning,” in
2020 IEEE 40th International Conference on Distributed Computing
Systems (ICDCS). IEEE, 2020, pp. 234–244.

[6] O-RAN, “O-RAN Architecture Description,” Open Radio Access Net-
work Alliance (O-RAN), Tech. Rep., 2019, version 3.0.

[7] 3GPP, “Management and orchestration, Architecture framework,” 3rd
Generation Partnership Project (3GPP), Technical Specification (TS)
28.533, 2020, version 16.4.0.

[8] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[9] H. Mao, M. Schwarzkopf et al., “Learning scheduling algorithms for
data processing clusters,” in Proceedings of the ACM Special Interest
Group on Data Communication. ACM, 2019, pp. 270–288.

[10] C. Marquez, M. Gramaglia, M. Fiore, A. Banchs, and X. Costa-Perez,
“How should i slice my network? a multi-service empirical evaluation
of resource sharing efficiency,” in Proceedings of the 24th Annual
International Conference on Mobile Computing and Networking, 2018,
pp. 191–206.

[11] X. Foukas, N. Nikaein, M. M. Kassem, M. K. Marina, and K. Konto-
vasilis, “Flexran: A flexible and programmable platform for software-
defined radio access networks,” in Proceedings of the 12th International
on Conference on emerging Networking EXperiments and Technologies,
2016, pp. 427–441.

[12] 3GPP, “Management and orchestration; 5G Network Resource Model
(NRM),” 3rd Generation Partnership Project (3GPP), Technical Specifi-
cation (TS) 28.541, 2020, version 16.6.0.

[13] C. Tessler, D. J. Mankowitz, and S. Mannor, “Reward constrained policy
optimization,” arXiv preprint arXiv:1805.11074, 2018.

[14] Q. Liu, N. Choi, and T. Han, “Onslicing: online end-to-end net-
work slicing with reinforcement learning,” in Proceedings of the 17th
International Conference on emerging Networking EXperiments and
Technologies, 2021, pp. 141–153.

[15] Z. Zhu, K. Lin, and J. Zhou, “Transfer learning in deep reinforcement
learning: A survey,” arXiv preprint arXiv:2009.07888, 2020.

Qiang Liu is an Assistant Professor in the School of Computing at the
University of Nebraska-Lincoln. His research interests lie in the broad field of
wireless communication, computer networking, edge computing, and machine
learning.

Nakjung Choi is the department head of mobile network systems and
also DMTS (distinguished member of technical staff) in Nokia Bell Labs,
Murray Hill, NJ, USA. His research focused on SDN/NFV/Cloud and 5G/IoT,
especially end-to-end network and service automation.

Tao Han (M’15-SM’20) is an Associate Professor in the Department of Elec-
trical and Computer Engineering at the New Jersey Institute of Technology
(NJIT) and an IEEE Senior Member. His research interests include mobile
edge computing, machine learning, mobile X reality, 5G system, Internet of
Things, and smart grid.

This article has been accepted for inclusion in a future issue of this magazine.

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on April 17,2023 at 15:08:38 UTC from IEEE Xplore. Restrictions apply.

